
HAL Id: hal-04803800
https://laas.hal.science/hal-04803800v1

Submitted on 26 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partitioned Scheduling and Parallelism Assignment for
Real-Time DNN Inference Tasks on Multi-TPU

Binqi Sun, Tomasz Kloda, Chu-Ge Wu, Marco Caccamo

To cite this version:
Binqi Sun, Tomasz Kloda, Chu-Ge Wu, Marco Caccamo. Partitioned Scheduling and Parallelism
Assignment for Real-Time DNN Inference Tasks on Multi-TPU. 61st ACM/IEEE Design Automation
Conference (DAC), Jul 2024, San Francisco, United States. pp.1 - 6, �10.1145/3649329.3655979�.
�hal-04803800�

https://laas.hal.science/hal-04803800v1
https://hal.archives-ouvertes.fr

Partitioned Scheduling and Parallelism Assignment for Real-Time
DNN Inference Tasks on Multi-TPU

1Binqi Sun, 2Tomasz Kloda, 3Chu-ge Wu, 1Marco Caccamo
1TUM School of Engineering and Design, Technical University of Munich 2LAAS-CNRS, Université de Toulouse, INSA

3School of Automation, Beijing Institute of Technology
binqi.sun@tum.de,tkloda@laas.fr,wucg@bit.edu.cn,mcaccamo@tum.de

ABSTRACT
Pipelining on Edge Tensor Processing Units (TPUs) optimizes the
deep neural network (DNN) inference by breaking it down into mul-
tiple stages processed concurrently on multiple accelerators. Such
DNN inference tasks can be modeled as sporadic non-preemptive
gangs with execution times that vary with their parallelism levels.
This paper proposes a strict partitioning strategy for deploying DNN
inferences in real-time systems. The strategy determines tasks’ par-
allelism levels and assigns tasks to disjoint processor partitions.
Configuring the tasks in the same partition with a uniform paral-
lelism level avoids scheduling anomalies and enables schedulability
verification using well-understood uniprocessor analyses. Evalu-
ation using real-world Edge TPU benchmarks demonstrated that
the proposed method achieves a higher schedulability ratio than
state-of-the-art gang scheduling techniques.

1 INTRODUCTION
Pipeline parallelism can improve the performance of deep neu-
ral network (DNN) inference on embedded machine-learning co-
processors by partitioning the layers of a model into multiple stages
that can be processed in parallel. Edge Tensor Processing Unit (TPU),
a custom ASIC designed by Google for accelerating DNN inferences
on edge devices, harnesses pipelining in a twofold way. Firstly, the
parallel execution of multiple segments increases the processing
throughput. Secondly, spreading large DNN models across multiple
TPUs results in a larger share of the model parameters stored in
their internal memories [10] and, thus, faster execution speed [19].

𝑇𝑃𝑈4

𝑇𝑃𝑈3

𝑇𝑃𝑈2

𝑇𝑃𝑈1

ms

0 10 20 30 40 50 60 70 80

↑ ↑ ↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)

(3)

(3)

(3)

(3)

(4)

(4)

(4)

(4)

(5)

(5)

(5)

(5)

(6)

(6)

(6)

(6)

(7)

(7)

(7)

(7)

(8)

(8)

(8)

(8)

(9)

(9)

(9)

(9)

(10)

(10)

(10)

(10)

threads
closed

waiting for buffer release
E

Figure 1: Pipelined execution of ten frames on four TPUs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06
https://doi.org/10.1145/3649329.3655979

2 4 6 80

50

100

150

Number of Edge TPUs
In
fe
re
nc
e
Ti
m
e
pe
rF

ra
m
e
(m

s)

Inception-v1
(5.72 MB)

Inception-v2
(10.19 MB)
Inception-v3
(21.56 MB)
Inception-v4
(40.90 MB)
ResNet-50
(23.40 MB)
ResNet-101
(42.46 MB)
ResNet-152
(57.53 MB)

Inc-Resnet-v2
(54.13 MB)

12x speedup

Figure 2: Multi-TPU DNN inference benchmarks executed
on ASUS AI Accelerator CRL-G18U-P3D with 8 TPUs.

Fig. 1 shows the real trace of processing ten input frames by
an image recognition network inception-v3 on four TPUs. The
model is divided into four segments so each TPU can run a segment
in parallel. Before the inference starts, the model parameters are
loaded to TPUs’ on-chip memory (red boxes with ↑), which incurs
an overhead ranging from 8 to 25 ms. Subsequentially, the frames
are processed (gray boxes) in a pipeline: when one TPU finishes
processing a frame, it saves the intermediate result to the input
buffer of the next TPU and starts processing a new frame.

Integrating DNN accelerators in real-time systems, where tasks
are subject to timing constraints and must be executed at a specific
rate or in response to recurrent events, needs a scheduling model
that leverages their parallelism and limits the reprogramming over-
head (e.g., DNN parameter loading). In this paper, we argue that
both measures can be achieved using non-preemptive gang (NPG)
scheduling. A NPG task spawns threads that execute in parallel
and uninterruptedly (avoid reprogramming) on distinct processing
units. All threads of the same job, for the sake of pipeline paral-
lelism, start and end synchronously1. The gang tasks also need the
parallelism level to be set. Fig. 2 shows the benchmarking results
of the DNN inference time w.r.t the number of TPUs used by the
network. Having multiple versions of the same model with differ-
ent parallelism levels is not desirable due to the memory footprint
(e.g., 57.53 MB for each ResNet-152 version), and thus, in practice,
only one parallelism level selected at design time is used.

