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ABSTRACT
Cache partitioning is a technique to reduce interference among
tasks accessing the shared caches. To make this technique effective,
cache segments must be given to the tasks that can benefit most
from having their data and instructions cached for faster execu-
tion. The existing partitioning schemes for real-time systems divide
the available cache among the tasks to guarantee their schedula-
bility which is the sole optimization criterion. However, it is also
preferable, especially in systems with power constraints or mixed
criticalities, to reduce the total cache usage for real-time tasks.

In this paper, we develop optimization algorithms for cache par-
titioning that, besides ensuring schedulability, also minimize cache
usage. We consider both preemptive and non-preemptive schedul-
ing policies on single-processor systems. For preemptive scheduling,
we formulate the problem as an integer quadratically constrained
program and propose an efficient heuristic achieving near-optimal
solutions. For non-preemptive scheduling, we combine linear and
binary search techniques with different schedulability tests. Our
experiments based on synthetic task sets with parameters from
real-world embedded applications show that the proposed heuris-
tic: (i) achieves an average optimality gap of 0.79% within 0.1x
run time of a mathematical programming solver and (ii) reduces
average cache usage by 39.15% compared to existing cache parti-
tioning approaches. Besides, we find that for large task sets with
high utilization, non-preemptive scheduling can use less cache than
preemptive to guarantee schedulability.

CCS CONCEPTS
• Computer systems organization→ Real-time systems.
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1 INTRODUCTION
The main benefit of cache partitioning in real-time systems is that
it removes inter-task interference: preempting task will not evict
the cached memory blocks of preempted task if both tasks use
separate cache partitions. Cache partitioning can be implemented
using specific hardware extensions (e.g., Intel’s Cache Allocation
Technology [33] or ARM’s Lockdown by master [43]) [23] or in
software by exploiting address mapping between main memory
and cache lines (e.g., cache coloring) [35, 38, 45, 60]. However, if
the task’s working set does not fit into the task’s private cache
partition, the task will see an increased number of cache misses and,
consequently, increased execution time. To mitigate this problem,
various optimization techniques are used to allocate cache partitions
of adequate size to tasks in function of their timing constraints.

Cache partitioning optimization methods for real-time systems
focus on finding the cache partitioning under the assumption that all
available cache segments can be allocated to the tasks. Despite the
wealth of the literature, reducing cache usage is not part of the op-
timization criteria. However, for a variety of reasons, unrestrained
cache usage might be of concern to embedded engineers. Multilevel
caches often consume about half the processor energy [32], and
choosing the processors with a last-level cache size fitting the appli-
cation requirements or appropriately selecting its size can largely
reduce power dissipation. Otherwise, the unallocated partitions
can be used to improve the quality of service of the best-effort
tasks. In the context of partitioned multi-core systems where the
task-to-core allocation is fixed beforehand, the cache partitioning
problem boils down, in fact, to minimize the cache usage of every
core while ensuring its schedulability (see Example 1.1). When a
task-to-core allocation is not given, the cache minimization can be
used as a sub-procedure in task and cache co-allocation method.

Example 1.1. Consider a multicore mixed-criticality system from
Figure 1 where three real-time operating systems (RTOS1, RTOS2,
and RTOS3) are running alongside a general purpose operating
system (GPOS1). Each operating system runs a set of tasks on a
dedicated core. The tasks are statically allocated to the cores and
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Figure 1: Last-level cache dimensioning in amulticoremixed-
criticality system.

do not migrate from one core to another due to certification restric-
tions (e.g., ensuring isolation among tasks with different criticality
levels [21]) or interoperability issues (e.g., missing libraries). The
processor has an L2 cache shared among all cores and operating
systems reducing the performance gap between the processor and
main memory. Cache partitioning is used to avoid inter-core in-
terference (i.e., tasks running on different cores access the shared
cache simultaneously and evict their cached blocks) and intra-core
interference (i.e., preempting task evicts the cached blocks from
the preempted tasks on the same core). Finding a minimal size of
cache partition for each real-time operating system is crucial for
determining a maximal size of cache partition that can be used by
the general-purpose operating system. The partitioning method
can either assign cache partitions on a per-task basis (each task can
have a private L2 cache partition, e.g., [35]) or on a per-core basis
(each core can have a private L2 cache partition but the tasks run-
ning on the same core cannot be assigned different sub-partitions,
e.g., [38]). In the former case, we propose a cache minimization for
single-core preemptive systems where each task can have a private
cache partition, and in the latter case for non-preemptive systems
where all tasks execute non-preemptively using the same cache
partition without incurring cache-related preemption delays.

An apparent solution at hand for minimizing the cache usage is
to invoke iteratively one of the standard cache partitioning methods
with a smaller (bigger) cache size at each step until the system be-
comes unschedulable (schedulable). Indeed, several cache allocation
methods are easily amenable to this approach or can stop earlier
when schedulability is guaranteed, and there is no point in further
reduction of the system utilization (e.g., gradient descent for mini-
mizing system utilization [36] discussed in Section 5.1.4). In this re-
search, we also report such methods and describe the required mod-
ifications. On the other hand, some methods use remaining cache
segments to allow faster convergence (e.g., branch-and-bound [4]),
and specific approaches must be proposed. Moreover, restarting the
search for each cache size without any knowledge of the previous
iterations might not be particularly efficient, and certain proprieties
of the schedulability tests, in particular, sustainability as suggested
in [4], can be exploited to skip the redundant tests when going from
one cache partition size to another.

This paper makes the following new contributions. For single-
core preemptive scheduling, we formulate the cache minimization
problem as an integer quadratically constrained program (IQCP),
which can be solved optimally by a standard mathematical program-
ming solver. To improve the efficiency of the IQCP solution, we

propose a guided local search (GLS) heuristic that can obtain near-
optimal solutions in a fraction of the solver’s run time. Moreover, we
apply the branch-and-bound (BB) and dynamic programming (DP)
methods to the cache minimization problem. For single-core non-
preemptive scheduling, we derive pseudo- and fully-polynomial
time search algorithms that incorporate different schedulability
tests. To evaluate the proposed methods, we conduct simulation ex-
periments based on embedded programs to quantitatively compare
different approaches in terms of their cache usage, schedulability
ratio, and run time.

2 CACHE PARTITIONING METHODS
Cache partitioning is a technique to assign portions of the cache to
either tasks or cores to reduce interference (both intra- or inter-core)
and increase the predictability of the system. There are two ways
of performing cache partitioning in modern processors: (i) index-
based, where partitions are formed by an aggregation of associative
sets in the cache; or (ii) way-based, where partitions are formed by
an aggregation of individual cache ways [23].

