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Delay Robust Model Predictive Control For Whole-Body Torque
Control of Humanoids

Rajesh Subburaman1, and Olivier Stasse1,2

Abstract— Whole body model predictive control (WBMPC) is
a powerful tool to generate complex robotics motion. Despite the
recent increase in computational capabilities with new proces-
sors such as the Apple chipsets (M1, .. M3) or GPUs, WBMPC
algorithms need a significant amount of computational time.
This induces delay, which, if not properly accounted for, can
have detrimental effects on the controller’s performance. This
paper conducts a detailed study to understand the impact
of delay on WBMPC and proposes an efficient solution to
handle it effectively. In this regard, a whole-body control task is
formulated as an optimal control problem and solved using the
Differential Dynamic Programming (DDP) solver. An extensive
amount of numerical studies are carried out to understand the
nature of the problem and thereby devise an effective solution.
The proposed solution is found to be effective numerically, and
it has been experimentally verified with the humanoid TALOS.
Both numerical and experimental results are presented and
discussed in this work to provide valuable incites.

I. INTRODUCTION

Model Predictive Control (MPC) is a renowned feedback
control strategy widely used in the robotics community apart
from various industrial applications. It has the advantage
of dealing with nonlinearities, model inaccuracies, and con-
straints, making it the prime choice tool for controlling a
diverse number of complex and dynamic robotic systems
such as quadrotor [1], autonomous racing [2], legged robots
[3]–[5], etc. In robotics, MPC [6] is used to solve large-scale
optimal control problems (OCP) in a receding finite horizon
fashion to optimize a prediction of the robot motion and
apply the first instance of the resulting control output while
waiting for the next control update [7]. Though MPC was
initially restricted to handle simple and dynamically slower
systems, thanks to the increase in computation power, it is
being widely applied to fairly complex systems such as four-
legged robots, collaborative manipulation involving mobile
robots [8], quadrotors, etc.

MPC is effectively a trajectory optimization problem
wherein the problem is formulated as an OCP considering
the task-related goals, system constraints, and limitations.
The various objectives and constraints are usually written as
non-linear cost functions with individual weights to prioritize
them according to their significance. At the instant of receiv-
ing a state estimate of the system, the OCP above is solved
over a receding finite horizon, and the first instance of the
control output trajectory is fed to the low-level controller for
execution. This is repeated for each control cycle. Though
this seems to work well for linear problems, it poses a huge
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Fig. 1: The humanoid TALOS used in this study is shown here with the
predefined contact frames Cl and Cr .

challenge for non-linear systems involving high degrees of
freedom (DoF) and complex tasks such as contact handling,
obstacle avoidance, etc., because the solving complexity is
O(m3 ·N), where m and N is the optimized variable di-
mension and prediction horizon, respectively. In such cases,
finding a global minimum in real time is hard to achieve. Due
to this, MPC usage, until recently, has been predominantly
limited to systems represented with reduced models.

Lately, interesting works have been reported using Differ-
ential Dynamic Programming (DDP) [9], a direct shooting
type OCP solver. The ability of DDP to exploit the sparsities
in OCP, its linear convergence rate, and its linear complexity
in the horizon length have resulted in interesting and promis-
ing works [3], [10]. The aforementioned traits have made it
possible to realize real-time control with full-body dynamic
models. The first application of a whole-body MPC using
the DDP solver is reported in [4] for an HRP-2 humanoid
to reach a desired end-effector target under different circum-
stances. In the above work, the desired joint state trajectories
are sent to the low-level joint controllers for them to track
accurately. This is further extended to carry out dynamic
whole-body locomotion on TALOS in torque control mode
[11]. Notably, in [11], the feed-forward torques are computed
at 100 Hz, and together with a linear state feedback controller
running at 2 kHz, a stable performance has been reported.
The linear state feedback controller naturally arises in the
form of Riccati gains when the OCP is solved using DDP,
as explained in [12]. This has been exploited in this work.



