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Whole-body MPC and sensitivity analysis of a real time foot step
sequencer for a biped robot Bolt

Constant Roux1, Côme Perrot1, Olivier Stasse1,2

Abstract—This paper presents a novel controller for the
bipedal robot Bolt. Our approach leverages a whole-body model
predictive controller in conjunction with a footstep sequencer
to achieve robust locomotion. Simulation results demonstrate
effective velocity tracking as well as push and slippage recovery
abilities. In addition to that, we provide a theoretical sensitivity
analysis of the footstep sequencing problem to enhance the
understanding of the results.

Index Terms—Biped robot, Whole-body Model Predictive Con-
trol, Parameter sensitivity

I. INTRODUCTION

A. Context

Bipedal robotics, with its origins tracing back to the end
of the last century, has witnessed a significant surge in recent
years. This trend, driven by technological advancements in
areas such as actuation, and computing, has opened up a flurry
of new potential applications [1], [2]. However, these new
solutions require efficient controllers that can fully exploit the
hardware’s specificities to maximize utility.

Historically, trajectory optimization (TO) has been widely
used for the control of bipedal robots. Early models, such as
the Linear Inverted Pendulum (LIP) or centroidal Model Pre-
dictive Control (centroidal MPC), evolved into more sophisti-
cated approaches like whole-body MPC (WB MPC) li_cafe,
[3]–[5]. However, as the complexity of control problems
increases, the limitations of MPC become apparent. These lim-
itations include limited reactivity to unforeseen disturbances
and insufficient computational capacity. Even though warm
starting the solver near the optimal solution can drastically
reduce computation time [6], these challenges persist.

Reinforcement Learning (RL) techniques have emerged as
a promising alternative [7]–[9]. RL nonetheless presents no-
table limitations. Bipedal robots are inherently very unstable,
complicating the learning process. Additionally, RL requires
vast amounts of data and computational time, and often
lacks performance guarantees in real-world conditions. RL
algorithms can also be sensitive to variations in the training
environment, limiting their robustness and generalizability.

In response to these challenges, hybrid methods, combining
the strengths of trajectory optimization and reinforcement
learning, are gaining popularity. Approaches presented in
[10], [11] aim to merge the best of both worlds to achieve
optimal performance in terms of stability and adaptability. The
enthusiasm around hybrid methods highlights the relevance
of traditional MPC methods, especially when dealing with
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Fig. 1: Bipedal robot bolt walking in PyBullet using whole-
body MPC on cluttered terrain.

highly unstable humanoids. However, in most applications,
they require an additional trajectory planner, which may not
account for the dynamics of the MPC, to provide a reference
trajectory for the robot.

Despite increasingly precise modeling and step sequencers
based on simplified yet effective models, such as the Divergent
Component of Motion (DCM) [12], [13], these planners are
still necessary to provide robust heuristics for bipedal walking.
An example of such architecture is presented in [14]. It
employs a step planner followed by a foot trajectory con-
troller and a whole-body instantaneous controller. Similarly,
[15] conducted research using a low-frequency step planner
(10 Hz) and a whole-body controller. A method based on
iterative Linear Quadratic Gaussian (iLQG) [16] provides the
capabilities to find foot sequences autonomously, but struggles
to efficiently work on real hardware [17]. However, DDP with
a rigid contact formulation such as the one formulated in
[18] and tested on TALOS in [5] shows that if a sequence of
contacts is given, WB MPC is doable on a real size humanoid
robot.

B. Contributions

In this paper, propose to build upon the work of Khadiv
et al. [14] by replacing the combination of the whole-body
instantaneous controller and the footstep trajectory controller
with a unified whole-body trajectory controller. Our approach



aims to operate both the step sequencer and the whole-
body model predictive controller (WB MPC) at the same
frequency of 100 Hz, contrary to Yeganegi et al. [15]. This
approach leads to the emergence of footstep trajectories, as
demonstrated in previous works [4], [19], thereby simplifying
robot programming and explicitly accounting for the angular
momentum induced by foot motions.

