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Abstract—Cache partitioning techniques have been success-
fully adopted to mitigate interference among concurrently-
executing real-time tasks on multi-core processors. Considering
that the execution time of a cache-sensitive task strongly de-
pends on the cache available for it to use, co-optimizing cache
partitioning and task allocation improves the schedulability of the
system. In this paper, we propose a hybrid multi-layer design space
exploration technique to solve this multi-resource management
problem. We explore the interplay between cache partitioning and
schedulability by systematically interleaving three optimization
layers, viz., (i) in the outer layer, we perform a breadth-first
search combined with proactive pruning for cache partitioning;
(ii) in the middle layer, we exploit a first-fit heuristic for allocating
tasks to cores; and (iii) in the inner layer, we use the well-
known recurrence relation for the schedulability analysis of
non-preemptive fixed-priority (NP-FP) tasks in a uniprocessor
setting. Although we focus on NP-FP scheduling, we evaluate the
flexibility of our framework in supporting different scheduling
policies (NP-EDF, P-EDF) by plugging-in appropriate analysis
methods in the inner layer. Experiments show that, compared
to the state-of-the-art techniques, the proposed framework can
improve real-time schedulability of NP-FP task sets by 15.2% on
average with a maximum improvement of 233.6% (when tasks
are highly cache-sensitive) and a minimum of 1.6% (when cache-
sensitivity is low). For such task sets, we found that clustering
similar-period (or mutually compatible) tasks often leads to
higher schedulability (on average 7.6%) than clustering by cache
sensitivity. In our evaluation, the framework also achieves good
results for preemptive and dynamic-priority scheduling policies.

I. INTRODUCTION

Nowadays, heterogeneous multiprocessor system-on-a-chip
(MPSoC) platforms are routinely used for all those workloads
that require performance, real-time capabilities, and limited
size and power consumption. These workloads include, e.g.,
applications found in autonomous driving, intelligent robotics,
and unmanned aerial vehicles domains. Towards guaranteeing
real-time performance, these platforms pose an unprecedented
challenge to the management of the memory hierarchy. With
a focus on the core complex of such MPSoCs, sharing
caches among cores prevents analyzing tasks in isolation,
thus complicating an accurate estimation of the tasks’ worst-
case execution times (WCETs). Unsurprisingly therefore, to
mitigate this problem, both software-based [1], [2], [3], [4]
and hardware-based [5], [6] cache partitioning techniques have
been exploited. Although effective, cache partitioning limits
the amount of cache available to (groups of) real-time tasks.
Therefore, the impact of cache partitioning on the WCET can
be non-negligible for a cache-sensitive workload. This effect
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Fig. 1: Benchmark’s execution slowdown with x KB cache
compared to full (2048 KB) cache.

is illustrated in Figure 1, which reports the slowdown due
to reduced cache availability of four benchmark applications
(more details in Section VI). For example, kmeans is almost
two times slower when it runs with a cache partition smaller
than 256 KB instead of 1024 KB.
Problem setting: This paper studies the integrated problem
of (1) assigning real-time tasks to cores and (2) reserving
cache for tasks running on each core. The goal is to achieve a
solution where the tasks are schedulable, i.e., each task meets
its real-time requirements, e.g., deadline. The main focus of the
proposed optimization strategies is on non-preemptive fixed-
priority (NP-FP) scheduling. We further assume that tasks
are statically assigned to cores. Partitioned schedulers have
simpler implementations and generally lower overheads [7],
and non-preemption naturally separates computation from data
management phases (e.g., [8]). Also, we assess the flexibility
of our framework to support other scheduling policies such as
preemptive and non-preemptive earliest deadline first (EDF).
Proposed framework: Given the interdependencies of the
three sub-problems, viz., task allocation, cache partitioning,
and schedulability analysis, this paper studies an integrated
solution to improve the likelihood of establishing system
schedulability. In particular, we propose a nested multi-layer,
hybrid optimization framework to explore the interplay be-
tween the sub-problems. In this framework, (i) the outer layer
partitions the shared cache, (ii) the middle layer allocates tasks,
and (iii) the inner layer performs the schedulability analysis.

We perform a polynomial-time breadth-first search in the
outer layer using a heuristic to proactively prune the search
tree to prevent its exponential growth (Section IV-B). The outer
layer chooses a cache partition size for a core and invokes the



middle layer to allocate tasks to the core from the remaining
ones. We develop two strategies for task allocation. While one
tries to cluster tasks that are compatible for co-scheduling,
the other one co-allocates tasks with similar cache sensitivity
potentials (Section IV-A). The schedulability of the task set
allocated by the middle layer is checked by the inner layer
using the exact method reported in [9] for NP-FP scheduling.

Although the selection of tasks is optimized for NP-FP
scheduling, the multi-layer framework can be easily adapted
to other scheduling policy by plugging-in an appropriate
schedulability test in the inner layer. To demonstrate this, we
show experimental results under preemptive EDF (P-EDF) and
non-preemptive EDF (NP-EDF) scheduling by using the tests
adopted by [5] and [10], [11], without any modifications to
the outer and middle layers (Section VI-C).

Contributions: This paper has the following contributions:

• A generic multi-layer, hybrid optimization framework is
proposed to solve the joint problem of cache partitioning and
partitioned scheduling of real-time tasks. In particular, we
systematically extend the first-fit heuristic for task allocation
with an outer layer employing an intelligent breadth-first
search for cache partitioning.

• To the best of our knowledge, this paper shows for the
first time that the characteristics of task sets (including task
periods and cache sensitivities) guide the choice of heuristics
to solve the aforementioned problem.

• A metric is introduced to evaluate the cache sensitivity
potential of a task that assists in task allocation. This metric
captures the maximum-possible reduction in the utilization
of a task if more cache can be offered.

• The framework is extensively evaluated and compared with
multiple state-of-the-art techniques [5], [10], [11], using
both benchmark-derived and synthetic cache slowdown pro-
files. Results for NP-FP scheduling indicate that the perfor-
mance of the framework depends on the cache-sensitivity
of workloads with a schedulability improvement of up to
14.5% for tasks with low cache-sensitivity and of up to
233.6% for highly cache-sensitive tasks, with an average
improvement of 15.2%. NP-FP experiments also show that
focusing on compatibility leads to better results (by 7.6%
on average) than cache sensitivity. For P-EDF scheduling,
the framework improves the schedulability by 8.7% on
average compared to the approach in [5], while for NP-EDF
scheduling, the average improvement is 19.2% compared to
the techniques in [10], [11].

Paper organization: We present relevant previous works in
Section II. We define the problem in Section III. We describe
our proposed framework and heuristics in Section IV. In
Section V, using illustrative examples, we show that none
of the proposed heuristics dominates the other. Experimental
results and interesting trends are discussed in Section VI.
Section VII provides concluding remarks.

