
HAL Id: hal-04803812
https://laas.hal.science/hal-04803812v1

Submitted on 26 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Response Time Analysis for Fixed-Priority Preemptive
Uniform Multiprocessor Systems
Binqi Sun, Tomasz Kloda, Marco Caccamo

To cite this version:
Binqi Sun, Tomasz Kloda, Marco Caccamo. Response Time Analysis for Fixed-Priority Preemptive
Uniform Multiprocessor Systems. Euromicro Conference on Real-Time Systems (ECRTS 2024), Jul
2024, Lille, France. �10.4230/LIPIcs.ECRTS.2024.17�. �hal-04803812�

https://laas.hal.science/hal-04803812v1
https://hal.archives-ouvertes.fr


Response time analysis for fixed-priority preemptive
uniform multiprocessor systems
Binqi Sun #

Technical University of Munich, Germany

Tomasz Kloda #

LAAS-CNRS, Insa de Toulouse, France

Marco Caccamo #

Technical University of Munich, Germany

Abstract
We present a response time analysis for global fixed-priority preemptive scheduling of constrained-
deadline tasks upon a uniform multiprocessor where each processor can be characterized by a
different speed. A fixed-priority scheduler assigns the jobs with the highest priorities to the fastest
processors. Since determining whether all tasks can meet their deadlines is generally intractable
even with identical processors, we propose two sufficient schedulability tests that calculate upper
bounds on the task’s worst-case response time within polynomial and pseudo-polynomial time.
The proposed tests leverage the linear programming model to upper bound the interference of the
higher-priority tasks. Furthermore, we identify specific conditions and platforms upon which the
problem can be solved more efficiently within linear time. These formulations are used to iteratively
evaluate and refine possible solutions until a safe upper bound on the task’s worst-case response time
is found. Additionally, we demonstrate that, with specific minor modifications, the proposed tests
are compatible with Audsley’s optimal priority assignment. Experimental evaluations performed on
synthetic task sets show that the proposed approach outperforms the state-of-the-art methods.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases Real-time scheduling, Uniform multiprocessor, Response time analysis

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2024.14

Acknowledgements Marco Caccamo was supported by an Alexander von Humboldt Professorship
endowed by the German Federal Ministry of Education and Research.

1 Introduction

Heterogeneous multiprocessor systems integrate on the same die different core types optimized
for specific workloads and different performance goals. Typically, such design can involve
several high-performance cores that boost performance co-allocated with low-power but
slower cores that reduce energy consumption. ARM’s big.LITTLE succeeded by DynamIQ,
and Intel’s Alder Lake are examples of such architectures.

The scheduling problem where processors have different speeds, known in the literature as
uniform multiprocessors, has been extensively studied. Most works adopt dynamic-priority
scheduling policies [10, 11, 18, 39, 40, 43, 50, 64, 65], resulting in good processor utilization
and efficient schedulability tests. On the other hand, fixed-priority scheduling policies are
more commonly used in the industry [1], having the advantage of more precise control of
high-priority task timelines [6, 25, 61]. Existing fixed-priority schedulability tests for uniform
platforms [15–17] relate platform and task set characteristics (e.g., processor speed, system
load) with schedulability and return a boolean answer, either schedulable or not schedulable.
Consequently, the task response time information, often required in offline design [34],
remains unknown. Moreover, the existing fixed-priority schedulability tests are derived for

© Binqi Sun, Tomasz Kloda, and Marco Caccamo;
licensed under Creative Commons License CC-BY 4.0

36th Euromicro Conference on Real-Time Systems (ECRTS 2024).
Editor: Rodolfo Pellizzoni; Article No. 14; pp. 14:1–14:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:binqi.sun@tum.de
https://orcid.org/0000-0002-9764-6259
mailto:tkloda@laas.fr
https://orcid.org/0000-0003-0822-4976
mailto:mcaccamo@tum.de
https://orcid.org/0000-0003-2328-044X
https://doi.org/10.4230/LIPIcs.ECRTS.2024.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


14:2 Response time analysis for fixed-priority preemptive uniform multiprocessor systems

specific priority assignments (e.g., Deadline Monotonic in [15] or Rate Monotonic in [16]),
which have been shown ineffective for global fixed-priority scheduling [31].

In this paper, we introduce response time analysis (RTA) for global fixed-priority preemptive
scheduling of constrained-deadline sporadic task systems upon uniform multiprocessors
compatible with any priority assignment. First, we upper bound the total interference
generated by high-priority tasks using a linear programming problem formulation. Such
problems can be solved in polynomial time, but we also establish specific conditions for
processor speeds when the total interference calculation can be done in linear time. Finally,
we extend the previous results from identical multiprocessors to calculate an upper bound on
a task workload, limiting its carry-in and carry-out interference. Based on these results, we
devise two schedulability tests (sufficient conditions), running respectively in polynomial
and pseudo-polynomial time, for sporadic task systems. The tests return an upper bound on
the worst-case response time of each task. Additionally, we show that the proposed tests can
be modified to be compatible with Audsley’s optimal priority assignment (OPA) policy [4, 5].
The evaluation results demonstrate a significant improvement in the schedulability ratio over
the state-of-the-art schedulability approaches.

The remainder of this paper is organized as follows. Section 2 gives background on
multiprocessor platform types, task models, and scheduler classifications. Section 3 covers
related work regarding aperiodic and recurrent tasks scheduling upon uniform platforms.
Section 4 gives the system model and notation used in the rest of this paper. Section 5
contains the main results. The section starts with the definition of the linear programming
problem for cumulative interference calculation. The following subsections derive platform-
specific conditions for which the interference computation can be done in linear time. Finally,
we generalize the previously obtained schedulability conditions for the sporadic task model,
which requires an upper bound for a single task workload over a generic time interval.
Section 6 contains schedulability test evaluations and Section 7 concludes the paper with a
summary and future research directions.

2 Background

We briefly review the most relevant concepts related to multiprocessor real-time scheduling.

2.1 Processors
Three kinds of multiprocessor platforms can be distinguished [14,27,32]:

Identical All the processors are identical in terms of computing capacity (e.g., given two
identical processors and two jobs, each job always executes with the same speed regardless
of which processor the job is running upon).

Uniform Each processor has its own computing capacity and a job that executes uninterruptedly
on a processor with computing capacity s for t > 0 time units completes s · t of its
execution requirement (e.g., given two uniform processors and two jobs, if the first
processor is faster than the second one, both jobs execute faster on the first processor
and slower on the second processor).

Unrelated Each job can have a different execution rate r for each processor and completes r ·t
units of execution when executing uninterruptedly on that processor for t > 0 time units
(e.g., given two unrelated processors and two jobs, the first job can execute faster on the
first processor than on the second one while the second job can execute faster on the
second processor than on the first one).



B. Sun, T. Kloda and M. Caccamo 14:3

2.2 Jobs and tasks
A job is a single process that performs a specific computation using processor resources. It
can be characterized by its worst-case execution time and release time. We will call a job
that executes only once as aperiodic. A recurrent task can generate a potentially infinite
sequence of identical jobs (also called task instances). There are two main task activation
models: periodic and sporadic. In the periodic task, the arrivals of the consecutive jobs are
separated by a fixed time interval. In the sporadic task, the arrivals of any two consecutive
jobs of the same task are separated by the minimum inter-arrival time elapsed since the
first release.

Each real-time task is characterized by a deadline by which each task job must complete
its execution. There are three types of constraints on task deadlines: implicit, when each
task has its deadline equal to its period, constrained, when each task has a deadline that is
less than or equal to its period, and arbitrary, when a deadline of each task might be less
than, equal to or even greater than its period.

2.3 Schedulers
A scheduling algorithm decides at each point in time which job should run on which processor.
This decision, in static algorithms, is based on fixed parameters assigned to tasks before
their activation or, in dynamic algorithms, depends on tasks and system properties that
might change over time. In particular, in fixed-priority scheduling algorithms, each task has
a constant (static) priority determined offline, and the active jobs with the highest priorities
at a given time are selected for execution.

A preemptive scheduler can stop any job running upon a processor and resume it later
(during that time interval, the processor can execute other jobs). In contrast, a non-preemptive
scheduler executes each job uninterruptedly: once the scheduler starts a job, the job runs
until full completion.

In partitioned scheduling approaches, the jobs are statically mapped to the processors
such that each job is assigned to a processor on which it can execute. In global scheduling,
each job can execute upon any processor and migrate from one processor to another.

3 Related work

We review four main areas of related work: scheduling aperiodic jobs on a uniform multiprocessor,
scheduling periodic tasks on a uniform multiprocessor, response time analysis for uniprocessor
and multiprocessor, and complexity of multiprocessor scheduling problems.

3.1 Multiprocessor aperiodic job scheduling
Several scheduling algorithms have been proposed to solve various schedule optimization
problems of aperiodic jobs (i.e., a job that executes only once) executed on uniform platforms.
Gonzalez and Sahni [42] propose a linear-time algorithm to obtain a preemptive schedule
with minimal completion time for independent aperiodic jobs that execute upon uniform
processors. For the same problem, Horvath et al. [50] use the concept of task level to
construct a schedule where the remaining job executions and assigned processor speeds are
proportional. Federgruen and Groenevelt [38] apply network flow techniques to minimize
the maximum lateness of the schedule on uniform processors. Gonzalez [41] considers
the problem of mean flow time minimization in a preemptive schedule. Non-preemptive
parallel scheduling problems in general form with arbitrary processing times are already

ECRTS 2024



14:4 Response time analysis for fixed-priority preemptive uniform multiprocessor systems

NP-hard for identical processors [49], so heuristics and constrained models are studied
in this area. Graham et al. [43] consider the problem of minimizing the makespan for
non-preemptive scheduling on uniform processors where all jobs have single-unit processing
requirements. An optimal schedule can be found in polynomial time by modeling the problem
as a transportation network.

