
HAL Id: hal-04803562
https://laas.hal.science/hal-04803562v1

Submitted on 25 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving the Execution Time of Industrial Applications
through Planned Cache Eviction Policy Selection

Sergio Arribas García, Giovani Gracioli, Denis Hoornaert, Tomasz Kloda,
Marco Caccamo

To cite this version:
Sergio Arribas García, Giovani Gracioli, Denis Hoornaert, Tomasz Kloda, Marco Caccamo. Improving
the Execution Time of Industrial Applications through Planned Cache Eviction Policy Selection. IEEE
32nd International Symposium on Industrial Electronics (ISIE 2023), Jun 2023, Helsinki, Finland.
pp.1-6, �10.1109/ISIE51358.2023.10228033�. �hal-04803562�

https://laas.hal.science/hal-04803562v1
https://hal.archives-ouvertes.fr


Improving the Execution Time of Industrial
Applications through Planned Cache Eviction

Policy Selection
Sergio Arribas Garcı́a1, Giovani Gracioli1, Denis Hoornaert2, Tomasz Kloda3, and Marco Caccamo2

1Federal University of Santa Catarina, Brazil, {arribas,giovani}@lisha.ufsc.br
2Technical University of Munich, Germany, {denis.hoornaert,mcaccamo}@tum.de

3LAAS-CNRS, Université de Toulouse, INSA, France, tkloda@laas.fr

Abstract—Modern industrial applications are demanding high
computational power due to the evolution of features and
components, such as real-time communication and control, image
processing techniques, and security. In the microprocessor space,
the high demand for computational power can only be satisfied
by the integration of high-performance hardware components.
Amongst them, caches and their replacement policies play a
major role in preventing costly off-chip memory accesses.

In this article, we argue that enabling caches with several
eviction policies that can be selected at the software-layer and
changed during an application execution can help substantially
decrease its execution time (by increasing the cache hit ratio).
To demonstrate this, we (1) present the implementation of
an open-source cache simulation framework, (2) propose four
distinct approaches to identify when to change the policy during
the execution, and (3) assess the cache hit rate improvements
brought. Experiments show that workloads running with the
proposed approaches can feature up to 30% cache miss rate
improvement in comparison to using the LRU replacement policy.

Index Terms—Cache memories, hit ratio, eviction policies

I. INTRODUCTION

Since the creation of the term Industry 4.0, during the
Hannover Fair in 2011, global manufacturing industries have
been focusing on improving and digitalizing their production
by introducing and using new technology (i.e., control through
the internet, intelligent algorithms, image processing, etc).
This constant evolution has prompted a demand for compu-
tational power that can only be sustained by microprocessors
featuring various hardware modules aiming at speeding up the
processing, such as cache memories.

Cache memories rely on the temporal and spatial locality of
the memory accesses to improve the average execution time
of applications. Since caches have limited space, the choice of
which data should be kept in the cache during a time window is
extremely important for system performance. A cache eviction
policy is responsible for choosing a cache line to be replaced
when there is a cache miss [1]. Different eviction policies
are used by current commercial microprocessors, such as
Least Recently Used (LRU) and its variants, First in First

Giovani Gracioli and Sérgio Arribas Garcı́a were supported by
Fundação de Desenvolvimento da Pesquisa - Fundep Rota 2030/Linha V
27192.02.01/2020.09-00. Marco Caccamo was supported by an Alexander
von Humboldt Professorship endowed by the German Federal Ministry of
Education and Research.

Out (FIFO), and Random. They offer different performance
profiles w.r.t. the cache hit rate due to the target application’s
memory access pattern and the cache size [1]–[3].

Traditional microprocessors are usually designed with a
single fixed cache eviction policy per cache level that is applied
regardless of the target applications. Using a fixed eviction
policy during the execution of a code is not a guarantee of
best performance. As illustrated by Figure 1, an application
presents fluctuating cache hits ratio performance throughout
its execution depending on the eviction policy. This figure
depicts the cache hit ratio (y-axis) for four different eviction
policies (LRU, FIFO, RANDOM, and BIP1) and the number of
executed instructions (x-axis) for the pca-small benchmark
issued from the Cortex Benchmark Suite [4] running on top of
Cachegrind (a cache profiler tool) [5]. Every point constitutes
the percentage of cache hits in the last 1000 executed instruc-
tions. The benchmark’s execution is divided into six segments
(noted from a to f). Each segment is associated with the best-
performing policy w.r.t. the hit-rate. For instance, in segment
(c), the BIP is selected as it outperforms the other policies.

