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On Analyzing Filters with Bayesian Parameter Inference and
Poisson-Sampled Observations

Aneel Tanwani

Abstract— The problem of state estimation in continuous-
time linear stochastic systems is considered with several con-
straints on the available information. It is stipulated that the
model of the system contains several unknown parameters and
the observation process is randomly time-sampled. The classical
solution due to Kalman-Bucy cannot be implemented in that
case, and we revisit the idea of partitioning the set of unknown
parameters, and consider multiple filters corresponding to each
possible value of the unknown parameter. The posterior distri-
bution of the unknown parameters conditioned upon available
observations is computed from Bayes’ rule. The resulting state
estimate is a weighted sum of the state estimates generated
by multiple Kalman filters, where the weights are determined
by the posterior distribution of the unknown parameters. We
analyze the performance of the algorithm by looking at its
asymptotic behavior and establishing boundedness of the error
covariance matrix.

Index Terms— Filtering; partitioning; Poisson-sampled ob-
servations; stability; performance analysis.

I. INTRODUCTION

Estimation theory in stochastic dynamical systems is a
problem of great interest because of its relevance in several
engineering related disciplines. Over the decades, we have
seen development of several important concepts and elegant
results in this field, stemming from the pioneering work of
Kalman and Bucy [1]. In its simplest form, Kalman filter
provides a rather intuitive way of weighing the information
contained in the model and the measurements depending
upon the covariance of the noise driving the state process
and the covariance of the measurement noise. The accurate
information of the model and noise statistics is therefore very
important for optimal state estimation, and if this information
is not available accurately, the filter can even generate
diverging state estimates [2]. Moreover, with frequent use
of communication channels for transmission of observations
in several applications, the measurements are available for
estimation at only some random time instants. Thus, the
lack of information about the system parameters and random
sampling of the observation process provide an interesting
framework for the estimation problem which is explored in
this paper.

For systems with unknown parameters, the state estimation
for stochastic systems has been classically studied under
the framework of adaptive state estimation [3]. Several
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approaches have been developed in this regard and several
monographs, such as [4], [5], and the survey article [6]
provide an overview of the developments in this area. Quite
naturally, one possible way to study this problem is to
compute the estimates of the unknown parameters from the
noisy measurements and use them to update the filtering
equations. One possible approach relies on inference using
Bayes’ rule to compute the posterior distribution of the
unknown parameters [7], [8]. The approach has the drawback
that computing this posterior, despite being in recursive
form, is computationally heavy. Another approach (seen as a
continuation of the Bayes’ estimation) relates to maximizing
different likelihood functions [4, Chapter 10]. This involves
computing a tractable form for the likelihood function and
setting the gradient with respect to parameters equal to zero
to find the values which maximize the likelihood function.
Analytical solutions can be derived in certain restrictive cases
for steady state operation. Some of these techniques appear in
the book [9], while providing an overview of Bayesian meth-
ods in filtering problem. A rather comprehensive collection
of statistical algorithms used for parameter inference can be
found in [10]. The recent work [11] provides one possible
solution which relies on computing gradients backwards to
speed up certain computations.

Most of the aforementioned references deal with systems
in discrete-time and provide only the algorithms for optimal
state estimation with unknown parameters, based on tools
from information theory and control systems. There are relat-
ively few works that establish theoretical guarantees of such
algorithms, see for example [12, Chapter 10] and [13], which
in turn builds on computing the variance of Bayes’ estimates
[14] and proving the consistency of maximum likelihood
methods [15]. The book [5] collects some of these earlier
developments in a succinct form with different assumptions
on the set of unknown parameters. The problem of optimal
state estimation under limited information continues to attract
attention but lately, for systems with unknown dynamics, this
problem has been studied using different tools. The paper
[16] uses the form of optimal Kalman filter to compute the
injection gain directly from the data using neural networks,
and several other works also try to compute the optimal gain
using different techniques [17]. However, more often than
not, these works work under very restrictive cases that the
full state measurements are available as ground truth which
essentially violates the spirit of state estimation problems
from system-theoretic viewpoint. Some preliminary work
based on the use of stochastic gradient descent methods



to compute linear gains minimizing the square norm of the
residual has been presented in [18].