Index-based cache partitioning can be implemented using spe-
cific hardware extensions [52] or by software within the operat-
ing system by relying on specific processor features, such as vir-
tual memory (to implement cache coloring for instance) [24, 35,
38]. Way-based techniques have the advantages of not demanding
changes in the cache organization and to isolate the requests for
the different partitions from each other (no contention for cache
ways in the cores). However, an important drawback of the way-
based methods is the limited number of partitions and granularity
of allocations due to the associativity of the cache [23].

For index-based methods implemented in software, such as cache
coloring, there are also two implementation choices: (i) to assign
partitions to tasks; or (ii) to assign partitions to cores. The former
demands the operating system to be aware of the cache partitions
and somehow implement the assignment of partitions to tasks in
its memory allocator [24]. The latter is very useful, for instance, in
hypervisor-based systems, where the hypervisor is responsible for
assigning partitions to cores, despite the operating systems and the
number of tasks running on top of it, providing cache partitioning to
operating systems that do not support it [25]. The main advantage
of assigning partitions to tasks is the possibility of having the best
match between the cache space (i.e., individual cache partition sizes)
and the worst-case execution times of tasks.

We note that several changes to the microarchitecture have
been proposed for more flexible cache partitioning in real-time
and mixed-criticality systems [22, 42].

3 RELATEDWORK
We review different cache partitioning techniques and discuss how
these techniques can be adapted to minimize cache usage in real-
time systems. In one of the earliest works, Kirk [36] attempts to
minimize task set utilization by allocating the cache segments to the
tasks for which it leads to the highest change in the total utilization
(i.e., gradient descent). Although the main objective is to minimize
the utilization, the method can be easily modified to stop when
the schedulability is guaranteed by the utilization bound. Plazar et
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al. [49] formulate an integer linear problem to allocate cache par-
titions minimizing the total length of tasks’ worst-case execution
times that can be easily replaced with utilization. Sasinowski and
Strosnider [50] apply dynamic programming to minimize task set
utilization. The algorithm adds tasks one by one, looking for the
cache allocation minimizing the utilization of the current subset
of tasks for every possible number of segments. This is done by
combining the previous allocations with the allocations of the task
that has just been added. (e.g., the minimal utilization for six tasks
using two segments can be found as the sum of minimal utilizations
of five previous tasks using, respectively, zero, one or two segments
and the sixth task using two, one or zero segments, respectively).
Considering every possible number of segments is not efficient for
finding the minimal cache usage. However, the algorithm can be
modified for this purpose as shown in Section 5.1.4. Bui et al. [12]
propose a genetic algorithm to solve the cache to task allocation
problem. While all the methods mentioned above consider utiliza-
tion as minimization criteria, Altmeyer et al. [4] show that this
might not be optimal with respect to schedulability. To find the
optimal cache partitioning in this respect, the authors propose a
branch-and-bound search combined with exact response time anal-
ysis. The proposed search technique cannot be directly applied
to minimize the cache usage as at each step it tries to allocate all
remaining cache segments in order to accelerate the convergence.
We report the required modifications in Section 5.1.3.

An alternative approach to the problem of shared cache is to
allow the tasks to use the entire cache and take into account the
cache-related preemption delays (CRPD) [3, 7]. Minimizing the cache
usage for such systems would involve a different optimization prob-
lem [27, 28] where the inter-task cache interference can be charac-
terized using the concept of an interference matrix. This approach
may lead to better schedulability performance and more efficient
cache usage. However, adding cache effect to schedulability anal-
ysis [1, 2, 14, 15, 55, 63, 64] is not widely supported by the static
program analysis tools. For instance, aiT WCET Analyzer supports
this feature only for three targets, namely, LEON2, e200, and e300 1.

While our work targets single-core, the cache-cognizant sched-
uling policies have been proposed for global multi-core systems.
These policies dispatch a new task for execution if there is an idle
processor and a sufficient number of cache segments (each task has
a constant and predefined cache requirement) [26]. Other cache-
aware scheduling policies can promote the execution of tasks shar-
ing a common working set [16] or preempt the tasks running on
the remote cores using the same cache partition as the preempting
task [56]. For cache-agnostic global schedulers, Xiao et al. [57] pro-
pose the schedulability analysis that accounts for cache interference.
In multi-core systems, other shared resources, like memory band-
width, may also degrade the system’s predictability. Several works
propose coordinated cache and bandwidth co-allocation [47, 53, 59].
Although we do not consider memory bandwidth in our analysis,
different solutions can be used alongside to mitigate the interfer-
ence due to DRAM bank sharing (e.g., bank partitioning [17, 46, 61],
software bandwidth regulators [39, 62] or segmented execution

1https://www.absint.com/ait/ucb_analysis.htm

models [20, 48]). If the task-to-core mapping is not given as as-
sumed in this work, various task and cache co-allocation methods
can be applied [27, 58, 59].

4 SYSTEM MODEL
We consider a system with 𝑛 tasks scheduled by a fixed-priority
preemptive or non-preemptive scheduler on a single-core platform.
Additionally, under preemptive scheduling, each task can be as-
signed a private cache partition, and under non-preemptive one, all
the tasks share one single cache partition.

The cache has a size of 𝑆 and is divided into 𝑚 equally-sized
separate segments. Each task can be assigned an arbitrary number
of cache segments for its individual use. The set of segments owned
by a task is its partition [50]. Under preemptive scheduling policy,
the cache partitions cannot be shared among different tasks as it
might lead to inter-task cache eviction resulting in cache-related
preemption delays. Obviously, this constraint is not necessary under
non-preemptive policies, and we can consider that all tasks share
all assigned segments. If task 𝜏𝑖 is assigned 𝑘 cache segments, its
worst-case execution time (WCET, i.e., the longest task execution
time when running stand-alone) is given by 𝐶𝑖,𝑘 . Additionally, we
denote by 𝐶𝑖,0 task 𝜏𝑖 ’s worst-case execution time with zero cache
partition. We assume the monotonicity of the execution times with
respect to the number of cache segments: by assigning more cache
segments to the tasks, their worst-case execution time will not
increase. We acknowledge that the execution times might not be
necessarily monotonic, but the impact of these effects is limited [4],
and smaller partitions can be used instead. Several previous works
consider similar memory model [4, 12, 37, 49].