In what follows, we propose a new partitioning and parallelism
configuration strategy, compatible with standard fixed-priority
schedulers, for deploying real-time DNN inferences on multi-TPU
accelerators. This paper makes the following contributions:

1The current multi-TPU runtime library libcoral starts and ends all the threads on
all the TPUs in the pipeline synchronously without allowing preemption.

https://doi.org/10.1145/3649329.3655979

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Binqi Sun, Tomasz Kloda, Chu-ge Wu, and Marco Caccamo

• We present DNN inference benchmarks on multi-TPU accelera-
tors and model the multi-TPU DNN inferences as NPG tasks.
• We propose an NPG strict partitioning strategy for scheduling
DNN tasks on multi-TPU and a strict partitioning heuristic to
determine the processor partitioning and task assignment.
• We compare the schedulability performance of the proposed
strict partitioning strategy with two state-of-the-art global NPG
response time analyses and federated scheduling.

The remaining of the paper is organized as follows. Section 2
covers the related work, and Section 3 introduces the task and
platformmodel. Section 4 opens with motivation examples and then
presents the NPG strict partitioning strategy. Section 5 proposes a
strict partitioning heuristic. Section 6 contains evaluations of the
proposed strategy, and Section 7 concludes the paper.

2 RELATEDWORK
Partitioned scheduling of sequential tasks. Partitioned schedulers
incur low runtime overheads but require solving a task-to-processor
bin-packing problem. Since the partitioning problem is NP-hard
in the strong sense [7], approximation methods were proposed
for sequential preemptive [3] and non-preemptive [8, 20] tasks.
However, these methods cannot be directly applied to the NPG
tasks considered in this paper, as additional decisions (i.e., processor
partitioning and task parallelism configuration) need to be made.
Global gang scheduling. There have been several major works on
gang scheduling, especially for preemptive systems [1, 5, 11]. For
non-preemptive systems, Nelissen et al. [15] propose a response
time analysis under the global fixed-priority policy for moldable
gang tasks with a periodic time-triggered activation model. In this
work, we consider an event-triggered task model (sporadic) that
can react more promptly to online events. Such an activation model
is also used in [12, 17], which propose response time analyses for
the global non-preemptive fixed-priority scheduling of rigid gang
tasks. We compare the schedulability performance of these works
with our proposed strategy in Section 6.
Partitioning of parallel tasks. The idea of strict partitioning was
first introduced in [16], which proposes a first-fit strict partitioning
heuristic with the assumption that task parallelisms are fixed in
advance. The NPG strict partitioning heuristic proposed in this
paper extends the previous work by supporting processor parti-
tioning, task assignment, and parallelism selection simultaneously.
Ueter et al. [18] introduce the concept of stationary gang assign-
ment, where rigid gang tasks are statically mapped to processors
statically. However, in contrast to strict partitioning, the stationary
gang assignment allows processors to be shared among tasks with
different parallelism levels. As the paper considers fully preemp-
tive scheduling, the analysis of priority inversion is not presented,
and the method cannot be applied to NPG tasks. Federated schedul-
ing [14] assigns dedicated processors to heavy utilization tasks and
uses a global scheduler for the remaining light utilization tasks. By
contrast, strict partitioning only uses uniprocessor schedulers, and
each processor partition can be shared by multiple tasks. We will
compare the performance of the proposed NPG strict partitioning
method with a first-fit strict partitioning and a federated scheduling
heuristic in Section 6.

3 TASK AND PLATFORMMODEL
We consider a multiprocessor platform Π comprised of𝑀 identical
processors. A task set 𝜏 is comprised of 𝑛 independent sporadic
NPG tasks executing on Π. Each task 𝜏𝑖 ∈ 𝜏 (1 ≤ 𝑖 ≤ 𝑛) gives rise
to an infinite sequence of jobs with consecutive jobs’ invocations
(arrivals) separated by at least 𝑇𝑖 time units (i.e., sporadic task). We
use 𝐽𝑖 to denote a job of task 𝜏𝑖 . Job 𝐽𝑖 released at time (arrival time)
𝑟𝑖 has an absolute deadline 𝑟𝑖+𝐷𝑖 and must complete its execution
by that time where 𝐷𝑖≤𝑇𝑖 (i.e., constrained deadlines). Each job of
task 𝜏𝑖 executes simultaneously on𝑚 processors for at most 𝐶𝑖,𝑚
time units (1 ≤ 𝑚 ≤ 𝑀) without interruption. As a result, a NPG
task can be characterized by a 3-tuple 𝜏𝑖 = (𝐶𝑖 ,𝑇𝑖 , 𝐷𝑖), where 𝐶𝑖
is a vector of 𝑀 elements and its𝑚-th element 𝐶𝑖,𝑚 denotes 𝜏𝑖 ’s
worst-case execution time (WCET) with a degree of parallelism of𝑚.
Without loss of generality, we assume that all the above parameters
are non-negative integers. We also assume that the tasks do not self-
suspend and no task can be blocked by another task other than due
to contention on processors. We define the utilization of a task 𝜏𝑖 as
𝑈𝑖,𝑚 = 𝐶𝑖,𝑚 ·𝑚/𝑇𝑖 , and the reference task set utilization as the sum
of task utilization with a parallelism level of 1 (i.e.,𝑈 =

∑𝑛
𝑖=1𝑈𝑖,1).

