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Semantic shared-Task recognition for Human-Robot Interaction

Adrien Vigné1, Guillaume Sarthou1 and Aurélie Clodic1

Abstract— When collaborating with humans during a shared
task, a robot must be able to estimate the shared goal and
monitor the tasks completed by its partners to adapt its
behavior. Our contribution is a lightweight, hierarchical task
recognition system that enables the robot to estimate shared
goals and monitor human tasks. This recognition system is
integrated into a robotic architecture to take advantage of the
semantic knowledge flow available and builds upon our previous
work on action recognition. We demonstrate the mechanisms
of our recognition system and how we improved it to handle
missing information using a kitchen scenario. This also enables
us to showcase its usability from the perspective of other agents,
using Theory of Mind.

I. INTRODUCTION

For a robotic agent, the field of Human-Robot Interaction
(HRI) brings the challenge of completing complex and joint
tasks in collaboration with human partners. To achieve such a
goal, robots have to correctly understand and interpret what
humans around them are currently doing. Let’s imagine a
robot entering a kitchen where humans are preparing a meal.
In order for the robot to help them and engage with them in
a joint task, as defined by Tomasello et al. in [1], a shared
goal has to be defined. For the robot to be proactive, it
first has to estimate the goal of the humans around it. Here,
in a kitchen context, the robot has to determine the recipe
currently prepared and the advancement of this later, or at
least have a shortlist of possible recipes in progress. From
there, the robot will be able to engage efficiently in the joint
task.

Once engaged in a joint task, as explained by Sebanz et
al. in [2], involved agents have to coordinate their actions in
space and time. To do so, they have to maintain an estimate of
what each is doing in relation to the task on which they have
previously agreed. They thus have to monitor others to adapt
their own behavior accordingly. Nevertheless, as each agent
has to carry out its own actions, such monitoring cannot
realistically be continuous. Indeed, each agent will have to
focus on its actions but thanks to a few insights like changes
in the environment, it could still be possible to estimate what
has happened, in order to update the estimate of the plan’s
progress.

While monitoring the others’ actions is mandatory for
collaboration, being able to estimate what the others know
about the progress of the task is also important. Indeed,
even if some actions have visual impacts on the state of
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the environment, others don’t. For example, adding salt to a
dish cannot be estimated if it has not been directly perceived.
Consequently, to avoid such an action being performed twice,
one has to inform the others that the action has been done
if it estimates them to not be aware of so. Where some
could communicate about each action performed, being able
to estimate the others’ beliefs allows pertinent and efficient
communication acts.

Finally, as humans do not necessarily perform a single task
at the time or at least are able to perform several sub-tasks
of the same high-level task in parallel, a robot monitoring
its partner should be robust to such situations. In addition,
it should be considered that some actions are not part of the
task, like for example drinking a glass of water.

In light of all these examples, we can see that task
recognition in a realistic environment and scenario can be
challenging. To tackle these challenges, this work is based
on our prior work [3] about action recognition based on
semantic facts. While, having been proven to be able to
perform online recognition and having been integrated into a
robotic architecture, this prior work was not able to recognize
complete tasks. The main contribution of this paper is thus
a lightweight method for hierarchical task recognition
based on a semantic knowledge flow, even with partial
observations of the scene. In addition, this method is able
to emit hypotheses about higher tasks in a way to guide
further recognition or to be used at a supervision level.
Another contribution related to the HRI field is its direct
ability to recognize tasks from the point of view of each
agent. This work has been integrated into the Dacobot
robotic architecture [4], which is in charge of providing the
knowledge flow both from the robot’s point of view and the
estimated point of view of the human partners.

In Sec. II, we discuss related work and how task recog-
nition is generally performed. The used domain and its
underlined challenges are described in Sec. III. In Sec. IV,
we present our basic recognition process. Next, in Sec. V
we present how missing information is handled, then how
hypotheses about the higher task can be generated, and
finally how the process can be used with perspective taking.
An analysis of the process on a simulated input is presented
in Sec.VI before concluding this article and outlining future
work.

II. RELATED WORK

As presented in [5] by Ingrand et al., providing a moni-
toring system that not only focuses on the robot but also on
its environment is mandatory for a robot to make decisions.
Considering Human-Robot Interaction, due to the human



ability to act on the environment, human monitoring has also
to be considered mandatory. Indeed, more than modifying
the state of the world, human acts aim to achieve a goal
that a robot has to understand to collaborate. A taxonomy
of the different ways to handle such recognition has been
proposed by Saleem et al. in [6]. They define two main types
of approaches: learning-based on one side and feature-based
on the other.

