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Örebro University, Sweden

f
DFKI, Osnabrück, Germany

g
Sapienza University of Rome, Italy

Abstract

Automated planning is a branch of artificial intelligence aiming at finding a
course of action that achieves specified goals, given a description of the initial
state of a system and a model of possible actions. There are plenty of planning
approaches working under di↵erent assumptions and with di↵erent features
(e.g. classical, temporal, and numeric planning). When automated planning
is used in practice, however, the set of required features is often initially
unclear. The Unified Planning (UP) library addresses this issue by providing
a feature-rich Python API for modeling automated planning problems, which
are solved seamlessly by planning engines that specify the set of features they
support. Once a problem is modeled, UP can automatically find engines that
can solve it, based on the features used in the model. This greatly reduces
the commitment to specific planning approaches and bridges the gap between
planning technology and its users.
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C9 Support email for questions unified-planning@
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Table 1: Code metadata

1. Motivation and Significance

Automated planning is the area of artificial intelligence concerned with iden-
tifying a suitable course of action to achieve a goal based on a predictive
model of the environment. Due to its abstract nature, planning technology
is relevant to a wide range of application areas, such as agile manufactur-
ing [1], space operations [2, 3], robotics [4] or logistics [5].
To illustrate the general concept, consider a smart warehouse environment
with a number of storage locations and one packing location. Robots can
carry boxes from the storage to the packing location and back, and the task
is to get a set of products to the packing location. The planning task can
then be described by the current state of the world (the initial state, e.g.
the locations of all products and robots), the objective (a goal condition,
e.g. having the required products at the packing location, regardless of the
locations of the robots) and the possible actions. In such a scenario, we would
expect move actions to model the robots movements between locations or
load actions to model the act of loading a box containing a required product
onto a movable robot.
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World states of planning tasks are typically described by means of so-called
fluents. For example, there could be a boolean fluent carrying(robot,box)
that is true whenever a robot is carrying a specific box, and a symbolic fluent
location(robot) whose value is the current position of the robot. Actions
typically specify the states in which they are applicable through conditions

on fluents, while their e↵ects capture how they would alter the current state
when applied. In our example, an action for loading a box on a robot would
then be applicable whenever the robot is empty and at the same location as
the box; after its application the box would be carried by the robot, which
in turn would no longer be empty.
The task for the planning system is to identify a plan, i.e. a suitable course
of action that leads from the initial state to the goal. The exact form of the
plan depends on the details of the planning task. For example, in classical
planning, actions are instantaneous and the plan is simply a sequence of
actions; in temporal planning instead, actions have an associated duration
and their execution can overlap, so a plan would be an exact schedule that
specifies a start time for every action instance in the plan.

Even though there are many planning techniques and tools available, it is
still hard to apply them in practice. The Unified Planning (UP) Python
library, developed as part of the AIPlan4EU project funded by the European
Union, helps in overcoming some of the major challenges.
The first challenge is the modeling of a real-world problem as a plan-
ning task, defining suitable fluents and actions. Planning systems typically
expect the input task as a text file in some description language (such as the
Planning Domain Definition Language (PDDL) [6, 7] or the Action Notation
Modeling Language (ANML) [8]), which is usually created manually or by
some dedicated piece of code for the specific application. The UP library
enables the user to model the planning task programmatically with Python;
it retains the formality of the planning model, but replaces a concrete for-
mal description language with an API in a commonly used programming
language. This makes it easier to incorporate data from di↵erent sources of
information, and allows the modeling of the task without committing to a
specific description language (Python knowledge is required, but this skill
is arguably more available than niche modeling languages). The UP library
also implements a number of task transformations that allow reformulating a
task to make it suitable for a wider range of planning systems, e.g. by compil-
ing away features that are convenient for modeling but not widely supported
by the engines.
The second challenge for solving the task is to select and run a suit-
able planning engine. Planning systems typically only support a certain
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Figure 1: The unified planning framework in context.

