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Visual Predictive Control for Mobile Manipulator:
Visibility, Manipulability, and Stability

H. Bildstein†, V. Cadenat† and A. Durand-Petiteville‡

Abstract—This paper proposes a visual predictive control
solution adapted to mobile manipulators and able to cope with
several issues related to visibility, manipulability, and stability.
To address these problems, the proposed strategy relies on (i)
the use of two complementary cameras, (ii) the definition of a
cost function depending on both the vision-based task and the
manipulability, (iii) the integration of time-varying constraints
allowing to prioritize the former against the latter. The strategy
has been analyzed through simulation using ROS and Gazebo
and implemented on our TIAGo robot. The obtained results fully
validate the proposed approach.

I. INTRODUCTION

The need for autonomous mobile manipulators is at the core
of several applications in diverse scenarios, such as precision
agriculture [1], industrial installation [2], Search and Rescue
[3], or human assistance [4]. Generally speaking, a mobile
manipulator must simultaneously carry out a navigation task
for the mobile base and manipulation one for the robotic
arm. Several challenges must be taken into account to carry
out these two tasks. From a perception point of view, the
robotic system must be equipped with sensors that can detect
different landmarks and analyze the surrounding environment.
Moreover, it is necessary to guarantee that the landmarks
used to perform the tasks remain in the sensors’ field of
view. From a control point of view, the control scheme must
simultaneously deal with the mobile base and the robotic arm
to enable collaboration between the two subsystems and avoid
movements that penalize completing the other task. Finally, it
is necessary to harmonize the control of the robotic arm with
the displacement of the mobile base to avoid cases where the
robotic system is navigating with an extended arm, leading to
significant vibrations at the end-effector level and increasing
the risk of singular configurations and collisions with external
elements.

As with any robotic system, there are many ways to control
a mobile manipulator. A widely used solution consists of
expressing the tasks in Euclidean space. In this case, the robot
uses the onboard sensors to estimate the system configuration.
Lidar-type sensors provide geometric data, allowing accurate
estimation, but do not provide an advanced perception of the
environment. Vision-based sensors offer rich environmental
information, but the pose estimation is highly sensitive to
errors. When using cameras, another widely used solution
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consists of expressing the task in the image space, which is
the natural space for such a sensor. In this paper, we propose
to explore the use of image-based servoing to control a mobile
manipulator. The aim is to develop an approach that does not
require estimating the pose of the robot, as it is traditionally
required when expressing the problem relying on the pose or
the generalized coordinates. Thus, it was decided to use an
advanced visual-based controller, the Visual Predictive Control
(VPC) [5] scheme. VPC is the combination of Image-Based
Visual Servoing (IBVS) [6] with Nonlinear Model Predictive
Control (NMPC) [7]. Thus, it is possible to express in a single
constrained optimization problem: the end-effector positioning
task in the image space, the manipulability, the visibility, and
structure joint limits. Numerous VPC schemes were designed
to control robotic arms [8] [9] [10], quadrotor UAVs [11],
mobile robots [12] [13], autonomous underwater vehicles [14]
or a tendon-driven continuum robot [15]. However, concerning
mobile manipulators, NMPC schemes usually express the task
using the end-effector pose [16] or the generalized coordinates
[17] [18] [19]. Cameras are sometimes used as the main
sensor to control mobile manipulators; however, the task is
not defined in the image space [20] [21]. In such cases, the
end-effector pose estimation accuracy has a significant impact
on the control performances [6].

When designing the optimization process at the core of
the VPC scheme used to control the mobile manipulator, we
must take into account several aspects. First, the whole system
contains many degrees of freedom, leading to a large search
space for the NMPC optimization problem. We must then state
the problem in the most suitable form to ease the optimization
and rely on an efficient solver to compute an optimal solution
in a very short time. Next, the system is redundant, and the
end-effector pose can be obtained with infinite configurations.
However, these configurations are not equally suitable for the
task to perform, and it is necessary to include a term in the
optimization process dealing with manipulability to prioritize
the most relevant ones. Then, the VPC scheme must deal with
the visibility of the landmarks of interest. Thus, if the mobile
manipulator is equipped with a single camera to perform
both navigation and manipulation tasks, the arm’s movement
might be too restricted to perform an efficient trajectory
while keeping the landmark in the field. Thus, it might be
interesting to consider a second camera to guarantee landmark
visibility. Moreover, forcing at least one camera to conserve
the landmark of interest in its field of view seems interesting.
Finally, unlike fixed robotic arms, a camera attached to a
mobile manipulator has to perform a large displacement to
reach the desired pose. This impacts the stability of the



closed-loop system, and it might be necessary to use large
prediction horizons. It is also impacted by the numerous terms
dealing with visibility and manipulability, making it necessary
to include mechanisms guaranteeing closed-loop stability. To
our knowledge, the works presented in [22], [23], and [24]
are among the few ones tackling some of the aforementioned
challenges. In [22], the nominal VPC scheme was introduced,
while [23] was a first attempt to navigate with a tucked arm. It
relied on a two-step control scheme, which, despite promising
results, suffered from a slow convergence rate and needed to
be carefully set up.

In this paper, based on [24]1, we present a VPC scheme
considering the aforementioned challenges. First, the robot
has two cameras, one on the end-effector and one on the
head. Thus, when the end-effector camera cannot perceive
the landmark, the head camera computes the visual features,
which are then projected on the end-effector image sphere to
manage the classical perspective projection issue, i.e., without
projection singularities. Next, the constrained optimization
problem is defined as follows. The cost function to minimize is
the sum of two terms. The first one allows the definition of the
positioning task using image moments [25], which facilitates
the mapping between the task and the pose spaces and then
the computation of the optimal solution. The second term is
based on a measure of manipulability, which deals with the
robotic system’s redundancy and promotes configurations far
from singularities. This approach was preferred to the use of a
constraint because it allows to carry out tasks requiring going
through configurations with a small manipulability value. For
a constraint-based approach, it would be necessary to tune
the constraint threshold, making the task realization possible
while impacting the manipulability. The cost function being
defined, we now propose to extend the problem by adding
a set of constraints, such as the classical visibility and joint
limits constraints, similarly to [22]. Finally, we present the
time-varying positioning constraint set guaranteeing the end-
effector positioning despite using a local solver and the
manipulability measure in the optimization cost function.
This method first includes the prediction-reference equality
constraint, a modified version of the terminal constraint [7].
Next, the velocity constraint on the last predicted step is
relaxed to ensure the problem’s feasibility. Finally, we include
a novel logarithm-based [26] constraint prioritizing the visual
task over the manipulability maximization. Last but not least,
the optimization problem is implemented using a symbolic
representation to reduce the processing time while computing
a solution sufficiently relevant to achieve the task successfully.

