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Abstract

Cache partitioning is a technique to reduce interference among tasks running
on the processors with shared caches. To make this technique effective, cache
segments should be allocated to tasks that will benefit the most from having
their data and instructions stored in the cache. The requests for cached data
and instructions can be retrieved faster from the cache memory instead of fetch-
ing them from the main memory, thereby reducing overall execution time. The
existing partitioning schemes for real-time systems divide the available cache
among the tasks to guarantee their schedulability as the sole and primary opti-
mization criterion. However, it is also preferable, particularly in systems with
power constraints or mixed criticalities where low- and high-criticality work-
loads are executing alongside, to reduce the total cache usage for real-time tasks.
Cache minimization as part of design space exploration can also help in achieving
optimal system performance and resource utilization in embedded systems.
In this paper, we develop optimization algorithms for cache partitioning that,
besides ensuring schedulability, also minimize cache usage. We consider both
preemptive and non-preemptive scheduling policies on single-processor systems
with fixed- and dynamic-priority scheduling algorithms (Rate Monotonic (RM )
and Earliest Deadline First (EDF ), respectively). For preemptive scheduling, we
formulate the problem as an integer quadratically constrained program and pro-
pose an efficient heuristic achieving near-optimal solutions. For non-preemptive
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scheduling, we combine linear and binary search techniques with different fixed-
priority schedulability tests and Quick Processor-demand Analysis (QPA) for
EDF. Our experiments based on synthetic task sets with parameters from real-
world embedded applications show that the proposed heuristic: (i) achieves an
average optimality gap of 0.79% within 0.1x run time of a mathematical program-
ming solver and (ii) reduces average cache usage by 39.15% compared to existing
cache partitioning approaches. Besides, we find that for large task sets with high
utilization, non-preemptive scheduling can use less cache than preemptive to
guarantee schedulability.

Keywords: Real-time Systems, Cache Partitioning, Preemptive, Non-preemptive

1 Introduction

Cache partitioning is a well-known technique to reduce inter-task interference among
tasks running concurrently on processors with shared last-level caches. With cache
partitioning in preemptively scheduled systems, the preempting task will not evict
the cached memory blocks of the preempted task if both tasks use separate cache
partitions. The technique can be implemented using specific hardware extensions
(e.g., Intel’s Cache Allocation Technology (Intel, 2015) or ARM’s Lockdown by mas-
ter (Limited, 2008)) (Gracioli et al, 2015) or in software by exploiting address mapping
between main memory and cache lines (e.g., cache coloring) (Kim et al, 2013; Ye et al,
2014; Mancuso et al, 2013; Kloda et al, 2019). However, if the task’s working set does
not fit into the task’s private cache partition, the task will see an increased number of
cache misses and, consequently, increased execution time. To mitigate this problem,
various optimization methods are employed to allocate cache partitions of sufficient
size to satisfy tasks’ timing constraints.

Cache partitioning optimization methods for real-time systems focus on finding
the cache partitioning under the assumption that all available cache segments can be
allocated to the tasks. Despite the wealth of the literature, reducing cache usage is not
part of the optimization criteria. However, for a variety of reasons, unrestrained cache
usage might be of concern to embedded engineers. Multilevel caches often consume
about half of the processor energy (Hennessy and Patterson, 2019; Zhang et al, 2003;
Wang et al, 2011), and choosing the processors with a last-level cache size fitting the
application requirements or appropriately selecting its size can largely reduce power
dissipation. A smaller cache is more energy efficient and suitable for applications with
a small working set, while a larger cache can benefit a wider range of applications but
at the cost of increased energy consumption and potential energy waste for certain
applications (Zhang et al, 2003). Moreover, by limiting the size of the cache allocated
to hard real-time tasks, the remaining partitions can be used to improve the quality of
service of the best-effort applications. In the context of partitioned multi-core systems
where the task-to-core allocation is decided earlier in the design process, the cache
partitioning problem boils down to minimizing the cache usage on each core while
ensuring its schedulability (see Example 1.1). When a task-to-core allocation is not
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given, the cache minimization can be used as a sub-procedure in the task and cache
co-allocation method (Xu et al, 2019; Sun et al, 2023b; Shen et al, 2022).
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Fig. 1: Last-level cache dimensioning in a multicore mixed-criticality system.

Example 1.1. Consider a multicore mixed-criticality system from Figure 1 where
three real-time operating systems (RTOS1, RTOS2, and RTOS3) are running along-
side a general purpose operating system (GPOS1). Each operating system runs a set
of tasks on a dedicated core. The tasks are statically allocated to the cores and do not
migrate from one core to another due to certification restrictions ( e.g., ensuring iso-
lation among tasks with different criticality levels (Ernst and Di Natale, 2016)) or
interoperability issues ( e.g., missing libraries). The processor has an L2 cache shared
among all cores reducing the performance gap between the processor and main mem-
ory. Cache partitioning is used to avoid inter-core interference ( i.e., tasks running on
different cores access the shared cache simultaneously and evict their cached blocks)
and intra-core interference ( i.e., preempting task evicts the cached blocks from the pre-
empted tasks on the same core). Finding a minimal size of cache partition for each
real-time operating system is crucial for determining a maximal size of cache parti-
tion that can be allocated to the general-purpose operating system. The partitioning
method can either assign cache partitions on a per-task basis (each task can have a
private L2 cache partition, e.g., Kim et al (2013)) or on a per-core basis (each core
can have a private L2 cache partition but the tasks running on the same core cannot
be assigned different sub-partitions, e.g., Kloda et al (2019)). In the former case, we
propose a cache minimization for single-core preemptive systems where each task can
have a private cache partition, and in the latter case for non-preemptive systems where
all tasks execute non-preemptively using the same cache partition without incurring
cache-related preemption delays.

An apparent solution at hand for minimizing the cache usage is to invoke itera-
tively one of the standard cache partitioning methods by decreasing (increasing) cache
size at each step until the system becomes unschedulable (schedulable). Several cache
allocation methods are easily amenable to this approach or can terminate earlier when
schedulability is guaranteed, and there is no need for further reduction in system
utilization (e.g., gradient descent for minimizing system utilization (Kirk, 1989) dis-
cussed in Section 5.1.5). In this research, we also report such methods and outline the
required modifications. On the other hand, some methods use remaining cache seg-
ments to allow faster convergence (e.g., branch-and-bound (Altmeyer et al, 2016)),
and specific approaches must be proposed. Moreover, restarting the search for each
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cache size without any knowledge of the previous iterations might not be particularly
efficient, and certain proprieties of the schedulability tests, in particular, sustainabil-
ity as suggested by Altmeyer et al (2016), can be exploited to skip the redundant tests
when going from one cache partition size to another.

The paper builds upon and extends the RTNS 2023 paperMinimizing Cache Usage
for Real-time Systems (Sun et al, 2023a). Several new contributions are made com-
pared to the original paper. First, we extend the original paper by adding preemptive
and non-preemptive versions of EDF scheduling policy to all cache usage minimization
techniques in Section 5. Second, we integrate the Quick Processor-demand Analysis
(QPA) into cache minimization methods by leveraging the sustainability of the test
in Section 5.2.2. Third, we evaluate the proposed techniques using a wider range of
parameters and different task set generation methods in Section 6.

2 Cache partitioning methods

Cache partitioning is a technique to assign portions of the cache to either tasks or cores
to reduce interference (both intra- or inter-core) and increase the predictability of the
system. There are two ways of performing cache partitioning in modern processors:
(i) index-based, where partitions are formed by an aggregation of associative sets in
the cache (thus, each set or a group of sets is individually assigned to a task or core
and all memory allocation for this task or core is mapped to the assigned set(s)) and
(ii) way-based, where partitions are formed by an aggregation of individual cache ways
(the number of partitions, in this case, is limited by the number of ways (Gracioli
et al, 2015)).

Index-based cache partitioning can be implemented using specific hardware exten-
sions (Srikantaiah et al, 2008) or by software within the operating system by relying
on specific processor features, such as virtual memory (to implement cache coloring for
instance) (Kim et al, 2013; Kloda et al, 2019; Gracioli and Fröhlich, 2013). Way-based
techniques have the advantage of not demanding changes in the cache organization and
isolating the requests for the different partitions from each other (no contention for
cache ways in the cores). However, an important drawback of the way-based methods
is the limited number of partitions and granularity of allocations due to the associa-
tivity of the cache (Gracioli et al, 2015). If one increases the associativity (to have
more cache partitions), then the cache will have bigger access time and will demand
more space to store the tags. Thus, increasing the associativity of a cache is not always
feasible or efficient (Gracioli et al, 2015).

For index-based methods implemented in software, such as cache coloring, there
are also two implementation choices: (i) to assign partitions to tasks, or (ii) to assign
partitions to cores. The former demands the operating system to be aware of the cache
partitions and somehow implement the assignment of partitions to tasks in its mem-
ory allocator (Gracioli and Fröhlich, 2013). The latter is very useful, for instance, in
hypervisor-based systems, where the hypervisor is responsible for assigning partitions
to cores, despite the operating systems and the number of tasks running on top of
it, providing cache partitioning to operating systems that do not support it (Gracioli
et al, 2019).
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We note that several changes to the microarchitecture have been proposed for more
flexible cache partitioning in real-time and mixed-criticality systems (Lesage et al,
2012; Farshchi et al, 2018). Recently, several works have integrated cache partitioning
with hypervisors and state-of-the-art platforms to provide memory isolation in mixed-
critically applications (Gracioli et al, 2019; Cinque et al, 2022; Martins and Pinto,
2023; Kloda et al, 2023).