Fig. 1: Fragment of cache hit ratio for pca-small benchmark
considering four cache eviction policies (LRU, FIFO, RAN-
DOM, and BIP).

Different related works have studied the performance bene-

1BIP is described in the next section.



fits and impacts of varying the eviction policy [6]–[8]. Never-
theless, none of the previous studies have focused on finding
the best eviction policy considering specific code sections.
This process is not trivial as the memory access pattern and
cache lines status must be considered. Moreover, having the
ability to change the policy at run-time and adapt the cache as
the process executes can improve its cache-hit rate and con-
sequently, its performance. For instance, it would be possible
to adjust the policy according to the factory evolution phases.
As exemplified in Figure 1, it would be possible to achieve
considerable performance gains by enabling and exploiting
eviction policy change during the application’s execution.

In this paper, we present a framework to improve the
execution time of industrial applications by maximizing the
cache hit ratio through the selection of cache eviction policies
for specific code sections. We present four different techniques
to analyze the code and assign cache eviction policies to code
sections and implement the approaches in an open-source
cache profiler framework. In summary, the contributions of
this paper are: (i) We propose four different approaches to
simulate compiled code and to select the best cache eviction
policy for specific code sections; (ii) We implement the four
proposed approaches as an extension of a cache profiler
framework (Cachegrind [5]) and release it as an open-source
artifact for future research on related topics; and (iii) Based on
the framework implementation, we evaluate and compare the
proposed approaches in terms of cache misses and execution
times, using relevant benchmark applications. Our proposed
techniques to select and assign cache eviction policies to code
sections can reduce the cache misses of more than 30%.

II. RELATED WORK

Cache memories are one of the elements that could impact
the performance of industrial applications [9]. The capability
of the system caches to keep hold of the adequate data and
provide a high cache hit rate depends on many architectural
aspects such as the number of sets, the number of ways,
the write policy, and the hit latency. As highlighted by [10]
and [1], amongst the state-of-the-art eviction policies such as
Random, FIFO, and LRU, the latter provides the soundest
resistance to ”chaos” [10].

Unfortunately, in addition to requiring more local memory
resources, the LRU policy suffers from one notable aspect: the
minimal life span (abbreviated mlp in [1]), that is a function of
the number of ways. In [6], Qureshi et al. proposed three new
cache line policies derived from LRU. Referred to as Adaptive
Insertion Policies, they differ by the way new cache lines are
inserted in the cache set. The proposed LIP (LRU Insertion
Policy) borrows all the precepts of LRU except that new caches
line are inserted at the LRU position instead of the MRU (Most
Recently Used) position. Alternatively, [6] proposed the BIP
policy (Bimodal Insertion Policy), an extension of LIP where
the insertion of each cache line at the LRU position instead of
the MRU is decided with a probability ϵ ∈ [0, 1]. Finally, they
proposed a dynamically adapting policy called DIP (Dynamic
Insertion Policy) that switches between the LRU and BIP

policies. The decision to switch is taken by monitoring cache
hits trends and selecting the policy incurring fewer misses.

The difficulty to assess the usefulness of a cache line at
a given instant has prompted researchers to rely on artificial
intelligence techniques. These approaches train their classifier
using a sequence of eviction decisions generated by the
optimal eviction policy (i.e., Belady’s/Oracle’s policy [11]).
Tools such as Hawkeye [12] and Glider [13] train classifiers to
guess whether a line is ”cache-friendly” or ”cache-averse” and
base any eviction decision on this. These AI-based approaches,
while successful at providing increased cache hit rates, are
impractical to implement in real hardware as the network’s
depth drives the frequency down, and implementing extra
memory, adders, and multipliers is expensive.