Though a successful demonstration of a DDP-based
whole-body MPC has been reported in [11], the effect
of computation delay on the controller performance and
how to deal with it has never been addressed. Since an
optimal solution for the control variable is computed after
obtaining an estimate of the robot’s state, any significant
CPU time taken to solve an OCP problem can induce a
delay between the state update and the injection of control.
This delay can deteriorate the controller’s performance and
can subsequently lead to an unstable system. This has been
extensively analyzed for a non-linear MPC applied on a
simple continuous system in [13]. However, such analysis has
never been done for a highly dynamic and non-linear system
such as a humanoid controlled in torque mode. In this work,
we have strived to analyze the effect of the aforementioned
computation delay for a DDP-based MPC and proposed a
solution to effectively deal with it. Though in [4], it is
stated that the delay has been accounted for, the proposed
solution is applicable only for a system controlled in position
mode since the feed-forward and feedback terms are not
considered. Further, no extensive analysis has been reported
on the effect of delay on the controller’s performance, as
done in this work. To summarize, this work makes the
following notable contributions: 1) extensive analysis of the
detrimental effect of computation delay on a whole-body
MPC controller in torque mode, 2) effect and analysis of
different control policies proposed to counter the delay, and
3) experimental evaluation of the proposed solution on a
torque controlled humanoid TALOS.

The manuscript is structured as follows: Firstly, in
Section II, some background information related to the
manuscript is briefly presented. This is followed by the
succinct presentation of how an MPC is formulated as DDP
in Section II-C. The problem that we have strived to address
in this manuscript is stated in Section III, and the whole-
body control task used to analyze the problem is defined in
Section III-A. Following this, the various control policies are
defined in Section III-B, and the numerical results obtained
with each of those policies are compared and analyzed
in Section IV. Finally, experimental results are presented
in Section V and appropriate conclusions are drawn in
Section VI.

II. BACKGROUND

In this section, some background information that is re-
quired to understand this manuscript is briefly presented. In
particular, in Section II-A, the system used for this study
is introduced. The mathematical model used to represent
the robotic system is succinctly presented in Section II-B.
Finally, an OCP problem is defined for the aforementioned
system, and how it can be solved in an MPC framework
using the DDP solver is explained briefly in Section II-C.

A. System Description

The robotic system considered for the numerical eval-
uation and experimental verification includes the TALOS
humanoid [14], shown in Fig.1. The TALOS humanoid

has 32 DoF, weighs 95 kg, is 1.75 m in height, and can
be controlled in both position and torque mode. In the
presented work, we have controlled TALOS in torque mode
for both simulations and experiments. Further, the humanoid
is equipped with joint torque sensors and encoders on each
joint, and force-torque sensors are fitted to both the wrists
and ankles of the robot. In addition, TALOS is equipped
with a set of skin patches (white patches) distributed on its
upper body. However, these skin patches are not used in the
presented work.

B. Contact-Constrained Robot Dynamic Model

The dynamic equation of motion of a rigid body system
with n DoF subjected to nc number of contact constraints
can be written as described in [15] as follows:[

M JT
c

Jc 0

][
q̈
λ

]
=

[
ST u−b
−J̇cq̇

]
, (1)

where M ∈ Rn×n, b ∈ Rn×1, S ∈ R(n+6)×n, and u ∈ Rn×1

are the joint space inertia matrix, nonlinear force vector,
selection matrix to apply torques to the actuated joints,
and the joint torque vector. In (1), q ∈ SE(3)×Rn denotes
the configuration of a robotic system and since the system
considered here is a floating base system, i.e., a humanoid,
the unactuated 6 DoF is represented by SE(3). The velocity
and acceleration of the system are denoted by q̇ and q̈,
respectively. Jc = [J1 · · ·Jnc ]

T represents the contact jacobian
matrix for nc contacts and Ji ∈ R6×n denotes the contact
jacobian matrix for ith contact. Similarly, λi ∈ R6×1 denote
the ith contact wrench and λ = [λi · · ·λnc ] includes the contact
wrench vector for all nc contacts. The bottom part in (1)
ensures that the nc number of contacts remain motionless
during the general motion of a rigid body system, i.e., contact
consistent dynamic motion is generated.

The above equation of motion can be integrated in discrete
form with a time period dt as follows:

xk+1 = f (xk,uk), (2)

where x = [q, q̇] ∈ Rnx , ẋ = [q̇, q̈] ∈ Rndx , and u denote the
state, its derivative and the input vector of the system. nx
and ndx represent the number of state variables and state
derivative variables respectively. The state of the system at
next time step (k+1) is denoted by xk+1.