Nowadays, learning-based approaches have gained in pop-
ularity. Among the more recent advancements in the field, we
can cite [7] in which they combine visual activity understand-
ing with a Large Language Model to improve the recognition
explainability, or [8] using a two-stage modality fusion to
recognize human actions. While providing impressive results,
such approaches still face issues. First, they require huge
among of data to be trained. Even if numbers of datasets
already exist [6], [9], new ones have to be created to recog-
nize new activities and additional training is required to make
such a system evolve. This latter issue can be acceptable but
the one that mainly interests us is the requirement to always
perceive the human to handle the recognition. For example,
in [10], to avoid any occlusions and always keep track of
the human, they use multiple cameras to provide a holistic
view of the environment to the robot. To be more resilient to
small environmental occlusions from a single perspective,
Ikizler-Cinbis and Sclaroff proposed in [11] to multiply
analysis on the image to focus on regions of interest, not
only considering the body motion but also the surrounding
objects and humans. Finally, [12] uses a radio frequency
sensor to ensure recognition even through walls. However,
only focusing on the skeleton they cannot detect interactions
with objects. However, as a robot engaged in everyday
activities cannot constantly monitor the human partners, as
everyday environments cannot be equipped for the robot, and
as everyday environments are full of occlusions, we think that
such approaches are limited for Human-Robot Interaction.
Despite these limitations, learning-based approaches can
provide online recognition after being trained in contrast to
other feature-based approaches.

Regarding feature-based approaches, we can complete
Saleem’s taxonomy with the one provided by Ramirez-
Amaro in [9] and refine it into syntactic, knowledge &
logic, and graph-based approaches. Syntactic approaches aim
at converting visual information to textual information and
compute the recognition process thanks to grammar systems
like the Stochastic grammar system presented in [13]. In
this work, Minnen et al. extract symbols representing low-
level actions from images. From there, thanks to a complete
description of a task, they can recognize if the given task has
been performed or not. Thanks to their stochastic aspect, this
approach has been proven robust to noise in the perception
and partial occlusion of the scene. Nevertheless, it can only
recognize one given task and still has to perceive the entire
course of action. In [14] they present a Stochastic Context-
Free Grammar that allows the recognition of a task made by
multiple agents independently or multiple concurrent tasks
made by a single agent.

Regarding knowledge and logic, a common approach is
the use of planning domains to drive the recognition process.
For example, [15] presents a human-aware plan recognition
system based on a typical planning domain representing what
can be done by humans. Providing a vector of observations,
the approach aims at identifying the most likely plan even
if part of the observations is missing. With the extension
presented in [16], the authors consider tasks performed by
multiple agents and extend their system to manage missing
or unknown information. To this end, they define three
sources of information, each with partial information: the
plan library, where some actions are unknown; the action
model, where some effects or preconditions are missing; and
the observation, where some actions are unknown. Unknown
actions are marked with a placeholder to help the recognition
system. Although this approach is able to handle missing or
unknown information, it cannot run online as it requires a
whole sequence of observations. Thus, recognition can only
be performed at the end of the task execution. Furthermore,
while such a system is more robust to unknown information
than to missing information, it is also highly sensitive to false
or extra information.

To be more resilient to missing information, false de-
tection, or extra actions, several approaches aim at using
systems based on statistics and graphs. In [17], they compare
several Hidden Markov Model (HMM) structures and con-
clude that the aggregation of information allows a reduction
of the number of parameters. In addition, they prove that
the use of a hierarchical representation of objects provides a
more robust recognition thanks to the possibility of learning
abstractions. In this work, they provide a way to recognize
hierarchical activities or interrelated activities but not both
at the same time. Interrelated actions refer to actions that
share at least one variable. Thanks to this link the knowledge
of one action can help recognize the other. In the case
of joint action with hierarchical models, both hierarchical
and interrelated activities are necessary for understanding
and to be generic. Another approach using extended Petri
nets is proposed in [18]. As a source of information, they
choose to use an ontology providing a rich and consistent
abstraction of the current observation, as well as a taxonomy
to describe to actions to be recognized. However, this work
cannot handle partial observation of the actions composing
a task. This issue has later been tackled with the use of
fuzzy ontology and fuzzy semantic Petri nets [19]. Thanks
to the addition of probability in the abstraction layout and
in the recognition process they successfully handle missing
observations. Another approach to solve this problem is
presented in [20] where they propagate constraints in the
Petri net to use the link between actions that were perceived
during the recognition process. The remaining issue here is
the ability to recognize tasks on the fly and to recognize
multiple tasks for the same agent at the same time because
humans made rarely only one thing at the same time.



