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Singularly Perturbed Hybrid Systems for Analysis
of Networks with Frequently Switching Graphs

Aneel Tanwani Hyungbo Shim Andrew R. Teel

Abstract—For a class of hybrid systems, where jumps occur
frequently, we analyze the stability of system trajectories in
view of singularly perturbed dynamics. The specific model we
consider comprises an interconnection of two hybrid subsystems,
a timer which triggers the jumps, and some discrete variables
to determine the index of the jump maps. The flow equations
of these variables are singularly perturbed differential equations
and, in particular, a smaller value of the singular perturbation
parameter leads to an increase in the frequency of the jump
instants. For the limiting value of this parameter, we consider
a decomposition which comprises a quasi-steady-state system
modeled by a differential equation without any jumps and a
boundary-layer system described by purely discrete dynamics.
Under appropriate assumptions on the quasi-steady-state sys-
tem and the boundary-layer system, we derive results showing
practical stability of a compact attractor when the jumps occur
sufficiently often. As an application of our results, we discuss the
control design problem in a network of second-order continuous-
time coupled oscillators, where each agent communicates the
information about its position to some of its neighbors at discrete
times. Using the results developed in this article, we show
that if the union of the communication graphs being used for
information exchange between agents is connected, then the
oscillators achieve practical consensus.

Index Terms—Hybrid systems; Singular perturbation; Prac-
tical stability; Discrete-time switched systems; Heterogeneous
agents; Nonlinear oscillators.

I. INTRODUCTION

The tools developed for the analysis of nonlinear dynamical
systems have a rather broad applicability in studying complex
systems comprising multiscale dynamics or interconnection of
several subsystems. In particular, research in the area of hybrid
dynamical systems [9] has greatly benefited from such tools
to provide rigorous mathematical solutions to engineering
problems involving continuous and discrete dynamics. This
article aims at making a new contribution to the research
evolving at the intersection of nonlinear analysis and hybrid
systems. Motivated by the applications from designing control
laws for networked systems with switching topology of the
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communication graph, we propose models of hybrid systems
where the jump dynamics occur rather frequently. We look at
such behavior from the lens of singularly perturbed dynamics
and analyze stability in terms of the perturbation parameter.

A common approach for checking the stability of hybrid
systems involves finding a Lyapunov function that satisfies
some dissipation inequalities along the flow dynamics and
jump dynamics over the respective flow and jump sets, see
for example [9, Theorem 3.18]. For many applications, it may
be hard to compute one such function that satisfies those
conditions, and therefore an interesting research direction
is to construct this function from the stability information
available for the individual components of the hybrid system.
Such constructions work under certain conditions which often
reveal an interesting interplay between stability of continuous
and discrete dynamics. Taking switched systems with reset
maps as an example of hybrid systems, it is seen that if
the continuous dynamics are stable but discrete dynamics are
not, then we can obtain stability conditions by restricting the
average frequency of switching times in the form of a lower
bound on dwell-time on the switching signals (ADT) [21]. On
the other hand, if the continuous dynamics are not stable but
the discrete dynamics compensate for the growth of the state
during continuous-time evolution, then the overall system is
asymptotically stable if the number of discrete jumps over
each bounded interval is large enough [10]. Lower bounds
on the number of discrete jumps necessary for stability are
captured by the notion of reverse-average dwell time [10].
Using a similar philosophy, some recent works [19] also derive
relative upper bounds on the activation times for unstable
dynamics in the system compared to the lower bounds on
the dwell-time for stable dynamics. Another relevant research
direction is the stability analysis of interconnected hybrid
systems [17]. In these works, the individual subsystems are
assumed to have input-to-state stability (ISS) and one can
either construct a Lyapunov function for the interconnection,
or use trajectory-based analysis for proving stability under
appropriate assumptions on gain functions.

This article considers an interconnected hybrid system
where one subsystem has stable continuous dynamics, and
the other subsystem is modeled by a discrete-time switch-
ing system and possibly unstable continuous dynamics. The
particular structure that we consider in our work is analyzed
using singular perturbation methods. Singular perturbation
techniques have been conventionally studied for analysis of or-
dinary differential equations with slow and fast dynamics [14].
The basic idea is to see the system as a perturbation of
a nominal system that comprises the boundary-layer system
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(describing the limit of fast dynamics) and the quasi-steady-
state system (described by slow system with limiting value of
fast dynamics). This sort of decomposition into slow and fast
dynamics has been used for analyzing robustness of input-
to-state stability to slowly varying parameters and rapidly
varying signals in [29]. More recently, we have seen the use
of singular perturbation methods for a class of hybrid systems
where fast evolution appears in continuous-time dynamics
only [26], [31]. The solutions resulting from a continuous-
time boundary-layer system generate an average vector field
which approximates the slow subsystem. Using the stability
of the average dynamics, with appropriate hypotheses on
system data, the authors show semiglobal practical stability
for original system. Similarly, singularly perturbed hybrid
systems studied in [32] consider the perturbation parameter in
continuous dynamics only but use Lyapunov function based
methods for analysis.

For the class of interconnected hybrid systems analyzed in
this paper, we analyze stability with respect to a parameter in
system description which governs the frequency of jump dy-
namics and plays the role of a singular perturbation parameter.
In particular, as the parameter gets smaller, the frequency of
jumps increases. This viewpoint was adopted by the authors
in [28] and this paper generalizes that framework in several
directions with new proof techniques. For such systems, it is
natural to consider the decomposition of dynamics in the so-
called quasi-steady-state (QSS) system and a boundary-layer
(BL) system. With appropriate stability assumptions on these
subsystems, we can analyze practical stability of the inter-
connected system for small enough value of the perturbation
parameter. An interesting element of this decomposition is
that our boundary-layer system is described by a discrete-
time switching system, and the stability of this system is
formulated in terms of Lyapunov functions which is consistent
with several studies in the literature [1], [7], [8], [23], [25]. For
the stability of the overall interconnected hybrid system, we
basically consider two proof techniques for our main results.
The first approach highlights the underlying principle and is
based on the construction of an appropriate Lyapunov function
for the interconnection between slow continuous dynamics and
fast discrete dynamics. Such constructions provide a general-
ization of the approach adopted in [28] and are also inspired
by the construction provided in [30]. The second approach is
motivated by the application studied in this paper, where one
cannot readily check the stability of a boundary-layer system
with a Lyapunov function. So, differently from [28], we do
not construct a Lyapunov function for the interconnection in
this case, and instead carry out trajectory-based analysis to get
asymptotic bounds on the trajectories.

We see the use of singular perturbation methods for analysis
in different applications. One such application of these meth-
ods, which is also studied in this article, is the synchronization
problem in networked systems. For multi-agent systems with
diffusive coupling and continuous-time heterogeneous agents
[15], [22], it is observed that the agents achieve practical
convergence if the coupling strength is large enough. One
can view the coupling parameter as a singular perturbation
parameter [16]. More recently, we have also seen the use

of discontinuous coupling for synchronization of networked
system in [5]. These discontinuities in the couplings can be
interpreted as changes in the graph topology that describes
the connections between agents. Consensus problems with
time-varying graphs have gathered significant interest in the
literature [4], [12] and the techniques based on graph-theoretic
methods for analysis of multi-agent systems can be found
in [3], [20]. In particular, our work provides analysis of
networked systems where the discontinuity in coupling arises
due to time-sampled information exchange between neighbors,
and the average value of the sampling interval plays the role
of the singular perturbation parameter. The change in graph
topology at communication times is conveniently modeled
using the framework of discrete-time switched systems, and
thus motivates the class of systems in (3) which is later used
for our case study presented in Section IV. Under natural
assumptions on the connectivity of the switching communi-
cation graph and dynamics of the agents, we show practical
synchronization of the agents’ trajectories under sufficiently
frequent communication.

II. SYSTEM CLASS

In this paper, we consider hybrid dynamical systems de-
scribed by ordinary differential inclusions over a flow set, and
difference inclusions over a jump set. The peculiar feature of
our models is that they are singularly perturbed, that is, there
is a parameter ϵ > 0 which affects the qualitative behavior
of the trajectories and we analyze stability of the system for
small enough values of this parameter.

A. Timer with frequent jumps

An important modeling aspect for us is to consider a timer
with the following dynamics

ϵτ̇ ∈ [σ1, σ2], τ ∈ [0, N0]

τ+ = τ − 1, τ ∈ [1, N0].
(1)

The evolution of the timer τ , determined by the parameters
N0 ∈ N, 0 < ϵ ≤ 1, and 0 < σ1 ≤ σ2, describes the interplay
between the flow and the jump. In our work, we will consider
hybrid systems where the jumps are triggered only by the
timer τ . We are particularly interested in the case where the
parameter ϵ is very small, and we refer to ϵ as the singular
perturbation parameter.

In the literature on hybrid systems, we find different setups
where time-triggered jumps play a crucial role in the stability
of the hybrid system. For example, the notion of (average)
dwell-time [11], [21] is used for putting an upper bound on
how frequently the jumps can occur, whereas the notion of
reverse average dwell-time [10] is used for imposing a lower
bound on the frequency of jumps. The timer in (1) has the
property that it simultaneously puts a lower and upper bound
on the number of jumps over an interval (s, t], that is,

1 +
σ1(t− s)

ϵ
−N0 ≤ J(s,t] ≤ N0 +

σ2(t− s)

ϵ
(2)

where J(s,t] denotes the number of jumps in the variable τ over
the interval (s, t]. It readily follows that, with such a timer,
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there is no accumulation time for jumps (i.e., there are finitely
many jumps in any finite continuous-time interval) and the
domain of every complete solution has unbounded continuous-
time element.

B. Overall model

We are interested in modeling the evolution of two variables
(x, y) ∈ Rn × Rm. The dynamics of x variable are modeled
by an ordinary differential equation. For the evolution of y-
dynamics, in addition to a flow map described by a differential
equation, we have a collection of jump maps to define the jump
dynamics. The times at which these jumps occur is modeled
by the timer τ in (1) (that is, the jumps occur whenever τ
jumps), and the jump map for y is indexed by a variable p
belonging to a finite set P .

The state variables for the overall system are (x, y, τ, p) ∈
Rn×Rm×R×P , and we consider a closed set Cxy contained
in an open domain Dxy ⊂ Rn×Rm. The state variables evolve
inside the flow set

C := Cxy × [0, N0]× P,

and go through an instantaneous change inside the jump set

D := Cxy × [1, N0]× P.