C. MPC Formulated as DDP

Using (2), an optimal control problem for the contact-
constrained rigid body dynamic system can be written in
discrete form as follows:

min
x̄,ū

T−1

∑
k=0

l(xk,uk,k)+ lT (xT )

s.t. x0 = f0

∀t = 0 · · ·T xk+1 = f (xk,uk),

(3)

where x̄ = (xk)k=0···T , and ū = (uk)k=0···T are the state and
control trajectory sequence for T number of knots or time
steps. l and lT are the running and terminal cost functions



used to encode the desired behavior of the robot, and x0
represents the system’s initial state. The second condition
in (3) ensures that the optimal state and control sequence
respects the system dynamics. By solving (3), an optimal
pair of state (x̄⋆) and control (ū⋆) sequence that is consistent
with the system dynamics (2) is obtained.

Now, solving the above OCP problem in an MPC frame-
work, i.e., at time step k, we solve (3) and obtain ū⋆

k by
taking the system’s initial state to be xk. Applying only the
first instance u0 of ū⋆

k for a duration dt results in a new state
xk+1. This is used as the initial state for the next time step
k+1, to obtain a new optimal control sequence ū⋆

k+1, and it
is repeated iteratively. This ensures that the generated motion
is feasible for the next T steps in the future, also called the
prediction horizon. Beyond T , the system’s nominal stability
is ensured by the terminal cost lT .

The OCP problem (3) is solved at each iteration of the
MPC using the DDP algorithm. One of the advantages
of using DDP is that the system dynamics is implicity
considered during the forward pass of the algorithm, so the
generated motion is always dynamically feasible. However,
for floating-base robots that have ≥ 12 DoF, solving an MPC
problem at a rate >100 Hz is a difficult task due to the
current limitation of computational power. In our case, we
control 28 DoF of the TALOS humanoid in torque control
mode, and we have taken T = 100, and the MPC control
policy is updated every 15 ms, i.e., 66 Hz. Generally, it is
difficult to achieve a stable torque control performance at
100 Hz even with a fixed base manipulator, let alone for a
28 DoF humanoid. Thanks to the DDP algorithm, a stable
control has been achieved due to the Ricatti gains (Kk) that
arise naturally while solving the OCP problem, in particular,
during the backward pass of DDP. The gains Kk are used to
implement a linear state feedback controller that effectively
interpolates the MPC control policy. The resulting control
law can be formulated as

u = u f f
k +Kk(x−xk) (4)

where u f f
k and Kk are the feedforward torque commands and

the Ricatti gains computed by solving the MPC problem at
the initial state xk. The second term in (4) represents the state
feedback torque u f b

k , and x is the current state of the system
which is updated at a very high rate. In this manuscript, for
both simulations and experiments, u f f

k and Kk are updated at
66 Hz, and x is updated at 1 kHz. The final control command
u is updated at 1 kHz in the simulations, and for the real
system, it is implemented at the lower level at 2 kHz. For
more details on (4), their implementation and evaluation,
please refer to [12].

III. PROBLEM DESCRIPTION AND METHODOLOGY

The problem due to the delay associated with the whole-
body MPC for humanoids is explained in this section using
Fig.2. In the figure, x̂k denote the state measurement at
tk and Πk

k−1(uk,Kk,xk) represents the control policy to be
applied from tk−1 to tk. τ = τc + τn is the total time delay,
where τc and τn represent the computation and network

Fig. 2: The MPC delay observed in the classical approach is shown here.

communication delays respectively. Since solving OCP using
the DDP solver takes a significant amount of time, it is run
separately in a non-real-time thread (nRT), and the low-level
controllers for the TALOS humanoid are executed at a much
higher frequency in a real-time thread (RT).