3 Related work

We review different cache partitioning techniques and discuss how these techniques
can be adapted to minimize cache usage in real-time systems. In single-core systems,
the allocation of cache segments to different real-time tasks can reduce the preemption
cost related to the cache (Kirk, 1989; Kirk et al, 1991; Kim et al, 2013). In one of the
earliest works, Kirk (1989) attempts to minimize task set utilization by allocating the
cache segments to the tasks for which it would yield the highest decrease in the total
utilization (i.e., gradient descent). Although the main objective is to minimize the
utilization, the method can be easily modified for the purpose of cache minimization
to stop when the schedulability is guaranteed by the utilization bound. Plazar et al
(2009) formulate an integer linear problem to allocate cache partitions minimizing
the total length of tasks’ worst-case execution times that can be easily replaced with
utilization. Zhang et al (2022) also employ integer linear programming to minimize task
set utilization through the allocation of different types of memories to tasks running
on an embedded microcontroller. Sasinowski and Strosnider (1993) apply dynamic
programming to minimize task set utilization. The algorithm adds tasks one by one,
looking for the cache allocation minimizing the utilization of the current subset of
tasks for every possible number of segments. This is done by combining the previous
allocations with the allocations of the task that has just been added. (e.g., the minimal
utilization for six tasks using two segments can be found as the sum of minimal
utilizations of five previous tasks using, respectively, zero, one or two segments and the
sixth task using two, one or zero segments, respectively). Considering every possible
number of segments is not efficient for finding the minimal cache usage. However,
the algorithm can be modified for this purpose as shown in Section 5.1.5. Bui et al
(2008) propose a genetic algorithm to solve the cache to task allocation problem for
multiprocessor platforms. While all the methods mentioned above consider utilization
as minimization criteria, Altmeyer et al (2016) show that this might not be optimal
with respect to schedulability. To find the optimal cache partitioning in this respect,
the authors propose a branch-and-bound search combined with exact response time
analysis. The proposed search technique cannot be directly applied to minimize the
cache usage as at each step it tries to allocate all remaining cache segments in order
to accelerate the convergence. We report the required modifications in Section 5.1.4.

An alternative approach to the problem of shared cache is to allow the tasks
to use the entire cache and take into account the cache-related preemption delays
(CRPD) (Altmeyer et al, 2012; Bastoni et al, 2010; Cavicchio et al, 2015). Minimizing
the cache usage for such systems would involve a different optimization problem (Guo
et al, 2020, 2017) where the inter-task cache interference can be characterized using
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the concept of an interference matrix. This approach may lead to better schedulability
performance and more efficient cache usage. However, adding cache effect to schedula-
bility analysis (Busquets-Mataix et al, 1996a,b; Tomiyama and Dutt, 2000; Altmeyer
and Burguière, 2009; Altmeyer et al, 2011; Lunniss et al, 2013; Zhang et al, 2017,
2020) is not widely supported by the static program analysis tools. For instance, aiT
WCET Analyzer, as of the time of writing, supports this feature only for three targets,
namely, LEON2, e200, and e300 1.

The reconfigurable cache architectures (Albonesi, 1999; Yang et al, 2002, 2001)
have been proposed to to reduce cache energy dissipation by adjusting cache capacity.
During periods of low cache activity, a portion of cache ways or sets can be temporally
disabled (during more cache-intensive periods the full cache capacity is restored). Chen
et al (2013) leverage such resizeable cache architecture and use cache partitioning to
minimize the energy consumption of multiprocessors by solving a mixed integer linear
programming problem.

While our work targets single-core, the cache-cognizant scheduling policies have
been proposed for global multi-core systems. These policies dispatch a new task for
execution if there is an idle processor and a sufficient number of cache segments (each
task has a constant and predefined cache requirement) (Guan et al, 2009). Other
cache-aware scheduling policies can promote the execution of tasks sharing a common
working set (Calandrino and Anderson, 2008) or preempt the tasks running on the
remote cores using the same cache partition as the preempting task (Ward et al, 2013).
For cache-agnostic global schedulers, Xiao et al (2020) propose the schedulability anal-
ysis that accounts for cache interference. In multi-core systems, other shared resources,
like memory bandwidth, may also degrade the system’s predictability. Several works
propose coordinated cache and bandwidth co-allocation (Paolieri et al, 2011; Suzuki
et al, 2013; Xu et al, 2019). Although we do not consider memory bandwidth in our
analysis, different solutions can be used alongside to mitigate the interference due to
DRAM bank sharing (e.g., bank partitioning (Pan and Mueller, 2018; Cheng et al,
2017; Yun et al, 2014), software bandwidth regulators (Yun et al, 2013; Kritikakou
et al, 2014; Zuepke et al, 2023) or segmented execution models (Pellizzoni et al, 2011;
Durrieu et al, 2014)). If the task-to-core mapping is not given as assumed in this work,
various task and cache co-allocation methods can be applied (Sun et al, 2023b; Guo
et al, 2020; Xiao et al, 2022; Xu et al, 2019).

4 System model

We consider a system with n tasks scheduled by a preemptive or non-preemptive
scheduler on a single-core platform. Additionally, under preemptive scheduling, each
task can be assigned a private cache partition, and under the non-preemptive one, all
the tasks share one single cache partition.

The cache has a size of S and is divided into m equally-sized separate segments.
Each task can be assigned an arbitrary number of cache segments for its individual
use. The set of segments owned by a task is its partition (Sasinowski and Strosnider,
1993). Under the preemptive scheduling policy, the cache partitions cannot be shared

1https://www.absint.com/ait/ucb analysis.htm
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among different tasks as it might lead to inter-task cache eviction resulting in cache-
related preemption delays. This constraint is not necessary under non-preemptive
policies, thereby we can consider that all tasks share all assigned segments. If task τi is
assigned k cache segments, its worst-case execution time (WCET, i.e., the longest task
execution time when running stand-alone) is given by Ci,k. Additionally, we denote
by Ci,0 task τi’s worst-case execution time with zero cache partition. We assume the
monotonicity of the execution times with respect to the number of cache segments: by
assigning more cache segments to the tasks, their worst-case execution time will not
increase. We acknowledge that the execution times might not be necessarily monotonic,
but the impact of these effects is limited (Altmeyer et al, 2016), and smaller partitions
can be used instead. Several previous works consider similar memory models (Altmeyer
et al, 2016; Bui et al, 2008; Kirk et al, 1991; Plazar et al, 2009).

Each task τi gives rise to a potentially infinite sequence of identical jobs (instances)
released sporadically after the minimum inter-arrival time or period Ti. Each job
released by task τi is characterized by a relative deadline Di assumed to be less than
or equal to the task period (i.e., constrained deadlines): Di ≤ Ti, and its worst-case
execution time that depends on the number of cache segments assigned to the task.
All the above parameters are positive integers. We will also use Ui,k = Ci,k/Ti to
refer to the task τi utilization when executing with k cache segments at its disposal.
Additionally, we use U =

∑n
i=1 Ui,0 to denote the task set base utilization (i.e., the

sum of task utilization without using cache).
In this work, we consider both fixed and dynamic priority scheduling algorithms.

We select the Earliest Deadline First (EDF ) scheduling (Liu and Layland, 1973) as
a dynamic priority scheduler. If the tasks are scheduled by a fixed-priority scheduler,
we make the following assumptions. Each task is assigned a unique priority and tasks
are indexed in decreasing priority order (τ1 has the highest priority and τn has the
lowest priority). In this work, in particular, we assume Rate Monotonic (RM ) (Liu and
Layland, 1973) assignment rule where task priorities are inversely proportional to task
periods. The worst-case response time Ri of task τi is defined as the longest time from
the release of a job of the task until its completion. If the worst-case response time is
less than or equal to the task τi deadline (Ri ≤ Di), we say that task τi is schedulable.
Likewise, we say that a task set is schedulable if all its tasks are schedulable.

5 Minimizing cache usage

We look for a cache-to-task assignment for which all n tasks are schedulable, and a min-
imal number of cache segments is used. We consider preemptive and non-preemptive
scheduling under fixed-priority and EDF policies.

5.1 Preemptive scheduling

The cache partitioning problem for preemptive scheduling can be shown NP-hard
by reduction to the knapsack problem (Bui et al, 2008). We propose four methods
to minimize cache usage under preemptive scheduling. To verify the schedulability
of fixed-priority systems, we will use utilization bound test (Liu and Layland, 1973)
with linear and response time analysis (RTA) (Joseph and Pandya, 1986; Audsley
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et al, 1991) with pseudo-polynomial time complexity in the number of tasks. For EDF
scheduling, we will use utilization bound test (Liu and Layland, 1973) with linear and
processor demand analysis (Baruah et al, 1990a,b) with exponential time complexity
in the number of tasks.