The underlying equations that describe the evolution of the
state variables are:

ẋ = fx(x, y, ϵ),

ẏ = fy(x, y, ϵ),

ϵτ̇ ∈ [σ1, σ2],

ṗ = 0,

for (x, y, τ, p) ∈ C, (3a)


x+ = x,

y+ = gy(x, y, p),

τ+ = τ − 1,

p+ ∈ Gp(p),

for (x, y, τ, p) ∈ D. (3b)

For the timer dynamics, the positive constants σ1 and σ2 are
such that σ2 ≥ σ1 > 0. We assume that the vector fields fx :
Dxy×R≥0 → Rn, fy : Dxy×R≥0 → Rm and the jump maps
gy : Dxy ×P → Rm are continuous. The set-valued map Gp :
P ⇒ P allows non-deterministic behavior for the variable p
at jumps. The solutions of system (3) are defined over a subset
of R≥0 ×N, called hybrid time domain [9, Chap. 2]. In what
follows, we use the notation (x0, y0) := (x(0, 0), y(0, 0)) to
denote the initial condition for (x, y)-dynamics.

For the problems studied in this paper, the parameter ϵ
appearing in (3) is taken to be small, which implies that the
jumps occur frequently, and thus, the evolution of y relies
heavily on the jump dynamics. Since the jumps correspond
to rapid evolution, we call x the slow variable and y the fast
variable.

C. System decomposition

We are interested in studying the behavior of system (3)
when the parameter ϵ is sufficiently small and takes values
close to zero. It turns out that the evolution of trajectories

(x(·), y(·)) can be approximated by two different dynamical
systems. The first system is called the boundary-layer system,
which is given by

x+ = x

y+ = gy(x, y, p)

p+ ∈ Gp(p)

(4)

for (x, y) ∈ Cxy , and p ∈ P . Recalling the expression
of the timer dynamics, we observe that a small value of
ϵ corresponds to many jumps in the trajectories of system
(3) within a small continuous-time interval. This means that,
from an initial condition (x(0, 0), y(0, 0)), while the solution
x(·) remains close to x(0, 0), the solution y(·) evolves like a
solution to the discrete-time system (4). In order to define
an equilibrium point for the discrete-time system (4), we
let Cx denote the natural projection of Cxy on Rn, that is,
Cx := {x ∈ Rn : ∃ y s.t. (x, y) ∈ Cxy}; and we stipulate that
there is a continuously differentiable function h : Rn → Rm

such that

gy(x, h(x), p) = h(x), ∀ x ∈ Cx, ∀ p ∈ P, (5)

where Cx denotes the closure of Cx. We assume that
(x, h(x)) ∈ Cxy for all x ∈ Cx in order for the problem to be
well-posed. Imagine that y(t, j) rapidly approaches h(x(0, 0))
after some jumps, and remains near h(x(t, j)) as time goes
on. Then, the behavior of x(t, j) can be approximated by the
quasi-steady-state system defined as

ẋ = fx(x, h(x), 0), x ∈ Cx, (6)

which is the evolution of x(·) on the slow manifold {(x, y) ∈
Rn × Rm : y = h(x)}, when ϵ = 0. We associate a compact
forward invariant set Ax with (6) so that if x(0) ∈ Ax, then
for every solution of (6), we have x(t) ∈ Ax.

D. Stability notions

The primary focus of this paper is the stability analysis
of system (3). In particular, we are interested in developing
bounds on the (x, y) trajectories, when the initial conditions
belong to a given compact set and the perturbation parameter ϵ
tends to 0. This stability notion is formalized in the following
definition:

Definition 1. For the hybrid system (3), with boundary-layer
system (4) and quasi-steady-state system (6), the compact set
A := {(x, y) ∈ Cxy : x ∈ Ax, y = h(x)}× [0, N0]×P is two-
time-scale semiglobally practically stable, or TSPS for short, if
for a given compact set Ixy ⊂ Cxy , there are a positive number
ϵ∗, class KL functions βx and βy , and class K functions χx

and χy such that, for any 0 < ϵ ≤ ϵ∗ and for any (x0, y0) ∈
Ixy , the solution (x(t, j), y(t, j)) to (3) satisfies the following,

|x(t, j)|Ax
≤ βx(|x0|Ax

, t) + χx(ϵ), (7a)
|y(t, j)− h(x(t, j))| ≤ βy(|y0 − h(x0)|, t/ϵ) + χy(ϵ), (7b)

for all (t, j) ∈ dom(x, y, τ, p). ◁

For the results developed in this paper, we impose some
stability assumptions on the boundary-layer system and the
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quasi-steady-state system. This will allow us to establish the
property stated in Definition 1 for the coupled system (3).

Assumption 1. The quasi-steady-state system (6) admits an
asymptotically stable compact attractor Ax ⊂ Cx. ◁

Assumption 2. For every compact set Kx ⊂ Cx, the dy-
namical system (4), restricted to the set Dbl := {(x, y, p) ∈
Cxy × P : x ∈ Kx}, admits a globally asymptotically stable
compact set1

Ay := {(x, y) ∈ Cxy : x ∈ Kx, y = h(x)} × P, (8)

where h satisfies (5). ◁

III. MAIN RESULTS

The main contribution of this article is to show that As-
sumption 1 and Assumption 2 together allow us to establish
stability of system (3) in the sense of Definition 1 with small
enough values of ϵ.

Theorem 1. For the hybrid system (3), suppose that the
quasi-steady-state system (6) satisfies Assumption 1 and the
boundary-layer system (4) satisfies Assumption 2. Then, the
set A is TSPS.

To prove this result, we need to derive the inequalities (7a)
and (7b). We will develop two different approaches for deriva-
tion of these inequalities, and hence two different techniques
for proving Theorem 1. The difference in the two approaches
arises due to the information that is available to us for checking
Assumption 2, which is consequently used for the derivation
of (7). In the first approach, we have a true Lyapunov function
for the boundary-layer system which decreases along the dy-
namics (4) at each (jump) instant. In the second approach, we
only have relaxed Lyapunov functions which decrease along
the dynamics (4) after multiple (jump) instants. Since these
two types of Lyapunov functions describe possibly different
behavior of the boundary-layer system (4), the derivation of
the inequalities in (7b) is also very different from each other.
On the other hand, the derivation of (7a) in two approaches is
similar.

A. Analysis with true Lyapunov function for boundary-layer
system

Let us consider the following variants of Assumption 1
and Assumption 2 in terms of Lyapunov functions. These
Lyapunov functions will then be used for the derivation of
inequalities appearing in (7).

Assumption 1a. There exists a continuously differentiable
function Vx : Dx = {x : ∃ y s.t. (x, y) ∈ Dxy} → R such
that, for all x ∈ Cx,

αx(|x|Ax) ≤ Vx(x) ≤ αx(|x|Ax), (9)
∇xVx(x) · fx(x, h(x), 0) ≤ −αx(Vx(x)), (10)

1Here, we understand asymptotic stability of the set Ay in the sense of
[9, Definition 3.6] by regarding system (4) as a hybrid system with purely
discrete dynamics and the jump set equal to Dbl.

where αx and αx are class K∞ functions, and αx is a class
K function.

Following Assumption 1a, we use [18, Lemma 4.4] to get
a class KL function β0

x from αx appearing in (10). Let2

ηx(s) := −
∫ s

1

dr

min{r, αx(r)}
, for s > 0,

and

β0
x(s, t) :=

{
η−1
x (ηx(s) + t), for s > 0,

0, for s = 0.
(11)

For the boundary-layer system (4), the existence of true
Lyapunov function is formalized as follows:

Assumption 2a. For every compact set Kx ⊂ Cx, there exist
a continuously differentiable functions Vy : Dxy × P → R,
class K∞ functions αy and αy , and a non-negative constant
γc < 1 that satisfy the following items:
(BL-C1) for every (x, y, p) ∈ {(x, y) ∈ Cxy : x ∈ Kx} × P ,

αy(|y − h(x)|) ≤ Vy(x, y, p) ≤ αy(|y − h(x)|),

(BL-C2) for every (x, y, p) ∈ {(x, y) ∈ Cxy : x ∈ Kx} × P ,
and for every q ∈ Gp(p),

Vy(x, gy(x, y, p), q) ≤ γcVy(x, y, p).

Remark 1. For a fixed compact set Kx, it can be checked
that Assumption 2a implies Assumption 2 as one would
do so for proving stability using Lyapunov functions. Also,
from converse Lyapunov theorems for discrete-time switching
systems, one can show that Assumption 2a is also necessary
for Assumption 2 to hold due to continuity assumption on the
mappings gy , closedness of the set Cxy , and the compactness
of the attractor Ay , see for instance [8] and [13] for one
possible demonstration of such a result. By similar reasoning,
one can also check that Assumption 1 and Assumption 1a are
equivalent. ◁

In the light of Remark 1, Theorem 1 is qualitatively
equivalent to Theorem 2 stated next, but here, we provide
more information about the functions appearing on the right-
hand side of the inequalities in (7), using the information in
Assumption 1a and Assumption 2a.

Theorem 2. For the hybrid system (3), suppose that the
quasi-steady-state system (6) satisfies Assumption 1a and the
boundary-layer system (4) satisfies Assumption 2a. Then, the
set A is TSPS, and the estimate (7a) holds with

βx(s, t) := α−1
x

(
max

{
β0
x

(
2β0

x(αx(s), 1),max{0, t− 1}
)
,

β0
x(αx(s), t)

})
(12)

and (7b) holds with

βy(s, τ) = α−1
y

(
2γ

σ1
N0

τ
c αy(s)

)
. (13)

The expressions for class K functions χx and χy are
derived in the proof of Theorem 2, which is carried out in

2One can also take ηx(s) = −
∫ s
1

dr
αx(r)

, for s > 0, if it holds that
lims→0+ ηx(s) = +∞.
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Section V. An element of independent interest in the proof
is the construction of a Lyapunov function for (3) to show
boundedness of trajectories, whilst using some of the ideas
from [30].

B. Analysis with relaxed Lyapunov function for boundary-
layer system

In Theorem 2, we made use of Assumption 2a which
stipulates the existence of Lyapunov functions that decrease at
each jump instant along the dynamics of the boundary-layer
system. For certain applications, such as the one considered
in Section IV, we may only have Lyapunov functions which
decrease after a certain number of jumps. The existence of
such relaxed Lyapunov functions is formulated in forthcoming
Assumption 2b, and it will be used along with Assumption 1a
to provide a different technique for the derivation of inequal-
ities in (7). Notably, the functions on the right-hand side of
(7b) depend on the information contained in Assumption 2b.

For convenience, let us introduce the following notation: for
each (x, y, p) ∈ Cxy × P , let

(gy(x, y, p), Gp(p))
r :=

{
(y, q) : (y, q) = (yr, pr), (y0, p0) =

(y, p), (yi+1, pi+1) ∈ (gy(x, yi, pi), Gp(pi)), 0 ≤ i ≤ r − 1
}
.