3.2 Multiprocessor recurrent task scheduling
A recurrent task can generate a potentially infinite sequence of identical jobs according to
two activation models: periodic and sporadic.

Baruah [10] obtains in polynomial time a schedule for periodic fully preemptive tasks
executed upon uniform multiprocessor by applying the makespan minimization scheduling
rule for aperiodic jobs proposed by Graham et al. [43] and shows that the same problem
under integer boundary constraint (i.e., a job can be preempted only if it has completed an
integer number of execution units) is NP-hard in the strong sense.

The Earliest Deadline First (EDF) [57] scheduling algorithm was successfully applied
in the context of uniform multiprocessor systems. Funk et al. [40] apply the resource
augmentation technique [51] and establish the relationship between a generic task set
feasibility on a less powerful platform and its EDF -schedulability on a more powerful one
to derive global EDF schedulability test for implicit-deadline periodic tasks. In particular,
the exact feasibility condition is obtained by extending the previously mentioned task level
algorithm [50]. Baruah [11] improves the above test by showing that the test is robust with
respect to processor speeds (i.e., a task set deemed to be schedulable upon a particular
platform must also be schedulable on a more powerful one). For partitioned uniform
processors, Funk and Baruah [39] propose a method for periodic tasks allocation. Based
on the concept of demand bound function [19], Baruah and Goossens [18] propose a new
schedulability test for constrained-deadline sporadic tasks when scheduled using global EDF.
Another test for global EDF is proposed in [13].

Following the same research line as in [40], Baruah and Goossens derive an efficient
sufficient schedulability test for implicit-deadline periodic tasks executed under Rate Monotonic
policy [16,17] and for arbitrary-deadline sporadic tasks executed under Deadline Monotonic
policy [15]. The latter work also applies to the model considered in this paper, however,
it cannot be used to obtain the task worst-case response time information and cannot be
applied to other priority assignment rules. Cucu and Goossens [29] characterize the feasibility
interval for a fixed-priority preemptive scheduler upon a uniform multiprocessor. The latter
results apply to periodic tasks only and cannot be generalized to sporadic tasks.

3.3 Response time analysis
Worst-case response time is the longest time interval between task release and its completion.
To compute it, a method called Response time analysis (RTA) evaluates for a task under
analysis the interference generated by other tasks in a given time interval. In particular,
under fixed-priority uniprocessor scheduling, RTA [7, 8, 54] is a sufficient and necessary test
that can be evaluated in pseudo-polynomial time. For identical multiprocessor systems, only
sufficient RTA tests [2, 9, 21,22,58] can be derived in the same complexity class. The total
interference upper bound used in the tests is constructed by considering that the interference
is distributed evenly among different processors, keeping them busy as long as possible to
prevent the task under analysis from executing. Compared to the uniprocessor case, it is
more challenging to estimate the interference generated by other tasks as the critical instant



B. Sun, T. Kloda and M. Caccamo 14:5

(i.e., task arrival leading to the longest task response time) might be unknown [53] (for
uniprocessor, it is a synchronous arrival of all tasks [57]) and postponing the arrival of
consecutive jobs of a task can have a detrimental effect on the task set schedulability [2]
(for uniprocessor, consecutive jobs should arrive as soon as possible [57]). In [64], Yang and
Anderson derive the response time upper bounds for preemptive and non-preemptive global
EDF on uniform multiprocessors for the parallel tasks. Linear programming has also been
adopted to derive the response time bounds. Gujarati et al. [47] apply it to identical
multiprocessors with arbitrary processor affinities. Several other works [30, 36, 56, 66, 67]
model a response time as an integer linear program for single processor systems.

3.4 Time complexity of multiprocessor scheduling
The problem of deciding whether a periodic task set is schedulable on identical processors
under a fixed-priority policy has been shown to be NP-hard in the strong sense [55] (the
problem of verifying schedulability of a task set that runs on multiprocessor is reduced
from the 3-partition problem that has been shown to be strongly NP-complete). The
theorem considers that all tasks have the same period and thus can be easily applied to
the aperiodic jobs as well. Clearly, the identical multiprocessor is a special case of uniform
multiprocessor scheduling considered in this paper, and thus the problem remains strongly
NP-hard. Response time computation (i.e., finding its exact value) has been proven to be
NP-hard for fixed-priority scheduling even on a single processor [35]

4 System model

We consider a global fixed-priority preemptive scheduling of sporadic constrained-deadline
tasks upon a uniform multiprocessor platform comprised of m ≥ 1 processors.

In this work, we consider uniform multiprocessor platform. Each processor is characterized
by a constant computing capacity (also denoted as speed) sj ∈ R+. We assume that the
processors are indexed in non-increasing order of computing capacities: ∀ 1 ≤ j < m :
sj+1 ≤ sj . The first processor is the fastest, having computing capacity s1, the last is the
slowest, having computing capacity sm. Following Funk et al. [40], we define the cumulative
computing capacity of k fastest processors as:

▶ Definition 1 (Sk cumulative computing capacity of k fastest processors).

Sk =
k∑

j=1
sj (1)

Each task τi gives rise to a potentially infinite sequence of identical jobs. Task τi releases
jobs sporadically after the minimum inter-arrival time Ti (period), and each of its jobs Ji

must execute for at most Ci execution units to complete before its deadline that occurs Di

time units after the job’s release where Ci is the worst-case execution requirement of each job
of task τi and Di is the task τi relative deadline assumed to be less than or equal to the task
period (i.e., constrained deadlines): Di ≤ Ti. For instance, it takes 2 time units to complete
a job with an execution requirement of 6 using a processor with a capacity of 3, and 4 time
units to complete the same job using a processor with a capacity of 1.5. All the above job
and task parameters are positive integers. The tasks are independent (e.g., do not access
shared data or exchange messages) and do not share resources other than the processors.
Each task might execute on at most one processor at a time (i.e., no single job parallelism).

ECRTS 2024



14:6 Response time analysis for fixed-priority preemptive uniform multiprocessor systems

The task worst-case execution requirement includes preemption, context switch, migration,
and scheduler overheads. Once a job starts, it will not voluntarily self-suspend its execution.

We consider a set of n tasks which are scheduled by a fixed-priority preemptive scheduler.
Each task has a unique priority, and each job of the task inherits its priority. At each point in
time, the scheduler assigns the ready jobs with the highest priorities to the fastest processors
according to the priority order (e.g., among all ready jobs at a given time instant, a job with
the highest priority runs on the fastest processor, and a job with the m-highest priority on
the slowest one). When a new job with a priority higher than the priority of any currently
running job becomes ready, all running jobs with lower priorities are preempted, and the
processors are reassigned. We consider a continuous scheduler where preemptions may occur
at any time instant. We introduce the notation hp(i) for the set of tasks with priorities
higher than the priority of task τi. We also define task τi utilization as Ui = Ci/Ti and the
task set utilization as U =

∑n
i=1 Ui.

The worst-case task τi response time Ri is the maximum time duration between the
release of any job of task τi and the time the job completes execution. We say that task τi is
schedulable if each job of τi always meets its deadline: Ri ≤ Di.

5 Response time analysis

We derive the response time analysis for constrained sporadic task systems executed on a
uniform multiprocessor platform under a fixed-priority preemptive scheduling policy. Our
approach follows the same general framework as the other response time analysis methods.
The schedulability test seeks a minimal time interval for which the processing resources are
sufficient to complete the maximum possible cumulative execution requirement generated,
within such an interval, by the task under analysis and the other higher-priority tasks. In
Section 5.2, we obtain the worst-case response time upper bound for aperiodic jobs by
formulating a linear programming problem for finding the interfering jobs’ distribution
across different processors having the most severe impact on the job under analysis. In
Sections 5.3, 5.4 and 5.5, we identify platforms upon which the problem can be solved more
efficiently. Finally, in Section 5.6, we generalize the aperiodic task test for sporadic tasks by
upper bounding the sporadic task execution requirement over any generic time interval.

5.1 Problem statement
On identical processors, the worst-case interference for a job is when all processors are running
higher-priority jobs and the job is completely blocked (otherwise, since all processors have the
same speed, the job can run on a processor without any interference). The following example
shows that on a uniform multiprocessor, the worst case might be when only a few processors
are running the higher-priority jobs, and the job under analysis is running simultaneously.

