N
N

N

HAL

open science

A Performance Prediction-based DNN Partitioner for
Edge TPU Pipelining
Bohua Zou, Binqgi Sun, Yigong Hu, Tomasz Kloda, Marco Caccamo, Tarek
Abdelzaher

» To cite this version:

Bohua Zou, Bingi Sun, Yigong Hu, Tomasz Kloda, Marco Caccamo, et al.. A Performance Prediction-
based DNN Partitioner for Edge TPU Pipelining.
munications Conference (MILCOM), Oct 2024, Washington, United States. pp.1-6, 10.1109/MIL-

COM61039.2024.10773756 . hal-04844549

HAL Id: hal-04844549
https://laas.hal.science/hal-04844549v1
Submitted on 18 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

MILCOM 2024 - 2024 IEEE Military Com-

https://laas.hal.science/hal-04844549v1
https://hal.archives-ouvertes.fr

A Performance Prediction-based DNN Partitioner for
Edge TPU Pipelining

Bohua Zou*, Bingi Sun*', Yigong Hu', Tomasz Kloda?, Marco Caccamo*, Tarek Abdelzaher'
*Technical University of Munich, Germany
tUniversity of Illinois Urbana-Champaign, USA
iLAAS-CNRS, Université de Toulouse, INSA, Toulouse, France
Emails: {bohua.zou, bingi.sun, mcaccamo}@tum.de, {yigongh2,zaher} @illinois.edu, tkloda@laas.fr

Abstract—Intelligent IoT applications deployed in adversarial
environments often operate without reliable cloud connections,
requiring local execution of AI pipelines on resource-constrained
edge devices. Edge Tensor Processing Unit (TPU) is a specialized
Al hardware accelerator known for its low power consumption
and high computational efficiency. To optimize DNN performance
across multiple Edge TPUs, DNN models are often pipelined
by partitioning them into segments. However, uneven workload
distribution across these segments can lead to latency bottlenecks,
reducing overall throughput, and increasing memory access
due to the limited on-chip memory. This issue is especially
concerning in mission-critical applications, where minimizing
memory contention and ensuring robust performance are critical.
To overcome these challenges, we develop a novel performance
prediction-based partitioning tool for DNN models on Edge TPU
pipelines. This tool uses a Transformer-based model to accurately
predict the inference time of individual DNN segments, enabling
more efficient partitioning. We introduce two methods: one
relying solely on the prediction model and another combining pre-
diction with profiling. Tested on 120 models from the NASBench-
101 dataset, both methods significantly improved partitioning
robustness and efficiency, reducing solving time by up to 98.86 %
and 97.21%, respectively, compared to traditional profiling-based
approaches, while maintaining comparable bottleneck latencies.

Index Terms—DNN Partition, Edge TPU, Pipelining, Trans-
former.

I. INTRODUCTION

In adversarial environments, intelligent IoT applications of-
ten cannot rely on connections to cloud infrastructures, as such
environments frequently disrupt or block connectivity. As a
result, these applications need to run their AI models locally on
resource-constrained edge devices. Given the limited resources
available at the edge, it is crucial to optimize deep neural
network (DNN) inference performance to ensure robustness,
predictability, and meet real-time requirements [1]-[3]. This
need is particularly pronounced in mission-critical applications
such as disaster response [4], extreme environmental monitor-
ing [5], and security systems [6].

Edge Tensor Processing Units (TPUs) [7] are a key tech-
nology developed to meet these demands. As specialized Al
accelerators, Edge TPUs are optimized for running deep neural
network (DNN) models with low energy consumption and
high inference performance, making them particularly suitable

The work was partially completed while Bingi Sun was a visiting scholar
at the University of Illinois Urbana-Champaign.

for IoT applications in challenging environments. However,
reliance on a single Edge TPU for inference poses several
challenges, such as limited on-chip memory (approximately
8 MB) [8], underutilization of processing elements [9], and
inefficiencies in memory systems leading to excessive energy
consumption [9]. These limitations are particularly concerning
in environments where reliability and resilience are crucial.