In an ideal scenario, given x̂k, if the DDP solver can
solve (3) in a non-negligible amount of time (τc), then τ

can be taken as τn. Since τn ≈ 1 ms, the computed uk can
be applied almost instantaneously, resulting in a much better
controller performance. However, in reality, this is not the
case. Since humanoid is a highly nonlinear system with >
12 DoF and the tasks that need to be achieved are usually
non-convex, the DDP solver takes a considerable amount
of time. Assuming the time taken by DDP to solve (3)
as τc, given x̂k, it requires τ = τc + τn amount of time to
compute uk and apply it on the system. This implies that
uk can only be applied at tk+1 and until then, the system
(TALOS) will be running with the control policy computed
for the previous cycle uk−1. Though this approach may still
yield stable performance of the system in certain cases,
such as a relatively less dynamic task/motion, moderate
τ , etc., for highly dynamic tasks, which in turn induces
a significant τ , the above approach could deteriorate the
controller performance. This problem is often overlooked in
the simulations because of the instantaneous realization of
the commanded torque. This is not the case when it is applied
on a real system, as discussed later in Section V. The extent
of the above-mentioned performance deterioration and how
to mitigate this by adopting alternate approaches has been
extensively explored in this work.

A. Whole-Body Control Task

A whole-body control task is devised to analyze the above-
mentioned problem. The objective of the task is to maintain
balance and track a desired trajectory (cartesian space) given
as a reference for predefined contact frames on the arms.
Figure 1 shows the contact frames Cl and Cr defined on the
left and right arm of the robot. Further, during the motion,
it is necessary to ensure that the joint position, velocity, and
torque limits are respected. To realize the aforementioned
task, a total of six different costs are considered for the
running and terminal cost models given in (3). The different
costs considered are as follows: i) state, ii) actuation, iii)
joint limits, iv) Center of Mass (CoM), v) end-effector pose,
and vi) end-effector twist. The first two costs are used to
regulate the change in joint state and torque, (iii) is intended
to enforce the joint limits through penalties, and (iv) is



Fig. 3: The MPC control framework considered for the whole-body control
task is shown here.

included to maintain the robot’s balance. The last two cost
terms are intended to track the desired trajectory. The MPC
control framework is shown in Fig.3. In the figure, p̄ci ,
ōci , v̄ci , and ω̄ci denote the reference trajectories for pose,
orientation, linear velocity, and angular velocity of the pre-
defined contact ci. For more details regarding the control
framework and costs, please refer to [16].

For this task, wrist joints 5, 6, and 7 are not considered for
both arms, and the contact frame location is pre-defined on
link 5 for both arms. Even without the wrist joints, a total of
28 DoF is considered for whole-body control. This amounts
to a total of 57 state variables (x) and 22 control outputs (u)
that will be optimized using (3). Further, the balancing and
trajectory tracking tasks make this OCP already a complex
one to solve using DDP.

B. Different Control Policies

To analyze and understand the effect of delay on the
performance of a DDP-based MPC, six different variations
of the control policy defined in (4) are considered as follows:

• u1
k = u f f

k +[Kk · (x−xk)]

• u2
k = u f f

k +[Kk · (x−xk)]l p

• u3
k = u f f

k +
[
Kk · (x− x̃k,k+1)

]
l p

• u1
k+1 = u f f

k+1 +[Kk+1 · (x−xk+1)]

• u2
k+1 = u f f

k+1 +[Kk+1 · (x−xk+1)]l p

• u3
k+1 = u f f

k+1 +
(
Kk+1 · (x− x̃k+1,k+2)

]
l p,

where, (· · ·)l p denote the low-pass filtering of the feedback
torque computed using the Ricatti gains; and x̃i, j represents
the linear interpolation of optimal state trajectories between
xi and x j. The first three control policies are variations of
uk, and the last three are variations of uk+1. The reason
for introducing low-pass filtering and interpolation in the
computation of feedback torque will be explained in the
following section. To compare and analyze the performance
of the above-listed control policies, a whole-body control
task, defined in Section III-A, has been used. In particular,
the reference trajectory that is used is a reaching task, which
involves the extension of both the arms of TALOS while
maintaining its foot contact and balancing its CoM.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, the various control policies defined in
Section III-B are executed numerically, and their respective

Fig. 4: The left arm joint 1 position and torque plots generated with u1
k

policy is shown here.

results are analyzed and compared critically. For the sim-
ulations, the PyBullet simulator is used with the complete
dynamic model of TALOS. The DDP-based MPC controller
shown in Fig. 3 is implemented in C++, and Python bindings
are used to interact with the pybullet simulator. The linear
feedback controller is run at 1kHz instead of 2kHz, owing
to the simulator’s limitation. For solving the OCP problem
(3), the Crocoddyl [17], an optimal control library based on
novel and efficient DDP algorithms, is used. In this work, 28
DoF (legs - 6×2, arms - 4×2, torso - 2, and floating base -
6) of TALOS are controlled in torque mode, and the rest of
the joints are maintained at a fixed position using position
control. Further, contact frames (Cl and Cr) predefined at the
wrist of each arm are used to track any given reference tra-
jectory. The whole-body control task defined in Section III-A
is solved using DDP, and due to the complexity of the task,
a single iteration takes ≈15 ms, and as a result, the MPC
control thread is run at ≈66 Hz.