Stochastic control under information constraints is another
relevant direction of research which has grown considerably
in the past two decades due to common use of communic-
ation channels between different components of the system.
In such cases, it becomes important to adapt the policies
to achieve optimality under given information structure and
analyze the performance of such policies [19], [20], [21].
For our purposes, we are particularly interested in situations
where the information structure is abstractly modeled by
random sampling of the observation process. In this regard,
we have seen some results developed for the continuous-
time stochastic optimal control problems subject to randomly
sampled state measurements [22]. Motivated by the idea
of implementing filters subject to observations transmitted
over networks through some communication protocols, it
is natural to stipulate that the observations arrive at some
random time instants [23]. For continuous-time systems,
and observation process being discrete, it is of interest to
compute the distribution of the state process conditioned
upon the discrete observations [24]. In our previous work, we
have studied the performance of filters for continuous-time
systems using Poisson-sampled observations in [25], and
analyze the boundedness of error covariance as a function
of the mean sampling rate.

The problem of state estimation for stochastic systems
with unknown parameters, despite being classic, continues
to remain relevant as we seek algorithms which require less
information with theoretical guarantees about their long-term
behavior. This paper takes a step in this direction by studying
the filter design for linear stochastic systems with unknown
parameters, and the observations process being time sampled
by a Poisson counter. We work under the assumption that all
the unknown parameters belong to a discrete set. We con-
struct an optimal filter for each value of the parameter which
basically resembles Kalman filter but is driven by randomly-
sampled observations. The optimal state estimate minimizing
the variance of the estimation error is then described by a
weighted sum of the estimates generated by individual filters,
where the weights are determined by the posterior probability
density function of the unknown parameters conditioned
upon the observation process. For the discrete parameter set,
we propose a recursive algorithm which allows for comput-
ing these conditional posterior distributions using the Bayes’
rule. While such methods are computationally heavy, there
are some consistency results in the literature that advocate
their broad applicability. Once the algorithm is designed,
we analyze the performance by looking at the asymptotic
value of the expectation of the total error variance. We show
that, if the underlying Bayes’ inference rule is consistent,
then the error covariance converges to the optimal value that
arises in the case with completely known parameters. For
sufficiently large mean sampling rate, one can also prove that
the asymptotic error covariance matrix remains bounded.

II. MODEL WITH UNKNOWN PARAMETERS

We consider the problem of designing a filter for a class
of linear stochastic systems under some constraints on what
information is available for designing the filters, and the
measurement process. In this section, we formally describe
the system class and the associated measurement process.

In what follows, we will denote the unknowns by a vector
θ, which belongs to a set Θ in some Euclidean space.
These unknowns may appear in the system data or the
noise statistics that are used later on for designing optimal
filters. We consider the dynamical systems modeled by linear
stochastic differential equations of the form:

dXt = A(θ)Xt dt+G(θ) dωt (1)

where (Xt)t≥0 is an Rn-valued diffusion process describing
the state. The matrices A(θ) ∈ Rn×n and G(θ) ∈ Rn×m are
constant but may depend on the unknown parameter θ ∈ Θ.
Let (Ω,F ,P) denote the underlying probability space. It is
assumed that, for each t ≥ 0, (ω(t))t≥0 is a zero mean
Rm-valued standard Wiener process adapted to the filtration
Ft ⊂ F , with the property that E[dω(t) dω(t)>] = Imdt, for
each t ≥ 0. The process (ω(t))t≥0 does not depend on the
state, and since we allow G to be unknown, there is no loss of
generality in assuming that the statistics of random process
dω are known. The solutions of the stochastic differential
equation (1) are interpreted in the sense of Itô stochastic
integral.

Our goal is to study the state estimation problem when
the output measurements are available only at random times.
The motivation to work with randomly time-sampled meas-
urements comes from several applications, such as, commu-
nication over networks which allow information packets to
be sent at some discrete randomly distributed time instants.
Thus, we consider a monotone nondecreasing sequence
(τn)n∈N taking values in R≥0 which denote the time instants
at which the measurements are available for estimation. We
introduce the process Nt defined as

Nt := sup
{
n ∈ N

∣∣ τn ≤ t} for t ∈ R, (2)

and it is assumed that (Nt)t≥0 is a Poisson process of
intensity λ > 0 and it is independent of the noise and the
state processes. Recall [26, Theorem 2.3.2] that the Poisson
process of intensity λ > 0 is a continuous-time random
process

(
Nt
)
t≥0

taking values in N∗ := N ∪ {0}, with
N0 = 0, for every n ∈ N∗ and 0 =: t0 < t1 < · · · < tn <
+∞ the increments {Ntk−Ntk−1

}nk=1 are independent, and
Ntk−Ntk−1

is distributed as a Poisson-λ(tk−tk−1) random
variable for each k. The Poisson process is among the most
well-studied processes, and standard results (see, e.g., [26,
Section 2.3]) show that it is memoryless and Markovian.