Furthermore, we propose a parameter sensitivity analysis
of the step sequencer based on the method proposed by
Fiacco [20]. The primary aim of this analysis is to provide
analytical validation of intuitions regarding the interpretation
of results. Secondly, it will serve as a preliminary basis for
future research.

The described technique was implemented in simulation
on the Bolt robot, an affordable bipedal hardware platform
designed for students and scholars. This platform utilizes an
actuator concept developed by [21].

The contributions of this work are as follows:
• Integration of a step sequencer with a fixed-horizon WB

MPC framework.
• Simulation of the Bolt robot in PyBullet [22] under

various perturbation scenarios to evaluate the control
strategy.

• Comprehensive sensitivity analysis of the step se-
quencer’s response to disturbances in the DCM.

II. FOOTSTEPS SEQUENCER

A. Review of previous work

Khadiv et al. [14] proposed to compute the position and tim-
ing of the next step so that the robot’s center of mass adheres
to a desired velocity command while stabilizing the DCM.
The DCM is the unstable component of the linear inverted
pendulum model, whose dynamic equations are recalled as
follows:

ċ = w0(ζ − c) (1a)

ζ̇ = w0(ζ − p0) (1b)

where c ∈ R2 is the position of the robot’s center of mass,
ω0 ∈ R is the natural frequency of the pendulum (ω0 =

√
g
zc

,
with g being the gravitational constant and zc the fixed height
of the center of mass), ζ ∈ R2 is the robot’s DCM, and p0 ∈
R2 is the position of the support foot.

To compute the best guest for the next step, Khadiv et al.
[14] propose solving the following linearly constrained multi-
objective QP problem:

min
x

f(x)

s.t.

{
gi(x) ≥ 0, i = 1, . . . , 6

ĥj(x) = 0, j = 1, . . . , 2

(2)

where x =
(
p⊤
T Γ(T ) b⊤

T

)⊤
with pT =

(
pT,x pT,y

)⊤ ∈
R2 representing the position of the next step, Γ(T ) = ew0T ∈
R the timing of the next step’s contact, and bT ∈ R2

the DCM offset at the next step’s contact instant (bT =

(
bT,x bT,y

)⊤
= ζT −pT , where ζT is the DCM at the next

step’s contact instant). The multi-objective function is given
as follows:

f(x) = α1

∥∥∥∥pT − p0 −
(
lnom
wnom

)∥∥∥∥2
+ α2 |Γ(T )− Γ(Tnom)|2

+ α3

∥∥∥∥bT −
(
bx,nom
by,nom

)∥∥∥∥2 (3a)

with α1, α2, α3 as the weights of the different objectives,
lnom and wnom as the desired step length and width respec-
tively, Γ(Tnom) the desired contact time, and bx,nom, by,nom the
desired DCM offsets whose analytical expression is available
in Appendix A of [14]. The inequality constraints are given
as follows:

g1(x) = pT,x − p0,x − lmin (4a)

g2(x) = lmax − pT,x + p0,x (4b)

which are constraints limiting the step length between lmin

and lmax,
g3(x) = pT,y − p0,y − wmin (4c)

g4(x) = wmax − pT,y + p0,y (4d)

which are constraints limiting the step width between wmin

and wmax,
g5(x) = Γ(T )− Γ(Tmin) (4e)

g6(x) = Γ(Tmax)− Γ(T ) (4f)

which are constraints limiting the step contact time between
Γ(Tmin) and Γ(Tmax).

The following equations are equality constraints ensuring
that the DCM follows the dynamics imposed by Eq. (1b):

ĥ1(x) = pT,x + bT,x − p0,x − (ζ̂x − p0,x)e
−w0tΓ(T ) (5a)

ĥ2(x) = pT,y + bT,y − p0,y − (ζ̂y − p0,y)e
−w0tΓ(T ) (5b)

with t the time elapsed since the last foot contact and ζ̂ the
measured DCM. Note that, as explained in [23], the DCM
offset is not hard constrained because this could make the
problem infeasible under certain conditions. In addition, w
will sometimes be referred to as wleft or wright depending on
whether the next step is executed by the left foot or the right
foot.