5.1.1 Background on schedulability analysis

We present state-of-the-art techniques for verifying the schedulability of preemp-
tive systems with implicit and constrained deadlines under fixed-priority and EDF
scheduling policies.

In preemptive fixed-priority systems, a system running n tasks with implicit dead-
lines (i.e., ∀τi ∈ τ : Di = Ti) is schedulable under RM policy if the task set
utilization does not exceed the utilization bound U(n) = n(21/n−1) (Liu and Layland,
1973). The exact schedulability condition, applicable also to constrained deadlines
(i.e., ∀τi ∈ τ : Di ≤ Ti) and other priority assignments, can be guaranteed using
the RTA. In this approach, the worst-case response time Ri of task τi can be computed
by a fixed-point iteration of the following formula:

Ri = Ci +

i−1∑
j=1

⌈
Ri

Tj

⌉
· Cj , (1)

and can be solved using:
R

(0)
i = Ci

R
(ℓ)
i = Ci +

∑i−1
j=1

⌈
R

(ℓ−1)
i

Tj

⌉
· Cj

The upper bounds to the response time with lower time complexity have been proposed
in (Davis and Burns, 2008; Baruah, 2011; Bini et al, 2015; Nguyen et al, 2015).

EDF-schedulability of task sets with implicit deadlines can be verified through the
processor utilization factor. Every task set with total utilization U ≤ 1 is schedulable
under EDF on a single processor (Liu and Layland, 1973). Exact EDF-schedulability
tests for task sets with constrained deadlines can be performed by processor demand
analysis (Baruah et al, 1990a,b). It calculates the processor demand (i.e., the workload
that must be executed in a given time interval) of a task set at every absolute deadline
to check if the processor demand does not exceed available processor time. Processor
demand h(t) of tasks τ in time interval of length t > 0 is given by:

h(t) =

n∑
i=1

max

{
0,

⌊
t−Di

Ti

⌋
+ 1

}
Ci (2)

The task set τ is schedulable under preemptive EDF if and only if:

∀t > 0 : h(t) ≤ t (3)
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The value of t can be bounded by:

L =

{
min{La, Lb} if U < 1

Lb if U = 1.
(4)

where (Ripoll et al, 1996):

La =

∑n
i=1(Ti −Di) · Ui

1− U
(5)

Lb =

i∑
j=1

⌈
Lb

Tj

⌉
· Cj (6)

Condition (3) must hold for each t corresponding to a task absolute deadline in time
interval [0, L]. In this paper, we use Quick Processor-demand Analysis (QPA) (Zhang
et al, 2003) which is a fast and simple schedulability test for EDF that verifies the
above condition. QPA iterates over the values of the processor demand function h(t)
in intervals of decreasing length t. By doing so and using the fact that demand bound
function h(t) is monotonically non-decreasing, it is possible to safely skip testing for
some of the preceding deadlines (i.e., if h(ty) = tx < ty then all deadlines in time
intervals of [tx, ty] are met because for any tx ≤ t < ty : h(t) < h(tx)). Such an
approach, on average, effectively reduces the number of time instances that need to
be examined.

5.1.2 Mathematical programming

For each task τi with i = 1, . . . , n, we define a variable Ci that represents its worst-case
execution time. For each k = 0, 1, . . . ,m, we introduce the binary variables xi,k which
take on value 1 if and only if task τi is assigned k cache segments and 0 otherwise:

∀i = 1, . . . , n : Ci =

m∑
k=0

xi,k · Ci,k (7)

We additionally require that each task τi has exactly one variable xi,k for all k =
0, 1, . . . ,m that is equal to 1:

∀i = 1, . . . , n :

m∑
k=0

xi,k = 1 (8)

Our objective function is to minimize the total cache usage:

minimize

n∑
i=1

m∑
k=0

xi,k · k (9)

Now, we add constraints to ensure the system’s schedulability under FP and EDF.
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FP systems. For FP systems, we ensure the schedulability using the response time
analysis formulation proposed by Baruah and Ekberg (2021) and by Davare et al
(2007). We introduce R̂i as the upper bound of task τi’s worst-case response time (i.e.,
R̂i ≥ Ri). All tasks are schedulable if we can find such values of R̂i for all i = 1, . . . , n
that are less than or equal to their respective deadlines:

∀i = 1, . . . , n : R̂i ≤ Di (10)

The variable R̂i upper bounds the task τi’s worst-case response time if the following
constraints are satisfied:

∀i = 1, . . . , n : Ci +

i−1∑
j=1

Zi,j · Cj ≤ R̂i (11)

where Zi,j is an integer that upper bounds the number of times a higher-priority
task τj can preempt task τi during its worst-case response time, and thus, it must
satisfy another constraint:

∀i = 1, . . . , n, j = 1, . . . , i− 1 : Zi,j · Tj ≥ R̂i (12)

Since Formula (11) is a quadratic constraint, the mathematical model for FP is an
integer quadratically constrained program (IQCP), where the objective function is
formulated by Formula (9), and the constraints are formulated by Formulas (7), (8)
and (10-12).

EDF systems. For EDF system, we check whether the demand bound function h(t)
is upper bounded by each time instance t ∈ M:

∀t ∈ M : h(t) =

n∑
i=1

max

{
0,

⌊
t−Di

Ti

⌋
+ 1

}
Ci ≤ t, (13)

where (Hermant and George, 2007)

M =

n⋃
i=1

{
di,j = Di + (j − 1) · Ti | 1 ≤ j ≤

⌈
L−Di

Ti

⌉}
, (14)

L =

min{La =

∑n
i=1(Ti −Di) · Ui,0

1− U
,H} if U < 1

H if U = 1,

and H = lcm{Ti | 1 ≤ i ≤ n} is the hyper-period of the task set.
Since all the constraints (i.e., (7), (8), and (13)) are linear functions, the

mathematical model for EDF scheduling policy is an integer linear program (ILP).
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5.1.3 Guided local search

The Guided local search (GLS ) proposed in this paper is an iterative local search
algorithm that utilizes problem-specific knowledge to guide the search direction and
tabu search mechanism to avoid revisiting duplicate solutions. The procedures of GLS
are outlined in Algorithm 1.

The search starts from an initial solution s, where all the tasks are allocated with
the maximal number of segments m (line 1). If the initial solution is not schedulable,
we stop the algorithm since the task set cannot be feasible with fewer cache segments
(lines 2-3). Otherwise, we continue the algorithm to do the iterative search (lines 5-
10). The iterative search is divided into two phases (i.e., decrease phase and increase
phase) depending on the schedulability of the current solution. In the decrease phase
(lines 5-6), the current solution s is schedulable, and in each step, one task is selected
to decrease its cache partition. As a result, the solution moves from schedulable to
unschedulable gradually. Once the solution crosses the schedulability boundary, the
algorithm enters the increase phase (lines 7-8), where the current solution increases
its cache partition, moving back to schedulable. Whenever the algorithm visits a new
solution, its schedulability is checked, and the best-so-far solution s∗ will be updated
by s if the latter uses less cache and is schedulable (line 9). The algorithm terminates
when the number of schedulability checks η reaches its upper limit ηmax, which is a
parameter defined by the user.

The schedulability of each solution is checked by the RTA for FP and QPA for EDF
scheduling policy. Both tests are sustainable with respect to the worst-case execution
times (i.e., schedulability is preserved when task parameters are “easier”) (Baruah
and Chakraborty, 2006). This means that the tests can be repeated only for tasks or
intervals where a deadline miss has been detected. Hence, during the increase phase,
the schedulability can be verified, in the case of RTA, only for the tasks that were
unschedualble, and, in the case of QPA, for the time intervals that were unschedulable
or have not been checked in the previous unschedulable solution. For instance, if the
QPA test fails at time instant tx, then if we increase cache partitions, we can resume
the test from tx (i.e., it is not necessary to restart the test from L). Likewise, if
the RTA fails when checking task τx (we assume that the tasks are checked in the
decreasing priority order) and we increase cache partitions, we can skip the test for
tasks τ1, . . . , τx−1 and run the tests for the remaining tasks.

Now, we explain the details of the neighborhood structure, task selection rule, and
the tabu mechanism used in the GLS.

• Neighborhood structure defines the solutions that can be reached by the
current solution in one local search step. In the decrease (increase) phase of the
GLS, the neighborhood structure is defined as the n solutions, in each of which
one task is selected to decrease (increase) its cache partition to the least number
of segments that increase (decreases) the task’s WCET by one step. For clarity,
we illustrate this with an example. Suppose we have a task set consisting of two
tasks pca (τ1) and stitch (τ2), whose benchmarked WCET profiles are given in
Figure 5. The current cache partition of the two tasks is {1024, 512} KB, and we
assume it to be schedulable. Then, the two neighborhood solutions obtained by
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Algorithm 1: Guided local search

Input: Set of n tasks τ = {τ1, . . . , τn}, available cache segments m, upper limit of
schedulability test invocations ηmax;

Output: Best cache allocation s∗ = {s1, ..., sn};
1 Initialize s← {m, ...,m}, η ← 1;
2 if s is not schedulable then
3 return false;

4 while η ≤ ηmax do
5 if s is schedulable then // decrease phase

6 Select a task to decrease its cache partition in s;
7 else // increase phase

8 Select a task to increase its cache partition in s;

9 Check the schedulability of the current solution s and update the best-so-far
solution s∗;

10 η ← η + 1;

11 return s∗;

decreasing the cache partitions of task τ1 and τ2 are {512, 512} and {1024, 256},
respectively.