Assumption 2b. For every compact set Kx ⊂ Cx, there exist
a positive integer n, continuously differentiable functions Vy :
Dxy × P → R, class K∞ functions αy and αy , and a non-
negative constant γm < 1 that satisfy the following items:
(BL-M1) for every (x, y, p) ∈ {(x, y) ∈ Cxy : x ∈ Kx} × P ,

αy(|y − h(x)|) ≤ Vy(x, y, p) ≤ αy(|y − h(x)|),

(BL-M2) there exists a set P ⊂ P , such that,
• every solution of (p ∈ P, p+ ∈ Gp(p)) reaches P in at

most n steps,
• for every (x, y, p) ∈ {(x, y) ∈ Cxy : x ∈ Kx} × P ,

there exists r ∈ {1, . . . , n}, such that for every (g, q) ∈
(gy(x, y, p), Gp(p))

r, we have that q ∈ P and

Vy(x, g, q) ≤ γmVy(x, y, p). (14)

Remark 2. With continuous functions gy , we can also show
that Assumption 2b implies Assumption 2. In fact, this im-
plication can be proven using the arguments given in the
proof of Theorem 3 that appears in Section VI. Moreover,
the reader may check that if Assumption 2a holds, then we
can construct the functions stipulated in Assumption 2b from
Vy satisfying (BL-C1), (BL-C2), and the mappings gy . Thus,
taking Remark 1 into account, we observe that the three
statements appearing in Assumption 2, Assumption 2a and
Assumption 2b are all equivalent under the given regularity
assumptions on the data of system (4). We refer the interested
readers to [1], [6], [8], [23] for further details along the lines
of analyzing stability of discrete-time switched systems using
Lyapunov functions. ◁

Theorem 3. For the hybrid system (3), suppose that the
boundary-layer system (4) satisfies Assumption 2b and the
quasi-steady-state system (6) satisfies Assumption 1a. Then,

the set A is TSPS, and the estimate (7a) holds with βx(s, t)
given in (12), and (7b) holds with

βy(s, τ) := Cg ◦ α−1
y

(
2γ

σ1
N0n τ
m αy(s)

)
, (15)

where γm appears in (14), and Cg is a class K function.

The proof of Theorem 3 is carried out in Section VI,
and it contains the expressions for corresponding class K
functions χx and χy . The main idea of the proof is to get
the bounds on the trajectories by looking at the perturbation
of boundary-layer system (4) and the function Cg in (15)
essentially captures the size of perturbations.

C. Boundary-layer system with constrained switching

A natural motivation for Assumption 2b is to analyze
boundary-layer systems with constrained switching where we
do not have a common Lyapunov function. To explain how
Assumption 2b can be used in such cases, we consider a
finite discrete set Q, and a family of continuous mappings
gy(·, ·, q) : Rn × Rm → Rm, with q ∈ Q. The mappings
gy(·, ·, q) indexed by q ∈ Q would be used in the description
of the discrete dynamics, and we are particularly interested in
the case where the transition between the jump maps respects
some pre-specified constraints. To describe these constraints,
we consider a set S which comprises strings (also called
words) of finite length formed by the alphabet Q. For a string
s ∈ S , we use the notation sr ∈ Q to denote the r-th
letter of that string s, with 1 ≤ r ≤ |s|, and |s| denoting
the total number of letters in s. We also consider the set-
valued mapping succ : S ⇒ S, where succ(s) ⊂ S denotes a
nonempty set of admissible successors of s. We emphasize that
the set Q is used as index for different jump maps, whereas
the set S is used to encode the constraints on switching
sequence which respect certain assumptions related to stability.
We assume that S is a finite set, and let n := maxs∈S |s|.

Now, we want to model our discrete dynamics with con-
straints on the switching sequence in the form of a conven-
tional one-step difference equation by using certain discrete
variables. Indeed, we suppose the jump map gy(·, ·, q) is
selected by the rule q = sr, where the string s ∈ S and the
indexing variable r ∈ N satisfy the following3:

s+ ∈ S1(s, r) =

{
{s}, if r < |s|,
succ(s), otherwise,

(16a)

r+ ∈ S2(s, r) =

{
{r+ 1}, if r < |s|,
{1}, otherwise,

(16b)

and succ(s) ⊂ S is a nonempty set of successors of s ∈ S. We
can now apply Assumption 2b to the boundary-layer system
(4) with p = (s, r), P = S × {1, . . . , n}, and choosing
P = S × {1}. This will provide us the sufficient conditions
for asymptotic stability of switched systems with multiple
Lyapunov functions in the same spirit as [1].

3The cardinality of the variable s in (16a) may vary, so a precise description
of the discrete dynamics for (s, r) would require us to embed the variables
in an Euclidean space of fixed dimension. This can be done by considering
the variable s of fixed length n which is obtained from s by appending letters
not in Q.
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IV. CASE STUDY: NETWORK OF OSCILLATORS

As an application of Theorem 3, we study the problem of
synchronization of coupled nonlinear oscillators. In particular,
we consider N continuous-time controlled oscillators, which
are connected to each other through an undirected graph. The
control action for each oscillator is chosen as a function of
the states of their neighbors at some discrete times. If this
control is updated sufficiently often then we show that all the
trajectories of the oscillators converge to each other in practical
sense.

Each of the N oscillators (the agent) has a two dimensional
state (ωi, ξi) ∈ R2, for i = 1, . . . , N , whose dynamic equation
is written in the form of Liénard system as

ω̇i = −ωi + ξi

ξ̇i = ϕi(ωi, ξi) := (1− fi(ωi))(−ωi + ξi)− gi(ωi)
(17)

where the functions fi and gi are assumed to be locally
Lipschitz. For example, if the agent i has fi(ωi) = µi(ω

2
i −1)

and gi(ωi) = ωi with a constant µi > 0, then the agent i
is a well-known Van der Pol oscillator [14]. If we look at
an individual oscillator (17), it may have a stable or unstable
limit cycle. In what follows, we consider a network of such
oscillators, where each oscillator exchanges information about
its state ξ only with its neighbors at some discrete times, and
consequently, ξ gets reset whenever some new information is
received from the neighbors. Our objective is to show that,
with an appropriate reset rule, if the information between
the neighbors is exchanged sufficiently often then all the
oscillators in the network practically synchronize and converge
practically to the same limit cycle.

A. Connectivity graphs

We consider a set of N vertices V = {1, · · · , N}, and let Q
be the index set for different collections of edges associated to
these nodes, that is, for each q ∈ Q, Eq is a set of unordered
pair of vertices that represents one possible collection of edges.
An element in Eq is represented by (i, j), for some choice of
i, j ∈ V , i ̸= j. We call Gq = (V, Eq) a graph with nodes V
and edges Eq . Here, the graph Gq is undirected. Agents i and
j are neighbors of each other in graph Gq if (i, j) ∈ Eq . The
neighbors of a node i ∈ V in a graph Gq are denoted by N q

i .
Let S be a set of words obtained from the alphabet Q and
denote an element of S by s. We say that the graphs {Gq}q∈s

are jointly connected if Gs := (V, Es) is connected where
Es := ∪q∈sEq , in which ‘q ∈ s’ implies q ∈ {s1, · · · , s|s|}.

Assumption 3. The set S is finite, and for each s ∈ S , the
collection of graphs {Gq}q∈s is jointly connected.4 ◁

In our setup, the continuous-time oscillators described in
(17) represent the nodes which communicate with another
neighboring oscillator only at some discrete time instants. The
edges of a graph Gq represent communication link between the
corresponding nodes. The motivation for introducing different

4We consider the case of an undirected graph for simple presentation, but
the study in this section can be transparently extended to the case where
{Gq}q∈s is jointly strongly connected and balanced.

graphs Gq is to allow for different communication patterns at
different times among the oscillators.

With each Gq , we associate a doubly stochastic matrix
Wq ∈ RN×N . If at a given time instant, the graph Gq is active,
then the state ξi is updated at that instant as a function of its
neighbors’ state ξj , j ∈ N q

i . In particular, we describe the
update model as

ω+
i = ωi

ξ+i =
∑
j∈N q

i

wq
ijξj

(18)

where wq
ij is the (i, j)-th entry of Wq . We assume that the

graph Gq contains the self-loop for every node, so that i ∈ N q
i ,

∀i, and all the diagonal entries of Wq are positive.

Example 1. If the graph Gq is modeled by a symmetric
adjacency matrix Aq , and Dq is the diagonal matrix that
describes the degree of each node, then Wq can be given by
IN −φDq +φAq , where φ > 0 is chosen small enough such
that Wq becomes a non-negative matrix. Then, every row and
column sums of Wq is 1 by construction. ◁

Example 2. Consider a connected graph G = (V, E). Let E
denote the total number of edges in E , and let Eq be a singleton
which corresponds to a single edge contained in E . We let
Q = {1, · · · , E} and consider strings s from the alphabet Q
such that the collection of graphs {Gq = (V, Eq)}q∈s is jointly
connected. Under connectivity assumption on G = (V, E), the
set of such strings is nonempty and one possible choice is to
take the strings s as words of length E with distinct letters
from the alphabet Q. In this case, we can choose Wq ∈ RN×N ,
q ∈ Q to be a doubly stochastic matrix such that, for the index
(i, j) ∈ Eq ,

wq
ij = wq

ji = wq
ii = wq

jj =
1

2

and wq
kk = 1 for all k ̸∈ {i, j}, and all other elements of Wq

are zero. ◁

Thus far, in this subsection, we have introduced a family of
graphs Gq = (V, Eq) and a reset rule (18) for individual agents
which depends on the neighbors described by Gq . To specify
the times at which an agent resets its state and to describe the
index of the active graph, we consider a timer τ and a discrete
state variable p, whose evolution is described as,

(τ, p) ∈ [0, N0]× P :

{
ϵτ̇ ∈ [σ1, σ2]

ṗ = 0
(19)

(τ, p) ∈ [1, N0]× P :

{
τ+ = τ − 1

p+ ∈ Gp(p)
(20)

where N0, σ1, and σ2 are some positive constants that
determine the frequency at which the graphs switch from
one configuration to another. The mapping Gp describes the
evolution of discrete variables according to equation (16).

B. Coordinate transformation

We now collect the dynamics of individual agents from (17)
and the connectivity structure from Section IV-A, to write
them in the form of the hybrid system (3). This requires us
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to introduce a certain coordinate transformation for agents’
dynamics which we describe next.

Let R ∈ RN×(N−1) be a matrix such that

R⊤R = I, and 1⊤
NR = 0,

where 1N ∈ RN is a vector with all entries equal to 1.
Associated to each matrix Wq , let us introduce the matrix
Λq as follows:

Λq := R⊤WqR ∈ R(N−1)×(N−1).

Next, we define a matrix Q as

Q−1 :=
[
1N R

]
, so that Q =

[
1
N 1⊤N
R⊤

]
.

With the matrix Q, we can write (17) and (18) in the form
of (3). Let us introduce the new coordinates (s, ζ) for ξ :=
col(ξ1, . . . , ξN ) ∈ RN as(

s
ζ

)
:= Qξ =

[
1
N 1⊤

N

R⊤

]
ξ (21)

or, in other words

s =
1

N

N∑
i=1

ξi ∈ R and ζ = R⊤ξ ∈ RN−1.