The discretized, and noisy, observation process is thus
defined as

YτNt
= C(θ)X(τNt

) + ντNt
, t ≥ 0. (3)



where C(θ) ∈ Rp×n is a constant matrix, and νk is
a sequence of i.i.d. Gaussian noise processes and ν0 ∼
N (0, V (θ)). Equation (3) is motivated by the fact that a
continuous observation process dz = Cxdt+dη for a Wiener
process η is formally equivalent to yt = Cxt + νt, with
the identifications yt ∼ dzt

dt and νt ∼ dηt
dt , so that νt is

a Gaussian process; see [24, Chapter 4] for further details.
Our goal is to construct the estimate X̂t, and compute a
probabilistic estimate of the unknown parameter θ, which
minimizes the mean square estimation error, using the ob-
servations YNt

:= {Yτk | k ≤ Nt}.

III. FILTERING ALGORITHM

The estimate of the state process which minimizes the
mean square estimation error is described by the expectation
of the state process (Xt)t≥0 conditioned upon the meas-
urements observed over the interval [0, t], that is, YNt

. In
the current setting, our task is complicated by the fact that
the system description contains some unknown parameters
which need to be estimated as well.

Using standard results in filtering theory, see for example
[27], it follows that the minimum mean square error (MMSE)
estimate X̂t subject to the the information YNt , is given by,

X̂t = E[Xt | YNt
] =

∫
Xtp(Xt | YNt

)dXt,

=

∫
Xt

∫
Θ

p(Xt | θ,YNt
)p(θ | YNt

)dθ dXt,

=

∫
Θ

x̂t(θ)p(θ | YNt)dθ,

(4)

where x̂t(θ) := E[Xt | θ,YNt
] is the minimum mean square

estimate with θ given, and p(θ | YNt
) denotes the probability

density of θ conditioned upon the observations received up
to time t.

In the sequel, it will be assumed that Θ is a discrete set,
and is described as Θ := {θ1, θ2, · · · , θK} with K being
the total number of unknown parameters. We also stipulate
that the pair (A(θ), C(θ)) is observable, and (A(θ), G(θ))
is controllable, for each θ ∈ Θ. In this case, the foregoing
equation results in

X̂t :=

K∑
i=1

x̂t(θi)p(θi | YNt
). (5)

That is, X̂t is obtained by computing x̂t(θi) for each value
of θi ∈ Θ and taking their weighted sum as determined by
the conditional probability mass function p(θi | YNt

). The
next two subsections describe how to compute each of the
two terms on the right-hand side of (5) for a fixed value of
θi ∈ Θ.

A. State estimate for given parameters

Note that the conditional density p(Xt | θ,YNt) is Gaus-
sian and x̂t(θi) represents its first moment. It is described

by a differential equation with updates at times when a new
measurement arrives. For an arbitrary strictly increasing real-
valued sequence (τk)k∈N∗ , this procedure is also proposed
in [24, Thm. 7.1]. If we specify a sequence (τk)k∈N∗ so that
it corresponds to the arrival times of a Poisson process, we
simulate the mean of the conditional distribution as:

˙̂xt(θ) = A(θ)x̂t(θ)dt, t ∈ [τNt
, τ1+Nt

[, (6a)

x̂+
t (θ) = x̂t(θ) +Kt(θ)(yt − C(θ)x̂t(θ)), t = τNt

, (6b)

where the injection gain Kt(θ) is defined as

Kt(θ) = Pt(θ)C(θ)>M(θ)−1, (7)

M(θ) := C(θ)Pt(θ)C
>(θ) + Vt(θ), (8)

and the error covariance process (Pt(θ))t≥0 is described by
the following equations: for t ∈ [τNt , τ1+Nt [, we solve

