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Abstract. The merge-and-shrink framework is a powerful tool for
constructing state-of-the-art admissible heuristics in classical plan-
ning. Recent work has begun generalizing the complex theory be-
hind this framework to probabilistic planning in forms of stochastic
shortest-path problems (SSPs). There however remain two important
gaps. Firstly, although the previous work makes substantial efforts,
the probabilistic merge-and-shrink theory is still incomplete, lacking
in particular prune transformations, i.e., transformations discarding
uninteresting states, effectively reducing the size of the abstraction
without losing relevant information. Secondly, an actual implementa-
tion and experimental evaluation of the merge-and-shrink framework
for SSPs is so far missing. Here, we round off the previous work by
contributing both a theoretical analysis of prune transformations, as
well as an empirical evaluation of merge-and-shrink heuristics. Our
results show that merge-and-shrink heuristics outperform previous
single abstraction heuristics, but do not quite reach the performance
of state-of-the-art additive combinations of such heuristics yet.

1 Introduction

Fully observable probabilistic planning is commonly viewed as a
stochastic shortest-path problem (SSP) [2], where one aims at finding
a policy that guarantees achieving the goal with the lowest expected
cost possible. The current state of the art for solving SSPs optimally
is using heuristic search algorithms [e.g., 7] guided with admissi-
ble probabilistic-abstraction heuristics [32, 15, 14]. Such heuristics
derive lower bounds on the expected cost-to-goal by abstracting the
SSP, collapsing together states so to make an exhaustive analysis fea-
sible. In recent years, many different methods have been proposed to
generate such abstractions automatically, the roots typically going
back to classical planning, including pattern databases [5, 8, 14, 16]
and counterexample-guided Cartesian abstractions [24, 17].

Merge-and-shrink abstractions have received significant attention
in classical planning research [9, 10, 11, 26]. Merge-and-shrink is
a generic framework for constructing highly informative abstrac-
tions, which is based on a factored representation of transition sys-
tems and operations on this representation, called transformations
[26]. Merge-and-shrink constructs admissible abstraction heuristics,
as long as only transformations are used which preserve specific
compositional properties, regardless of their application order.

Recently, this framework has been generalised to probabilistic
planning [18], by defining a suitable factored representation for prob-

abilistic transition systems alongside suitable extensions of the core
transformations: merge, shrink, and label reduction transformations.
Klößner et al. [18] showed that these transformations preserve com-
positional properties needed to guarantee correctness of the abstrac-
tion construction. However, two gaps remain open. On the one hand,
their theory did not cover prune transformations, which remove un-
interesting (e.g., unreachable) states from the abstraction, effectively
reducing the size of the abstraction without harming informativeness
of the resulting abstraction heuristic. On the other hand, they pro-
vide no implementation and no empirical evaluation, so the practical
applicability of this type of abstraction remains unknown.

In this paper, we round off the previous work. We formally intro-
duce prune transformations, which in general no longer preserve the
admissibility guarantee of the constructed heuristic. Nevertheless, we
derive sufficient conditions for admissibility, and furthermore show
that it suffices to preserve admissibility on alive states, (i.e., states
part of some solution), in order for standard SSP heuristic search al-
gorithms to retain their completeness and optimality guarantees. We
derive prune transformations that detect non-alive states, strengthen-
ing the heuristic, while preserving the optimality guarantee of the
heuristic search.

Moreover, we implemented the merge-and-shrink framework, in-
cluding merge, shrink, label reduction and prune transformations.
We compare merge-and-shrink heuristics against other state-of-the-
art abstraction heuristics for probabilistic planning. Our experiments
show that this framework can derive informative heuristics, compet-
itive with both PDB heuristics and Cartesian abstraction heuristics.

The paper is structured as follows. We first give an overview over
our probabilistic planning setting and the probabilistic merge-and-
shrink framework in Section 2. In Section 3, we re-consider the
heuristic properties needed to ensure optimality of SSP heuristic
search algorithms, and introduce relaxed properties that allow for the
pruning of uninteresting states. In Section 4, we define prune trans-
formations, embed them into the compositional theory of merge-and-
shrink, and develop practical strategies for pruning. We conclude
with an experimental evaluation of our approaches in Section 5.

2 Background

A partial function from X to Y , written f : X ⇀ Y , is associated
with its domain dom(f) ⊆ X . If dom(f) = X , we write f : X →
Y . The set of stochastic functions over X is given by Dist(X) :=



{δ : X → [0, 1] |
∑

x∈X δ(x) = 1}. Likewise, the set of sub-
stochastic functions over X is given by SDist(X) := {δ : X →
[0, 1] |

∑
x∈X δ(x) ≤ 1}. The support of δ ∈ SDist(X) is defined

by supp(δ) := {x | δ(x) > 0}.

2.1 Probabilistic Transition Systems

A probabilistic transition system (abbreviated as TS) is a tuple Θ =
⟨SΘ, LΘ, CΘ, TΘ, IΘ, GΘ⟩ consisting of a set of states SΘ, a set of
action labels LΘ, a label cost function CΘ : LΘ → R+

0 , a set of
probabilistic transitions TΘ ⊆ T all

Θ := SΘ×LΘ×Dist(SΘ), a set of
initial states IΘ ⊆ SΘ and a set of goal states GΘ ⊆ SΘ. All sets are
finite. For a state s ∈ SΘ, we define TΘ(s) := {⟨s, ℓ, δ⟩ ∈ TΘ}. To
ease notation, we define CΘ(T) := CΘ(ℓ) for the cost and δT := δ
for the successor distribution of a transition T = ⟨s, ℓ, δ⟩ ∈ TΘ.

A finite path of Θ is a finite alternating sequence p = s0T0 . . . sn
of states s0, . . . , sn ∈ SΘ and transitions T0, . . . ,Tn−1 ∈ TΘ. We
define last(p) := sn as the last state and Cost(p) :=

∑n−1
i=0 CΘ(Ti)

as the cost of such a finite path p. The set of finite paths of Θ is
denoted by FPaths(Θ). Analogously, infinite paths are infinite al-
ternating sequences p = s0T0 . . . for which last is undefined and
with their cost defined as Cost(p) :=

∑∞
i=0 CΘ(Ti).