It also follows that ξ = 1Ns+ Rζ. Let Ri be the i-th row of
R. Then, the system (17), (18) can be written as

ω̇i = −ωi + s+ Riζ, i = 1, . . . , N,

ṡ =
1

N

N∑
i=1

(1− fi(ωi))(−ωi + s+ Riζ)− gi(ωi)

ζ̇ = R⊤ϕ(ω,1Ns+ Rζ)

ϵτ̇ ∈ [σ1, σ2]

ṗ = 0,

(22a)

where ω := col(ω1, . . . , ωN ) and

ϕ(ω,1Ns+ Rζ) =

 ϕ1(ω1, s+ R1ζ)
...

ϕN (ωN , s+ RNζ)


with the flow set C := R2N × [0, N0]× P , and

ω+
i = ωi, for i = 1, . . . , N

s+ = s

ζ+ = Λpζ

τ+ = τ − 1

p+ ∈ Gp(p)

(22b)

where Λp is the notation for Λsr considering p = (s, r), with
the jump set D := R2N × [1, N0] × P . Here, if we treat
(ω1, . . . , ωN , s) = (ω, s) as the slow variable and ζ as the fast
variable with both the flow set and the jump set for (ω, s, ζ)
being the same as R2N , then the system is in the form of (3).

C. Quasi-steady-state system

For stability analysis, we now consider the QSS system
associated to (22). The QSS system is

ω̇i = −ωi + s, i = 1, . . . , N,

ṡ =
1

N

N∑
i=1

(1− fi(ωi))(−ωi + s)− gi(ωi),
(23)

which corresponds to (6). The following assumption and
lemma assure that this QSS system5 satisfies the assumption
of Theorem 3.

Assumption 4. The second order dynamical system

χ̇0 = −χ0 + s0

ṡ0 = (1− f(χ0))(−χ0 + s0)− g(χ0)
(24)

where

f(χ0) :=
1

N

N∑
i=1

fi(χ0), g(χ0) :=
1

N

N∑
i=1

gi(χ0) (25)

has a locally asymptotically stable limit cycle A0 ⊂ R2. ◁

The limit cycle A0 in Assumption 4 refers to an isolated
periodic orbit, that is, every solution (χ0, s0) of system (24)
with (χ0(0), s0(0)) ∈ A0 is periodic, and (χ0(t), s0(t)) ∈
A0, for all t ≥ 0. Moreover, A0 is an isolated and compact
set. Local asymptotic stability of A0 ensures that the nearby
trajectories converge to this limit cycle in some neighborhood
of A0. A sufficient condition on f and g for Assumption 4 can
be found in [24, Sec. 3.8]. We use this assumption to show
the existence of a stable limit cycle for system (23).

Lemma 1. Under Assumption 4, the QSS system (23) has a
locally asymptotically stable compact set Ax ⊂ RN+1, which
is a stable limit cycle for (23), given by

Ax = {(χ0, . . . , χ0, s0) ∈ RN+1 : (χ0, s0) ∈ A0}. (26)

In particular, there exists Vx that satisfies (9) and (10) on a
neighborhood Ωx of Ax.

Proof. The basic idea behind the proof is to use a coordinate
transformation and combine it with the cascade arguments [27,
Proposition 4.1]. Let

χ :=
1

N
1⊤
Nω ∈ R, χ̃ := R⊤ω ∈ RN−1

so that ωi = χ+ Riχ̃. Then, system (23) can be rewritten as

˙̃χ = −χ̃,
χ̇ = −χ+ s,

ṡ =
1

N

N∑
i=1

(1− fi(χ+ Riχ̃))(s− χ− Riχ̃)− gi(χ+ Riχ̃)

= (1− f(χ))(−χ+ s)− g(χ) +
1

N

N∑
i=1

ψi(χ̃, χ, s),

(27)

5The QSS system (23) is called ‘blended dynamics’ in the context of
heterogeneous multi-agent systems [16].
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where ψi vanishes when χ̃ = 0 because

ψi = fi(χ+ Riχ̃)Riχ̃+ (fi(χ+ Riχ̃)− fi(χ))(χ− s)

+ (gi(χ)− gi(χ+ Riχ̃)).

Let 0N−1 denote the vector in RN−1 with all zero entries.
Using Assumption 4, we next show that the set {0N−1} ×
A0 ⊂ RN+1 is locally asymptotically stable for (27), which
corresponds to the local asymptotic stability of the set Ax for
system (23). Indeed, due to Assumption 4, the set {0N−1}×A0

is locally asymptotically stable when the dynamics of (27) are
restricted to the set {(χ̃, χ, s) ∈ RN+1 : χ̃ = 0}. From [27,
Theorem 2.24], it follows that {0N−1}×A0 is a stable compact
set for system (27). To show that the set is also attractive,
let Ω0 ⊂ R2 be the region of attraction for the set A0 of
system (24), and let Ωχ̃ ⊂ RN−1 be an arbitrary compact
set containing the origin. Due to stability of {0N−1} ×A0 ⊂
RN+1, there exists a set Ωx ⊂ RN+1 such that for all initial
conditions in Ωx, the solutions stay within the set Ωχ̃ × Ω0.
With all solutions bounded, and χ̃(t) converging to {0N−1}
as t → ∞, it follows that (χ̃(t), χ(t), s(t)) converges to the
largest invariant set contained in {0N−1}×Ω0 which is the set
{0N−1} × A0. The existence of a continuously differentiable
Lyapunov function follows from classical converse arguments.
Finally, it is seen from (26) that the behavior of (23) on Ax is
governed by the behavior of (24) on A0, which is a periodic
motion. Therefore, Ax is a stable limit cycle.

Remark 3. In Lemma 1, we did not provide an explicit
construction of the Lyapunov function Vx for the QSS system
(23). However, in the proof we saw that the asymptotic
stability of the set Ax is essentially established by using a
cascade argument between (χ, s) dynamics and χ̃ dynamics.
In some instances, one can explicitly provide a construction of
Lyapunov function Vx from the individual Lyapunov functions
associated with (χ, s)-dynamics with respect to A0, and χ̃
dynamics with respect to {0N−1}. In our conference paper
[28], we provided such a construction under the assumption
that A0 is locally exponentially stable for system (24). ◁

D. Boundary-layer system
The boundary-layer system associated to (22) is

ω+
i = ωi, for i = 1, . . . , N

s+ = s

ζ+ = Λpζ

p+ ∈ Gp(p).

(28)

We note that ζ-dynamics are completely decoupled from
(ωi, s) for each i = 1, . . . , N . Assumption 2b, with h ≡ 0,
therefore corresponds to checking the stability of (ζ, p) dy-
namics with respect to the set {0N−1}×P . This follows from
the following lemma.

Lemma 2. Under Assumption 3, Assumption 2b holds for the
boundary-layer system (28) with

Vy(ω, s, ζ, p) = ζ⊤ζ

and with γm = maxs∈S λ
2

s, where λs denotes the largest
singular value of the matrix Λs := Λs|s| · · ·Λs1 .

Proof. Since {Gq}q∈s is jointly connected and the matrix Wq

is associated with the graph Gq , it follows that

Ws|s| + · · ·+Ws1

is a primitive matrix. On the other hand, by [12, Lemma 2],
it holds with cs > 0 that

Ws := Ws|s| · · ·Ws1 ≽ cs(Ws|s| + · · ·+Ws1), (29)

where ≽ implies component-wise inequality. This implies Ws

is primitive (because A ≽ B with a primitive matrix B implies
that A is primitive). Moreover, we have

QWsQ
−1 = QWs|s|Q

−1 · · ·QWs2Q
−1QWs1Q

−1

=

[
1 0
0 Λs|s| · · ·Λs1

]
=

[
1 0
0 Λs

]
.

Now we note that Ws is primitive and doubly stochastic
whose diagonal elements are all positive. This implies that
limk→∞ W

k

s = 1Nc
T with a vector c ∈ RN [3]. Since the

matrix 1Nc
T has rank one, the matrix limk→∞ Λ

k

s should be
the zero matrix; that is, ∥Λs∥2 < 1 where ∥ · ∥2 represents
the induced-two-norm, and thus, γm < 1. This in turn implies
that ζ⊤Λ

⊤
s Λsζ ≤ γmζ

⊤ζ, for all s ∈ S , and Assumption 2b
holds.

E. Stability result

Combining the statements of Lemma 1 and Lemma 2,
we arrive at the following result about synchronization of
trajectories modeled by (22).

Theorem 4. Suppose that Assumptions 3 and 4 hold and
consider a compact set Ix ⊂ Ωx and a compact set Iy ⊂
RN−1, for which (ω(0, 0), (1/N)

∑N
i=1 ξi(0, 0)) ∈ Ix and

R⊤ξ(0, 0) ∈ Iy . Then, there are ϵ∗ > 0, class KL functions
βx and βy , and class K functions χx and χy such that

|(ω(t, j), s(t, j))|Ax
≤ βx(|(ω(0, 0), s(0, 0))|Ax

, t) + χx(ϵ)
(30)

|ζ(t, j)| ≤ βy(|ζ(0, 0)|, t/ϵ) + χy(ϵ), (31)

for all ϵ ∈ (0, ϵ∗] and (t, j) ∈ dom (ω, s, ζ). In particular,
for each ρ > 0, there is ϵ∗ such that, for each ϵ ∈ (0, ϵ∗], the
solutions to the multi-agent system (17) with (18) satisfy, for
all i, j = 1, . . . , N ,

lim sup
t→∞

|(ωi(t, j), ξi(t, j))− (ωj(t, j), ξj(t, j))| ≤ ρ (32)

lim sup
t→∞

|(ωi(t, j), ξi(t, j))|A0
≤ ρ (33)

if dom (ω, ξ) is unbounded in t-axis.

Proof. Proof of (30) and (31) is a consequence of Theo-
rem 3 by taking Ixy = Ix × Iy . To show (32), we note
that ξ = 1Ns + Rζ. For any i and j, we have that
|ξi − ξj | ≤ |ξi − s| + |s − ξj | = |Riζ| + |Rjζ|. This in
turn implies from (31) that lim supt→∞ |ξi(t, j) − ξj(t, j)|
can be made arbitrarily small by taking ϵ∗ sufficiently small.
Since lim supt→∞ |(ω1, . . . , ωN , s)|Ax can be made arbitrarily
small by taking sufficiently small ϵ∗ by (30), we infer that
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lim supt→∞ |ωi(t, j) − ωj(t, j)| can also be made arbitrarily
small due to the definition of the set Ax. This proves (32). The
inequality in (33) is also a direct consequence of the foregoing
analysis and the definition of the set Ax.

Implication of (32) is that the coupled oscillator (17)
practically synchronizes under the impulsive coupling (18).
Moreover, (33) implies that the limit cycle A0 is practically
attractive for each oscillator under the coupling. In fact,
the limit cycle A0 is emergent and collective one for all
the oscillators in the sense that it is the limit cycle of the
blended dynamics (24) with (25). This can be seen from the
illustrations reported in the following example.

