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Abstract

We address the problem of spatial inference in robotics, commonly known as “Simultaneous
Localization And Mapping” (SLAM), through the lens of causal inference. State-of-the-art
approaches generally proceed by feeding the SLAM system with noisy sensor measurements
and statistical assumptions, so as to get the joint posterior probability distribution of the
decision variables conditioned on the measurements. Probabilistic inference techniques are
used to produce the best posterior estimate. In contrast, in the proposed approach, the
estimation of the decision variables is conducted on a scheme which makes use of causal
assumptions. Since understanding the distinction between the probabilistic and the causal
paradigms is paramount in this work, a doctrinal synthesis is provided, supported by an
historical analysis. In particular, it is reminded that probability theory pioneers like Laplace
handled uncertainty within a quasi-deterministic framework. Such a conception found an
apropos application in the geodetic adjustment problem (triangulations for cartography),
which shares many structural commonalities with SLAM. Using modern causal inference
tools, in particular causal graphs and the structural causal model (SCM) championed by
Pearl and co-authors, we develop a causal view of the SLAM problem in order to address
some of the longstanding issues. We show how causal hypotheses can be articulated, before
appropriately exploiting the conditional independences exhibited by the model. As a result,
the adjustment problem boils down to a constrained least squares optimization problem.
The overall framework is referred as CARLIT (Causal Approach to Represent Locomotion
and Internalize Topography). The conceptual ramifications are analyzed, e.g., concerning
the processing of loop-closure events or the incorporation of landmarks. While toy SLAM
problems are used to showcase the approach, various evaluations are also provided on synthetic
datasets as well as a real-scale experimentation.
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Introduction

Simultaneous Localization and Mapping (SLAM) has long been an emblematic problem in
Robotics. Its immediate goal is to estimate the hidden robot pose/trajectory and landmark
positions from a sequence of local and relative measurements. However, informally, the tech-
niques employed in pursuit of that objective are not just for mapping purposes. The solutions
must often be integrated into a higher order perception system that aims to improve a robot’s
spatial understanding w.r.t. the achievement of a task. Indeed, the task is often not limited
to mapping, but can be stated in the form of, e.g., a navigation objective, a collaborative
objective, a search-for demand, or any combination of the mentioned forms. While mature
techniques exist for the estimation of the pose/trajectory and the local map, it nonetheless
remains that the term “spatial understanding” is still open to one’s interpretation; concerns
can be raised about whether the estimation aspects alone are sufficient to reach “spatial
understanding”.

In this work, a new formulation of SLAM will ultimately be proposed to towards this
difficult question.

The SLAM problem in robotics

Before detailing the contours of our contribution, a general formulation of a typical SLAM
problem is given as follows: a sensory agent (e.g., a robot) moves in an unknown, known,
or partially known environment. In order to keep track of its position, it makes observa-
tions/measurements of its egomotion via some of its sensor suite. No matter how precise
those observations are, the resulting estimate of pose/trajectory will, by accumulation of
small measurement errors, drift over time from the true motion. As the characteristics of
measurement errors are usually (imperfectly) known, the growing uncertainty in the trajec-
tory can be tracked with probabilistic tools (such as covariance matrices). Thus, without the
help of some correcting mechanism, the incremental mapping of the environment would suffer
from errors accumulated in the trajectory and past observations. To alleviate this issue, a
correction is made when previously mapped space is re-observed or re-visited. A geometric
mismatch occurs if/when the tracked pose of the agent can not explain the measurement
associated with the re-observation. Under the hypothesis of proper data correspondence and
no outlier effect due to incorrect detection, this should prompt a SLAM algorithm to simul-
taneously (or jointly) improve the agent trajectory and map estimates to better explain the
newly uncovered mismatch, reducing by ricochet the overall uncertainty. This phenomenon
is commonly termed a loop closure. A loop closure is thus an opportunity to improve infer-
ence, but it can also be a computational challenge in dense and/or in large scale perception
problems.

9
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SLAM has been identified and well covered since the initial robotic perception papers in
the 1980s (Brooks, 1985; Chatila and Laumond, 1985; Smith and Cheeseman, 1986; Smith
et al., 1988). For a time, various filtering techniques were favored. Now, standard paradigm
is as follows:

• the noisy local measurements (data) participate as potentials of a joint probability
distribution function (pdf) of the hidden state (trajectory and elements of the map)
given the observations; those potentials (a.k.a. factors) convey geometric model uniting
the hidden states (e.g., pose to landmark geometry or pose to pose evolution), together
with their noise characteristics;

• the joint pdf can be represented by probabilistic graphical model techniques (e.g., factor
graphs, Bayesian networks) to convey the pattern of statistical independences between
variables;

• as the joint pdf is typically difficult to exploit directly, the goal of the inference process
is to summarize it into the Maximum A Posteriori (MAP) estimate of its hidden states
given the observations. Optionally, if one is ready to accept computational trade-offs, or
if the mission requires it, the recovery of marginal covariances can also be an achieved;

• the MAP estimate is obtained, by maximizing posterior pdf of the hidden states con-
ditioned on the observations. Under the assumption of additive Gaussian dynamics
and measurement noise, it naturally comes as the minimum of a sum of nonlinear least
squares. Efficient (often sparse) matrix computations routines can be leveraged.

A more detailed analysis will be given in chapter 2. It should be made clear that SLAM,
and largely spatial understanding, is still under active research due to: (a) new sensor devices
to integrate and algorithmically exploit for mapping; (b) the evolving number of robot types;
(c) the large number of queries and questions a SLAM system (or perception system) is ex-
pected to answer: where are we in the environment ? Where should we go to improve mapping
? What happens if we apply a given control input to the robot ? What would have happened
had the robot moved to C instead of B ? etc. However, given that the probabilistic inference
part of SLAM (a.k.a., the SLAM back-end) has matured along numerous contributions, one
would think that these questions can be answered by reusing those existing techniques, or by
adding new logic on top of them.