Each task 𝜏𝑖 gives rise to a potentially infinite sequence of iden-
tical jobs (instances) released sporadically after the minimum inter-
arrival time or period𝑇𝑖 . Each job released by task 𝜏𝑖 is characterized
by a relative deadline 𝐷𝑖 assumed to be less than or equal to the
task period (i.e., constrained deadlines): 𝐷𝑖 ≤ 𝑇𝑖 , and its worst-case
execution time that depends on the number of cache segments
assigned to the task. All the above parameters are positive integers.
We will also use 𝑈𝑖,𝑘 = 𝐶𝑖,𝑘/𝑇𝑖 to refer to the task 𝜏𝑖 utilization
when executing with 𝑘 cache segments at its disposal. Additionally,
we use𝑈 =

∑𝑛
𝑖=1𝑈𝑖,0 to denote the task set base utilization (i.e., the

sum of task utilization without using cache).
The tasks are scheduled by a fixed-priority scheduler, and each

task is assigned a unique priority. Tasks are indexed in decreasing
priority order (𝜏1 has the highest priority and 𝜏𝑛 has the lowest prior-
ity). In this work, in particular, we assume Rate Monotonic (RM) [44]
assignment rule where task priorities are inversely proportional to
task periods. The worst-case response time 𝑅𝑖 of task 𝜏𝑖 is defined
as the longest time from the release of a job of the task until its
completion. If the worst-case response time is less than or equal
to the task 𝜏𝑖 deadline (𝑅𝑖 ≤ 𝐷𝑖 ), we say that task 𝜏𝑖 is schedula-
ble. Likewise, we say that a task set is schedulable if all its tasks
are schedulable.

5 MINIMIZING CACHE USAGE
We look for a cache-to-task assignment for which all 𝑛 tasks are
schedulable, and a minimal number of cache segments is used. We
consider preemptive and non-preemptive scheduling.

https://www.absint.com/ait/ucb_analysis.htm
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5.1 Preemptive scheduling
The cache partitioning problem for preemptive scheduling can be
shown NP-hard by reduction to the knapsack problem [12]. We
propose four methods to minimize cache usage under preemptive
scheduling. To verify the schedulability, we will use utilization
bound test [44] with linear and response time analysis (RTA) [5, 34]
with pseudo-polynomial time complexity in the number of tasks.

The worst-case response time 𝑅𝑖 of task 𝜏𝑖 can be computed by
a fixed-point iteration of the following formula:

𝑅𝑖 = 𝐶𝑖 +
𝑖−1∑︁
𝑗=1

⌈
𝑅𝑖

𝑇𝑗

⌉
·𝐶 𝑗 (1)

5.1.1 Mathematical programming.

For each task 𝜏𝑖 with 𝑖 = 1, . . . , 𝑛, we define a variable 𝐶𝑖 that
represents its worst-case execution time. For each 𝑘 = 0, 1, . . . ,𝑚,
we introduce the binary variables 𝑥𝑖,𝑘 which take on value 1 if and
only if task 𝜏𝑖 is assigned 𝑘 cache segments and 0 otherwise:

∀𝑖 = 1, . . . , 𝑛 : 𝐶𝑖 =
𝑚∑︁
𝑘=0

𝑥𝑖,𝑘 ·𝐶𝑖,𝑘 (2)

We additionally require that each task 𝜏𝑖 has exactly one variable
𝑥𝑖,𝑘 for all 𝑘 = 0, 1, . . . ,𝑚 that is equal to 1:

∀𝑖 = 1, . . . , 𝑛 :
𝑚∑︁
𝑘=0

𝑥𝑖,𝑘 = 1 (3)

Our objective function is to minimize the total cache usage:

minimize
𝑛∑︁
𝑖=1

𝑚∑︁
𝑘=0

𝑥𝑖,𝑘 · 𝑘 (4)

Now, we add the constraints to ensure the schedulability of all
tasks using the response time analysis formulation proposed by
Baruah and Ekberg [6] and by Davare et al. [18]. We introduce 𝑅𝑖 as
the upper bound of task 𝜏𝑖 ’s worst-case response time (i.e., 𝑅𝑖 ≥ 𝑅𝑖 ).
All tasks are schedulable if we can find such values of 𝑅𝑖 for all
𝑖 = 1, . . . , 𝑛 that are less than or equal to their respective deadlines:

∀𝑖 = 1, . . . , 𝑛 : 𝑅𝑖 ≤ 𝐷𝑖 (5)

The variable 𝑅𝑖 upper bounds the task 𝜏𝑖 ’s worst-case response time
if the following constraints are satisfied:

∀𝑖 = 1, . . . , 𝑛 : 𝐶𝑖 +
𝑖−1∑︁
𝑗=1

𝑍𝑖, 𝑗 ·𝐶 𝑗 ≤ 𝑅𝑖 (6)

where 𝑍𝑖, 𝑗 is an integer that upper bounds the number of times a
higher-priority task 𝜏 𝑗 can preempt task 𝜏𝑖 during its worst-case
response time, and thus, it must satisfy another constraint:

∀𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑖 − 1 : 𝑍𝑖, 𝑗 ·𝑇𝑗 ≥ 𝑅𝑖 (7)

Since Formula (6) is a quadratic constraint, the resulting mathemat-
ical model is an integer quadratically constrained program (IQCP),
where the objective function is formulated by Formula (4), and the
constraints are formulated by Formulas (2), (3) and (5-7).

The IQCP can be solved by a standard mathematical program-
ming solver. However, its worst-case run time is exponential in
relation to the task set size. To address this, we propose an al-
ternative approach in subsection 5.1.2 called guided local search

(GLS), which is a simple and efficient heuristic method that can
significantly reduce the run time complexity.

5.1.2 Guided local search.

The GLS proposed in this paper is an iterative local search algo-
rithm that utilizes problem-specific knowledge to guide the search
direction and tabu search mechanism to avoid revisiting duplicate
solutions. The procedures of GLS are outlined in Algorithm 1.