Remark 4. It can be seen from the proof of Theorem 3 that, in
the current case-study, the function Cg is given by Cg(s) =
CΛs with CΛ := maxq∈Q ∥blockdiag(IN+1,Λ

n−1
q )∥. Com-

bined with the fact that the functions Vy are quadratic, the
inequality (31) takes the form

|ζ(t, j)| ≤
√
2CΛγ

σ1
2N0n

t
ϵ

m |ζ(0, 0)|+ χy(ϵ)

with some class K function χy . Also, from the proof, we see
that, |ξi−ξj | ≤ |Riζ|+ |Rjζ| ≤ 2max1≤i≤N ∥Ri∥ · |ζ|, which
implies that the rate of synchronization for ξi is much faster
than that for ωi when ϵ is small enough. This behavior can be
seen in the bottom left and bottom right plots of Fig. 1. ◁

Example 3. We have simulated6 a network with four Van der
Pol oscillators described by (17) with fi(ωi) = µi(ω

2
i − 1)

where µ1 = −.1, µ2 = 1, µ3 = 2, and µ4 = 3, and gi(ωi) =
ωi for i = 1, . . . , 4. The oscillators are connected through an
undirected cyclic (and hence connected) graph G = (V, E),

6Source code for the simulation in Example 3 is available at https://github.
com/aneeltanwani/coupled osc switching.git.

Fig. 1. Plot of (ωi(t), ξi(t)) for four agents. Numbers are time stamps in
increasing order, and all trajectories circulate clock-wise. (Top left): Case of no
coupling; Started from four different initial conditions (time stamps ‘0’), their
motions are not synchronized, and the black agent (agent 1) does not have a
stable limit cycle so that it converges to the origin. (Top right): Coupled with
ϵ = 1; Jumps are observed but synchrony is weak. (Bottom left): Coupled with
ϵ = 0.1. The overlapped numbers imply that they are synchronized to some
extent. (Bottom right): Coupled with ϵ = 0.01: approximate synchronization.

where V = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (3, 4), (4, 1)}.
To define the reset rule for updating the state ξ of the oscilla-
tors according to (18), we split the graph into four subgraphs
Gq = (V, Eq), q ∈ Q = {1, 2, 3, 4}, with E1 = {(1, 2)},
E2 = {(2, 3)}, E3 = {(3, 4)}, E4 = {(4, 1)}. The set S
comprises strings of length n ≥ 4 such that each string
contains at least a single occurrence of the letters 1, 2, 3, and 4.
The weight matrix Wq is constructed as in Example 2. For the
timer, we work with, σ1 = 0.5, σ2 = 1.5, N0 = 2, and study
different cases for ϵ ∈ {1, 0.1, 0.01}. The state trajectories of
all the agents are plotted in Fig. 1 for three different values
of ϵ. Our proposed reset rule only updates the state ξi of the
i-th agent whenever an edge connecting this agent with one
of its neighbors is activated. Also, as we make ϵ smaller, we
see that all the agents converge to the same limit cycle and
the distance between their states gets smaller as well. ◁

V. PROOF OF THEOREM 2

From the given compact set Ixy ⊂ Cxy , we consider
the compact set Ix := {x ∈ Cx : ∃ y s.t. (x, y) ∈ Ixy},
and the continuously differentiable function Vx obtained from
Assumption 1a. We let

µ := max
x∈Ix

Vx(x)

and define

Kx := {x ∈ Cx : Vx(x) ≤ µ+ δµ} (34)

with a small δµ > 0.
With Kx in (34), Assumption 2a yields Vy , and using Vy ,

define
ν := max

(x,y)∈Ixy,p∈P
Vy(x, y, p).

Then, it is obvious that

Ixy ⊂ {(x, y) ∈ Cxy : x ∈ Ix, Vy(x, y, p) ≤ ν, ∀p ∈ P}
⊂ {(x, y) ∈ Cxy : x ∈ Kx,∃ p ∈ P s.t. Vy(x, y, p) ≤ ν + δν}
=: Kxy

with a small δν > 0.
We now use the compact set Kxy to get bounds on the

vector fields. In this regard, we note that, due to continuity of
fx, fy and ∇xVx on the compact set Kxy× [0, N0]×P , there
are Mx, My , and MV such that

|fx(x, y, ϵ)| ≤Mx, |fy(x, y, ϵ)| ≤My, ∀ϵ ∈ [0, 1],

and
|∇xVx(x)| ≤MV .

Let f̃x(x, y, ϵ) := fx(x, y, ϵ) − fx(x, h(x), 0). Then, there
exists a class K∞ function λf such that7

|f̃x(x, y, ϵ)| ≤ λf (|y − h(x)|) + λf (ϵ), ∀ϵ ∈ [0, 1], (35)

7For a compact set C containing (0, 0) and a continuous function, C ∋
(x, y) 7→ f(x, y), satisfying f(0, 0) = 0, consider the map F (a, b) :=
max|x|≤a,|y|≤b |f(x, y)|. Then, ∃ class K∞ function λ s.t. ∀ (x, y) ∈ C,

|f(x, y)| ≤ F (|x|, |y|) ≤ F (|x|, |x|) + F (|y|, |y|) ≤ λ(|x|) + λ(|y|).

https://github.com/aneeltanwani/coupled_osc_switching.git
https://github.com/aneeltanwani/coupled_osc_switching.git
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on the compact set Kxy . On the other hand, by (BL-C1),
Vy is continuously differentiable and Vy(x, y, p) = 0 when
y = h(x), that is, Vy attains a minimum at (x, h(x), p) for
each x ∈ Kx and p ∈ P . As a result, ∇xVy and ∇yVy are
continuous and take the value zero at (x, h(x), p), for each
x ∈ Kx and p ∈ P . We can therefore upper bound |∇xVy|
and |∇yVy| by continuous functions which are non-decreasing
with respect to |y−h(x)|. In other words, there exists a class
K function λyy such that

|∇yVy(x, y, p)| ≤ λyy(|y − h(x)|)
|∇xVy(x, y, p)| ≤ λyy(|y − h(x)|)

(36)

on the compact set Kxy × [0, N0]× P .

A. Construction of the Lyapunov function

The next step in the proof is to construct a Lyapunov
function for the system (3) using the function Vx from As-
sumption 1a and Vy stipulated in Assumption 2a, and it will
be shown that this function is decreasing on a compact set.

Towards this end, let us consider the following Lyapunov
function candidate:

W (x, y, τ, p) :=
ecxϵτVx(x)

δµ + µ− Vx(x)
+

e−cyτVy(x, y, p)

δν + ν − Vy(x, y, p)
,

(37)
where cx and cy are constants such that

0 < cx ≤ 1, and 0 < cy ≤ 1, (38)

and the explicit bounds on these constants are provided later
in the proof in (45) and (49). We recall that the parameter ϵ
belongs to the interval (0, 1]. Now, let

Ω :=
{
(x, y, τ, p) ∈ Cxy × [0, N0]× P :

W (x, y, τ, p) ≤ eN0
µ

δµ
+

ν

δν
=: w∗

}
.

Claim 1: It holds that

Ixy × [0, N0]× P ⊂ Ω and (39a)
Ω ⊂ Kxy × [0, N0]× P. (39b)

Proof of Claim 1: Pick (x, y, τ, p) ∈ Ixy × [0, N0] × P . It
is clear that Vx(x) ≤ µ and Vy(x, y, p) ≤ ν by construction.
Thus, W (x, y, τ, p) ≤ eN0µ/δµ + ν/δν = w∗ by (38), and
hence (39a) holds.

To prove (39b), pick (x, y, τ, p) ∈ Ω. Then, we have

Vx(x)

δµ + µ− Vx(x)
≤ e−cxϵτw∗ ≤ w∗, (40a)

which in turn implies that

Vx(x) ≤
w∗

1 + w∗ (δµ + µ). (40b)

Thus, x ∈ Kx. We also have

Vy(x, y, p)

δν + ν − Vy(x, y, p)
≤ ecyτw∗ ≤ eN0w∗, (41a)

which implies that

Vy(x, y, p) ≤
eN0w∗

1 + eN0w∗ (δν + ν). (41b)

Therefore, (x, y) ∈ Kxy by the definitions of Kxy . //
It is seen from the above claim that the set of initial

conditions for (x, y, τ, p) given by Ixy × [0, N0] × P is
contained in Ω, and with our choice of Kxy , all level sets of
W for a given w∗ reside within Kxy× [0, N0]×P over which
Assumption 1a and Assumption 2a are valid. In what follows,
we denote the derivative of W along the flow dynamics of (3)
by Ẇ , and the change in the value of W at jump instants by
∆W , that is, ∆W :=W (x+, y+, τ+, p+)−W (x, y, τ, p).

From (40) and (41), we also arrive at the following inequal-
ities which hold on the set Ω:

Mµ :=
1

δµ + µ
≤ 1

δµ + µ− Vx(x)
≤ 1 + w∗

δµ + µ
=:Mµ, (42)

Mν :=
1

δν + ν
≤ 1

δν + ν − Vy(x, y, p)
≤ 1 + eN0w∗

δν + ν
=:Mν .

(43)

Next, pick ρ such that 0 < ρ < w∗, and define

m := min

{
Mµ

2
αx

(
α−1
x

(
ρ

2eMµ

))
, αy

(
α−1
y

(
ρ

2Mν

))}
.

(44)
Take cy such that

0 < cy ≤ min

{
ln

(
1

2γc

)
, 1

}
. (45)

Claim 2: There are sufficiently small positive cx ≤ 1/N0

and ϵ∗ such that, for every ϵ ∈ (0, ϵ∗], time derivative of W ,
defined in (37), along the flow dynamics (3a) satisfies

Ẇ ≤ −
Mµ

2
αx(|x|Ax

)− αy(|y − h(x)|) +m (46)

on the set Ω.
Proof of Claim 2: On the set Ω, we have along the flow

that, by (9), (10), (42), (43), (BL-C1), and Claim 1,

Ẇ =
cxϵτ̇e

cxϵτVx
δµ + µ− Vx

− cy τ̇ e
−cyτVy

δν + ν − Vy

+
ecxϵτ (δµ + µ)

(δµ + µ− Vx)2
∇xVx ·

(
fx(x, h(x), 0) + f̃x(x, y, ϵ)

)
+
e−cyτ (δν + ν)

(δν + ν − Vy)2
(∇yVy · fy(x, y, ϵ) +∇xVy · fx(x, y, ϵ))

≤ cxσ2e
cxϵN0

1 + w∗

δµ + µ
αx(|x|Ax

)− cyσ1
ϵ
e−cyN0

αy(|y − h(x)|)
δν + ν

− e0
δµ + µ

(δµ + µ)2
αx(|x|Ax)

+ ecxϵN0
(δµ + µ)(1 + w∗)2

(δµ + µ)2
MV (λf (|y − h(x)|) + λf (ϵ))

+ e0
(1 + eN0w∗)2

(δν + ν)
(|∇yVy(x, y, p)|My + |∇xVy(x, y, p)|Mx) .