kind of planning tasks: in fact, di↵erent fragments of planning have di↵erent
computational complexity (e.g. deciding plan existence for STRIPS classi-
cal planning is PSPACE-complete [9], whereas for numeric planning it is
only decidable for finite domains [10, 11]), so limiting a planner to a certain
fragment allows using more specific and e�cient approaches. For the user,
however, it can be very hard to understand what systems can be used for
their problem at all. Moreover, even as suitable planners are selected, each
engine comes with its own installation and usage instructions, so there is a
substantial setup e↵ort before actually solving the task with the engine.
With the UP library, all of this requires just a few lines of code. Its plugin
system allows developers to easily make their planning engine available, and
several planning systems have already been integrated by the AIPlan4EU
partners and through the AIPlan4EU open call program. A user can now
easily install such planning engines with the Python package installer pip.
The UP analyzes which engines are suitable for the modeled task, and the
user can call them directly from the UP through a common interface, simpli-
fying the experimentation with di↵erent engines or running several of them
in parallel. Moreover, the resulting plan is a structured Python object, facil-
itating further processing in the desired context.
Figure 1 shows the UP framework in the overall context: it allows users to
leverage planning technology without committing to any specific planning
engines, which are however available via UP’s API.

2. Related Work

Several tools for modeling planning problems exist, in particular for creating
models in PDDL [6, 7], an input language supported by most planners as it
is used in International Planning Competitions.
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The model acquisition tool itSIMPLE [12] allows modeling tasks in the
diagram-based UML language, and provides analyses based on Petri nets.
Tarski [13] is a Python library for modeling, manipulating and analyzing
planning tasks that can also parse languages other than PDDL, such as
functional STRIPS [14] or RDDL [15]. The tool is intended for planning
researchers and can be used for reachability analysis or problem reformula-
tions like the showcased compilation from deterministic conformant planning
(with uncertainty about the initial state) to classical planning.
PDDL4J[16] is a Java PDDL parser delivering an internal representation of
the parsed task that can be used via an API. For example, the PlanX Toolbox
[17] uses PDDL4J to build a composition of planning-based services over a
Docker infrastructure.
An extension for PDDL exists for the Visual Studio Code editor [18]. Be-
sides standard IDE support, it also provides plan visualization, support for
regression tests of the model, and the possibility to use templating in PDDL
problem files.
The online suite planning.domains

1 [19] includes a PDDL editor, a com-
prehensive database of benchmark tasks, and a planner-in-the-cloud service
(with limited time and memory resources) accessible through a RESTful API.
Web Planner [20] is a similar tool that provides several visualizations of the
search space of a problem in addition to basic PDDL editing and remote
solving. These tools are indeed useful for first tests on small instances, but
do not scale enough to process larger instances or production environments.
Similarly to UP, the planutils [21] project aims at facilitating running dif-
ferent planning engines. It provides several environments for uniformly in-
teracting with di↵eren planning systems, overcoming each one’s peculiarities
in terms of build instructions, dependencies, or calling interface. Individual
planning systems are integrated as packages (typically Singularity/Apptainer
images).
Furthermore, there are several frameworks for the creation of planning algo-
rithms in specific contexts. In particular, LAPKT [22] is a framework to build
classical planners, EUROPA [23] provides the infrastructure for timeline-
based temporal planners, F4Plan [24] allows the integration in the EnTiMid
home-automation software system, and PyHOP [25] is a Python implemen-
tation of a hierarchical planner where a problem can be modeled directly in
code.

1https://planning.domains
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C AbstractProblem

C ContingentProblem C HierarchicalProblem

C MultiAgentProblem C Problem C SchedulingProblem

Figure 2: Class diagram of the supported problems classes.

3. Software Description

3.1. Software architecture

In this section, we focus on the core concepts required to leverage the capa-
bilities of UP.
The core modeling feature provided by UP is the representation of planning
problems. We tackle a variety of types of planning problems with di↵erent
expressiveness. In particular, the UP library currently supports the follow-
ing classes of planning problems: Classical, Numeric, Temporal, Scheduling,
Multi-Agent, Hierarchical, Task and Motion Planning (TAMP) and Contin-
gent. In order to properly represent this variety, we created the class structure
depicted in Figure 2, where each class represents a kind of planning prob-
lems (Problem can represent multiple kinds: classical, numeric, temporal and
TAMP).
All the classes of planning problems inherit from AbstractProblem, which is
the class used for the generic interfaces in our plugin system. This class hi-
erarchy is meant to facilitate adding new types of problems and to make the
library as generic as possible. Moreover, we used the “mixin” design pattern
to avoid code duplication between sibling classes: this is an implementation
detail, but greatly simplifies the maintainability of the code. One of the key
elements of the problem specifications is the ProblemKind class (automati-
cally computed by all the planning problems classes via the kind property),
implemented as a collection of flags2 that lists the modeling features used
in any problem specification. Each integrated engine must specify which of