Initial research question

A case in point relates to our initial research question. How can we make several robots
collaborate efficiently to build a map in an unknown or partially known environment ? In
the journey to tackle this question, it was realized that the accumulation of loop closures
was posing greater computational challenges as the map grows, more so than with one single
robot. We came to the conclusion that more needs to be done to exploit the fundamental
structure of the SLAM problem, starting with a single robot system. In our opinion, some
structural aspects of the problem (detailed later) have been fully exploited in current SLAM
back-ends. Such aspects relate in part to unexploited pattern of independences, and in part
to a more astute definition of the unknowns to be inferred. Our contribution starts from the
current view of SLAM and propose a new framework to address SLAM using directed graphs
and the fundamental notion of causality.
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But a proper explanation of this shift requires reconsidering the problem of SLAM from
the beginning, or rather, from before the invention of common tools used to solve it. In the
first chapter, we investigate what we think is an apropos historical example, from the view-
point of SLAM practitioners: the geodesic triangulations. We identify one specific geodesic
operation in the late 18th century. Surprisingly, the scientific challenge at the time, not only
holds many similarities with the SLAM structure but also propelled fundamental theoretical
developments in probability theory. To our knowledge, this historical precedent has not been
investigated in the context of SLAM research. The analysis presented thereafter could be
considered (wrongly) out of scope of a contribution in robotics. Yet, lessons learned from
that investigation have significant implications in addressing the advocated new approach to
SLAM.
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Chapter 1

Pre-Robotics Adjustment: the
Errors to be Feared

This chapter is mainly concerned with the analysis of adjustment problems in geodesy, for
which we identify commonalities with SLAM. “SLAM is essentially a geographic surveying
problem” Thrun et al. (2005, §10.5) had noted, thus studying the evolution of this practice
can bring forth crucial insights to develop alternative views of SLAM. Indeed, the historical
contributions made around these adjustment problems are still considered monumental. They
include advances in probability theory and inferential methods, but as will be seen, do not
limit to that. Through these historical lenses, and by comparison with the popular adjustment
technique used in modern SLAM, we will come to question whether a new SLAM statement
is worth being studied. This chapter is furthermore useful to put forward the interpretative
framework for our contribution in robotics, presented next.

In section 1.1, we briefly present the context and motivations that led to the measure of
the meridian arc length of the Dunkerque-Paris-Barcelona meridian (from northern France
to Spain) from 1792 to 1799. We review the sources used to approach this study. Then, the
experimental process of geodesic triangulation is described (section 1.2); we explain how this
particular process differs from seemingly similar operations conducted prior to that period.
The corresponding novel (at the time) scientific challenges raised by this problem are devel-
oped in section 1.3. We point out that new mathematical tools were designed in that regard
to exploit observed data. In section 1.4, the important contributions of Delambre, Legendre,
Laplace, Gauss, and others, are discussed from primary sources. An analysis is provided in
section 1.5 on the far-reaching ramifications implied by those contributions on our approach.
Finally, we discuss in section 1.6 what the historical analysis advocates in terms of new ap-
proaches to SLAM.

The events are presented chronologically while keeping track of similarities with mod-
ern SLAM problems. In a trade-off between clarity and historical rigor, we sometimes use
anachronistic terms like Gaussian, normal distribution, Bayes law, central limit theorem even
though they acquired those names much later.

13
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1.1 The Broader Context in 1792-1799

During the 1789 political turmoil occurring in the French Kingdom, which marks the begin-
ning of the Révolution period, a popular and recurring demand was for the authorities to end
the uncontrolled proliferation of weight and measure systems. These systems were arbitrarily
defined by local seigniory. They varied not only city to city, but also from a corporation
to another. Sometimes they held the same names but had different values (Guedj, 2000).
The resulting general confusion represented an obvious hindrance to trade, and was cause
for fraud. Previous attempts to standardize the weights and measures failed due to political
inertia.

Between 1789 and 1792, several “Weights and Measures” commissions of the Académie
Royale des Sciences (Academy of Sciences) were formed to lay the groundwork for the def-
inition of a new coherent system. The aim was to dramatically rationalize the issue, and,
hopefully, to also export abroad the ideas of the new system. The end product would be
known as the Metric System. Some of the members of these commissions are distinguished
names, often mentioned in modern scientific activities: Laplace (1749-1827), Lagrange (1736-
1813), Coulomb (1736-1806), Legendre (1752-1833), Lavoisier (1743-1794) etc.

In order to maximize the chances that the new system be adopted nationwide (and perhaps
internationally), and to unsure that it would not easily be replaced, it was decided to define the
length value of 1 meter using an objective measurement rather than an arbitrary one. Basing
the meter as a fraction of the earth meridian1 was after debates the final choice2. However,
no reliable value for the meridian arc-length was available. Indeed, using an existing, but
unreliable, estimate of the meridian length would put the meter at risk of significant update
in its value in the future, hence threatening the much desired stability of this new weights and
measures system. On the other hand, conducting new measurements of the meridian, with
sufficiently small bounds around the uncertainty of the result, would improve the chances of
success of the metric system and make it future-proof.

The measurement of the meridian arc length was covered independently in two books
published by historians Denis Guedj and Kenneth Alder. Their work mostly overlap: Guedj
(Guedj, 2000) describes in more details the initial debates to motivate the choice of meridian
as a basis for the new system, while Alder (Alder, 2003) puts more emphasis on the subsequent
change of paradigm in scholars, in particular concerning the processing of observation errors.
The extension of the arc meridian a few years later was addressed by Pierre Bayart (Bayart,
2007). Historian of statistics Stephen Stigler primarily focuses on the development of the
theory from early 17th century to 1900 (Stigler, 1986, 2002). He goes into great details into
the advent of the probabilistic concepts, the early struggles, the collaboration/competition
of minds. His work has been essential to understand and to refine where the problem of the
arc length meridian fits into this bigger picture. Former geodesist Levallois (Levallois, 1988)
provides an analysis of the practices of French geodesy over three centuries. The successes
and failures of adjustment operations carries, in our assessment, valuable lessons for SLAM.
In her PhD thesis, Jozeau (1997) investigates the difference in evolution between French and
German practice of geodesy in 19th century. Notably, the difference in the significance given
to the method of least squares is addressed. As one might expect, the historians of the