Usually, stationary and deterministic (SD for short) policies π :
SΘ ⇀ TΘ are used in the context of SSPs to model an agent
who selects a transition π(s) (if any) to execute next only based
on the current state of the environment s ∈ SΘ. Unfortunately,
such policies are not expressive enough for our developments, as we
will see later. We consider history-dependent and stochastic poli-
cies π : FPaths(Θ) → SDist(TΘ) with the following seman-
tics. If p ∈ FPaths(Θ) is the execution history so far, π exe-
cutes the transition T next with probability π(p)(T), and termi-
nates with probability termπ(p) := 1 −

∑
T∈TΘ

π(p)(T). Only
transitions of the current state may be chosen, i.e., supp(π(p)) ⊆
TΘ(last(p)). Given a starting state s ∈ SΘ, π induces a prob-
ability space over the finite and infinite paths (i.e., possible exe-
cutions) of Θ [1]. The event space is the σ-algebra generated by
all of the cylinder sets Cyl(p) := {p′ | p is a prefix of p′}, for
p ∈ FPaths(Θ). The probability measure Prπs over the paths is
the unique extension of the pre-measure P[Cyl(s0T0 . . . sn)] :=
[s0=s] ·

∏n−1
i=0 π(s0T0 . . . si)(Ti) · δTi(si+1) (defined using Iver-

son brackets) to the full σ-algebra.
Let T ⊆ SΘ be a set of target states. Let FinishΘ(T ) := {p ∈

FPaths(Θ) | last(p) ∈ T} be the set of paths of Θ ending in T .
The solutions of the state s ∈ SΘ for T are denoted SolsΘ(s, T ) :=
{π | Prπs [FinishΘ(T )] = 1}. The expected cost of a policy π for a
state s is denoted Jπ

Θ(s) := Eπ
s [Cost]. The optimal expected cost-to-

goal of s is given by J∗Θ(s) := infπ∈SolsΘ(s,GΘ) J
π
Θ(s). A solution

π ∈ SolsΘ(s,GΘ) is optimal for s if Jπ
Θ(s) = J∗Θ(s). If a solution

exists, there is also an optimal SD policy [2, 23]. The objective is
finding an initial state s0 and optimal policy for s0, if existent, where
J∗Θ(s0) is minimal among all initial states.

2.2 Heuristics & Transformations

A heuristic is a function h : SΘ → R+
0 ∪ {∞} that is used by a

heuristic search algorithm to estimate J∗Θ. h is admissible if h(s) ≤
J∗Θ(s) for every state s ∈ SΘ, goal-aware if h(s) = 0 for every
goal state s ∈ GΘ, consistent if h(s) ≤ CΘ(ℓ) +

∑
t∈SΘ

δ(t) · h(t)
for every transition ⟨s, ℓ, δ⟩ ∈ TΘ and finally safe if h(s) ̸= ∞ for
every state s such that SolsΘ(s,GΘ) ̸= ∅. Every heuristic that is
consistent, goal-aware, and safe is also admissible.

A TS transformation [18] is a tuple τ = ⟨Θ,Θ′, σ, λ⟩, consisting
of a concrete TS Θ, a transformed TS Θ′, and the state and label
mappings σ : SΘ ⇀ SΘ′ and λ : LΘ ⇀ LΘ′ . We call states of
Θ concrete states and states of Θ′ transformed states (similarly for
labels, etc.). The transformation heuristic induced by τ is given by
hτ (s) := J∗Θ′(σ(s)) if s ∈ dom(σ) and hτ (s) := ∞ otherwise.

Every function f : X ⇀ Y can be lifted to a function lift [f ] :
Dist(X) ⇀ Dist(Y ) with the domain dom(lift [f ]) := {δ |
supp(δ) ⊆ dom(f)} by defining lift [f ](δ)(y) :=

∑
x∈f−1(y) δ(x).

By making use of this, the state mapping σ can be naturally lifted to a
state distribution mapping lift [σ] : Dist(SΘ) ⇀ Dist(SΘ′). Consult-
ing the associations σ, λ and lift [σ] and applying them component-
wise yields the transition transformation ttrτ : TΘ ⇀ T all

Θ′ with the
domain dom(ttrτ ) := dom(σ) × dom(λ) × dom(lift [σ]) given
by ttrτ (⟨s, ℓ, δ⟩) := ⟨σ(s), λ(ℓ), lift [σ](δ)⟩. Based on this, Klößner
et al. [18] define the following conservativeness properties:

CONSS σ is total on SΘ

CONSL λ is total on LΘ

CONSC ∀ℓ ∈ dom(λ). CΘ′(λ(ℓ)) ≤ CΘ(ℓ)
CONST ttrτ (TΘ) ⊆ TΘ′

CONSG σ(GΘ) ⊆ GΘ′

They also introduce other properties, but we omit them here as we
do not deal with them formally. We treat such transformation proper-
ties as sets, writing τ ∈ X if τ satisfies the property X. To ease nota-
tion, we also write τ ∈ CONSS+L instead of τ ∈ CONSS ∩ CONSL

for example. The properties X from above are invariant under com-
position, i.e., if two transformations τ = ⟨Θ,Θ′, σ, λ⟩ and τ ′ =
⟨Θ′,Θ′′, σ′, λ′⟩ both satisfy X, then their composition τ ′ ◦ τ :=
⟨Θ,Θ′′, σ′ ◦ σ, λ′ ◦ λ⟩ satisfies X as well. For every conservative
transformation τ , i.e., τ ∈ CONSS+L+C+T+G, hτ is goal-aware, con-
sistent and safe, and admissible.

2.3 The Merge-and-Shrink Framework

The probabilistic merge-and-shrink framework [18] is defined via
transformations on a factored TS representation. The base of this
representation are annotated transition systems (ATS), which are tu-
ples A = ⟨SA, LA, CA, EA, DA, TA, IA, GA⟩. Here, EA is a finite
set of effect labels modelling different action outcomes, DA : LA →
Dist(EA) maps each action label to a probability distribution over
effect labels and TA ⊆ SA × LA × (EA ⇀ SA) consists of an-
notated transitions ⟨s, ℓ, α⟩ ∈ TA associating each possible effect
label e ∈ supp(DA(ℓ)) of ℓ with a successor α(e) ∈ SA. As op-
posed to a regular TS, an ATS is able to distinguish between different
action outcomes leading to the same state. Dropping this informa-
tion yields the ordinary TS Θ(A) := ⟨SA, LA, CA, TΘ(A), IA, GA⟩
with TΘ(A) := {⟨s, ℓ, lift [α](DA(ℓ))⟩ | ⟨s, ℓ, α⟩ ∈ TA}. For the
transitions of Θ(A), the probability of a successor state is the total
probability of all effect labels leading to this successor.