To address these challenges, a DNN pipelining technique
has been developed to distribute DNN workloads across mul-
tiple Edge TPUs, effectively expanding the on-chip memory
available for inference and enhancing overall system efficiency.
Pipelining allows the entire DNN to reside within the Edge
TPU’s SRAM, thereby reducing dependency on DRAM, which
is a shared system resource prone to contention and latency
issues. Minimizing DRAM access at runtime is critical for
improving the resilience and robustness of Al systems in
mission-critical environments. Additionally, by balancing the
workload across multiple Edge TPUs, more DNN parameters
can be stored within SRAM, further decreasing reliance on
DRAM and enhancing system stability. Moreover, optimizing
the pipeline by reducing the latency of the largest segment
plays a key role in increasing overall throughput and improving
system efficiency.

However, non-optimal partitioning of the DNN models
can create significant bottlenecks, leading to underutilized
resources and diminished system resilience, which is a critical
concern for mission-critical applications. To tackle this issue,
a profiling-based partitioner [10] has been developed, which
employs a binary search algorithm for design space exploration
and evaluates each candidate solution by profiling on real hard-
ware. The approach provides considerably better partitioning
results than the default Edge TPU compiler, which partitions
DNN models solely based on the number of DNN weights.
However, the profiling-based partitioner exhibits several in-
stability issues, e.g., runtime errors occur when partitioning
some specific DNNs, failing to generate feasible partitioning
outputs. Besides, the partitioning process is time-consuming,
especially for large DNNs that are partitioned on a large num-
ber of Edge TPU segments. These inefficiencies are especially
problematic in mission-critical IoT applications, where rapid
and reliable deployment of Al models is essential. To enhance
the efficiency and robustness of the partitioning process, this

paper investigates the limitations of an existing profiling-
based partitioning tool [10] and proposes a novel performance
prediction-based DNN partitioner. The developed partitioner
integrates a Transformer-based prediction model to estimate
the DNN segment inference times, facilitating more effective
partitioning and ensuring resilient and efficient operation of Al
systems deployed on Edge TPUs in adversarial environments.
We summarize our contributions as follows.

1) We formulate a Directed Acyclic Graph (DAG) partition
problem to optimize the DNN pipelining on multiple
Edge TPUs.

2) We identify the limitations of the existing profiling-based
partitioner designed for Edge TPU pipelining.

3) We develop a graph-transformer-based model to predict
the DNN model segment latency.

4) We utilize the prediction model to address the main
drawbacks of the profiling-based partitioner. Experi-
ments demonstrate that the proposed approaches sig-
nificantly improve the robustness and efficiency of the
traditional profiling-based partitioner.

The remainder of the paper is organized as follows. Sec-
tion II reviews relevant literature on DNN partitioning and
Edge TPU deployment. Section III discusses the limitations
of the existing Edge TPU partitioner and proposes our perfor-
mance prediction-based partitioner. The experimental results
are reported in Section IV, and Section V concludes the paper.

II. RELATED WORK
A. DNN PFartitioning

Significant research has been focused on developing DNN
partitioning algorithms and tools for various edge Al ap-
plications. Parthasarathy et al. [11] developed a partitioning
and placement algorithm of DNNs to maximize the inference
throughput of such pipelines across clusters of edge devices
by solving an optimization problem with DAG. With edge
device communication as the primary bottleneck, optimization
only focuses on segment data transfers, treating edge device
computational resources as constraints. Zheng et al. [12]
proposed an efficient partitioning approach based on dynamic
programming (DP) and node clustering. Given that DP time
complexity grows with network complexity and node count,
they developed a clustering algorithm that fuses contiguous
elementwise layers and groups nodes by depth. This approach
enhances interlayer data reuse and reduces time complexity.
However, defining and acquiring the DP cost function is
challenging, and the approach is unsuitable for Edge TPUs
due to their limited computing resources and on-chip memory.
Guo et al. [13] presented a dynamic computation offloading
strategy for DNN partitioning based on the Louvain algorithm
and Kuhn-Munkres algorithm, which can dynamically find
the partition point of DNN models to minimize the overall
delay within the D2D (Device-to-Device) network. Yang et
al. [14] devised a DNN distributing strategy together with a
collaborative Edge Computing system called CoopAl. CoopAl
can perform both inter-layer and intra-layer partitioning, but

it can only be applied to convolutional and fully connected
layers.