• Task selection rule determines which task is selected to decrease (increase)
its cache partition and move the solution to the corresponding neighborhood. In
the decrease (increase) phase, we select the task with the maximal (minimal)
value of δi = ↓si/↑Ui (δi = ↑si/↓Ui), where ↓si (↑si) denotes task τi’s cache
decrease (increase) size and ↑Ui (↓Ui) denotes the resulted utilization increase
(decrease). The intuition behind it is to decrease the most (increase the least)
cache usage with the least increase (most decrease) of total utilization. We use
the same example task set as before to illustrate the task selection rule. Sup-
pose the utilization increase of the two tasks are ↑U1=0.5 and ↑U2=0.2. The
decrease of their cache partitions can be calculated as ↓s1=1024−512=512 and
↓s2=512−256=256. Then, we have δ1=512/0.5=1024 and δ2=256/0.2=1280. In
this case, we will select task τ2 to decrease its cache partition since δ2 > δ1.

• Tabu mechanism is used to avoid the search visiting duplicated solutions. In
the GLS, whenever a new solution is visited, we use a hash function to map the
solution into an integer and save it to a visit history. Meanwhile, at each step of
the local search, we move the current solution to a neighborhood only if it has not
been visited in the history. If all the neighborhood solutions have already been
visited, we restart the search by re-initializing the current solution as a random
solution to escape the local optima.

5.1.4 Branch-and-bound

We propose a branch-and-bound (B&B) algorithm inspired by Altmeyer et al (2016).
Our branching strategy consists of allocating the cache to one task at a time. The initial
node of the B&B generates all possible cache partitions for the first task, creating a
branch for each partition. The algorithm then expands these branches by generating
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all possible cache partitions for the current task in the current node. A solution is
considered valid when the cache partition of all tasks has been specified and the
resulting task set is schedulable.

To reduce the number of partial solutions to be explored, we propose a pruning
strategy that checks the schedulability of each partial solution under an optimistic
assumption that each not yet specified task partition equals the current remaining
cache segments. If the task set is not schedulable under this assumption, the current
partial solution is pruned. Additionally, once a valid solution is found, we update the
available cache to be one segment lower than the best-so-far cache usage m∗ to further
improve the pruning efficiency. The algorithm terminates if an optimal solution has
been found or an upper limit of schedulability test invocations ηmax has been reached.

The property of the sustainability (Burns and Baruah, 2008) of the schedulability
test together with the assumption that the execution times are monotonically non-
increasing with the number of cache segments is exploited to reduce the number of
test invocations (Altmeyer et al, 2016). If tasks from τ1 to τi−1 are deemed schedulable
under cache allocation s(i−1), then they will remain schedulable under any cache allo-
cation with greater or equal cache partitions. Moreover, for fixed-priority scheduling,
as tasks τ1-τi−1 response times do not depend on lower-priority tasks τi-τn, tasks τ1-
τi−1 do not have to be tested when branching adds a new partition for task τi. In the
case of EDF scheduling, we use the same technique as in GLS to avoid unnecessary
computation by resuming the schedulability test from tx (i.e., the time instant where
the previous test fails) if the task set was previously unschedulable, and now each task
has a larger or equal task allocation.

The detailed procedures of the proposed B&B can be found in Algorithm 2. It
defines a recursive function minimize cache, which takes a partial solution s(i−1)

containing the cache partitions of the first i−1 tasks as input and outputs the best-so-
far solution s∗ with its cache usage m∗. Lines 2-3 check whether the upper limit of the
schedulability test invocations has been reached. Lines 4-7 check if the current solution
is a complete solution containing the cache partitioning of all tasks. For a complete
solution, it checks its schedulability and updates the best-so-far cache usage if it is
schedulable. In line 6,

∑
s(n) computes the total number of cache segments used by

solution s(n). Line 8 updates the number of remaining cache segments m′ according to
the current best-so-far solution. Lines 9-10 implement the pruning strategy to discard
the partial solution if it cannot be schedulable even with the optimistic assumption.
Lines 11-15 implement the branching strategy starting from the first task with the least
cache partition. The function next corner point(τi) gives the next cache partition
size for which the worst-case execution time of task τi drops (see Example 5.1). In lines
17-18, the algorithm initializes s∗, s(0) and invokes the recursive function to minimize
cache usage.
Example 5.1. Figure 2 shows the execution time of sift-vga program from the Cor-
texSuite benchmarks (Thomas et al, 2014) (see Section 6.1 for more details) as a
function of cache size partition size ranging from 0 to 512 KB with a step of 32 KB.
The original curve (blue color) is comprised of 17 points. It can be easily seen that
many of these points are redundant. Indeed, the execution time does not decrease con-
tinuously, but stays at a constant level until a certain point when it falls down as the
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Algorithm 2: Cache usage minimization using B&B

Input: Set of n tasks τ = {τ1, . . . , τn}, available cache segments m, upper limit of
schedulability test invocations ηmax;

Output: Best cache allocation s∗ = {s1, ..., sn}, minimal number of cache segments
m∗ needed by τ ;

1 Function minimize cache(τ, s(i−1), s∗,m∗, ηmax):
2 if the number of schedulability tests reaches upper limit ηmax then
3 return s∗,m∗;

4 if i− 1 = n then

5 if τ is schedulable with s(n) and
∑

s(n) < m∗ then

6 s∗ ← s(n); m∗ ←
∑

s∗;

7 return s∗,m∗;

8 m′ ← m∗ −
∑

s(i−1) − 1;

9 if τ is not schedulable with {s1, . . . , si = m′, . . . , sn = m′} then
10 return s∗,m∗;

11 si ← 0;

12 while si ≤ m′ do

13 s(i) ← {s1, . . . , si−1, si};
14 s∗,m∗ ← minimize cache(τ, s(i), s∗,m∗, ηmax);
15 si ← next corner point(τi);

16 m′ ← m∗ −
∑

s(i−1) − 1;

17 return s∗,m∗;

18 s∗ ← {s1 = m, ..., sn = m}; s(0) ← ∅;

19 return minimize cache(τ, s(0), s∗,m+ 1, ηmax);

cache partition becomes large enough to hold the next important data structure (Bienia
et al, 2008). The corner points leading to a decrease in execution time are marked in
red in Figure 2.

5.1.5 Dynamic programming

We present a dynamic programming (DP) based on Sasinowski and Strosnider (1993)
to minimize cache usage. Similar to Sasinowski and Strosnider (1993), we define Mi,k

as the minimum utilization of tasks τ1, ..., τi if there are k cache segments available
to them:

Mi,k = min
0≤si≤k

i∑
j=1

Uj,sj (15)

where si denotes the number of cache segments allocated to task τi. We also define
Pi,k to be the number of segments to allocate to τi to get Mi,k. The key observation
in Sasinowski and Strosnider (1993) is the following recurrence relation:

Mi,k = min
0≤si≤k

(Ui,si +Mi−1,k−si) (16)
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Fig. 2: Execution time vs cache size for sift-vga.

which provides a simple way to computeMi,k for all tasks and cache sizes in an iterative
manner starting from i = 1, k = 0 towards i = n, k = m. However, unlike Sasinowski
and Strosnider (1993), our algorithm does not need to enumerate all the Mi,k val-
ues since it is designed to minimize cache usage while ensuring schedulability. For
this purpose, we present Algorithm 2, which includes an early stopping criterion in
lines 5-10. The early stopping criterion checks the schedulability using utilization
bound (U(n) = n(21/n − 1) for RM and U(n) = 1 for EDF ) (Liu and Layland, 1973)
and outputs the first cache partitioning solution that results in a schedulable task set.
Additionally, we have reversed the inner and outer loop for faster convergence.

Algorithm 3: Cache usage minimization using DP

Input: Set of n tasks τ = {τ1, . . . , τn}, available cache segments m;
Output: Best cache allocation s∗ = {s1, ..., sn};

1 for k = 0 to m do
2 for i = 1 to n do
3 Pi,k ← argmin

0≤si≤k
(Ui,si +Mi−1,k−si);

4 Mi,k ← Ui,Pi,k
+Mi−1,k−Pi,k

;

5 if Mn,k ≤ U(n) then // schedulable

6 m′ ← k;
7 for i = n to 1 do // retrieve cache allocation

8 si ← Pi,m′ ;

9 m′ ← m′ − Pi,m′ ;

10 return s∗ = {s1, ..., sn};

11 return unschedulable;
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5.2 Non-preemptive scheduling

We apply two basic search strategies, linear and binary search, to find the minimal
number of cache segments that guarantee the system’s schedulability. The advantage
of a non-preemptive policy is that the tasks executing non-preemptively can share the
same partition without any interference. Hence, the problem is less complex than in
the fully preemptive scheduling as there are only m + 1 different cache partitionings
to consider. In Section 5.2.2, we apply linear search to FP using RTA, and to EDF
using utilization-based test and QPA. In Section 5.2.3, we apply binary search to FP.