Table I summarizes the different approaches designed to
improve the results of eviction policies as LRU. The DIP-
based approaches [6] allow to use LRU or BIP as eviction
policies and the selection is made dynamically online. DIP-
Global implements two separated auxiliary tag directories for
LRU and BIP and a counter that informs which policy has
fewer misses in selecting the best policy. DIP-DSS (DIP
Dynamic Set Sampling) reduces the hardware overhead of
DIP-Global by using two ATDs with 32 sets instead. Although
the authors claim that all DIP variants are practicable (in
terms of hardware implementation), only the DIP-Set dueling
option does not imply a big hardware overhead or extra ATDs.
Hawkeye [12] and Glider [13] are both based on AI and
have a considerable hardware overhead. They provide better
results when compared with the DIP-based approaches. Our
mechanism, listed in the last row, instruments the programs
obtaining the best combination of eviction policies for specific
code sections. The offline mechanisms return the lines of code
where a policy change is triggered in the CPU. The online
mechanism uses three standard policies and compares them
through a set-dueling strategy.

III. FRAMEWORK FOR CACHE EVICTION POLICY
SELECTION

In this section, (1) we present the assumptions and system
model we considered to allow the usability of the proposed
approaches and (2) we discuss the implementation of the
approaches, creating a framework for cache eviction policy
selection in Section III-B. We close the section by discussing
relevant aspects of the proposed framework in Section III-C.

A. Assumptions and System Model

We consider a System-on-Chip (SoC) design featuring an
arbitrary amount of cores. Each core must be associated with
private Level-1 (L1) data and instruction caches. The cache
hierarchy can be extended to an arbitrary number of levels
before leading to the DRAM and can either be private, shared,
or unified. We assume that the cores do not interfere with
each other thanks to state-of-the-art isolation techniques (e.g.,
cache coloring) [14]. In addition, despite the memory level
parallelism they offer, we do not consider non-blocking caches
to keep the model simple and prevent predictability issues [15].



TABLE I: Related work overview.

Approach Practicable Overhead Online/Offline Technique/Mechanism
DIP-Global Yes 2 Tag directories Online Parallel execution and comparison (Hits Counter) [6]
DIP-DSS Yes 2kB (2 ATDs) Online Parallel execution and comparison of some sets (Counter) [6]
DIP-Set dueling Yes 15 bits Online Dedicates some sets to each policy (Counter) [6]
Hawkeye Yes 28kB Online AI, predictor based in optimal policy for previous accesses [12]
Glider Yes 62kB Both AI, predictor based in sequence of last PC + offline training [13]
Belady No - Offline Optimal solution, based in future memory accesses [11]
Proposed Work Yes 15 bits, Multiplexer Offline or online Detection of best policy for section of code

The main memory model does not take into account typical
DRAM architecture and memory transaction arbitration under
saturation. These assumptions ease the modelization of the
platform and, most importantly, help emphasize the benefits
of the proposed approaches by removing any source of noise.

We assume there is a cache architecture capable of (1)
enforcing different eviction policies following the software-
layer/end-user directive and (2) providing a strict partition for
every task of a given core in order to eliminate cache-related
costs during context switches. The second point requires the
cache to be informed of the currently running application.
This can be implemented in many ways such as via memory-
mapped registers or dedicated assembly instructions. While
the proposed cache architecture can be implemented at any
level of the cache hierarchy, this article focuses on the L1
cache. A sound analysis of the interplay between the cache
level eviction policies is considered out-of-scope for this paper
and left as future work.

Regarding the application model, it is up to the system en-
gineering to define the best policy for each task or application,
taking into consideration the criticality levels of the system.
For instance, if a time-sensitive task is assigned to a cache
partition, then predictable and analyzable eviction policies,
such as LRU, must be considered [1]. If a task or application
demands only performance, then any eviction policy could be
applied. In this paper, we focus on the optimization of the
average execution time by selecting and changing the cache
eviction policy during code execution.

B. Proposed Approaches

Even with automated mechanisms, identifying the right
places to choose a new eviction policy in the code is not trivial.
The optimal selection should consider the current status of
the cache memories and the next memory addresses accessed
by the software. In this paper, we consider offline and online
methods to select the eviction policy. Table II presents the
main features of the proposed approaches. All approaches
implement an automated policy selection mechanism and
requires extra memory space.

TABLE II: Overview of the approaches features.