B. DNN Inferences on Edge TPU Pipelines

In the domain of Edge TPU pipelining, [15], [16] studied the
real-time scheduling of multiple DNN inference tasks on Edge
TPU pipelines by formulating each DNN inference as a non-
preemptive gang task. [17] designed a framework to satisfy the
timing requirement of multiple DNN inference tasks. Although
these works consider pipelined Edge TPU inferences, they
focus on the runtime behavior and use the default Edge TPU
compiler for model partitioning. Yin et al. [18] introduced an
Edge TPU workload balancing framework based on integer
linear programming (ILP). More recently, [19] developed a
reinforcement learning (RL) method called RESPECT to imi-
tate the solutions obtained by the ILP model in their previous
work [18]. One limitation of their partitioning strategy is that it
balances the workloads in terms of static model characteristics
rather than real system dynamics. Unfortunately, since the full
implementation of the proposed algorithms and the workload
dataset in these two papers have not been released, we cannot
compare our method with theirs in the experimental evaluation.

III. PERFORMANCE PREDICTION-BASED PARTITIONER
A. Problem Description and Formulation

We consider a DNN model to be partitioned across a
pipeline of N Edge TPU segments. A DNN model can be
modeled as a DAG, where the nodes represent DNN operations
(e.g., 2-D convolution and pooling), and the edges correspond
to the data dependencies between operations. A partition of
a DNN model refers to a mapping of DAG nodes to the
N Edge TPU segments. A valid DNN partition on Edge
TPUs must fulfill the dependency constraints, meaning that
any preceding model segments should not contain any nodes
that are successors of any nodes assigned to the succeeding
segment. A candidate partition can be encoded by a topological
sort of the DAG together with a list indicating the number of
operations assigned to each segment (i.e., a certain number of
nodes are assigned to each Edge TPU segment in the pipeline
following the order of the topological sort). The objective is to
optimize the pipeline throughput by minimizing the bottleneck
latency defined as the largest segment latency in the pipeline:

S:{gll’lfl,sjv}max{t(sl) | VS; € S},S € X, (1)
where S = {S7,..., Sy} denotes a valid candidate solution,
including the set of nodes .S; allocated to the ith segment (i €
[1, N)); t(S;) represents the resulting latency of the ith model
segment; and X represents the feasible decision space. We note
that, even with a given topological sort, the number of possible
partitions is combinatorially large. For instance, for a model
with 200 operations partitioned across 8 Edge TPUs, there are
approximately 2.2 x 10'2 potential partitioning configurations.
The vast search space makes an exhaustive search approach
highly impractical and inefficient. Therefore, it is reasonable

to develop heuristic search algorithms to find solutions of good
quality but not necessarily optimal.

B. Limitations of Existing Partitioning Tools

There have been two publicly available software tools for
Edge TPU DNN partitioning: (i) the default Edge TPU com-
piler (Default) [8] and (ii) the profiling-based partitioner (Prof-
Par) [10]. The former is a closed-sourced tool that partitions
the model using an implicit heuristic that aims to distribute
DNN weights evenly among different segments. However, the
evenly distributed weights do not necessarily translate to an
even distribution of computational time.

ProfPar utilizes a search-based algorithm to explore the
decision space and evaluates each candidate solution by pro-
filing it on real Edge TPU hardware. It consists of three
critical components. The first is a binary search algorithm,
which iteratively updates the target bottleneck latency (i.e., the
upper bound of all segment latencies) for the next iteration
based on the current partitioning results. The initial target
bottleneck latency is set as the median value of the maximum
and minimum segment latencies. The second component is a
recursive algorithm that aims to allocate as many operations
as possible to each segment without violating the current
target latency constraint. The third component is a latency
profiler, which evaluates each candidate solution by executing
the partitioned DNN on a real Edge TPU pipeline. Preliminary
experiments have revealed that ProfPar exhibits low efficiency
and robustness. For example, ProfPar required approximately
2 hours to partition a DenseNet-201 [20] model across 5 Edge
TPUs. The running time is expected to increase exponentially
with respect to the number of Edge TPUs due to the nature of
the recursive search used in the algorithm. Besides, we have
the following observations that provide insights for improving
the partitioner.

Observation 1: The compiling process of the latency profiler
is the most time-consuming procedure in ProfPar. Our exper-
iments show that the model compilation takes at least 10x
longer than the model execution, as illustrated in Figure 1. We
note that multiprocessing is used to accelerate the compilation
process.

T T T T T T T
1037\’\“(\‘\\‘,’“’\\/’_,\\/\’

102 b

10!