A factored ATS is a tuple F = ⟨Ai⟩i∈I of ATSs (its fac-
tors) where I is some finite index set. All factors have the same
action labels LF , effect labels EF , effect probabilities DF and
costs CF . The factored ATS F implicitly represents the syn-
chronised product of its factors, formally defined as

⊗
F :=

⟨×i∈I SAi , LF , CF , EF , DF , T⊗
F ,×i∈I IAi ,×i∈I GAi⟩, where

T⊗
F := {⟨⟨si⟩i∈I , ℓ, α⟩ | ∀i ∈ I. ⟨si, ℓ, αi⟩ ∈ TAi ∧ α(e) =

⟨αi(e)⟩i∈I}. For a state s ∈ S⊗
F and a factor index i ∈ I,

s(i) ∈ SAi denotes the state in the corresponding factor. Proba-
bilistic planning tasks in finite-domain representation [32, 30] can



be straightforwardly mapped to a factored ATS containing one factor
for each finite-domain variable (the variable’s atomic projection).

Since the underlying TS of an ATS is only implicitly represented,
merge-and-shrink transformations are specified on the factored ATS
directly. To this end, a factored mapping (FM) from F to a set D is a
function σ : S⊗

F ⇀ D that is either an atomic FM Atomi,α(s) :=
α(s(i)) for factor index i ∈ I and α : SAi ⇀ D, or a merge FM
Mergeσ1,σ2,α

(s) := α(σ1(s), σ2(s)) for child FMs σi : S⊗
F ⇀

Di, i ∈ {1, 2} and α : D1 × D2 ⇀ D. A factored-to-factored
mapping from F to another factored ATS F ′ = ⟨Aj⟩j∈J is a tuple
Σ = ⟨σj⟩j∈J of FMs σj : S⊗

F ⇀ SAj , representing the function
JΣK : S⊗

F → S⊗
F ′ , JΣK(s) := ⟨σj(s)⟩j∈J .

A factored transformation is a tuple ⟨F, F ′,Σ, λ⟩ where F is the
original factored ATS, F ′ is the transformed factored ATS, Σ is a
factored-to-factored mapping from F to F ′ and λ : LF ⇀ LF ′ is a
label mapping. Such a factored transformation implicitly represents
the TS transformation ⟨Θ(

⊗
F ),Θ(

⊗
F ′), JΣK, λ⟩. Properties like

CONSS are said to hold for a factored transformation, if they hold for
this corresponding TS transformation. Merge-and-shrink iteratively
applies factored transformations, terminating with a single factor left.
Thanks to the compositional invariance, that final factor is guaranteed
to yield a goal-aware, consistent, and admissible heuristic, if each
individual transformation satisfied the properties from Section 2.2.

3 Revisiting SSP Heuristic Properties

In forward heuristic search, one will only ever encounter states
reachable from the initial state. For the completeness and optimality
properties of the search, the behaviour of the heuristic on unreachable
states is hence irrelevant. Classical planning literature has exploited
this observation through according relaxations of heuristic properties
like admissibility, which allowed constructing higher quality heuris-
tics [6, 26]. Here, we generalise these ideas to SSP heuristic search.

To be able to formulate these relaxed heuristic properties, we first
define some additional concepts and notation, then follow up with an
example that showcases the new definitions. In the following, let Θ
be a TS, let π be a policy, and let S ⊆ SΘ and T ⊆ SΘ be a set of
starting states and target states, respectively.

We write s
π
; t if there is a path p = s . . . t with Prπs [Cyl(p)] >

0, and s ; t if there is a policy π with s
π
; t. The states forward

reachable from S and backward reachable from T under π are de-
noted Reach→Θ,π(S) := {t | ∃s ∈ S. s

π
; t} and Reach←Θ,π(T ) :=

{s | ∃t ∈ T. s
π
; t} respectively. Likewise, the set of all forward

respectively backward reachable states are denoted Reach→Θ (S) :=
{t | ∃s ∈ S. s ; t} and Reach←Θ (T ) := {s | ∃t ∈ T. s ; t}.

The set of dead ends for the targets T is given by DeadΘ(T ) :=
SΘ \ Reach←Θ (T ), and denotes states which cannot reach T under
any circumstance. A state s is solvable for T if it has a solution π ∈
SolsΘ(s, T ). The set of states solvable for T is denoted SolvΘ(T ).
Lastly, we say that a state u is alive for S and T , if there is a state
s ∈ S and a solution π ∈ SolsΘ(s, T ) such that s π

; u. The set of
all states alive for S and T is given by AliveΘ(S, T ). All alive states
are forward reachable from S and solvable, as π ∈ SolsΘ(s, T ) and
s

π
; u implies π ∈ SolsΘ(u, T ).
The sets Reach→Θ (S) and Reach←Θ (T ) can be computed by a

simple exhaustive forward/backwards exploration of Θ from S or
T respectively. SolvΘ(T ) can be computed by repeatedly prun-
ing dead ends until a fixpoint is reached [1]. More specifically,
let the projection of Θ onto a state set K ⊆ SΘ be Θ|K :=
{K,LΘ, TΘ|K , CΘ, IΘ∩K,GΘ∩K}, where TΘ|K := {⟨s, ℓ, δ|K⟩ |
⟨s, ℓ, δ⟩ ∈ TΘ∧s ∈ K∧supp(δ) ⊆ K}. Starting with Θ0 := Θ, one

s9

s0start

s1 s2

s3

s4

s5

s6

s7s8

Figure 1. Transition system Θ used in Example 1.

iteratively computes the TS Θi+1 := Θi|Reach←Θi
(T ) until Θi+1 =

Θi. The solvable states are the remaining states of the final transition
system Θk. Furthermore, we have AliveΘ(S, T ) = Reach→Θk

(S).
In the following, we mostly use the above definitions with respect

to the set of source states S = IΘ and the target states T = GΘ

in the context of a TS Θ. We therefore use the corresponding short-
hand notations Reach→(Θ) := Reach→Θ (IΘ) and Reach←(Θ) :=
Reach←Θ (GΘ), and analogously Dead(Θ), Solv(Θ) and Alive(Θ).