The rest of the paper is organized as follows. First, the
different models are introduced before detailing the proposed
VPC strategy. Next, this latter is evaluated both in simulation
and experimentally on our TIAGo robot. The obtained results
are then presented and thoroughly discussed. A conclusion and
some prospects end the paper.

1This paper includes an extended presentation of the contribution, additional
simulation results, and experimental results.

II. PRELIMINARIES

A. Robotic system description and modeling
In this work, we consider the TIAGo robot designed by PAL

Robotics. It is made of an upper body fixed to a differential
mobile base (cf. Fig. 1a). The upper body has a 2-degree-of-
freedom (DoF) head and a 7-DoF arm. Two RGB-D cameras
are attached to the head and the wrist, respectively. The first is
controlled using only the yaw joint (nh = 1), while the second
is moved thanks to only 5 DoF (na = 5). The to-be-achieved
task consists of positioning the wrist camera with respect to a
given landmark.

(a) The TIAGo robot (b) The robot model

Fig. 1: The robotic system

First, four frames are introduced: F0(00,x0,y0,z0),
Fb(0b,xb,yb,zb), Fch(Och ,xch ,ych ,zch), and
Fcee(Ocee ,xcee ,ycee ,zcee), which respectively represent the
world, the mobile base, head camera, and end-effector
camera frames (cf. Fig. 1b). The generic subscript c will be
used to highlight the relations for both cameras. It will be
complemented by h or ee to specify the considered camera
whenever needed.

The mobile robot is a differential-drive base. Its configura-
tion and control vectors are then classically expressed by:

χb =
[
X ,Y,θ

]T
, ub =

[
v,ω

]T (1)

where X , Y and θ are respectively its 2D-base coordinates in F0
and its orientation around the vertical axis. This configuration
vector χb is defined in the local sense of the term: the reference
frame for a specific optimal control problem is the current
mobile base frame. The base is controlled by the linear and
rotational velocities along xb and around zb denoted by v and
ω.

The arm configuration and control vectors are defined as
follows:

χa =
[
q1,q2,q3,q4,q5

]T
, ua =

[
q̇1, q̇2, q̇3, q̇4, q̇5

]T (2)

where qi is the ith joint angle and q̇i is the ith joint velocity.
Lastly, the head configuration and control vectors are intro-

duced similarly:
χh = h1, uh = ḣ1 (3)



From this, it follows that the mobile manipulator state and
control vectors can be defined by:

χmm =
[
χT

b ,χ
T
a ,χh

]T
, umm =

[
uT

b ,u
T
a ,uh

]T (4)

From the previous definitions, it is possible to formulate
the end-effector camera kinematic model. These models are
required to consider the manipulability within the control
problem. To do so, we first introduce Ja as the Jacobian matrix
mapping the end-effector camera kinematic screw νFc to the
arm control vector ua. Next, we define Jb+a as the Jacobian
matrix mapping νFc to the arm and mobile base control vector,
i.e., [uT

b ,u
T
a ]

T such as:

νFc = Jb+a
[
uT

b uT
a
]T (5)

where Jb+a = J̄a + J̄b with:

J̄a =
[
06×2 Ja

]
(6)

J̄b =
ceeXb

1 0 0 0 0 0 0
04×7

0 1 0 0 0 0 0

 (7)

where 0n×m corresponds to a n by m block of zeros, and ceeXb
is the spatial motion transform matrix corresponding to the
homogeneous transformation matrix ceeHb with:

ceeHb =

( ceeRb
ceetb

0 1

)
, ceeXb =

( ceeRb t̂ cee Rb
0 ceeRb

)
(8)

where ceeRb, ceetb and t̂ are respectively the rotation matrix
between both frames, the position vector OceeOb, the skew-
symmetric matrix deduced from ceetb.

B. Landmark description and selection of the visual features

It has been chosen to use landmarks made of AprilTags [27]
(figure 2). It is worth mentioning the choice of using a planar
target is justified by the robustness of visual servoing schemes
[25]. This assumption of a planar object or having a planar
limb surface is indeed used in the theoretical interaction matrix
analysis.

Fig. 2: Landmark

It is now necessary to characterize the landmark of interest
by choosing suitable visual features. To control a camera with
6 DoFs, a classical choice considers four interest points (see

[6] for more details). This leads to the following visual feature
vector Sip:

Sip =
[
x1,y1, . . .xi,yi, . . .x4,y4

]T (9)

where (xi,yi) are the 2D coordinates of the target interest
points.

However, at this step, two main issues can be raised. First,
the interest point coordinates present a strong coupling regard-
ing the 6 DoF of the task, which could increase the control
challenges in complex systems such as mobile manipulators.
A solution highlighted in the literature is considering image
moments, as shown in [25]. Indeed, using such features allows
good decoupling properties, which presents the advantage of
avoiding many non-linearities and more easily influencing
the Cartesian trajectory. Second, this vector is intrinsically
based on the perspective projection, and this projection method
presents a singularity and discontinuity around Zc = 0, if we
denote by Xc = [Xc,Yc,Zc]

T the 3D point position in the camera
frame. The arm mobility might thus be significantly restricted,
reducing the realizable tasks for the mobile manipulator. These
two problems can be overcome by considering the image
moments based on the spherical projection and an additional
camera [22], [25]. The two projection methods are presented
in figure 3.