▶ Example 2. Consider the execution of four jobs: J1 (highest priority), J2 (high priority),
J3 (low priority), J4 (lowest priority) within time interval ∆ = 10. The maximal execution
requirements of jobs J1, J2, J3, and J4 are respectively C1 = 49, C2 = 14, and C3 = 7.
The uniform multiprocessor upon which the jobs execute comprises three processors with
computing capacities of s1 = 7, s2 = 2, and s3 = 1. Let us assume that job J4 is released at
time instant 0 and jobs J1, J2, and J3 can be released at any arbitrary instant. We evaluate
the processing time available in a time interval of length 10 for the lowest priority job J4. If
jobs J1, J2, and J3 occupy the processors simultaneously in the interval [0, 7], as depicted in
Figure 1 (a), job J4 can execute at most 3 · 7 = 21 units within the interval [7, 10], running



B. Sun, T. Kloda and M. Caccamo 14:7

on the fastest processor (J4 execution is marked as the green area in both figures while
the other jobs execution as the blue area). If the jobs arrive asynchronously and run on
the fastest processor one after another, then the second-fastest processor is available for job
J4 during the entire interval [0, 10] resulting in 10 · 2 = 20 < 21 of available computation
units as shown in Figure 1 (b).

t

cu
m

ul
at

iv
e

sp
ee

d

7

9
10

0 7 10 t
cu

m
ul

at
iv

e
sp

ee
d

7

9
10

0 7 9 10

a) Higher-priority jobs arrive synchronously b) Higher-priority jobs arrive one after another

Figure 1 Fixed-priority schedules of four jobs on three processors (m = 3) from Example 2.

Clearly, the above example shows that the synchronous arrival of high-priority jobs
might not always be a critical instant (i.e., a task arrival instant at which the task has the
longest response time [57]) as it has already been proved for identical multiprocessor [53].
The example shows also, and more importantly, that concentrating all high-priority jobs
interference in the same time interval might not always lead to the worst case. It cannot be
decided a priori whether the worst case is when all processors are busy, or just a few faster
processors are kept busy but for longer. We formulate this problem in the following subsection.

5.2 Response time analysis for aperiodic jobs

We search for a safe upper bound R̂i on the aperiodic job Ji worst-case response time Ri.

In fixed-priority preemptive scheduling, job execution is not affected by lower-priority
jobs. The interference can arise only from higher-priority jobs. Consider job Ji and suppose
that each higher-priority job Jk ∈ hp(i) executes 0 ≤ ek ≤ Ck computation units during
the job Ji worst-case response time Ri. Let ∆j ≥ 0 be a cumulative time length within
the time interval [0, Ri] during which 0 ≤ j ≤ m processors are busy executing hp(i) jobs.
During ∆j , job Ji executes on the j+1-th processor with a speed of sj+1, for j < m,
and on none processor for j = m. Figure 2 illustrates our approach. If i ≤ m, then no
more than i − 1 fastest processors can be busy executing hp(i) jobs while job Ji runs on
a processor with computing capacity no slower than si. By abuse of notation, we define
m(i) = min{m, i− 1} as the maximal number of processors that can be executing hp(i) jobs
while job Ji is ready for execution or already executing. For the sake of notation, during
time interval ∆0 = Ri −

∑m(i)
j=1 ∆j none of the hp(i) jobs are executing. If job Ji has the

ECRTS 2024



14:8 Response time analysis for fixed-priority preemptive uniform multiprocessor systems

t

cu
m

ul
at

iv
e

sp
ee

d

S1

S2

S3

S4

∆3 ∆2 ∆1 ∆0

Ri

Figure 2 Execution of higher-priority jobs hp(i) and job Ji under analysis .

worst-case response time Ri, then the following conditions must be satisfied:

m(i)∑
j=1

Sj ·∆j =
∑

k∈hp(i)

ek

m(i)∑
j=0

∆j = Ri

m(i)∑
j=0

sj+1 ·∆j = Ci with sm+1 = 0

(2)

(3)

(4)

Equation (2) ensures that the interference generated by the hp(i) jobs (please recall that
ek is the Jk’s actual execution time) fits into all intervals ∆j for all j : 1 ≤ j ≤ m(i) and
Equation (3) that the total time of the interference is within Ri. Equation (4) gives the
number of execution units available to job Ji within the time interval [0, Ri] that must be
equal to Ci as Ji completes its execution at Ri.

Based on the above properties, we derive an upper bound R̂i on the job Ji worst-
case response time Ri. We formulate a linear programming problem (LP) where the
variables are intervals ∆0, ∆1, . . . , ∆m(i) and the objective function is an upper bound R̂i

on the job Ji worst-case response time. Since the actual execution time ek of each higher-
priority job Jk ∈ hp(i) is unknown, we upper bound its value by its worst-case execution
time Ck. Equations (2)-(4) are rewritten as follows to formulate an instance of linear
programming problem:

maximize: R̂i =
m(i)∑
j=0

∆j

subject to:
m(i)∑
j=1

Sj ·∆j ≤
∑

k∈hp(i)

Ck

m(i)∑
j=0

sj+1 ·∆j = Ci with sm+1 = 0

∆j ≥ 0 ∀ 0 ≤ j ≤ m(i)

(5)

(6)

(7)

(8)

The upper bound R̂i on the job Ji worst-case response time is found by solving the above



B. Sun, T. Kloda and M. Caccamo 14:9

linear programming problem where Formula (5) is maximized with the constraints given by
Formulas (6)-(8). The linear programming problems can be solved in polynomial time in the
size of the input [52] (in our case m(i) ≤ m).

The upper bound overestimation comes from the fact that the above-defined problem
allows a single job to be processed simultaneously on different processors while, in reality,
every job can run only upon a single processor at a time. A simple bound can be found for
∆i−1 when i ≤ m. The longest time all i− 1 processors can be occupied by i− 1 jobs is given
as ∆i−1 = minj<i{Cj/sj}. However, for the general case (∆j for j ̸= i − 1), finding how
long j processors are occupied by i− 1 jobs can be equivalent to deciding their schedulability
that has been shown to be a NP-hard problem (Theorem 2.6 in [55]) for identical processors.

5.3 Special case: Dense schedule
Under certain circumstances, the worst-case scenario for computing the worst-case response
time upper bound can be identified without solving the linear programming problem. We
establish the relation between the computing capacities of particular processors for which the
worst-case response time upper bound given by the solution of the linear problem defined
with Formulas (5)-(8) has a specific form that we will refer to as dense schedule.

▶ Definition 3 (Dense schedule). We say a schedule is dense when all higher-priority jobs hp(i)
execute simultaneously as much as possible, ∆m(i) ≥ 0, ∆0 ≥ 0, ∀ 0 < j < m(i) : ∆j = 0
where (∆m(i), . . . , ∆0) is the solution of the linear problem defined with Formulas (5)-(8).

▶ Example 4. Consider again the jobs running on the uniform processor from Example 2.
Figure 1 a) shows a dense schedule where ∆3 = 7, ∆2 = ∆1 = 0, and ∆0 = 3.

To ease the presentation, we assume i > 1. If i = 1, J1 has the highest priority and
always executes on the fastest processor. Figure 3 illustrates the proof strategy in Theorem 6
(for ease of the presentation, the figure assumes 1 < i ≤ m, but the theorem also considers
the case when i > m). We first create two schedules. In the first schedule, the interference
of higher-priority jobs hp(i) (blue area) is distributed arbitrarily among all interference
intervals ∆1, . . . , ∆i−1. In the second schedule, the higher-priority jobs hp(i) perfectly
overlap, ∀ 0 < j < i − 1 : ∆j = 0, ∆i−1 = Ii/Si−1 where Ii =

∑
k∈hp(i) Ck (blue area)

forming a dense schedule. Then, we compare both schedules with respect to their worst-case
interference and available execution for job Ji (green area).

For the purpose of the next theorem, we introduce the following auxiliary definition:

▶ Definition 5. For any j > 1 we define Ωj as:

Ωj = s1 − sj

Sj−1
(9)

with sj = 0 and Sj = Sm for j > m.

▶ Theorem 6. Suppose that job Ji with static priority i > 1 is scheduled by a fixed-priority
policy upon an m-uniform multiprocessor. If the following condition is satisfied:

Ωi ≥ max
1<j<i

Ωj (10)

then the dense schedule leads to the job Ji worst-case response time upper bound R̂i > 0.

ECRTS 2024



14:10 Response time analysis for fixed-priority preemptive uniform multiprocessor systems

t

cu
m

u
la

ti
v
e

sp
ee

d

S1

Sj

Sj+1

Si−1

Si

∆i−1 ∆j+1 ∆j ∆1 ∆0

∆

t

cu
m

u
la

ti
v
e

sp
ee

d

S1

Si−1

Si

∆′
i−1 ∆′

0

∆

a) Arbitrary schedule (∆0, . . . , ∆i−1) b) Dense schedule (∆′
0, . . . , ∆′

i−1)

Figure 3 Two schedules from Theorem 6.

Proof. We first assume that i ≤ m + 1. We proceed by contradiction. Suppose that a dense
schedule does not lead to the job Ji worst-case response time upper bound.

Let (∆0, . . . , ∆i−1) be a schedule of hp(i) jobs within the time interval [0, R̂i] and assume
that (∆0, . . . , ∆i−1) is not a dense schedule and no other schedule than (∆0, . . . , ∆i−1) gives
a higher worst-case response time upper bound for job Ji. We define Ii as the total execution
requirement of hp(i) jobs within R̂i: Ii = min{

∑
k∈hp(i) Ck, R̂i · Si−1}. Suppose that the

execution units of hp(i) jobs within each interference time ∆j of j processors for j ≤ i− 1
are given by αj · Ii where αj ∈ [0, 1] and

∑i−1
j=1 αj = 1. The lengths of interference times are:

∆0 = R̂i −
i−1∑
j=1

αj · Ii/Sj

∆1 = α1 · Ii/S1

. . .