100 |

Compile or inference time (ms)

10-1 L[t ‘ ! | | |

0 50 100 150 200 250 300
Searching iteration

latency on Segment 0 -+ latency on Segment 2

latency on Segment 1 latency on Segment 3

—— compile_time

Fig 1. Partitioning process of ProfPar on Inception V3 [21] with 4 segments.
Observation 2: The inference time of DNN models on Edge
TPU pipelines is predictable. Our experiments show that the

inference time of a DNN model does not fluctuate for different
inputs. For example, running the Inception V1 [21] model
on 3 Edge TPUs with 200 different inputs resulted in an
average bottleneck segment latency of 2.87 milliseconds with
a standard deviation of only 0.015 milliseconds. This benefits
from the capability of caching more DNN weights on the
SRAM of the pipelined Edge TPUs (so that DRAM contention
can be reduced).

Observation 3: A learning-based model is more suitable
than a mathematical model for predicting the Edge TPU in-
ference time. Given the closed-source nature of the Edge TPU
compiler and hardware architecture, a mathematical model-
based performance prediction is not accessible. However,
the DAG nature of a DNN model provides opportunities to
estimate the inference time using advanced machine learning
techniques such as graph neural networks (GNNs) [22] and
Transformers [23]. We will demonstrate the applicability of
such a learning-based model in Section III-C.

Observation 4: The size of the intermediate tensors trans-
ferred between two Edge TPUs significantly impacts the in-
ference latency. Due to data dependencies within the model,
especially residual connections, improper partitioning can lead
to excessive data transfers between segments. Intermediate
tensors cannot be directly passed between different Edge TPUs
and must be transferred through external DRAM. If these
tensors are large, it can result in significant overhead.

Observation 5: The off-chip memory significantly impacts
the segment latency. Each Edge TPU has 8 MB on-chip
SRAM, where around 6 MB is reserved for caching the DNN
weights. Suppose the model cannot be fully cached to the
on-chip memory. In that case, the remaining weights must
be fetched from the external DRAM, which could result in
unpredictable interference with other tasks running in the
system and thus affect inference time. A similar phenomenon
has also been observed in [24].

C. Transformer-based Prediction Model

Based on the above observations, we develop a transformer-
based graph neural network model that can predict DNN
latency, taking into account the size of both DNN weights
and intermediate tensors. The goal is to replace the latency
profiler used in ProfPar, thereby saving time in compiling
and profiling. The prediction model is derived from a neural
architecture called Graphormer [25]. The overall structure of
the developed prediction model is illustrated in Figure 2.

The model follows an encoder-decoder structure. The input
of the encoder is the embedding of input data, including node
features and the topology information of the DNN workload.
The node features include three important properties of the
node operation: (i) operation type, (ii) node in-degree (i.e., the
number of predecessors), and (iii) output tensor shape. The
DAG topology information includes (i) the adjacency matrix
of the original graph and (ii) the topological sort represented by
an adjacency matrix where each node has only one predecessor

and successor (despite the input and output nodes which have
only one successor and predecessor, respectively).

The embeddings of the adjacency matrices and their cor-
responding transposes are added as a bias to the multi-head
attention matrix. Additionally, we introduce a virtual node
to the graph to encode the graph-level features including the
DNN’s input and output sizes and the number of DNN weights.
The graph-level features can effectively help the prediction
model understand the size of the DNN workload and take into
account the amount of data required to be loaded from the
external DRAM at runtime.

The encoder consists of multiple layers, each of which
contains a multi-head attention followed by a shared multi-
layer perceptron (MLP). The output of the last encoder layer is
served as input to the decoder. The decoder is an MLP shared
across different nodes. The input dimension is equal to the
node embedding, and the output is a single tensor representing
the estimated latency in milliseconds.

Latency

cm%:m }
.]
i e
: »(_MatMul e A
: | P :m ",
P {7 Adacency
Decoder Layer /

Matrix Encoding

)u(\::rr‘[e
N (CMatMul) ™\ l} -
1 T NGEE"
: ‘ i L) Topological
T Layer Normalization . e fa_sor Encoding
ENEEEEEEEEE, HE,.
ncoder

E Encoder Laler T
[Embedding Layer T

(Embedding) (Embedding) I
|

I oo AR - A
ND g
i a i
L[|] | |
Type Output Tensor Size Indegree Graph Feature

Fig 2. Graphormer-based prediction model architecture.