III. DOMAIN AND CHALLENGES

To demonstrate this work, we will use a hypothetical sce-
nario of a robot assisting a human in a kitchen. Recipes are
essentially plans that involve processing ingredients to create
a final product. As a result, they can be transformed into
planning domains for robotic applications. This domain is hi-
erarchical in nature, providing an abstracted representation of
the high-level tasks to be performed and enabling the reuse of
the same sub-tasks in multiple high-level tasks. Furthermore,
the kitchen domain contains several low-level actions that are
applied to different ingredients or intermediate preparations.
In such a way, a sequence of sub-tasks is required to identify
a given task among others.

The domain used in this scenario includes recipes for two
types of quiches (Lorraine and ham), two types of cakes
(ham and olive), and a meringue. The domain also includes
other tasks, such as hydration, that are commonly performed
in parallel with other tasks. The purpose of this construction
is to illustrate specific points of interest in the recognition
process and to demonstrate the use of a hierarchical model.
For instance, the two quiche recipes share some sub-tasks and
can only be differentiated by a single ingredient. In this case,
we aim to recognize that a quiche has been made, even if
we cannot determine the specific ingredient used. The choice
between recipes based on certain ingredients is illustrated by
the presence of both a ham quiche and a ham cake. Doing any
other recipe, the meringue should not disturb as it contains
a specific task and a specific ingredient not shared with the
other recipes.

As an illustration of a hierarchy, the preparation of a ham
cake is broken down into the task of preparing a cake with
ham as a specific ingredient. This task can be further divided
into multiple partially ordered tasks, such as preparing the
mixture, preparing the ham, or even baking the cake. Each of
these tasks can be decomposed until it reaches basic actions,
such as mixing ingredients or picking and placing an object.
Furthermore, this task of preparing a ham cake occurs during
the preparation of starters, which is a sub-task of the meal
preparation process. This hierarchical structure is beneficial
for modeling purposes and enables our system to generate
hypotheses at various levels.

This domain has been written for the Hierarchical Agent-
based Task Planner (HATP) [21] due to its ability to take into
account humans in the planning problem. Nevertheless, as
the internal process doesn’t depend on the used domain lan-
guage, it could also be used with ANML [22] or HDDL [23].

IV. PROCESS PRINCIPLES

To introduce our system of hierarchical task recognition,
we first introduce its link to the DACOBOT architecture.
Then, we explain the inputs required by our system and the
internal structure used in the recognition process. Finally, we
present our recognition process in the nominal case.

A. Integration in the knowledge flow

The DACOBOT architecture provides a complete knowl-
edge flow, from perception to decision making, that is

Fig. 1. Knowledge flow for Action Recognition System in the DACOBOT
architecture.

used as an input of our system. A representation of this
knowledge flow is presented in FIG. 1. The situation assess-
ment, managed by Overworld [24] 1, provides semantically
abstracted geometric facts from the fusion of several percep-
tion sources. These geometric facts are then stored in our
semantic knowledge base, managed by Ontologenius [25] 2

, and used for semantic reasoning. This reasoning makes it
possible to infer new information, using inverse axioms or
chained axioms. Reasoning also reduces noise by checking
the consistency of each fact. For example, the fact ”the
cutting board is over an apple” can be discarded thanks to
the coherence checking, even if it has been perceived. Once
checked and reasoned about, facts are stored in the episodic
knowledge base, managed by Mementar [26], whose role
is to organize all this semantic knowledge in time. Finally,
our recognition system uses the entire knowledge flow of
the DACOBOT architecture. This ensures that temporally
aligned and coherent geometric facts are used as observation
inputs for the recognition process.