Example 1. In the transition system Θ depicted in Fig. 1, we can see
that Reach→(Θ) = {s0, s1, s2, s3, s4, s5, s6, s9} and Dead(Θ) =
{s5, s8}. To determine the solvable states of Θ, we first compute
Θ1 = Θ|Reach←(Θ), which is the TS from which the dead ends of
Θ and transitions leading to them are removed (drawn with dot-
ted lines in Fig. 1). Repeating the procedure, we next prune the
dead end s2 and the transitions leading to s2 (drawn with dashed
lines) to obtain Θ2. Finally, Θ2 has no dead ends, so the algo-
rithm terminates with the set of solvable states Solv(Θ) = SΘ2 =
{s0, s1, s3, s4, s6, s7, s9}. In particular, s2 is neither solvable nor
a dead end, as we can reach the goal from s2, but not with cer-
tainty. The set of alive states for s0 can be computed as Alive(Θ) =
Reach→(Θ2) = {s0, s3, s4, s9}. In particular, the states s1 and s6
are forward reachable from s0 and solvable, but not alive for s0, be-
cause no policy that reaches these states from s0 can reach the goal
with certainty. Note that s9 can be reached by a history-dependent
solution that first goes to s9 from s0 and then behaves like a solu-
tion for s0 after one step. However, an SD policy reaching s9 from
s0 would produce an infinite cycle due to always repeating the same
choice in s0 regardless of the history. Since s9 would also be alive
from the view of the classical theory in the deterministic TS restricted
to the states {s0, s3, s4, s9}, we would not obtain a proper generali-
sation of this concept if we only considered SD policies.

As in classical planning, SSP heuristic search algorithms retain
their correctness properties regardless of the heuristic estimates for
unreachable states. It however turns out that for SSPs, one can even
further relax the heuristic properties.

Definition 1. A heuristic h : SΘ → R ∪ {∞} for the TS Θ is

a) alive-goal-aware if h(s) = 0 for every s ∈ Alive(Θ) ∩GΘ,
b) alive-consistent if h(s) ≤ CΘ(ℓ) +

∑
t∈SΘ

δ(t) · h(t) for every
⟨s, ℓ, δ⟩ ∈ TΘ with s ∈ Alive(Θ) and supp(δ) ⊆ Alive(Θ),

c) alive-safe if h(s) ̸= ∞ for every s ∈ Alive(Θ),
d) alive-admissible if h(s) ≤ J∗Θ(s) for every s ∈ Alive(Θ) and
e) alive-perfect if h(s) = J∗Θ(s) for every s ∈ Alive(Θ) and

h(u) = ∞ for every u /∈ Solv(Θ) such that there exists
⟨t, ℓ, δ⟩ ∈ TΘ with t ∈ Alive(Θ) ∧ u ∈ supp(δ).

As usual, the heuristic value h(s) = ∞ is used to signal the
search to discard s from consideration. For alive-perfection 1e), we
want the heuristic to effectively restrict the search to the alive states
only, which is guaranteed if the unsolvable successors of alive states



are detected as such. When pruned, beyond those unsolvable states,
no other non-alive states will be visited, making their heuristic es-
timates irrelevant. Note that, as is the case for the unrestricted ver-
sions, if a heuristic is alive-admissible, it is also alive-goal-aware
and alive-safe. If a heuristic is alive-goal-aware, alive-safe, and alive-
consistent, then it is alive-admissible. If a heuristic is alive-perfect,
then it satisfies also all the other properties. Importantly, the alive
properties leave the correctness properties of heuristic search intact:

Theorem 1. Let A be an optimal SSP heuristic search algorithm
applied on the TS Θ with initial state sI , and let h be the search
heuristic. If h is alive-safe, then A returns a solution for sI , if exis-
tent. If h is even alive-admissible, this solution is optimal.

Proof (Sketch). Pruning non-alive states does not affect the set of
possible solutions, which suffices for the first claim. For the second
part, since A always returns an optimal solution with an admissible
heuristic, A will also find an optimal solution if we make all sub-
optimal choices look worse than they actually are; intuitively, this can
only make the optimal choices look better. As h is only inadmissible
for states not part of any solution, h can only result in pessimistic
estimations of suboptimal choices, concluding the proof.

Our argument applies to most popular heuristic search algorithms
for SSPs, including LAO∗ [7], LRTDP [3], and i-dual [31].

4 A Theory of Prune Transformations
In this section, we formally define prune transformations on a fac-
tored ATS and embed them into the compositional theory of merge-
and-shrink. As we will see, all interesting prune transformations are
not conservative. We will therefore replace some of the conserva-
tiveness properties with less strict structural properties. We proceed
as follows. After introducing the relaxed properties, we first show
that they are sufficient to enforce the relaxed heuristic properties in-
troduced in Section 3. Afterwards, we prove that these properties
are invariant under composition under additional assumptions, which
however hold for prune transformations as well as the other three
core M&S transformations. We conclude the section with practical
prune strategies that respect these properties.

We start by defining a pruning operation on a single annotated TS.

Definition 2. Let A be an ATS and let K ⊆ SA be a subset of
kept states. The pruned ATS A|K for A and K is defined as the
ATS A|K := {K,LA, CA, EA, DA, TA|K , IA∩K,GA∩K}, where
TA|K := {⟨s, ℓ, α⟩ ∈ TA | s ∈ K ∧ α(supp(DA(ℓ))) ⊆ K}.

With this, prune transformations on a factored ATS are defined as
transformations that prune states from one specific factor.

Definition 3 (Prune Transformations). Let F = ⟨Ai⟩i∈I be a fac-
tored ATS. Let k ∈ I be a factor index and let K ⊆ SAk be a set
of kept states. Lastly, let idX be the identity function for domain X .
The prune transformation for Ak and K is the factored transforma-
tion ⟨F, ⟨A′i⟩i∈I , ⟨σi⟩i∈I , idLF ⟩ where

A′i :=

{
Ai i ̸= k

Ai|K i = k
σi :=

{
Atom(i, idSAi

) i ̸= k

Atom(i, idK) i = k

One can easily show that prune transformations satisfy all con-
servativeness properties except CONSS, which is only satisfied if
K = ∅, i.e., no states are pruned at all. Unsurprisingly, they can yield
inadmissible transformation heuristics. To nevertheless obtain suffi-
cient criteria for admissibility, consistency, etc., we replace CONSS

with weaker properties inspired by the classical theory [26].