II. RELATED WORKS

Preemptive task-cache co-allocation: Full exploitation of
multiprocessor platforms can be achieved only if the allocation
of tasks and memory (e.g., cache) resources is performed
jointly. Tunable WCETs [12] can be elastically adjusted to
take into account shared resource allocation and arbitration
methods. For this model, mixed-integer linear programming
(MILP) has been used to partition tasks, cache, and bandwidth,
minimizing the overall system utilization. In [13], tasks, cache,
and bandwidth co-allocation problem is solved using a MILP
formulation and a knapsack-algorithm-based heuristic. [13]
considers P-EDF scheduling while allocating dedicated cache
partitions to tasks. Likewise, [14] considers recurrent tasks
scheduled under P-EDF and proposes a different heuristic
for task and cache allocation on a multiprocessor. Under
partitioned P-EDF, the dependence of execution time on the
number of available cache partitions has been studied in [5],
[15], [16]. [5] uses k-means clustering and a first-fit heuristic to
partition shared caches and allocate tasks on a multiprocessor
based on cache sensitivities of tasks. [5] also compares the ob-
tainable schedulability with the strategy adopted by [15] (and
later also used in [16], [17]). The above works mainly consider
setups for which exact utilization bound schedulability tests
are available, which is not true for our setup. Nevertheless,
in Section VI, we compare our framework with [5] with
appropriate adaptations for non-preemptive and preemptive
scheduling.
Non-preemptive task-cache co-allocation: For non-
preemptive scheduling, the problem becomes more complex
as there are no efficient utilization bounds to check the
schedulability in polynomial time. The multi-resource
allocation problem for time-triggered non-preemptive
scheduling naturally fits into integer linear programming
(ILP) formulation [18]. Interference Aware Allocation
Algorithm (IA3) [10] and Period Driven Task and Cache
Partitioning Algorithm (PDPA) [11] are proposed for NP-EDF.
These works are the closest to ours. While, qualitatively, we
search the design space more thoroughly than them using a
carefully designed pruning criterion and a cache sensitivity
potential metric. In Section VI, we quantitatively compare our
proposed approach to them (for both NP-FP and NP-EDF).
Also, we empirically show that the characteristics of task sets
guide the selection of the heuristics to solve the problem.
Cache-related preemption delays (CRPD): In multitasking
systems, partitioning shared caches and allowing each task
to run using specific partitions can reduce CRPD, but it
may increase cache misses. [19] shows how to systematically
compute CRPD. Optimally exploring the trade-off between
CRPD and cache misses, even for a single-core, is NP-
hard [20]. Several heuristics [21], [20] have been proposed in
this context to optimize task set utilization. Branch and bound
can speed up the search for optimal cache partitioning [22]. In
the same vein, [23] considers sharing cache partitions among
tasks running preemptively on the same core while allowing
cache isolation between cores on a multiprocessor. The task



TABLE I: List of symbols.

Symbols Description

T set of n tasks T = {τ1, τ2, . . . , τnτ };
C set of processors C = {C1, C2, . . . , Cnc};
np total number of cache partitions;
pi period of task τi;
ϵi,µ execution time of τi with µ cache partitions;
Tj set of tasks allocated to core Cj ;
µj number of cache partitions allocated to core Cj ;
γi cache sensitivity potential of task τi;
ûi base utilization of task τi, ûi = ϵi,np/pi;

ωinit an empty solution;
ω, ω′, ω+ a (new) partial solution;

Ω∗ set of new partial solutions;
Ωx set of partial solutions at search depth x;
T ∗ set of remaining tasks to be allocated;
T ∗ sorted list of remaining tasks to be allocated;
UR scheduling demand of remaining tasks to be allocated;

and cache allocations are performed using best-fit decreasing
bin-packing. The approach is also extended for multi-core
virtualization [24]. Contrary to these works, we consider that
only NP-FP tasks running on a core can share cache partitions
and, hence, they do not experience CRPD.
Other approaches: Instead of partitioning shared caches to
cores, [25] formulates an ILP to upper bound the inter-core
cache interference and proposes a task partitioning algorithm
based on the interference upper bound. Dynamic resource
allocation has also been explored, e.g., [26] adapts the re-
source allocation based on program phases, while [27], [28]
dynamically allocate resource at mode transitions.

III. PROBLEM DESCRIPTION

In this section, we describe the design problem under study.
In particular, we want to (i) determine an allocation of software
tasks to cores and (ii) identify the maximum portion of cache
each task can use so that (iii) the tasks meet their respective
deadlines. Table I summarizes the most important symbols
used in the following sections.

A. Task allocation

We consider a set of n software tasks, denoted by
T = {τ1, τ2, · · · , τnτ }. These tasks need to run on nc

processing cores. We denote the set of processors by C =
{C1, C2, · · · , Cnc

}. For this setting, we need to determine how
the tasks should be allocated to the cores, which is the first part
of the problem at hand. Hence, we determine T1, T2, · · · , Tnc ,
where Tj is a set of tasks that will run on the core Cj . We
study partitioned multi-core scheduling, i.e., a task τi ∈ Tj

allocated to a core Cj will always be executed by Cj . It
means that the task allocation is static. In mathematical terms,
{T1, T2, · · · , Tnc

} is a partition of set τ .

B. Cache partitioning

We assume that tasks execute on cores that share a cache of
size M (this model is common in current MPSoCs, e.g., [29],
[30]). To prevent memory interference, we consider dividing
the shared cache into np partitions of equal size. The tasks
assigned to a core can only use a certain number of partitions.
Our approach applies to any cache-partitioning technique,

either with hardware-support (eg, [31], [32]), or purely im-
plemented in software (e.g., [3], [4]).

We reserve only a certain number of cache partitions for
each core and let the tasks running on a core use only
the assigned partitions. Now, the amount of cache that the
tasks running on a core optimally need depends on how their
execution times vary with available cache and their real-time
requirements. Hence, we need to determine the appropriate
number of cache partitions µj that should be made available to
the tasks (in Tj) mapped on a core Cj , which is the second part
of the problem under consideration. Here, we cannot reserve
the same partition for tasks mapped on different cores. Hence,
we need to respect a constraint given by

∑nc

j=1 µj ≤ np, i.e.,
the total number of partitions in use cannot be more than np.

C. Task specification

We consider that each non-preemptive task τi ∈ T is
dispatched sporadically respecting a minimum time pi between
two consecutive dispatches. In this paper, we also refer to
pi as the period of the task τi. We study the case where
the deadline of a task τi is exactly equal to its period pi.
The algorithms presented in this paper are valid or can be
trivially extended for other deadline constraints as well. The
execution time ei of a task τi depends on the number of
cache partitions it can use. Hence, we can write ei = Ei(µ),
where Ei(·) is a discrete function of the available number of
cache partitions µ ∈ {1, 2, · · · , np}. We can write the range
of Ei(·) as an ordered set (ϵi,1, ϵi,2, · · · , ϵi,np

), where ϵi,µ
is the execution time when τi uses µ cache partitions. Note
that here we assume that a task will get to use at least one
cache partition. In summary, we specify a task τi using its
period (or minimum inter-arrival time) pi and the function
Ei(·) capturing the variation of its execution time with the
available number of cache partitions. We assume that pi and
Ei(·) can be computed a priori for τi, and Ei(·) includes
scheduling overheads and all other sources of interference
(e.g., inter-core interference). We note that different solutions
can be used alongside to mitigate the timing interference in
modern multi-core platforms (e.g., bank partitioning [33], [34],
[35], software bandwidth regulators [36], [37] or segmented
execution models [38], [39], [40], [41], [42]).

D. Schedulability analysis

We need to verify the schedulability of a set of tasks Tj

that is allocated to a core Cj and uses µj cache partitions to
run, which is the third part of the problem under study. For
a task τi ∈ Tj , we can write ei = ϵi,µj . We consider that a
task cannot be preempted during execution. Besides, each task
has a fixed priority according to the rate monotonic scheduling
policy. A task τi has a higher priority than a task τi′ (where
τi, τi′ ∈ Tj) if pi < pi′ . When pi = pi′ , we assume that τi
has a higher priority than τi′ if ei > ei′ . In all other cases, τi
has a lower priority than τi′ . Here, no two tasks mapped on
the same core have the same priority.