The search starts from an initial solution 𝑠 , where all the tasks
are allocated with the maximal number of segments𝑚 (line 1). If
the initial solution is not schedulable, we stop the algorithm since
the task set cannot be feasible with fewer cache segments (lines 2-3).
Otherwise, we continue the algorithm to do the iterative search
(lines 5-10). The iterative search is divided into two phases (i.e., de-
crease phase and increase phase) depending on the schedulability of
the current solution. In the decrease phase (lines 5-6), the current
solution 𝑠 is schedulable, and in each step, one task is selected to
decrease its cache partition. As a result, the solution moves from
schedulable to unschedulable gradually. Once the solution crosses
the schedulability boundary, the algorithm enters the increase phase
(lines 7-8), where the current solution increases its cache partition,
moving back to schedulable. Whenever the algorithm visits a new
solution, its schedulability is checked by the RTA, and the best-
so-far solution 𝑠∗ will be updated by 𝑠 if the latter uses less cache
and is schedulable (line 9). The algorithm terminates when the
number of schedulability checks 𝑙 reaches its upper limit 𝐿, which
is a parameter defined by the user.

Algorithm 1: Guided local search
Input: Set of 𝑛 tasks 𝜏 = {𝜏1, . . . , 𝜏𝑛 }, available cache segments𝑚,

upper limit of schedulability test invocations 𝐿;
Output: Best cache allocation 𝑠∗ = {𝑠1, ..., 𝑠𝑛 };

1 Initialize 𝑠 ← {𝑚, ...,𝑚}, 𝑙 ← 1;
2 if 𝑠 is not schedulable then
3 return false;

4 while 𝑙 ≤ 𝐿 do
5 if 𝑠 is schedulable then // decrease phase

6 Select a task to decrease its cache partition in 𝑠 ;
7 else // increase phase

8 Select a task to increase its cache partition in 𝑠 ;

9 Check the schedulability of the current solution 𝑠 and update
the best-so-far solution 𝑠∗;

10 𝑙 ← 𝑙 + 1;
11 return 𝑠∗;

Now, we explain the details of the neighborhood structure, task
selection rule, and the tabu mechanism used in the GLS.
• Neighborhood structure defines the solutions that can be
reached by the current solution in one local search step. In the
decrease (increase) phase of the GLS, the neighborhood structure
is defined as the 𝑛 solutions, in each of which one task is selected
to decrease (increase) its cache partition to the least number of
segments that increases (decreases) the task’s WCET by one step.
For clarity, we illustrate this with an example. Suppose we have
a task set consisting of two tasks pca (𝜏1) and stitch (𝜏2), whose
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benchmarked WCET profiles are given in Figure 3. The current
cache partition of the two tasks is {1024, 512} KB, and we assume
it to be schedulable. Then, the two neighborhood solutions ob-
tained by decreasing the cache partitions of task 𝜏1 and 𝜏2 are
{512, 512} and {1024, 256}, respectively.
• Task selection rule determines which task is selected to de-
crease (increase) its cache partition and move the solution to the
corresponding neighborhood. In the decrease (increase) phase,
we select the task with the maximal (minimal) value of 𝛿𝑖 =

↓𝑠𝑖/↑𝑈𝑖 (𝛿𝑖 = ↑𝑠𝑖/↓𝑈𝑖 ), where ↓𝑠𝑖 (↑𝑠𝑖 ) denotes task 𝜏𝑖 ’s cache
decrease (increase) size and ↑𝑈𝑖 (↓𝑈𝑖 ) denotes the resulted uti-
lization increase (decrease). The intuition behind it is to de-
crease the most (increase the least) cache usage with the least
increase (most decrease) of total utilization. We use the same
example task set as before to illustrate the task selection rule.
Suppose the utilization increase of the two tasks are ↑𝑈1=0.5
and ↑𝑈2=0.2. The decrease of their cache partitions can be cal-
culated as ↓𝑠1=1024−512=512 and ↓𝑠2=512−256=256. Then, we
have 𝛿1=512/0.5=1024 and 𝛿2=256/0.2=1280. In this case, we will
select task 𝜏2 to decrease its cache partition since 𝛿2 > 𝛿1.
• Tabu mechanism is used to avoid the search visiting duplicated
solutions. In the GLS, whenever a new solution is visited, we use
a hash function to map the solution into an integer and save it
to a visit history. Meanwhile, at each step of the local search, we
move the current solution to a neighborhood only if it has not
been visited in the history. If all the neighborhood solutions have
already been visited, we restart the search by re-initializing the
current solution as a random solution to escape the local optima.

5.1.3 Branch-and-bound.

We propose a branch-and-bound (B&B) algorithm inspired by [4].
Our branching strategy consists of allocating the cache to one task
at one time. The initial node of the B&B generates all possible cache
partitions for the first task, creating a branch for each partition. The
algorithm then expands these branches by generating all possible
cache partitions for the current task in the current node. A solution
is considered valid when the cache partition of all tasks has been
specified and the resulting task set is schedulable.

To reduce the number of partial solutions to be explored, we
propose a pruning strategy that checks the schedulability of each
partial solution under an optimistic assumption that each not yet
specified task partition equals the current remaining cache seg-
ments. If the task set is not schedulable under this assumption,
the current partial solution is pruned. Additionally, once a valid
solution is found, we update the available cache to be one segment
lower than the best-so-far cache usage𝑚∗ to further improve the
pruning efficiency. The algorithm terminates if an optimal solution
has been found or an upper limit of schedulability test invocations 𝐿
has been reached.

The property of the sustainability [13] of the schedulability test
togetherwith the assumption the execution times aremonotonically
non-increasing with the number of cache segments is exploited to
reduce the number of test invocations [4]. If tasks from 𝜏1 to 𝜏𝑖−1
are deemed schedulable under cache allocation 𝑠 (𝑖−1) , then they
will remain schedulable under any cache allocation with greater or
equal cache partitions. Moreover, as tasks 𝜏1-𝜏𝑖−1 response times

do not depend on lower-priority tasks 𝜏𝑖 -𝜏𝑛 , tasks 𝜏1-𝜏𝑖−1 do not
have to be tested when branching adds a new partition for task 𝜏𝑖 .