1A meter was defined such that the arc-length of the quarter of a meridian be 10 thousands kilometers.
2Detailing the reasons and the back and forth discussions leading to that choice (over e.g., the pendulum)

is interesting but would be an unnecessary digression in this document. We refer the reader to the works of
historians such as D. Guedj or K. Alder (Guedj, 2000; Alder, 2003).
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Figure 1.1: Sketch of a simplified arc-length measurement between points D and B. The distance
between these points is deduced from the angular measurements in the chain of triangles and the
length measurements of the baselines (red). The full meridian arc-length is then extrapolated thanks
to latitude measurements, yielding ∆ϕ. The fitting parameters of ellipse (M) can then be deduced
from ∆ϕ and the chain of triangles.

aforementioned period previously are not invested into the intricacies of the SLAM problem
(to our knowledge). Thus, in order to push our investigation further and to produce this
synthesis, their accounts have been supplemented by a direct study of the source material
written by scholars such as, in no particular order, Delambre, Méchain, Legendre, Laplace,
Arago, Gauss (we used Bertrand (1855) translation from Latin to French), La Condamine,
Puissant, Tardi, etc. Most sources are available online via official documentation (links given
in the references), although often only in French.

1.2 Geodesic Triangulation

Figure 1.1 shows a simplified example of the measurement of a portion of a meridian at
the surface of the earth. Since measuring the length of the full meridian ((M) in fig 1.1)
is impractical, the standard practice was to measure only a limited portion of the arc-
length (Dunkerque-Paris-Barcelona). Then, thanks to latitude observations, the length can
be straightforwardly extrapolated to ninety degrees. Despite the limited portion considered,
measuring the Dunkerque-Barcelona distance with rulers put together back-to-back would still
be impractical. Thus, the well-known process of triangulation was employed. This process
was invented by W. Snellius back in 1617.

The concept of geodesic triangulation is fairly simple: instead of measuring directly the
distance, the relative angles between landmarks are measured. These landmarks (chosen
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among mountain tops, bell towers...) form a chain of triangles between D and B (fig 1.1).
Only one triangle side in the chain, the so-called baseline (in red), must be measured directly
on site, with precise rulers and lots of care. Then, the remaining of the spatial information
can easily be deduced from basic trigonometry, i.e., the law of sinus. A second baseline is
commonly measured at the end of the chain of triangles (also in red). The motivation for
the measurement of second baseline is to verify if the deduced length from the first baseline
plus the angular measurements agree with the direct measure on-site. Of interest to us is
how close these meridian operations match the pattern of a typical SLAM problem. As
mentioned before, the principles of triangulation for geodesy were not new at the time. But
this particular problem has specificities that compelled scientists to analyze the results in the
following years, and to come up with novel concepts.

Figure 1.2: Borda’s repeating circle. On the left, the perspective view of the instrument. Reproduced
from (Arago, 1857, fig 250). The schematics on the right are reproduced from Cassini et al. (1787),
and show the principle of the repeating procedure.

Those main specificities of this operation, compared to previous ones, can be distinguished
in two aspects. Firstly, the repeating circle, designed by experimental physicist J.-C. Borda
(1733-1799), was a new instrument suited to the measurement of relative angles between two
distant objects, see figure 1.2 and box 1. The “repeating” aspect of the circle comes from
the fact that a sequence of sightings could be repeated an arbitrary number of times, though
reading only once the sum of those angles on the graduated circle. This meant that, for a
skilled user, the expected measurement error could be one to two orders of magnitude lesser
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Box 1: Borda’s repeating circle

The “repeating circle” is an instrument, based on a concept from Tobias Mayer, de-
signed by Borda and crafted by Lenoir. The geodesic instrument was used to measure
relative angles and conduct astronomical observations. The first recorded use of the
instrument is from 1787 to join the Paris and Greenwich meridians (Cassini et al.,
1787). The innovation of this instrument comes from the fact that an arbitrary num-
ber of measurements could be made without returning the scopes to the origin of the
scale (Alder, 2003, chap 2). The ensuing angular readings, divided by the number
of measurements, was the mean of all those measurements. As we will see in section
1.4.2, Laplace would later identify an application of the central limit theorem (proven
in 1810), hence legitimizing the usage of the normal distribution to describe the error
curves associated with the angular value.

than with former instruments (Arago, 1857). The hardware could also be configured to con-
duct astronomical observations (e.g., to determine the astronomical latitude). A description
of its manipulation process is available in (Alder, 2003, fig 7). Secondly, the requirements in
terms of rigor, precision and transparency were new for this kind geodesic operations. The
goal was to inspire confidence in the metric system (Guedj, 2000; Alder, 2003). This could
only be achieved if sufficient trust could be placed in the results of the operations. Despite
rigorous process, measurement errors were ultimately unavoidable; it was thus necessary to
argue that the ultimate error on the meridian arc length was likely bounded to an acceptable
interval. Some fundamental tools in probability theory were unfortunately not yet conceived
(but as we will see, they were around the corner).

Astronomers J.-B. Delambre (1749-1822) and P. Méchain (1744-1804), considered as ex-
cellent observers, were entrusted to conduct those operations starting from 1792, aided by
the mathematician A.-M. Legendre who would help to post-process the data. Delambre and
Méchain were equipped with one Borda repeating circle each. Their task would turn out
to be extremely challenging due to the conjecture3. Eventually, they completed their oper-
ations in 1799, i.e., seven years later. The number of triangles forming the chain between
Dunkerque and Barcelona amounted to 115 (see figures 1.3 and 1.4). Astronomical latitudes 4

were carefully measured at 5 points along the meridian, in north to south order: Dunkerque,
Paris, Evaux, Carcassone, Barcelona. The results were verified the same year (1799) by an
international commission, and the value of the unit-meter established5. Remarkably, the mis-
match between the measured length of second baseline, and its value deduced from the first
baseline plus the chain of triangles, was only 31 cm. To get a sense of the proportion, the first
and second baselines are approximately 12 km in size (Vincent, 1998; Valette, 2007) and are

3Due to the proximity of conflict with other Europeans powers, Delambre and Méchain were in some
instances suspected by local authority to be spies/royalists; their budget was given in hyper-inflated currency;
Delambre was temporarily fired from the job for supporting Lavoisier (who was guillotined); Méchain was in
a coma following an accident; villagers were superstitious about their strange instruments. See Alder (2003);
Guedj (2000) books for more.