∆i−2 = αi−2 · Ii/Si−2

∆i−1 = αi−1 · Ii/Si−1

Let (∆′
0, . . . , ∆′

i−1) be a dense schedule of hp(i) jobs within time interval [0, R̂i]:

∆′
0 = R̂i − Ii/Si−1

∆′
1 = 0

. . .

∆′
i−2 = 0

∆′
i−1 = Ii/Si−1

The schedule (∆0, . . . , ∆i−1) results in the worst-case interference for Ji, hence the dense
schedule (∆′

0, . . . , ∆′
i−1) cannot lead to higher interference. According to Formula (7), it

must hold that:

i−1∑
j=0

sj+1 ·∆′
j >

i−1∑
j=0

sj+1 ·∆j



B. Sun, T. Kloda and M. Caccamo 14:11

We rewrite the above inequality as follows:

Ii/Si−1︸ ︷︷ ︸
∆′

i−1

·si + (R̂i − Ii/Si−1)︸ ︷︷ ︸
∆′

0

·s1 >

i−1∑
j=1

(αj · Ii/Sj)︸ ︷︷ ︸
∆j

·sj+1 + (R̂i −
i−1∑
j=1

αj · Ii/Sj)︸ ︷︷ ︸
∆0

·s1

We rearrange the terms:

i−1∑
j=1

αj ·
(

s1 − sj+1

Sj

)
>

s1 − si

Si−1

Finally, we replace the terms on the left- and on the right-hand side using Equation (9) and
shift the index j by one (i.e., we iterate from 2 to i instead of from 1 to i− 1):

i∑
j=2

αj−1 · Ωj > Ωi

Using Inequality (10), we can upper bound the left-hand side of the above relation as follows:

i∑
j=2

αj−1 · Ωj ≤ Ωi ·
i∑

j=2
αj−1 = Ωi ·

i−1∑
j=1

αj = Ωi · 1 = Ωi

Comparing it to the right-hand of the previous relation gives a contradiction (Ωi > Ωi).
We now assume that i > m + 1. The linear problem defined in Formulas (5)-(8) has the

same number of constraints and variables ∆j for i = m + 1, considered in the first part of
the proof, and for every i > m + 1. The upper bound computation takes as the input the
cumulative interference from all higher-priority jobs (i.e., it is ignored how this interference is
distributed among the particular jobs). We note that Ωm+1 = s1/Sm and for any j > m + 1
Ωj = Ωm+1 by Definition 5. Hence, the proof is equivalent to the proof for i = m + 1 from
the first part of the proof.

◀

If for some job Ji the conditions of Theorem 6 do not hold, but there exists i′ > i for which
the conditions hold, it can be pessimistically assumed that job Ji has priority i′ and can run
upon i′ − i slower processors. The set of higher-priority jobs hp(i) should remain unchanged.

5.4 Dense schedule in two-speed platforms
The worst-case scenario for computing the worst-case response time upper bound can also be
simplified using the dense schedule for two-speed platforms with only two different processor
speeds. In ARM big.LITTLE (now succeeded by DynamIQ) such architecture combines
“fast” high-power cores with “slow” low-power cores.

In two-speed platforms, the higher-priority interfering jobs hp(i), at any time instant, can
run either on all fastest processors or all available processors. That is, if the higher-priority
jobs hp(i) run on all but one fastest processor, the job Ji can run on the fastest processor
without any interference. If the higher-priority jobs hp(i) run on all but one processor
(among all the available processors), the job Ji can run on the slowest processor without any
interference from the higher-priority jobs hp(i) running on the other slowest processors.

Let m1 be the number of fastest processors. Job Ji with m1-th priority or higher, cannot
be interfered by another hp(i) job and will always execute with no interference. Job Ji with

ECRTS 2024



14:12 Response time analysis for fixed-priority preemptive uniform multiprocessor systems

priority i such that m1 < i ≤ m can only be interfered by the hp(i) jobs running on the
fastest processors. Hence, its worst-case response time occurs in a dense schedule.

In what follows, we focus on i > m and search for such two-speed multiprocessors where
a dense schedule leads to the worst-case response time upper bound. As in Theorem 6, we
will create two schedules, an arbitrary schedule and a dense schedule, to compare them with
respect to their worst-case interference and available execution for job Ji. Figure 4 shows
the arbitrary schedule for the case of two-speed platforms.

t

cu
m

ul
at

iv
e

sp
ee

d

S1

Sm1

Sm

∆m ∆m1 ∆0

Ri

s1

sm

Figure 4 Execution of higher-priority jobs hp(i) and job Ji (i > m) under analysis upon
a two-speed multiprocessor (with m1 fastest processors).

▶ Theorem 7. Suppose that job Ji with static priority i > m is scheduled by a fixed-priority
policy upon an m-uniform two-speed multiprocessor with m1 s1-speed and m2 sm-speed
processors where s1 > sm and m1 + m2 = m. If the following condition is satisfied:

m1

m2
≥ 1− sm

s1
(11)

then the dense schedule leads to the job Ji worst-case response time upper bound R̂i > 0.

Proof. We proceed by contradiction. Suppose that a dense schedule does not lead to the
job Ji worst-case response time upper bound. All m1 fastest processors have the same
processing speed: s1 = s2 = . . . = sm1 , and the remaining m2 processors (slow) have the
same processing speed: sm1+1 = sm1+2 = . . . = sm. There are three interference times: ∆0
where no interfering job is running, ∆m1 where the interfering jobs are running only on m1
fastest processors, and ∆m where the interfering jobs are running on all available processors.
Let (∆0, ∆m1 , ∆m) be a schedule of hp(i) jobs within the time interval [0, R̂i] and assume
that (∆0, ∆m1 , ∆m) is not a dense schedule and no other schedule than (∆0, ∆m1 , ∆m) gives
a higher worst-case response time upper bound for job Ji. We define Ii as the total execution
requirement of hp(i) jobs within R̂i: Ii = min{

∑
k∈hp(i) Ck, R̂i · Sm}. Suppose that αm1 · Ii

of higher-priority hp(i) workload occurs within interference time ∆m1 and αm · Ii within
interference time ∆m where αm1 , αm ∈ [0, 1] and αm1 + αm = 1. The lengths of interference
times are:

∆0 = R̂i − (αm1 · Ii/Sm1 + αm · Ii/Sm)
∆m1 = αm1 · Ii/Sm1

∆m = αm · Ii/Sm



B. Sun, T. Kloda and M. Caccamo 14:13

Let (∆′
0, ∆′

m1
, ∆′

m) be a dense schedule of hp(i) jobs within time interval [0, R̂i]:
∆′

0 = R̂i − Ii/Sm

∆′
m1

= 0
∆′

m = Ii/Sm

The schedule (∆0, . . . , ∆i−1) results in the worst-case interference for Ji, hence the dense
schedule (∆′

0, . . . , ∆′
i−1) cannot lead to higher interference. According to Formula (7):

m∑
j=0

sj+1 ·∆′
j >

m∑
j=0

sj+1 ·∆j

We rewrite the above inequality as follows:

(R̂i − Ii/Sm)︸ ︷︷ ︸
∆′

0

·s1 > (αm1 · Ii/Sm1)︸ ︷︷ ︸
∆m1

·sm + (R̂i − (αm1 · Ii/Sm1 + αm · Ii/Sm))︸ ︷︷ ︸
∆0

·s1

−s1/Sm > (αm1 · sm/Sm1)− (αm1 · s1/Sm1 + αm · s1/Sm)

s1

Sm
· (αm − 1) >

αm1

Sm1

· (sm − s1)

By substituting αm1 + αm = 1:

s1

Sm
· (−αm1) >

αm1

Sm1

· (sm − s1)

s1

Sm
+ sm − s1

Sm1

< 0

By substituting Sm = m1 · s1 + m2 · sm and Sm1 = m1 · s1:

s1

m1 · s1 + m2 · sm
+ sm − s1

m1 · s1
< 0

m1 · s2
1 + m1 · s1 · sm + m2 · s2

m −m1 · s2
1 −m2 · s1 · sm < 0

m1 · s1 + m2 · sm −m2 · s1 < 0

m1

m2
<

s1 − sm

s1

◀

In particular, we can easily show that for any two-speed multiprocessor with the same
number of fast and slow processors or with more fast processors, Theorem 7 is always true.

▶ Corollary 8. On a two-speed uniform multiprocessor with no fewer fast than slow processors,
the dense schedule always leads to the job Ji worst-case response time upper bound.

Proof. For m1 ≥ m2, Formula (11) gives sm

s1
≥ 0 and Theorem 7 is always true. ◀

ECRTS 2024



14:14 Response time analysis for fixed-priority preemptive uniform multiprocessor systems

5.5 Response time computation for dense schedule
We now compute the worst-case response time upper bound R̂i of job Ji that executes on a
uniform multiprocessor system that fulfills the conditions of Theorems 6 and 7. Consider again
Figure 3 b). The total interference of higher-priority jobs hp(i) is denoted by Ii =

∑
k∈hp(i) Ck.