We compute the worst-case response time of a task under
the NP-FP scheduling policy using the technique outlined



in [9]. First, we determine the busy period ti of a task τi ∈ Tj

using the following recurrence relation:

tk+1
i = Bi,j +

∑
τi′∈HEPi,j

⌈
tki
pi′

⌉
ei′ (1)

where, Bi,j = maxτi′∈LPi,j
ei′ . Here, (i) HEPi,j ⊆ Tj ,

LPi,j ⊂ Tj where HEPi,j and LPi,j , respectively, comprise
the tasks that have higher or equal and lower priorities than
τi; and (ii) Bi,j is the maximum time for which the task τi
can be blocked by a lower priority task. To solve Equation 1,
we start with t0i = ei and continue until we get tk+1

i = tki .
Here, the recurrence relation is guaranteed to converge if∑

τi′∈HEPi,j

ei′
pi′

< 1. Further, we calculate the number of
instances Qi of τi that execute in its busy period ti as follows:

Qi =

⌈
ti
pi

⌉
. (2)

We compute the response time for each of the Qi instances. We
can calculate the longest time wi(q) between the start of the
busy period and the start of the execution of the q-th instance
(1 ≤ q ≤ Qi) of τi using the following recurrence relation:

wk+1
i (q) = Bi,j+(q−1)·ei+

∑
τi′∈HPi,j

⌈
wk

i (q) + δ

pi′

⌉
ei′ . (3)

Here, (i) HPi,j ⊂ Tj comprises the tasks that have higher
priorities than τi; and (ii) δ > 0 is a very small number.
To solve the recurrence relation in Equation 3, we start with
w0

i (q) = Bi,j + (q− 1) · ei and stop when wk+1
i (q) = wk

i (q).
The response time of the q-th instance of τi is given as follows:

Ri(q) = wi(q)− (q − 1) · pi + ei. (4)

The worst-case response time Rwc
i is computed as follows:

Rwc
i = max

1≤q≤Qi

Ri(q). (5)

An implicit-deadline task τi meets its deadline if and only if

Rwc
i ≤ pi. (6)

A task set is schedulable if and only if Equation 6 holds for
each task in the task set.

IV. MULTI-LAYER HYBRID OPTIMIZATION

As described in Section III, the problem under study com-
prises three interdependent parts. In this paper, we propose
an integrated solution with three nested layers. The outer
layer partitions the shared cache, the middle layer allocates
tasks, and the inner layer performs schedulability analysis.
Algorithm 1 outlines the middle and the inner layers, while
Algorithm 2 captures the outer layer.

A. Algorithm 1: Middle and inner optimization layers

We provide a set of remaining tasks T ∗ and their timing
attributes as input to Algorithm 1. The period pi and the least-
possible execution time ϵi,np

(i.e., when the whole cache is
available) are known a priori for a task τi ∈ T ∗. Further, in
the inner two layers, we deal with a fixed number of cache
partitions µ as chosen by the outer layer (more details on the

Algorithm 1: Middle and inner optimization layers

Input:
{(

pi, ei, ϵi,np

)
|τi ∈ T ∗};

Output: T ;
1 T ← ∅;
2 T ∗ ← Sort(T ∗) ;
/* different sorting criteria can be applied */

3 for τi ∈ T ∗ do
4 if isSchedulable(T, τi) then // inner layer
5 T.append(τi);
6 return T ;

outer layer in Sec. IV-B). Corresponding to µ, the execution
time ei of a task τi ∈ T ∗ also gets a fixed value as ei = ϵi,µ.

The inner two layers select a set of tasks T ⊆ T ∗ that
can be allocated to a core with a given amount of cache µ
without violating schedulability constraints. Also, the goal is
to increase the likelihood of scheduling the tasks in T ∗ \T on
the remaining cores with the rest of the cache. There are two
major challenges here. First, the number of possible selections
is exponential with respect to the number of tasks in T ∗ and,
hence, it is computationally expensive to go through each of
them. Second, it is non-trivial to identify a metric to optimize.

To elaborate on the second challenge, let us first define the
base utilization ûi =

ϵi,np

pi
of a task as the ratio of its execution

time and period when the whole cache is available for it to
use. Now, the scheduling demand UR of the tasks remaining
T ∗ \T after Algorithm 1 has operated on T ∗ can be defined
as the sum of the base utilizations of these tasks, i.e.,

UR =
∑

τi∈T ∗\T

ûi. (7)

Intuitively, we would like to minimize UR. However, unlike
in P-EDF scheduling, utilization cannot be the only deciding
factor. For example, let us consider that we can end up
in two scenarios: (i) Two remaining tasks have the same
period of 80 time units and base utilizations of 0.15 and
0.2, respectively. (ii) Two remaining tasks have periods of 10
and 80 time units, respectively, and base utilizations of 0.1
and 0.2, respectively. In scenario (ii), UR = 0.3, while in
scenario (i), UR = 0.35. Hence, intuitively, we would like to
be in scenario (ii). However, in this scenario, the two tasks
are not schedulable on one core because the lower priority
task might block the higher priority task for a time (at least
16 time units) greater than its deadline (10 time units). In
the rest of the discussion, we term two tasks to be mutually
incompatible if they are not schedulable together on a core
despite their utilizations adding up to less than or equal to 1.
When the number of remaining cores is more than one and
there are several tasks yet to be allocated, it is not trivial to
analyze how many mutually compatible schedulable task sets
are formed by the remaining tasks.

Having established that mutual compatibility between re-
maining tasks also plays an important role in deciding their
schedulability, we use the same criterion to select tasks as
in the first-fit heuristic that works well for non-preemptive
tasks [43]. That is, we sort the tasks in T ∗ in line 2 of
the algorithm according to a non-decreasing order of their



periods. When our multi-layer optimization uses the above
sorting criterion in the middle layer, we term it as COMP.
We point out that unlike in a first-fit heuristic where only one
subset of T ∗ is allocated to a core before moving to the next
core, our optimization strategy efficiently explores multiple
subsets where each corresponds to a different cache allocation.

Now, in lines 3 - 5, we iterate through the tasks in the sorted
list T ∗. In each iteration, we take a task and check if we
can add it to the list of selected tasks T without jeopardizing
the schedulability. Here, tasks with shorter periods will be
allocated first. Hence, in later iterations of Algorithm 2 (the
outer layer), when we will deal with tasks with longer periods
and (likely longer) execution times, there is a high probability
that they will not be mutually incompatible. Note that in the
inner layer (i.e., line 4), we check the schedulability of the
tasks in T together with the new task τi using the exact
analysis from [9] as outlined in Section III-D.
Should we exploit cache sensitivity while allocating tasks?
Note that the execution time ei of a task τi ∈ T ∗ is fixed in
the inner layers. Accordingly, the utilization ui = ei

pi
of the

task materializes only once it is selected by Algorithm 1 to
be allocated to a core. We define cache sensitivity potential
γi as the difference between the utilization of a task τi if it is
selected by Algorithm 1 and its base utilization ûi, i.e.,

γi = ui − ûi. (8)

The lower the value of γi is, the lower is the cache sensitivity
potential of τi. Intuitively, the “potential” expresses the pos-
sibility of considerably reducing ei by providing more cache
partitions. Hence, postponing the allocation of a task with a
lower potential might not enhance the schedulability because
we cannot reduce its utilization significantly.