Ṗt(θ) = (A(θ)Pt(θ) + Pt(θ)A(θ)> +G(θ)G(θ)>) (9a)

and for t = τNt , we solve

P̂+
t (θ) = Pt(θ)− Pt(θ)C(θ)>M(θ)−1C(θ)Pt(θ). (9b)

To write things more compactly later on, we adopt the
formalism of writing the continuous-discrete equations (6a)
and (6b) together in a single differential equation, when the
jumps are driven by a Poisson counter Nt :

dx̂t(θ) = A(θ)x̂t(θ)dt+Kt(θ)(yt −C(θ)x̂t(θ))dNt. (10)

Similarly, using this formalism, (9a) and (9b) can be written
in a combined form as,

dPt(θ) = (A(θ)Pt(θ) + Pt(θ)A(θ)> +G(θ)G(θ)>)dt

− Pt(θ)C(θ)>M(θ)−1C(θ)Pt(θ)dNt. (11)

In the foregoing discussion, one makes the observation that
the optimal conditional distribution with given θ is Gaussian
for each realization of (Nt)t≥0 despite the fact that the mean
and covariance are discontinuous along each sample path.

As a performance metric, we now look at the expectation
of the process (Pt)t≥0 with respect to the sampling times
(τNt)t≥0. In our previous work [25], when the system
parameters are known, we have computed the expected
covariance for Poisson sampling. That result can be applied
in the current setting to get the expectation of Pt(θ), for a
known value of θ. In particular, we let Pt(θ) = E[Pt(θ)]
and a direct application of [25, Proposition 4.1] yields the
following result:

Ṗt(θ) = A(θ)Pt(θ) + Pt(θ)A(θ)> +G(θ)G(θ)>

− λPt(θ)C(θ)>M(θ)−1C(θ)Pt(θ). (12)

where M(θ) := (C(θ)Pt(θ)C>(θ) + V (θ)). We can now
provide conditions in terms of the lower bounds on the
mean sampling rate λ > 0 and the structural assumptions
on controllability and observability of the pairs (A(θ), G(θ))
and (A(θ), C(θ)) that guarantee boundedness of Pt(θ). The
boundedness is also important for asymptotic analysis of the
first moment of the error process (Xt − X̂t)t≥0.



B. Recursive expression for parameter estimation

The next element required for the computation of (5) is the
posterior distribution p(θ | YNt

) for each θ ∈ Θ. A recurs-
ive formula for the computation of the conditional density
p(θ | YNt

) is obtained from the Bayes’ rule as follows:

p(θ | YNt
) = p(θ |YNt

,YNt−1) (13a)

=
p(YNt

| θ,YNt−1)p(θ | YNt−1)∑K
i=1 p(YNt | θi,YNt−1)p(θi | YNt−1)

(13b)

We next find the expression for p(YNt
| θ,YNt−1)

which corresponds to predicting the probability
density of YNt using the past measurement YNt−1

for a fixed value of θ. Let ŷNt(θ) := C(θ)x̂t(θ) and
ỹNt

(θ) := yNt
− ŷNt

(θ). When the signal is generated
by the parameter θ, we denote the covariance due to
innovation by Ωt(θ) := E[ỹNt(θ)ỹ

>
Nt

(θ)]. For each θi ∈ Θ,
the expression for Ωt(θ) can be computed offline and equals
Ωt(θ) = C(θ)Pt(θ)C

>(θ)+V (θ). It can be readily checked
that p(YNt | θi,YNt−1) is Gaussian with mean H(θi)x̂t(θi)
and covariance Ωt(θi), so that p(YNt

| θi,YNt−1) =

(2π)−p/2|Ω−1
t (θi)|1/2e−

1
2 ỹ
>
Nt

(θi)Ωt(θi)ỹNt (θi). Substituting
this last expression in (13b), we calculate p(θi | YNt

)
recursively as

p(θi | YNt
) = c|Ω−1

t (θi)|1/2e−
1
2 ỹ
>
Nt

(θi)Ωt(θi)ỹNt (θi)p(θi | YNt−1)
(14)

where c is a normalizing constant.

IV. PERFORMANCE ANALYSIS

For the algorithm proposed in the previous section, we
now analyze the performance and in particular the asymptotic
behavior of the error covariance matrices and a posterior
probability density function of the unknown parameters
conditioned upon the observation process.