B. Sensitivity analysis to disturbances on the measured DCM

We now propose to analyze the sensitivity of the optimal
solution to perturbations on the measured DCM. These per-
turbations can model measurement noise or an external force
that would alter the value of the DCM.

Introducing a disturbance on the measured DCM such that
ζ̂ = ζ + θ, where ζ ∈ R2 is the real value of the DCM and
θ ∈ R2 is a disturbance, the problem (2) then becomes:

min
x

f(x)

s.t.

{
gi(x) ≥ 0, i = 1, . . . , 6

hj(x) + θjcj(x) = 0, j = 1, . . . , 2

(6)



h1(x) = pT,x + bT,x − p0,x − (ζx − p0,x)e
−w0tΓ(T ) (7a)

h2(x) = pT,y + bT,y − p0,y − (ζy − p0,y)e
−w0tΓ(T ) (7b)

c1(x) = −e−w0tΓ(T ) (8a)
c2(x) = −e−w0tΓ(T ) (8b)

The theoretical result of sensitivity of a QP problem with
respect to a parameter is provided by [20]. In the following,
we use the superscript ∗ on an expression to denote that the
latter is evaluated at θ = 0. Noting that (a) the functions
of Equation (6) are twice differentiable, (b) the second-order
sufficiency conditions hold at x∗, (c) {∇xg

∗
i }, i = 1, . . . , 6,

{∇hg
∗
j }, j = 1, . . . , 2 are linearly independent, and (d) u∗

i > 0
when g∗i (x) = 0 where ui and wi are the Lagrangian
multipliers, then the following set of equations is satisfied at
(x,u,w) = (x∗,u∗,w∗), θ = 0:

∇xf −
6∑

i=1

ui∇xgi +

2∑
j=1

wj(∇xhj + θj∇xcj) = 0

uigi(x) = 0, i = 1, . . . , 6

hj(x) + θjcj(x) = 0, j = 1, 2

(9)

Let F (x,θ) denote the function composed of the terms on
the left-hand side of Eq. 9. Applying the implicit function
theorem, we deduce that:

∂(x∗,u∗,w∗)
∂θ

= −J−1
F∗ (x

∗,u∗,w∗)JF (θ) (10)

JF∗(x∗) =

diag(α1, α1, α2, α3, α3) −G∗ H∗

diag(u∗
i )(G

∗)⊤ diag(g∗i ) [0]6×2

(H∗)⊤ [0]2×6 [0]2×2


(11)

JF (θ) =

C∗diag(w∗
j )

[0]6×2

diag(c∗j )

 (12)

where G∗ =
(
∇xg

∗
1 · · · ∇xg

∗
6

)
, H∗ =

(
∇xh

∗
1 ∇xh

∗
2

)
and C∗ =

(
∇xc

∗
1 ∇xc

∗
2

)
.

Eq. (10) allows us to numerically evaluate the sensitivity
of the optimal solution of the QP problem with respect to
perturbations on the DCM. For example, Fig. 2 presents the
optimal solutions pT,y and bT,y when subjected to pertur-
bations following a Gaussian distribution N (0, 0.005), with
no active inequality constraints, using the input parameters
of the problem from Table I. We notice that these solutions
form planes in the perturbation space, with the plane for pT,y

having a steeper slope than that for bT,y . This result, reflected
in (

∂p∗
T,y

∂θy
= 5.18) > (

∂b∗T,y

∂θy
= 5.18e− 3), matches the design

choice we made to have α3 ≫ α1. Tuning the weight of the
multi-objective function in that way should lead the robot to
prioritize balancing over speed tracking which is confirmed by
the theoretical sensitivity analysis.