From another perspective, let us consider two tasks τi and
τ2 with û1 = 0.15, û2 = 0.2, γ1 = 0.06, and γ2 = 0.01. Here,
each task will use 21% of the processor time and let us assume
that we can allocate only one of them. When we allocate τ1,
the remaining scheduling demand UR will be higher compared
to that obtained by allocating τ2. Hence, to follow the intuition
of minimizing UR, we would like to add tasks with lower
values of cache sensitivity potentials. Keeping the template of
Algorithm 1, we can sort the tasks in non-decreasing order
of their cache sensitivity potentials. In this case, we term our
multi-layer optimization as CASE.

Here, there is a possibility that mutually incompatible tasks
might be left for later iterations. Besides, consider that we
have allocated two tasks τ1 and τ2 on a core. τ1 has p1 = 10,
e1 = 5, and γ1 = 0 and τ2 has p2 = 25, e2 = 5, and γ2 = 0.
The utilization of the core is 70%. On the same core, if we
want to allocate another task τ3 with p3 = 10 and e3 = 2, we
cannot do it. Now, consider another situation where, instead
of τ2, we have τ4 that has p4 = 10, e4 = 3, and γ4 = 0.1.
Now, the utilization of the core is 80%. However, here, we can
still add τ3 to the core without violating schedulability. In the
first case, the worst-case response time R1 of τ1 is 10 which
is equal to its deadline. Thus, the blocking time for τ1, i.e.,
e2, artificially increases the utilization of the core from 70%

to 100%, which is 1.5 times the utilization of τ2 (i.e., 20%).
In Figure 1, we note that the execution time increases by up
to 100% for the benchmarks we have studied. In the second
case, by allocating τ4, we are compromising 10% (γ4 = 0.1)
of the processor utilization assuming that we can reduce the
execution time of τ4 if we allocate it to another core with more
cache partitions. Note that τ4 is compatible with τ1 and τ3 as
they have the same period. Again, we see that there is a trade-
off between considering compatibility and cache sensitivity
during task allocation. We will experimentally evaluate the
relative dominance of these two factors in Section VI.

B. Algorithm 2: Outer optimization layer

In this layer, we focus mainly on cache partitioning for
which we propose an algorithm that is loosely based on
breadth-first search. Each node of the search tree represents
a partial solution ω. A node ω at a depth x of the search tree
comprises the following attributes: (i) TaskAlloc gives the sets
of tasks {T1, T2, · · · , Tx} allocated to x cores. (ii) CacheP-
art gives the number of cache partitions reserved for tasks
allocated to each of the x cores, i.e., {µ1, µ2, · · · , µx}.
(iii) TasksLeft is the set of tasks that are yet to be allocated.
(iv) CacheLeft represents the remaining number of cache
partitions. (v) RemSchedDemand is the remaining scheduling
demand that can be calculated based on TasksLeft using
Eq. (7). Clearly, the root node ωinit ∈ Ω0 (in line 1) has empty
sets in TaskAlloc and CachePart respectively while TasksLeft
comprises the complete task set T , CacheLeft is equal to np,
and RemSchedDemand can be computed as

∑
τi∈T ûi. At any

time, Ωx – x is the search depth – will store either the leaf
nodes that represent a full solution or the parent nodes for
which we will explore the child nodes.

Considering that we have nc cores, the maximum depth of
the search tree is nc. In the x-th iteration of the for loop in
lines 2 - 14, we explore the nodes at depth x. Ω∗ (line 3) will
store (i) the leaf nodes only if they represent a full solution and
(ii) non-leaf nodes at depth x. Using the for loop in lines 4 -
13, we iterate through each node in Ωx−1. If a node in Ωx−1

already represents a full solution, then it cannot have any valid
child nodes and, hence, it is a leaf node. We can add such
nodes directly to Ω∗ (lines 12 - 13). Otherwise, we explore
the child nodes of a node in Ωx−1. Note that Algorithm 2 does
not terminate when it finds a full solution. This is because our
goal is also to find the solution that will reserve the minimum
number of cache partitions to ensure the schedulability of the
task set. Minimizing the number of cache partitions used for
real-time tasks maximizes the cache available for soft real-
time and best-effort tasks, thus also potentially improving the
overall performance of the system.

For each parent node ω, we can have up to ω.CacheLeft
number of child nodes. That is, in each iteration of the for
loop in lines 6 - 11, we explore a child node (if valid). In
the µ-th iteration, we consider that the tasks on the x-th core
can use µ cache partitions. We invoke Algorithm 1 (the inner
layers) in line 7 to obtain a set of tasks Tx to be allocated to the
x-th core. If Tx is not empty, then we can create a new partial



Algorithm 2: Outer optimization layer

Input: T , nc, np;
Output: {T1, T2, · · · , Tnc}, {µ1, µ2, · · · , µnc};

1 Ω0 ← {ωinit};
2 for x← 1 to nc do
3 Ω∗ ← ∅;
4 for ω ∈ Ωx−1 do
5 if ω.TasksLeft ̸= ∅ then
6 for µ← 1 to ω.CacheLeft do

/* invoke Algorithm 1 to allocate
tasks to the x-th core */

7 Tx ← allocT(ω.TasksLeft, µ);
8 if Tx ̸= ∅ then

/* extend parent node ω to a
new partial solution ω+

*/
9 ω+ = newPartSol(ω, Tx, µ);

/* check if ω+ can be extended
to a full solution */

10 if isProspectiveSolution(ω+) then
11 Ω∗.append(ω+);

12 else
13 Ω∗.append(ω);

/* remove the dominated partial solutions */
14 Ωx ← removeDominatedPartialSolutions(Ω∗)

/* return non-dominated full solution if any */
15 if Ωnc ̸= ∅ then
16 return {Ωnc [1].TaskAlloc,Ωnc [1].CachePart};
17 else
18 return {∅,∅};

solution ω+ extending one of the parent nodes (lines 8 - 9).
Note that for the parent node, we have the task allocation and
cache partitioning until x − 1 cores and we can now add Tx

and µ to obtain ω+. We further do some proactive pruning if
possible (lines 10 - 11). That is, if ω+ still have tasks waiting
to be allocated while there are no cores or cache partitions left,
then we only have a leaf node with an incomplete solution ω+.
There is no point in adding such a node to Ω∗.

After we explore the nodes at depth x, we prune the search
tree further based on a heuristic (in line 14). We delete a node
ω′ ∈ Ω∗ if it is dominated by another node ω ∈ Ω∗. Here, ω
dominates ω′ if one of the following conditions is satisfied.

1) ω.CacheLeft > ω′.CacheLeft and ω.RemSchedDemand ≤
ω′.RemSchedDemand.

2) ω.CacheLeft = ω′.CacheLeft and ω.RemSchedDemand <
ω′.RemSchedDemand.

If ω.CacheLeft = ω′.CacheLeft and ω.RemSchedDemand =
ω′.RemSchedDemand, we keep just one of them for further
exploration and remove the other(s). The intuition behind
the heuristic is as follows: If ω′ already uses an equal or
more number of cache partitions than ω and still have more
scheduling demand to meet, then there is a lower probability
that a child of ω′ will be a better solution than one of the
children of ω. This pruning is necessary to keep the search
tractable otherwise the tree might grow exponentially. With
this pruning heuristic, before exploring the child nodes at depth
x > 1, we can have only up to np+2−x parent nodes where
each uses a different number of cache partitions.