4Astronomical latitude were computed by observing the declination of the stars w.r.t. the local horizontal
plane. This local horizontal plan was defined by a pending lead ball attached to the repeating circle via a wire.
Thus, any irregularity in the local gravitational field affected the result (it was akin to today’s accelerometer
bias).

5The “correct” value of 1 meter is off by 0.2 millimeters from the definition established then.
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Figure 1.3: Northernmost portion of the chain of triangles, between Dunkerque and Paris. Re-
produced and assembled from Delambre (1810, p706-7). The measurements related to this northern
portion of the meridian were done by Delambre and his team. Their job was made difficult due to an
unstable political situation. The first baseline was located between Melun and Lieusaint (rightmost
schematics). Contemporary GPS-aided investigations have estimated the error on the first baseline to
be just under 12 centimeters on a 11 607meters length (Vincent, 1998).

located more than 650 km apart. However, inconsistencies in the data of the astronomical
latitudes would slightly shorten the initial value of the meter6. The latitudes were indeed
necessary to estimate the portion of the meridian covered by the chain of triangles. In other
words, the angle ∆ϕ in figure 1.1 was compromised.

6The potential causes of astronomical latitude inconsistencies were known to be: imprecision of the ob-
servers, the irregular form of earth (even at sea levels) and local irregularities of the gravitational field (a.k.a.
the geoid). A recent study in the journal of Geodesy, by Vańıček and Foroughi (2019), picked interest in the
issue and concluded that 95% of the error can be attributed to the bias in gravitational field, 3% to the form
of earth and only 2% to the imprecision of the observers.
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Figure 1.4: Southernmost portion of the chain of triangles, between Perpignan (France) and
Barcelona (Spain). The measurements related to this portion of the meridian were done by Méchain
and his team. The second baseline was located between Perpignan and Salses (top right part of the
figure). The task of Méchain and his team was made difficult in part due to an untimely conflict be-
tween both countries, while working on the triangles in the border area (Alder, 2003, chap 3). Above
all encountered difficulties, Méchain was tormented by unexpectedly large inconsistencies in the de-
termination of astronomical latitudes in Barcelona. He would return to the area in 1803 to extend the
chain of triangles to the Balearic Islands where, unfortunately, he would perish from illness.

1.3 From the meridian to the theory of errors

In support to the results of their geodesic operations, Delambre and Legendre (the geometer,
in charge of analysis) jointly wrote a report detailing their method (Delambre and Legendre,
1799). The specificities of this operation, that we mentioned previously, lead the authors to
criticize previous approaches and to explain why the processing of the 1792-1799 meridian
operations required new analytical tools (our translation):

Those methods [employed in previous geodesic operations] were purely approx-
imate. They may have seemed sufficient w.r.t. the precision of the instruments
then used. The errors induced from calculations were usually far smaller than the
ones induced from observations, and it was thus legitimate, at the time, to not
factor in too much calculations correctness that would only be illusory.

The previous geodesic operations Delambre and Legendre referred to are ones conducted
fifty years early (mid-18th) by several expeditions in Peru (at the equator), Lapland (Finland)
and South-Africa. The objective of each expedition was to measure the arc length of their
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meridian, at their respective latitude. Then, by comparing those arc length, a scientific
controversy would be solved: is the shape of earth is more flattened at the poles, according
to Newton’s theory, or at the equator, as suggested by the Cassini cartographers ?

But this was only a binary question and thus less rigor in the analysis was expected at
the time. Each scientist had different approaches to deal with errors. Maupertuis, after the
1736 Lapland expedition, calculated “his” arc-length covered by 9 triangles and 1 baseline.
He did so via 6 unspecified methods and chose as a final value the arithmetic mean between
2 of them (Levallois, 1988, p34). In the larger 1735 Peru/Ecuador expedition, a chain of
34 triangles and 3 baselines was measured. A dispute erupted concerning the processing of
errors between the lead scientists. One of them, Bouguer, a mathematician, refrained at first
from adjusting the measured values. He considered this practice cheating (Ycart, 2001), but
eventually corrected his angles according to vague considerations (Jozeau, 1997, p33). In
some sense, for many, adjusting observations a posteriori was a secret sauce, only permitted
so long as it did not alter the conclusions of their research question. La Condamine, a more
expedient man, argued in favor of taking the arithmetic mean (a.k.a. Cotes rules since 1722)
of several results. Contrary to many others, he openly wrote about his approach in his report
Condamine (1745, art25-26 p455-63). La Condamine and Bouguer split ways and went back to
France separately, where their dispute would continue. Gradually, the notion that corrections
should be applied started to be accepted in later part of the 18th century. The research of
best manner for combining of equations of observations would later be called by Gauss one
of the most important problems of natural philosophy (Bertrand, 1855, preface).

Boscovich, a Dalmatian Jesuit scientist, proposed in 1755 that the sum of corrections
applied after a geodesic operation should be minimal in absolute value (Stigler, 1986, chap 4).
The idea was to set a criterion so that to which the corrections c0, c1, . . . , cn should minimize∑n

i=0 |ci|. Laplace, in the 1780s, tried to improve on the idea (only given in textual form
by Boscovich) by incorporating the notion of weights for each observation. The notion of
weights was a surrogate for how to quantify the precision of measurements. He attempted to
use probabilities but was also unsuccessful in expressing a general methodology.

But for the purpose of the metric system, none of these approaches seemed satisfactory
for Delambre and Legendre (1799). They continue from previous quote:

Novel instruments, by providing us a far greater precision in angular measure-
ments, compelled us to research more rigorous and exact methods for our calcu-
lations.