Definition 4. Let τ = ⟨Θ,Θ′, σ, λ⟩ be a TS transformation. We
define the following transformation properties on τ .

CONSI σ(IΘ) ⊆ IΘ′

CLOS AliveΘ(SΘ, dom(σ)) ⊆ dom(σ)
CLOSALV AliveΘ(IΘ, dom(σ)) ⊆ dom(σ)
KEEPG GΘ ⊆ dom(σ)
KEEPALV

G Alive(Θ) ∩GΘ ⊆ dom(σ)

Obviously, CONSS (SΘ = dom(σ)) is stronger than any of the
properties CLOS, CLOSALV, KEEPG and KEEPALV

G . The prop-
erty CLOS requires that K is closed under probabilistic transitions
in the sense that, if a state s is able to reach a set of kept states
K ⊆ dom(σ) with probability one, then s needs to be kept as
well. For deterministic transition systems, this property guarantees
that dom(σ) is closed under predecessors, which matches the defini-
tion of the corresponding property denoted CLOSpred in the classical
case. The property CLOSALV is even weaker and requires only that
if there is a policy that reaches a set of kept states K ⊆ dom(σ)
with certainty from an initial state, then all states reached by this pol-
icy must also be kept. It matches the classical property CLOS→pred .
Moreover, KEEPG requires that all goal states are kept, whereas the
weaker KEEPALV

G preserves only alive goal states. For deterministic
transition systems, KEEPALV

G keeps forward reachable goal states,
thus matching KEEP→G in the classical theory.

4.1 Heuristic Guarantees

First, we make the connection between the transformation properties
of Definition 4 and the heuristic properties introduced in Section 3, in
the context of the transformation heuristic hτ . As shown by Klößner
et al. [18], hτ is goal-aware, consistent and safe if τ is conservative.
The new transformation properties replace CONSS so that hτ still
remains with these properties, or the corresponding weaker variants
as defined in Definition 4, depending on the replacement properties.

Theorem 2. Let τ be a transformation. Then hτ is

a) goal-aware, if τ ∈ CONSG ∩ KEEPG

b) consistent, if τ ∈ CONSL+C+T ∩ CLOS
c) safe, if τ ∈ CONSL+T+G ∩ CLOS ∩ KEEPG

d) alive-goal-aware, if τ ∈ CONSG ∩ KEEPALV
G

e) alive-consistent, if τ ∈ CONSL+C+T ∩ CLOSALV ∩ KEEPALV
G

f) alive-safe, if τ ∈ CONSL+T+G ∩ CLOSALV ∩ KEEPALV
G

Proof. Let τ = ⟨Θ,Θ′, σ, λ⟩. Theorems 2a) and 2d) are straight-
forward. For the other statements, we first argue that (A) CLOS +
KEEPG implies Solv(Θ) ⊆ dom(σ) and (B) CLOSALV+KEEPALV

G
implies Alive(Θ) ⊆ dom(σ). Regarding (A), we have Solv(Θ) =
SolvΘ(GΘ) ⊆ SolvΘ(dom(σ)) ⊆ dom(σ), where the first inclu-
sion follows from KEEPG and the second follows from CLOS. For
(B), first acknowledge that Alive(Θ) = AliveΘ(IΘ,Alive(Θ) ∩
GΘ). We conclude Alive(Θ) ⊆ AliveΘ(IΘ, dom(σ)) ⊆ dom(σ),
where the inclusions similarly follow from KEEPALV

G and CLOSALV.
Consider Theorem 2b). Let ⟨s, ℓ, δ⟩ ∈ TΘ. We assume supp(δ) ⊆

dom(σ), as otherwise the right-hand side of the consistency inequa-
tion evaluates to ∞, making it trivial. We then have s ∈ dom(σ) as
well due to CLOS, since we can reach dom(σ) with certainty from
s via this transition. We also have ℓ ∈ dom(λ) due to CONSL. Due



to CONST, it follows that ⟨s′, ℓ′, δ′⟩ := ⟨σ(s), λ(ℓ), lift [σ](δ)⟩ ∈
TΘ′(σ(s)). The following inequality concludes the proof.

J∗Θ′(s
′) ≤ CΘ(ℓ

′) +
∑

t′∈SΘ′

δ′(t′) · J∗Θ′(t′) (consistency of J∗Θ′ )

≤ CΘ(ℓ) +
∑

t′∈SΘ′

∑
t∈σ−1(t′)

δ(t) · J∗Θ′(t′) (def. lift [σ])

= CΘ(ℓ) +
∑
t∈SΘ

δ(t) · J∗Θ′(σ(t)) (supp(δ) ⊆ dom(σ))

Next, consider Theorem 2c). Let s ∈ Solv(Θ). Consider the
transformation τ ′ = ⟨Θ|Solv(Θ),Θ

′, σ|Solv(Θ), λ⟩. Because τ ∈
CONSL+T+G and Solv(Θ) ⊆ dom(σ) by (A), it is easy to see
that τ ′ ∈ CONSS+L+T+G, which implies that hτ ′ is safe [18]. Since
s ∈ Solv(Θ) = Solv(Θ|Solv(Θ)), we conclude σ(s) ∈ Solv(Θ′) by
safety of hτ ′ and therefore hτ (s) ̸= ∞.

Now, consider Theorem 2e). Let ⟨s, ℓ, δ⟩ ∈ TΘ, s ∈ Alive(Θ) and
supp(δ) ⊆ Alive(Θ). We conclude s ∈ dom(σ) and supp(δ) ⊆
dom(σ) using (B). The proof continues analogous to Theorem 2b).

Lastly, Theorem 2f) is analogous to Theorem 2c), when substitut-
ing Solv(Θ) with Alive(Θ) and (A) with (B).

4.2 Policy Transformation

In order to show that our new properties are indeed invariant under
composition, we have to have means to relate policies in the original
and in the transformed transition systems. In the classical theory of
transformations, given a transformation τ = ⟨Θ,Θ′, σ, λ⟩, there is a
useful construction that transforms a concrete path p = s0T0 . . . sn
of the original TS Θ to a transformed path of Θ′. This path trans-
formation is given by tpathτ (p) := σ(s0)ttrτ (T0) . . . σ(sn), and
is defined for p if s0, . . . , sn ∈ dom(σ) and T0, . . . ,Tn−1 ∈
dom(ttrτ ). Before proceeding to our compositionality proof, here
we will generalise this path transformation to policies. Since a path
has an integrated starting state, which a policy does not, we have to
explicitly assume one in the context of this transformation.