In the end, in lines 15 - 16, Algorithm 2 returns the non-

dominated complete solution if it has found one (i.e., if Ωnc

is not empty) otherwise, in lines 17 - 18, it returns empty sets
for task allocation and cache partitioning, respectively.

C. Complexity analysis

In Algorithm 2, we have three nested for-loops. The outer
loop (lines 2 - 14) iterates for nc times. The middle loop
(lines 4 - 13) iterates for at most np times. This is because, as
mentioned earlier, Ωx can have a maximum of np+2−x nodes
at the beginning of the x-th iteration of the outer loop. The
inner loop (lines 6 - 11) also iterates up to np times. Hence,
the number of times we invoke Algorithm 1 from Algorithm 2
is upper-bounded by nc · n2

p. Now, in Algorithm 1, we have
only one loop (lines 3 - 6) that iterates at most nτ times. Thus,
the number of times we invoke the schedulability analysis in
the inner layer (line 4) is upper-bounded by nc · n2

p · nτ .
Further, we evaluate the time complexity of the response

time analysis for NP-FP tasks. The response time analysis of
task τi must cover its entire busy period. The busy period ti
of the task τi must satisfy Equation (1) and we can write:

ti = Bi,j +
∑

τi′∈HEPi,j

⌈
ti
pi′

⌉
ei′ (9)

Using the following relation:

ti + p′i
p′i

>

⌈
ti
p′i

⌉
we can upper bound the left-hand side of Equation (9) by:

ti < Bi,j +
∑

τi′∈HEPi,j

ti + pi′

pi′
ei′

= Bi,j + ti
∑

τi′∈HEPi,j

ei′

pi′
+

∑
τi′∈HEPi,j

ei′

≤
∑

τi′∈Tj

ei′ + tiUj

where Uj =
∑

τi′∈Tj
ei′/pi′ is the total utilization of task

set Tj . By rearranging the terms, the busy period ti of each
task τi ∈ Tj can be upper-bounded as follows:

∀τi ∈ Tj : ti <

∑
τi′∈Tj

ei′

1− Uj
≤

nτ maxτ ′
i∈Tj

ei′

1− Uj
(10)

In each iteration of Equation (3), we need at most nτ opera-
tions where the value of wi(q) increases by at least mini∈Tj ei
time units (otherwise remains constant) within the busy period.
The number of operations to compute task’s response time is,
hence, upper bounded by:

maxi∈Tj
ei

mini∈Tj ei
· n2

τ

1− Uj
(11)

Taking into account the time-complexity of the response
time analysis, the overall algorithm’s (Algorithm 1 and 2)
asymptotic complexity can be expressed as follows:

O

(
nc · n2

p · n3
τ

1− Uj
·
maxτi∈Tj

ei

minτi∈Tj ei

)
. (12)



TABLE II: COMP ≻ CASE

τi τ1 τ2 τ3 τ4

pi 100 100 150 150

ϵi,1 36 75 77 85
ϵi,2 35 55 48 82
ϵi,3 34 45 35 81
ϵi,4 34 27 25 79

TABLE III: COMP ≺ CASE

τi τ1 τ2 τ3 τ4

pi 200 200 250 250

ϵi,1 35 177 324 65
ϵi,2 33 172 178 63
ϵi,3 31 168 119 62
ϵi,4 26 165 80 60

Considering that we can put a limit on the utilization of a
processing core, e.g., Uj =

∑
τi∈Tj

ei
pi

< 0.99, our optimiza-
tion technique has a pseudo-polynomial time complexity.

V. ILLUSTRATIVE EXAMPLES: COMP VS CASE

Neither heuristics, COMP or CASE, completely dominate
the other in terms of finding schedulable solutions. We illus-
trate this using two examples.

A. COMP works, CASE fails

Consider an example with 4 tasks, 4 cache partitions, and
2 cores. Table II gives the period of each task and shows how
the execution time varies with the number of available cache
partitions. To this task set, we first apply COMP to obtain the
following schedulable solution:

µ1 = 2; T1 = {τ1, τ2}; µ2 = 2; T2 = {τ3, τ4}.

It can be observed that, here, tasks with the same period are
co-allocated to a core.

Now, let us try CASE on the same example. At a search
depth of 1, we have two nodes in Ω1 as follows: (i) ω1: τ1
is allocated to the first core and it uses 1 partition. (ii) ω2:
τ1 and τ3 are allocated to the first core and they share 2
partitions. For ω1, we have only one task in a core with
(p1, e1) = (100, 36), which is schedulable. For ω2, we have
two tasks with (p1, e1) = (100, 35) and (p3, e3) = (150, 48)
and, accordingly, Rwc

1 = Rwc
2 = 83 < 100 < 150, i.e., the

tasks are schedulable. Note that CASE, in this example, could
not co-allocate τ1 and τ4 to a core despite having similar
cache sensitivity potentials because they are not compatible.
Further, instead of τ2, τ3 was selected after τ1 in ω2 because
γ3 = 0.1533 which is less than γ2 = 0.28. Now, following ω1,
we cannot schedule the other 3 tasks on a single core sharing
3 remaining partitions because their utilization is greater than
1 (as shown before in COMP). Also, with respect to ω2, τ2
and τ4 cannot be co-allocated to a core sharing 2 partitions
because their combined utilization ( 55

100 +
82
150 ) is greater than

1. Hence, CASE cannot establish schedulability unlike COMP.
This shows that there can be a task set for which CASE cannot
obtain a schedulable solution while COMP can.

B. CASE works, COMP fails

Consider another example with task specification as given
in Table III. Let us first study a case where we partition the
cache equally, i.e., we provision 2 cache partitions for the tasks
running on each core. Corresponding to this, the execution
time of each task gets fixed. Thus, we have to schedule 4
tasks on 2 cores with the following specification:

(p1, e1) = (200, 33); (p2, e2) = (200, 172);

(p3, e3) = (250, 178); (p4, e4) = (250, 63).

We can write the utilization of the tasks as follows:

u1 = 0.165; u2 = 0.86; u3 = 0.712; u4 = 0.252.

It is obvious that no task can be allocated together with τ2 to
a core because it will lead to a core utilization greater than 1.
Alternatively, if we allocate the other 3 tasks (τ1, τ3, and τ4) to
a core, the total utilization will become 0.165+0.712+0.252 =
1.129 > 1, which is again infeasible. Hence, this task set is
not schedulable if we consider equal cache partitioning.

Now, when we apply CASE to this example, we get the
following schedulable solution:

µ1 = 3; T1 = {τ1, τ3, τ4}; µ2 = 1; T2 = {τ2}.

This example, therefore, illustrates that exploring the design
space for cache partitioning together with task allocation and
scheduling (using our proposed framework) can improve the
likelihood of establishing the schedulability of a task set,
which is the main motivation behind this work.

Further, we apply COMP to the same example. We have
two nodes in Ω1 at a search depth of 1. (i) ω1: τ1 and τ4
are allocated to the first core and share 1 partition. Thus, we
get Rwc

1 = Rwc
4 = 100 < 200 < 250. (ii) ω2: τ1 and τ2 are

allocated to the first core and share 3 partitions. Here, we get
Rwc

1 = Rwc
2 = 199 < 200. In case of ω1, the two remaining

tasks are τ2 and τ3. They are not co-schedulable on a core even
with 3 remaining partitions because their combined utilization
is 168

200 + 119
250 > 1. In case of ω2, the remaining tasks are

τ3 and τ4. They cannot be mapped to one core and share 1
partition because their utilizations add up to 324

250 + 65
250 > 1.