Algorithm 2: Cache usage minimization using B&B
Input: Set of 𝑛 tasks 𝜏 = {𝜏1, . . . , 𝜏𝑛 }, available cache segments𝑚,

upper limit of schedulability test invocations 𝐿;
Output: Best cache allocation 𝑠∗ = {𝑠1, ..., 𝑠𝑛 }, minimal number of

cache segments𝑚∗ needed by 𝜏 ;
1 Function minimize_cache(𝜏, 𝑠 (𝑖−1) , 𝑠∗,𝑚∗, 𝐿):
2 if the number of schedulability tests reaches upper limit 𝐿 then
3 return 𝑠∗,𝑚∗;

4 if 𝑖 − 1 = 𝑛 then
5 if 𝜏 is schedulable with 𝑠 (𝑛) and

∑
𝑠 (𝑛) <𝑚∗ then

6 𝑠∗ ← 𝑠 (𝑛) ;𝑚∗ ← ∑
𝑠∗;

7 return 𝑠∗,𝑚∗;

8 𝑚′ ←𝑚∗ − ∑
𝑠 (𝑖−1) − 1;

9 if 𝜏 is not schedulable with {𝑠1, . . . , 𝑠𝑖 =𝑚′, . . . , 𝑠𝑛 =𝑚′ } then
10 return 𝑠∗,𝑚∗;

11 𝑠𝑖 ← 0;
12 while 𝑠𝑖 ≤ 𝑚′ do
13 𝑠 (𝑖 ) ← {𝑠1, . . . , 𝑠𝑖−1, 𝑠𝑖 };
14 𝑠∗,𝑚∗ ← minimize_cache(𝜏, 𝑠 (𝑖 ) , 𝑠∗,𝑚∗, 𝐿);
15 𝑠𝑖 ← next_corner_point(𝜏𝑖);
16 𝑚′ ←𝑚∗ − ∑

𝑠 (𝑖−1) − 1;

17 return 𝑠∗,𝑚∗;

18 𝑠∗ ← {𝑠1 =𝑚, ..., 𝑠𝑛 =𝑚}; 𝑠 (0) ← ∅;
19 return minimize_cache(𝜏, 𝑠 (0) , 𝑠∗,𝑚 + 1, 𝐿);

The detailed procedures of the proposed B&B can be found in Al-
gorithm 2. It defines a recursive function minimize_cache, which
takes a partial solution 𝑠 (𝑖−1) containing the cache partition of the
first 𝑖 − 1 tasks as input and outputs the best-so-far solution 𝑠∗ with
its cache usage𝑚∗. Lines 2-3 check whether the upper limit of the
schedulability test invocations has been reached. Lines 4-7 check
if the current solution is a complete solution containing the cache
partitioning of all tasks. For a complete solution, it checks its schedu-
lability and updates the best-so-far cache usage if it is schedulable.
In line 6,

∑
𝑠 (𝑛) computes the total number of cache segments used

by solution 𝑠 (𝑛) . Line 8 updates the number of remaining cache seg-
ments𝑚′ according to the current best-so-far solution. Lines 9-10
implement the pruning strategy to discard the partial solution if it
cannot be schedulable even with the optimistic assumption. Lines
11-15 implement the branching strategy starting from the first task
with the least cache partition. Function next_corner_point(𝜏𝑖 )
gives the next cache partition size for which the worst-case exe-
cution time of task 𝜏𝑖 drops (see Example 5.1). In lines 17-18, the
algorithm initializes 𝑠∗, 𝑠 (0) and invokes the recursive function to
minimize cache usage.

Example 5.1. Figure 2 shows the execution time of sift-vga sam-
ple program from the CortexSuite benchmarks [54] (see Section 6.1
for more details) as a function of cache size partition size from 0
to 512 KB with a step of 32 KB. The original curve (blue color) is
comprised of 17 points. It can be easily seen that many of these
points are redundant. Indeed, the execution time does not decrease
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Figure 2: Execution time vs cache size for sift-vga.

continuously, but stays on a certain level and then makes a sudden
jump down as the cache partition becomes large enough to hold
the next important data structure [8]. The corner points leading to
a decrease in execution time are marked in red in Figure 2.

5.1.4 Dynamic programming.

We present a dynamic programming (DP) based on [50] to mini-
mize cache usage. Similar to [50], we define𝑀𝑖,𝑘 as the minimum
utilization of tasks 𝜏1, ..., 𝜏𝑖 if there are 𝑘 cache segments available
to them:

𝑀𝑖,𝑘 = min
0≤𝑠𝑖≤𝑘

𝑖∑︁
𝑗=1

𝑈 𝑗,𝑠 𝑗 (8)

where 𝑠𝑖 denotes the number of cache segments allocated to task 𝜏𝑖 .
We also define 𝑃𝑖,𝑘 to be the number of segments to allocate to 𝜏𝑖
to get𝑀𝑖,𝑘 . The key observation in [50] is the following recurrence
relation:

𝑀𝑖,𝑘 = min
0≤𝑠𝑖≤𝑘

(𝑈𝑖,𝑠𝑖 +𝑀𝑖−1,𝑘−𝑠𝑖 ) (9)

which provides a simple way to compute 𝑀𝑖,𝑘 for all tasks and
cache sizes in an iterative manner starting from 𝑖 = 1, 𝑘 = 0 towards
𝑖 = 𝑛, 𝑘 = 𝑚. However, unlike [50], our algorithm does not need
to enumerate all the 𝑀𝑖,𝑘 values since it is designed to minimize
cache usage while ensuring schedulability. For this purpose, we
present Algorithm 2, which includes an early stopping criterion in
lines 5-10. The early stopping criterion checks the schedulability
using utilization bound 𝑈 (𝑛) = 𝑛(21/𝑛 − 1) [44] and outputs the
first cache partitioning solution that results in a schedulable task
set. Additionally, we have reversed the inner and outer loop for
faster convergence.

5.2 Non-preemptive scheduling
We apply two basic search strategies, linear and binary search, to
find the minimal number of cache segments that guarantee the sys-
tem schedulability under fixed-priority non-preemptive policy. The
advantage of non-preemptive policy is that the tasks executing non-
preemptively can share the same partition without any interference.
Hence, the problem is less complex than in the fully preemptive

Algorithm 3: Cache usage minimization using DP

Input: Set of 𝑛 tasks 𝜏 = {𝜏1, . . . , 𝜏𝑛 }, available cache segments𝑚;
Output: Best cache allocation 𝑠∗ = {𝑠1, ..., 𝑠𝑛 };

1 for 𝑘 = 0 to𝑚 do
2 for 𝑖 = 1 to 𝑛 do
3 𝑃𝑖,𝑘 ← argmin

0≤𝑠𝑖 ≤𝑘
(𝑈𝑖,𝑠𝑖 +𝑀𝑖−1,𝑘−𝑠𝑖 ) ;

4 𝑀𝑖,𝑘 ← 𝑈𝑖,𝑃𝑖,𝑘
+𝑀𝑖−1,𝑘−𝑃𝑖,𝑘 ;

5 if 𝑀𝑛,𝑘 ≤ 𝑈 (𝑛) then // schedulable

6 𝑚′ ← 𝑘 ;
7 for 𝑖 = 𝑛 to 1 do // retrieve cache allocation

8 𝑠𝑖 ← 𝑃𝑖,𝑚′ ;
9 𝑚′ ←𝑚′ − 𝑃𝑖,𝑚′ ;

10 return 𝑠∗ = {𝑠1, ..., 𝑠𝑛 };

11 return unschedulable;

scheduling as there are only 𝑚 + 1 different cache partitionings
to consider.