1) Effect of Various uk: Firstly, u1
k is applied, and the

resulting motion is recorded. The motion involves a stabi-
lization period of 1.5s followed by a reference trajectory
duration of 2s. Since the majority of the motion is associated
with the arms of TALOS, in particular, the joint 1 of both
the arms, the joint position (top) and torque (bottom) plots
of the left arm joint 1 are shown in Fig. 4. The top left side
plot shows a reasonably good tracking of joint 1. However,
it can be seen that the actual value (qact ) is leading the
desired (qdes), and this suggests that uk computed at tk is
being applied at tk+1 due to τ . Despite this, fairly reasonable
tracking is achieved, thanks to the feedback torque (u f b

k ),
which keeps the system from drifting away. However, this is
not desirable since a significant magnitude (> 50%) of u f b

k is
acting against u f f

k and it is highly jittery as visualized in the
bottom right plot of u f b

k . When a jittery u f b
k is combined with

u f f
k , it makes the final torque output (uk) to be jittery as well.

This may not affect the numerical model in a simulator, but
for real systems, this can significantly affect the controller’s
performance by inducing unwanted vibrations in the system.
The adverse effects of applying u1

k to a real system are



Fig. 5: The torque plots of left arm joint 1 generated with u2
k and u3

k policies
are shown here.

Fig. 6: MPC with delay compensation is shown here.

discussed in Section V.
To reduce the jitteriness in u f b

k , a Butterworth filter with
a cut-off frequency of 66Hz is applied to u f b

k . The resulting
control policy is denoted as u2

k , and the left arm joint 1
torque components are shown in the left side plot of Fig. 5.
We can notice that the jitteriness and the magnitude have
been reduced only slightly. This suggests that the source of
jitteriness is something else other than noise. Inspecting the
formulation of u f b

k in (4), it can be understood that K is
a constant gain matrix for a time step dt and it cannot be
varying. Whereas, x being the system’s instantaneous state,
it continues to evolve until the next control input arrives.
In such a case, it is not ideal to keep a constant optimal
reference state xk, as the steps seen in the top right-side plot
of Fig.4. Since the OCP is written in an MPC form with
a horizon T = 100, x0···T is known at every time step. It
is possible to interpolate from xk to xk+1 during a control
cycle. Applying the filter and linear interpolation results in
u3

k . The torque plot obtained for left arm joint 1 by executing
u3

k is shown in the right-side plot of Fig. 5. The magnitude of
u f b

k is reduced significantly but the jitteriness is still present
which suggests that x− x̃k,k+1 is still erroneous, specifically
due to x̃k,k+1.

2) Effect of Various uk+1: In the previous subsection, we
observed a jittery u even after filtering u f b

k and interpolating
x̃k,k+1 and this is due to the state difference x − x̃k,k+1.
This state difference is because u3

k computed using xk is
being applied at tk+1 where the system is at xk+1 due to
the delay τc. This is evident from Fig. 2. To recitfy this,
we need to apply uk+1 at tk+1 but this is not possible due
to τc. However, at tk, when (3) is solved using DDP, we
get uk =

[
uk,uk+1|x̂k+1

· · ·uk+n|x̂k+n

]
, where uk is the set of

control policies to be applied for k+T steps. Here, uk+1|x̂k+1
is computed by integrating xk using uk to obtain x̂k+1 which
is then used to determine uk+1|x̂k+1

. Hence, uk+1|x̂k+1
is an

estimate of the actual uk+1 and henceforth, it will be denoted
as ûk+1. Since ûk+1 is readily available at tk+1, it can be
applied instantaneously without any delay. Simultaneously,

the computation of uk+1 will be initiated with the state
measurement xk+1. Euler integrator has been used for both
simulations and experiments. The MPC control update with
the delay (τ) compensation is shown in Fig. 6. In the figure,
Π̂

k+1
k is a function of ûk, K̂k, x̂k and x̂k+1.