4 NPG STRICT PARTITIONING
We introduce our approach for scheduling a set of NPG tasks upon
a set of identical processing units. We will first present its main
concepts step by step with three motivation examples in Section 4.1,
and then propose its formal definition in Section 4.2. We assume
that the jobs are scheduled by a non-preemptive fixed-priority (NP-
FP) scheduler and indexed in decreasing priority order (i.e., job 𝐽1
has the highest priority). For ease of presentation, we show the
motivation examples with aperiodic jobs, but the approach can be
generalized to periodic tasks without loss of generality.

4.1 Motivation examples
4.1.1 Avoid unbounded priority inversion. We recap a phenomenon
in global NPG scheduling called 2-D blocking [6].

Motivation Example 4.1. Consider eight aperiodic jobs 𝐽1−8 that
execute non-preemptively on two identical processors. 𝐽1 must run
on two processors simultaneously (i.e., it can be scheduled when
there are at least two idle processors, and no higher-priority job
is pending), while all other jobs can run on any single processor.
𝐽3 and 𝐽8 have execution times of 2 and all other jobs of 4. A priority
inversion occurs when a higher-priority job is released during the
execution of a job with lower priority and waits for its completion.
For instance, all lower-priority jobs can be released one clock tick
before 𝐽1. A work-conserving scheduler always tries to keep the
processors busy, and whenever a processor becomes idle, a pending
job that can run on idle processors is scheduled instantaneously.
While it results in good resource utilization, it can also lead to long
priority inversions. As shown in Fig. 3, when the start and finishing
times of old and new “thin” jobs overlap, the new “thin” jobs can
get ahead of a pending “thick” job (i.e., 𝐽1 cannot start as long as
two processors are busy).

To avoid unbounded priority inversion, one can assign the same
parallelism to all jobs so the priority inversion will be bounded by
the duration of the longest lower-priority job (e.g., in the above

Partitioned Scheduling and Parallelism Assignment for Real-Time DNN Inference Tasks on Multi-TPU DAC ’24, June 23–27, 2024, San Francisco, CA, USA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝐽2 𝐽5 𝐽7

𝐽3 𝐽4 𝐽6 𝐽8

𝐽1

Figure 3: 2-D blocking in global NPG scheduling.

example, all jobs can be set to run on two processors). However,
different jobsmay prefer different parallelism, and such an approach
might lead to processor underutilization. Therefore, we propose
to divide the set of jobs into different subsets, where each job has
the same degree of parallelism, and assign each subset of same-
parallelism jobs to an exclusive subset of processors. That is, the jobs
with different parallelism levels do not run on the same processor.

4.1.2 Advantages of partitioned scheduling. Now, the question is
how to schedule a set of same-parallelism jobs on a set of processors.
Two main approaches are used: partitioned (i.e., tasks are statically
allocated to processors) and global (i.e., tasks can execute on any
preassigned processor) scheduling, which are not comparable in
terms of schedulability (i.e., there are tasks schedulable with global
but cannot be scheduled with any partitioned approach and con-
versely) [13]. In this work, we apply partitioned scheduling as it
allows better control of low-priority blocking (see the example be-
low). Moreover, partitioned scheduling allows us to use the exact
uniprocessor non-preemptive response time analysis [4].

Motivation Example 4.2. Consider four jobs 𝐽1−4, with execution
times of 4 for 𝐽1−3 and 2 for 𝐽4. The first job has a deadline fixed
to 7, and other jobs have no deadline. Fig. 4 illustrates (a) global and
(b) partitioned scheduling policies. In this example, by assigning
𝐽1 and 𝐽4 to the same processor (i.e., partitioned scheduling), the
blocking suffered by the most urgent job can go down from 4 to 2.

0 1 2 3 4 5 6 7 8

𝐽2 𝐽4

𝐽3 𝐽1

(a) Global scheduling.

0 1 2 3 4 5 6 7 8

𝐽4

𝐽2 𝐽3

𝐽1

(b) Partitioned scheduling.

Figure 4: Priority inversion in non-preemptive scheduling.
4.1.3 Benefit of large partitions. The above considerations might
suggest that the more partitions we create, the less low-priority job
blocking we can have. However, forming fewer large partitions can
also be beneficial.

Motivation Example 4.3. Consider three aperiodic jobs 𝐽1−3 that
execute non-preemptively on two identical processors. All three
jobs have the same degree of parallelism and execution times: 4
when running on a single processor and 2 when running concur-
rently on two processors. 𝐽1 and 𝐽2 must complete by their deadline
fixed to 7, and 𝐽3 has no deadline. Fig. 5 illustrates the critical in-
stant for the first two jobs when (a) 𝐽1 and 𝐽3 are allocated to the
first processor, and 𝐽2 to the second one, and (b) all three jobs are
allocated to two processors. In (a), there is no schedulable assign-
ment for jobs partitioned across different processors, while in (b),
all jobs are schedulable with at least one additional slack time. Pro-
cessor utilization remains the same in both cases (i.e., 12 units of
processing time in total) with no speedup from the higher degree
of parallelism, but the 𝐽3’s lower-priority (LP) blocking becomes
less of a factor when spread across two processors.

0 1 2 3 4 5 6 7 8

𝐽3 𝐽1

𝐽2

(a) More small partitions.

0 1 2 3 4 5 6 7 8

𝐽3 𝐽1 𝐽2

(b) Fewer large partitions.

Figure 5: Reducing LP blocking by large partitions.