We recap the response time analysis for non-preemptive fixed-
priority scheduling [10, 19]. In non-preemptive scheduling, every
job executes from its start uninterruptedly until completion. The
priority-inversion might happen when a higher-priority job must
wait for the completion of a lower-priority job released before. The
longest lower-priority blocking time that task 𝜏𝑖 can experience
is given by the longest worst-case execution time among all low-
priority tasks:

𝐵𝑖 = max
𝑗>𝑖

𝐶 𝑗 (10)

The schedulability analysis of fixed-priority non-preemptive sys-
tems requires checking multiple jobs of the same task [19]. It might
be the case that the second, third, or later job has larger response
time than the first job. This anomaly is known as self-pushing: while
the job under analysis is executing, it blocks all higher-priority jobs
released after the start of its execution; consequently, the next
job will experience their accumulated interference. Therefore, the
analysis of task 𝜏𝑖 must check all its jobs released within 𝑖-level
busy-period defined as the longest time interval during which the
jobs with priorities equal to 𝑖 or higher are pending:

𝐿𝑖 = 𝐵𝑖 +
𝑖∑︁
𝑗=1

⌈
𝐿𝑖

𝑇𝑗

⌉
·𝐶 𝑗 (11)

The above relation can be solved by fixed-point iteration. We should
check the schedulability of each task 𝜏𝑖 instance within time in-
terval [0, 𝐿𝑖 ]. The 𝑙-th job of task 𝜏𝑖 can start its execution when
there are no other pending tasks. Its starting time must fulfill the
following relation that can be solved by fixed-point iteration:

𝑠𝑖,𝑙 = 𝐵𝑖 + (𝑙 − 1) ·𝐶𝑖 +
𝑖−1∑︁
𝑗=1

⌈
𝑠𝑖,𝑙

𝑇𝑗

⌉
·𝐶 𝑗 (12)

The worst-case response time 𝑅𝑖,𝑙 of 𝑙-th job of task 𝜏𝑖 is 𝐶𝑖 time
units after its start:

𝑅𝑖,𝑙 = 𝑠𝑖,𝑙 +𝐶𝑖 (13)
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The task 𝜏𝑖 worst-case response time 𝑅𝑖 is the maximum worst-case
response time of its jobs:

𝑅𝑖 = max
𝑙

𝑅𝑖,𝑙 (14)

5.2.1 Linear search.

In linear search, we check every number of cache segments in
ascending order until we find one for which all tasks are schedulable.
We apply the schedulability test for each task in decreasing priority
order. If the test fails for a given number of cache segments, we
assign an additional segment and repeat the test. However, it is
not necessary to resume the schedulability test from the first task
if the test is sustainable with respect to the WCETs [4]. All tasks
that were previously proved schedulable will also be schedulable
with one more cache segment. Their response times depend on the
task WCETs, which by adding more cache segments, will decrease
or remain unchanged. Hence, the response times cannot increase,
and each task deemed schedulable with a given number of cache
segments will remain schedulable with more cache segments. In
the worst case, the linear search method invokes 𝑛 +𝑚 times the
schedulability tests. Algorithm 4 shows the linear search approach
for cache minimization.

Algorithm 4: Cache usage minimization using linear search

Input: Set of 𝑛 tasks 𝜏 = {𝜏1, . . . , 𝜏𝑛 }, available cache segments𝑚;
Output:Minimal number of cache segments 𝑘 needed by 𝜏 ;

1 Initialize 𝑘 ← 0, 𝑖 ← 1;
2 while 𝑘 ≤ 𝑚 do
3 while 𝜏𝑖 is schedulable with 𝑘 segments and 𝑖 ≤ 𝑛 do
4 𝑖 ← 𝑖 + 1;
5 if 𝑖 = 𝑛 + 1 then
6 return k;

7 𝑘 ← 𝑘 + 1;
8 return unschedulable;

We can further improve the cache minimization procedure by
observing that the tasks’ execution times do not decrease at every
cache segment (see Example 5.1). If task 𝜏𝑖 is not schedulable with 𝑘
cache segments under non-preemptive scheduling, and i) its worst-
case execution time, ii) worst-case execution time of all higher-
priority interfering tasks, and iii) maximal worst-case execution
time among all lower-priority tasks are the same with 𝑘 + 1 cache
segments as with 𝑘 cache segments, then task 𝜏𝑖 cannot be made
schedulable on 𝑘 + 1 cache segments. This means that we can
skip the schedulability test for 𝜏𝑖 with 𝑘 + 1 cache segments and
keep increasing the size of the cache partition as long as there
is no change in any worst-case execution time of the previously
mentioned tasks.

5.2.2 Binary search.

The second strategy is based on the binary search. For each
single task, we look for a minimum number of cache segments
ensuring its schedulability. This number cannot be less than any
minimum number of segments for which previously tested tasks
were schedulable. The method starts with half of the available

cache segments and checks the first task schedulability. In case
of the test success (failure), the segments’ numbers greater (less)
than the tested number are discarded. The search continues on the
remaining number of cache segments from its middle number and
repeats the same procedure until the number of segments cannot
be decreased anymore. Then, the search is applied for the next task
in the decreasing priority order. Like in the linear search, we do not
need to test again the tasks that were already deemed schedulable
if the test is sustainable with respect to the worst-case execution
times. We do neither consider the segments’ numbers that were
too small to ensure the schedulability of the previous tasks. The
total number of schedulability test invocations is upper bounded
by 𝑛 log𝑚. Algorithm 5 outlines the binary search-based cache
minimization.