5.2.1 Background on schedulability analysis

We start by outlining the schedulability analysis for non-preemptive fixed-priority
(RTA) and EDF scheduling (utilization-based test and processor demand criterion).

The response time analysis for non-preemptive fixed-priority scheduling was pro-
posed by Bril et al (2006); Davis et al (2007). In non-preemptive scheduling, every job
executes from its start uninterruptedly until completion. The priority-inversion might
happen when a higher-priority job must wait for the completion of a lower-priority job
released before. The longest lower-priority blocking time that task τi can experience
is given by the longest worst-case execution time among all low-priority tasks:

Bi = max
j>i

Cj (17)

The schedulability analysis of fixed-priority non-preemptive systems requires checking
multiple jobs of the same task (Davis et al, 2007). It might be the case that the second,
third, or later job has larger response time than the first job. This anomaly is known
as self-pushing : while the job under analysis is executing, it blocks all higher-priority
jobs released after the start of its execution; consequently, the next job will experience
their accumulated interference. Therefore, the analysis of task τi must check all its jobs
released within i-level busy-period defined as the longest time interval during which
the jobs with priorities equal to i or higher are pending:

Li = Bi +

i∑
j=1

⌈
Li

Tj

⌉
· Cj (18)

The above relation can be solved by fixed-point iteration. The i-level busy-period
length can be found by solving the following iteration:

L
(0)
i = Bi + Ci

L
(ℓ)
i = Bi +

∑i
j=1

⌈
L
(ℓ−1)
i

Tj

⌉
· Cj

We should check the schedulability of each task τi instance within time interval [0, Li].
The l-th job of task τi can start its execution when there are no other pending
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tasks. Its starting time must fulfill the following relation that can be solved by
fixed-point iteration:

si,l = Bi + (l − 1) · Ci +

i−1∑
j=1

⌈
si,l
Tj

⌉
· Cj (19)

The starting time si,l of the l-th job of task τi can be found iteratively:
s
(0)
i,l = Bi + (l − 1) · Ci

s
(ℓ)
i,l = Bi + (l − 1) · Ci +

∑i−1
j=1

⌈
s
(ℓ−1)
i,l

Tj

⌉
· Cj

(20)

The worst-case response time Ri,l of l-th job of task τi is Ci time units after its start:

Ri,l = si,l + Ci (21)

The task τi worst-case response time Ri is the maximum worst-case response time of
its jobs:

Ri = max
l

Ri,l (22)

We recap two schedulability conditions for tasks with implicit and constrained
deadlines scheduled by non-preemptive EDF upon a single processing unit.

The first condition applies to tasks with implicit deadlines (i.e., ∀τi ∈ τ : Di =
Ti) and has polynomial time complexity in the number of tasks. As non-preemptive
EDF can be considered a special case of resource sharing in preemptive EDF (Davis,
2014), the following schedulability conditions hold (Baker, 1990, 1991). Given the tasks
indexed by increasing periods, their jobs are schedulable by non-preemptive EDF if:

∀1 ≤ j ≤ n :

j∑
i=1

Ci

Ti
+

Bj

Tj
where Bj = max {Ci | Ti > Tj} (23)

The second condition applies to tasks with constrained deadlines (i.e., ∀τi ∈ τ :
Di ≤ Ti) and has exponential time complexity in the number of tasks. George et al
(1996) and Baruah and Chakraborty (2006) extend the schedulability test for pre-
emptive EDF (see Section 5.1) to the non-preemptive case by introducing a revised
blocking factor:

b(t) = max{Ci |Di > t } (24)

into the following condition:

∀t > 0 : b(t) + h(t) ≤ t (25)

5.2.2 Linear search

In linear search, we check every number of cache segments in ascending order until we
find one for which all tasks are schedulable.
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FP systems. We apply the schedulability test for each task in decreasing priority
order If the test fails for a given number of cache segments, we assign an additional
segment and repeat the test. However, it is not necessary to resume the schedulability
test from the first task if the test is sustainable with respect to the WCETs (Altmeyer
et al, 2016). All tasks that were previously proved schedulable will also be schedulable
with one more cache segment. Their response times depend on the task WCETs,
which by adding more cache segments, will decrease or remain unchanged. Hence, the
response times cannot increase, and each task deemed schedulable with a given number
of cache segments will remain schedulable with more cache segments (the response
time analysis sustainability with respect to execution times and their monotonicity
with respect to the cache partition size). In the worst case, the linear search method
invokes n + m times the schedulability tests. Algorithm 4 shows the linear search
approach for cache minimization.

Algorithm 4: Cache usage minimization using linear search

Input: Set of n tasks τ = {τ1, . . . , τn}, available cache segments m;
Output: Minimal number of cache segments k needed by τ ;

1 Initialize k ← 0, i← 1;
2 while k ≤ m do
3 while τi is schedulable with k segments and i ≤ n do
4 i← i+ 1;

5 if i = n+ 1 then
6 return k ;

7 k ← k + 1;

8 return unschedulable;

Example 5.2. Consider six tasks, τ1, τ2, τ3, τ4, τ5 and τ6 ordered in decreasing prior-
ity order and running non-preemptively on a single core that shares the last-level cache
with other cores. Using cache partitioning, we want to minimize the number of cache
segments used by the tasks. We assume that we can verify their schedulability using a
schedulability test which is sustainable with respect to the tasks’ execution times. We
apply linear search based cache minimization given in Algorithm 4. Figure 3 shows the
successive iterations of the algorithm. The algorithm starts with the highest-priority
task τ1 and checks its schedulability with no cache segments. As the test fails, we repeat
it by increasing the number of cache segments by one until τ1 becomes schedulable. As
task τ1 can be schedulable with two segments, we move then to the next task, τ2, and
check its schedulability assuming two cache segments. Because the schedulability test
fails, we increase the cache partition size to three cache segments. This time we do not
have to rerun the schedulability test for task τ1 as it has already been deemed schedu-
lable with two segments so will also be schedulable with three or more segments as we
assume that the schedulability test is sustainable with respect to the execution times
and the execution times are monotonically non-increasing with the number of cache
segments. We, therefore, run the schedulability test only for task τ2. As the test fails
for three segments, we repeat it again for τ2 only with four cache segments. Since the

18



p
ri
or
it
y
i

cache segments0

τ1

1

τ1

2

τ1

τ2

3

τ1

τ2

4

τ1

τ2

τ3

τ4

5

τ1

τ2

τ3

τ4

τ5

τ6

Fig. 3: Example of cache usage minimization based on the linear search for non-
preemptive scheduling.

test is successful for τ2, we check τ3 with four cache segments which is also schedula-
ble. The test fails at the next task, τ4, and then we increase the total cache partition
size to five segments and retake the schedulability test for τ4 with five segments. The
task is schedulable and we proceed to tasks τ5 and τ6, which are also schedulable. We
can conclude that we need at least five cache segments to guarantee the schedulability
of the task set.

We can further improve the cache minimization procedure by observing that the
tasks’ execution times do not decrease at every cache segment (see Example 5.1). If
task τi is not schedulable with k cache segments under non-preemptive scheduling,
and i) its worst-case execution time, ii) worst-case execution time of all higher-priority
interfering tasks, and iii) maximal worst-case execution time among all lower-priority
tasks are the same with k + 1 cache segments as with k cache segments, then task τi
cannot be made schedulable on k + 1 cache segments. This means that we can skip
the schedulability test for τi with k + 1 cache segments and keep increasing the size
of the cache partition as long as there is no change in any worst-case execution time
of the previously mentioned tasks.

EDF systems. We will incorporate two schedulability tests for non-preemptive
EDF, utilization-based test (sufficient condition for tasks with implicit deadlines) and
QPA (exact schedulability test applicable also to tasks with constrained deadlines).

To determine the EDF-schedulability of non-preemptive tasks with implicit dead-
lines, we need to verify Formula (23) for each j ∈ {1, . . . , n}. A task set using the
minimum number of cache segments must meet all these conditions. We begin by
checking the conditions starting from j = 1 and k = 0 (i.e., no cache). If the j-th con-
dition is not fulfilled, we incrementally add a new cache segment until the condition
can be met. Since the worst-case execution times are monotonically non-increasing
with respect to the cache partition size, all blocking and utilization factors, Bi and
Ui,k, are also monotonically non-increasing. Hence, if we add a new cache segment to
“fix” j-th condition, all previously checked conditions 1, . . . , j−1 remain valid and do
not have to be verified again. The procedure is detailed in Algorithm 5.

For tasks with constrained deadlines, our approach is based on Quick Processor-
demand Analysis (QPA) (Zhang et al, 2003). The test verifies a sufficient and necessary
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Algorithm 5: Cache usage minimization for NP-EDF with implicit deadlines

Input: Set of n tasks τ = {τ1, . . . , τn} with ∀i : Ti = Di, available cache segments m;
Output: Minimal number of cache segments k needed by τ ;

1 Initialize k ← 0, i← n;
2 Sort τ in non-decreasing order of periods (τ1 has the shortest period, τn the longest);
3 while i ≥ 0 do
4 Bi ← max{Cj,k |j > i };
5 U i

1 ←
∑i

j=1 Uj,k;

6 if U i
1 +Bi/Ti > 1 then

7 k ← k + 1;
8 if k > m then
9 return unschedulable;

10 else
11 i← i− 1;

12 return k;

schedulability condition. We modify QPA by incrementing the number of cache seg-
ments allocated to the tasks at each failure point when the schedulability cannot be
guaranteed.