Hence, with COMP, we could not obtain a solution. Thus, this
example shows that CASE can obtain a schedulable solution
in certain cases where COMP cannot.

VI. EXPERIMENTAL RESULTS

In this section, we will first explain different scenarios for
the experiments and, then, we will present the experimental
results and discuss our observations.

A. Design of experiments

Benchmark study: We first experimentally investigate the
relation between a task’s execution time and the size of
available cache for real-world benchmarks. These bench-
marks include computer vision applications from Georgia Tech
Smoothing and Mapping (e.g., structure from motion) [44],
VLFeat (e.g., k-means clustering) [45], and OpenCV (e.g., let-
ter recognition) [46] as well as motion planning algorithms
from Open Motion Planning Library (e.g., geometric car
planning) [47].1 We simulate the execution of each bench-
mark using Cachegrind2 instrumentation tool and measure the
number of instructions executed I , data cache hits DH(µ) and
data cache misses DM(µ) for data cache sizes µ between 1

1The complete set of benchmark task has been uploaded as supplemental
material and will be made available as technical report.

2https://valgrind.org/info/tools.html/#cachegrind

https://valgrind.org/info/tools.html/#cachegrind


and 8192 KB. In Cachegrind, we have specified an 8-way set-
associative last-level cache and a cache line size of 64 bytes.
Note that Cachegrind only supports the Least Recently Used
replacement policy and the number of sets is restricted to be
a power of two.

We estimate the execution time E(µ) of a given benchmark
program for an available cache of size µ as follows:

E(µ) = I · CPI +DM(µ) ·MP +DH(µ) ·HP, (13)

where CPI is the number of clock cycles per instruction, MP
and HP are the cache miss and hit penalties, respectively, in
terms of the number of processor cycles (all parameters are
platform-specific). We assume a superscalar processor that can
execute 1/CPI=2 instructions per cycle, and last-level cache
hit and miss penalties of HP=20 and MP=200 cycles.

The proposed technique requires as input the execution time
function for different cache sizes. We note that any method can
be used to obtain it, including WCET analysis tool [48], [49],
[50] or measurement-based approaches [51]. Our Cachegrind-
based technique enables a fine-granular characterization of
the dependence of execution time on the number of available
cache partitions. The slowdown profiles are compatible with
the slowdown obtained by both simulation methods and real
observations in previous works [3], [5], [27], [52], [16].

We experimented with a wide variety of benchmarks (in
terms of how much slowdown they can suffer) and show
how varying slowdown affects the results. Although more
than 50 benchmark programs have been analyzed, for our
further experiments, we use the four most representative ones,
i.e., with a good spread of maximum slowdown values. The
slowdown in the execution of these four benchmarks as a
function of available cache size between 64 KB and 2048 KB
is shown in Figure 1.

Synthetic slowdown profiles: Besides the slowdown profiles
of benchmark programs, we use 8 synthetic profiles where
the execution time decreases exponentially with the number
of cache partitions. We can write these profiles as follows:

ϵi,µ
ϵi,np

=
exp(−µα)

exp(−npα)
where,

α ∈ {0, 0.023, 0.036, 0.045, 0.052, 0.058, 0.067, 0.0743}.
Recall that ϵi,µ is the execution time of the task when it can use
only µ cache partitions and ϵi,np

is the execution time when
it can use all cache partitions. Note that the values of α are
selected to obtain maximum slowdowns of 1, 2, 3, 4, 5, 6, 8,
and 10 when np = 32. For np = 16, the maximum slowdown
values are 1, 1.4, 1.7, 2, 2.2, 2.4, 2.7, and 3. We note that such
slowdowns can occur in practice for real workloads as reported
in [53], [54]. We denote the profiles as Psyn

1 ,Psyn
2 , · · · ,Psyn

8

with respect to the values of α in ascending order.

Cache configurations: Inspired by MPSoC architectures with
different cache-sizes, we consider two scenarios AR-I and
AR-II, with four cores and a maximum number of partitions
np = 16 and np = 32, respectively.

Test case generation: For generating a test case, we con-

sider a system with 4 cores and 40 tasks. We use [55] to
randomly synthesize base utilization of tasks for a target
utilization Utar where, Utar =

∑
τi∈T ûi. For each Utar ∈

{1.0, 1.1, · · · , 3.9, 4}, we generate 100 task sets. To each task
in a task set, we assign a slowdown profile (variation of
execution time/utilization with available cache) either similar
to an evaluated benchmark program—linearly interpolating for
the non-available cache sizes—or generated synthetically.

Selections of slowdown profiles: We take three different sets
of slowdown profiles. (i) SD-B comprises slowdown profiles
of four benchmark programs as depicted in Figure 1. (ii) SD-
S1 comprises synthetic slowdown profiles Psyn

1 , Psyn
2 , Psyn

3 ,
Psyn
4 , Psyn

5 , and Psyn
6 . (iii) SD-S2 also includes synthetic

profiles with high slowdown, specifically: Psyn
1 , Psyn

2 , Psyn
4 ,

Psyn
6 , Psyn

7 , and Psyn
8 .

Selections of task periods: We consider two different sets
of values from which we choose task periods: (i) WD: This
set comprises a wider range of values. Each task τi ∈ T is
randomly assigned a period from {5, 10, 20, 40, 60, 80, 100}.
Further, we do not limit the task utilization. Thus, in this
case, two tasks with a wide gap in their periods, e.g., 5 ms
and 100 ms, can easily be incompatible for co-scheduling.
(ii) SH: This set comprises a shorter range of values, i.e., we
select task periods from {10, 15, 20, 25}. Moreover, we limit
the base utilization of a task to 0.2 in this case. Considering
that the gap between two task periods is not very wide and the
utilization of a low-priority task may not be very high, when
we select periods from SH, the likelihood of two tasks cannot
be scheduled together in a core is low.

Scenarios for experiments: In summary, we consider two
cache configurations, AR-I and AR-II, with 16 and 32 parti-
tions, respectively. Further, we have three selections of slow-
down profiles, i.e., SD-B, SD-S1, and SD-S2. Also, we have
two sets of task periods, i.e., WD and SH. In combination,
we have 12 different scenarios as given in Tables IV-VI.

Baseline algorithms: To the best of our knowledge, no
previous algorithm has been specifically proposed for co-
optimizing cache partitioning and task allocation under NP-FP
scheduling policy. In our experiments, we compare CASE and
COMP against three state-of-the-art algorithms, i.e., CaM [5],
IA3 [10], and PDPA [11]. Since these algorithms were initially
proposed for various scheduling policies (CaM for P-EDF, IA3

and PDPA for NP-EDF), we have adapted them preserving
their allocation strategy, but using the NP-FP schedulability
test. Conversely, in Section VI-C, CASE and COMP have been
modified to suit P-EDF and NP-EDF. In the following, we
first present the evaluation under NP-FP, which is the primary
goal of the paper. Then, we demonstrate the flexibility of
the optimization framework by comparing with the scheduling
policies originally targeted by each baseline algorithms. Ex-
cept for considering different schedulability test, the baseline
algorithms were not otherwise modified.3

3Similarly to e.g., [5], when considering preemptive scheduling, we assume
that CRPD are already included in the WCET of tasks.



TABLE IV: Total number of schedulable task sets in each scenario
using different algorithms under NP-FP. In Bold (italic), the results
of the best-performing algorithm (best-performing baseline).