B. From planning domain to graphs

As shown in Fig. 1, the initial stage of the recognition
process relies on an action recognition process. This process,
presented in [3], directly uses the knowledge flow provided
by the DACOBOT architecture. Considering a description
of the set of possible actions in the form of ordered facts,
it provides as an output the recognized actions with their
parameters. As an example, a ’place’ action is described with

1https://sarthou.github.io/overworld/
2https://sarthou.github.io/ontologenius/

https://sarthou.github.io/overworld/
https://sarthou.github.io/ontologenius/


Fig. 2. Graph representation of the only methods of the task PrepareCake.
In this graph edges are transitions that represent the completion of the tasks
or the actions linked to them. Red edges refer to task transitions and green
to action transitions. Nodes are waiting state.

the sequence: (?A hasHandMovingToward ?S),(NOT
?A isHolding ?O),(?O isOnTopOf ?S). In this se-
quence, A, O, and S represent variables for respectively the
agent, the object to place, and the location where to place the
object. This process can handle partial observations by using
optional facts in a sequence. In this case, the only required
fact is that the agent is no longer holding the object. As a
consequence, some parameters can be not assigned, such as
the location S where to place the object in our example. Such
recognition is said to be incomplete.

t a s k P repa reCake ( I n g r e d i e n t I )
{

{ # method
p r e c o n d i t i o n s {} ;
s u b t a s k s {

Bowl = SELECT( Bowl , { } ) ;
CakeMold = SELECT( Mold , { } ) ;
1 : P r e p a r e C a k e M i x t u r e ( Bowl ) ;
2 : CutOver ( I ) ;
3 : Mix ( I , Bowl)>1 ,>2;
4 : F i l l ( CakeMold , Bowl)>1 ,>3;
5 : Bake ( CakeMold )>4; # Ac t io n

} ;
}

}
Listing 1. A PrepareCake task described following HATP syntax

To be informed about the tasks to be recognized, the
task recognition process relies on a hierarchical planning
domain. An example of a ’PrepareCake’ task description is
provided in List. 1. First of all, a task considers as an input
a list of typed parameters representing constraints about the
entities involved in the task, in our example the ingredient
to be used ’I’. Then, a task is defined by a set of methods

representing alternative ways to achieve it. Each of these
methods defines a partially ordered set of so-called sub-tasks
which can either be other tasks or some actions, that can be
recognized by the action recognition process. For the need of
this work, the description of the preconditions of the methods
is not considered. Nevertheless, where a task can consider
parameters as input, each method can define additional local
parameters that will be used as arguments in the set of sub-
tasks. Finally, the set of sub-tasks can be numbered to express
scheduling constraints between these sub-tasks.

In order to handle the task recognition process, the domain
has to be converted into an internal structure adapted to
the recognition. To do so, we define a graph structure for
each individual method of the tasks described in the domain.
An example of such a graph is presented in Fig.2 for the
’PrepareCake’ task. Indeed, as a task can be used as a sub-
task of several higher tasks in the hierarchy, the domain is
not flattened. An advantage of such a choice is the possibility
to recognize tasks at any level. For example, a CutOver task
can be recognized even if the higher task it is part of is not.

In this graph, the nodes represent steps in the achievement
of the task and its edges, being transitions over the nodes,
represent conditions to evolve from one node to another.
More precisely, these transitions are the completion of the
sub-tasks used in the method. They can thus be triggered
thanks to observations that correspond to the tasks or the
actions represented on the transitions. Depending on the
transitions’ type, observations will either come from the
output of the action recognition system (with complete or
incomplete actions) or from the task recognition system
itself. A task is considered to be finished when one of these
graphs reaches its final state. In such a case, this completion
generates an observation that could be used to trigger other
graphs.

To create a graph, we first propagate each scheduling
constraint through the set of sub-tasks in the method. Here,
for example, the Fill(4) sub-task is constrained to be run after
1,2,3 as Mix(3) is constrained to be run after 1 and 2. Using
the same reasoning, Bake(5) is required to be run after all
the other tasks. Thanks to this propagation, we create the
graph of all possible ways to complete the task according to
this scheduling constraint.

The graph used as an internal structure is linked to a table
of variables, which represents all the variables present as
parameters for sub-tasks. In our case, the table is composed
of: Bowl, I , and CakeMold. This table will be used in the
following to keep track of the variables instantiations.

The set of agents that have participated in completing
a task is filled with each agent having completed a sub-
task. If Agent A and Agent B respectively complete the
sub-tasks ’PrepareMixtureForCake’ and ’CutOver’, they will
be included in the set of participating agents for the task
’PrepareCake’.

C. The recognition process

If several agents are working simultaneously on the very
same task, we cannot use a single graph instance per method



to handle the task recognition. To manage such situations, we
introduce the notion of graph factory. A graph factory is
responsible for a single method.