Approach Execution Policy selection
Fixed-Window Offline Window Size

Sliding-Window Offline Window Size and threshold
Dip+Aging Online Counter
Set Dueling Online Counter

1) Fixed-Window Approach: In this approach 4 eviction
policies are simultaneously applied to 4 copies of the cache
memory (LRU, FIFO, BIP and RANDOM). During a time
window, all data accesses are applied to each cache individ-
ually. Upon a cache hit, a counter associated to that cache
(and indirectly its eviction policy) is incremented, effectively
denoting the hit ratio within that window.At each instant,
these hit counters are compared for the current window. The
framework selects the policy with the greatest performance for
the windows and generates an output that will make the CPU
to switch to that policy in real hardware. After every window
the framework copies the cache of the selected policy to the
other cache policies, starting after that a new cycle.

The size of the window is the only parameter the developer
must set and tweak. This represents the biggest disadvantage
of this method as this parameter directly impacts the quality
of the eviction decisions and it cannot be changed during
the offline process execution. While coarser granularity may
include code blocks that could work better with another policy
different from the policy selected for the whole window, small
window sizes are likely to result in many policy changes.

2) Sliding-Window Approach: Similarly, the sliding-
window approach also uses dedicated caches for each policy
and defines a window size. However, the window defines the
number of previous memory accesses used to calculate the
average of cache hits. The code is executed simultaneously
using all the eviction policies and different copies of the cache
for each policy, in every single memory access the hit rate is
calculated. The algorithm in the framework selects the best hit
rate among the policies after comparing all the cache copies
and select the best policy. The output of the approach are the
code lines where the best eviction policy switches. In contrast
to the fixed-window approach, the sliding-window approach
can change the eviction policy with a higher frequency. This
could be disadvantageous because it can cause an eviction
policy change in every single data access. To avoid this effect
a threshold is added to the algorithm, this parameter fixes the
minimum difference in the hit ratio between policies before to
select a new eviction policy.

3) DIP+Aging: In this approach, 3 policies are used (LRU,
FIFO and BIP) and each policy has its cache with only 32 sets,
as suggested in [6] for the DIP Set Dueling. The framework
assigns a counter attached to each cache (similar to the DIP-
Global policy proposed in [6]). The counter is defined with
a maximal number of bits. During the program execution,
each policy modifies its cache simultaneously according to the



executed instruction. In every cache access a hit increments the
counter by one. After that, the framework shifts the counter
one bit to the left and compares all the counters. The difference
between our approach and DIP [6] is that DIP is limited to
only two policies, whereas our online selection method can use
more than two. This minor modification, however, completely
changes the way the counter is used. For instance, DIP has a
unique counter that is shared by the two policies. Here, we
have a dedicated counter per policy. DIP uses the medium
value of the counter (for example, 512 when the counter max
is 1024), while our method starts from zero and considers
aging of hits. The eviction policy is selected by taking the
option with the greatest counter.

4) Set Dueling: This approach is based on DIP+aging. Here
3 policies are also used (LRU, FIFO and BIP) but they do
not have a separate cache memory. This method uses a set
dueling technique, as proposed in [6]). For each policy 32
sets of the cache memory are selected. These sets use its own
eviction policy and have a counter with the same strategy as
in the DIP+aging. The sets of the cache memory that were not
assigned to a policy are used by the policy with the greatest
counter value.

Set Dueling avoids the overhead of having 32 extra sets per
policy and the need for updating the counters in every single
memory access. The advantage of these two last approaches
lies in the simplicity of their implementation and the minor
computing needed. The determination of the eviction policy
can be done offline (through simulation) as well as online in
the CPU by having a per-policy counter.

Framework Implementation. We implement the described
approaches in a framework to select the best cache evic-
tion policy (the one that maximizes the cache hit ratio).
We extended Cachegrind, one of the tools composing the
instrumentation framework Valgrind [5]. Our framework with
the modified Valgrind/Cachegrind code is available online.2

C. Important Remarks

Performance. The time overhead added to run the proposed
framework is not big, existing only a difference between
the online and offline approaches. For instance, the average
execution time of the offline approaches (Fixed-Window and
Sliding-Window) for the pca-small benchmark (presented in
the next section) is the same, but it is 60% bigger than the
execution time of the online approach (3 minutes more in this
case). In benchmarks with more cache accesses, we state that
the differences are comparable.