(a) Perspective (b) Spherical

Fig. 3: Projection methods

To define these moments, it is first necessary to determine
the 3D point position Xc = [Xc,Yc,Zc]

T in the camera frame
from the extracted 2D points coordinates. As the robot is
equipped with RGB-D cameras, Zc is directly available. Then,
considering a normalized focal distance, Xc and Yc can be
classically deduced using the perspective projection model:[

Xc
Yc

]
=

[
Zc 0
0 Zc

][
xi
yi

]
(10)

The spherical projection consists in the projection of the 3D
points Xc =

[
Xc,Yc,Zc

]T on the unit sphere centered in Oc:[
x̃i, ỹi, z̃i

]T
= Xc/∥Xc∥ (11)



If O is the observed object and Osp its spherical projection,
3D discrete moments are defined by [25]:

ml, j,k = ∑
Osp

x̃l
i ỹ j

i z̃k
i (12)

From them, it is possible to design an adequate visual features
vector [22]:

S =
[
xg,yg, I1,Cxy,zg,αsp

]T (13)

where the triple (xg,yg,zg) is the landmark gravity center
coordinates, Cxy = ∥Nv × zc∥ with Nv the normal vector to the
target plane and αsp the orientation of the object projection
around zc. Finally, I1 is a suitable combination of 3D moments:

I1 = m200m020 −m200m002 −m020m002 +m2
110 +m2

101 +m2
011

More details can be found in [22] and [25]. Thanks to this
projection method and the designed visual features vector, it
is possible to avoid the inherent singularity around Zc = 0 and
obtain nice decoupling properties for the camera DoF [25].

C. The re-projection model: the multi-camera solution

This work aims to position the end-effector camera relative
to the target using a visual servoing scheme. The camera must
remain oriented towards the landmark to compute the visual
features. Therefore, the arm must initially be at least partially
extended and then navigate with its arm outstretched. This
increases the risk of collisions with the environment and might
induce vibrations and perturbations. To avoid these problems
and allow motions with a tucked arm, we propose to rely on
the head camera when the end-effector camera cannot perceive
the landmark. The idea is to compute the visual features in
the head camera image and project them in the end-effector
camera frame. To do so, the visual features are first projected
from the head image to the head frame using (10). The head
camera is controlled to face the landmark, and thus, the depth
Zc remains strictly positive, preventing any projection singular-
ity. Next, the visual features are expressed in the camera frame
using the homogeneous transformation matrix ceeHch , which
depends on χa and χh. Finally, they are projected on the end-
effector image. Unlike the head camera, the end-effector one is
not always facing the landmark, and inverting projection (10)
might lead to a singularity when Zc = 0, i.e., when the camera
is perpendicular to the landmark. For this reason, the visual
features are projected on the unitary image sphere centered
on the end-effector camera using projection (11), eliminating
projection singularities. The control law is therefore supplied
with the visual features, either directly obtained from the wrist
camera information or recalculated from data provided by the
head vision system using the re-projection model. Thanks to
this approach, visibility problems can be overcome, and a
wider range of motions can be considered.

Note that an estimate of the visual feature’s depth is
necessary to perform this projection. It can be provided by an
RGB-D camera or using an observer. For both solutions, the
provided values do not have to be highly accurate. Indeed, the
head camera is only used to orientate the end-effector camera

towards the landmark. The actual positioning of the end-
effector camera is achieved using the visual features measured
by this camera.

III. THE MULTI-CAMERA VPC STRATEGY

In this section, we present the proposed VPC strategy. First,
we state the optimal control problem and then detail the
different elements and constraints used in this approach.

A. The VPC control problem

VPC consists of coupling NMPC with IBVS and can be
defined as the following optimal control problem2:

U∗(·) = min
U(·)

(
JNp(S(k),χa(k),U(·))

)
(14)

subject to

Ŝ(k) = S(k) (15a)
χ̂a(k) = χa(k) (15b)

Ŝ(p+1) = f (Ŝ(p),U(p)) (15c)
χ̂a(p+1) = g(χ̂a(p),U(p)) (15d)
C(U∗(·))≤ 0 (15e)

where U∗(·) is an optimal control sequence calculated using
Eq. 14. It minimizes the cost function JNp detailed in the sequel
(see Eq. 17) over a Np steps prediction horizon under a set of
user-defined constraints C(U(·)) presented in Eq. 15.

The computed optimal control sequence is denoted as
U∗(·) = [u∗mm(p), . . . ,u∗mm(p+Nc −1)], where the p = k nota-
tion is used to indicate that the command is obtained using
predicted visual features knowing their measures at instant
k. Moreover, U∗(·) is a Nc-dimensional vector where Nc
is called the control horizon. In other words, the Nc first
predictions of the Np long prediction horizon are computed
using independent control inputs, while all the remaining ones
are obtained using a unique control input equal to the Nth

c
element of U(·) (see [7] for more details). Once the problem
is solved, only u∗mm(p) is applied to the robot, and the process
is repeated using the previous optimization results to warm-
start the solver.

The prediction process is performed through two dedicated
models denoted by f and g (see constraints presented in Eq.
15). They compute the predicted visual features Ŝ and arm
configuration χ̂a, respectively. They use the current measures
as the initial values at each iteration. If g is straightforward and
corresponds to integrating the robotic arm kinematic model,
f is computed using the global and exact method detailed in
[22]. To summarize, two steps are required: (i) the computation
of the homogeneous transformation matrix bHc between the
base frame Fb and the camera frame Fc thanks to the forward
kinematic model; (ii) the determination of matrix bpHbp+1
which connects two successive predicted mobile robot poses
by exactly integrating the mobile base kinematic model. The

2k denotes the discrete instant tk = kTs, with Ts being the sampling period.



prediction model for points in the camera frames can then be
expressed as follows [22]:

XXX i(p+1) = cp+1 Hbp+1
bp+1Hbp

bpHcpXXX i(p) = H(p)XXX i(p) (16)

where the bar indicates the homogeneous coordinates. More-
over, bpHcp is the homogeneous transformation matrix between
the camera and mobile base frames at the current prediction p,
bp+1Hbp the one between the mobile base frames at prediction
p and p+1, and finally cp+1 Hbp+1 the one between the mobile
base and camera frame at predicted instant p+1. Using this
result, the chosen visual features vector S can be deduced as
explained in section II-B.