Delambre & Legendre

What is referred by more rigorous and exact methods ? In the document, Delambre and
Legendre would provide novel methods related to spherical trigonometry and also methods to
account for height differences between geodesic stations (triangle vertices in figures 1.1, 1.3 and
1.4). One would hope, by reading the quote, that a system for managing uncertainty should
be detailed. However, a formal language for dealing with the randomness of errors was not yet
available. As such, some arbitrary decisions to combine unavoidable mismatches (even though
they were small in amplitude) between measurements were made. For instance, any dimension
on the northern portion of the chain of triangles was tied to the first baseline (near Paris),
while the remainder were tied to the second baseline (near Perpignan) (Delambre, 1810). The
motive will be addressed in section 1.4. Without the probability theory framework, it was not
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guaranteed that the result stemming from this arbitrary inference method would be the most
probable, nor could the result be attached with a quantifiable confidence interval (what we
today know as variance, or standard deviation). This was problematic given the metrological
objectives of the metric system.

Relevantly, what we recognize today as major names in early probability theory developed
a strong interest in the problem. Firstly, Laplace was actually a member of that same 1799
commission which verified the arc meridian results and established the value of the meter
(Delambre, 1806, p94). Secondly, leading German mathematician and astronomer C.F. Gauss
(1777-1855) had access to the dataset (which was distributed internationally) the same year.
He would also be interested in geodesic problems later. It is historian K. Alder’s case that
the operations of the arc meridian paved the way to the formalization of the theory of errors,
precursor of statistics (Alder, 2003, chap 11). Alder observed that P. Méchain was tormented
by his measurement errors. Méchain considered their manifestation as the expression of a
moral fault by the observer (lack of skill, careless manipulation of instruments, etc.). As the
commonly used expression at the time proclaimed, the errors were to be feared ! Others,
like his colleague Delambre, started to consider the errors unavoidable, not necessarily the
fault of the observer but that they were partly due to ignorance of natural phenomena (form
of the earth, atmospheric refraction, irregular gravitational field, wear of instrument). He
was correct in that assessment, see footnote 6. It can only be surmised that, for Delambre,
as long as the errors were managed transparently, rigorously, the result of an experiment
affected by heterogeneous uncertainties (e.g., uncertainty in angular measurement, base length
measurement, etc.) could astutely be most likely confined within acceptable bounds.

In that spirit, Delambre would write Base du système métrique décimal, “Basis for the
metric decimal system” (Basis for short), a 2400-page report that aimed to reproduce relevant
documents and address all questions that could arise in relation to the definition of the metric
system. The third and last tome would only be achieved only in 1810 (Delambre, 1806, 1807,
1810).

Not waiting for the full justification, the value of the unit meter was set according to the
conclusion of the 1799 commission. These developments were followed outside of France. The
German journal Allgemeine Geographische Ephemeriden published a summary of the dataset
which was proofread by renown mathematician C.F. Gauss in the summer of 1799. Later that
year, back in France, Laplace was named Minister of the Interior (equiv. of Home Secretary)
with the task to establish the metric system in the French society7.

1.3.1 Legendre’s new data fitting technique: the least squares

Concerning Legendre, the 1799 quote reproduced above seems premonitory. In 1805, he
published the famous least squares method, future workhorse of statistics8. Though the
publication title refers to the determination of the trajectory of comets, the least squares
method is only presented in appendix and its application relates to the arc meridian dataset
(Legendre, 1805, p72-80). Legendre processed the distances (deduced from triangulations
and treated as error-free constants) between the 5 latitude stations (from north to south:
Dunkerque, Paris, Evaux, Carcassone, Barcelona) to infer the flattening coefficient of an
elliptic earth model (figure 1.5).

7After a few weeks, he was expelled from that position. For Napoléon, Laplace sought subtleties everywhere,
conceived only problems, and finally carried the spirit of infinitesimals into the administration.

8And, we may add: a popular (if not the most popular) method for modern SLAM solvers.
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Figure 1.5: Legendre presented
the method of the least squares of
errors on the arc meridian dataset
that was used to define the metric
system.

The ensuing minimization gave him a value of 1/148,
which seemed suspiciously low compared to the consensual
flattening coefficient of around 1/320 to 1/334. By sub-
stituting the inferred value into the equations, he noted
that this value would imply large posterior errors (resid-
uals) on some of the astronomical latitude measurements.
Those errors were judged too large to rest only the ob-
server’s inaccuracies. He postulated that gravitational ir-
regularities were mostly to be blamed, for they had af-
fected the leveling to the horizontal of the repeating circle
(see again Vańıček and Foroughi (2019) for recent con-
firmation). This phenomenon is also known as the de-
flection of the vertical in geodesy (Torge, 2023; Hofmann-
Wellenhof and Moritz, 2006). In the last sentence, re-
markably, the mathematician concluded that a pendulum
experiment would have been a more proper way to de-
fine the value of the meter, thus discrediting the whole
project of his colleagues to define the unit meter based on
a geodesic operation.

1.3.2 Gauss’ probabilistic view of least-
squares and the simultaneous corrections

Legendre noted that the least squares method is very convenient for data fitting. Indeed, so
far no method for the combination of “different observational equations” could be considered
general when there were more equations than unknowns (Stigler, 1986). Ad-hoc, case-by-case
procedures were the norm. The method of least squares was yet another ad-hoc construction,
but a straightforward one. Hence, this was a significant step, but no link was made so far
with probabilities. Gauss (1809) would later contest Legendre’s priority on this discovery by
claiming that he already used the (unnamed) least squares routinely, before 1805 and had
communicated it to three other astronomers.
Remark 1.1. On the Gauss-Legendre dispute.

Though Gauss claim has merit for good reasons, no record has been found establishing
unambiguously that he used this method before Legendre. Interestingly, there are debates
that Gauss used a form of least squares in 1799 on precisely the same arc meridian dataset
! We mentioned previously that Gauss had read an issue of the Allgemeine Geographische
Ephemeriden. He detected a printer’s error and sent a small letter to the editor, proposing
new values for earth eccentricity and the arc length. He did not elaborate on the nature of
the method he used. Stigler (1981); Celmiņš (1998) investigated whether this method was the
least squares. The eccentricity value he got, of 1/187, differs from Legendre estimate of 1/148.
Legendre, even if one supposes that he discovered the method years after Gauss, caught on the
value of the method and considered it worthy of public communication. This is the conclusion
of Stigler (1981): “If there was any single scientist who first put the method within the reach of
the common man, it was Legendre, in 1805”. Gauss should rather be praised for his in-depth,
probabilistic analysis.