Definition 5. Let τ = ⟨Θ,Θ′, σ, λ⟩ be a transformation, let s ∈
SΘ be a starting state and let π be a policy for Θ. The transformed
policy tpolτ,s(π) of π for s is defined by tpolτ,s(π)(p

′)(T′) := 0 if∑
p∈tpath−1

τ (p′) Pr
π
s [Cyl(p)] = 0 and otherwise

tpolτ,s(π)(p
′)(T′) :=

∑
p∈tpath−1

τ (p′)

[
Prπs [Cyl(p)] ·

∑
T∈ttr−1

τ (T′)

π(p)(T)
]

∑
p∈tpath−1

τ (p′)
Prπs [Cyl(p)]

.

To compute the probability to choose the transition T′ after the
history p′ was observed, the construction calculates a conditional
probability: Given that the original policy π generated some un-
known corresponding concrete path p ∈ tpath−1

τ (p′) so far, what
is the probability that π chooses a corresponding concrete transition
T ∈ ttr−1

τ (T′) next? The term
∑

T∈ttr−1
τ (T′) π(p)(T) calculates

the probability that π chooses a corresponding concrete transition
for a given path p. Since we only know that π generated some path
p ∈ tpath−1

τ (p′), but not which one, we embed this term into a sum
such that it is weighted with the probability of the path it is based on.
Finally, we normalise by the total probability of these paths, since we
know that such a path has been generated. Note that all probabilities
depend on the initial state s from which π is run. If no concrete path
p ∈ tpath−1

τ (p′) is possible, the policy terminates.

We will use this construction to transform solutions in Θ to solu-
tions in Θ′. This can be done under mild conservativeness assump-
tions, specifically label and transition conservativeness (CONSL+T),
and under the requirement that all states reachable from the consid-
ered starting state s by the original policy π are kept by the trans-
formation (Reach→Θ,π(s) ⊆ dom(σ)). In this case, for each concrete
state t that the original policy π reaches from s, the transformed pol-
icy tpolτ,s(π) will reach the corresponding transformed state σ(t)
from σ(s). Vice versa, for each transformed state t′ that tpolτ,s(π)
reaches from σ(s), π reaches some concrete state t ∈ σ−1(t′). For-
mally, we have the following (proof is available in the appendix [20]):

Theorem 3. Let τ = ⟨Θ,Θ′, σ, λ⟩ be a transformation, let π be a
policy, let s ∈ SΘ be a starting state and let T ⊆ SΘ be a set of
target states. If τ ∈ CONSL+T and Reach→Θ,π(s) ⊆ dom(σ), then

a) Reach→Θ′,tpolτ,s(π)(σ(s)) = σ(Reach→Θ,π(s)) and
b) If π ∈ SolsΘ(s, T ), then tpolτ,s(π) ∈ SolsΘ′(σ(s), σ(T )).

4.3 Compositionality

The tools from Section 4.2 empower us to prove the composition-
ality of the properties from Definition 4, under mild side conditions
similar to the classical planning setting [26].

Theorem 4. Let τ = ⟨Θ,Θ′, σ, λ⟩ and τ ′ = ⟨Θ′,Θ′′, σ′, λ′⟩ be
two transformations. For the following properties X, if τ, τ ′ ∈ X,
then τ ′ ◦ τ ∈ X under the following additional side requirements:

a) CLOS requires τ ∈ CONSL+T

b) CLOSALV requires τ ∈ CONSL+T+I

c) KEEPG requires τ ∈ CONSG

d) KEEPALV
G requires τ ∈ CONSL+T+I+G ∩ CLOSALV

Proof. For Theorem 4c), we refer to Sievers and Helmert [26].
Consider Theorem 4a). Let s ∈ AliveΘ(SΘ, dom(σ′ ◦ σ)). Then

there is a policy π solving s for dom(σ′ ◦ σ) ⊆ dom(σ). Then we
also have Reach→Θ,π(s) ⊆ AliveΘ(SΘ, dom(σ)) ⊆ dom(σ) due to
CLOS. Applying Theorem 3 with the assumption τ ∈ CONSL+T, we
conclude that tpolτ,s(π) solves σ(s) for the target states σ(dom(σ′◦
σ)) ⊆ dom(σ′). Thus, σ(s) ∈ AliveΘ(SΘ′ , dom(σ′)). With τ ′ ∈
CLOS, we obtain σ(s) ∈ dom(σ′) and ultimately s ∈ dom(σ′ ◦σ).

Consider Theorem 4b). Let s ∈ AliveΘ(IΘ, dom(σ′ ◦ σ)). Then
there is a policy π with s0

π
; s that solves an initial state s0 ∈ IΘ

for dom(σ′ ◦ σ) ⊆ dom(σ). We also have Reach→Θ,π(s0) ⊆
AliveΘ(IΘ, dom(σ)) ⊆ dom(σ) due to τ ∈ CLOSALV. Apply-
ing Theorem 3 with the assumption τ ∈ CONSL+T, we conclude
that tpolτ,s0(π) solves σ(s0) for σ(dom(σ′ ◦ σ)) ⊆ dom(σ′), and
σ(s0)

tpolτ,s0
(π)

; σ(s). Since we have σ(s0) ∈ IΘ′ due to CONSI,
we get σ(s) ∈ AliveΘ(IΘ′ , dom(σ′)) ⊆ dom(σ′) by CLOSALV.

Lastly, Theorem 4d). Let s ∈ Alive(Θ) ∩GΘ. As s ∈ Alive(Θ),
there is an initial state s0 ∈ IΘ and π ∈ SolsΘ(s0) with s0

π
; s.

We have Reach→Θ,π(s0) ⊆ Alive(Θ) ⊆ AliveΘ(IΘ, dom(σ)) ⊆
dom(σ) due to KEEPALV

G and CLOSALV. Applying Theorem 3 with
the assumption τ ∈ CONSL+T, we obtain that tpolτ,s0(π) solves
σ(s0) and σ(s0)

tpolτ,s0
(π)

; σ(s). Since σ(s0) ∈ IΘ′ by CONSI, we
have σ(s) ∈ Alive(Θ′). Finally, σ(s) ∈ GΘ′ due to CONSG.