In the sequel, we focus on the definition of a cost function
allowing to perform the task and of the set of inequality
constraints C(U∗(·)) aiming at dealing with the visual fea-
tures visibility, the arm joints boundaries and the closed-loop
stability.

B. The cost function

As explained before, the desired task consists of positioning
the wrist camera with respect to a given landmark using vision.
To perform this task, accounting for the robotic system’s com-
plex structure, the cost function JNp considers two objectives:
the vision-based positioning task itself and the manipulability
improvement. It is the sum over the prediction horizon of
the cost F(p). This latter is made of two terms Fvs and Fw,
weighted using a dedicated gain denoted by Kw > 0, as shown
in Eq. 18:

JNp(S(k),χa(k),U(·)) =
k+Np

∑
p=k+1

F(p) (17)

with

F(p) = Fvs(p)+KwFw(p) (18)

1) Modelling the visual task: Fvs aims at controlling the
pose of the wrist camera and represents an error expressed in
the image space. More precisely, similarly to IBVS, it consists
of the quadratic error between the current visual features S and
the desired ones S∗. Moreover, the error is weighted using
a diagonal positive definite matrix QS, which allows specific
DoF to be prioritized against others. This matrix can be easily
tuned thanks to the decoupling properties of the chosen visual
features S. Thus, the positing task Fvs is expressed as:

Fvs(p) =
[
Ŝ(p)−S∗

]T
QS

[
Ŝ(p)−S∗

]
(19)

2) Modelling the manipulability: The second term, Fw,
aims at maximizing the manipulability of both the arm and
the entire mobile manipulator. To do so, we first rely on a
measure of the manipulability given by [28]:

wa = det(Jred
a (χa) Jred

a (χa)
T ) (20)

wb+a = det(Jred
b+a(χa) Jred

b+a(χa)
T ) (21)

where wa and wb+a are a measure of the manipulability of the
sole arm, and of the arm and mobile base, respectively. Note

that the number of DoFs of the considered robotic system has
to be greater or equal to the number of DoFs included in the
manipulability measure [28]. The wrist camera and the robotic
arm have 6 and 5 DoFs, respectively. It is then not possible to
consider the 6 DoFs of the camera, and it was decided only
to consider the 3 translations. For this reason, Jred

a and Jred
a+b

represent the reduced version of Ja and Ja+b only taking into
account the translations. Figure 4 illustrates the main principle
of this metric for a unique DoF. The manipulability measure
is close to zero when the angle is equal to zero, i.e., the two
links are aligned, and the measure increases as the system
moves away from the singularity.

A second metric is used to force (not to prevent) the robot
to stay away from the boundaries of the DoF. It is done using
the following measure [28]:

P = 1− exp(−k
5

∏
i=0

(qi −qimax)(qimin −qi)

qimax −qimin
) (22)

where qimax and qimin denote the minimal and maximal joint
limits, while k is a positive constant. In Fig. 4, it can be seen
that P has a low value when the angle is close its maximal or
minimal values. These two measures are combined as follows:

w′
a = Pw2

a w′
b+a = Pw2

b+a (23)

Finally, these two measures are used to define the manipula-
bility cost function to minimize such as:

Fw(p) = αw/ŵ′
a(p)+(1−αw)/ŵ′

b+a(p) (24)

where αw ∈ [0,1]. Note that in (24), the hat symbol denotes
predicted measures.

C. The constraints

Now, we focus on the set of inequality constraints C(U∗(·))
dealing with the visual features’ visibility, the arm joint
boundaries, and the closed-loop stability.

1) The visibility constraint: For the positioning task to
be realized, preserving the target visibility during the whole
motion is mandatory. A dedicated constraint has thus been
introduced. However, it is worth mentioning that, in the
proposed approach, the visibility constraint is set on the head
image only, which allows the arm to move freely. The visibility
will be ensured if the visual cues do not exceed the image
boundaries. This leads to the following constraint:[

Ŝch
ip(p)−Su

Sl − Ŝch
ip(p)

]
≤ 0, ∀p ∈ Jk+1,k+NpK (25)

where Sl and Su are, respectively, the lower and upper image
boundaries of the head camera.

2) The joint limits constraints: It is also necessary to avoid
the arm joints exceeding their lower and upper bounds χal and
χau defined by the elements qimax and qimin. It yields to the
following constraints:[

χ̂a(p)−χau
χal − χ̂a(p)

]
≤ 0, ∀p ∈ Jk+1,k+NpK (26)



Fig. 4: Example of manipulability measure for a unique degree
of freedom

3) The time-varying positioning constraint set: This part
presents a set of time-varying constraints necessary to suc-
cessfully perform the positioning task. It allows dealing with
three challenges induced by the proposed VPC strategy. First,
as this latter relies on a finite prediction horizon, the closed-
loop stability must be guaranteed. Second, the manipulability
index is included in the cost function to minimize because it
cannot be expressed as a constraint. Thus, it cannot vanish, and
the minimization of the cost function does not guarantee the
positioning of the end-effector camera. Lastly, the positioning
task is expressed in the image space, and a local, and thus
sub-optimal, solver is used to obtain a solution at a frequency
suitable for the robot’s control. The computed trajectories are,
therefore, subject to sub-optimality in the Euclidean space,
and the system might be stuck in a local minima. To deal
with these inter-correlated issues, we propose a set of three
time-varying constraints defined hereafter.