4.2 Our approach – strict partitioning
Based on the above observations, we propose a new scheduling
strategy called NPG strict partitioning. Its main idea is to divide
the processors and tasks into disjoint subsets (partitions) and only
allow tasks with the same parallelism to execute on each partition.
Given a set of processors Π and NPG tasks 𝜏 , two offline decisions
need to be made for strict partitioning:

• Processor Partitioning divides the set of processors Π into a set of
disjoint processor partitions 𝜌 = {𝜌𝑚

𝑗
⊆ Π,∀𝑚, 𝑗}, where 𝑗 is the

index of processor partition 𝜌𝑚
𝑗
with size |𝜌𝑚

𝑗
| = 𝑚. Formally,

𝜌
𝑚1
𝑗1
∩ 𝜌

𝑚2
𝑗2

= ∅,∀𝜌𝑚1
𝑗1

≠ 𝜌
𝑚2
𝑗2

and Π =
⋃
∀𝑚,𝑗 𝜌

𝑚
𝑗
.

• Task Assignment is a mapping from each processor partition
𝜌𝑚
𝑗
∈ 𝜌 to a set of NPG tasks 𝜏 (𝜌𝑚

𝑗
) ⊆ 𝜏 . We denote 𝜏 (𝜌) =

{𝜏 (𝜌𝑚
𝑗
),∀𝜌𝑚

𝑗
∈ 𝜌}. Each task is assigned to one and only one

processor partition, thus 𝜏 (𝜌𝑚1
𝑗1
) ∩ 𝜏 (𝜌𝑚2

𝑗2
) = ∅,∀𝜌𝑚1

𝑗1
≠ 𝜌

𝑚2
𝑗2

and
𝜏 =

⋃
∀𝑚,𝑗 𝜏 (𝜌𝑚𝑗). All the tasks in 𝜏 (𝜌

𝑚
𝑗
) are configured to have

the same parallelism level𝑚.

After a valid offline partitioning, the tasks assigned to each pro-
cessor partition are scheduled by an online NP-FP scheduler. Since
each task in 𝜏 (𝜌𝑚

𝑗
) has a parallelism level of𝑚, it requires to occupy

all the𝑚 processors in 𝜌𝑚
𝑗
to start its execution. This implies that

at most one task in 𝜏 (𝜌𝑚
𝑗
) can execute on 𝜌𝑚

𝑗
at each time instant.

Therefore, the online scheduler of each partition boils down to a
uniprocessor NP-FP scheduler, and its schedulability can be verified
by a uniprocessor NP-FP schedulability test.

In this paper, we adopt the exact NP-FP response time analy-
sis [4] as our uniprocessor schedulability test. The analysis verifies
the schedulability of each task in the task set. For each task 𝜏𝑖 , it
calculates the latest starting time of the 𝑙-th job to check whether
the job can start 𝐶𝑖 time units before its deadline. The job’s latest
starting time is given by the smallest positive integer satisfying the
following equation:

𝑠𝑖,𝑙 = max
𝜏 𝑗 ∈𝑙𝑝 (𝑖)

𝐶 𝑗 + (𝑙 − 1) ·𝐶𝑖 +
∑︁

𝜏 𝑗 ∈ℎ𝑝 (𝑖)

⌈
𝑠𝑖,𝑙

𝑇𝑗

⌉
·𝐶 𝑗 , (1)

where ℎ𝑝 (𝑖) and 𝑙𝑝 (𝑖) denote the tasks with higher- and lower-
priority than 𝜏𝑖 , respectively, and the analysis checks all the jobs of
𝜏𝑖 within the busy-period. Details of the analysis can be found in [4].

The advantages of strict partitioning include the reduction of
the lower-priority blocking and a less pessimistic schedulability
test (i.e., the exact test in [4]). The disadvantage is the complexity
of the underlying design optimization problem to efficiently find
an optimal processor partitioning and task assignment, for which
we propose a heuristic in Section 5.

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Binqi Sun, Tomasz Kloda, Chu-ge Wu, and Marco Caccamo

Algorithm 1: Top-level Design of NPG-SP∗

Input: 𝜏 : a NPG task set to be scheduled;
𝑀 : number of available processors;

Output: 𝜌 : processor partitions; 𝜏 (𝜌) : task assignment;
𝑠𝑐ℎ𝑒𝑑 : schedulability of 𝜏 on𝑀 processors;

1 𝜏 ← 𝜏 ;
2 𝜌 ← Initialize𝑀 processor partitions with size 1;
3 𝜏 (𝜌) ← Initialize task assignment as empty sets;
4 while |𝜌 | ≥ 1 do
5 𝜏 ← BestVolumeBinPack(𝜌, 𝜏 (𝜌), 𝜏) ;
6 if 𝜏 = ∅ then
7 𝑠𝑐ℎ𝑒𝑑 ← 𝑇𝑟𝑢𝑒 ; break;
8 if |𝜌 | = 1 then
9 𝑠𝑐ℎ𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒 ; break;

10 else
11 𝜌 ← MergePartitions(𝜌, 𝜏 (𝜌), 𝜏) ;

12 return 𝜌, 𝜏 (𝜌), 𝑠𝑐ℎ𝑒𝑑 ;

5 A NPG STRICT PARTITIONING HEURISTIC
5.1 Overview
Now, we propose a heuristic NPG-SP∗ to assist the NPG strict parti-
tioning strategy in making processor partitioning and task assign-
ment decisions. Without loss of generality, we assume that task
priorities are assigned by Deadline Monotonic.