D. Performance Prediction-based Partitioner

We propose a performance prediction-based partitioning
method based on the developed transformer-based prediction
model. The overall strategy of the partitioner is derived from
ProfPar. We modify the partitioner by improving the time-
consuming latency profiler using the prediction model. Due
to the statistical nature of the prediction model, there is no
theoretical guarantee of the prediction accuracy. Therefore, we
consider two alternative approaches. The first one relies solely
on the prediction results (dubbed PredPar), while the second
one is a hybrid approach that combines the latency profiler
with the prediction model (dubbed Pred-ProfPar):

e PredPar: evaluates the latency of a candidate solution
solely based on the prediction model.

e Pred-ProfPar: uses the profiler only if a better solution
is claimed to be found by the prediction model (i.e., all
estimated segment latencies are less than the bottleneck
latency of the last search iteration).

The detailed flowchart of the proposed prediction-based parti-
tioner is illustrated in Figure 3.

Furthermore, we observed that the binary search algorithm
in the original ProfPar can potentially miss optimal solutions
due to the relaxation of the lower bound. Specifically, when the
current target latency is set too low to be achievable, ProfPar
adjusts the lower bound for the next iteration to match the
current target latency. However, this adjustment can lead to an
overshoot, increasing the target latency more than necessary.
To address this issue, we introduce a new parameter called the
relaxing factor, which provides finer control over the lower
bound update:

B-LB
LB’:LB+U7,)
v

where LB and UB represent the current lower and upper
bounds, respectively; LB’ is the updated lower bound; and ~y
is the relaxing factor. Notably, when the relaxing factor is set
to 2, the update behaves identically to the ProfPar algorithm.

- Finish

Set the initial upper bound and
lower bound of all the segment
latencies. Set the target latency
as the median of two bounds

r y

Starting allocating operations from the
first segment, keep 1 operation for each
subsequent segment and assign all other
operations to the current segment.

I

Predict the latency of the current
segment with the allocated operations

upper bound € max([actual/predicted latencics]),
lower bound € min([actual/predicted latencies]),
target latency € (upper bound + lower bound) / 2

lower bound € target latency,
target latency € (upper bound + lower bound) / 2

using the prediction model

* *
PredPar Pred-ProfPar

predicted latency <
target latenc;
Yes £

No

max([actual latencies])
< upper bound

Pred-ProfPar

Recursive operation allocation

preapar| Profile the entire pipeline to get the
actual latency of each segment. No

| Move one operation to the next segment |— Yes

Tax([predicted latencies
< upper bound

Fig 3. Workflow of performance prediction-based DNN partitioner.
IV. EXPERIMENTS
A. Training of the Prediction Model

Segment | Yes

»Segment 2 ... Segment N-1

We generate our training and evaluation data using a diverse
set of DNN workloads provided by NASBench-101 [26].
NASBench-101 offers a comprehensive dataset of 423,624 dis-
tinct convolutional neural network architectures, encompassing
features from various classic models such as Inception [21]
and ResNet [27]. The DNN models in NASBench-101 are
composed of multiple stacks, with each stack containing
several cells. Each cell is defined by a specific configuration
that includes both the topological structure and the types of op-
erations within it. By varying the number of stacks, the number
of cells, and the cell configurations, we generate a total of 600
DNN models for our training and evaluation dataset, which can
be used to evaluate model pipelining across different quantities
of Edge TPUs. The number of segments is calculated by
dividing the model size by 6 MB (i.e. [model_size/6 M B]).
For each DNN, we applied 3 partition methods to these 600
models to create a comprehensive training set, i.e. random
partitioning (32 partitions for each model), default partitioning
from the Edge TPU compiler, and partitioning at specific
operations (e.g. MaxPool2d). We note that the dataset includes

model segments with off-chip memory, as it is unavoidable
for large DNN workloads. As a result, we generate a total of
416,000 different DNN segments.

We measured the latency of the generated DNN segments
using the profiler provided by ProfPar. Our experiments were
conducted on an ASUS AI Accelerator card CRL-G18U-
P3D!, integrated with 8 Edge TPUs connected via PCle to
a workstation equipped with Intel Xeon Silver 4216 CPUs
running GNU/Linux. Although our dataset was generated
on this specific hardware setup, our pre-trained prediction
model can be easily migrated to other PCle-based Edge TPU
platforms. Additionally, transfer learning can be employed
to fine-tune the model for different platform specifications,
such as USB-interfaced Edge TPUs. To ensure clean and
reliable training data, we disabled the Linux kernel’s real-time
throttling mechanism and the dynamic frequency scaling on the
Edge TPU. We also set the CPU dynamic frequency scaling to
the per formance mode. Each model segment was executed
10 times, with the average inference time used as the label.
The dataset was randomly split into training, validation, and
test sets with a 6:2:2 ratio across different DNN models.