With the aforementioned bounds and Mc := cyσ1e
−cyN0 ,

under the assumption cx ≤ 1/N0, the above inequality
continues as

Ẇ ≤ cxσ2eMµαx(|x|Ax
)− (McMν/ϵ)αy(|y − h(x)|)

−Mµαx(|x|Ax
) + e(M

2

µ/Mµ)MV (λf (|y − h(x)|) + λf (ϵ))

+ (M
2

ν/Mν)(My +Mx)λyy(|y − h(x)|).
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For convenience, take

M1 := e
M

2

µ

Mµ

MV , and M2 :=
M

2

ν

Mν

(My +Mx).

Now, pick a small number ox > 0. Then, by Lemma 4 in
Appendix A, there exists vx > 0 such that it holds on the
compact set Ω that

αx(|x|Ax
) ≤ vxαx(|x|Ax

) + ox. (47)

Now, take
oz =

m

3(M1 +M2)
.

Then, again from Lemma 4 in Appendix A, there exists vz > 0
such that, on Ω,

max{λf (|y−h(x)|), λyy(|y−h(x)|)} ≤ vzαy(|y−h(x)|)+oz.
(48)

Putting altogether, we obtain that

Ẇ ≤
(
cxσ2eMµvx−Mµ

)
αx(|x|Ax

)+ cxσ2eMµox+M1λf (ϵ)

−
(
McMν

ϵ
− (M1+M2)vz

)
αy(|y−h(x)|) + (M1+M2)oz.

Therefore, if one picks cx and ϵ∗ such that

cx ≤ min

{
1

N0
,

Mµ

2σ2evxMµ

,
m

3Mµσ2eox

}
, (49)

ϵ∗ ≤ min

{
1,

McMν

1 + (M1 +M2)vz
, λ−1

f

(
m

3M1

)}
, (50)

then the claim follows. //

Claim 3: For ϵ ∈ (0, ϵ∗], the inequalities Ẇ < 0 and ∆W <
0, hold over the set Ω \ Ωρ, where

Ωρ = {(x, y, τ, p) ∈ Cxy × [0, N0]× P :W (x, y, τ, p) ≤ ρ}.
Proof of Claim 3: We first note that, on the set Ω \ Ωρ,

ρ < W ≤ eMµαx(|x|Ax
) +Mναy(|y − h(x)|).

Then, using the fact that if (ρ < a + b) then (ρ/2 < a) or
(ρ/2 < b), it follows that, if W (x, y, τ, p) > ρ, then

|x|Ax
> α−1

x

(
ρ

2eMµ

)
or |y − h(x)| > α−1

y

(
ρ

2Mν

)
.

Then, by (44) and (46), it follows that Ẇ < 0.
To show that ∆W < 0, we observe that, on the set Ω,

W (x+, y+, τ+, p+) = ecxϵ(τ−1) Vx(x)

δµ + µ− Vx(x)

+ e−cy(τ−1) Vy(x, gy(x, y, p), q)

δν + ν − Vy(x, gy(x, y, p), q)

where q ∈ Gp(p). Since Vy(x, gy(x, y, p), q) ≤ γcVy(x, y, p),
and thus, 1/(δν + ν − Vy(x, gy(x, y, p), q)) ≤ 1/(δν + ν −
Vy(x, y, p)), we have, with γ̃c := max{e−cxϵ, ecyγc} which
satisfies 0 < γ̃c < 1 by (45),

W (x+, y+, τ+, p+) ≤ e−cxϵ

(
ecxϵτ

Vx(x)

δµ + µ− Vx(x)

)
+ ecyγc

(
e−cyτ

Vy(x, y, p)

δν + ν − Vy(x, y, p)

)
≤ γ̃cW (x, y, τ, p)

from which the claim follows. //

B. Convergence rate analysis

We now derive the bounds on trajectories given in (7). Let
z := y − h(x), and the dynamics in (3) is appended by
z-dynamics, where ż = fz(x, z, ϵ) = fy(x, z + h(x), ϵ) −
∂h
∂x (x)fx(x, z + h(x), ϵ), and z+ = ĝy(x, z, p) := gy(x, z +
h(x), p) − h(x). Since p is piecewise constant, we use the
notation pj := p(t, j). Let Ω̂ := {(x, z) : ∃τ, p s.t. (x, z +

h(x), τ, p) ∈ Ω}. For every (x, z, ϵ) ∈ Ω̂× [0, 1], one can find
Mx and Mz such that

|fx(x, z + h(x), ϵ)| ≤Mx, |fz(x, z, ϵ)| ≤Mz. (51)

Define X := col(x, z) and Mxz := max{Mx,Mz}. Since gy
is continuous, the mapping X 7→ G(X, p) := (x, ĝy(x, z, p))
is also continuous and, for all p ∈ P , it holds that G(0, p) =
0 because ĝy(x, 0, p) = 0. Consequently, there is a class K
function λG such that for all X1, X2 ∈ Ω̂, we have8

|G(X2, p)−G(X1, p)| ≤ λG(|X2 −X1|).

Similarly, we let Lx
V be the Lipschitz constant for Vx on Ω̂

and Lz
V be the Lipschitz constant for Vz(x, z, p) = Vy(x, z +

h(x), p) on Ω̂ for all p ∈ P .
In what follows, we will use the symbol tj to denote the

continuous time at which the j-th jump occurs, that is,

tj := min{t ∈ R such that (t, j) ∈ domX}. (52)

In other words, after the j-th jump, the system flows from
time (tj , j) to (tj+1, j). Using the bounds in (51), combined
with the fact that,

tj+1 − tj ≤
N0ϵ

σ1
≤ N0

σ1
,

we get, for each j ∈ N and tj ≤ t ≤ tj+1,

|X(t, j)−X(tj , j)| ≤ C0ϵ (53)

where C0 :=
√
2Mxz(N0/σ1). This leads to

|G(X(tj+1, j), pj)−G(X(tj , j), pj)| ≤ λG(C0ϵ).

By letting Ŷj := X(tj , j)−G(X(tj−1, j − 1), pj−1), we get,

|Ŷj | = |X(tj , j)−G(X(tj−1, j − 1), pj−1)|
= |G(X(tj , j − 1), pj−1)−G(X(tj−1, j − 1), pj−1)|
≤ λG(C0ϵ). (54)

We use this bound in the following inequalities:

Vz(X(tj , j), pj) = Vz(G(X(tj−1, j − 1), pj−1) + Ŷj , pj)

≤ Vz(G(X(tj−1, j − 1), pj−1), pj) + Lz
V |Ŷj |

≤ γcVz(X(tj−1, j − 1), pj−1) + Lz
V λG(C0ϵ)

...

8For a continuous function Ĝ over a compact set K, we observe that

|Ĝ(X2)− Ĝ(X1)| ≤ max
|Y |≤|X2−X1|,X1+Y ∈K

|Ĝ(X1 + Y )− Ĝ(X1)|

=: G̃(|X2 −X1|)

where G̃ : R≥0 → R≥0 is continuous and G̃(0) = 0. Therefore, there is a
class K function λG such that G̃(s) ≤ λG(s).
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≤ γjcVz(X(0, 0), p0) +

j−1∑
ℓ=0

γℓcL
z
V λG(C0ϵ).

Therefore, for all (tj , j), it holds that,

|z(tj , j)| ≤ α−1
y

(
γjcVz(X(0, 0), p0) +

Lz
V λG(C0ϵ)

1− γc

)
. (55)

Next, we note that, for (t, j) satisfying tj ≤ t ≤ tj+1, we get

|z(t, j)| ≤ |z(t, j)− z(tj , j)|+ |z(tj , j)|
≤ C0ϵ+ |z(tj , j)|.

Substituting (55) in the last inequality, we immediately get,

|z(t, j)| ≤ α−1
y

(
γ

σ1
N0

t
ϵ

c αy(|z(0, 0)|) +
Lz
V λG(C0ϵ)

1− γc

)
+C0ϵ,

which yields (13).
For deriving the inequality (12), we note that

V̇x = ∇xVx · fx(x, h(x), 0) +∇xVx · f̃x(x, z + h(x), ϵ)

≤ −αx(Vx(x)) + Lx
V (λf (|z|) + λf (ϵ)). (56)

The inequality (56) provides a Lyapunov characterization for
ISS with z and ϵ as inputs, but we need to analyze it carefully
to get the estimate on x-trajectory independently of the initial
conditions on y-dynamics. This is a direct consequence of
Lemma 3 given in Section V-C.

C. Derivation of KL function

We use the following lemma to arrive at the inequality (7a)
with the function βx given in (12).

Lemma 3. Consider system (3) and suppose that the function
Vx satisfies

V̇x ≤ −αx(Vx(x)) + ηz(|z|) + ηϵ(ϵ) (57)

for some αx ∈ K, ηz ∈ K, ηϵ ∈ K, and it holds that

|z(t, j)| ≤ βz(|z(0, 0)|, t/ϵ) + χz(ϵ) (58)

for some βz ∈ KL and χz ∈ K. Then there exist β ∈ KL and
χ ∈ K such that, for all (t, j) ∈ dom(x, z),

Vx(x(t, j)) ≤ β(Vx(x(0, 0)), t) + χ(ϵ). (59)

Proof. We first observe that the substitution of (58) in (57)
yields

V̇x ≤ −αx(Vx(x)) + ηz(2βz(|z(0, 0)|, t/ϵ)) + η(ϵ), (60)

where η(ϵ) := ηz(2χz(ϵ))+ ηϵ(ϵ). Using [2, Lemma IV.2 and
Cor. IV.3], it can be shown that with the class KL function
β0
x in (11), it holds that9

Vx(x(t, j)) ≤ β0
x(Vx(x(0, 0)), t)

+

∫ t

0

(
ηz

(
2βz

(
|z(0, 0)|, s

ϵ

))
+ η(ϵ)

)
ds

9In [2, Lemma IV.2 and Cor. IV.3], the authors work with a positive definite
function αx which is not necessarily increasing and hence the resulting class
KL function is not the same as (11). However, in our case, αx is a class K
function and we can modify the proof of [2, Lemma IV.2 and Cor. IV.3] to
define β0

x as proposed in [18, Lemma 4.4] which coincides with (11).

for (t, j) ∈ dom(x, z). Recalling that, αy(|z(0, 0)|) ≤
Vz(x(0, 0), z(0, 0), p) ≤ ν for all p ∈ P , we therefore have,
for 0 ≤ t ≤ 1,

Vx(x(t, j)) ≤ β0
x(Vx(x(0, 0)), t)

+

∫ 1

0

ηz

(
2βz

(
α−1
y (ν),

s

ϵ

))
ds+ η(ϵ).