To initiate a recognition, a graph factory only focuses
on the transitions from the initial state of the graph it
is in charge of. When an observation is submitted to a
factory if it can trigger one of the initial transitions, an
active graph is created by the factory. For example, if
the observation ”PrepareCakeMixture(bowl 1)” is submitted
to the factory in charge of the method ’PrepareCake’, this
factory will generate an active graph. Since a transition
has been triggered, the active graph will already reach the
’PrepareCake 10’ node. In addition, the ’Bowl’ variable of
the generated graph will be bonded to the individual bowl 1.

Let’s assume that a new observation ’CutOver(ham 0)’
arrives. Before reaching a factory this observation will be
used to try to evolve all active graphs. If it succeeds to
evolve active graphs, the observation will not be submitted
to the related factories of the evolved active graphs. Oth-
erwise, the observation will be sent to all the factories. In
our example, the observation ’CutOver(ham 0)’ allows the
evolution of the previously created active graph, reaching
the ’PrepareCake 20’ node. It also results in the instantiation
of the variable I , being bound to ham 0. From the current
node, the only possible transition is ’Mix(I, Bowl)’. However,
according to the table of variables, we are not waiting for any
mix, but specifically the one specified by the current values
of the variables, which is ’Mix(ham 0,bowl 1)’.

To prevent false or inconsistent recognition, a cleaning
process is initiated after each task completion. It consists
of a pruning of all active graphs that have used at least
one observation involved in the finished task. Additionally,
a timeout is implemented for each graph to remove the ones
that have not evolved for a while.

V. ADDITIONAL FEATURES TO ENHANCE THE
RECOGNITION

In this section, we present additional features enhancing
the basic mechanism of our recognition process. First, we
present a support for missing observations allowing for
partial observations. Then, we present a mechanism to emit
hypotheses about the high-level tasks in progress, not waiting
for task completion. Finally, regarding the HRI field, we
show that thanks to its integration into the DACOBOT
architecture, the task recognition process is directly appli-
cable to the Theory of Mind, enabling to estimate the tasks
recognized by other agents.

A. Managing missing information

As previously discussed, effective management of the
recognition process in everyday environments requires ad-
dressing several issues. One such issue is the necessity for
the recognition process to be resilient to missing information
since it is unrealistic for the robot to continuously monitor
all the agents in the environment. Although the action
recognition process has addressed this issue by incorporating
optional facts into the detection process, until now the

presented version of the task recognition process requires
a full observation of the sub-tasks.

Taking back our example, being in the state ’Pre-
pareCake 20’, the process is waiting for an obser-
vation that matches the realization of the sub-task
’Mix(bowl 1,ham 0)’. Therefore, receiving the observation
’Fill(bowl 1,cakemold 3)’ does not allow for evolution even
if it is part of the task. To solve this issue, we introduce a
look-ahead mechanism that allows every node to test the
transitions of its direct child nodes. In our example, from
state ’PrepareCake 20’ we can thus test the transitions of
state ’PrepareCake 30’. As previously, this test uses the
constraints on the variables if they are instantiated. If the
test succeeds, the missed transition is bypassed and the
unbounded variables are instantiated if possible. In our
example, we directly pass to node ’PrepareCake 40’ and we
instantiate the variable ‘CakeMold’ to cakemold 3.

As the bypassed transition can be due to an unfinished task
having thus not raised any observation, we have implemented
a cherry-picking mechanism aiming at filling the missed
information thanks to unfinished graphs. For example, hav-
ing bypassed the transition ’Mix(bowl 1,ham 0)’, we check
among all the active graphs if a mix task is under recognition.
If such a graph exists, even with incomplete parameters, this
graph is picked to fill the missed transition. The graph is
thus considered as finished and is removed from the set of
active graphs. As usual, all other graphs sharing common
observations are also purged from the set of active graphs.
In addition, all the unbounded variables of the picked task
are linked to the task under recognition in order to instantiate
them if possible. Thanks to this mechanism we can extract as
much information as possible to explain the current situation.

If no active graph can be found, the missed task or action
is reconstructed with the available piece of information.
However, even if all the variables can be determined, such
reconstruction will always be incomplete as the agent having
performed it will stay unknown.

Thanks to these mechanisms, our task recognition system
can handle missing information and extract or generate it in
a coherent manner. Each graph factory can also use these
mechanisms to generate active graphs not only with the
transitions of the initial state.