Scenario COMP CASE IA3 PDPA CaM

AR-I + SH + SD-B 1954 1889 1887 724 1768
AR-I + SH + SD-S1 1558 1523 1450 863 1408
AR-I + SH + SD-S2 1302 1280 1153 736 1142
AR-I + WD + SD-B 1981 1632 1950 608 169
AR-I + WD + SD-S1 1564 1335 1475 615 140
AR-I + WD + SD-S2 1293 1101 1185 480 78
AR-II + SH + SD-B 2356 2434 2064 1357 2254
AR-II + SH + SD-S1 760 832 501 379 584
AR-II + SH + SD-S2 515 628 154 124 261
AR-II + WD + SD-B 2348 2014 2050 1105 287
AR-II + WD + SD-S1 801 664 521 253 20
AR-II + WD + SD-S2 497 407 149 64 1

B. Experimental results under NP-FP

The overall schedulability results under NP-FP scheduling
policy are reported in Table IV. Besides, we illustrate the
results of six representative scenarios in Figure 2.4

COMP vs baselines: In all scenarios, COMP performs better
than the three baseline algorithms, IA3, PDPA, and CaM, in
terms of schedulability (see Table IV and Figure 2). On aver-
age, COMP performs 13.5% better than the best-performing
baseline. Although COMP does not cluster together tasks with
similar cache sensitivities, it can improve schedulability by
co-optimizing cache partitioning and task allocation. When
the tasks have low cache sensitivities (a maximum slowdown
of 3x in the scenarios involving AR-I), COMP improves
schedulability over the best-performing baseline by 6.1% on
average (Table IV). We get a minimum gain of 1.6% when
the maximum slowdown is 1.97x (i.e., using SD-B) and task
periods are selected from the wider range of values (i.e., WD).
Conversely, when the tasks have high cache sensitivities (up to
10x slowdown with SD-S2 and AR-II), COMP can schedule
97.3% (for SH) and 233.6% (for WD) more task sets. This
clearly shows the opportunity to optimize schedulability with
highly cache-sensitive workloads.

CASE vs baselines: CASE, IA3, and CaM consider cache
sensitivity as main metric during allocation. For all scenarios
where tasks have high cache sensitivity (maximum slowdown
larger than 3x), CASE performs better than CaM and IA3 (see
Table IV and Figures 2c-2f). However, CASE can perform
worse for tasks with low cache sensitivities (only up to 3x
slowdown) and periods in a wider range WD (i.e., the ratio
between two task periods can be as high as 20). In such cases,
the gain for clustering tasks with similar cache sensitivities
is limited and easily dominated by mutual incompatibility
issues. CASE performs 16.3% worse than the best-performing
baseline (i.e., IA3) in scenario AR-I + WD + SD-B, but it
can schedule 140.6% more task sets than the best-performing
baseline (i.e., CaM) in scenario AR-II + SH + SD-S2.
CASE is especially useful in the latter scenario, where tasks

4All schedulability plots have been uploaded as supplemental material and
will be made available as a technical report.

are highly cache-sensitive (up to 10x slowdown) and mostly
compatible (periods are in a shorter range). On average, CASE
performs 5.5% better than the best-performing baseline.

COMP vs CASE: In our experiments, CASE has higher
schedulability than COMP when both cache sensitivity of tasks
is high and task periods are in a shorter range, i.e., AR-II +
SH (see Table IV and Figures 2d-2e). Here, with SD-S2 (up to
10x slowdown), CASE schedules 21.94% more task sets than
COMP (Table IV). In scenarios with low cache sensitivity
and shorter range of task periods (e.g., SH + SD-B), the
average difference between CASE and COMP is smaller. In
scenarios with wider period range (WD), COMP performs at
least 16% better than CASE (see Table IV and Figures 2a, 2b,
2f). The maximum improvement is 21.38% in scenario AR-I
+ WD + SD-B (see Table IV and Figure 2a). Overall, in our
experiments, COMP performs 7.56% better than CASE. An
optimal use of our framework should therefore adopt CASE
when tasks have high cache sensitivities and their periods are
in a shorter range. Otherwise, it should use COMP. If we run
COMP or CASE based on the characteristics of the task set—
as identified from the results—our optimization framework can
schedule 15.2% more task sets than the baselines. It is also
trivial to run both COMP and CASE in parallel for a task set
and select the highest schedulability.

Comparison among baselines: In 9 out of 12 scenarios, IA3

performs better than the other baselines. In the remaining
three scenarios (high cache-sensitivity and short period range),
CaM achieves the best performance (Table IV). Both IA3

and CaM use first-fit heuristics and explore cache sensitivity,
but are designed in different ways: CaM clusters the whole
task set into subsets with different slowdown profiles before
applying the first-fit heuristic; IA3 allocates tasks with high
cache sensitivity to the same core only when they are not
schedulable by the standard first-fit heuristic. As a result, CaM
favors task sets where cache sensitivity dominates task period,
(i.e., high cache-sensitivity and short period range). In our
experiments, PDPA performs worse than other baselines in 9
out of 12 scenarios.

This is due to multiple reasons. First, PDPA attempts to
initially assign one critical task to each core by selecting
among the tasks with high utilization and low cache variability.
After the critical tasks are assigned, other tasks can only be
mapped to the core hosting a critical task with a higher or equal
period. However, the algorithm does not guarantee that the task
with the largest period is always selected as a critical task. In
such cases, the tasks with periods higher than all critical tasks
cannot be scheduled to any core. Our implementation of PDPA
tries to avoid this situation by first selecting the task with the
highest period as a critical task and then assigning it to the first
core before selecting other critical tasks. Second, PDPA has a
hard constraint (i.e., line 9 of Algorithm 2 in [11]) to ensure
that the periods of critical tasks are as far as possible from each
other. [11] reports that δ = Pmax−Pmin

M × ∆=90
100 produces the

best performance in the experiments presented in that paper.
The parameter ∆ = 90 does not work with our task sets since
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Fig. 2: Schedulability ratio (i.e., #schedulable task sets
#total task sets × 100 %) of proposed schemes and baseline algorithms under NP-FP.

in some cases, no tasks can satisfy the constraint and thus the
number of critical tasks is smaller than the number of cores.
In our experiments, we therefore reduced ∆ = 50 so that one
critical task is assigned to each core. Third, after generating an
initial task allocation based on the critical tasks, PDPA only
remaps selected tasks if a core is not schedulable even with the
full cache. However, the algorithm does not check whether the
total cache allocation is larger than the available cache size.
Additionally, if every core is schedulable with the full cache,
PDPA will not try to reduce the cache allocation to obtain a
valid solution. However, as reported in [11], when task sets
are restrictively generated to achieve minimum execution time
for 1 to 4 cache partitions, PDPA might perform well.

Minimize cache reservation: Besides improving schedulabil-
ity, our proposed schemes use less cache compared to baseline
algorithms for almost all task sets. Let us denote µT (A) =∑

Cj∈C µj the total number of cache partitions reserved for
a task set T by an algorithm A. The minimum between
µT (COMP) and µT (CASE) is denoted by µT (PROP). For
the baseline algorithms, after the algorithm terminates and if
the task set is schedulable, we go through the task allocation
on each core and try to reduce the number of cache partitions
reserved for the tasks without jeopardizing their schedulability.
After this post-processing step, µT (BASE) is the minimum
cache partitions used among all baseline algorithms. If a task
set T can be feasibly scheduled by a proposed strategy and
a baseline algorithm respectively, we compute the number of
cache partitions saved as µsave = µT (BASE) − µT (PROP).
On average, with AR-I (16 available partitions), we can save
0.73 partitions, while with AR-II (32 available partitions), we
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Fig. 3: Proposed schemes reserve less cache than baselines.

can save 3.68 partitions. Thus, we can save ca. 8.0% of the
available partitions on average, which is significant. Non-real-
time tasks can benefit from this saving without jeopardizing
real-time performance. Figure 3 shows histograms for two
scenarios with benchmarks profiles SD-B, wider periods WD,
and 16/32 cache partitions. For certain task sets, we can save
up to 5 (10) cache partitions out of 16 (32) available partitions,
which is more than 31% of the cache size.