Note that∫ 1

0

ηz

(
2βz

(
α−1
y (ν),

s

ϵ

))
ds = ϵ

∫ 1
ϵ

0

ηz
(
βz

(
α−1
y (ν), τ

))
dτ

≤ χ0(ϵ),

where χ0 is a class K function defined on [0, 1], whose
existence follows from the fact that, for any class KL func-
tion β̂, we have limϵ→0 ϵ

∫ 1/ϵ

0
β̂(ν, τ)dτ = 0. Hence, for

(t, j) ∈ dom(x, z) with 0 ≤ t ≤ 1, we have

Vx(x(t, j)) ≤ β0
x(Vx(x(0, 0)), t) + χ0(ϵ) + η(ϵ). (61)

On the other hand, define a class K function

η̂(ϵ) :=

{
ηz

(
2βz

(
α−1
y (ν), 1ϵ

))
, ϵ > 0,

0, ϵ = 0.

Now, for t ≥ 1, it follows from (60) that

V̇x ≤ −αx(Vx(x)) + η̂(ϵ) + η(ϵ).

Therefore, there exist a class K function χ1 such that, for
(t, j) ≥ (1, j′) ∈ dom(x, z),

Vx(x(t, j)) ≤ β0
x(Vx(x(1, j

′)), t− 1) + χ1(ϵ)

≤ β0
x

(
2β0

x(Vx(x(0, 0)), 1), t− 1
)

+ β0
x (2χ0(ϵ) + 2η(ϵ), 0) + χ1(ϵ).

(62)

We now combine the two inequalities (61) and (62) by defining

β(r, s) := max
{
β0
x(r, s), β

0
x

(
2β0

x(r, 1),max{0, s− 1}
)}

and χ(ϵ) := max{χ0(ϵ)+η(ϵ), β
0
x(2χ0(ϵ)+2η(ϵ), 0)+χ1(ϵ)},

which yields

Vx(x(t, j)) ≤ β(Vx(x(0, 0)), t) + χ(ϵ), (t, j) ∈ dom(x, z).

This in turn implies (59).

VI. PROOF OF THEOREM 3
For the proof, it is convenient to introduce z := y − h(x)

and consider the closed set

CX := {(x, z) : (x, z + h(x)) ∈ Cxy}.

With the state (x, z, τ, p) ∈ CX × [0, N0]×P , we can rewrite
the flow dynamics of (3) as

ẋ = fx(x, h(x), 0) + [fx(x, z + h(x), ϵ)− fx(x, h(x), 0)]

= fx(x, h(x), 0) + f̃x(x, z + h(x), ϵ),

ż = fy(x, z + h(x), ϵ)− ∂h

∂x
(x)fx(x, z + h(x), ϵ)

=: fz(x, z, ϵ),

ϵτ̇ ∈ [σ1, σ2],

ṗ = 0,
(63a)
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and the jump dynamics of (3), for (x, z, τ, p) ∈ CX×[1, N0]×
P , as

x+ = x,

z+ = gy(x, z + h(x), p)− h(x) =: g̃(x, z, p),

τ+ = τ − 1,

p+ ∈ Gp(p).

(63b)

For simplicity, define X := col(x, z) so that parts of (63) can
be written concisely as

Ẋ = F (X, ϵ) :=

[
fx(x, z + h(x), ϵ)

fz(x, z, ϵ)

]
X+ = G(X, p) :=

[
x

g̃(x, z, p)

]
.

Let P ⊂ P be the set introduced in Assumption 2b. Without
loss of generality, we assume that p(0, 0) ∈ P . For a solution
of (63), we can extract a sequence from the values of p-
trajectory which corresponds to the change in values of p
and also when it enters the set P . Letting p(0, 0) = p01,
we label this sequence as p01, p

0
2, . . . , p

0
r0 , p11, p

1
2, . . . , p

1
r1 ,

. . . , pk1 , p
k
2 , . . . , p

k
rk
, pk+1

1 , . . .. In this sequence, pk1 ∈ P for
each k ∈ N and after rk ≤ n transitions, we arrive at
pk+1
1 ∈ P so that (BL-M2) in Assumption 2b holds. We

let Jk =
∑k

j=0 rj . Consequently, we will use the notation
g̃kr (x, z) := g̃(x, z, pkr ) and Gk

r (X) := G(X, pkr ) with r ≤
rk ≤ n. For multiple jumps indexed by the discrete variable
p, we will use the notation Gk

r,1(X) := Gk
r ◦Gk

r−1 ◦ · · · ◦Gk
1 .

Now we look for a compact set over which the trajectories
evolve for a while from the initial conditions. This allows
us to find quantitative measures used for ultimate bound and
convergence rate of z, with which we look at the asymptotic
behavior of the overall coupled system.

Recalling our switching model, it follows that, for any j,

tj+1 − tj ≤
N0ϵ

σ1
≤ N0

σ1
=: T0. (64)

Now, let ϕϵ(t,X0) be the solution X at time t to the flow
Ẋ = F (X, ϵ) with X(0) = X0. Define

Φp(A) :=

{G(ϕϵ(t,X0), p) ∈ CX : X0 ∈ A, ϵ ∈ [0, 1], t ∈ [0, T0]},

which is a set of reachable states from a set A within the time
T0 when ϵ belongs to [0, 1], followed by one jump through
G(·, p). Note that Φp(A) is compact if A is compact. Let P∗

be the set of all sequences of elements of P of length at most
n for which (BL-M2) holds, and denote a generic element of
P∗ by pk = pk1 · pk2 · · · pkrk . Define, for pk ∈ P∗

Φpk(A) := Φpkr
◦ · · · ◦ Φpk2

◦ Φpk1
(A),

which is compact when A is compact. Finally, let

ΦP(A) := ∪pk∈P∗Φpk(A),

which is a reachable set from A under the jumps by any
sequence in P∗ and the flows up to the time T0n with
ϵ ∈ [0, 1]. Since P∗ is finite, the set ΦP(A) is compact
whenever A is compact.

Now, with Kx in (34), Assumption 2b yields Vy , and using
Vy , define

ν := max
(x,y)∈Ixy,p∈P

Vy(x, y, p). (65)

Then, it is obvious that

Ixy ⊂ {(x, y) ∈ Cxy : x ∈ Ix, Vy(x, y, p) ≤ ν, ∀p ∈ P}
⊂ {(x, y) ∈ Cxy : x ∈ Kx,∃ p ∈ P s.t. Vy(x, y, p) ≤ ν}
=: Kxy0.

Let KX := {(x, z) : (x, z+h(x)) ∈ Kxy0}. For convenience,
let Vz(x, z, p) := Vy(x, z + h(x), p), p ∈ P . Then,

KX = ∪p∈P{(x, z) ∈ CX : x ∈ Kx, Vz(x, z, p) ≤ ν}. (66)

Finally, define

ΩX := ΦP(KX).

And we keep in mind that, by the construction of ΩX ,

X(t, j) ∈ ΩX , ∀(tJk−1
, Jk−1) ≤ (t, j) ≤ (tJk

, Jk), (67)

whenever X(tJk−1
, Jk−1) ∈ KX for any k ≥ 1.10

On the compact set ΩX × [0, 1] for (x, z, ϵ), one can find
Mx and Mz such that

|fx(x, z + h(x), ϵ)| ≤Mx, |fz(x, z, ϵ)| ≤Mz. (68)

Define Mxz := max{Mx,Mz}. Due to continuity of f̃ , there
is a class K∞ function λf such that

|f̃x(x, z + h(x), ϵ)| ≤ λf (|z|) + λf (ϵ), (69)

for all (x, z, ϵ) ∈ ΩX × [0, 1]. By construction, the mapping
X 7→ G(X, p) is continuous and G(0, p) = 0, for all p ∈ P .
Over the compact set ΩX , we can find a class K function
λG such that |G(X2, p) − G(X1, p)| ≤ λG(|X2 − X1|), for
all X1, X2 ∈ ΩX and all p ∈ P . We will use the notation
λ1G = λG and λℓG := λG ◦ λℓ−1

G , for each ℓ ≥ 2. Also, we let
Lx
V be Lipschitz constant for Vx on ΩX and Lz

V be Lipschitz
constant for Vz(·, ·, p) on ΩX for all p ∈ P .

Suppose that ϵ is sufficiently small. In particular, ϵ is small
enough to satisfy the inequalities (71) given below, for which
we define:

ν∗ := λ−1
f

(
αx(µ+ δµ)

2Lx
V

)
,

C0 :=
√
2Mxz(N0/σ1), Cn(ϵ) :=

n∑
ℓ=1

λℓG(C0ϵ),

Ca(ϵ) := C0ϵ+ Cn(ϵ), Cg(s) := max{s, λn−1
G (s)},

and choose a positive integer N such that

γNmν ≤ 1

2
αy

(
C−1

g (ν∗/2)
)
. (70)

Then, the inequalities for ϵ are:

0 < ϵ ≤ 1, (71a)
Lz
V Cn(ϵ) ≤ (1− γm)ν, (71b)

10In the proof, the time inequality such as (ta, a) ≤ (t, j) < (tb, b) should
be understood as ta ≤ t < tb, a ≤ j < b, and (t, j) ∈ domX , even if
domX is often omitted.
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Lx
VMxn

N0

σ1
ϵ ≤ δµ

N
, (71c)

Lx
V λf (ϵ) <

αx(µ+ δµ)

2
, (71d)

Lz
V Cn(ϵ)

1− γm
≤ 1

2
αy

(
C−1

g (ν∗/2)
)
, (71e)

Ca(ϵ) ≤
ν∗

2
. (71f)

With such ϵ, our first claim is the following.

Claim 1: For any k ≥ 1, suppose that Vx(x(tJk−1
, Jk−1)) ≤

µ+δµ and X(tJk−1
, Jk−1) ∈ KX . If Vx(x(tJk

, Jk)) ≤ µ+δµ,
then X(tJk

, Jk) ∈ KX .
Proof of Claim 1: By the construction of ΩX , (67) holds,

and so, with (64), the evolution of (63) satisfies

|X(t, j)−X(tj , j)| ≤ C0ϵ (72)

in the time interval tj ≤ t ≤ tj+1 for each j such that Jk−1 ≤
j < Jk. Now, with

Ỹk := X(tJk
, Jk)−Gk−1

rk,1
(X(tJk−1

, Jk−1)),

we claim that

|Ỹk| = |X(tJk
, Jk)−Gk−1

rk,1
(X(tJk−1

, Jk−1))|

≤
rk∑
ℓ=1

λℓG(C0ϵ) ≤ Cn(ϵ).
(73)

The last inequality can be shown by induction. To see the
underlying argument with notational simplicity, let us consider
the case when k = 1. Note that

|X(t1, 1)−G0
1(X(0, 0))|

= |G0
1(X(t1, 0))−G0

1(X(0, 0))| ≤ λG(C0ϵ),

and with r1 ≥ 2,

|X(t2, 2)−G0
2,1(X(0, 0))|

≤ |G0
2(X(t2, 1))−G0

2(X(t1, 1))|
+ |G0

2(X(t1, 1))−G0
2,1(X(0, 0))|

= |G0
2(X(t2, 1))−G0

2(X(t1, 1))|
+ |G0

2,1(X(t1, 0))−G0
2,1(X(0, 0))|

≤ λG(C0ϵ) + λ2G(C0ϵ).