Framework output. Independently of the selected ap-
proach, the framework generates an output informing a code
line for every policy change. The information contained in the
line indicates to the developer the source file, the function,
the code line number, and the moment for the insertion of
the function call which generates the policy change in the
processor. The automation of the adaptations and compilation
of the source code after the outcome of the framework is out

2 https://github.com/donxergio/cachegrind.

of the scope of this paper and has been left for future work.
Future work concerns the integration of the framework with
a C compiler that generates the compiled code including the
policy selection.

Program inputs. During the offline process we propose
to execute the code in the framework varying the inputs and
merging the results. Comparing the outcomes, it is possible
to identify parts of the code where the same policy could be
used with multiple inputs. In code sections where the outcomes
are divergent, the developer is responsible to choose the more
convenient policy manually. In our experiments, we compared
the outcomes of the same benchmarks with different inputs and
we detected that they affect the improvements obtained with a
dynamic eviction policy. For instance, we detected a difference
of up to 8% in the execution time when the PCA benchmark
was executed using the medium input in comparison with the
small input. The implementation of a tool to compare the
results will be part of future work.

Loops in code. To allow a policy change within loop
statements is challenging. The framework indicates the specific
iteration of the loop when the policy switches. However, the
implementation in the hardware implies the creation of extra
counters in the CPU. An approach to solve this situation could
be processing the looping as a unique block and returning the
best policy for the entire block.

Additional cache space. Supporting more than one cache
eviction policy increases the required space in the integrated
circuit (i.e., space that would be allocated to the cache is
reduced due to extra logic to support the eviction policies,
at least a multiplexer to select the chosen policy, and extra
metadata). However, eviction policies such as LRU, FIFO, and
BIP, which keep the information of each line that has been
recently accessed, can share the same structure to store the
metadata, and thus reduce the additional space. RANDOM,
for instance, does not require any metadata.

IV. EVALUATION

To evaluate the proposed framework with the four ap-
proaches, we used a representative set of benchmarks from the
San Diego CortexSuite, which is a benchmark suite that pro-
vides algorithms from machine learning, natural language pro-
cessing, and computer vision areas and includes real datasets
for each algorithm [4]. We use the Principle Component
Analysis (pca), Singular Value Decomposition (svd), Image
Stitch, Latent Dirichlet Allocation (lda), and SIFT algorithms,
representing important memory-intensive algorithms for ma-
chine learning, feature extraction, and image processing and
also used in embedded systems, such as industrial applications.
We also varied the input for each benchmark, using the
standard inputs available in CortexSuite (small, medium,
and large, or cif, qcif, and hd when the algorithm is
related to image processing).

We executed each benchmark version in our modified
Cachegrind framework varying the cache size3 (4, 8, 16,

3Cache size here means a cache partition size dedicated to a task.



32, and 64KB), the four proposed approaches, and the four
standard cache eviction policies (LRU, FIFO, RANDOM, and
BIP). For BIP, we set the bimodal probability parameter (ϵ)
to 1/64 as also used in [6], [8]. The cache line size was
defined as 32 bytes and the number of ways as 4. For the
fixed-window, sliding-windows approach, DIP+Aging and Set
Dueling (named FIX, SLIDE, DIP 3A, DUEL), we consider
window sizes of 4096 cache data accesses. For the sliding-
window approach, we consider a threshold of 128. The LRU
policy serves as a baseline comparison, since it is the more
frequently used policy in modern microprocessors.

Based on the execution of the described experiments, we
obtained the number of cache misses for each configuration.
Figures 2 and 3 show the miss ratio for each policy and
approach compared with the miss ratio of LRU for the same
code. The calculation of the miss ratio uses the number of
misses in the L1 data cache in relation to the number of read
accesses in the L1 data cache. On the x-axis, we vary size
of the cache. On the y-axis, we present the miss ratio of the
policies compared with the miss ratio of LRU.

In Figure 2, for the svd3-small benchmark among the
standard policies, BIP is the one with the best performance
for up to 8 KB of memory, after that LRU performs better. All
the proposed approaches, except Set Dueling, perform better
that the traditional policies. The fixed-window (FIX) method
is 25.5% better than LRU and 7.7% better than BIP for cache
memories of 4 KB, while DIP 3A performs similar to BIP for
4 KB but better than it for the other cache sizes. The sliding-
window (SLIDE), on the other hand, performs close to BIP
for 4 KB and close to LRU for other memory configurations.
For the lda-small benchmark the behaviour of the approaches
follows the one observed in svd3-small. The fixed-window
performs in all configurations better than LRU but not as
good as BIP for 16 KB. The DIP 3A follows the performance
of BIP (18% better than LRU) up to 16 KB, and after that
memory size performs better than BIP.