A. Derivation of error covariance

We recall that the state estimate (X̂t)t≥0 is defined by
equation (5). The following proposition characterizes the
error covariance resulting from this estimate:

Proposition 1. Let us consider the error covariance matrix,

Pt := E[(Xt − X̂t) · (Xt − X̂t)
> | YNt ] (15)

Then, it holds that

Pt =

K∑
i=1

{
Pt(θi) + Pm

t (θi)
}
p(θi | YNt

), (16)

where for each θi ∈ Θ, Pt(θi) is obtained by the equation
(11), and Pm

t (θi) is defined as,

Pm
t (θi) := (X̂t − x̂t(θi)) · (X̂t − x̂t(θi))>. (17)

Proof. By definition, we have

Pt = E[(Xt − X̂t) · (Xt − X̂t)
> | YNt ]

=

K∑
i=1

P a
t (θi)p(θi | YNt

),

where P a
t (θ) is obtained as follows:

P a
t (θ) := E[(Xt − X̂t) · (Xt − X̂t)

> | θ,YNt
]

= E[XtX
>
t | θ,YNt

] + X̂tX̂
>
t − X̂tE[X>t | θ,YNt

]

− E[Xt | θ,YNt
]X̂>t

= E[XtX
>
t | θ,YNt

] + X̂tX̂
>
t − X̂tx̂

>
t (θ)− x̂t(θ)X̂>t

= E[(Xt − x̂t(θ)) · (Xt − x̂t(θ))> | θ,YNt
]

+ (X̂t − x̂t(θ)) · (X̂t − x̂t(θ))>

= Pt(θ) + Pm
t (θ),

which proves the desired statement.

In the statement of Proposition 1, Pt is introduced as
a performance metric for the state estimation process with
unknown parameters. Equation (16) provides a decomposi-
tion of this quantity in two terms which we can compute
and the weights of these terms are determined by posterior
distribution of the parameters. The first of these terms Pt(θi)
is obtained from the Kalman-like filter by setting θ = θi in
the system equations. The second term Pm

t (θi) denotes the
cost of simulating multiple Kalman-like filters with mismatch
in the parameters of the true system. Note that, for each
i = 1, . . . ,K, both terms are multiplied by the posterior
distribution of θi.

B. Asymptotic optimality

We can now state the primary result which looks at
the asymptotic behavior of expectation of Pt in (16) over
sampling times (governed by a Poisson counter). To state
our result, we need to introduce two main assumptions. The
first of these assumptions corresponds to the convergence of
posterior distribution for large t.

Assumption 1. (Consistency of Posterior) There exists θ∗ ∈
Θ such that

lim
t→∞

p(θ∗ | YNt
) = 1, a.s. (18)

Although, not written explicitly, the condition (18) ensures
that, for θi 6= θ∗, the posterior distribution p(θi | YNt

) goes
to zero as t gets large.
Remark 1. Assumption 1 basically guarantees that the prob-
ability that our algorithm finds the true parameter eventu-
ally converges to 1 as we get more and more data. Such
statements about the Bayesian update rules, or maximum
likelihood technique are usually called consistency results
in information theory. Some references do appear in the
literature which develop conditions for checking consistency
of the maximum likelihood method [15], Bayes’ inference
rule [13], [12, Chapter 10].



Under Assumption 1, we can now develop a qualitative
result about the asymptotic behavior of the total error cov-
ariance Pt given in (16).

Theorem 2. Consider the system (1) with observation pro-
cess (3) and Nt a Poisson counter of intensity λ > 0. The
optimal state estimate in mean square sense is given by X̂t

in (5), where x̂t(θi) is obtained from (6) and p(θi | YNt
) is

obtained from (14). If Assumption 1 holds, and the mean
sampling rate λ > 0 is sufficiently large, then the estimation
error covariance E[Pt] defined in (15) converges to the
solution of the following equation:

Ṗt(θ∗) = A(θ∗)Pt(θ∗) + Pt(θ∗)A(θ∗)> +G(θ∗)G(θ∗)>

− λPt(θ∗)C(θ∗)>M(θ∗)−1C(θ∗)Pt(θ∗) (19)

where Pt(θ∗) = E[Pt(θ
∗)], and θ∗ satisfies (18).