B. Hypothesis to provide estimation of shared goal

An additional feature provided by our system is the
ability to generate hypotheses about the higher level task in
progress. Where tasks usually need to be finished in order to
generate observations, to provide hypotheses we propagate
each active graph as a hypothetical observation attached
with a completion rate. The observation is sent to graph
factories in a classical manner. If the graph factory can evolve
a hypothetical graph is created. Hypothetical graphs then
follow the same mechanism of evolution as active graphs
and can also use the look-ahead mechanism. Concerning
observations, they are also only sent to graph factories from
where no hypothetical graph of the same type has been
evolved. A consequence of the hypothesis mechanism is



that a same method can be represented with active and
hypothetical graphs simultaneously. In such a case, only
the hypothetical graph generates hypothetical observations.
For instance, in node PrepareCake 40 of our example, the
hypothetical graph of PrepareCake would generate the obser-
vation ’PrepareCake(ham 0),4/5’. This observation triggers
the evolution of the PrepareCake hypothetical graph created
through the PrepareCake active graph. The calculation about
the estimation is∑

sub−tasks

completion rate ∗ 1

nb sub− tasks

where nb sub − tasks refers to the number of the sub-
tasks in the higher task triggered by the propagation of the
hypothetical observation.

C. Multiple knowledge streams to estimate from agent’s
point of view

To effectively assist in a shared task with multiple agents,
a robot has to estimate each agent’s knowledge about the
progress of the task, as well as what has been done by each
agent and what they are currently doing. For instance, in a
restaurant kitchen, each cook is responsible for a specific part
of the dish that will be served, so all the cooks must estimate
each other’s progress to ensure timely completion. Similarly,
waiters must also estimate the progress of the kitchen staff,
but at a higher level, to ensure the timely service of the dish.
To provide this estimation, our system uses the features of
each software within the DACOBOT architecture to manage
multiple knowledge streams in parallel. These streams are
generated by the situation assessment and are fed based
on the estimation of what each agent can observe in the
environment. To handle these multiple streams, we manage
dynamically one recognition process by knowledge stream,
and thus per agent. This allows us to estimate the recognition
process from their point of view.

This feature can also be useful to identify belief diver-
gences in the current progress of the shared task. Such
divergences can occur, for example, if one agent adds salt
to the preparation but the other cook is unaware of this. In
such cases, thanks to the estimation process, the robot can
communicate to avoid duplication of the task.

VI. ANALYSIS OF A RECOGNITION

In this section, we present the results of our recognition
process through a step by step analysis of an entire task
recognition from action observations to hypothesis genera-
tion. The entire section considers a Pepper robot observing
two cooks achieving the shared task of preparing a ham
cake. We consider that the robot does not know the task
to be achieved and has to correctly identify it. The used
task domain is the one presented in Sec. III. To simplify the
demonstration, we only assume that the ’Mix’ sub-task in the
’PrepareCake’ method is no longer a task but an action that
can be directly recognized by the action recognition. First,
we focus on the task recognition from a set of observations.
Then, we analyze the hypothesis generation. Lastly, we

Observation Initiated Evolved

1 Mix(A,f 0,b 4) PrepareCakeMixture

2 Pick(B,g 0) Hydrating

3 FillWater(B,g 0) Hydrating

4 Drink(B,g 0) Hydrating

5 Hydrating,{B}

6 Pick&Place(B,h 0,a 6) CutOver

7 Mix(A,e 0,b 4) PrepareQuicheBase PrepareCakeMixture

8 Pick(B,k 10) CutOver

9 Mix(A,cr 2,b 4)
PrepareCakeMixture

PrepareQuicheBase

10 Cut(B,h 0,k 10) CutOver

11 CutOver(h 0),{B}
PrepareCake

PrepareQuiche

12 Mix(A,m 3,b 4)
PrepareCakeMixture

PrepareQuicheBase

13 Mix(A,ch 5,b 4)
PrepareCakeMixture

PrepareQuicheBase

14 PrepareCakeMixture(b 4),A PrepareCake

15 Pick&Place(A,m 0,t 1) Fill

16 Pick(A,b 4) Fill

17 PoorInMold(A,b 4,m 0) Fill

18 Fill(b 4,m 0),{A} PrepareCake

19 Bake(B,m 0,o 3)
PrepareCake

PrepareQuiche

20 PrepareCake(h 0),{A,B} PrepareHamCake PrepareHamCake

TABLE I
OBSERVATIONS, WITH INITIATED AND EVOLVED ACTIVE GRAPHS. BOLD

GRAPHS REPRESENT FINISHED GRAPHS AT A STEP. CROSSED-OUT ONES

REPRESENT DELETED GRAPHS. GREYED ROWS REPRESENT

OBSERVATIONS GENERATED BY THE TASK RECOGNITION PROCESS.

analyze the task recognition in the case of the Theory of
mind thanks to estimates from different points of view.