We consider two cases with respect to the job Ji priority: i ≤ m and i > m. If i > m, we
define ∆m = Ii/Sm and ∆0 = Ci/s1. During interval ∆m, job Ji is completely blocked, and
during interval ∆0, job Ji executes on the fastest processor with the computation speed s1.
If i ≤ m, we define ∆i−1 = min{Ii/Si−1, Ci/si} and ∆′

0 = (Ci − ∆i−1 · si)/s1. During
interval ∆i−1, job Ji executes with computation speed si, and during time interval ∆′

0, job Ji,
if not completed, executes the remainder of its workload on the fastest processor having the
computation speed s1.

R̂i =
{

∆m + ∆0 if i > m,

∆i−1 + ∆′
0 otherwise.

(12)

The time complexity of the above upper bound computation is bounded by the sum
computation in Ii. It can have at most n − 1 elements where n is the number of jobs.
The worst-case time complexity is, therefore, O(n). Verifying the conditions of Theorem 6
(i.e., computing Ωj using Equation (9) and checking Formula (10)) can involve m steps using
the fact that Sj = Sj−1 + sj .

5.6 Response time analysis for sporadic tasks
We search for an upper bound R̂i on the sporadic task τi worst-case response time Ri.

We first upper bound the interference generated by the higher-priority tasks τk ∈ hp(i)
within any generic time interval. Then, we insert this interference into the linear programming
problem described in the previous section. We check whether a given time interval is large
enough to accommodate the execution requirement. In the first schedulability test (Single),
the length of the time interval is fixed to the relative deadline of the task under analysis,
and in the second schedulability test (RTA), iteratively increased.

5.6.1 Upper bound on sporadic task workload
We compute an upper bound on the workload that a sporadic task τk ∈ hp(i) can execute in
a generic time interval of length ∆ > 0. We extend the state-of-the-art workload computation
methods derived for identical multiprocessors [9, 14, 21]. In particular, we modify the upper
bound on the task start time by taking into account processor speeds.

Figure 5 illustrates our approach. We assume that task τk is schedulable and that we
know its worst-case response time upper bound R̂k. The maximum possible τk workload
within a time interval of length ∆ is when the first τk job (also called carry-in job) starts as
late as possible after its release, and all successive τk jobs are released as soon as possible.
The interval starts when the carry-in job starts its execution. The latest start time of task τk

job on uniform multiprocessor can be upper bounded by:

δk = R̂k − Ck/s1 (13)

(i.e., we assume that the job executes on the fastest processor uninterruptedly from its start
to its end). The last τk job released within the interval (also called carry-out job) might not
entirely fit the interval.



B. Sun, T. Kloda and M. Caccamo 14:15

t

R̂k

δk

Tk Tk Ck/s1

∆

Figure 5 Sporadic task τk maximum workload in generic time interval of length ∆ > 0.

The contribution of τk body jobs (i.e., jobs that are released after carry-in and before
carry-out jobs) and the carry-in job within a time interval of ∆ can be upper bounded by:⌊

∆ + δk

Tk

⌋
· Ck

The carry-out job contribution on uniform multiprocessor is at most:

min {Ck, s1 · ((∆ + δk) mod Tk)}

An upper bound on the task τk workload including a carry-in job within a generic time
interval of length ∆ > 0 can be then expressed as:

ICI
k (∆) =

⌊
∆ + δk

Tk

⌋
· Ck + min {Ck, s1 · ((∆ + δk) mod Tk)} (14)

An upper bound on the task τk workload without carry-in job within a generic time interval
of length ∆ > 0 is given by:

INC
k (∆) =

⌊
∆
Tk

⌋
· Ck + min {Ck, s1 · (∆ mod Tk)} (15)

We can limit the number of carry-in jobs using the approach proposed in [12,46]. A work-
conserving algorithm does not leave any processor idle when there is a job ready to execute.
Let t0 denote the beginning of the interval of interest when the job under analysis is released
and starts its execution that finishes at its worst-case response time. If all processors are
busy executing higher-priority jobs at t0, we can move left the time instant t0 to the the first
time instant when there is at least one processor idle or executing a lower- or equal-priority
job. By doing so, the response time of the job under analysis will not decrease (i.e., the
job cannot execute as all the processors are busy). Consequently, at the time instant t0
the number of the higher-priority active jobs cannot be more than m − 1 for i > m and
max{0, i− 2} otherwise. We define the maximum number of carry-in jobs as:

C(i) = max {0, min {m− 1, i− 2}} = max {0, m(i)− 1} (16)

The cumulative interference of hp(i) tasks within generic time interval of length ∆ can
be upper bounded by:

Ii(∆) =
∑

k∈hp(i)

INC
k (∆) +

C(i) largest∑
k∈hp(i)

(
ICI

k (∆)− INC
k (∆)

)
(17)

ECRTS 2024



14:16 Response time analysis for fixed-priority preemptive uniform multiprocessor systems

5.6.2 Worst-case response time upper bound computation

We extend the linear programming problem for computation of the worst-case response time
upper bound for aperiodic jobs defined with Formulas (5)-(8) to recurrent tasks. We derive
two schedulability tests: the first (Single) checks task τi schedulability in interval ∆ = Di,
and the second (RTA) increments iteratively interval ∆ until it is large enough to execute
task τi and all higher-priority interfering tasks hp(i).

Below, the linear programming problem for computation of the task τi worst-case response
time upper bound R̂i for periodic and sporadic tasks over time interval ∆ > 0 is given
(Formulas (18)-(21)). Compared to the linear programming problem for aperiodic jobs,
we replace on the right-hand side of the first constraint, Formula (19), the workload of
the higher-priority jobs with the workload of the higher-priority sporadic tasks that can
be generated within a generic time interval ∆. Their cumulative interference is computed
with Equation (17) derived in the previous subsection. If the resulting worst-case response
time upper bound R̂i is less than ∆, we can conclude that R̂i upper bounds the worst-case
response time Ri.

maximize: R̂i =
m(i)∑
j=0

∆j

subject to:
m(i)∑
j=1

Sj ·∆j ≤ Ii(∆)

m(i)∑
j=0

sj+1 ·∆j = Ci with sm+1 = 0

∆j ≥ 0 ∀ 0 ≤ j ≤ m(i)

(18)

(19)

(20)

(21)

Single-interval test. Based on the above formulation, we propose our first schedulability
test, Single-interval, for sporadic and periodic tasks running upon a uniform multiprocessor.
For each task τi, in decreasing priority order, we solve the linear programming problem
defined by Formulas (18)-(21) for ∆ = Di. If the resulting worst-case response time upper
bound R̂i is less than or equal to Di, we conclude that the task is schedulable and move to
the next task τi+1. As we are proceeding in tasks decreasing priority order, we can use the
previously obtained R̂i to upper bound τi latest start time δi (see Equation (13)) needed
for hp(i+1) interference calculation. The overall running time of the test is bounded by the
complexity of the linear programming problem, which is known to be polynomial [52].

Response time analysis. The second proposed approach, response time analysis (RTA),
solves for each task τi, in decreasing priority order, the linear programming problem defined
by Formulas (18)-(21) by increasing ∆ until the obtained worst-case response time upper
bound R̂i is less than or equal to ∆. The schedulability test for task τi is given in Algorithm 1.
In line 7, we increment ∆ to the value of the closest integer greater than or equal to the
previously obtained solution. We check only discrete values. The solution R̂i is the task τi

worst-case response time upper bound if the time interval length ∆ is greater than or equal
to R̂i. Algorithm 1 has pseudo-polynomial time complexity as it calls a polynomial-time
procedure to solve the linear programming problem at most Di times.

In both tests, if Theorem 6 or 7 conditions can be verified (dense schedule), the linear
programming problem can be replaced with a respective method.



B. Sun, T. Kloda and M. Caccamo 14:17

Algorithm 1 Worst-case response time upper bound using linear programming for sporadic tasks
1: ∆← Ci/s1
2: while ∆ ≤ Di do
3: R̂i ← Solve LP given by Formulas (18)-(21)
4: if R̂i ≤ ∆ then
5: return R̂i

6: end if
7: ∆← ⌈R̂i⌉
8: end while

5.6.3 Optimal priority assignment
A priority assignment policy P is optimal with respect to a schedulability test S, if and
only if there are no task sets that are deemed schedulable by test S using another priority
assignment policy but not deemed schedulable by test S using policy P [33]. An Optimal
Priority Assignment (OPA) algorithm was proposed for uniprocessor fixed-priority feasibility
analysis by Audsley [5]. Later, it was proved in [31] that Audsley’s OPA is compatible with
a global multiprocessor fixed-priority schedulability test S if and only if the following three
conditions hold:

▶ Condition 1. The schedulability of a task τk may, according to test S, depend on any
independent properties of tasks with priorities higher than k, but not on any properties of
those tasks that depend on their relative priority ordering.

▶ Condition 2. The schedulability of a task τk may, according to test S, depend on any
independent properties of tasks with priorities lower than k, but not on any properties of
those tasks that depend on their relative priority ordering.

▶ Condition 3. When the priorities of any two tasks of adjacent priority are swapped, the
task being assigned the higher priority cannot become unschedulable according to test S, if it
was previously schedulable at the lower priority.

According to the above three conditions, [31] classifies global fixed-priority schedulability
tests into OPA-compatible and OPA-incompatible. Next, we show that the proposed
schedulability test Single and RTA are OPA-compatible by replacing R̂k by Dk in the
calculation of the latest start time of interference task τk (Equation (13)), i.e.,

δk = Dk − Ck/s1 (22)

We note that the latest start time given by (22) is more pessimistic than (13) since R̂k ≤ Dk.
However, it is necessary to use (22) instead of (13) to make the proposed tests OPA-
compatible, since the response time R̂k is dependent on the relative priority ordering
(violating Condition 1), while the deadline Dk is an independent task property. Therefore, we
derive a new version of the proposed schedulability tests, namely Single-OPA and RTA-OPA,
by replacing the latest start time calculation (13) with (22) in Single and RTA, respectively.