Algorithm 5: Cache usage minimization using binary search

Input: Set of 𝑛 tasks 𝜏 = {𝜏1, . . . , 𝜏𝑛 }, available cache segments𝑚;
Output:Minimal number of cache segments 𝑘𝑚𝑖𝑛 needed by 𝜏 ;

1 Initialize 𝑘𝑚𝑖𝑛 ← 0, 𝑖 ← 1;
2 while 𝑖 ≤ 𝑛 do
3 𝑘𝑚𝑎𝑥 ←𝑚;
4 while 𝑘𝑚𝑖𝑛 ≤ 𝑘𝑚𝑎𝑥 do
5 𝑘 ← ⌊(𝑘𝑚𝑖𝑛 + 𝑘𝑚𝑎𝑥 )/2⌋;
6 if 𝜏𝑖 is schedulable with 𝑘 segments then
7 𝑘𝑚𝑎𝑥 ← 𝑘 − 1;
8 else
9 if 𝑘𝑚𝑖𝑛 =𝑚 then
10 return unschedulable;
11 else
12 𝑘𝑚𝑖𝑛 ← 𝑘 + 1;

13 𝑖 ← 𝑖 + 1;
14 return 𝑘𝑚𝑖𝑛 ;

The overall search time complexity depends on the schedulability
test. The response time analysis (NP-RTA) giving sufficient and
necessary schedulability conditions [19] has pseudo-polynomial
time complexity. The fully polynomial complexity can be achieved
by sufficient but not necessary schedulability tests. For instance,
we can test the schedulability of each task with one single problem
interval of length 𝐷𝑖−𝐶𝑖 (Equation (16) in [19], denoted by NP-
SINGLE) and upper bound task 𝜏𝑖 ’s latest starting 𝑠𝑖 :

𝑠𝑖 = max{𝐵𝑖 ,𝐶𝑖 } +
𝑖−1∑︁
𝑗=1

⌈
𝐷𝑖 −𝐶𝑖

𝑇𝑗

⌉
·𝐶 𝑗 (15)

If 𝑠𝑖 ≤ 𝐷𝑖−𝐶𝑖 , we can conclude that any job of task 𝜏𝑖 can start early
enough to finish its execution before its deadline. Another approach
worth considering is the use of the hyperbolic utilization bound
(NP-HYPER) derived by Theorem 9 in [11]. Note that while the first
two tests can skip tasks that are already deemed schedulable, the
utilization bound must be recalculated by adding utilization factors
of all tasks when increasing the cache size.
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6 EVALUATION
6.1 Benchmarks and task sets
To evaluate the proposed approaches to minimize cache usage, we
first performed experiments on benchmark applications executing
under different cache partition sizes. We used Cachegrind [51],
which is an open-source cache profiler tool, to run the benchmarks
and collect cache-related values (e.g., cache miss ratio). We modified
Cachegrind to support arbitrary cache sizes (by default, it must be
power of two). While the values obtained from Cachegrind cannot
be interpreted as worst-case execution time upper bounds, the
tool helps us understand the relation between partition size and
execution speed.
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Figure 3: Execution time vs cache size for CortexSuite.

We consider a set of applications from theCortexSuite benchmark
suite [54] for computer vision and machine learning. We assume a
two-level set-associative cache hierarchy with Least Recently Used
(LRU ) eviction policy and line size of 64 B at both levels. Level L1
is split into L1d (for data) and L1i (for instructions), both with a
fixed size of 32 KB and 4 ways. Level L2 of 16 ways is shared by
instructions and data. We vary L2 cache size from 0 up to 2MB, with
steps of 32 KB. We ran 20 benchmarks and collected the number of
cache misses (for L1 and L2), the number of data references, and the
number of executed instructions. Then, assuming the characteristic
of ARM Cortex A8 [30] (2 instructions per cycle, 1 cycle for L1
hit, 11 cycles for L1 miss, and 60 cycles for L2 miss) we got the
execution times for each benchmark and for each cache partition
size. Figure 3 shows a sample of the obtained profiles. Similar trends
have been observed in [8] for PARSEC benchmark suite and in [31]
for SPEC2000 programs. The above simulation technique is similar
to several works in real-time systems literature [40, 41, 45]. Never-
theless, the proposed cache usage optimization techniques can be
used with any WCET analysis tool or measurement methodology.

Based on the benchmark profiles, we generate a large number
of random task sets with different parameters: (i) task set size
𝑛 ∈ {16, 32, 64}, (ii) available cache size 𝑆 ∈ {1024, 2048, 4096}
KB, (iii) cache segment size 𝑑𝑆 ∈ {32, 128, 512} KB, and (iv) task set
base utilization𝑈 ∈ [0.7, 1.6] with a step of 0.1. For each parame-
ter combination, we randomly generate 20 task sets, which yields
3× 3× 3× 10× 20 = 5, 400 task sets in total. The generation of each
task set follows three steps. First, we generate the periods 𝑇𝑖 for 𝑛

real-time tasks by uniformly sampling from [10, 100] ms. Second,
we generate the base utilization 𝑈𝑖 of each task 𝜏𝑖 using UUni-
fast [9] such that the total base utilization of the task set equals
the target base utilization (i.e.,𝑈 =

∑𝑛
𝑖=1𝑈𝑖 ). Finally, we randomly

sample 𝑛 benchmarks profiles and calculate each task’s WCETs
under different cache partitions according to the profile.

6.2 Experimental setup
In this paper, all the experiments are conducted on a workstation
equipped with Intel Xeon Silver 4216 CPU running Linux. The pro-
posed cache minimization algorithms are implemented in Python
3.10, and the IQCP is solved by a mathematical programming solver
Gurobi 9.5.2 [29] with Python API. To complete the experiments
within reasonable time, we set a run time limit of 3600 seconds. For
the parameter 𝐿 (i.e., the maximum allowed number of schedulabil-
ity checks) used in GLS and B&B, we set it to be proportional to 𝑛𝑚
and tried different values from 2𝑛𝑚, 3𝑛𝑚, and 4𝑛𝑚. We observed
that this parameter has a very low impact on both the cache usage
and schedulability ratio, thus the lowest value 2𝑛𝑚 is selected.

We run each comparison algorithm on each generated task set
to evaluate its cache usage and schedulability. The cache usage of a
test algorithm is recorded as the maximum cache available in the
system, if the test set is not schedulable by the algorithm.

6.3 Experimental results
We present the results of our experimental study on cache usage,
schedulability ratio, and run time. Specifically, in sections 6.3.1,
6.3.2, and 6.3.4, we compare the performance of various preemptive
cache minimization approaches, including DP, B&B, GLS, and IQCP,
and a non-preemptive approach combined with RTA (i.e., NP-RTA).
In Section 6.3.3, we compare the non-preemptive cache minimiza-
tion approaches combined with different schedulability tests (i.e.,
NP-RTA, NP-SINGLE, and NP-HYPER) and search techniques (i.e.,
linear and binary search denoted by -L and -B, respectively).