C. Experimental results under P-EDF and NP-EDF

In Table V and VI, we evaluate the flexibility of our
framework using the scheduling policies originally targeted
by the baseline algorithms (i.e., P-EDF for CaM, NP-EDF
for IA3 and PDPA).5 We modified our framework to use the
appropriate schedulability test—NP-EDF test [56] (used by
[10], [11]), P-EDF test [57] (used by [5])—in the inner layer.
The middle and outer layers have not been changed.

5Graphs for all results have been uploaded as supplemental material and
will be made available as a technical report.



TABLE V: Total number of schedulable task sets in each scenario
using different algorithms under NP-EDF. In Bold the results of the
best-performing algorithm.

Scenario COMP CASE IA3 PDPA

AR-I + SH + SD-B 2096 2089 2075 841
AR-I + SH + SD-S1 1695 1684 1586 937
AR-I + SH + SD-S2 1447 1455 1294 804
AR-I + WD + SD-B 2109 1803 2075 767
AR-I + WD + SD-S1 1699 1467 1572 688
AR-I + WD + SD-S2 1413 1237 1272 572
AR-II + SH + SD-B 2522 2711 2259 1514
AR-II + SH + SD-S1 925 972 584 410
AR-II + SH + SD-S2 677 769 213 139
AR-II + WD + SD-B 2519 2237 2172 1350
AR-II + WD + SD-S1 914 775 590 318
AR-II + WD + SD-S2 581 501 192 106

Results for NP-EDF (Table V) show a similar trend as NP-
FP (Table IV): COMP performs better than IA3 and PDPA for
all scenarios, while CASE performs better than the baselines
when tasks have higher cache sensitivities or shorter range
of task periods. On average, COMP and CASE improve
schedulability by 17.1% and 11.4%, respectively, over the
best-performing baseline (i.e., IA3). For each scenario, if we
consider our better-performing algorithm (CASE or COMP)
and compare against the better-performing baseline, the av-
erage improvement is 19.2%. The maximum improvement of
261% is achieved by CASE in scenario AR-II + SH + SD-S2.

Table VI reports the schedulability results under P-EDF,
which was originally targeted by CaM [5]. The results show a
different trend than under non-preemptive scheduling: CASE
performs better than CaM in all scenarios and better than
COMP in most cases. Unlike under non-preemptive schedul-
ing, a longer-executing, lower-priority (or longer period) task
cannot block a shorter-deadline higher-priority (or shorter
period) task. Therefore, task periods and mutual compatibility
play a less important role than cache sensitivity. Moreover,
the overall improvement (8.7% on average) achieved by the
proposed algorithms under P-EDF is smaller than NP-FP and
NP-EDF. In fact, in COMP and CASE, the deciding factors
(i.e., cache sensitivity and task period) used in the middle
layer are specifically proposed for non-preemptive tasks. As
future work, we would like to investigate whether a new task
selection mechanism for P-EDF could produce better results.

D. Running Time

We implemented all the algorithms under comparison using
Python 3.10 and conducted our experiments on a Linux
server equipped with Intel Xeon Gold 6254 CPU (3.10 GHz).
Table VII presents the average and maximum running time (in
seconds) required by the proposed optimization framework and
the baseline algorithms. The running time does not include
the time for deriving the execution time function for each
task. For our experiments under NP-FP, COMP and CASE
required average running time of less than 1 s and 2 s with 16
and 32 cache partitions, respectively, which are comparable
with IA3 and faster than CaM. For the scenario under NP-
EDF, the proposed framework ran slower than IA3 and PDPA,

TABLE VI: Total number of schedulable task sets in each scenario
using different algorithms under P-EDF. In Bold the results of the
best-performing algorithm.

Scenario COMP CASE CaM

AR-I + SH + SD-B 2096 2099 2071
AR-I + SH + SD-S1 1695 1692 1663
AR-I + SH + SD-S2 1447 1459 1397
AR-I + WD + SD-B 2113 2107 2074
AR-I + WD + SD-S1 1710 1699 1675
AR-I + WD + SD-S2 1424 1442 1383
AR-II + SH + SD-B 2522 2711 2617
AR-II + SH + SD-S1 923 977 763
AR-II + SH + SD-S2 675 770 433
AR-II + WD + SD-B 2519 2660 2578
AR-II + WD + SD-S1 931 1009 773
AR-II + WD + SD-S2 641 738 406

TABLE VII: Running time comparison (avg/max) (in sec.).

Scenario np COMP CASE IA3 PDPA CaM

NP-FP
16 0.6/2.2 0.5/2.1 1.2/3.7 0.4/3.9 9.4/59

32 2.0/9.6 1.5/7.4 1.8/7.7 0.8/8.7 22/135

NP-EDF
16 4.7/44 6.8/39 2.5/28 0.3/16 -
32 16/190 19/168 4.0/68 0.5/18 -

P-EDF
16 0.2/1.0 0.2/0.8 - - 2.9/13

32 0.5/2.4 0.5/2.3 - - 12/49

with infrequent spikes due to a combination of multiple
iterations and the slower schedulability test. P-EDF running
times are shorter than NP-FP and NP-EDF because of the
faster utilization bound test.

Furthermore, we also analyzed the running time scalability
of the framework (for NP-FP) using hypothetical test cases
with 16 cores, 128 cache partitions, and 160 tasks, which took
an average running time of 22mins. Note that our current
implementation only utilizes one CPU core for one problem
instance. Exploiting the inherent parallelism in the search in
the outer layer can speed up the optimization manifolds.

VII. CONCLUSION AND FUTURE WORK

Unlike in preemptive scheduling, a lower-priority non-
preemptive task can block a higher priority task, significantly
impacting the schedulability of a task set. Also, intuitively,
clustering tasks with similar cache sensitivities to use a part
of shared cache can maximize the cache utilization and im-
prove the schedulability. This paper provides useful insights
on the trade-offs between blocking and cache sensitivity in
establishing the schedulability of a set of fixed-priority non-
preemptive tasks on multi-core processors.

We propose a multi-layer hybrid design space exploration
framework to solve the joint problem of cache partitioning
and task allocation. Our extensive experimental evaluation
against state-of-the-art algorithms shows that our framework
can considerably improve real-time schedulability even when
cache sensitivities of tasks cannot be fully exploited. Although
some optimization strategies of the framework are specifically
designed for NP-FP real-time tasks, we show that the frame-
work achieves good schedulability results also for preemptive
and non-preemptive EDF tasks.



While this paper evaluates blocking and cache sensitivity
separately, we will investigate in the future how to combine
these two factors into a metric that can drive task alloca-
tion. Besides, we can possibly determine sets of mutually-
compatible tasks and then, for each set, perform task allocation
based on cache sensitivity. Naturally, we will also consider
complex task models (e.g., directed acyclic graphs) and plat-
form settings (e.g., memory bandwidth regulation [36]).
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