TABLE I: Parameters of the step sequencer used for walking

Parameter min nom max
(α1, α2, α3) - (1e3, 1, 1e6) -

zc - 0.31 -
p0 - (-0.12, 0.10) -
t - 0.229 -
ζ̂ - (-0.12, -0.07) -
l -0.3 0.1 0.3

wleft -0.40 -0.25 -0.10
wright 0.10 0.25 0.40
T 0.1 0.3 1.0
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0.000

0.005
0.010

0.015
θx

−0.015
−0.010
−0.005

0.000
0.005

0.010
0.015

θ y

−0.18

−0.17

−0.16

−0.15

p T
,y

p∗T,y

−0.015−0.010−0.005
0.000

0.005
0.010

0.015
θx

−0.015
−0.010
−0.005

0.000
0.005

0.010
0.015

θ y

0.030

0.035

0.040

0.045

b T
,y

b∗T,y

Fig. 2: Solution space example of pT,y (left) and bT,y (right) as
a function of the DCM disturbance θ ∼ N (0, 0.005) generated
with 1000 samples. The optimal solution is represented in red,
and no inequality constraints is active.

C. Fixed-Horizon MPC Sequencer

To enable the WB MPC to predict a state trajectory through-
out its prediction horizon (see Section III), the step sequence
has to extend at least to the end of the MPC’s horizon. To
generate a step sequence up to an appropriate time Hu, we
propose to iteratively solve problem (2) and reuse the solution
computed at time k as the initial condition of the problem
solved at time k + 1. This process can be carried out until a
contact time exceeding the desired time horizon is obtained.
Following an MPC scheme, this strategy is used before every
iteration of the WB MPC to generate a new reference step
sequence. The problem can be summarized as follows:

min
xk+1

f(xk+1,xk)

s.t.

{
gi(xk+1,xk) ≥ 0, i = 1, . . . , 6

hj(xk+1,xk) = 0, j = 1, . . . , 2

(13)

f(xk+1,xk) = α1

∥∥∥∥pTk+1
− pTk

−
(

lnom
wk,nom

)∥∥∥∥2
+ α2 |Γ(Tk+1)− Γ(Tk + Tnom)|2

+ α3

∥∥∥∥bTk+1
−

(
bk,x,nom
bk,y,nom

)∥∥∥∥2 (14a)



g1(xk+1,xk) = pTk+1,x − pTk,x − lmin (15a)
g2(xk+1,xk) = lmax − pTk+1,x + pTk,x (15b)
g3(xk+1,xk) = pTk+1,y − pTk,y − wk,min (15c)
g4(xk+1,xk) = wk,max − pTk+1,y + pTk,y (15d)
g5(xk+1,xk) = Γ(Tk+1)− Γ(Tk + Tmin) (15e)
g6(xk+1,xk) = Γ(Tk + Tmax)− Γ(Tk+1) (15f)

h1(xk+1,xk) = pTk+1,x + bTk+1,x − pTk,x

− (ζ̂k,x − pTk,x)e
−w0TkΓ(Tk+1) (16a)

h2(xk+1,xk) = pTk+1,y + bTk+1,y − pTk,y

− (ζ̂k,y − pTk,y)e
−w0TkΓ(Tk+1) (16b)

where xk+1 represents the next solution and xk the previous
solution. The parameter wk varies depending on whether the
next step is taken by the left foot or the right foot.

Algorithm 1 summarizes the MPC step sequencer:

Algorithm 1 Footsteps sequencer

t ← tmea, t0 ← tmea, ζ̂k ← ζmea

xk ←
(
p⊤

ini Γ(tmea) [0]1×2

)⊤
S ← ∅
repeat

xk+1 ← Solve (13) using xk

t ← Tk+1, ζ̂k ← pTk+1
+ bTk+1

S ← S ∪ xk+1

xk ← xk+1

until t ≥ t0 +Hu

Return S

where tmea is the time at which the algorithm is called, ζmea
is the measured DCM at t = tmea, and pini is the position of the
foot currently in support. S is the list containing the K steps of
the generated sequence. The value of the nominal DCMs and
the changes in w depending on whether the next step is taken
by the left foot or the right foot are not detailed here for the
sake of clarity. Fig. 3 illustrates an example of a step sequence
generated using the parameters from Table I and a horizon
Hu of 3 s for walking at a velocity of V ∗

x = 0.3 m.s−1. The
figure also shows that all hard constraints are satisfied, and
the DCM remains non-divergent over time. This sequence can
subsequently serve as a reference for WB MPC.