The QPA has been also applied to non-preemptive EDF (Zhang and Burns, 2013).
It follows the same principle and takes into account the blocking factor b(t). While
the blocking factor is a non-increasing function of t, it has been proved that the value
of h(t) + b(t) is its non-decreasing function (Zhang and Burns, 2013). Therefore, it
is safe to skip the deadlines lower than the currently calculated processor demand
even if the blocking factor at these deadlines might increase. The blocking factor is
recalculated at each iteration. The study interval is naturally decomposed into two
sub-intervals: [D1, Dn − 1] with blocking (i.e., b(t) > 0) and [Dn, L] with no blocking
(i.e., b(t) = 0). As it is more likely for a deadline miss, also due to the blocking, to
occur in the first interval (Zhang and Burns, 2009), Zhang and Burns (2013) show
that it is more effective to start by checking schedulability within the first interval. If
an overflow is found, the system is unschedulable. Otherwise, if there is no overflow
in the first interval, the schedulability within the second interval is checked.

Our cache minimization procedure extends QPA (Zhang and Burns, 2013) and its
detailed description can be found in Algorithm 6. It starts by sorting the tasks in a
non-decreasing order of relative deadlines and finding the maximal number of cache
segments k for which the task set utilization will not exceed 1 (line 1). Then, the
schedulability is checked, first, in time intervals of [D1, Dn − 1] (line 3), and then in
time intervals of [Dn, L] (line 5). The schedulability test is combined with cache mini-
mization and is based on function minimize cache, which takes a time interval [t1, t2],
the initial number of cache segments allocated to tasks τ , and outputs the minimal
number of cache segments k needed to ensure schedulability of tasks τ in the time
interval [t1, t2]. Whenever the schedulability test fails (line 12), the number of cache
segments k allocated to tasks is increased. The function next corner point(τ, i) gives
the next cache partition size for which the worst-case execution time of at least one
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task {τj |Dj ≥ Di} drops (see Example 5.1). As the worst-case execution times are
monotonically non-increasing with respect to the cache partition size, all previously
checked intervals remain schedulable and it is not necessary to repeat their tests. Func-
tion latest deadline(τ, t) calculates the latest absolute deadline occurring before
time instant t (max{dj | ∀τj ∈ τ, dj < t}, see Zhang and Burns (2009)).

Algorithm 6: Cache usage minimization for NP-EDF with constrained deadlines

Input: Set of n tasks τ = {τ1, . . . , τn} with ∀i : Di ≤ Ti, available cache segments m;
Output: Minimal number of cache segments k needed by τ ;

1 Sort τ in non-decreasing order of relative deadlines (τ1 has the shortest deadline);
2 k ← argmaxk

∑n
i=1 Ui,k ≤ 1;

3 k ← minimize cache(τ,D1, Dn, k);
4 L← Equation (4);
5 return minimize cache(τ,Dn, L+ 1, k);

6 Function minimize cache(τ, t1, t2, k):
7 t← t2 − 1;
8 while t ≥ t1 do
9 b(t)← maxi{Ci,k |Di > t };

10 demand← b(t) + h(t);
11 if demand > t then
12 if k = m then
13 return unschedulable;
14 else
15 k ← next corner point(τ, i);
16 continue;

17 else if demand = t then
18 t← latest deadline(τ, demand);

19 return k;

5.2.3 Binary search

The second strategy is based on the binary search and is applied to FP. For each
single task, we look for a minimum number of cache segments ensuring its schedula-
bility. This number cannot be less than any minimum number of segments for which
previously tested tasks were schedulable. The method starts with half of the available
cache segments and checks the first task schedulability. In case of the test success (fail-
ure), the segments’ numbers greater (less) than the tested number are discarded. The
search continues on the remaining number of cache segments from its middle number
and repeats the same procedure until the number of segments cannot be decreased
anymore. Then, the search is applied for the next task in the decreasing priority order.
Like in the linear search, we do not need to test again the tasks that were already
deemed schedulable if the test is sustainable with respect to the worst-case execution
times. We do neither consider the segments’ numbers that were too small to ensure
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the schedulability of the previous tasks. The total number of schedulability test invo-
cations is upper bounded by n logm. Algorithm 7 outlines the binary search-based
cache minimization.

Algorithm 7: Cache usage minimization using binary search

Input: Set of n tasks τ = {τ1, . . . , τn}, available cache segments m;
Output: Minimal number of cache segments kmin needed by τ ;

1 Initialize kmin ← 0, i← 1;
2 while i ≤ n do
3 kmax ← m;
4 while kmin ≤ kmax do
5 k ← ⌊(kmin + kmax)/2⌋;
6 if τi is schedulable with k segments then
7 kmax ← k − 1;
8 else
9 if kmin = m then

10 return unschedulable;
11 else
12 kmin ← k + 1;

13 i← i+ 1;

14 return kmin;

Example 5.3. Consider the three first tasks, τ1, τ2 and τ3, from Example 5.2. We use
binary search approach to find the minimal number of cache segments that guarantees
the task set schedulability under a non-preemptive scheduling policy. We assume that
there are m = 6 cache segments available. Algorithm 7 starts with task τ1, kmin = 0,
and kmax = 6. It first checks τ1’s schedulability with k = 3 segments. As the task is
schedulable, we set kmax = 2 and repeat the test for k = 1 segment. As task τ1 is not
schedulable with one segment, we set kmin = 2. We repeat the test with k = 2 segments
and, since the test is successful, we set kmax = 1 which ends the iteration for task τ1.
We move to task τ2. First, we reinitialize kmax = 6, and then check τ2’s schedulability
with k = 4 segments. As the test is successful, we set kmax = 3 and repeat the test for
k = 2. Task τ2 is not schedulable with k = 2 cache segments so we set kmin = 3 and
retry for k = 3 segments which is again unschedulable and therefore we set kmin = 4
and move to the next task, τ3, as kmin > kmax terminates the inner loop. The algorithm
in like manner checks the schedulability of task τ3 with k = 5, kmin = 4, kmax = 6
(schedulable) and then with k = 4, kmin = 4, kmax = 5 (schedulable). Hence, the tasks
need at least kmin = 4 cache segments to guarantee their schedulability.

The overall search time complexity depends on the schedulability test. The
response time analysis (NP-RTA) giving sufficient and necessary schedulability condi-
tions (Davis et al, 2007) has pseudo-polynomial time complexity. The polynomial-time
complexity can be achieved by sufficient but not necessary schedulability tests. For
instance, we can test the schedulability of each task with one single problem interval
of length Di−Ci (Equation (16) in Davis et al (2007), denoted by NP-SINGLE) and
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upper bound task τi’s latest starting ŝi:

ŝi = max{Bi, Ci}+
i−1∑
j=1

⌈
Di − Ci

Tj

⌉
· Cj (26)

If ŝi ≤ Di − Ci, we can conclude that any job of task τi can start early enough to
finish its execution before its deadline. Another approach worth considering is the use
of the hyperbolic utilization bound (NP-HYPER) derived by Theorem 9 in Brüggen
et al (2015). Note that while the first two tests can skip tasks that are already deemed
schedulable, the utilization bound must be recalculated by adding utilization factors
of all tasks when increasing the cache size.

Intuitively, the binary search will outperform linear search if there are many
cache partitions and relatively few tasks. We can compare both search techniques by
assuming that for each task binary search results in at most ⌊log(m + 1)⌋ + 1 test
invocations. Figure 4 illustrates the worst-case complexity comparison between both
search techniques.
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Fig. 4: Worst-case complexity comparison for linear and binary search.

6 Evaluation setup

6.1 Benchmark profiles

To evaluate the proposed cache minimization approaches, we performed experiments
on benchmark applications executing under different cache partition sizes. We used
Cachegrind (Seward et al, 2008), which is an open-source cache profiler tool, to run
the benchmarks and collect cache-related values (e.g., cache miss ratio). We modified
Cachegrind to support arbitrary cache sizes (by default, it must be power of two).
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While the values obtained from Cachegrind cannot be interpreted as worst-case exe-
cution time upper bounds, the tool helps us understand the relation between partition
size and execution speed.
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Fig. 5: Execution time vs cache size for CortexSuite.