▶ Theorem 9. The schedulability tests Single-OPA and RTA-OPA are OPA-compatible.

Proof. It suffices to show that Conditions 1-3 hold. Formulas (14)-(22) depend on the set
of higher-priority tasks, not on their relative priority ordering; hence Condition 1 holds.
Moreover, these formulas have no dependency on lower-priority tasks; hence, Condition 2

ECRTS 2024



14:18 Response time analysis for fixed-priority preemptive uniform multiprocessor systems

holds. Consider two tasks τi and τj initially with priorities k and k + 1, respectively (τi

has higher priority than τj). The upper bound response time of task τj cannot increase
when it is shifted up one priority level to priority k, as the only change in the response time
computation is the removal of task τi from the set of tasks that have higher priority than
task τj ; hence Condition 3 holds. ◀

In what follows, we use Rate Monotonic as the priority assignment policy for Single and
RTA, while OPA for Single-OPA and RTA-OPA in the experimental evaluation.

6 Evaluation

In this section, we present experimental results on randomly generated task sets to evaluate
the effectiveness of the schedulability analyses proposed in Section 5.

6.1 Evaluation settings
We generate synthetic task sets with three varied parameters: number of tasks n ∈ {8, 16},
processor speed configurations [s1, ..., sm] given in Table 1, and task set utilization U ∈
{0.01 · Sm, 0.02 · Sm, . . . , 0.99 · Sm, Sm}. Given a parameter combination, a task set is
generated according to the following procedures. First, we use the Dirichlet-Rescale (DRS)

m = 2 m = 4 m = 8

[2, 1] [2, 2, 1, 1] [2, 2, 2, 2, 1, 1, 1, 1]
[3, 1] [3, 2, 2, 1] [3, 3, 2, 2, 2, 2, 1, 1]
[4, 1] [4, 3, 2, 1] [4, 4, 3, 3, 2, 2, 1, 1]

Table 1 Processor speeds [s1, . . . , sm].

algorithm [44], a generalized version of
the UUnifast [23] and RandFixedSum [37]
algorithms, to generate random task-
utilization values [U1, U2, . . . , Un] that sum
to the requested total utilization U =∑n

i=1 Ui. Then, we randomly generate
period Ti of each task τi in the range
[10 000, 100 000] microsecond and obtain its worst-case execution time as Ci = Ui · Ti.
The generated tasks are assumed to have implicit deadlines.

We evaluate the proposed schedulability tests Single, RTA, Single-OPA, and RTA-OPA
with the schedulability tests for Rate Monotonic (BGRM ) [16] and Earliest Deadline First
(BGEDF) [18] proposed by Baruah and Goossens. For each parameter combination, we
generate 2,000 task sets, as described above and evaluate their schedulability using the
comparison schedulability tests. The tests were implemented using Schedcat Python/C++
library, and the linear programming problem was solved using Gurobi [48] solver version 11.0.0.

6.2 Evaluation results
The percentage of schedulable task sets are shown in Figures 6, 7, 8, respectively, for
m = 2, 4, 8 with n = 8 and Figures 9, 10, 11, respectively, for m = 2, 4, 8 with n = 16, as a
function of normalized utilization U/Sm. The results support the following observations.

▶ Observation 10. The state-of-the-art EDF test BGEDF [18] performs better than the RM
test BGRM [16] on all problem settings.

▶ Observation 11. The proposed RM tests Single and RTA outperform the state-of-the-
art RM test BGRM [16] on all problem settings. Moreover, it performs better than the
state-of-the-art EDF test BGEDF [18] on every problem setting except for m = 2, n = 16.

▶ Remark. This is expected as the state-of-the-art tests are based on the analytical bounds
of the linear programming problem, which is solved by our tests without any further
transformation and precision loss.



B. Sun, T. Kloda and M. Caccamo 14:19

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

Single RTA Single-OPA RTA-OPA BGRM [16] BGEDF [18]

(a) 2-1

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s
(b) 3-1

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

(c) 4-1

Figure 6 Schedulability ratios for m=2 processors and n=8 tasks.

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

Single RTA Single-OPA RTA-OPA BGRM [16] BGEDF [18]

(a) 2-2-1-1

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

(b) 3-2-2-1

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

(c) 4-3-2-1

Figure 7 Schedulability ratios for m=4 processors and n=8 tasks.

▶ Observation 12. The proposed OPA-compatible tests Single-OPA and RTA-OPA outperform
all other schedulability tests under comparison on all problem settings.

▶ Remark. This demonstrates the effectiveness of the proposed schedulability analysis and
the significance of the priority assignment policy associated with the test. Compared to
Single and RTA, Single-OPA and RTA-OPA are more pessimistic in the workload upper
bound calculation due to the replacement of (13) with (22). However, the results show that
the priority assignment is a dominating factor compared to the pessimism.

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

Single RTA Single-OPA RTA-OPA BGRM [16] BGEDF [18]

(a) 2-2-2-2-1-1-1-1

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

(b) 3-3-2-2-2-2-1-1

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

(c) 4-4-3-3-2-2-1-1

Figure 8 Schedulability ratios for m=8 processors and n=8 tasks.

ECRTS 2024



14:20 Response time analysis for fixed-priority preemptive uniform multiprocessor systems

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

Single RTA Single-OPA RTA-OPA BGRM [16] BGEDF [18]

(a) 2-1

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

(b) 3-1

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

(c) 4-1

Figure 9 Schedulability ratios for m=2 processors and n=16 tasks.

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

Single RTA Single-OPA RTA-OPA BGRM [16] BGEDF [18]

(a) 2-2-1-1

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

(b) 3-2-2-1

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s
(c) 4-3-2-1

Figure 10 Schedulability ratios for m=4 processors and n=16 tasks.

7 Conclusions

In this paper, we proposed the response time analysis for sporadic constrained-deadline
tasks executed by a global fixed-priority preemptive scheduler upon a uniform multiprocessor
platform. The analysis leverages the linear programming model to upper bound the impact
of the cumulative interference of the higher-priority tasks. We also observed the relation
between processors’ computational speeds, leading to the predefined worst-case schedules,
especially in certain two-speed platforms commonly used in embedded systems. Based on
the analysis, we propose two schedulability tests with different time complexities and their
OPA-compatible version to exploit better priority assignment. Experimental evaluation

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

Single RTA Single-OPA RTA-OPA BGRM [16] BGEDF [18]

(a) 2-2-2-2-1-1-1-1

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

(b) 3-3-2-2-2-2-1-1

0.2 0.4 0.6 0.8 10%

25%

50%

75%

100%

Normalized Utilization

Sc
he

du
la

bl
e

Ta
sk

s

(c) 4-4-3-3-2-2-1-1

Figure 11 Schedulability ratios for m=8 processors and n=16 tasks.



B. Sun, T. Kloda and M. Caccamo 14:21

based on synthetic task sets demonstrates the effectiveness of the proposed approaches.
The key limiting factor of any global scheduling policy is the cost of thread migration [20,

24,59,60,62]. To partially alleviate this cost, the next generation of big.LITTLE heterogeneous
computing architecture, ARM DynamIQ, provides the shared L3 cache to enable simplified
and more rapid thread migration between the processors [3]. In light of this, our future work
will seek to apply the proposed analysis to limited preemption policies [26,28,63].

The proposed test can also be further improved by adding the constraints on the time
during which a given number of processors is busy and by tightening the carry-in interference
bounds [45]. The work can also be extended to other scheduling policies (e.g., global EDF).

References
1 Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I. Davis. A

comprehensive survey of industry practice in real-time systems. Real-Time Systems, 2021.
doi:10.1007/s11241-021-09376-1.

2 Björn Andersson and Jan Åke Jönsson. Some insights on fixed-priority preemptive non-
partitioned multiprocessor scheduling. In Proceedings of the WIP session of IEEE Real-Time
Systems Symposium (RTSS), 2000.

3 ARM. ARM DynamIQ Shared Unit. Technical Reference Manual. Revision: r0p2., 2017. URL:
https://documentation-service.arm.com/static/5e7e16e0b2608e4d7f0a3030?token=.

4 Neil C. Audsley. Optimal priority assignment and feasibility of static priority tasks with
arbitrary start times. Technical Report YCS-164, Department of Computer Science, University
of York, 1991.

5 Neil C. Audsley. On priority assignment in fixed priority scheduling. Information Processing
Letters, 79(1):39–44, 2001. doi:10.1016/S0020-0190(00)00165-4.

6 Neil C. Audsley, Alan Burns, Robert I. Davis, Ken W. Tindell, and Andy J. Wellings. Fixed
priority pre-emptive scheduling: An historical perspective. Real-Time Systems, 8(2–3):173–198,
1995. doi:10.1007/BF01094342.

7 Neil C. Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J. Wellings. Applying
new scheduling theory to static priority pre-emptive scheduling. Software Engineering Journal,
8:284–292(8), 1993. doi:10.1049/sej.1993.0034.