The top-level design of NPG-SP∗ is presented in Algorithm 1. At
first, we initialize𝑀 processor partitions of size one with empty task
assignments. Then, in each iteration of lines 4-11, the task assign-
ment is made by a bin-packing heuristic called BestVolumeBinPack,
which takes into account the influence of the parallelism level on
the task utilization and performs a local search if a task cannot
be assigned to any existing processor partition. Based on the bin-
packing results, the algorithm returns a success if all the tasks have
been assigned to the existing partitions. Otherwise, it will invoke
the MergePartitions component to explore new processor partitions
with different parallelism levels. The key idea of MergePartitions
is to merge the two most underutilized partitions into one large
partition. It offers an opportunity to improve resource utilization
and thus make more tasks schedulable. The algorithm terminates
and returns a failure if there is only one partition of size𝑀 and still
remain unassigned tasks.

Next, we explain the BestVolumeBinPack and MergePartitions
components in detail and analyze their time complexities.

5.2 Details of the heuristic
The BestVolumeBinPack component assigns each task to the proces-
sor partition that results in the best resource efficiency (i.e., the least
𝑈𝑖,𝑚) and sets its parallelism as the corresponding partition size.
Specifically, the procedure (Algorithm 2) assigns tasks to partitions
in the decreasing order of task priorities. For each task 𝜏𝑖 , the parti-
tions 𝜌𝑚

𝑗
∈ 𝜌 are sorted in the ascending order of the corresponding

task utilization 𝑈𝑖,𝑚 . The partitions with the same volume𝑚 re-
sult in the same task utilization and are sorted according to their
index 𝑗 (tie-breaking). For each partition, we check the feasibility
of accepting task 𝜏𝑖 (see Equation 1). If the task set is schedula-
ble after accepting 𝜏𝑖 , we assign it to this partition and continue

Algorithm 2: The BestVolumeBinPack Component
Input: 𝜏 : a set of NPG tasks to be scheduled;

𝜌 : processor partitions; 𝜏 (𝜌) : task assignment;
Output: 𝜏 : unassigned task set;

1 𝜏 ← ∅;
2 Sort tasks by priority (from higher to lower);
3 foreach 𝜏𝑖 ∈ 𝜏 do
4 𝑠𝑐ℎ𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒 ;
5 Sort the partitions in the ascending order of𝑈𝑖,𝑚 ;
6 foreach 𝜌𝑚

𝑗
∈ 𝜌 do

7 if 𝜏 (𝜌𝑚
𝑗
) ∪ {𝜏𝑖 } is schedulable then

8 𝜏 (𝜌𝑚
𝑗
) ← 𝜏 (𝜌𝑚

𝑗
) ∪ {𝜏𝑖 };

9 𝑠𝑐ℎ𝑒𝑑 ← 𝑇𝑟𝑢𝑒 ;
10 break;

11 if 𝑠𝑐ℎ𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 then
12 𝑠𝑐ℎ𝑒𝑑 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ (𝜌, 𝜏 (𝜌), 𝜏𝑖) ;
13 if 𝑠𝑐ℎ𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 then
14 𝜏 ← 𝜏 ∪ {𝜏𝑖 };

15 return 𝜏 ;

the assignment of the next task. If task 𝜏𝑖 cannot be schedulable
with any of the existing partitions, the algorithm will invoke a Lo-
calSearch procedure for an intensification. The LocalSearch tries to
move one of the already-assigned tasks to another partition to spare
space for the non-schedulable task 𝜏𝑖 . The details of the LocalSearch
procedure are given in Algorithm 3.

Algorithm 3: The LocalSearch Procedure
Input: 𝜌 : processor partitions; 𝜏 (𝜌) : task assignment;

𝜏𝑘 : task to be assigned;
Output: 𝑠𝑐ℎ𝑒𝑑 : schedulability of the input task;

1 foreach 𝜌𝑚
𝑗
∈ 𝜌 do

2 foreach 𝜏𝑖 ∈ 𝜏 (𝜌𝑚𝑗) do
3 if 𝜏 (𝜌𝑚

𝑗
) \ {𝜏𝑖 } ∪ {𝜏𝑘 } is schedulable then

4 foreach 𝜌𝑚
′

𝑗 ′ ∈ 𝜌 \ {𝜌
𝑚
𝑗
} do

5 if 𝜏 (𝜌𝑚′
𝑗 ′) ∪ {𝜏𝑖 } is schedulable then

6 𝜏 (𝜌𝑚′
𝑗 ′) ← 𝜏 (𝜌𝑚′

𝑗 ′) ∪ {𝜏𝑖 };
7 𝜏 (𝜌𝑚

𝑗
) ← 𝜏 (𝜌𝑚

𝑗
) \ {𝜏𝑖 } ∪ {𝜏𝑘 };

8 return𝑇𝑟𝑢𝑒 ;

9 return 𝐹𝑎𝑙𝑠𝑒 ;

The MergePartitions component aims to explore new processor
partitions based on the current task assignment. It selects the two
partitions (𝜌𝑚1

𝑗1
and 𝜌

𝑚2
𝑗2

) with the least processor utilization and
merges them into a large partition. The size of the merged partition
𝑚′ is the sum of the two previous partitions (i.e.,𝑚′ = 𝑚1 +𝑚2).
The tasks that were previously assigned to those partitions will
be unloaded and added to the unassigned task set, which will be
assigned to the new partitions in the next iteration. The intuition
behind this is to eliminate processor underutilization and explore
different parallelism levels for the unassigned tasks. The detailed
procedures are given in Algorithm 4.