We consider a set of applications from the CortexSuite benchmark suite (Thomas
et al, 2014) for computer vision and machine learning. We assume a two-level set-
associative cache hierarchy with Least Recently Used (LRU ) eviction policy and line
size of 64 B at both levels. Level L1 is split into L1d (for data) and L1i (for instruc-
tions), both with a fixed size of 32 KB and 4 ways. Level L2 of 16 ways is shared by
instructions and data. We vary the L2 cache size from 0 up to 2 MB, with steps of
32 KB. We ran 20 benchmarks and collected the number of cache misses (for L1 and
L2), the number of data references, and the number of executed instructions. Then,
assuming the characteristic of ARM Cortex A8 (Hennessy and Patterson, 2011) (2
instructions per cycle, 1 cycle for L1 hit, 11 cycles for L1 miss, and 60 cycles for L2
miss), we got the execution times for each benchmark and for each cache partition size.
Figure 5 shows a sample of the obtained profiles. Similar trends have been observed
in Bienia et al (2008) for PARSEC benchmark suite and in Hennessy and Patterson
(2017) for SPEC2000 programs. The above simulation technique is similar to several
works in real-time systems literature (Lesage et al, 2015; Mancuso et al, 2013; Kwon
et al, 2021; Sun et al, 2023b). Nevertheless, the proposed cache usage optimization
techniques can be used with any WCET analysis tool or measurement methodology.

6.2 Task set generation

Based on the benchmark profiles, we randomly generate task sets with different param-
eters: (i) task set size n ∈ {16, 32, 64}, (ii) available cache size S ∈ {1, 2, 4} MB, (iii)
cache segment size dS ∈ {32, 128, 512} KB, and (iv) task set base utilization U rang-
ing in [0.7, 1.6] with a step of 0.1. For each parameter combination, we consider two
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scenarios, i.e., implicit deadlines and constrained deadlines. For each scenario, we ran-
domly generate 20 task sets to evaluate the developed cache minimization methods
for the FP and EDF scheduling policies. The generation procedures for the implicit-
and constrained- deadline task sets are summarized as follows.

Implicit deadlines. We generate implicit-deadline task sets in three steps. First, we
generate task periods Ti by uniformly sampling from [10, 000, 100, 000]. Second, we gen-
erate the base utilization Ui of each task τi using UUnifast (Bini and Buttazzo, 2005)
such that the total base utilization of the task set equals the target base utilization
(i.e., U =

∑n
i=1 Ui). Finally, we randomly sample n benchmark profiles and calculate

each task’s WCETs when using different numbers of cache segments according to the
sampled profile.

Constrained deadlines. For the constrained deadline scenario, we follow the same
procedures as above to generate task periods, utilizations and WCETs. Then, we use
the method in Singh (2023) to generate task deadlines. Specifically, we define the ratio
δi = Ci,0/Di as the density of task τi and then use DRS (Griffin et al, 2020), an
extended version of UUnifast, to generate each task’s density such that the total task
density

∑n
i=1 Ci/Di = 1.25 · U . Note that the task’s base utilization Ui,0 is set as the

lower bound of δi to ensure that Di ≤ Ti. Finally, the task deadline Di is calculated
as ⌊Ci,0/δi⌋.

In addition to the above two scenarios, we consider a special case for the preemptive
EDF scheduling policy, where the task periods are harmonic numbers. This is because
the ILP for preemptive EDF cannot scale well with the generic task periods considered
in the above two scenarios, which results in a very large L in (13) (sometimes even
larger than 264). Therefore, we generate additional task sets with harmonic periods
to upper-bound the busy interval (for a harmonic-period task set, L is no larger than
the largest task period, i.e., L ≤ Tmax) and evaluate the effectiveness of the devel-
oped ILP method. Specifically, the harmonic task periods are randomly sampled from
{8, 000, 16, 000, 32, 000, 64, 000, 128, 000} in our experiments, and the task deadlines
are generated using the same procedures as above (i.e., constrained deadlines).

6.3 Experimental settings

In this paper, all the experiments are conducted on a workstation equipped with Intel
Xeon Silver 4216 CPU running Linux. The proposed cache minimization algorithms
are implemented in Python 3.10, and the mathematical programs (i.e., the IQCP
for FP and the ILP for EDF) are solved by a mathematical programming solver
Gurobi 9.5.2 (Gurobi Optimization, LLC, 2022) with Python API. To complete the
experiments within a reasonable time, we set a run time limit of 3600 seconds for
the solver.

We run each comparison algorithm on each generated task set to evaluate its
cache usage and schedulability. The cache usage of a test algorithm is considered the
maximum cache available in the system if the task set is deemed unschedulable by
the algorithm.
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7 Evaluation results

This section reports our experimental results and observations. First, we give an
overview of the comparison results in Section 7.1. Then, we present the detailed
evaluation results under different parameter settings in Section 7.2-7.4. Additionally,
we evaluate the effectiveness of the ILP for preemptive EDF on the task sets with
harmonic periods and constrained deadlines in Section 7.5.

We compare the performance of the proposed cache minimization techniques for
FP and EDF scheduling algorithms on the generated task sets in terms of their cache
usage, schedulability ratio, and running time. For the cache minimization techniques,
we use the mathematical programming methods (i.e., IQCP and ILP), guided local
search (GLS in Algorithm 1), branch-and-bound (B&B in Algorithm 2), dynamic
programming (DP in Algorithm 3), and the search techniques for non-preemptive
scheduling: RTA applied to FP (NP-RTA in Algorithm 4), utilization-based test (NP-
U in Algorithm 5) and QPA (NP-QPA in Algorithm 6) both for EDF. We note that
the mathematical programming is only evaluated in scenarios FP and EDF (harmonic)
since it is not scalable in EDF (constrained) with a generic period range, and DP
achieves the optimal solutions of EDF (implicit) efficiently.

7.1 Overall comparison

Table 1 summarizes the average results of cache minimization techniques over all gener-
ated task sets under different scheduling policies and scenarios. Our main observations
are as follows.

Cache usage (MB) Schedulability (%) Running time (sec)

Implic.

FP

IQCP∗ 1.50 37.70 76.59

GLS 1.51 36.63 18.18

B&B 1.68 27.83 21.57

DP 1.80 23.07 0.37

NP-RTA∗ 1.24 48.47 0.05

EDF

DP∗ 1.02 60.50 0.03

NP-QPA∗ 0.80 78.63 0.01

NP-U 0.85 67.03 0.00

Constr.

FP

IQCP∗ 1.50 37.50 62.19

GLS 1.52 36.47 6.91

B&B 1.65 29.17 9.18

DP 2.15 4.53 0.19

NP-RTA∗ 2.02 9.30 0.00

EDF

GLS 1.04 59.17 75.69

B&B 1.21 49.83 65.70

DP 1.56 34.87 0.13

NP-QPA∗ 1.98 24.40 0.01

Table 1: Overall comparison results. The algorithms with ∗ are exact algorithms for
the corresponding scenario (implicit/constrained deadlines) and schedul-
ing policy (FP/EDF).
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Preemptivity. The non-preemptive cache partitioning methods save more cache
than the preemptive algorithms in all scenarios, except for the ones with constrained
deadlines (EDF constrained and EDF harmonic) and have an order of magnitude lower
runtime. The preemptive methods can save more cache in constrained-deadlines sce-
narios when the non-preemptive methods have less slack to tolerate priority-inversion.

Scheduling algorithms. EDF achieves better shcedulability ratio than FP (as
shown in many previous studies (Buttazzo, 2005)) and allows for better cache usage.

Methods. The average optimality gap of the cache usage achieved by the proposed
GLS is smaller than 2% under the FP scheduling policy. GLS achieves the best average
cache usage among all cache minimization algorithms proposed for preemptive task
sets under both the FP policy and the EDF policy with constrained deadlines.

7.2 Cache usage for variable n.

Table 2 summarizes the average results of cache minimization techniques over all
generated task sets under different scheduling policies and scenarios for n = 16, 32, 64
with dS = 32 and S = 4096 KB. The detailed results are presented in Figures 6 (a-l).

Cache usage (MB) Schedulability (%) Running time (sec)

n 16 32 64 16 32 64 16 32 64

Implic.

FP

IQCP∗ 1.38 1.50 1.61 44.20 37.40 31.50 0.36 7.56 221.86

GLS 1.39 1.51 1.63 43.60 36.40 29.90 0.90 5.68 47.94

B&B 1.57 1.70 1.77 36.00 26.60 20.90 0.91 6.81 57.00

DP 1.73 1.80 1.87 27.10 22.80 19.30 0.12 0.25 0.73

NP-RTA∗ 1.31 1.26 1.16 44.90 47.80 52.70 0.01 0.03 0.11

EDF

DP∗ 0.94 1.02 1.11 65.20 60.40 55.90 0.01 0.02 0.05

NP-QPA∗ 0.99 0.80 0.60 77.40 78.30 80.20 0.00 0.00 0.01

NP-U 1.10 0.85 0.61 55.00 67.40 78.70 0.00 0.00 0.00

Constr.

FP

IQCP∗ 1.39 1.50 1.61 43.90 37.30 31.30 0.09 5.51 180.96

GLS 1.40 1.52 1.63 43.30 36.30 29.80 0.33 2.42 17.98

B&B 1.54 1.65 1.75 36.70 29.30 21.50 0.40 3.08 24.08

DP 2.10 2.15 2.18 7.60 4.80 1.20 0.09 0.18 0.30

NP-RTA∗ 1.97 2.01 2.09 12.00 9.50 6.40 0.00 0.00 0.01

EDF

GLS 0.96 1.04 1.13 64.10 59.10 54.30 4.44 33.12 189.52

B&B 1.13 1.21 1.29 57.40 49.40 42.70 3.26 47.02 146.81

DP 1.50 1.56 1.63 39.20 35.00 30.40 0.05 0.11 0.21

NP-QPA∗ 1.93 1.97 2.06 14.00 11.00 7.40 0.00 0.00 0.02

Table 2: Comparison results for variable n. The algorithms with ∗ are exact algo-
rithms for the corresponding scenario (implicit/constrained deadlines) and
scheduling policy (FP/EDF).