4.4 Prune Strategies

Finally, we discuss how the set of kept states K of a prune trans-
formation can be practically chosen so that either the properties



KEEPG and CLOS, or alternatively KEEPALV
G and CLOSALV are

satisfied. Since prune transformations always satisfy CONSL+T+C+I+G

and are refinable, these two categories will yield perfect or alive-
perfect heuristics, respectively, by Theorem 2. Furthermore, compos-
ing such transformations with each other or with exact transforma-
tions also yields perfect or alive-perfect heuristics by Theorem 4.

Theorem 5. Let F = ⟨Ai⟩i∈I be a factored ATS and let τ be a
prune transformation for Ak and K ⊆ SAk .

a) If K = Reach←(Θ(Ak)), then τ ∈ CLOS ∩ KEEPG.
b) If K = Reach→(Θ(Ak)), then τ ∈ CLOSALV ∩ KEEPALV

G .

Proof. Let Θ := Θ(
⊗

F ), Θ′ := Θ(
⊗

F ′) and Θi := Θ(Ai) for
i ∈ I in the following. We need to consider the TS transformation
⟨Θ,Θ′, σ, id⟩, where s ∈ dom(σ) if and only if s(k) ∈ K.

Let K = Reach←(Θk). For KEEPG, note that s ∈ GΘ =

×i∈I GΘi , clearly implies s(k) ∈ GΘk ⊆ Reach←Θ (GΘk ) = K.
For CLOS, let s ∈ AliveΘ(SΘ, dom(σ)). Then s must necessar-
ily be backwards reachable from a state t ∈ dom(σ). Concludingly,
s(k) is backwards reachable from t(k) ∈ K = Reach←Θ (GΘ). By
transitivity, s(k) ∈ Reach←Θ (GΘk ) = K.

Now, let K = Reach→(Θk). For KEEPALV
G , let s ∈ Alive(Θ) ∩

GΘ. Then s must be forward reachable from an initial state s0 ∈
IΘ = ×i∈I IΘi . Concludingly, s(k) must be forward reachable
from s0(k) ∈ IΘk , which shows s(k) ∈ K. Since GΘ =

×i∈I GΘi , we also have s(k) ∈ GΘk . For CLOSALV, let s ∈
AliveΘ(IΘ, dom(σ)). Then, s is forward reachable from s0 ∈ IΘ.
By repeating the arguments as above, we conclude s(k) ∈ K.

Theorem 5 establishes two reachability-based prune strategies. In
practice, the backwards-reachable or forward-reachable states of a
factor are easy to compute, but may not lead to substantial prun-
ing depending on the topology of the state space. We can however
extend this result to obtain stronger prune strategies at the expense
of additional computation time. Note that we can simulate a prune
transformation on factor Ak with K = Solv(Θ(Ak)), keeping only
solvable states, via a series of prune transformations with K =
Reach←(Θ(Ak)). Likewise, to simulate K = Alive(Θ(Ak)), we
can apply a prune transformation with K = Solv(Θ(Ak)), followed
by a prune transformation with K = Reach→(Θ(Ak)). By compo-
sitionality (Theorem 4) and the obvious facts CLOS ⊆ CLOSALV

and KEEPG ⊆ KEEPALV
G , we conclude the following.

Corollary 1. Let F = ⟨Ai⟩i∈I be a factored ATS and let τ be a
prune transformation for Ak and K ⊆ SAk .

a) If K = Solv(Θ(Ak)), then τ ∈ CLOS ∩ KEEPG.
b) If K = Alive(Θ(Ak)), then τ ∈ CLOSALV ∩ KEEPALV

G .

5 Experiments

We empirically evaluate the probabilistic merge-and-shrink frame-
work in different configurations. Our implementation is based on
our version of Probabilistic Fast Downward [30]. The code is pub-
licly available [19]. We stuck closely to the classical-planning merge-
and-shrink implementation. The top-level algorithm takes an abstract
state limit M as a parameter, as well as a merge, shrink, prune and a
label reduction strategy. We compute the abstractions’ J∗ values us-
ing a variant of topological value iteration [4] that supports zero-cost
actions and unsolvable states.

Regarding shrink strategies, we implemented ATS bisimulation
shrinking as described by Klößner et al. [18], following the stan-
dard partition-refinement based algorithm for computing bisimula-
tions. To respect the state limit, the refinement stops early if splitting
an equivalence class would result in more than M classes. In that
case, the shrink transformation will not be exact. For label reduction,
we implemented exact label reduction based on (A, ϵ)-combinability.
Here, we keep an ordering of the possible effects of each label, and
unify only labels with the same amount of possible effects and for
which the effect probabilities according to this order match. Finally,
we implemented two prune strategies, one that keeps only the solv-
able states, and one that keeps only the alive states of a factor.

We compare SSP M&S heuristics with other heuristics in the con-
text of heuristic search to compute an optimal policy for a given
stochastic shortest-path problem. We focus on improved LAO⋆ [7]
as the heuristic search algorithm in our experiments, extended with a
trap-elimination procedure [21, 30] to support zero-cost actions.

The experiments were run with Downward Lab [25] on a cluster
with Intel Xeon E5–2650 v3 processors CPUs @2.30 GHz. We used
a memory limit of 4GiB and a time limit of 30 minutes for all config-
urations. We use the benchmark set by Klößner et al. [17], containing
9 probabilistic PDDL domains with 20 problems each, some of them
containing traps or unsolvable states.

5.1 SSP M&S Versus Determinization-based M&S

First, we compare SSP M&S heuristics with their classical counter-
part to assess the benefit of taking the stochasticity into account. To
this end, we apply the all-outcomes determinization on the given
task to obtain a classical planning problem, and then compute a
classical M&S heuristic to be used for the heuristic search. While
determinization-based heuristics are faster to construct, they discard
all probabilities, trading construction time for heuristic accuracy.

We ran both M&S variants with an abstract state limit of 50k,
which turned out to be effective in preliminary experiments. Both
variants use their respective notion of bisimulation shrinking. We
selected two merge strategies from classical planning: The reverse
level linear merge strategy [22] which orders variables closer to the
root of the causal graph first and the state-of-the-art strategy SCC-
DFP [28]. For label reduction, we use exact label reduction based on
Θ-combinability [27], respectively (A, ϵ)-combinability [18]. Here,
we sequentially select each factor as the pivot for the combinability
relation, and then collapse all combinable labels. This is done until
no more labels can be combined. Finally, we consider three prune
strategies: Keeping all, only solvable and only alive states.