8 Neil C. Audsley, Alan Burns, Mike Richardson, and Andy Wellings. Hard real-time scheduling:
The deadline-monotonic approach. IFAC Proceedings Volumes, 24(2):127–132, 1991. doi:
10.1016/S1474-6670(17)51283-5.

9 Theodore P. Baker. Multiprocessor EDF and Deadline Monotonic schedulability analysis. In
IEEE Real-Time Systems Symposium (RTSS), pages 120–129, 2003. doi:10.1109/REAL.2003.
1253260.

10 Sanjoy Baruah. Scheduling periodic tasks on uniform multiprocessors. In Euromicro Conference
on Real-Time Systems (ECRTS), pages 7–13, 2000. doi:10.1109/EMRTS.2000.853986.

11 Sanjoy Baruah. Robustness results concerning EDF scheduling upon uniform multiprocessors.
In Euromicro Conference on Real-Time Systems (ECRTS), pages 95–102, 2002. doi:10.1109/
EMRTS.2002.1019189.

12 Sanjoy Baruah. Techniques for multiprocessor global schedulability analysis. In IEEE Real-
Time Systems Symposium (RTSS), pages 119–128, 2007. doi:10.1109/RTSS.2007.35.

13 Sanjoy Baruah. An improved global EDF schedulability test for uniform multiprocessors.
In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
184–192, 2010. doi:10.1109/RTAS.2010.11.

14 Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo. Multiprocessor Scheduling for Real-
Time Systems. Springer Publishing Company, Incorporated, 2015.

15 Sanjoy Baruah and Joël Goossens. Deadline Monotonic scheduling on uniform multiprocessors.
In Theodore P. Baker, Alain Bui, and Sébastien Tixeuil, editors, Principles of Distributed
Systems, 2008.

ECRTS 2024

https://doi.org/10.1007/s11241-021-09376-1
https://documentation-service.arm.com/static/5e7e16e0b2608e4d7f0a3030?token=
https://doi.org/10.1016/S0020-0190(00)00165-4
https://doi.org/10.1007/BF01094342
https://doi.org/10.1049/sej.1993.0034
https://doi.org/10.1016/S1474-6670(17)51283-5
https://doi.org/10.1016/S1474-6670(17)51283-5
https://doi.org/10.1109/REAL.2003.1253260
https://doi.org/10.1109/REAL.2003.1253260
https://doi.org/10.1109/EMRTS.2000.853986
https://doi.org/10.1109/EMRTS.2002.1019189
https://doi.org/10.1109/EMRTS.2002.1019189
https://doi.org/10.1109/RTSS.2007.35
https://doi.org/10.1109/RTAS.2010.11


14:22 Response time analysis for fixed-priority preemptive uniform multiprocessor systems

16 Sanjoy Baruah and Joël Goossens. Rate-monotonic scheduling on uniform multiprocessors.
IEEE Transactions on Computers, 52(7):966–970, 2003. doi:10.1109/TC.2003.1214344.

17 Sanjoy Baruah and Joël Goossens. Rate-monotonic scheduling on uniform multiprocessors. In
23rd International Conference on Distributed Computing Systems, 2003. Proceedings., pages
360–366, 2003. doi:10.1109/ICDCS.2003.1203485.

18 Sanjoy Baruah and Joël Goossens. The EDF scheduling of sporadic task systems on uniform
multiprocessors. In IEEE Real-Time Systems Symposium (RTSS), pages 367–374, 2008.
doi:10.1109/RTSS.2008.32.

19 Sanjoy Baruah, Aloysius Mok, and Louis Rosier. Preemptively scheduling hard-real-time
sporadic tasks on one processor. In IEEE Real-Time Systems Symposium (RTSS), pages
182–190, 1990. doi:10.1109/REAL.1990.128746.

20 Andrea Bastoni, Bjorn B. Brandenburg, and James H. Anderson. Is semi-partitioned scheduling
practical? In Euromicro Conference on Real-Time Systems (ECRTS), pages 125–135, 2011.
doi:10.1109/ECRTS.2011.20.

21 Marko Bertogna and Michele Cirinei. Response-time analysis for globally scheduled symmetric
multiprocessor platforms. In IEEE Real-Time Systems Symposium (RTSS), pages 149–160,
2007. doi:10.1109/RTSS.2007.31.

22 Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Schedulability analysis of global
scheduling algorithms on multiprocessor platforms. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 20(4):553–566, 2009. doi:10.1109/TPDS.2008.129.

23 Enrico Bini and Giorgio Buttazzo. Measuring the performance of schedulability tests. Real-
Time Systems, 30(1):129–154, 2005. doi:10.1007/s11241-005-0507-9.

24 Björn B. Brandenburg and Mahircan Gül. Global scheduling not required: Simple, near-
optimal multiprocessor real-time scheduling with semi-partitioned reservations. In IEEE
Real-Time Systems Symposium (RTSS), pages 99–110, 2016. doi:10.1109/RTSS.2016.019.

25 Giorgio Buttazzo. Rate Monotonic vs. EDF: Judgment Day. Real-Time Systems, 29:5–26,
2004. doi:10.1023/B:TIME.0000048932.30002.d9.

26 Giorgio Buttazzo, Marko Bertogna, and Gang Yao. Limited preemptive scheduling for
real-time systems. a survey. IEEE Transactions on Industrial Informatics, 9(1):3–15, 2013.
doi:10.1109/TII.2012.2188805.

27 Jacek Błażewicz, Klaus Ecker, Erwin Pesch, Günter Schmidt, and Jan Węglarz. Handbook on
Scheduling: Models and Methods for Advanced Planning. Springer-Verlag, 2007.

28 Bipasa Chattopadhyay and Sanjoy Baruah. Limited-preemption scheduling on multiprocessors.
In International Conference on Real-Time Networks and Systems (RTNS), page 225–234, 2014.
doi:10.1145/2659787.2659798.

29 Liliana Cucu and Joël Goossens. Feasibility intervals for fixed-priority real-time scheduling
on uniform multiprocessors. In IEEE Conference on Emerging Technologies and Factory
Automation (ETFA), pages 397–404, 2006. doi:10.1109/ETFA.2006.355388.

30 Abhijit Davare, Qi Zhu, Marco Di Natale, Claudio Pinello, Sri Kanajan, and Alberto
Sangiovanni-Vincentelli. Period optimization for hard real-time distributed automotive systems.
In ACM/IEEE Design Automation Conference (DAC), pages 278–283, 2007.

31 Robert I. Davis and Alan Burns. Improved priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems. Real-Time Systems, 47:1–40, 2011.

32 Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv., 43(4), 2011. doi:10.1145/1978802.1978814.

33 Robert I. Davis, Liliana Cucu-Grosjean, Marko Bertogna, and Alan Burns. A review of priority
assignment in real-time systems. Journal of Systems Architecture, 65:64–82, 2016.

34 Robert I. Davis, Attila Zabos, and Alan Burns. Efficient exact schedulability tests for
fixed priority real-time systems. IEEE Transactions on Computers, 57(9):1261–1276, 2008.
doi:10.1109/TC.2008.66.

https://doi.org/10.1109/TC.2003.1214344
https://doi.org/10.1109/ICDCS.2003.1203485
https://doi.org/10.1109/RTSS.2008.32
https://doi.org/10.1109/REAL.1990.128746
https://doi.org/10.1109/ECRTS.2011.20
https://doi.org/10.1109/RTSS.2007.31
https://doi.org/10.1109/TPDS.2008.129
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1109/RTSS.2016.019
https://doi.org/10.1023/B:TIME.0000048932.30002.d9
https://doi.org/10.1109/TII.2012.2188805
https://doi.org/10.1145/2659787.2659798
https://doi.org/10.1109/ETFA.2006.355388
https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1109/TC.2008.66


B. Sun, T. Kloda and M. Caccamo 14:23

35 Friedrich Eisenbrand and Thomas Rothvoß. Static-priority real-time scheduling: Response
time computation is np-hard. In IEEE Real-Time Systems Symposium (RTSS), pages 397–406,
2008. doi:10.1109/RTSS.2008.25.

36 Pontus Ekberg and Sanjoy Baruah. Partitioned scheduling of recurrent real-time tasks. In
IEEE Real-Time Systems Symposium (RTSS), pages 356–367, 2021. doi:10.1109/RTSS52674.
2021.00040.

37 Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for the synthesis of
multiprocessor tasksets. In the 1st International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS), pages 6–11, 2010.

38 Awi Federgruen and Henry Groenevelt. Preemptive scheduling of uniform machines by ordinary
network flow techniques. Management Science, 32(3):341–349, 1986.

39 Shelby Funk and Sanjoy Baruah. Task assignment on uniform heterogeneous multiprocessors.
In Euromicro Conference on Real-Time Systems (ECRTS), pages 219–226, 2005. doi:10.
1109/ECRTS.2005.31.

40 Shelby Funk, Joël Goossens, and Sanjoy Baruah. On-line scheduling on uniform multiprocessors.
In IEEE Real-Time Systems Symposium (RTSS), pages 183–192, 2001. doi:10.1109/REAL.
2001.990609.

41 Teofilo Gonzalez. Optimal mean finish time preemptive schedules. In Technical Report 220.
Computer Science Department, Pennsylvania State University Chichester, 1977.

42 Teofilo Gonzalez and Sartaj Sahni. Preemptive scheduling of uniform processor systems.
Journal of the ACM (JACM), 25(1):92–101, 1978. doi:10.1145/322047.322055.