Figure 3 shows the results obtained in the experiments with
the benchmarks (a) pca-small and (b) spc-small. For pca-
small all the presented approaches perform better than LRU,
having the greatest difference for a cache size of 64 KB,
where DIP 3A, FIX and SLIDE are more than 30% better than
LRU, Set dueling follows the results but its results are worse.
For the spc-small benchmark only the fixed-window and
sliding-windows approaches perform better than the traditional
policies, in the case of the sliding-windows it replicates the
LRU policy, which is the traditional policy with minimal
miss rate, for this reason the difference with LRU is zero.
FIX yields better results for larger caches with up to 2.2%
improvement for 64 KB wide cache compared to LRU. For
all the experiments, SLIDE emulates LRU’s performance. In
contrast, BIP performs poorly. As described in [16], this can
be credited to the benchmark’s memory access patterns and its
working-set. We expect that Set Dueling performs worse than
DIP 3A, because it uses part of the cache memory (32 sets per
policy) instead of dedicated caches for every eviction policy.
This makes the approach very dependent on the memory

access pattern. With small cache sizes the difference between
them should be more evident. In constrast, the fixed-window
approach returns the smallest miss ratio, because it checks the
four traditional policies and uses the best one as output.

As highlighted by Figure 3(a), A variation in the cache size
also affects the behavior of the approaches and policies within
the same benchmark. For instance, the pca-small application
shows gains and variation until 64 KB while, for svd3-small,
a loss can be observed until 64 KB. As expected, the larger
the cache partition, the smaller the eviction policy impact is.

In summary, we have obtained a reduction between 5%
and 30% with the fixed-window and DIP+aging approaches in
most of the configurations. The framework allows to simulate
the code with a cache memory architecture as the actual
cache architecture of an industrial hardware and choose the
approach to select the eviction policy leading to the highest
performance. The reduction of cache misses improves the
execution time and brings other benefits, such as a reduction
of power consumption.

40
96

81
92

16
38

4

32
76

8

65
53

6

Cache size [bytes]

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

M
iss

 ra
tio

 c
om

pa
re

d 
wi

th
 L

RU
 [%

]  

bip fifo dip_3a duel fix slide

(a) svd3-small

40
96

81
92

16
38

4

32
76

8

65
53

6

Cache size [bytes]

-20.00

-10.00

0.00

10.00

20.00

30.00

M
iss

 ra
tio

 c
om

pa
re

d 
wi

th
 L

RU
 [%

]  

bip fifo dip_3a duel fix slide

(b) lda-small

Fig. 2: Miss ratio compared with LRU for different cache sizes.
(a) svd3-small. (b) lda-small.



40
96

81
92

16
38

4

32
76

8

65
53

6

Cache size [bytes]

-30.00

-25.00

-20.00

-15.00

-10.00

-5.00

0.00
M

iss
 ra

tio
 c

om
pa

re
d 

wi
th

 L
RU

 [%
]  

bip fifo dip_3a duel fix slide

(a) pca-small

40
96

81
92

16
38

4

32
76

8

65
53

6

Cache size [bytes]

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

M
iss

 ra
tio

 c
om

pa
re

d 
wi

th
 L

RU
 [%

]  

bip fifo dip_3a duel fix slide

(b) spc-small

Fig. 3: Miss ratio compared with LRU for different cache sizes.
(a) pca-small. (b) spc-small.