The proof of Theorem 2 is deferred to Section IV-D, and
before that we introduce the main theoretical tools that are
used in establishing the result in Section IV-C.

C. Notion of extended generator

In this subsection, we discuss some analysis tools for
stochastic differential equations that will be used for the
proof of Theorem 2. To do so, we consider the following
differential equation for a stochastic process (xt)t≥0 evolving
in Rn:

dxt = f(xt)dt+ h(xt, νt)dNt (20)

where Nt is a Poisson process with intensity λ > 0, and νNt

is a sequence of i.i.d. random processes with probability law
µ.

To study the evolution of a function of the random process
(xt)t≥0, we make use of the Ito’s chain rule. The reader may
consult [28, Chapter II, Section 7] for detailed exposition on
this topic. Here, the particular form we adopt is tailored for
the differential equations appearing in earlier sections.

Proposition 3 (Ito’s chain rule). For a twice continuously
differentiable function ψ : Rn → R, it holds that

dψ = 〈∇ψ(x), f(x)〉dt+
[
ψ(x+h(x, ν))−ψ(x)

]
dNt. (21)

Ito’s chain rule describes the evolution of the function
ψ evaluated along the solution of the stochastic differential
equation (20). However, to study the evolution of expectation
of ψ(xt), with xt described by (20), we need to consider the
extended generator as defined below:

Definition 1 (Extended generator). Given a real-valued func-
tion ψ : Rn → R, the extended generator of the process(
xt
)
t≥0

described by (20) is the linear operator ψ 7→ Lψ
defined by

Rn 3 z 7→ Lψ(z) ∈ R

Lψ(z) := lim
ε↓0

1

ε

(
E
[
ψ
(
x(t+ ε)

) ∣∣x(t) = z
]
− ψ(z)

)
.

(22)

We obtain the expected value of ψ by integrating the
generator, which can be seen as a generalization of the
classical Dynkin’s formula:

E
[
ψ(x(t))

]
= E

[
ψ(x(0))

]
+ E

[∫ t

0

Lψ(x(s)) ds

]
. (23)

For our purposes, it is useful to compute an explicit expres-
sion of the generator which can then be analyzed for studying
the qualitative behavior of E[ψ(x)]. Several references in the
literature derive generator equations for stochastic processes
with jumps, see for example [29] for a derivation in the
context of Wiener process driven differential equations with
renewal processes. Here, we provide a statement specifically
tailored for our purposes.

Proposition 4. If the sampling process (Nt)t≥0 is Poisson
with intensity λ > 0, then the process

(
x(t)

)
t≥0

described
in (20) is Markovian. Moreover, for any function Rn 3 z 7→
ψ(z) ∈ R with at most polynomial growth as ‖z‖ → +∞,
we have

Lψ(z) = 〈∇ψ(z), f(z)〉+

λ
[ ∫

ψ
(
z + h(z, ν)

)
µ(dν)− ψ(z)

]
. (24)

The expression for extended generator in (24) has a
rather simple interpretation: the first term 〈∇ψ(z), f(z)〉
corresponds to the time-derivative of ψ and relates to the
continuous flow of xt. The second term is due to the jumps
in xt, where the jump intensity λ multiplies the average (with
respect to noise νt) difference in the value of ψ.

D. Proof of Theorem 2

For the asymptotic convergence of the error covariance, we
only provide a sketch of proof. To compute the infinitesimal
generator for the error covariance process (Pt)t≥0, which
would provide us the time evolution of E[Pt], where the
expectation is taken with respect to Poisson counter Nt of
intensity λ > 0. In what follows, let us use the notation
pi(t) = p(θi | YNt), for t ∈ [τNt,1+τNt

[. Using the expres-
sion in (16), we observe that

E[Pt] =

K∑
i=1

E[Pt(θi)pi(t)] + E[Pm
t (θi)pi(t)]. (25)

While we already have evolution equations for Pt(θi) and
pi, we use Ito’s chain rule from Proposition 3 to compute
a differential equation for Pm

t (θi). Due to the linearity of
the operator ψ 7→ Lψ, these equations will allow us to
compute the extended generator for each of the terms in the
summation with θi being fixed.