2
See https://unified-planning.readthedocs.io/en/latest/problem_

representation.html#problem-kinds for the full details.
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those features it supports, so that the library can determine its applicability
with respect to a given problem.

3.2. Software functionalities

Operation Modes (OMs) represent and standardize the possible interactions
with a planning engine. Each OM defines an API that an engine willing to
support the OM shall implement: in this way, engines declaring to support
the same OM can be used interchangeably. In addition, the interface of each
OM includes a set of methods designed to be mutually non-interfering and
documented with their respective assumptions and guarantees, allowing an
engine to support multiple OMs. Moreover, each engine will inherit from the
Engine abstract class, which provides the basic machinery for the plug-in
mechanism and for declaring the supported kinds of problem. The currently
available OM are:

• OneshotPlanner: single call to a planning engine that, given a prob-
lem, returns a plan or a failure response;

• PlanValidator: given a planning problem and a plan, indicates whether
the plan is valid;

• SequentialSimulator: given a problem, provides functionalities to
explore the reachable states;

• Compiler: transforms a given problem into an equivalent one, per-
forming some kind of rewriting;

• AnytimePlanner: iteratively generates solutions to a planning prob-
lem (e.g. incrementally better plans);

• Replanner: generates plans when a base problem is changed, possibly
re-using previous computation;

• PlanRepairer: given a planning problem and a possibly invalid plan,
returns a valid plan;

• PortfolioSelector: given a planning problem, selects the best engines
to solve the problem.

All the OMs can be invoked using the Factory class, which implements
the engine selection mechanism based on our plug-in system. Each envi-
ronment contains a private Factory, allowing di↵erent subsets of engines
and selection priorities to coexist in the same process: in addition, each
OM is also exposed as a top-level function for the global environment in the
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unified planning.shortcuts module. When calling the OM constructor
(either from the factory or from the shortcuts), it is always possible to specify
the name of the engine to be used (i.e. to force the selection of a specific
engine, if available) or to let UP select an engine automatically, by specifying
only the ProblemKind (which can be retrieved automatically from a problem
p using the p.kind property).
A Custom Resolution Strategy (CRS) is a procedural specification (i.e. a
piece of Python code) that can be used to guide an engine or to specify some
action behaviors. The UP library currently o↵ers two types of CRS: Simu-

lated E↵ects and Custom Heuristics. The former allows for the specifications
of changes in the values of the fluents for which only a Python function is
provided. This is useful when complex dynamics cannot be faithfully mod-
eled and can only be evaluated (e.g. an e↵ect can be modeled as a neural
network). With the latter, the user can guide the search in the underlying
planning engine by providing a Python function estimating the distance from
a given state to the goal.
In addition to the planning API, the library also o↵ers a Protobuf3 interface
for inter-process integration.

4. Illustrative Examples

Figure 3 shows a small example of the API o↵ered by the UP. More specif-
ically, the displayed Python code models a robot moving on a graph as
a simple numeric planning problem. The code constructs a model of a
system and then solves a planning problem on this model. The problem
state is described using a predicate robot at, indicating the current lo-
cation of the robot, and a numeric fluent battery charge, modeling the
remaining battery in percentage. In this simple problem, we have a sin-
gle action move that moves the robot between two locations, l1 and l2.
The problem is then fed into a planner, which is selected automatically by
the library. While this is a very minimal example constructed for the sake
of brevity, many more interactive demonstrations are available at https:

//unified-planning.readthedocs.io/en/latest/examples.html.