In any case, by 1809, the scientific impact of the least squares method was considered
worth of a priority claim by the involved actors.
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But aside from the dispute, Gauss would provide in 1809 an essential interpretation of
the least squares method by framing it as a tool for probabilistic inference, in particular in
conjunction with the normal distribution (a.k.a. the Gaussian distribution).

His idea, now well-known9, consisted in wrapping the equations of conditions into error
curves φ(.) functions (a.k.a. today as the likelihood functions), which were axiomatically of
Gaussian form, and consider their product.

Denoting V, V ′, V ′′, . . . functions10 of the sought-for parameters, and M, M ′, M ′′, . . . the
observations, he postulated that the product:

φ(V −M)φ(V ′ −M ′)φ(V ′′ −M ′′) · · · = Ω, (1.1)

should be maximized. In Gauss words (Davis, 1857a; Gauss, 1809; Bertrand, 1855):

This product expresses the expectation or probability that all these values will be
produced simultaneously [simul in Latin] from the observations.

C. F. Gauss

Applying the negative log on the product of Gaussians, the problem translated into the
minimization of the sum of squares. He analyzed correctly that the h constant in the form
e−h2∆2 can be seen as a measure of the precision of the observations (Bertrand, 1855; Gauss,
1809, p119,§4), and used an “elegant theorem by Laplace” for the closed-form value of the
integral ∫ ∞

−∞
e−h2∆2

d∆ =
√

π

h
. (1.2)

Eventually, he stated that his method (“principium nostrum”, i.e., “our principle”, which
infuriated Legendre) is more convenient, even if one does not accept the axioms leading to
the probabilistic framework. From a calculation standpoint, it is still more economical than
minimizing the sum of power of 4, or 6, etc. In particular, Gauss criticizes Boscovich’s and
Laplace’s approaches (Bertrand, 1855; Gauss, 1809, p133, §12), which minimized the sum of
absolute values, what amounts to ignore some observations to the benefit of others. This
argument is made clear in Noël and Tilleuil (2005) analysis.

In our view, these papers about the Legendre-Gauss priority dispute and the quote of
Delambre and Legendre (1799) we unearthed, seem to reinforce further Alder’s point that
the least squares method may be as much the byproduct of the arc meridian problem as the
(independent) discoveries of Legendre and Gauss11: “Both men worked on the same geodesic
problem. [...] Both read the same authors, in particular Laplace.” (Alder, 2003, chap11). A
third less known mathematician, Robert Adrain in the United States, also discovered in 1808

9Today, in SLAM, the Gaussian characterization of uncertainty is dominant. For instance, in Davison and
Ortiz (2022) words, “Almost all serious, scalable probabilistic estimation is based on the core assumption of
Gaussianity in ‘most’ measurement distributions and ‘most’ posterior variable distributions, ‘most’ of the time”.
Furthermore, eq (1.1) is the well-known factored joint distribution of observations, which can be represented
in a factor graph.

10The discrimination between variables and functions is sometimes tricky in the old papers.
11This should not be understood as taking away the fact that astronomy, as a discipline, played also a driving

role. However, it is already a well known fact that those renown scientists were invested in astronomy. On
the other hand, the geodesic aspect tends to be less known and holds many similarities to SLAM (see next
section).
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(thus, officially one year before Gauss) how to link Legendre’s method (since that is the one
he had read), with the normal distribution (Dutka, 1990, 1995). Adrain was a surveyor, so
his problem was also one of adjustment.

In the interest of SLAM research, we extend Alder’s point. By pointing out the differences
and similarities of the arc meridian with a typical contemporary SLAM problem, we also
wish to highlight the role of this problem in further developments of probability theory. The
algorithmic treatment to correct the measurement errors in the chain of triangles around
the arc meridian reveals, in our view, patterns of thinking worthy of the consideration of
SLAM experts. It is henceforth investigated in the next section. We will continue to analyze
important 1820s contributions of Gauss further in this chapter.

1.4 Geodetic adjustment via the theory of errors

By ‘geodetic adjustment’, we designate the process by which geometric corrections are applied
to the chain of triangles after accounting for any mismatch between some measurements and
their predicted values obtained by calculations from other measurements. Our objective is
now to investigate the patterns involved in geodesic adjustment so that in the next sections
it is analyzed against the SLAM paradigm.

First, it should be explained why we only consider geodetic adjustment from the period of
the exploitation of this arc meridian dataset, and later. As mentioned, Snellius invented the
process of geodesic triangulations in the 17th century, and there were previous expeditions
to measure degrees of meridian in the mid 18th century (section 1.3). In that regard, let us
expand on some points addressed the previous section:

• New instruments were available. Namely Borda’s repeating circles. Observers Delambre
and Méchain could achieve greater precision in the individual angular measurements by
averaging an arbitrary large number of observations.

• Delambre noted that the process of correction of triangles in previous operations was
often not explained. In the absence of least squares and an established probability
theory, both the management of errors and the combinations of equations of observation
were vague concepts. Geometrically, in order to build the chain of triangles from the
baseline, only two angular measurements were necessary per triangle. The rest could be
deduced using basic trigonometry. But one could make a third angular measurement to
apply some corrections so that the sum of triangles equals π. This was already known
before. The issue is that, without proper concepts, the corrections were done differently
one from analyst to the other.

• The second baseline (sometimes third, fourth, etc.) was primarily used to verify, not
correct previous values. The second baseline length could be predicted from the recursive
application of trigonometry starting from the first baseline. If that predicted value
was not too different from the measured length on-site, the verification was successful.
The main characteristic of the second baseline was to offer reflection on the skill of
the observer(s). However, it was not yet realized that the length mismatch (between
prediction and actual measurement) could be systematically exploited to correct the
chain12.