a) The prediction-reference equality constraint: One of
the classical ways to guarantee closed-loop stability consists of
relying on a terminal constraint. This latter imposes that the
last predicted state is equal to the desired one [7], forcing
the computed trajectory to reach the goal. In this work,
we propose a modified version of this latter, namely the
prediction-reference equality constraint. It imposes that given

predicted visual features are equal to the reference ones. This
condition is expressed as follows:

Ŝ(p+ ITC) = S∗ (27)

where the ITC ∈ [1, Np] is the constrained prediction index
whose precise role and evolution will be explained in the
sequel.

b) The velocity constraints: When relying on a ter-
minal constraint or the above prediction-reference equality
constraint, it is mandatory to guarantee the feasibility of
the problem, i.e., the computed solution satisfies the set of
constraints. Regarding the terminal or a prediction-reference
equality constraint, it is necessary to provide a sufficiently
large prediction horizon. To do so, the velocity constraints
of the last inputs can be relaxed, as shown in [13]. This
approach leads to the following set of constraints for the
mobile manipulator velocities:[

umm(p)−uu|t
ul|t −umm(p)

]
≤ 0, ∀p ∈ Jk, k+Nc −Nr −1K[

umm(p)−uu|r
ul|r −umm(p)

]
≤ 0, ∀p ∈ Jk+Nc −Nr, k+Nc −1K

(28)

Nr is the number of prediction steps with relaxed boundaries,
ul|t and uu|t are, respectively, the lower and upper tight
boundaries corresponding to the ’true’ limits of the actuator,
and ul|r and uu|r are respectively the lower and upper relaxed
boundaries.

c) The prediction-prediction decrease constraint: A ter-
minal constraint and a sufficiently large prediction horizon
guarantee closed-loop stability when computing the optimal
solution with a global solver. However, this is insufficient
when relying on local solvers providing sub-optimal trajec-
tories. Indeed, a trajectory leading to the desired pose exists,
but the first piece of this trajectory might be null. In such a
case, the robot remains stuck in a local minimum. In [29],
it is shown that adding a constraint imposing the decrease of
the cost function allows dealing with this issue. In the present
work, such an approach cannot be directly used and must be
adapted. Indeed, the cost function contains the manipulability
term and does not solely represent the vision-based task.
Thus, optimizing the cost function does not guarantee the
correct positioning of the camera but offers a trade-off between
positioning and manipulability.

In this work, to ensure the correct positioning of the camera,
we propose to force the decrease of the transformation between
two given successive predicted camera poses. To do so, we first
define HITC as the transformation matrix between the pose at
the predicted instant p+ ITC −1 and the one at p+ ITC. Next,
we rely on the logarithmic map log6 that allows transferring
an element H of the Lie group SE(3) to the corresponding
element ν of its Lie algebra se(3) [26]:

ν = log6(H) (29)

In this work, H = HITC is used in its homogeneous trans-
formation matrix form and ν in its 6-dimensional motion



vector form. In fact, ν corresponds to the velocity, linear and
rotational, that should be applied during 1 second to obtain
the transformation described by H. Thus, the constraint can
be written as:

∥log6(HITC)∥< minlog −δmin (30)

where HITC = H(k+ ITC −1), and minlog represents the small-
est ∥log6(HITC)∥ value observed up to the current instant.
Similarly to the approach presented in [29], a term δmin is
introduced to force a minimum decrease. It must be large
enough to speed up the convergence but small enough to let
the solver focus on the tasks.

d) Evolution of the time-varying constraint set: The
three presented constraints aim to guarantee that, at each new
iteration, a shorter trajectory reaching the goal is computed. In
other words, by contracting the trajectory, we seek avoidance
of null pieces of the solution, preventing the robot from
being stuck in local minima and guaranteeing the successful
realization of the positioning task. To do so, we rely on the
ITC index as follows. First, the prediction-reference constraint
is set on the last prediction, and the prediction-prediction one
is on the last piece of the trajectory, i.e., ITC = Np. Thus,
the predicted trajectory reaches the goal, and the length of
the last piece is forced to decrease at each iteration. When
this last piece of trajectory is no longer necessary, i.e., null,
the constraints are shifted to the previous predictions, i.e., ITC
is decremented by 1. The process is repeated until ITC = 1,
meaning that the predicted trajectory is made of the sole u∗(p)
command, the one applied to the robot.

This process is illustrated in Fig. 5 where Np = Nc = 5.
Let us define the initial iteration as k = k0 = 0, where ITC
is initialized to Np. Thus, the prediction-reference constraint
(27) between Ŝ(p+5) and S∗ is respected, and the trajectory
reaches the desired state (see Fig. 5a). This constraint can be
satisfied from the initial state thanks to the relaxed velocity
constraint (28). During the next iterations, e.g., for iteration
k1 > k0 in Fig. 5b, the piece of trajectory between Ŝ(p+ 4)
and Ŝ(p+ 5) is forced to decrease thanks to the prediction-
prediction decrease constraint (30). Once the logarithm of
the transformation between Ŝ(p+ 4) and Ŝ(p+ 5) becomes
smaller than the threshold δlog, i.e., iteration k2 > k1 in Fig. 5c,
Ŝ(p+ 4) and Ŝ(p+ 5) are close enough to be merged. From
now on, the current constraint set does not have an impact
on the optimization anymore, and the constraint configuration
must then be updated by applying ITC = ITC − 1 = 4, i.e.,
iteration k3 = k2 +1 in Fig. 5d. From now on, the prediction-
reference constraint forces Ŝ(p+4) = S∗, and the prediction-
prediction constraint acts on Ŝ(p+3) and Ŝ(p+4) and forces
this piece of trajectory to decrease, i.e., iteration k4 > k3 in Fig.
5e This process is repeated until ITC = 1 so that the command
applied to the robot actually makes it reach the desired pose,
i.e., iteration k5 > k4 in Fig. 5f.