5. Impact

The Unified Planning (UP) project provides several benefits to the research
community and facilitates the e�cient and e↵ective use of automated plan-

3https://protobuf.dev
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import unified_planning as up

from unified_planning.shortcuts import *

# Declaring types

Location = UserType("Location")

# Creating problem variables

robot_at = Fluent("robot_at", BoolType(), location=Location)

battery_charge = Fluent("battery_charge", RealType(0, 100))

# Creating actions

move = InstantaneousAction("move", l_from=Location, l_to=Location)

move.add_precondition(GE(battery_charge, 10))

move.add_precondition(robot_at(move.l_from))

move.add_precondition(Not(robot_at(move.l_to)))

move.add_effect(robot_at(move.l_from), False)

move.add_effect(robot_at(move.l_to), True)

move.add_effect(battery_charge, Minus(battery_charge, 10))

# Declaring objects

l1 = Object("l1", Location)

l2 = Object("l2", Location)

# Populating the problem with initial state and goals

problem = Problem("robot")

problem.add_fluents([robot_at, battery_charge])

problem.add_action(move)

problem.add_objects([l1, l2])

problem.set_initial_value(robot_at(l1), True)

problem.set_initial_value(robot_at(l2), False)

problem.set_initial_value(battery_charge, 100)

problem.add_goal(robot_at(l2))

# Solving via OneshotPlanner Operation Mode

with OneshotPlanner(problem_kind=problem.kind) as planner:

result = planner.solve(problem)

if result.status in up.engines.results.POSITIVE_OUTCOMES:

print(f"{planner.name} found this plan: {result.plan}")

else:

print("No plan found.")

Figure 3: Simple example of a planning problem modeled using the UP Python API and

solved by one of the engines via the ”OneshotPlanner” OM.

ning technologies in various contexts. Here follow three notable contexts
where the UP has already yielded some impact or can be utilized.
Knowledge compilation techniques: UP o↵ers a programmatic inter-
face for specifying planning problems of di↵erent types and paradigms. This
flexibility enables researchers to easily transform a problem expressed in one
formulation into another, facilitating the application of techniques that may
not be available for the original formulation. For example, it is known that
planning problems with conditional e↵ects can be transformed into equiva-
lent problems without such e↵ects [26, 27]: this allows the use of planning
tools that do not provide native support for conditional e↵ects. Other com-
pilations are also implemented; for example, UP has been used to transform
problems with numeric temporal constraints expressed in PDDL3 into prob-
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lems without such constraints [28].
Integration of planning into complex systems: UP serves as an inter-
face for integrating planning technologies into broader applications, including
robotics. By using UP, developers can easily incorporate planning technolo-
gies into robotic platforms, reducing integration complexity and allowing the
platform to adopt a wider range of planning engines, enhancing flexibility
and adaptability. For example, UP is used to interface an underwater robotic
platform for surveillance with planning and replanning facilities [29], allowing
automatic adaptation and long-term autonomy. Similarly, UP is employed as
a middle-ware to bridge the gap between automated planning and embedded
systems [30]. Finally, the Protobuf interface is used for the UP integration in
the AIBuilder4 component of the European AI-On-Demand Platform5, which
allows the creation of AI pipelines involving planning components.
Homogeneous approach to using planning engines: UP provides users
with a consistent approach to utilizing planning engines that may be written
in di↵erent programming languages. This streamlines experimental analysis,
particularly in scenarios like planning competitions (e.g., [31]): researchers
can seamlessly switch between di↵erent planning engines without needing
to adapt to di↵erent programming languages or interfaces. This capability
contributes to speeding up experimental analyses and fostering collaboration.

UP is an open-source project available on GitHub (https://github.com/
aiplan4eu/unified-planning): its popularity in the research community
and its overall adoption across research groups have steadily increased over
time. At the time of writing, the project counts 194 stars and 42 forks.

6. Conclusion

This paper has presented the Unified Planning (UP) library that provides
programmatic access to planning technologies through Python. UP o↵ers a
comprehensive Python API for modeling and manipulating di↵erent kinds of
planning problems. In addition, the library also provides a plugin system for
easily integrating planning engines over standardized APIs: at the time of
writing, more than 40 planning engines of di↵erent kind have been integrated.
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