Similar to uk, three different variations of uk+1, as listed
in Section III-B, are used to carry out the whole-body control
task, and their results are compared and analyzed critically.
The various torque components of left arm joint 1 are shown
for u1

k+1 and u2
k+1 in Fig.7a, and Fig.7b shows for the same

joint the torque component and joint position tracking plots
obtained with u3

k+1 policy. With the application of u1
k+1, it

can be seen that there is a significant drop in the magnitude of
u f f

k+1 and u f b
k+1, and hence, the overall control output u drops

too. In addition, we can observe that u f b
k+1 fluctuates around

zero, which suggests that the desired state xk+1 is in sync
with the system’s actual values x. However, the fluctuations
seen in u f b

k+1 is due to having a fixed xk+1 at every time step.
The fluctuations seem to be reduced to a certain extent, as
seen in the right-side plot of Fig. 7a, with the application of
a Butterworth filter on u f b

k+1, resulting in u2
k+1. However, in

addition to filtering, an optimal state interpolation (xk+1,k+2)
yields much better results, as seen in the left-side plot of
Fig. 7b. The magnitude of u f b

k+1 ≈ 1 Nm, less fluctuating,
and is acting in the direction of the motion, i.e., u f f

k+1. This
suggests that x̃k+1,k+2 is leading x which can be visualized
in the right-side plot of Fig. 7b and this is indeed an ideal
and safe way of doing trajectory tracking. It is to be noted
that even with the application of u3

k+1 there are still some
minor fluctuations observed in u f b

k+1 and it can be attributed
to the fact that u3

k+1 is computed using x̂k+1 which is less
accurate than an actual measurement since it is obtained by
Euler integrating a simplified model.

To ascertain the significance of state interpolation, the
results of u3

k+1 are compared with those of the same policy
but without the low-pass filter. The torque results of left arm
joint 1 obtained with the aforementioned variants of u3

k+1 are
compared in Fig.8. It can be seen that without the low-pass
filter (left-side plot), the state interpolation in u3

k+1 results
in a significant improvement of u f f

k+1, u f b
k+1, and u. Adding

a low-pass filter to the state interpolation results in only a
minor improvement, as seen in the right-side plot of Fig.8.
This showcases the relative effect of state interpolation in
u3

k+1 over low-pass filters. Despite this, we propose to use
u3

k+1 with the filters activated to deal with the system noise,
in particular, the joint velocity noise.

V. EXPERIMENT RESULTS

In this Section, the different policies discussed in Sec-
tion III-B are applied on the real TALOS system in torque
mode, and the results so obtained are compared and analyzed.

The experiment setup involves the TALOS humanoid
controllable in torque mode. Similar to the numerical results,
only 22 joints of TALOS are controlled in torque mode,
and the rest of the joints (wrist joints 5-7 of both arms)
are held at a pre-defined configuration in position mode. For



(a) (b)

Fig. 7: (a) The torque components of left arm joint 1 obtained with u1
k+1 (left) and u2

k+1 (right) are shown here. (b) The torque components (left) and the
joint position (right) tracking of left arm joint 1 obtained with u3

k+1 are plotted here.

Fig. 8: The torque plots of left arm joint 1 generated with two variants of
u3

k+1 are shown here. Variants considered: 1) without low pass filter (left)
and 2) low pass filter (right).

the evaluation of control policies, a whole-body control task
involving a cartesian motion sequence has been considered
for the pre-defined contacts on both arms of TALOS. The
motion sequence is as follows: i) arm extension (0.4m in
the x-direction), ii) grasp action (0.06m in the y-direction),
iii) grasp-lift motion (0.1m in the z-direction). The whole-
body motion control is carried out as shown in the control
architecture Fig.3. The OCP formulated as an MPC is solved
using the Crocoddyl library, and it is run in a non-real-time
thread on an M1 ultra CPU (20 cores, 3.2GHz). For every
single iteration, the Crocoddyl solver running on M1 ultra
took ≈15 ms to solve, and hence, the MPC is set to run
at 66Hz. The low-level linear feedback controller is run at
2 kHz on the onboard system, which uses Ubuntu 18.04.
Robot Operating System (ROS) is used as the middleware
to communicate with the TALOS system. The whole-body
MPC and the linear feedback controller are designed to run
as a separate ROS node, and ROS messages are used for
communication. The communication between M1-ultra and
the onboard system is established by means of an ethernet
cable to reduce the transmission delay.