IV. SIMULATION AND EXPERIMENTAL RESULTS

This section presents simulation and experimental results
to evaluate the performance of the presented approach. All

(a) Iteration k = k0 = 0

(b) Iteration k = k1 > k0

(c) Iteration k = k2 > k1

(d) Iteration k = k3 = k2 +1

(e) Iteration k = k4 > k3

(f) Iteration k = k5 > k4

Fig. 5: Evolution of the time-varying constraint set

algorithms are coded using the c++ language, and the optimal
control problem is tackled using a direct single shooting
method employing the SLSQP solver from the NLopt package.
Gradients are computed symbolically offline using CasADi
software [30] and are only evaluated online. Matrices bHc
and bk Hbk+1 are derived using Pinocchio [31], a rigid body
dynamics library. The tests are conducted on an Intel Core
i7-10850H, and the control loop operates at 5 Hz. The solver
timeout is set to 0.15s, Np and Nc are set up to 10 steps with
a sampling time Ts = 0.4s. The target is a rectangle centered
at (3,0,1.08625).

For all the conducted tests, the camera and the mobile

http://github.com/stevengj/nlopt


base have to travel about 2m to reach the target, and the
robotic system starts with the arm initially tucked. The bounds
on the mobile base linear and angular velocities equal ±0.1
m/s and ±0.3 rad/s, respectively. The minimal and maximal
joint limits are given by: χau = [2.68,1.02,1.50,2.29,2.07],
χal = [0.07,−1.50,−3.46,−0.32,−2.07], χhu = 1.24 and χhl =
−1.24. Finally, matrix QS(p) is the identity matrix, while
Nr = 1. The time units of the plots are the control loop
iterations.

The different simulation tests have been conducted to high-
light the strengths of the proposed approach and select the
best options for our VPC scheme to test on our robot. The
section is divided into four parts. The first is intended to
analyze and validate the proposed approach while showing the
impact of evaluating the gradients using CasADI. The second
one is focused on the decrease constraint choice, comparing
the logarithmic solution proposed here to the one based on
the command norm proposed in our previous works [23]. The
third one analyzes the impact of the manipulability measure,
trying to highlight the best combination of the manipulability
indices. Finally, the last part presents the experimental results
of the most adequate selected setups.

A. Simulation results – Evaluation of the approach and impact
of CasADI

In this first section, the introduced control scheme runs
using Gazebo simulator. Figure 6 presents an initial simulation
setup example and the final robot configuration obtained with
the presented VPC controller. The simulator allows us to
obtain realistic scenarios. The goal is to compare different
approaches to emphasize the relevance of the key points
introduced in the scheme. For the following simulation results
sections, the initial mobile base pose is (0,0,0) and αw = 1.
This configuration is representative of a generic case.

1) Visual task realization: Figures 7a and 7b present the
error between the image moments and their desired values
with and without CasADI. As one can see, the first figure
clearly illustrates the accurate execution of the visual task, as
the errors vanish. In contrast, Fig. 7b depicts the outcomes
obtained when the gradient computation is based on finite
differences. It exhibits much higher errors, thus highlighting
the inability to precisely position.

2) Stability: Figure 8a shows the evolution of the error
between the ITC

th predicted visual features and their desired
values. At the beginning of the servoing ITC = Np = 10.
Next, when the constrained piece of trajectory is considered
small enough, ITC is decremented by 1 (see III-C3d), and the
prediction-reference constraint is now on the previous piece of
predicted trajectory. This change in the ITC value is represented
by the vertical red lines. Finally, an error value close to zero
indicates that the prediction-reference constraint is respected.
The error between Ŝ(p+ ITC) and S∗ being null or close to
null over the whole servoing and despite the numerous shifts,
it can be concluded that the prediction-reference constraint
is respected. Note that the relaxed velocity constraint allows

(a) Initial simulation configuration

(b) Final simulation configuration

Fig. 6: Gazebo simulation

(a) S−S∗ evolution with CasADi (b) S−S∗ without CasADi

Fig. 7: Task realization results with and without CasADi

dealing with the initial configuration when the initial and
desired poses are significantly different.

Figure 8b reiterates the results obtained without CasADi,
emphasizing the challenge of meeting the prediction-reference
constraint. This scenario demands numerous iterations for the
solver to compute a solution satisfying all constraints, which is
challenging within a reasonable time frame (< 200ms) without
CasADi. The prediction-reference constraint error value is
large at the beginning of the servoing when the arm is tucked
and remains non-null until the end. It is impossible to rely on
the positioning constraint set to guarantee closed-loop stability.

Thus, these results show the efficiency of the proposed
approach. Furthermore, symbolical gradient computation ap-
pears to be an essential element in the experimental setups
to compute a solution respecting the constraint within a time
period compatible with the real-time control of a robotic
system.



(a) Evolution of last Ŝ(p+ ITC)−S∗ with CasADi

(b) Evolution of last Ŝ(p+ ITC)−S∗ without CasADi

Fig. 8: Evolution last Ŝ(p+ITC)−S∗ with and without CasADi

(a) Velocities evolution (b) Joint values evolution

Fig. 9: Joints and commands evolution

3) Joints and commands evolution: Finally, Fig. 9 depicts
the evolution of velocities and joint angles. Despite a relaxed
constraint, the velocities applied to the robot remain within
the specified boundaries. As for the joint angles, they are kept
within their limits, thanks to the manipulability measure.

B. Simulation results – Visual task convergence: Logarithmic
vs command decrease constraint

The positioning constraint set has been defined to ensure
the convergence of the visual task while maximizing manipu-
lability. In this section, the logarithm-based method proposed
in this paper and the command-based approach presented in
[23] are compared.

First, let us recall the constraint set process by looking at
Fig. 10, which depicts the simulated behavior following the
concept explained in Fig. 5. The constrained prediction ITC
is initialized to Np = 10. The proposed approach satisfies the
terminal constraint since iteration 2 thanks to the well-defined
and well-resolved optimization problem. The contribution of
the relaxed input constraint is highlighted in Fig. 10a. Next,
the constraint (30) imposes the transformation between the
last two predicted poses to decrease (see Fig. 10b, 10c, and
10d) and the constrained prediction is kept to its current
value until these predictions, i.e. the 9th and 10th, are close
enough to be unified. When the logarithm becomes smaller
than the threshold δlog (see Fig. 10d), the current constraint
set no longer influences the optimization, and the constraint
configuration is updated by shifting the terminal constraint,
i.e. ITC = 9, as seen on Fig. 10e.