6.3.1 Cache usage for different𝑈 , 𝑛, and𝑚.

Figure 4a, 4b, and 4c present the cache usage with 𝑛 = 16, 32, and
64, respectively, with 𝑑𝑆 = 32 and 𝑆 = 4096 KB. The results support
the following observations. First, the proposed GLS outperforms
DP and B&B and achieves near-optimal cache usage compared to
IQCP, which demonstrates the effectiveness of GLS. Second, the
cache usage of the preemptive (resp., non-preemptive) approaches
increases (resp., decreases) with the increase of 𝑛. Third, the non-
preemptive approach NP-RTA uses more (resp., less) cache than
preemptive approaches for small (resp., large) utilization.

The last two observations are explained as follows. First, non-
preemptive tasks share the available cache as one single partition,
leading to consistent WCET reduction regardless of the number of
tasks. However, preemptive tasks need to divide the available cache
into private partitions to avoid inter-task cache eviction, resulting in
decreasingWCET reduction as 𝑛 increases. Second, preemptive task
sets are easily schedulable at low utilization, but non-preemptive
scheduling can lead to unschedulability even at low utilization (the
utilization bound drops to 0). As a result, the preemptive approach
uses less cache when utilization is low, but non-preemptive is more
efficient at higher utilization levels due to larger WCET reduction.
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(a) 𝑛 = 16.
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(b) 𝑛 = 32.
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(c) 𝑛 = 64.

Figure 4: Sensitivity of 𝑛 with 𝑑𝑆 = 32 KB, 𝑆 = 4096 KB.
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(a) 𝑑𝑆 = 32 KB (𝑚 = 64).
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(b) 𝑑𝑆 = 128 KB (𝑚 = 16).

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
Task set base utilization U

0

500

1000

1500

2000

C
ac

he
 u

sa
ge

 (K
B

)

B&B
DP
GLS
IQCP
NP-RTA

(c) 𝑑𝑆 = 512 KB (𝑚 = 4).

Figure 5: Sensitivity of 𝑑𝑆 and𝑚 with 𝑛 = 16, 𝑆 = 2048 KB.

Figure 5a, 5b, and 5c present the cache usage with different 𝑑𝑆 ,
𝑛 = 16, and 𝑆 = 2048 KB. The results of the experiment show that: (i)
The cache usage of all algorithms increases with the increase of 𝑑𝑆 ;
(ii) The performance of B&B improves as 𝑑𝑆 increases. The reason
for (i) is that 𝑑𝑆 represents the granularity of the cache segments,
and as 𝑑𝑆 increases, precision in cache partitioning is lost. For (ii), it
suggests that B&B can benefit more from smaller𝑚 compared with
GLS. This is because B&B enumerates all possible cache allocation
options without the knowledge guidance used in GLS. As a result,
B&B can achieve a good performance for a coarse-grained cache
partitioning but performs worse for a finer granularity.

6.3.2 Schedulability ratio for different𝑈 and 𝑆 .

Figure 6a, 6b, and 6c present the schedulability ratio with differ-
ent 𝑆 , 𝑛 = 32, and 𝑑𝑆 = 32 KB. The schedulability results show a
similar trend as in cache usage: (i) GLS performs near-optimally
compared to IQCP and outperforms other preemptive cache mini-
mization methods; (ii) The non-preemptive method performs better
than the preemptive ones for high utilization. Additionally, the
schedulability ratio of the preemptive methods improves with in-
creasing cache size, however, the non-preemptive method does not
see further improvements beyond a cache size of 2048 KB. This is
because non-preemptive tasks can share all available cache and our
benchmarking experiments have shown that their WCETs do not
improve with more than 2048 KB of cache.

6.3.3 Impact of different non-preemptive schedulability tests.

Figure 7a, 7b, and 7c respectively depict the cache usage, schedu-
lability ratio and run time of the non-preemptive cache minimiza-
tion approaches combined with different schedulability tests and
search techniques. The results demonstrate that while NP-RTA has
a longer run time (but still within the same order of magnitude),
it is able to save cache usage by 24.9% and 41.4% in comparison
to NP-SINGLE and NP-HYPER respectively. Furthermore, the lin-
ear search approaches run faster than the binary search for all
schedulability tests under comparison.

6.3.4 Comparison of run time.

The violin plot in Figure 8 illustrates the run time comparison
of all proposed cache minimization algorithms. The plot displays
the run time of solving 20 task sets, with each violin representing
the run time distribution. The horizontal lines (from bottom to top)
indicate the minimum, average, and maximum run time over the 20
runs. The results indicate that DP has the shortest run time among
all the preemptive methods. B&B and GLS have similar run time as
they both perform the same number of schedulability tests. IQCP
runs faster than B&B and GLS when the number of tasks is less
than or equal to 32, but its run time increases significantly and
becomes 10 times larger than B&B and GLS when the number of
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(a) 𝑆 = 1024 KB.
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(b) 𝑆 = 2048 KB.
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(c) 𝑆 = 4096 KB.

Figure 6: Sensitivity of 𝑆 with 𝑛 = 32, 𝑑𝑆 = 32 KB.
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Figure 7: Comparison of non-preemptive approaches with different schedulability tests and search techniques.

tasks is 64. Furthermore, the non-preemptive approach is faster than
the preemptive methods due to its lower computational complexity.
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Figure 8: Comparison of run time with 𝑑𝑆 = 32, 𝑆 = 4096 KB.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we presented a comprehensive study of cache parti-
tioning methods to minimize cache usage for real-time systems. We

proposed efficient solutions for both preemptive and non-preemptive
scheduling scenarios. For preemptive scheduling, we formulated
the problem as an integer quadratically constrained program and
proposed an efficient guided local search heuristic, a branch-and-
bound search, and an efficient dynamic programming algorithm.
For non-preemptive scheduling, we developed linear and binary
searches coupled with different schedulability analyses. We evalu-
ated the proposed methods using real-world benchmarks and found
that our heuristic achieved an average optimality gap of 0.79%, with
run time that was 0.1x that of a mathematical programming solver.
Additionally, we demonstrated that the proposed heuristic outper-
forms existing cache partitioning techniques by reducing average
cache usage by 39.15%. Furthermore, our results indicated that non-
preemptive cache minimization methods can save more cache usage
than preemptive methods for large task sets with high utilization.

In future work, we plan to investigate the potential benefits of
combining non-preemptive and preemptive scheduling to further
improve our cache usage minimization algorithms.
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