We trained the transformer-based prediction model using
Adam [28] optimizer on a single NVIDIA A100 GPU. The
model was trained for 100 epochs, with the total training
time being under one hour. After training, we evaluated the
prediction model on the test set. The evaluation results are
presented in Figure 4, where we used an absolute error range of
+1ms to assess the accuracy of the model’s predictions. While
predictions are relatively accurate in regions with smaller
latencies, underestimation frequently occurs with longer in-
ference times, leading to an invalid solution being incorrectly
identified as valid under the current target bottleneck latency.
However, the prediction model is unlikely to overlook any
valid solutions. To mitigate this, in Pred-ProfPar, the profiler
is employed only for solutions deemed valid by the prediction
model, thereby minimizing the risk of false negatives.

2004 * Overestlmate .
+ Underestimate ~

1754 In range -

150 4
125 A

100 A

Predicted inference time (ms)
N
w
s

ul
o
L

254

0 25 50 75 100 125 150 175 200
True inference time (ms)
Fig 4. Evaluation results on the test dataset. Green, blue, and red dots
represent instances with |Deviation| < 1ms, Deviation < —1ms, and
Deviation > 1 ms, respectively.
Uhttps://www.asus.com/networking-iot-servers/aiot-industrial-solutions/
gpu-edge-ai-accelerators/ai- accelerator-pcie-card/

B. DNN Fartitioning Results

We evaluate the proposed PredPar and Pred-ProfPar par-
titioners by comparing them with the default Edge TPU
compiler Default and ProfPar. We run each partitioner on
the same set of DNN models (i.e., the 120 NASBench-101
models in the test set). Our partitioner is implemented in
Python 3.11 using TFLite library. We used the same rule (i.e.
[model_size/6 M B]) to determine the number of segments for
each DNN model. We compare the performance of different
partitioners in terms of their bottleneck latency, success ratio
(fraction of DNN models successfully partitioned by a given
partitioner), and partitioning time.

Table I and Table II present the average bottleneck latency
and the success ratio achieved for each group of models with
the same number of segments. While ProfPar achieves the
best performance due to its use of an exact latency profiler, it
struggles with partitioning most large models (95%) across
8 Edge TPUs, leading to unstable and non-robust perfor-
mance—an issue that is particularly problematic in mission-
critical scenarios. In contrast, Pred-ProfPar results in slightly
higher bottleneck latency than ProfPar but successfully par-
titions any given DNN model, regardless of its size. PredPar
does not match the bottleneck latency performance of ProfPar,
but it still outperforms the default partitioner in terms of both
bottleneck latency and success ratio.

N Default ProfPar PredPar Pred-ProfPar
2 7.74 6.05 6.85 (+13%) 6.12 (+1%)
3 6.12 5.11 6.16 (+21%) 5.17 (+1%)
4 7.05 5.7 6.87 (+21%) | 5.73 (+0.5%)
5 9.47 4.71 6.37 (+35%) 4.78 (+1%)
6 11.98 6.73 11.94 (+77%) 6.5 (-3%)
7 11.88 4.76 54 (+13%) 5.32 (+12%)
8 60.78 Mostly failed | 33.17 (-45%) | 30.58 (-50%)

Avg 39.07 - 22.92 20.99

Table 1. Average bottleneck latency of each group of DNNs with the same
number of segments (in ms). Values in the brackets present the relative
bottleneck latency increase compared to ProfPar. For N = 8, since ProfPar
fails to partition most of the models, the relative average bottleneck latency
is derived by comparing with Default instead.

N | Default | ProfPar | PredPar | Pred-ProfPar
2 88.9% 100% 100% 100%

3 100% 100% 100% 100%

4 100% 100% 100% 100%

5 90% 100% 100% 100%

6 100% 100% 100% 100%

7 100% 100% 100% 100%

8 86.3% 5.5% 100% 100%

Table II. Success ratio of each DNN group with the same number of
segments. A partitioning is deemed successful if a valid partition is
generated.