In this context, the evolution of the value ITC is interesting
because it measures the convergence rate (see Fig. 11). Faster
achievement of ITC = 1 corresponds to an earlier completion
of the visual task. Due to the distinct nature of the prediction-
prediction decrease constraint logarithm-based in Fig. 11a
and command-based in Fig. 11b, two different behaviors are
observed: on the one hand, the switches are started earlier,
and on the other hand the interval between two switches is
shorter in Fig. 11a compared to Fig. 11b. This results in a
shorter servoing duration for the first case. This underlines the
effectiveness of the logarithm-based constraint in contrast to
the command-based approach. Indeed, quantifying the distance
between two poses is inherently more accurate when utilizing
an operational space measure than a joint space one.

This analysis is confirmed by comparing Fig. 12 with
Fig. 7a. It indicates that the execution of the visual task is
significantly slower when employing the command decrease
function.

C. Simulation results – Manipulability measure analysis

This section aims to investigate the impact of the choice of
manipulability measure. Four scenarios are taken into account:

• C1: Without manipulability, i.e. Kw = 0
• C2: With w′

a only, i.e. αw = 1
• C3: With w′

b+a only, i.e. αw = 0
• C4: With w′

a and w′
b+a , with αw = 0.1

Figures 13a, 13b and 13c respectively present the wa,
wb+a, and P evolution obtained for each case. These figures
clearly illustrate that the C2 and C3 cases are indeed the
scenarios where w′

a and w′
b+a are maximized, respectively,

as anticipated. They also reveal that in the C4 case, the
expected trade-off between both manipulabilities is achieved.
Additionally, it is noteworthy that the evolution of w′

b+a in
C1 and C3 yields similar results in terms of maximization.
Nevertheless, in Fig. 13c, it is obvious that P decreases for
the C1 and C3 cases. This can be attributed to the joint q4
approaching its limit. The performances are similar for each
measure concerning C1 and C3. This is, however, specific to
the considered scenario. These two outcomes underline the
significance of retaining the term w′

a in Fw. Consequently,



(a) Iteration 2

(b) Iteration 92 (c) Iteration 97

(d) Iteration 102 (e) Iteration 103

Fig. 10: Positioning constraint set shift results

(a) With logarithmic decrease constraint

(b) With command decrease constraint

Fig. 11: ITC evolution

opting for Kw = 0 or αw = 0 is not the most appropriate
choice. Now, concluding is more challenging concerning C2

Fig. 12: S−S∗ evolution with command decrease constraint

and C4 cases. The performances appear comparable in the
studied simulation scenario, requiring a more comprehensive
analysis. Only a slight difference in the measure w′

a can be
observed: the impact of this difference will be highlighted in
the robot configuration trajectory in the experimental results
section.

(a) wa evolution

(b) wb+a evolution

(c) P evolution

Fig. 13: Manipulability measures evolution

D. Experimental results

The previous simulation results highlight two setups with
equivalent performances: cases C2 and C4. They have thus
been implemented and tested on a robotic platform, with an
initial mobile base pose χb = [0,0,0]T . Moreover, two other
scenarios with αw = 1 and different initial mobile base poses
have been conducted to demonstrate the proposed method’s
robustness and flexibility: C2l and C2r, respectively, with χb =
[0,+0.8,0]T and χb = [0,−0.8,0]T . Complete trajectories are
available in the video attached to this paper.

1) Visual task realization: In this scenario, the robotic
system successfully achieves the task. The robot starts with
a tucked arm, and the head camera can only see the landmark
(cf. Fig. 14a). Nevertheless, the controller manages to drive the
robot to the desired pose defined in the end-effector camera
image (cf. Fig. 14b and 15). Moreover, Fig. 14c and 14d
respectively display the interest points trajectory in the head



and end-effector images, confirming that the visual task is
correctly performed. Also, it can be pointed out that the visual
features are temporarily lost in the end-effector image3, but
thanks to the head camera, the robot can continue executing
the task. However, Fig. 14c shows that the visibility constraint
may sometimes be violated, as the visual features may leave
the head camera field of view. This problem is due to the
optimization process, which may terminate before satisfying
all constraints because of the incorporated time-out. To deal
with this issue, this constraint has been set up conservatively
to avoid the loss of visual features.

(a) Initial image - Head camera (b) Final image - End-effector
camera

(c) Points trajectory - Head
camera

(d) Points trajectory -
End-effector camera (The green

crosses indicate the desired
values)

Fig. 14: Task realization results

Fig. 15: S−S∗ evolution

2) Stability: In this section, we analyze the performance of
the positioning constraint set. In Fig. 16a, it is shown that the
error between S(p+ ITC) and S∗ is close to zero, indicating
that the terminal constraint is generally satisfied, except in
a few exceptional cases. This issue arises again because the
optimization process sometimes halts and provides a solution
that does not encompass the entire constraint set due to a

3Let us recall that the visibility constraint is set on the head camera only.

timeout. However, the controller quickly corrects the latter
and does not disturb the positioning constraint set process.
In Fig. 16b, the impact of the prediction-prediction constraint
can be seen. Indeed, the ∥log6(HITC)∥ evolution shows that
it is constantly decreasing. Moreover, it exhibits a triangular
shape due to the ITC update (cf. Fig. 16c) when it reaches a
small value.

(a) Evolution last Ŝ(p+ ITC)−S∗

(b) ∥log6(HITC )∥ evolution

(c) ITC evolution

Fig. 16: Stability and convergence results

3) Robot behavior analysis: Figures 17, 18, 19, and 20
present screenshots of the robot, the end-effector camera
images, and the head camera images trajectories, respectively
for scenarios C2, C4, C2l , and C2r.