Partitioned Scheduling and Parallelism Assignment for Real-Time DNN Inference Tasks on Multi-TPU DAC ’24, June 23–27, 2024, San Francisco, CA, USA

Algorithm 4: The MergePartitions Component
Input: 𝜌 : proc. partitions; 𝜏 (𝜌) : task assign.; 𝜏 : unassigned tasks;
Output: 𝜌 ′: merged processor partitions;

1 𝜌
𝑚1
𝑗1

, 𝜌
𝑚2
𝑗2
← the two partitions with the least task utilization;

2 𝜏 ← 𝜏 ∪ 𝜏 (𝜌𝑚1
𝑗1
) ∪ 𝜏 (𝜌𝑚2

𝑗2
) ;

3 𝜌 ′ ← 𝜌 \ {𝜌𝑚1
𝑗1
} \ {𝜌𝑚2

𝑗2
} ∪ {𝜌𝑚1

𝑗1
∪ 𝜌

𝑚2
𝑗2
};

4 return 𝜌 ′;

5.3 Time complexity
The overall time complexity of NPG-SP∗ depends on its two main
components BestVolumeBinPack andMergePartitions. In BestVolume-
BinPack, for each task, we check its schedulability on each partition
(lines 6-10 of Algorithm 2), taking a time complexity of O(𝑀Φ),
where O(Φ) is the complexity of the uniprocessor schedulability
test. If the task is not schedulable on any of the partitions, the local
search will be applied, which takes a time complexity of O(𝑛𝑀Φ),
as it performs a schedulability check for each already-assigned
task in the worst case. Therefore, the total time complexity of the
BestVolumeBinPack component is O(𝑛2𝑀Φ). The MergePartitions
component takes O(𝑀) to select the partitions with the least utiliza-
tion and O(𝑛) to move the tasks from the previous partitions to the
unassigned task set. Therefore, the time complexity of each itera-
tion in Algorithm 1 is bounded by O(𝑛2𝑀Φ). Since there are at most
𝑀 iterations, the total complexity of NPG-SP∗ is O(𝑛2𝑀2Φ). The
complexity of the exact NP-FP response time analysis [4] used in
this paper is Φ = 𝑛2 ·max𝑖,𝑚 𝐶𝑖,𝑚/(1−𝑈𝑙𝑖𝑚𝑖𝑡), where𝑈𝑙𝑖𝑚𝑖𝑡 = 0.99
is the maximal allowable utilization of any single partition.

6 PERFORMANCE EVALUATION
We evaluate the performance of the proposed NPG strict partition-
ing on real-world multi-TPU benchmarks by comparing it with
state-of-the-art NPG scheduling techniques.

6.1 Experimental setup.
Edge TPU benchmarking. We benchmark 8 representative DNNs
in computer vision applications on multi-TPU accelerators. The
tested DNN architectures are listed in Fig. 2. The hardware used
in the experiment is ASUS AI Accelerator card CRL-G18U-P3D2,
which integrates 8 Google Edge TPUs with PCIe connection. For
each DNN, we vary the input image size from 100×100 to 700×700
with a step of 100 pixels for both height and width. Thus, we have
in total 56 configurations of the tested DNNs with different input
sizes. Furthermore, we compile3 each DNN configuration with
different parallelism levels varied from 1 to 8 and execute them on
the TPU pipelines with the corresponding volume (i.e., the number
of TPUs in the pipeline equals the DNN parallelism). We repeat
each execution 1,000 times and record the WCET, ranging from
3 ms to 343 ms. Fig. 2 shows a subset of the benchmarking results
with input size 300 × 300 for all the tested DNNs.
Task set generation.We generate random DNN task sets based on
the above benchmarking results for the schedulability performance
evaluation. We fix the number of processors𝑀 = 8 according to our
hardware configuration while varying the task set size 𝑛 ∈ {8, 16}
2https://iot.asus.com/products/AI-accelerator/AI-Accelerator-PCIe-Card/
3https://coral.ai/docs/edgetpu/compiler/

and task set utilization 𝑈 ∈ [0.1, 8] with a step of 0.1. Additionally,
we consider three subsets of the DNN benchmarks depending on
the range of their WCETs when executing on single processor:
𝐶𝑖,1 ∈ [3, 50] ms (min. 20 FPS), 𝐶𝑖,1 ∈ [3, 100] ms (min. 10 FPS),
and 𝐶𝑖,1 ∈ [3, 343] ms (min. 3 FPS). For each combination of the
above parameters, we generate 10,000 task sets as follows. First, we
randomly sample a number of 𝑛 tasks from the DNN benchmark
task set. Second, we use a standard tool DRS [9] to generate each
task utilization 𝑈𝑖,1 under the given target reference utilization
𝑈 such that

∑𝑛
𝑖=1𝑈𝑖,1 = 𝑈 . Third, we calculate the task period as

𝑇𝑖 = 𝐶𝑖,1/𝑈𝑖,1 and set 𝐷𝑖 = 𝑇𝑖 . In this way, we generated a total of
4,800,000 task sets for the evaluation.
Comparison algorithms.We evaluate the proposed NPG strict par-
titioning strategy by comparing the achieved schedulability ratio
with the following algorithms when scheduling the same task sets.
• State-of-the-art global NPG response time analyses: RTSS’22 [12]
and RTAS’23 [17];
• Federated scheduling [14] extended to gang tasks: FedGang;
• Strict partitioning heuristics: NPG-SP∗ (Algorithm 1) and a base-
line strict partitioning heuristic SP-UFF based on uniform proces-
sor partitioning and first-fit bin-packing.