The partitioning times are summarized in Table III. Both
PredPar and Pred-ProfPar substantially reduce the partitioning
time, achieving at least an 84% reduction compared to ProfPar.
This significant decrease in partitioning time is crucial, espe-
cially in mission-critical applications, where rapid deployment
and adaptation are essential for maintaining system perfor-
mance and resilience.

https://www.asus.com/networking-iot-servers/aiot-industrial-solutions/gpu-edge-ai-accelerators/ai-accelerator-pcie-card/
https://www.asus.com/networking-iot-servers/aiot-industrial-solutions/gpu-edge-ai-accelerators/ai-accelerator-pcie-card/

N Default ProfPar PredPar Pred-ProfPar
2 3.0 393.97 8.15 (-98%) 63.27 (-84%)
3 4.07 965.41 41.88 (-96%) | 144.82 (-85%)
4 4.78 1188.27 68.54 (-94%) | 176.89 (-85%)
5 5.3 1396.31 57.53 (-96%) 132.6 (-91%)
6 6.7 2386.74 98.52 (-96%) | 259.99 (-89%)
7 7.39 3153.41 123.6 (-96%) | 254.04 (-92%)
8 16.81 Mostly failed 168.9 385.55

Avg 11.89 - 118.75 286.74

Table III. Average partitioning time of each DNN group with the same
number of segments (in seconds) and speed-up compared to ProfPar.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach to optimiz-
ing the partitioning of deep neural networks (DNNs) across
multiple Edge TPUs. Our work addresses the limitations of
existing partitioning methods, particularly the profiling-based
partitioner (ProfPar), which, while effective, often struggles
with large models and incurs significant partitioning time. We
introduced a transformer-based prediction model that accu-
rately estimates the inference latency of DNN segments, which
we integrated into the existing search algorithm to enhance
the partitioning process. Our proposed methods, PredPar and
Pred-ProfPar, achieve not only substantial reductions in parti-
tioning time—up to 84%—but also maintain high success rates
in generating valid partitions, even for large DNN models. This
is particularly important for mission-critical IoT applications,
where rapid and reliable deployment is of utmost importance.

Future work may explore further enhancements to the pre-
diction model and its application across a broader range of
edge Al platforms and scenarios.

ACKNOWLEDGEMENT

Marco Caccamo was supported by an Alexander von Hum-
boldt Professorship endowed by the German Federal Ministry
of Education and Research. Research reported in this paper
was sponsored in part by DEVCOM ARL under Cooperative
Agreement W911NF-17-2-0196 (ARL IoBT CRA), and in part
by NSF CNS 20-38817, and the Boeing Company. It was also
supported in part by ACE, one of the seven centers in JUMP
2.0, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA. The views and conclusions contained in
this document are those of the authors, not the Army Research
Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

REFERENCES

[1] J.Li, R. Ma, V. S. Mailthody, C. Samplawski, B. Marlin, S. Chen, S. Yao,
and T. Abdelzaher, “Towards an accurate latency model for convolutional
neural network layers on gpus,” in IEEE Military Communications
Conference (MILCOM), 2021, pp. 904-909.

[2] Y. Hu, L. Gokarn, S. Liu, A. Misra, and T. Abdelzaher, “Algorithms for
canvas-based attention scheduling with resizing,” in IEEE 30th Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2024, pp. 348-359.

[3] W. A. Hanafy, L. Wu, T. Abdelzaher, S. Diggavi, and P. Shenoy, “Failure-
Resilient ML Inference at the Edge through Graceful Service Degrada-
tion,” in IEEE Military Communications Conference (MILCOM), 2023,
pp. 144-149.

[4]

[5]

[6

=

[7]
[8

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

M.-F. R. Lee and T.-W. Chien, “Artificial intelligence and Internet of
Things for robotic disaster response,” in International Conference on
Advanced Robotics and Intelligent Systems (ARIS), 2020, pp. 1-6.

K. Kant, A. Jolfaei, and K. Moessner, “IoT systems for extreme
environments,” IEEE Internet of Things Journal, vol. 11, no. 3, pp. 3671—
3675, 2024.

T. Chen, J. Liu, Y. Xiang, W. Niu, E. Tong, and Z. Han, “Adversarial
attack and defense in reinforcement learning-from Al security view,”
Cybersecurity, vol. 2, pp. 1-22, 2019.