We can first analyze the first part of the robot trajectory
in Fig. (a), (b), (c), and (d) for each case. This primary
part is similar for all scenarios and aims to unfold the arm.
This behavior is produced for two main reasons. First, the
configuration with the tucked arm has small manipulability
measure values due to the proximity to joint limits. The choice
of the manipulability index used in the control scheme does
not significantly impact this part of the movements. Second,
the visual features and the weighting matrix QS are defined to
prioritize correcting the end-effector camera orientation. The
use of decoupled visual features allows us to influence the
cartesian trajectory through the matrix QS, and this behavior
can thus be slightly modified. Figures (i) - (l), and (o) - (r),
present the end-effector and head image trajectories during this
phase, respectively, and highlight the handling of the initial
unavailability of target points in the end-effector camera by



using the head camera information. At the end of this first
phase, the robot reaches configurations that balance the two
tasks defined by Fvs and Fw. The system keeps indeed high
movement capabilities while performing the visual task.

Figures (e), ( f ), and (g) depict the middle part of the
movement. This latter starts when the robot comes closer to the
target while still getting some room to maneuver. It emphasizes
the controller’s capability to use the system’s redundancy to
achieve its best tasks by coordinating the mobile base and the
arm. When the end-effector gets closer to the desired pose,
the robot uses its internal DoFs to perform the secondary task.
It can be seen that the torso of the robot is rotating around
the first joint q1 to increase the manipulability. This aspect is
even more noticeable when the initial position of the mobile
base is far away from the final one. This behavior lasts longer
for C2r than C2, and for C2 than C2l , mostly justifying the
longer duration of the entire trajectory. Figures (m) and (s))
present image examples for both cameras at this time: the
target becomes generally visible by the end-effector camera,
but the arm keeps its full motion range thanks to the visibility
constraint design only set up on the head camera.

Finally, the last part of the trajectory illustrates the em-
ployment of the positioning constraint set to prioritize the
visual task over the manipulability maximization. Only small
movements are generated, which are quite similar for C2,
C2l , and C2r. Figures (h) show the final configuration of the
robot for each case. There is a noticeable difference between
C4 and C2 cases where a more extended arm deployment
is obtained in C4 because the mobile base’s contribution is
considered. During this part, the end-effector camera always
sees the target (Fig. (n)). The visual data are thus used by
the controller, avoiding reprojection errors and allowing an
accurate positioning.

V. CONCLUSION

In this work, we have designed a multi-camera VPC strategy
to control a mobile manipulator. The considered task consists
of positioning the end-effector camera with respect to a given
landmark. The proposed control law is fed with specific visual
features, allowing the avoidance of perspective projection
singularities while obtaining a nice decoupling of the camera
DoFs. The visual features are computed using both the head
and wrist cameras to deal with the risk of visual feature loss.
From a control point of view, the method copes with several
important challenges: (i) the large displacements, which in turn
induce a large prediction horizon and question the stability; (ii)
the large number of DoFs, which implies a large search space
when optimizing, and a high redundancy leading to possible
non-suitable configurations and undesired behaviors; (iii) the
processing time. One of the key elements of the approach is
the proposed time-varying positioning constraint set. Indeed,
it prioritizes the vision-based task against the manipulability
while avoiding local minima and guaranteeing closed-loop
stability despite a large prediction horizon. Furthermore, we
have also implemented the optimization problem using a
symbolic representation to deal with the processing time. The

strategy has been thoroughly simulated and evaluated using
ROS and Gazebo, highlighting the best parameter choice.
These latter have been implemented on our TIAGo robot. The
obtained results demonstrate both the interest and efficiency
of the proposed approach. In the future, we plan to extend
this new framework to handle the presence of obstacles and
realize more complex tasks involving both navigation and
manipulation skills using vision.
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(a) t = 0s (b) t = 2s (c) t = 4s (d) t = 7s

(e) t = 15s (f) t = 19s (g) t = 21s (h) t = 44s

(i) t = 0s (j) t = 2s (k) t = 4s (l) t = 7s (m) t = 15s (n) t = 44s

(o) t = 0s (p) t = 2s (q) t = 4s (r) t = 7s (s) t = 15s (t) t = 44s

Fig. 17: C2 robot trajectory (a)− (h), end-effector camera information (i)− (n), head camera information (o)− (t)



(a) t = 0s (b) t = 2s (c) t = 4s (d) t = 7s

(e) t = 15s (f) t = 18s (g) t = 22s (h) t = 42s

(i) t = 0s (j) t = 2s (k) t = 4s (l) t = 7s (m) t = 15s (n) t = 42s

(o) t = 0s (p) t = 2s (q) t = 4s (r) t = 7s (s) t = 15s (t) t = 42s

Fig. 18: C4 robot trajectory (a)− (h), end-effector camera information (i)− (n), head camera information (o)− (t)



(a) t = 0s (b) t = 2s (c) t = 4s (d) t = 7s

(e) t = 15s (f) t = 19s (g) t = 22s (h) t = 35s

(i) t = 0s (j) t = 2s (k) t = 4s (l) t = 7s (m) t = 15s (n) t = 35s

(o) t = 0s (p) t = 2s (q) t = 4s (r) t = 7s (s) t = 15s (t) t = 42s

Fig. 19: C2l robot trajectory (a)− (h), end-effector camera information (i)− (n), head camera information (o)− (t)



(a) t = 0s (b) t = 2s (c) t = 4s (d) t = 7s

(e) t = 15s (f) t = 24s (g) t = 29s (h) t = 56s

(i) t = 0s (j) t = 2s (k) t = 4s (l) t = 7s (m) t = 15s (n) t = 56s

(o) t = 0s (p) t = 2s (q) t = 4s (r) t = 7s (s) t = 15s (t) t = 56s

Fig. 20: C2r robot trajectory (a)− (h), end-effector camera information (i)− (n), head camera information (o)− (t)
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