For RTSS’22 and RTAS’23, each task 𝜏𝑖 ’s parallelism𝑚𝑖 is set as the
value leading to the minimum utilization (i.e.,𝑚𝑖 = argmin𝑚 𝑈𝑖,𝑚).
FedGang divides the task set into two subsets: (i) parallel tasks 𝜏𝑝
with𝑈𝑖,1 > 1 and (ii) sequential tasks 𝜏𝑠 with𝑈𝑖,1 ≤ 1. Each task in
𝜏𝑝 is assigned exclusively the minimum number of processors such
that its utilization is not greater than 1, i.e.,𝑚𝑖 = min{𝑚 |𝑈𝑖,𝑚 ≤ 1}.
The tasks in 𝜏𝑠 are configured as sequential tasks and scheduled on
the remaining 𝑀 −∑𝜏𝑖 ∈𝜏𝑝 𝑚𝑖 processors using the global NP-FP
policy. SP-UFF first divides the processors into uniform partitions
(i.e., all the partitions have the same size𝑚) and then applies first-fit
bin-packing to decide task assignment as in [8]. In our experiments,
we invoke SP-UFF on every possible uniform partitioning (i.e.,𝑚 =

1, 2, 4, 8) and return schedulable if it succeeds on any of them.

6.2 Comparison results
The schedulability comparison results are presented in Fig. 6.
Overall comparison. The strict partitioning approaches (NPG-SP∗
and SP-UFF) achieve a higher schedulability ratio than global NPG
scheduling (RTSS’22 and RTAS’23) and FedGang. In particular, the
global NPG response time analyses have a very low schedulability
ratio for high utilization task sets (e.g., 𝑈 > 6), while the strict
partitioning heuristics can schedule task sets even for 𝑈 = 8.4
Moreover, NPG-SP∗ outperforms SP-UFF by up to 50.11% more task
sets deemed schedulable, which demonstrates the effectiveness of
the proposed strict partitioning heuristic.
Effect of the task set size. The schedulability ratio of RTSS’22 and
RTAS’23 is lower on larger task sets. This is expected because global
NPG scheduling suffers from the unbounded priority inversion as
discussed in Section 4, and the 2-D blocking increases with the task
set size. FedGang has a similar trend because it assigns dedicated
processors to tasks that require more than one processor, and the
processors can easily become insufficient as the task number grows.

4Recall that the reference task set utilization is defined as the sum of task utilization
with a parallelism level of 1 (i.e.,𝑈 =

∑𝑛
𝑖=1𝑈𝑖,1).

https://iot.asus.com/products/AI-accelerator/AI-Accelerator-PCIe-Card/
https://coral.ai/docs/edgetpu/compiler/

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Binqi Sun, Tomasz Kloda, Chu-ge Wu, and Marco Caccamo

0 2 4 6 80%

25%

50%

75%

100%

Reference Utilization

Sc
he
du

la
bi
lit
y
Ra

tio
RTSS’22 (global) RTAS’23 (global) FedGang (federated scheduling) SP-UFF (strict partitioning) NPG-SP∗ (strict partitioning)

(a) 𝑛 = 8,𝐶𝑖,1 ∈ [3, 50] ms

0 2 4 6 80%

25%

50%

75%

100%

Reference Utilization

Sc
he
du

la
bi
lit
y
Ra

tio

(b) 𝑛 = 8,𝐶𝑖,1 ∈ [3, 100] ms

0 2 4 6 80%

25%

50%

75%

100%

Reference Utilization

Sc
he
du

la
bi
lit
y
Ra

tio

(c) 𝑛 = 8,𝐶𝑖,1 ∈ [3, 343] ms

0 2 4 6 80%

25%

50%

75%

100%

Reference Utilization

Sc
he
du

la
bi
lit
y
Ra

tio

(d) 𝑛 = 16,𝐶𝑖,1 ∈ [3, 50] ms

0 2 4 6 80%

25%

50%

75%

100%

Reference Utilization

Sc
he
du

la
bi
lit
y
Ra

tio

(e) 𝑛 = 16,𝐶𝑖,1 ∈ [3, 100] ms

0 2 4 6 80%

25%

50%

75%

100%

Reference Utilization

Sc
he
du

la
bi
lit
y
Ra

tio

(f) 𝑛 = 16,𝐶𝑖,1 ∈ [3, 343] ms
Figure 6: Comparison of schedulability ratios on Multi-TPU DNN inference benchmarks.

In contrast, the strict partitioning approaches achieve a higher
schedulability ratio on larger task sets for𝑈 ≤ 6, although there is
a steeper drop than on smaller task sets when 6 ≤ 𝑈 ≤ 8.
Effect of theWCET range.All comparison algorithms achieve a lower
schedulability ratio for a larger WCET range. This is expected since
the larger the WCET range, the more likely a task suffers from a
larger blocking time from other lower-priority tasks. Nonetheless,
NPG-SP∗ achieves almost 100% schedulability ratio for𝑈 ≤ 3 and
𝑈 ≤ 4 for all WCET ranges on 𝑛 = 8 and 𝑛 = 16, respectively.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose a new scheduling strategy called NPG
strict partitioning for real-time DNN inferences running on multi-
TPU accelerators. We propose a simple yet effective heuristic to
solve the underlying design optimization problem to determine an
appropriate partitioning of DNN tasks and TPUs. Extensive experi-
ments on DNN benchmarks, obtained by profiling DNN execution
with different input sizes and parallelism on multi-TPU accelera-
tors, demonstrated that the proposed strict partitioning strategy can
achieve a much higher schedulability ratio than the state-of-the-art
global NPG response time analyses and federated scheduling.