12Or rather, if it was realized, no argument, no favored calculus existed to apply the corrections. Delambre
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Figure 1.6: Made-up geodetic adjustment of the
simplified arc meridian problem of fig 1.1. Dash
Gray (no correction), solid gray (partial correc-
tions), and blue chains (all corrections) are different
phases of the geodetic adjustment problem. Base-
lines are in red. Step (a) shows putative corrections
following the closure of triangles. Step (b) shows
putative corrections following closure of the second
baseline.

• The requirements in terms of experimental rigor in the 1792-99 geodetic operations were
so far unmatched. There was no confidence that the results of previous operations did
fall within acceptable range to satisfy the definition of the meter. Having accessed the
archives, Alder (2003) describes how Delambre kept consistent logs of the observations
he made in books with numbered pages, dated and with signatures from him and his
assistants. Observations values were regularly communicated back to the Académie des
Sciences (or, from 1795 onwards, to the Bureau des Longitudes) in Paris so as to prevent
any unstated alterations (Delambre, 1810, p698-704).

We will use the terms triangle closure and baseline closure to refer to the two types of
corrections. Those terms are chosen on purpose, as they resemble to the well-known SLAM
phenomenon of loop closures that is henceforth investigated.

To support our arguments, we will make use of the simplified problem of the chain of
triangles presented figure 1.1. Figure 1.6 shows a made-up (exaggerated) geodesic adjustment.

mentioned a correction of 1 angular value made by LaCaille in 1740 to improve the baselines mismatch in
the Dunkerque-Colioure arc meridian (Delambre, 1807): but as no explanation on the whys and hows of the
process, that seems more arbitrary than thought through.
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In essence, we found out that the follow-up works on subject by Delambre, Laplace, Gauss
(and colleagues) are remarkable and deserve to be known and interpreted in the context of
SLAM. To our best knowledge, most of the work in French, except Laplace’s, is not translated
in English. Some Latin texts of Gauss have translated in French by Bertrand (1855) and
English by Davis (1857b). Nonetheless, their writings are easily available online.

Before the next subsection §1.4.1, let us summarize the chronology of the events in the
late 18th and early 19th century.

First, Delambre and Méchain geodesic on-site operations occurred between 1792 and 1799.
Among the leading mathematicians, Laplace, Legendre and Gauss are provably involved in
the problem in 1799. The first two were members of the special 1799 commission, while Gauss,
not involved directly, nonetheless got access to the dataset (Delambre and Legendre, 1799;
Stigler, 1981). The contribution of Méchain stopped in 1804 as he would try to extend the
survey from the south of Barcelona to the Balearic Islands, perishing from illness. Legendre
communicated the least-squares method known in 1805. Two other observers, J.-B. Biot
(1774-1862) and F. Arago (1786-1853), were sent in Spain in 1806 to take over Méchain’s
project (Bayart, 2007; Arago, 1854). Gauss, in 1809, deduced the normal distribution from
specifications (Noël and Tilleuil, 2005; Stahl, 2006), and tied it to the least squares method:
whenever the errors distribute normally, the most probable results are the minimizers of the
sum of squares. We can start to see and appreciate how the geodetic adjustment was one of
the fundamental problems that accompanied closely, if not motivated, major contributions in
probability theory and inference techniques.

1.4.1 Delambre’s view: harmony should be restored

When Delambre released Basis (Delambre, 1806, 1807, 1810), he addressed all operations,
calculations and choices made in relation to the design of the metric system. Among the
addressed topics, our interest concerns the adjustment of the chain of triangles owing to the
second baseline measurement, i.e., the baseline closure. We mentioned that the difference
between the measured length on the second baseline and the length calculated from the
chain of the triangles (spanning 650 kilometers) was less than a third of a meter (on an
approximately 11.7 kilometers portion). This is a small error in amplitude but the 1799
weight and measure commission still felt compelled to discuss it and imagine the corrections
that could be made from that. We present the initial discussion of the pattern and then show
how Delambre would later improve it.

In the third tome of Basis, Delambre (1810, p417) reproduce the document dated 1799
(fig 1.7), where the members of 1799 commission (Van-Swinden et al) initially addressed the
cause of the mismatch (our translation):

The verification baseline, measured near Perpignan, is linked to the one of Melun
by a chain of 53 triangles. We can therefore deduce its length by [trigonometric]
calculations, and then compare this length to the measured one. [...] One just has
to know [geodesic] operations of this kind to be convinced of the following: the
difference of the deduced length of the verification baseline [the second baseline]
from its actual measurement, purely comes from the slight unavoidable [angular
measurement] errors in each triangle, that can, in a chain as expanded as this one,
either compensate or accumulate themselves.

Van-Swinden, Trallès, Laplace, Legendre, Méchain, Delambre, Ciscar
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Figure 1.7: Report on the determination
of the meridian arc length between the par-
allels of Dunkerque and Barcelona, and on
the deduced length of the meter, by the
members of special commission of weights
and measures, is a significant document
in the history of the metric system. Ex-
tracts are reproduced from Basis (Delam-
bre, 1810, p415,418,433), Gallica - Bib-
liothèque Nationale de France. The first
definitive value of the unit meter is given.
The topic dealing with baseline closure is
also first addressed in this document. The
authors and the field observers conceded
that errors are unavoidable, but did not
propose an adjustment method to remove
the inconsistency.
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The authors tone in the full paragraph appears defensive, and argues in favor of not
measuring again the baselines. It does so by pointing out that the difference is small in
amplitude, and by explaining the causes of the mismatch. A baseline length measurement
was a forty-five to fifty-day long tedious and delicate operation. Whenever the suspicion
emerged of an external event affecting the stillness of the rulers, Delambre decided to throw
away all measurements from that work-day, and start again the next day from the point of a
previous valid day13. GPS measurements conducted in 1998 have found that the first baseline
length differs approximately 12 centimeters from Delambre’s measurement (a 10−5 relative
difference) (Vincent, 1998). Having directed both angular measurements and baseline length
measurements, Delambre and Méchain, using their appreciation of the relative accuracy of
different types of measurements, concluded with the special commission that the errors did
not come from their baseline length measurements, but rather from the accumulation of small
errors in the chain of 53 triangles between the first and second baseline. More subtly, remark
that the angular errors in the remainder triangles, which are as much unavoidable as the ones
in the 53 intermediary triangles, had no effect in this argument. Indeed, recall that there were
between 107 and 115 triangles in the full Dunkerque-Barcelona chain (depending on how they
are counted), the commission members thus indicated that they knew that no errors in the
triangles north of the first baseline (north of Lieusaint-Melun in fig 1.3) and south of the
second baseline (south of Perpignan in fig 1.4) had any influence on the mismatch. That
point is a logical conclusion from the 1799 text, but is not explicitly stated; the authors
must have found that assessment intuitive. In probabilistic terms, this is a belief propagation
statement, whereby the new data (second baseline measurement) creates new dependencies
in one subset of the chain of triangles, while other parts of the chain are not affected.