The first term inside the summation in (25) is of the
form Pt(θi)pi(t), where we note that pi changes its value
only when the new observation arrives. The corresponding
extended generator takes the form:

L(Pt(θi)pi(t)) = Ṗt(θi)pi(t)+λ(P+
t (θi)pi(t)

+−P−t (θi)p
−
i )



Under the consistency hypothesis stated in Assumption 1,
we see that the right-hand side converges to 0 for θi 6= θ∗,
and for θi = θ∗, it converges to

Ṗt(θ
∗) + λ(P+

t (θ∗)− P−t (θ∗)).

One can use similar reasoning for analyzing the second term.
We first compute dPm

t (θi) and it can be shown that for
λ > 0 sufficiently large, Pm

t (θi) remains bounded. Under
Assumption 1, one can then show that E[Pm

t pi(t)] converges
to zero.

V. CONCLUSIONS AND PERSPECTIVES

We considered the problem of joint state estimation and
detection of unknown parameters for a class of linear
stochastic systems subject to randomly sampled observation
process. We use the techniques based on Bayesian inference
to compute the posterior distribution of the unknown para-
meters conditioned upon the available observations. For each
value of the unknown parameter, a standard Kalman-like fil-
ter is designed, and the overall estimate is the weighted sum
of individual filters. We use the covariance of the estimation
error between the true state and the computed estimate as
a measure of performance. Expectation of this covariance
matrix over the sampling process is computed using the
infinitesimal generator, and this allows us to analyze the
asymptotic behavior of our proposed algorithm.

Several interesting questions appear from this initial in-
vestigation. One needs to understand carefully the conditions
under which the inference update rule for the unknown
parameters can converge, and provide easy-to-check tests for
such conditions. The other immediate direction of research
is to study the case where the set of unknown parameters
is continuous and not necessarily discrete. Some work on
adaptive state estimation under such hypothesis involves
quantization of the parameter space and showing that the
inference rule converges to a value closest to the unknown
parameter in some appropriate metric [30, Section 5]. At the
same time, one could revisit the question of investigating
other approaches for the search of unknown parameters. It
could also be interesting to see whether the ideas presented in
this paper could be merged with ongoing research on devel-
oping computationally efficient filtering algorithms [31], so
that the proposed methodology could be applied to nonlinear
systems as well.
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[10] O. Cappé, E. Moulines, and T. Rydén, Inference in Hidden Markov
Models. Springer New York, NY, 2005.

[11] C. Parellier, A. Barrau, and S. Bonnabel, “Speeding-up backpropaga-
tion of gradients through the Kalman filter via closed-form expres-
sions,” IEEE Transactions on Automatic Control, vol. 68, no. 12, pp.
8171–8177, 2023.

[12] B. Anderson and J. Moore, Optimal Filtering. Englewood Cliffs. NJ.,
USA: Prentice-Hall, 1979.

[13] Y. Baram and N. Sandell, “Consistent estimation on finite parameter
set with application to linear systems identification,” IEEE Transac-
tions on Automatic Control, vol. AC-23, no. 3, pp. 451–454, 1976.

[14] L. Liporace, “Variance of bayes estimates,” IEEE Transactions on
Information Theory, vol. 17, no. 6, pp. 665–669, 1971.

[15] P. Caines and J. Rissanen, “Maximum likelihood estimation of para-
meters in multivariate Gaussian stochastic processes,” IEEE Transac-
tions on Information Theory, vol. 20, no. 1, pp. 102–104, 1974.

[16] G. Revach, N. Shlezinger, X. Ni, A. Escoriza, R. van Sloun, and
Y. Eldar, “KalmanNet: Neural network aided Kalman filtering for
partially known dynamics,” IEEE Transactions on Signal Processing,
vol. 70, pp. 1532–1547, 2022.

[17] G. Gebhardt, A. Kupcsik, and G. Neumann, “The kernel Kalman rule,”
Maching Learning, vol. 108, pp. 2113–2157, 2019.

[18] S. Talebi, A. Taghvaei, and M. Mesbahi, “Data-driven optimal filtering
for linear systems with unknown noise covariances,” in Poster at
NeurIPS, 2023.

[19] A. Mahajan and D. Teneketzis, “Optimal performance of networked
control systems with nonclassical information structures,” SIAM
Journal on Control and Optimization, vol. 48, no. 3, pp. 1377–1404,
2009.
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