Future work includes the scheduling of moldable gang tasks and
the co-scheduling of DNN tasks on heterogeneous accelerators [2].

ACKNOWLEDGMENTS
Marco Caccamo was supported by an Alexander von Humboldt
Professorship endowed by the German Federal Ministry of Edu-
cation and Research. Chu-ge Wu was supported by the National
Natural Science Foundation of China under Grant 62203049.

REFERENCES
[1] Waqar Ali and Heechul Yun. 2019. RT-Gang: Real-time gang scheduling frame-

work for safety-critical systems. In RTAS. 143–155.

[2] Shuangshuang Chang, Jinghao Sun, Zhenyu Liu, Xufeng Zhao, and Qingxu Deng.
2022. Response time analysis of parallel tasks on accelerator-based heterogeneous
platforms. Journal of Systems Architecture 126 (2022), 102484.

[3] Jian-Jia Chen. 2016. Partitioned multiprocessor fixed-priority scheduling of
sporadic real-time tasks. In ECRTS. 251–261.

[4] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. 2007. Controller
Area Network (CAN) Schedulability Analysis: Refuted, Revisited and Revised.
Real-Time Systems 35, 3 (2007), 239–272.

[5] Zheng Dong and Cong Liu. 2017. Analysis Techniques for Supporting Hard
Real-Time Sporadic Gang Task Systems. In RTSS. 128–138.

[6] Zheng Dong and Cong Liu. 2022. A Utilization-based Test for Non-preemptive
Gang Tasks on Multiprocessors. In RTSS. 105–117.

[7] Pontus Ekberg and Sanjoy Baruah. 2021. Partitioned Scheduling of Recurrent
Real-Time Tasks. In RTSS. 356–367.

[8] Nathan Fisher and Sanjoy Baruah. 2006. The partitioned multiprocessor schedul-
ing of non-preemptive sporadic task systems. In RTNS. 99–108.

[9] David Griffin, Iain Bate, and Robert I Davis. 2020. Generating utilization vectors
for the systematic evaluation of schedulability tests. In RTSS. 76–88.

[10] Changhun Han, Hoon Sung Chwa, Kilho Lee, and Sangeun Oh. 2023. SPET:
Transparent SRAM Allocation and Model Partitioning for Real-time DNN Tasks
on Edge TPU. In DAC. 1–6.

[11] Shinpei Kato and Yutaka Ishikawa. 2009. Gang EDF Scheduling of Parallel Task
Systems. In RTSS. 459–468.

[12] Seongtae Lee, Nan Guan, and Jinkyu Lee. 2022. Design and timing guarantee for
non-preemptive gang scheduling. In RTSS. 132–144.

[13] Joseph Y.-T. Leung and Jennifer Whitehead. 1982. On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Performance Evaluation 2, 4
(1982), 237–250.

[14] Jing Li, Jian Jia Chen, Kunal Agrawal, Chenyang Lu, Chris Gill, and Abusayeed
Saifullah. 2014. Analysis of Federated and Global Scheduling for Parallel Real-
Time Tasks. In ECRTS. 85–96.

[15] Geoffrey Nelissen, Joan Marcè i Igual, and Mitra Nasri. 2022. Response-Time
Analysis for Non-Preemptive Periodic Moldable Gang Tasks. In ECRTS.

[16] Binqi Sun, Tomasz Kloda, and Marco Caccamo. 2024. Strict Partitioning for
Sporadic Rigid Gang Tasks. arXiv:2403.10726

[17] Binqi Sun, Tomasz Kloda, Jiyang Chen, Cen Lu, andMarco Caccamo. 2023. Schedu-
lability Analysis of Non-preemptive Sporadic Gang Tasks on Hardware Accelera-
tors. In RTAS. 147–160.

[18] Niklas Ueter, Mario Günzel, Georg von der Brüggen, and Jian-Jia Chen. 2021.
Hard real-time stationary gang-scheduling. In ECRTS. 10:1–10:19.

[19] Jorge Villarrubia, Luis Costero, Francisco D. Igual, and Katzalin Olcoz. 2023. Im-
proving inference time in multi-TPU systems with profiled model segmentation.
In PDP. 84–91.

[20] Shuai Zhao, Nan Chen, Yinjie Fang, Zhao Li, and Wanli Chang. 2023. A Universal
Method for Task Allocation on FP-FPS Multiprocessor Systems with Spin Locks.
In DAC. 1–6.

https://arxiv.org/abs/2403.10726

	Abstract
	1 Introduction
	2 Related Work
	3 Task and Platform Model
	4 NPG Strict Partitioning
	4.1 Motivation examples
	4.2 Our approach – strict partitioning

	5 A NPG Strict Partitioning Heuristic
	5.1 Overview
	5.2 Details of the heuristic
	5.3 Time complexity

	6 Performance Evaluation
	6.1 Experimental setup.
	6.2 Comparison results

	7 Conclusion and Future Work
	Acknowledgments
	References