Repeating the arguments, we obtain that

|X(tJ1
, J1)−G0

r1,1(X(0, 0))| ≤ (λG + λ2G + · · ·+ λr1G )(C0ϵ)
(74)

and (73) can be proved similarly. With (73) at hand, we see
from Assumption 2b, (65), and (71b), that

Vz(X(tJk
, Jk), p

k
1)

= Vz(G
k−1
rk,1

(X(tJk−1
, Jk−1)) + Ỹk, p

k
1)

≤ Vz(G
k−1
rk,1

(X(tJk−1
, Jk−1)), p

k
1) + Lz

V |Ỹk|
≤ γmVz(X(tJk−1

, Jk−1), p
k−1
1 ) + Lz

V |Ỹk|
≤ γmν + Lz

V Cn(ϵ) ≤ ν.

(75)

Therefore, considering the definition of Kx in (34) and KX in
(66), we conclude that X(tJk

, Jk) ∈ KX under the assumption
Vx(x(tJk

, Jk)) ≤ µ+ δµ. //

Claim 2: With N chosen in (70),

Vx(x(t, j)) ≤ µ+ δµ, ∀(0, 0) ≤ (t, j) ≤ (tJN
, JN ), (76)

and for k = 0, . . . , N ,

|z(tJk
, Jk)| ≤ α−1

y

(
γkmν +

LVz
Cn(ϵ)

1− γm

)
and (77)

|z(t, j)| ≤ Ca(ϵ) + Cg(|z(tJk
, Jk)|), (78)

tJk
≤ t ≤ tJk+1

, Jk ≤ j < Jk+1.

Proof of Claim 2: We first note that, as long as (x, z, ϵ) ∈
ΩX × [0, 1],

|V̇x| =
∣∣∣∣∂Vx∂x

(x)fx(x, z + h(x), ϵ)

∣∣∣∣ ≤ Lx
VMx. (79)

Therefore, it follows from Vx(x(0, 0)) ≤ µ and X(0, 0) ∈
KX , and from (71c) and (64), that Vx(x(t, j)) ≤ µ + δµ/N
for (0, 0) ≤ (t, j) ≤ (tJ1 , J1). Moreover, from Claim 1, we
also have that X(tJ1

, J1) ∈ KX . Repeating this argument, we
get

Vx(x(t, j)) ≤ µ+
k

N
δµ, ∀(0, 0) ≤ (t, j) ≤ (tJk

, Jk),

which implies (76). Therefore, X(t, j) ∈ ΩX for (0, 0) ≤
(t, j) ≤ (tJN

, JN ).
In order to prove (77), we proceed further with (75) as

Vz(X(tJk
, Jk), p

k
1) = Vz(G

k−1
rk,1

(X(tJk−1
, Jk−1)) + Ỹk, p

k
1)

≤ Vz(G
k−1
rk,1

(X(tJk−1
, Jk−1)), p

k
1) + Lz

V |Ỹk|
≤ γmVz(X(tJk−1

, Jk−1), p
k−1
1 ) + Lz

V |Ỹk|
≤ γmVz(G

k−2
rk−2,1

(X(tJk−2
, Jk−2)), p

k−1
1 )

+ γmL
z
V |Ỹk−1|+ Lz

V |Ỹk|
≤ γ2mVz(X(tJk−2

, Jk−2), p
k−2
1 ) + γmL

z
V |Ỹk−1|+ Lz

V |Ỹk|
...

≤ γk−1
m Vz(X(tJ1

, J1), p
1
1) +

k−2∑
ℓ=0

γℓmL
z
V |Ỹk−ℓ|

≤ γkmVz(X(0, 0), p01) +
k−1∑
ℓ=0

γℓmL
z
V |Ỹk−ℓ|.

This means that, since
∑∞

ℓ=0 γ
ℓ
m = 1/(1 − γm) and |Ỹk| ≤

Cn(ϵ),

|z(tJk
, Jk)| ≤ α−1

y

(
Vz(X(tJk

, Jk), p
k
1)
)

(80)

≤ α−1
y

(
γkmVz(X(0, 0), p01) +

Lz
V Cn(ϵ)

1− γm

)
(81)

≤ α−1
y

(
γkmν +

Lz
V Cn(ϵ)

1− γm

)
, (82)

which yields (77).
While (82) indicates the decrease of z as k increases, let

us look at the behavior of z where we may go outside the
set P . For this, we note that for every p ∈ P , it holds that
g̃(x, 0, p) = 0 and |g̃(x, z, p)| ≤ λG(|z|) for all (x, z) ∈ ΩX .
Thus, it follows that

|g̃kr ◦Gk
r−1 ◦ · · · ◦Gk

1(X)| ≤ λrG(|z|), 1 ≤ r ≤ rk,
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for X = (x, z) ∈ KX because, e.g., |g̃k2 (Gk
1(x, z))| ≤

λG(|g̃k1 (x, z)|) ≤ λ2G(|z|). Then, for k = 0, . . . , N , if
X(tJk

, Jk) ∈ KX , an upper bound of |z(t, j)| for tj ≤ t ≤
tj+1, where Jk ≤ j < Jk+1, can be found as

|z(t, j)| ≤ |z(t, j)− z(tj , j)|+ |z(tj , j)|
≤ C0ϵ+ |z(tj , j)− g̃kj ◦Gk

j−1 ◦ · · · ◦Gk
1(X(tJk

, Jk))|
+ λjG(|z(tJk

, Jk)|).

An upper bound of |z(tj , j)−g̃kj ◦Gk
j−1◦· · ·◦Gk

1(X(tJk
, Jk))|

can be obtained similar to (74) as (λG+λ2G+ · · ·+λjG)(C0ϵ).
Hence, for tj ≤ t ≤ tj+1 and Jk ≤ j < Jk+1,

|z(t, j)| ≤ C0ϵ+

j∑
ℓ=1

λℓG(C0ϵ) + λjG(|z(tJk
, Jk)|)

≤ Ca(ϵ) + Cg(|z(tJk
, Jk)|).

Similar inequality holds for tJk
≤ t ≤ tJk+1

and Jk ≤ j <
Jk+1 as long as X(tJk

, Jk) ∈ KX , which is (78). //

Claim 3: Thanks to (71d), (71e), and (71f), the inequality (76)
holds for all (t, j) ∈ domX , and thus, inequalities (77) and
(78) holds for all k ≥ 0.

Proof of Claim 3: Let us look at the derivative of Vx on the
set ΩX with ϵ ∈ [0, 1], while recalling (69):

V̇x = ∇xVx · fx(x, h(x), 0) +∇xVx · f̃x(x, z + h(x), ϵ)

≤ −αx(Vx(x)) + Lx
V λf (|z|) + Lx

V λf (ϵ). (83)

Then it is seen that, if ϵ satisfies (71d) and |z| ≤ ν∗, then
V̇x < 0 on the level set {x : Vx(x) = µ + δµ}. In fact, with
(70) and (71e), the inequality (77) implies that |z(tJN

, JN )| ≤
C−1

g (ν∗/2) ≤ ν∗, and from there, with (71f), the inequality
(78) implies that |z(t, j)| ≤ ν∗ for tJN

≤ t ≤ tJN+1
and

JN ≤ j < JN+1. This implies that Vx(x(t, j)) ≤ µ + δµ for
(0, 0) ≤ (t, j) ≤ (tJN+1

, JN+1), and this argument repeats. //

Putting altogether, we choose ϵ∗ in Theorem 3 such that all
the inequalities (71a)–(71f) hold with ϵ∗. Then, the following
arguments lead us to the estimate in (7b).

For (t, j) ∈ domX , it follows from (64) that j ≥
(σ1/N0)(t/ϵ), and therefore, for k such that Jk ≤ j < Jk+1,
we have

k ≥ σ1
N0n

t

ϵ
. (84)

Then, from (81), (77), (78), and Assumption 2b, we get

|z(t, j)| ≤ Cg◦α−1
y

(
γ

σ1
N0n

t
ϵ

m αy(|z(0, 0)|) +
Lz
V Cn(ϵ)

1− γm

)
+Ca(ϵ).

(85)
Consider the class KL function βy(s, τ) in (15) and the class
K function

χy(ϵ) := Cg ◦ α−1
y

(
2
Lz
V Cn(ϵ)

1− γm

)
+ Ca(ϵ).

Then (85) yields the inequality in (7b). To complete the proof
of Theorem 2, inequality (7a) is derived from (85) using
Lemma 3 in Section V-C.

VII. CONCLUSIONS

Motivated by the applications of hybrid dynamical systems
where frequent jumps are necessary for stability, we pro-
pose analysis of such systems based on singular perturbation
viewpoint. The dynamics are decomposed into a continuous-
time quasi-steady-state system and a discrete-time boundary-
layer system. Under the assumption that the subsystems re-
sulting from this decomposition satisfy appropriate stability
assumptions, we can derive estimates on the norm of the
trajectories showing practical convergence. In the process,
we see the trade-offs between the ultimate bound and the
parameter describing the frequency of jumps. An important
application of our results is seen in the study of network
control with heterogenous agents where the graph describing
the information exchange between agents is switching.

Several interesting research directions may emanate from
the framework adopted in this work. Firstly, it may be possible
to improve the estimates on system trajectories reported in
Theorem 3 since the proof involves computation of certain
constants over the compact sets for the general class of non-
linear systems. For some specific system class such as linear
systems, or globally Lipschitz dynamics, one may modify the
proof techniques for getting tighter estimates. Also, it may be
possible to identify conditions on system data under which
we can establish asymptotic stability for the limiting value
of the perturbation parameter. Naturally, these questions open
up the possibility of investigating more applications where
the proposed setup of singularly perturbed hybrid systems is
useful for analysis. This includes especially the control design
problem related to stabilization over networks where frequent
jumps in the state of the system contribute to stability of the
system.
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APPENDIX A
A LEMMA FOR CLASS K FUNCTIONS

Lemma 4. Consider two class K functions α1 and α2. Fix
s > 0. For every δ > 0, there exists v12 > 0 such that

α1(s) ≤ v12α2(s) + δ, ∀s ∈ [0, s].

Proof. For a given δ > 0, pick a positive s∗ ≤ s such that
α1(s

∗) ≤ δ, and take

v12 = max
s∈[s∗,s̄]

α1(s)

α2(s)

which is well-defined. We immediately get

α1(s) ≤

{
δ, 0 ≤ s < s∗,

v12α2(s), s∗ ≤ s ≤ s

which is the desired inequality.
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