III. WHOLE-BODY MPC

A. Discretized Optimal Control Formulation

Given the step sequence generated by the sequencer, we
now aim to compute a torque sequence to control the robot.
To account for all dynamic effects, we employ a whole-body
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Fig. 3: Position of the feet and DCM in the Cartesian plane
along a generated step sequence. The walking sequence was
generated with Hu = 3 s using the input parameters from
Table I. The imposed speed is V ∗

x = lnom
Tnom

= 0.33m.s−1. All
constraints are satisfied, and the nominal speed is achieved.

MPC, which iteratively solves the Optimal Control Problem
(OCP) described as follows:

min
x,u

N−1∑
i=0

li(xi,ui) + lN (xN)

s.t. x0 = xinit

fi(xi,ui) = xi+1 ∀i ∈ [0, N − 1]

(17)

where x and u represent the decision variables for the state
and control inputs, respectively. N denotes the discrete horizon
length (discretization of Hu), while li(x,u) corresponds to the
running costs and lN (xN) the terminal cost. The initial state,
x0, is set to xinit, and fi(xi,ui) represents the whole-body
dynamics from time i to i+1, including the contact dynamics
constraints for both the left and right foot. The specific time
instances i for these contacts are provided for each foot by the
step sequencer. Note that the meaning of x, u, and f differs
from the previous section, where they represented different
quantities.

B. Costs functions

The running cost li(xi,ui) is the sum of the following costs:
1) Foot height tracking cost: The cost of foot height track-

ing ensures that the robot lifts its foot appropriately. It
is described by the following equation:

ℓftrack(x) =
∥∥∥xf

z − xf
z

∗∥∥∥2
wtrack

(18)

where f denotes the flying foot, x the state of the
robot, xf

z , xf
z
∗ ∈ R respectively the measured and

desired flying foot height, and wtrack ∈ R a weighting
hyperparameter.
The reference trajectory of the foot height is a polyno-
mial function ensuring that the height and the velocity
of the foot height are zero at both the initial and final
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Fig. 4: Simplified architecture of Bolt’s walking controller.

instants, and that the foot reaches a predefined height at
the midpoint of the duration, as described by:

xf
z

∗
(t) =

16H

t4f
t4 − 32H

t3f
t3 +

16H

t2f
t2 (19)

where t ∈ R is a variable ranging from 0 to tf ∈ R,
tf is the total duration of the step, and H ∈ R is the
maximum foot height at tf

2 .
Note that the foot contact positions calculated by the
sequencer are not predefined, they naturally emerge from
the solver used to address the WB MPC problem.

2) Regularization costs: A regularization cost around zero
command indirectly limits the torques applied to the
joints. It is implemented according to the following
equation:

ℓu(u) = ∥u∥2wu
(20)

where wu ∈ R is a weighting hyperparameter.
Additionally, a regularization cost of the state around
a reference posture is added to ensure that the robot’s
posture tends towards it. The cost is described as:

ℓX(x) = ∥(x− x∗)∥2wx
(21)

where x∗ ∈ Rnx (where nx is the size of the robot
state vector) is the desired reference posture, and wx ∈
Rnx×nx is a weighting hyperparameter.

3) Boundary cost: A barrier cost is added to the control to
ensure that it never exceeds the physical limits of the
robot’s actuators. The cost is given as follows:

ℓfbu(x) = ∥min(max(u, ū),u)∥2wbu
(22)

where u ∈ Rnu (where nu is the size of the robot control
vector) and ū ∈ Rnu are respectively the lower and
upper boundaries of the robot torque outputs. wbu ∈ R
is a weighting hyperparameter.

The cost lN (xN) is the sum of the previous state-dependent
costs along with an additional cost on the position of the center
of mass:

ℓCoM(x) = ∥c− c∗∥2wCoM
(23)

where c ∈ R3 is the position of the CoM, c∗ ∈ R3 is the
reference position of the CoM, and wCoM ∈ R is a weighting
hyperparameter.