The results support the following observations. First, the proposed GLS outper-
forms DP and B&B and achieves near-optimal cache usage compared to IQCP, which
demonstrates the effectiveness of GLS. For implicit deadlines, EDF significantly out-
performs other approaches. The cache usage of the preemptive (resp., non-preemptive)
approaches increases (resp., decreases) with the increase of n. We also note that
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Fig. 6: Cache usage for dS = 32 KB, S = 4096 KB, and variable n.

the non-preemptive approach NP-RTA uses more (resp., less) cache than preemptive
approaches for small (resp., large) utilization. These observations are explained as fol-
lows. First, non-preemptive tasks share the available cache as one single partition,
leading to consistent WCET reduction regardless of the number of tasks. However,
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preemptive tasks need to divide the available cache into private partitions to avoid
inter-task cache eviction, resulting in decreasing WCET reduction as n increases. Sec-
ond, preemptive task sets are easily schedulable at low utilization, but non-preemptive
scheduling can lead to unschedulability even at low utilization (the utilization bound
drops to 0). As a result, the preemptive approach uses less cache when utilization
is low, but non-preemptive is more efficient at higher utilization levels due to larger
WCET reduction.

7.3 Cache usage for variable dS.

Cache usage (MB) Schedulability (%) Running time (sec)

dS (KB) 32 64 128 32 64 128 32 64 128

Implic.

FP

IQCP∗ 1.39 1.40 1.41 37.83 37.33 36.67 90.61 74.33 46.86

GLS 1.40 1.40 1.42 36.50 36.50 36.00 31.61 8.02 4.05

B&B 1.55 1.54 1.53 27.33 27.33 27.50 36.71 11.80 4.72

DP 1.65 1.66 1.67 23.67 23.33 22.33 0.49 0.13 0.04

NP-RTA∗ 1.14 1.14 1.14 48.67 48.50 48.50 0.06 0.04 0.04

EDF

DP∗ 0.95 0.97 0.99 60.67 60.33 59.67 0.03 0.01 0.00

NP-QPA∗ 0.78 0.78 0.78 78.83 78.83 78.83 0.01 0.01 0.0

NP-U 0.79 0.79 0.79 67.17 67.17 67.17 0.00 0.00 0.00

Constr.

FP

IQCP∗ 1.39 1.40 1.42 37.67 37.00 36.50 81.00 52.50 57.45

GLS 1.40 1.41 1.42 36.33 36.33 35.83 10.49 5.40 2.62

B&B 1.52 1.51 1.51 28.83 28.83 29.17 14.10 6.81 3.57

DP 1.97 1.97 1.97 4.50 4.17 3.50 0.23 0.06 0.02

NP-RTA∗ 1.84 1.84 1.84 9.33 9.33 9.33 0.00 0.00 0.00

EDF

GLS 0.97 0.98 1.00 58.83 59.00 59.00 124.17 67.18 17.27

B&B 1.13 1.12 1.11 49.17 49.33 49.50 60.50 30.78 15.40

DP 1.44 1.45 1.47 35.33 35.17 34.17 0.16 0.05 0.01

NP-QPA∗ 1.81 1.81 1.81 10.83 10.83 10.83 0.01 0.01 0.01

Table 3: Comparison results for variable dS. The algorithms with ∗ are exact algo-
rithms for the corresponding scenario (implicit/constrained deadlines) and
scheduling policy (FP/EDF).

Table 3 summarizes the average results of cache minimization techniques for three
cache segment sizes, dS = 32, 64 and 128 KB, with n = 16, and S = 2048 KB. The
detailed results are in Figures 7 (a-l). The results of the experiment show that: (i) The
cache usage of all algorithms increases with the increase of dS; (ii) The performance of
B&B improves as dS increases. The reason for (i) is that dS represents the granularity
of the cache segments, and as dS increases, precision in cache partitioning is lost.
For (ii), it suggests that B&B can benefit more from smaller m compared with GLS.
This is because B&B enumerates all possible cache allocation options without the
knowledge guidance used in GLS. As a result, B&B can achieve a good performance
for a coarse-grained cache partitioning but performs worse for a finer granularity.
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Fig. 7: Cache usage for n = 16, S = 2048 KB, and variable dS.

7.4 Schedulability ratio for variable S.

Table 4 summarizes the average results of cache minimization techniques for three
cache sizes, S = 1, 2 and 4 MB, with n = 32, and dS = 32 KB. Figures 8 (a-l) present
the detailed results. The schedulability results show a similar trend as in cache usage:
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Cache usage (MB) Schedulability (%) Running time (sec)

S (MB) 2 4 8 2 4 8 2 4 8

Implic.

FP

IQCP∗ 0.74 1.39 2.57 33.17 37.83 43.50 45.06 90.61 126.11

GLS 0.74 1.40 2.60 31.67 36.50 42.50 15.67 31.61 31.52

B&B 0.79 1.55 2.99 23.67 27.33 33.33 15.19 36.71 39.45

DP 0.86 1.65 3.14 18.17 23.67 27.83 0.15 0.49 1.03

NP-RTA∗ 0.62 1.14 2.17 48.00 48.67 48.67 0.04 0.06 0.06

EDF

DP∗ 0.53 0.95 1.67 54.33 60.67 67.50 0.01 0.03 0.08

NP-QPA∗ 0.45 0.78 1.2 77.83 78.83 78.83 0.01 0.01 0.01

NP-U 0.46 0.79 1.44 66.50 67.17 67.17 0.00 0.00 0.00

Constr.

FP

IQCP∗ 0.74 1.39 2.57 33.00 37.67 43.33 40.33 81.00 79.66

GLS 0.74 1.40 2.61 31.50 36.33 42.33 5.56 10.49 10.47

B&B 0.78 1.52 2.92 25.17 28.83 33.83 6.41 14.10 15.04

DP 1.00 1.97 3.82 1.83 4.50 8.67 0.06 0.23 0.57

NP-RTA∗ 0.93 1.84 3.65 9.17 9.33 9.33 0.00 0.00 0.00

EDF

GLS 0.54 0.97 1.72 53.17 58.83 65.83 45.98 124.17 123.86

B&B 0.58 1.13 2.12 45.17 49.17 56.00 26.61 60.50 195.19

DP 0.76 1.44 2.69 30.00 35.33 39.67 0.05 0.16 0.36

NP-QPA∗ 0.92 1.81 3.59 10.67 10.83 10.83 0.01 0.01 0.01

Table 4: Comparison results for variable S. The algorithms with ∗ are exact algo-
rithms for the corresponding scenario (implicit/constrained deadlines) and
scheduling policy (FP/EDF).

(i) GLS performs near-optimally compared to IQCP and outperforms other preemptive
cache minimization methods; (ii) The non-preemptive method performs better than
the preemptive ones for high utilization. Additionally, the schedulability ratio of the
preemptive methods improves with increasing cache size, however, the non-preemptive
method does not see further improvements beyond a cache size of 2048 KB. This
is because non-preemptive tasks can share all available cache and our benchmarking
experiments have shown that their WCETs do not improve with more than 2048 KB
of cache.

7.5 Evaluation of ILP on harmonic task sets

Due to the scalability issues, we evaluate the mathematical programming for EDF (i.e.,
the number of points to check in Equation (14) grows exponentially with periods) using
harmonic periods that result in lower hyperperiod length. Table 5 resumes our findings.

8 Conclusions and future work

In this paper, we presented a comprehensive study of cache partitioning meth-
ods to minimize cache usage for real-time systems. We proposed efficient solutions
for both preemptive and non-preemptive scheduling scenarios under FP and EDF
algorithms. For preemptive scheduling, we formulated the problem as an integer
quadratically constrained program and proposed an efficient guided local search heuris-
tic, a branch-and-bound search, and an efficient dynamic programming algorithm. For
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Fig. 8: Schedulability ratios for n = 32, ds = 32 KB, and variable S.

non-preemptive scheduling, we developed linear and binary searches coupled with dif-
ferent schedulability analyses (RTA for FP and QPA for EDF ). We evaluated the
proposed methods using real-world benchmarks and found that our heuristic achieved
an average optimality gap of 0.79%, with run time that was 0.1x that of a mathe-
matical programming solver. Furthermore, our results indicated that non-preemptive
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Cache usage (MB) Schedulability (%) Running time (sec)

ILP∗ 1.03 59.9 0.28

GLS 1.05 58.7 0.74

B&B 1.22 49.33 0.27

DP 1.3 47.25 0.07

Table 5: Comparison results for task sets with harmonic peri-
ods and constrained deadlines under preemptive EDF
scheduling policy. ∗ denotes that ILP is an exact algo-
rithm for preemptive EDF.

cache minimization methods can save more cache usage than preemptive methods for
large task sets with high utilization.

In future work, we plan to investigate the potential benefits of combining
non-preemptive and preemptive scheduling to further improve our cache usage
minimization algorithm.
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