43 Ronald L. Graham, Eugene L. Lawler, Jan K. Lenstra, and Alexander H. G. Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: a survey. In P.L.
Hammer, E.L. Johnson, and B.H. Korte, editors, Discrete Optimization II, volume 5 of Annals
of Discrete Mathematics, pages 287–326. 1979. doi:10.1016/S0167-5060(08)70356-X.

44 David Griffin, Iain Bate, and Robert I. Davis. Generating utilization vectors for the systematic
evaluation of schedulability tests. In IEEE Real-Time Systems Symposium (RTSS), pages
76–88, 2020. doi:10.1109/RTSS49844.2020.00018.

45 Nan Guan, Meiling Han, Chuancai Gu, Qingxu Deng, and Wang Yi. Bounding carry-in
interference to improve fixed-priority global multiprocessor scheduling analysis. In IEEE
International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 11–20, 2015. doi:10.1109/RTCSA.2015.9.

46 Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. New response time bounds for fixed priority
multiprocessor scheduling. In IEEE Real-Time Systems Symposium (RTSS), pages 387–397,
2009. doi:10.1109/RTSS.2009.11.

47 Arpan Gujarati, Felipe Cerqueira, and Björn B. Brandenburg. Multiprocessor real-time
scheduling with arbitrary processor affinities: From practice to theory. Real-Time Systems,
51(4):440–483, 2015. doi:10.1007/s11241-014-9205-9.

48 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.
gurobi.com.

49 Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for scheduling nonidentical
processors. Journal of the ACM (JACM), 23(2):317–327, 1976. doi:10.1145/321941.321951.

50 Edward C. Horvath, Shui Lam, and Ravi Sethi. A level algorithm for preemptive scheduling.
Journal of the ACM (JACM), 24(1):32–43, 1977. doi:10.1145/321992.321995.

51 Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. Journal of the
ACM (JACM), 47(4):617–643, 2000. doi:10.1145/347476.347479.

52 Leonid Genrikhovich Khachiyan. A polynomial algorithm in linear programming. In Doklady
Akademii Nauk, volume 244, pages 1093–1096. Russian Academy of Sciences, 1979.

53 Sylvain Lauzac, Rami Melhem, and Daniel Mossé. Comparison of global and partitioning
schemes for scheduling rate monotonic tasks on a multiprocessor. In EUROMICRO Workshop
on Real-Time Systems, pages 188–195, 1998. doi:10.1109/EMWRTS.1998.685084.

ECRTS 2024

https://doi.org/10.1109/RTSS.2008.25
https://doi.org/10.1109/RTSS52674.2021.00040
https://doi.org/10.1109/RTSS52674.2021.00040
https://doi.org/10.1109/ECRTS.2005.31
https://doi.org/10.1109/ECRTS.2005.31
https://doi.org/10.1109/REAL.2001.990609
https://doi.org/10.1109/REAL.2001.990609
https://doi.org/10.1145/322047.322055
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1109/RTSS49844.2020.00018
https://doi.org/10.1109/RTCSA.2015.9
https://doi.org/10.1109/RTSS.2009.11
https://doi.org/10.1007/s11241-014-9205-9
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1145/321941.321951
https://doi.org/10.1145/321992.321995
https://doi.org/10.1145/347476.347479
https://doi.org/10.1109/EMWRTS.1998.685084


14:24 Response time analysis for fixed-priority preemptive uniform multiprocessor systems

54 John Lehoczky, Lui Sha, and Ye Ding. The rate monotonic scheduling algorithm: exact
characterization and average case behavior. In IEEE Real-Time Systems Symposium (RTSS),
pages 166–171, 1989. doi:10.1109/REAL.1989.63567.

55 Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity of fixed-priority scheduling
of periodic, real-time tasks. Performance Evaluation, 2(4):237–250, 1982. doi:10.1016/
0166-5316(82)90024-4.

56 Björn Lisper and Peter Mellgren. Response-time calculation and priority assignment with
integer programming methods. In Eduardo Tovar and Christer Norström, editors, Euromicro
Conference on Real-Time Systems (ECRTS), pages 13–16, 2001. URL: https://www.es.mdh.
se/pdf_publications/282.pdf.

57 C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. Journal of the ACM (JACM), 20(1):46–61, 1973. doi:10.1145/321738.
321743.

58 Lars Lundberg. Multiprocessor scheduling of age constraint processes. In International
Conference on Real-Time Computing Systems and Applications (RTCSA), pages 42–47, 1998.
doi:10.1109/RTCSA.1998.726350.

59 Geoffrey Nelissen, Vandy Berten, Joël Goossens, and Dragomir Milojevic. Reducing
preemptions and migrations in real-time multiprocessor scheduling algorithms by releasing the
fairness. In IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), pages 15–24, 2011. doi:10.1109/RTCSA.2011.57.

60 N. Saranya and R.C. Hansdah. Dynamic partitioning based scheduling of real-time tasks in
multicore processors. In IEEE International Symposium on Real-Time Distributed Computing,
pages 190–197, 2015. doi:10.1109/ISORC.2015.23.

61 Lui Sha, Tarek Abdelzaher, Karl-Erik Årzén, Anton Cervin, Theodore Baker, Alan Burns,
Giorgio Buttazzo, Marco Caccamo, John Lehoczky, and Aloysius K Mok. Real time scheduling
theory: A historical perspective. Real-Time Systems, 28:101–155, 2004. doi:10.1023/B:
TIME.0000045315.61234.1e.

62 Mayank Shekhar, Abhik Sarkar, Harini Ramaprasad, and Frank Mueller. Semi-partitioned
hard-real-time scheduling under locked cache migration in multicore systems. In Euromicro
Conference on Real-Time Systems (ECRTS), pages 331–340, 2012. doi:10.1109/ECRTS.2012.
27.

63 Abhilash Thekkilakattil, Robert I. Davis, Radu Dobrin, Sasikumar Punnekkat, and Marko
Bertogna. Multiprocessor fixed priority scheduling with limited preemptions. In International
Conference on Real-Time and Networks Systems (RTNS), page 13–22, 2015. doi:10.1145/
2834848.2834855.

64 Kecheng Yang and James Anderson. Optimal GEDF-based schedulers that allow intra-task
parallelism on heterogeneous multiprocessors. In IEEE Symposium on Embedded Systems
for Real-time Multimedia (ESTIMedia), pages 30–39, 2014. doi:10.1109/ESTIMedia.2014.
6962343.

65 Kecheng Yang and James Anderson. On the soft real-time optimality of global EDF on
uniform multiprocessors. In IEEE Real-Time Systems Symposium (RTSS), pages 319–330,
2017. doi:10.1109/RTSS.2017.00037.

66 Wei Zheng, Qi Zhu, Marco Di Natale, and Alberto Sangiovanni Vincentelli. Definition of task
allocation and priority assignment in hard real-time distributed systems. In IEEE Real-Time
Systems Symposium (RTSS), pages 161–170, 2007. doi:10.1109/RTSS.2007.40.

67 Qi Zhu, Haibo Zeng, Wei Zheng, Marco Di Natale, and Alberto Sangiovanni-Vincentelli.
Optimization of task allocation and priority assignment in hard real-time distributed systems.
ACM Transactions on Embedded Computing Systems (TECS), 11(4), 2013. doi:10.1145/
2362336.2362352.

https://doi.org/10.1109/REAL.1989.63567
https://doi.org/10.1016/0166-5316(82)90024-4
https://doi.org/10.1016/0166-5316(82)90024-4
https://www.es.mdh.se/pdf_publications/282.pdf
https://www.es.mdh.se/pdf_publications/282.pdf
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/RTCSA.1998.726350
https://doi.org/10.1109/RTCSA.2011.57
https://doi.org/10.1109/ISORC.2015.23
https://doi.org/10.1023/B:TIME.0000045315.61234.1e
https://doi.org/10.1023/B:TIME.0000045315.61234.1e
https://doi.org/10.1109/ECRTS.2012.27
https://doi.org/10.1109/ECRTS.2012.27
https://doi.org/10.1145/2834848.2834855
https://doi.org/10.1145/2834848.2834855
https://doi.org/10.1109/ESTIMedia.2014.6962343
https://doi.org/10.1109/ESTIMedia.2014.6962343
https://doi.org/10.1109/RTSS.2017.00037
https://doi.org/10.1109/RTSS.2007.40
https://doi.org/10.1145/2362336.2362352
https://doi.org/10.1145/2362336.2362352

	1 Introduction
	2 Background
	2.1 Processors
	2.2 Jobs and tasks
	2.3 Schedulers

	3 Related work
	3.1 Multiprocessor aperiodic job scheduling
	3.2 Multiprocessor recurrent task scheduling
	3.3 Response time analysis
	3.4 Time complexity of multiprocessor scheduling

	4 System model
	5 Response time analysis
	5.1 Problem statement
	5.2 Response time analysis for aperiodic jobs
	5.3 Special case: Dense schedule
	5.4 Dense schedule in two-speed platforms
	5.5 Response time computation for dense schedule
	5.6 Response time analysis for sporadic tasks
	5.6.1 Upper bound on sporadic task workload
	5.6.2 Worst-case response time upper bound computation
	5.6.3 Optimal priority assignment


	6 Evaluation
	6.1 Evaluation settings
	6.2 Evaluation results

	7 Conclusions