The reference for the CoM is calculated by solving Eq. (1a):

c∗ = (ĉK−1 − ζ̂K−1)e
w0(TK−1−Hu) + ζ̂K−1 (24)

where the subscript K−1 represents the index of the last step
whose contact is before the horizon of the list S. This ensures
that the robot’s center of mass reaches a stable position while
adhering to the desired setpoint.

C. Control pipeline

The full control structure consists of two parallel processes
(see Fig. 4):

• The high-level process runs at 100 Hz and solves the
DCM-MPC and WB-MPC using OSQP and Crocoddyl
[18], respectively. To account for computational delay,
which roughly corresponds to the interval between two
WB-MPC nodes (roughly 10 ms), the first node of the
computed solution is skipped and the high-frequency
controller directly receives results from the second node.

• The optimization process yields a by-product that is
leveraged for low-level control of the robot at a frequency
of 1 kHz. We designate these as Riccati gains throughout
the remainder of this paper. The control law, derived from
[19], is given by:

τ = u1 +K1(x̂− x1) (25)

where u1 ∈ Rnu and x1 ∈ Rnx are the optimal control
input and state computed by the solver, respectively. x̂ ∈
Rnx is the robot’s measured state at 1 kHz. Finally, the
matrix K1 ∈ R6×(nx−1) is the Riccati gain matrix at node
1 given by:

K1 ≜ ∂u
∂x

∣∣
x1

(26)

This setup ensures high-frequency feedback and robust real-
time control.



IV. SIMULATION RESULTS

A. Setup

The objective of these experiments in simulation is to
evaluate the robot’s ability to follow a given velocity com-
mand, demonstrate robustness against external perturbations,
and adapt its gait dynamically. The simulation is conducted
in PyBullet on an Apple Mac M3 MAX CPU clocked at 4.05
GHz with 16 cores.

To enhance efficiency, a simplified model of the Bolt robot
is employed1. The dynamic parameters and foot geometries
remain unchanged to ensure consistency for sim-to-real trans-
fer. Further details on the robot’s hardware can be found in
[21].

Initial conditions are identical for all simulations: Bolt starts
with both feet on the ground and in the configuration specified
by the SRDF. Three scenarios are designed:

1) Walking with and without disturbance: Bolt follows a
walking command while experiencing occasional exter-
nal perturbations.

2) Cluttered terrain walking: Bolt walks on a cluttered
terrain.

3) Velocity reference transition: Bolt transitions from a
velocity command to another.

B. Nominal walking with and without perturbations

We propose to compare the walking motion of Bolt with
a target speed command v∗X = 3.3m.s−1 with and without
perturbations. Fig. 5 shows the y-axis positions of the CoM,
DCM and feet positions of bolt over time. The top plot
depicts unperturbed walking over a two-second interval, while
the bottom plot shows walking with a perturbation of 6.3N
applied at the base for 0.1 s (equivalent to 0.63N.s) at t = 4 s.
We observe that Bolt is capable of rejecting the perturbation by
adjusting the step sequence and subsequently resumes nominal
walking.

Next, we analyze the base velocity of Bolt. Fig. 6 shows
the base velocities in the x and y directions over time, both
without and with the same perturbation as before. The top
plot presents the unperturbed velocities, whereas the bottom
plot shows the velocities under perturbation. We observe that
the accuracy of x-axis velocity tracking decreases at the onset
of the perturbation and returns to the target velocity once the
perturbation is rejected. This behavior is expected because,
as explained in Section II-B, in case of a DCM perturbation,
the solver prioritizes maintaining Bolt’s balance at the cost
of velocity tracking. Additionally, we note on the top plot an
average error ϵ̄V =

∣∣V̄ −V∗∣∣ = (
5.2 1.1

)⊤
mm.s−1 in the

velocity tracking. It is mainly due to discrepancies between
the LIPM model and the simulator model, particularly the
fact that angular momentum is neglected in the LIPM model.
Solutions exploring 3D DCM-based methods [12] address this
issue, however such an extension is beyond the scope of our
work.