The implementation of multiple replacement policies in
a cache architecture demands some extra memory costs, as
explained in [7]. For the online approaches, we have an
extra cost of 3x32 sets to implement DIP+aging plus an
extra 4 bytes per counter in each policy (DIP+aging and Set
dueling) [6], avoiding the necessity of cache duplication. In
the experiments we concluded that DIP+aging performs better
than the Set Dueling approach for most of the cases. This
is because the Set Dueling approach depends on the position
of the sets selected for the eviction policies inside the cache
memory and the memory access pattern of the program, while
DIP+aging follows the best traditional policy independent of
the memory access pattern, because all memory accesses are
processed by all the policies. The reduction of miss ratio has a
considerable impact in the execution time of the applications.
For instance, we used parameters of different processors to
calculate the execution times of the benchmarks as done in [8]
and considering an A53 CPU running the pca-small with the
configuration of 64 KB, where the miss ratio was reduced

30%, the execution time was reduced 20% when compared
with the execution time using only the LRU policy.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented an extension of the Cachegrind
framework to support the assignment of cache eviction policies
considering code sections. We discussed and implemented
four different approaches to select the most appropriate cache
eviction policy (the one that maximizes the cache hit ratio)
in specific code segments. Our evaluation using benchmark
applications has shown a reduction of up to 30% in terms of
cache misses, consequently, improving the execution time of
industrial applications.

In future work, we will investigate how to integrate the
policy selection techniques into a compiler to also support
loop unrolling and a finer-grained selection and to investigate
machine learning-based techniques to detect memory access
patterns of code sections and to correlate those patterns with
cache eviction policies.

REFERENCES

[1] J. Reineke, D. Grund, C. Berg, and R. Wilhelm, “Timing predictability of
cache replacement policies,” Real-Time Syst., vol. 37, no. 2, p. 99–122,
Nov. 2007.

[2] V. Touzeau, C. Maı̈za, D. Monniaux, and J. Reineke, “Fast and exact
analysis for lru caches,” ACM Program. Lang., vol. 3, jan 2019.

[3] J. Segarra, R. Gran Tejero, and V. Viñals, “A generic framework to
integrate data caches in the wcet analysis of real-time systems,” Journal
of Systems Architecture, vol. 120, p. 102304, 2021.

[4] S. Thomas, C. Gohkale, E. Tanuwidjaja, T. Chong, D. Lau, S. Garcia,
and M. B. Taylor, “CortexSuite: A Synthetic Brain Benchmark Suite,”
in Proc. of the IISWC, Oct. 2014.

[5] J. Seward, N. Nethercote, and J. Weidendorfer, Valgrind 3.3 - Advanced
Debugging and Profiling for GNU/Linux Applications. Net. The., 2008.

[6] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive
insertion policies for high performance caching,” in Proc. of the 34th
ISCA, 2007, p. 381–391.

[7] R. Mancuso, H. Yun, and I. Puaut, “Impact of DM-LRU on WCET:
A Static Analysis Approach,” in Proc. of the 31st ECRTS, vol. 133,
Dagstuhl, Germany, 2019, pp. 17:1–17:25.

[8] B. A. Araujo, G. Gracioli, T. Kloda, D. Hoornaert, and M. Caccamo,
“Implementation and evaluation of adaptive cache insertion policies for
real-time systems,” in Proc. of the XI SBESC, 2021, pp. 1–8.

[9] O. Kotaba, M. Paulitsch, S. Petters, H. Theiling, and J. Nowotsch,
“Multicore in real-time systems - temporal isolation challenges due to
shared resources,” in Proc. of the WICERT 2013, 2013.

[10] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm, “The
influence of processor architecture on the design and the results of wcet
tools,” Proceedings of the IEEE, vol. 91, no. 7, pp. 1038–1054, 2003.

[11] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems Journal, vol. 5, no. 2, pp. 78–101, 1966.

[12] A. Jain and C. Lin, “Back to the future: Leveraging belady’s algorithm
for improved cache replacement,” in Proc. 43rd ISCA, 2016, pp. 78–89.

[13] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying deep learning to the
cache replacement problem,” in Proc. 52nd MICRO, 2019, p. 413–425.

[14] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pel-
lizzoni, “A Survey on Cache Management Mechanisms for Real-Time
Embedded Systems,” ACM Computing Surveys, vol. 48, no. 2, 2015.

[15] P. K. Valsan, H. Yun, and F. Farshchi, “Taming non-blocking caches to
improve isolation in multicore real-time systems,” in 2016 IEEE RTAS,
2016, pp. 1–12.

[16] A. Jaleel, K. B. Theobald, S. C. Steely, and J. Emer, “High perfor-
mance cache replacement using re-reference interval prediction (rrip),”
Proceedings - International Symposium on Computer Architecture, pp.
60–71, 2010.