A. From observations to recognition

To demonstrate our recognition process we consider the
observations presented at the left of Tab.I. When the 1st
observation occurs, the recognition process does not have
any active graph. The observation is thus sent to all the
graph factories. Because the Mix observation is specified
with flour ingredient, the only triggered factory is the one of
PrepareCakeMixture. This latter thus generates a new active
graph. When the 2nd observation occurs, the only available
active graph cannot be evolved thanks to it and as previously,
the observation is sent to the factory. Once again, only one
can be triggered and a new active graph, of type Hydrating,
is generated. With the 3rd observation, the Hydrating graph
can be evolved. As a consequence, the observation is sent
to the factories except the one in charge of the Hydrating
task. Finally, when the 4th observation occurs, this latter
evolves the Hydrating graph and finishes it (in bold in Tab.I),



generating in return a task observation and removing it from
the pool of active graphs. This new observation (in grey in
Tab.I) is sent to the only remaining active graph and to the
factories but does not allow any progress.

When the Pick&Place observation occurs, with regard
to the considered domain, because of its parameters the
only effect is the creation of a new active graph, of type
CutOver. Unlike this, the 7th observation has two effects.
First, being tested over the active graphs, it allows a direct
evolution of the PrepareCakeMixture graph. Additionally,
when sent to the factories, it triggers the PrepareQuicheBase
factory. One has to note that since an active graph of type
PrepareCakeMixture has evolved, the observation is not sent
to the factory in charge of this task. If this had been done,
another graph would have been generated because of the
look-ahead mechanism.

When the 8th and 9th observations arrive, they respectively
evolve the CutOver task for the first, and the two other graphs
for the second. The 10th finishes the CutOver task generating
a new observation. This latter does not allow the evolution of
the remaining graphs and triggers two factories, generating
in return two active graphs.

Where the 12th observation evolves two concurrent
graphs, the 13th finally allows us to discriminate them. In-
deed, the latter observation finishes the PrepareCakeMixture
and thus removes it from the set of active graphs. In addition,
thanks to the cleaning mechanism, as the PrepareQuicheBase
graph shares common observations with the newly finished
graph, it is also removed. Consequently, only the finished
graph generates a new observation which allows the evolu-
tion of one of the remaining active graphs.

Thanks to the observations from 15 to 17, a Fill task is
recognized and generates an observation. Where none of the
active graphs is waiting for a fill task, because of the look-
ahead mechanism, the PrepareCake graph can be evolved.
The bypassed transition corresponds to a Mix action. As the
cherry-picking mechanism can only be performed on task,
the action will simply be reconstructed.

Finally, the 19th allows for the recognition of the Prepare-
Cake graph, discarding in consequence the PrepareQuiche
one. This finalization generates a new observation but where
the previous ones were only related to a single agent, this one
embeds both agents as the sub-tasks composing it have been
made by multiple agents. The new observation, in line 20,
triggers a factory and directly finishes the graph as composed
of a single sub-task.

From these few observations, we can see that the system
has recognized a shared task of preparing a ham cake without
any knowledge of the shared goal between the two cooks.
In addition, the recognition has been successful even if an
action has not been perceived. Thanks to the hierarchical
representation, the same would have been true if an entire
task would have been missed. Finally, more than a cake
preparation, the system has been able to recognize another
task in between.

B. From recognition to estimation

To illustrate our hypothesis mechanism, we will focus
on the calculations done after some observations. Tab.II
summarizes some interesting cases of hypotheses calcula-
tions. When receiving the first observation that generates
a PrepareCakeMixture active graph, this latter generates an
hypothetical observation. As it is done for usual observation,
this one will be sent to the graph factories. Nevertheless,
as explained earlier, rather than generating active graphs
they will generate hypothetical graphs. Here, the Prepare-
CakeMixture hypothetical observation will generate a Pre-
pareCake hypothetical graph. Regarding the estimation rate,
as the completion rate of PrepareCakeMixture is 1/5 (i.e.
one sub-task finished over the five to be done), and because
PrepareCake has a sub-task weight of 1/5 (i.e. it requires five
sub-task so each has a weight of 1/5), the rate is 4%.