1https://github.com/Gepetto/example-robot-data/tree/master/robots/bolt_
description
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Fig. 5: Comparison of the CoM (purple), the DCM (green),
and the feet positions (red for left, blue for right) along the
y-axis over time during walking at V ∗

x = 0.33m.s−1. Top:
Unperturbed walking. Bottom: Walking perturbed at t = 5 s
by an applied force of F = 6.3N along the y-axis at the
robot’s base for 0.1 s.

C. Nominal walking on cluttered terrain

We now demonstrate the robustness of the controller on
Bolt against slips and rough terrain (see Fig. 1) with a
reference speed V ∗

x = 0.3m.s−1. The perturbations involve
the generation of rectangular parallelepipeds with side lengths
ranging from 1 cm to 5 cm and heights ranging from 5 mm
to 8 mm, placed on the robot’s path, with an average density
of 10 obstacles per square meter. Fig. 7 shows the y axis
position of the CoM, the DCM, and the foot positions over
time, highlighting an instance of left foot slippage. We observe
that the controller adapts the step sequence to compensate for
slips and reject the resulting perturbations.

D. Transition from standing to walking

Fig. 8 shows the robot’s base velocity along the x axis over
time. The command initially sets the velocity to 0 m.s−1 (step
in place), transitioning to 0.3 m.s−1 at t = 5s. We measure
a rise time of 4.35s for the robot to reach its final velocity
value. This delay can be attributed to a significant increase
in angular moments caused by the velocity change, leading

https://github.com/Gepetto/example-robot-data/tree/master/robots/bolt_description
https://github.com/Gepetto/example-robot-data/tree/master/robots/bolt_description
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Fig. 6: Comparison of the base velocity (blue) and the average
velocity (green) along the x and y axes over time when walk-
ing at V ∗

x = 0.33m.s−1 (shown in red). Top: Unperturbed
walking. Bottom: Walking perturbed at t = 5 s by an applied
force of F = 6.3N along the y-axis at the robot’s base for
0.1 s.

to a larger discrepancy between the LIPM and the simulator
model. This difference can be modeled as a perturbation on
the DCM. As explained in section II-B, foot placements are
more sensitive to perturbations than robot balance. Therefore,
while striving to maintain balance, the feet positions deviate
from the optimal position, resulting in a slower achievement
of the desired velocity.

V. DISCUSSION AND CONCLUSION

In this study, we demonstrated that successful control of
a highly unstable bipedal robot can be achieved using a
footstep sequencer and a WB MPC operating at 100 Hz. Our
approach eliminates the need for explicit footstep trajectories,
as they naturally emerge when solving the WB MPC. Our
results show that the robot exhibits significant capabilities in
executing velocity transitions, recovering from perturbations,
and managing foot slippage. Sensitivity analysis provides
additional insights, aligning with previous research [14], [15]
while offering a deeper theoretical understanding.

7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00

time (sec)

1.30

1.35

1.40

1.45

1.50

1.55

1.60

X
(m

)

CoM

DCM

support LF

flying LF

support RF

flying RF

slip

7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00

time (sec)

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Y
(m

)

CoM

DCM

support LF

flying LF

support RF

flying RF

slip

Fig. 7: CoM (purple), the DCM (green), and the feet positions
(red for left, blue for right) along the y-axis over time when
walking at V ∗

x = 0.33m.s−1. The left foot is slipping in the
green area.
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Fig. 8: Base velocity (blue) and the average velocity (green)
along x-axis over time when walking at V ∗

x = 0.0m.s−1

before t = 5s and V ∗
x = 0.33m.s−1 after t = 5s (shown

in red).



However, we observed that the desired speed was not always
attained and that velocity transitions were slow, which can
limit the robot’s performance in scenarios requiring rapid
speed changes. This outcome was anticipated due to the
assumptions imposed by the LIPM.

In the short term, we plan to deploy and validate this
controller on the physical Bolt robot. For future work, we
plan to leverage the sensitivity analysis computed in this
study as a foundational work to estimate the sensitivity of the
whole control structure (DCM MPC + WB MPC). We would
additionally need to compute the sensitivity WB MPC with
respect to the contact timings calculated by the step sequencer.
This study could allow to provide more depth in the theoretical
interpretation of the performance of our control structure as
well as offering robustness guarantees.
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