Table 1 shows the coverage table. Here, the superscript M&S rep-
resents the SSP variant, while dM&S represents the classical vari-
ant. The subscripts All, Solv and Aliv denote the prune strategy. SSP
M&S heuristics consistently cover more instances than their classical
relatives for matching algorithm configurations. Looking at the num-
ber of evaluated states for our best configurations in Fig. 2a, we see
that there are many problems for which our variant generates a sig-
nificantly smaller search space, while the opposite is rare. However,
the SSP variant takes considerably longer in most problems, as we
can see in Fig. 2c. As evident from Fig. 2b, this is due to the heuris-
tic’s construction, which is considerably more expensive for the SSP
variants. Here, the factored representation contains more information
that needs to be maintained during each transformation. Moreover,
computing the abstract states’ optimal expected costs is computa-
tionally much more demanding than computing the costs in the de-
terministic setting. Despite being about an order of magnitude slower



Linear Reverse Level SCC-DFP

Domains hM&S
Aliv hM&S

All hM&S
Solv hdM&S

Aliv hdM&S
All hdM&S

Solv hM&S
Aliv hM&S

All hM&S
Solv hdM&S

Aliv hdM&S
All hdM&S

Solv hblind hPDB
10k hCart

10k hroc hPDB
HC

BLOCKSWORLD 9 9 9 7 7 7 9 9 9 7 7 7 7 7 7 7 9
BOXWORLD 7 7 7 7 7 7 7 7 7 7 7 7 4 4 4 4 6
ELEVATORS 18 18 18 18 18 18 18 18 18 18 18 18 13 15 14 12 18
PROB-PARC-PRINTER 14 15 15 12 13 13 16 14 12 12 10 9 8 8 8 20 16
RANDOM 12 11 11 12 12 12 12 11 11 12 12 12 14 17 16 15 18
SCHEDULE 11 11 11 11 11 11 11 10 10 11 11 11 12 12 12 11 12
SYSADMIN 11 12 11 12 12 12 11 11 11 11 11 12 11 11 11 11 11
TRIANGLE-TIREWORLD 7 7 7 6 6 6 8 6 8 7 7 7 5 8 6 7 8
ZENOTRAVEL 9 9 9 8 8 8 9 9 9 8 8 8 5 8 8 7 10

Sum (180) 98 99 98 93 94 94 101 95 95 93 91 91 79 90 86 94 108

Table 1. Coverage results for all tested configurations. Each number reports the number of solved instances for the respective domain and configuration. The
highest coverage per domain is highlighted in boldface. All domains have 20 problem instances.
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Figure 2. Probabilistic hM&S
Aliv (x-axis) versus deterministic hdM&S

Aliv (y-axis), both using the SCC-DFP merge strategy.

in many instances of BLOCKSWORLD, the construction pays off for
larger instances (see Fig. 2c) and the SSP heuristic is able to solve
two additional instances in this domain. In TRIANGLE-TIREWORLD,
the trade-off also becomes more favourable as the size of the problem
grows, which results in one additional solved instance.

The bottlenecks of the algorithm vary greatly across different con-
figurations and benchmark instances. The maintenance of J∗ for
all factors adds a significant overhead. The time spent computing
the label abstraction for label reduction is negligible in 6 domains,
but becomes dominant in the domains RANDOM and TRIANGLE-
TIREWORLD, where it is the most expensive process by far. The time
spent computing ATS bisimulations is usually on the lower end of
the spectrum, the highest relative overhead for the SCC-DFP variant
of hM&S

Aliv is introduced in BLOCKSWORLD with 29% of the algorithm
runtime (similarly for other configurations). The actual transforma-
tions take negligible time in relation to these processes.

5.2 SSP M&S Versus other SSP Abstraction Heuristics

Next, we compare our approach against previously considered SSP
abstraction heuristics. We consider SSP pattern database (PDB)
heuristics [14], SSP Cartesian abstraction heuristics [17] and the oc-
cupation measure heuristic hroc [32]. We construct single-abstraction
PDB and Cartesian abstraction heuristics via policy-based counter-
example guided abstraction refinement, with a limit of 10k states for
the final abstraction. In preliminary experiments, we observed worse
results for higher limits. We also include a state-of-the-art configura-
tion that computes the canonical PDB heuristic over multiple PDBs
constructed via hill-climbing search over the space of PDB collec-
tions (hPDB

HC ) [16]. We run hill-climbing for 180 seconds, with a col-
lection size limit of 10 million abstract states.

The coverage is reported in Table 1. Overall, all SSP M&S con-
figurations achieve a higher coverage than their single-abstraction
sibling heuristics, as well as hroc, showing that the expressiveness of
the framework is highly beneficial. Yet, they do not quite reach the
performance of the state-of-the-art heuristic hPDB

HC . However, in con-
trast to hPDB

HC , our configurations do not use a construction time limit
to ensure that the search always starts, as the strictness of the time
limit for the M&S algorithm is hard to enforce and may affect com-
parability of the M&S configurations. This leads to three timeouts of
our best configuration in problems solved by blind search. Moreover,
hPDB

HC uses multiple abstractions. The combination of multiple M&S
heuristics has already been considered in classical planning [29], and
achieves a better performance overall than the single-abstraction ap-
proach. It is likely that these developments can be extended to the
SSP setting to achieve state-of-the-art performance.

6 Conclusion
In this paper, we rounded off the existing theory of SSP M&S with a
formal analysis of prune transformations. We have established trans-
formation properties that generalise those considered by Sievers and
Helmert [26] in the context of prune transformations and proved their
correctness using a notion of policy transformation. We propose sev-
eral prune strategies that trade off computational effort with over-
all effectiveness. Our experiments show that SSP M&S heuristics
perform better than their determinization-based variant, as well as
previously considered SSP single-abstraction heuristics. Our work
leaves room for many possible continuations following the footsteps
of classical planning research on this topic, e.g., an exploration of
merge or shrink strategies [13, 12, 28], or the construction of an cost-
partitioned ensemble of M&S heuristics [29].
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