At the step of the sixth observation, the newly created
active graph will also generate an hypothetical observation
resulting both in the evolution of the PrepareCake hypo-
thetical graph and the creation of a PrepareQuiche one. At
step 11, thanks to the completion of the task CutOver with
some ham and thus the activation of the graphs Prepare-
Cake and PrepareQuiche, two new hypothetical graphs are
generated: PrepareHamCake and PrepareHamQuiche. As a
consequence, the tasks PrepareCake and PrepareQuiche are
represented both in their active form and their hypothetical
form. In such a case, the hypothetical observation is gen-
erated by the hypothetical graphs rather than by the active
ones. The completion rate of the PrepareCake task is thus
1/5 (i.e. one sub-task finished over the five to be done on
PrepareCake) plus 3/5 (i.e. the completion rate of Prepare-
CakeMixture) * 1/5 (i.e. the weight of PrepareCakeMixture
in PrepareCake).

At step 13, as the active graph PrepareQuicheBase is
removed, the related hypothetical graph PrepareQuiche is
also removed. Finally, at step 15, as the Mix sub-task has
been bypassed, this latter is not considered in the completion
rate calculation. However, if a cherry-pick would had been
performed in the case of a task, its current completion rate
would have been used instead.

From these results, we can see that even if their estima-
tion rate is low, estimations can be generated early in the

Observation Completion Rate Weight Result

1 PrepareCakeMixture 1/5 1/5 PrepareCake 4%

6
PrepareCakeMixture

CutOver

1/5

1/3
1/5 PrepareCake 10.6%

CutOver 1/3 1/6 PrepareQuiche 5.5%

11 PrepareCake 1/5 + 3/5 * 1/5 1 PrepareHamCake 32%

PrepareQuiche 1/6 + 2/4 * 1/6 1 PrepareHamQuiche 25%

15 PrepareCake 2/5 + 1/3 * 1/5 1 PrepareHamCake 46,7%

TABLE II
SUMMARY OF SOME HYPOTHESES AND COMPLETION RATES USED TO

COMPUTE THEM.



achievement of the task. Indeed, with a larger domain, more
hypotheses would be generated leaving a higher uncertainty.
Nevertheless, such uncertainty is coherent under the hypoth-
esis that multiple tasks can be achieved in parallel with no
relations between them.

C. From an agent’s point of view

Having analyzed the system from the perspective of the
robot, in this part we will analyze it through the lens of per-
spective taking. To do so we will consider the observations
of Tab. II but from the estimated point of view of Cook B.
Because of the perspective taking we assume Cook B to not
perceive the Mix of observation 9. However, thanks to the
look-ahead mechanism the PrepareCakeMixture graph is still
recognized at step 13. Because the Mix action preceding Fill
is assumed to not have been perceived by the robot, it will
consequently be assumed to not be perceived by any other
agent. Indeed, from the robot’s point of view, the others’
estimated knowledge can only be a subset of the robot’s
knowledge. Similarly to the robot estimation, once the Fill
task is recognized the look-ahead mechanism will once again
bypass the missed sub-task, resulting at the end by a correct
estimation of recognition.

Even if this example shows that task recognition can
be handled by our process based on perspective taking, it
also highlights its complexity. Indeed, by combining the
information missed by the robot with the ones missed by
the other agents, we are aware that some recognition could
be impossible. Nevertheless, even if some high-level tasks
would not realistically be recognized, such a process still
provides the robot with new knowledge that could help in
decision-making. In addition, as most of the actions have
an impact on their environment, they could be recognized
afterward by the action recognition process, leveraging the
issue at the task level.

VII. CONCLUSION AND FUTURE WORK

This paper presents a task recognition system based on
previous work on action recognition. The system uses dy-
namically generated and instantiated graphs to represent the
recognition process, which can evolve thanks to observations.
The system is integrated into the knowledge flow of a robotic
architecture and can be used in realistic environments with
occlusion and multiple humans performing multiple parallel
tasks. The system can handle missing information, making
it suitable for use on robots that not only observe but
also handle their own tasks to collaborate efficiently with
other agents. In the future, the recognition system could be
further enhanced to recognize with even less information. As
previously noted, especially in the case of estimation from
the point of view of another agent, missing information can
be numerous. The reconstruction mechanism could also be
improved to better complete the recreated or cherry-picked
sub-tasks by incorporating additional information such as the
availability of the agents.
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