“Edge TPU,” https://cloud.google.com/edge-tpu, accessed: 2024-08-25.
“Edge TPU Compiler,” https://coral.ai/docs/edgetpu/compiler/, accessed:
2024-08-25.

A. Boroumand, S. Ghose, B. Akin, R. Narayanaswami, G. F. Oliveira,
X. Ma, E. Shiu, and O. Mutlu, “Mitigating edge machine learning
inference bottlenecks: An empirical study on accelerating google edge
models,” arXiv preprint arXiv:2103.00768, 2021.

“Profiling-based partitioner for the Edge TPU Compiler,” https://coral.
ai/docs/edgetpu/compiler/#profiling-partitioner, accessed: 2024-08-25.
A. Parthasarathy and B. Krishnamachari, “Partitioning and Placement
of Deep Neural Networks on Distributed Edge Devices to Maximize
Inference Throughput,” in International Telecommunication Networks
and Applications Conference (ITNAC), 2022, pp. 239-246.

S. Zheng, X. Zhang, D. Ou, S. Tang, L. Liu, S. Wei, and S. Yin, “Efficient
Scheduling of Irregular Network Structures on CNN Accelerators,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 11, pp. 3408-3419, 2020.

X. Guo, C. Dong, and W. Wen, “Dynamic Computation Offloading
Strategy with DNN Partitioning in D2D Multi-Hop Networks,” in In-
ternational Conference on Communications and Broadband Networking,
2021, p. 172-178.

C.-Y. Yang, J.-J. Kuo, J.-P. Sheu, and K.-J. Zheng, “Cooperative Dis-
tributed Deep Neural Network Deployment with Edge Computing,” in
IEEE International Conference on Communications, 2021, pp. 1-6.

B. Sun, T. Kloda, J. Chen, C. Lu, and M. Caccamo, “Schedulability
Analysis of Non-preemptive Sporadic Gang Tasks on Hardware Accel-
erators,” in IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2023, pp. 147-160.

B. Sun, T. Kloda, and M. Caccamo, “Strict Partitioning for Sporadic
Rigid Gang Tasks,” in IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2024, pp. 252-264.

C. Han, H. S. Chwa, K. Lee, and S. Oh, “SPET: Transparent SRAM
allocation and model partitioning for real-time dnn tasks on Edge TPU,”
in ACM/IEEE Design Automation Conference (DAC), 2023, pp. 1-6.

J. Yin, Z. Zhang, and C. Yu, “Exact Memory- and Communication-
aware Scheduling of DNNs on Pipelined Edge TPUs,” in IEEE/ACM
7th Symposium on Edge Computing (SEC), 2022, pp. 203-215.

J. Yin, Y. Li, D. Robinson, and C. Yu, “RESPECT: Reinforcement
Learning based Edge Scheduling on Pipelined Coral Edge TPUs,” in
ACM/IEEE Design Automation Conference (DAC), 2023, pp. 1-6.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in IEEE conference on computer
vision and pattern recognition (CVPR), 2017, pp. 4700-4708.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
CVPR, 2015, pp. 1-9.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4-24, 2020.
A. Vaswani, “Attention is all you need,” Advances in Neural Information
Processing Systems (NeurIPS), 2017.

S. Hosseininoorbin, S. Layeghy, M. Sarhan, R. Jurdak, and M. Portmann,
“Exploring edge TPU for network intrusion detection in IoT,” Journal
of Parallel and Distributed Computing, vol. 179, p. 104712, 2023.

C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y.
Liu, “Do transformers really perform badly for graph representation?”
NeurIPS, vol. 34, pp. 28 877-28 888, 2021.

C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter,
“NAS-bench-101: Towards reproducible neural architecture search,” in
International Conference on Machine Learning, 2019, pp. 7105-7114.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770-778.

D. P. Kingma, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

https://cloud.google.com/edge-tpu
https://coral.ai/docs/edgetpu/compiler/
https://coral.ai/docs/edgetpu/compiler/#profiling-partitioner
https://coral.ai/docs/edgetpu/compiler/#profiling-partitioner

	Introduction
	Related Work
	DNN Partitioning
	DNN Inferences on Edge TPU Pipelines

	Performance Prediction-Based Partitioner
	Problem Description and Formulation
	Limitations of Existing Partitioning Tools
	Transformer-based Prediction Model
	Performance Prediction-based Partitioner

	Experiments
	Training of the Prediction Model
	DNN Partitioning Results

	Conclusion and Future Work
	References