Since some of the policy variants can be destructive to
the system, especially the variants of uk, only u1

k and u3
k+1

are applied on the system, and their results are presented in
this section. From Section III-B, it is already known that u1

k
is the original control policy in its standard form (4) and it
was applied on TALOS even before we were aware of the
instability and other issues instigated by the delay in MPC.
In fact, the experimental results of u1

k motivated us to carry
out a detailed analysis of the effects of delay on an MPC-
based whole-body controller.

The experimental results obtained with the TALOS hu-
manoid by applying u1

k are shown in Fig. 9. The figure
shows the position, velocity, and torque tracking of right
arm joint 1. From the joint velocity plot (Fig.9b), it can

(a) (b)

(c) (d)

Fig. 9: A part of the position, velocity and torque tracking of right arm joint
1 obtained using u1

k on the TALOS system are shown in (a), (b), and (c)
respectively. The complete torque tracking plot is showcased in (d).

be seen that due to the delay τc, the actual velocity q̇act
continues to advance and it is pulled back by the desired
velocity q̇des commanded by the MPC controller. This is
repeated throughout the control sequence and this results in
an oscillatory behavior as visualized in the torque tracking
plot Fig.9c. The position tracking plot (Fig.9a) shows the
actual joint position qm leading the desired one qd , and this
clearly shows that the applied control is lagging by one
time step, just as we observed in the numerical results. The
constant advancement of the system and the pulling effort by
the controller leads to instability, as seen in Fig.9d around
86.5s. Apart from the instability, there were also a few other
issues that were observed during the experiments, such as
joint limit violation, undesirable noise in the joint actuators,
etc. For more details, please see the video attached along
with this manuscript.

The whole-body control task is repeated with the proposed
control policy u3

k+1, and the results so obtained are show-
cased in Fig.10, which includes the torque (left) and joint
position tracking (right) of arm joint 1. In the torque plot,
apart from um and ud , the feedback (u f b) and feedforward
(u f f ) components are also plotted. It can be seen that the
oscillation observed in um is relatively minimal but noisy



Fig. 10: The torque and position tracking of arm joint 1 obtained by applying
u1

k+1 on the TALOS system are shown here.

since it is measured using the torque sensor mounted on
the joint. The desired torque ud is relatively less noisy and
clean due to the filtering and interpolation of optimal state
trajectory. The feedback torque u f b is relatively high and
slightly noisy, which could be due to joint friction and the
Euler integration error. It is to be noted that in this work,
a linear Coloumb-viscous friction model has been used to
compensate for the joint friction. However, u f b is found to be
aiding the motion by acting in the same direction as u f f , and
this suggests that there is very minimal delay in the applied
control policy. Further, the joint position tracking plot shows
clearly that qd is leading qm, which is not the case with u1

k .
Overall, the proposed control policy u3

k+1 addresses the delay
and achieves the desired whole-body control task stably.

VI. CONCLUSION

In this study, we have carried out a detailed analysis to
understand how significant delays can affect the performance
of an MPC-based whole-body controller and how it can be
dealt with effectively. For the analysis, a whole-body motion
task is formulated as an OCP and it is solved using a DDP-
based library, Crocoddyl. The numerical results showed that
the commanded torque was highly jittery when the classical
control policy was applied. This is often overlooked in the
simulation studies but it can be detrimental when applied to
a real system. Even with low-pass filtering and interpolation
of the desired state, the jitteriness was only slightly reduced.
Better results were obtained with the proposed control policy
u3

k+1, which compensates for the delay and also includes
low-pass filtering and interpolation. The optimal command u
yeilded by u3

k+1 was found to be less jittery, and the desired
state was found to be leading the actual one, and hence,
safer to apply on the real system. The proposed control
policy was applied on a real TALOS system and its stable
performance has been successfully verified. For future work,
we would like to use this delay robust MPC controller to
carry out whole-body manipulation of large objects using
TALOS which is equipped with artificial skin cells.
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