The intuitive notion that the influence of errors are guaranteed to be limited to only a
portion of the problem (no matter the amplitude of the errors) is a subtlety somewhat lost in
modern representations of SLAM. Modern and popular views of SLAM focus on exploiting
computations to the detriment of structural astuteness and basic intuition. This will be dis-
cussed in the next chapters, and more broadly, our insistence on the exploitation of a priori
statistical independences between decision variables will be a recurring theme throughout this
document. Just as it was recognized before that triangle closure could be used to provide cor-
rections using geometry, practitioners the baseline closure should then also provide additional
corrections.

But then, how could these corrections be made ? The 1799 solution was an ad-hoc one:
to split the chain of triangles, the northern half the chain of triangles was dimensioned by the
first baseline, while the southern part of the chain is dimensioned by the second baseline.

However, Delambre would note, in the second tome of Basis (Delambre, 1807, p704-5),
that there was a smarter way to proceed. Delambre pointed out that the initial decision in
1799 did not remove the mismatch, it only moved it to the middle of the triangle chain (at
the town of Evaux). In his view, the smallest corrections possible should be applied in the 53
triangles between the two baselines in order to restore harmony (translation ours) :

To restore harmony, I thought I would be allowed to bring the angles between
Melun and Perpignan [i.e., between the baselines] very slight changes which would
make both baselines match. [...] These changes are imperceptible in themselves,
but acting always in the same direction, they produce the effect that I had in

13Two revealing anecdotes: one time wild dogs played too close to the rulers, while another time suspicions
of perturbations from gusts of wind also triggered a redo (Guedj, 2000; Alder, 2003).
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mind, which is to make the difference disappear between the two baselines, for I
believe their lengths are more certain than our angles.

Delambre qualitative approach is close to the numerical behavior of SLAM solvers : dif-
ferent types of measurements have unequal certainty/confidence attached to them. The con-
straint of geometric “harmony” is restored by making changes to where he considered the
error could be the greatest, i.e., the angles. The fact that the changes made were the small-
est possible (under 0.1 seconds of degree) shows his understanding that there was a penalty
for unnecessary large corrections. Unfortunately, Delambre did not attempt to make use of
his colleague Legendre’s 1805 least squares best fit criterion to combine the trigonometric
equations. As such, his baseline closure corrections are not presented in a formal way, the
amplitude of corrections are tailored to the values of this particular arc meridian dataset.
Perhaps he considered the least squares method to be too cutting edge for Basis, for it was
only one way of combining equations of observations (a.k.a. equations of condition) among
many other ways. Legendre’s work showed convenience but did not tell how to input prior
appreciation of uncertainty. Neither did he claim that the results obtained by this method
should be more probable than with other methods. Another difference with SLAM is that
the baseline measured lengths were treated as error free. Their predicted errors were just a
priori considered smaller than the cumulative effect of angular measurement errors, but no
attempt was made to quantify relatively one to the other. This leads to the remark that,
although he was closer than the 1799 Special Commission to a sound approach of corrections,
an obvious missing central component at the time of Delambre explanation is (again) a ma-
ture framework of probabilities. No assessment on the evolution of uncertainty was given
to the arc meridian result a posteriori of the corrections emanating from both triangle and
baseline closures. One could think that this was quite untimely (1807) given significant ad-
vances on probability theory appearing in 1809 by Gauss (refer to previous section), and from
1810 onwards by Laplace (as we will come to see in the next subsection). However, reading
historian of statistics Stigler, and given the mentioned facts that both Gauss and Laplace
were interested in geodesy, we should also consider whether advances in probabilities were
not partly due to geodetic adjustment. Indeed, in what he calls the Gauss-Laplace synthesis
period, Stigler (1986, chap 4) writes (emphasis ours):

The Gauss-Laplace synthesis brought together two well-developed lines —one the
combination of observations through the aggregation of linearized equations of
condition, the other the use of mathematical probability to assess uncertainty
and make inferences into a coherent whole. In many respects, it was one of the
major success stories in the history of science. Yet it also poses a puzzle, for
the applications of this marvelous statistical technology were widespread only
geographically; to an amazing degree they remained confined to the narrow set of
disciplines that spawned them. They became commonplace in astronomical and
geodetic work while remaining unknown in the social sciences [...].

Is the problem of geodetic adjustment, that has commonalities with SLAM, included in the
narrow set of disciplines that spawned one of the major success stories of science ? Another
supporting argument in favor of a positive answer can be found in Laplace 1812’s treatise,
Théorie Analytique des probabilités (Analytical theory of probabilities), one of his most famous
work.
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1.4.2 Laplace’s framework and the theory of corrections

Having worked for decades on probability (Dhombres, 2012), since 1774, when he rediscovered
1763 Bayes law (under a different formulation, as Bayes work was not widespread yet), Laplace
motivation to write a treaty on probabilities may have been magnified by Legendre and Gauss
developments mentioned earlier, in the 1805-1809 period. One issue Laplace and colleagues did
have, before 1809-10, is the specification of the error curve of observations. There are indeed
many functions that are unimodal, symmetric and whose density is more or less concentrated
about zero. But nothing could justify that an error curve adhering to these axioms should
be preferred over any other, besides the convenience provided during the calculations. For
instance, in the 1774-1786 period, Laplace used the functions m

2 e−m|x| and 1
2a log( a

|x|), |x| ≤ a,
see Stigler (1986, chap 3). These are obviously quite unpleasant forms to work with. Yet,
ironically, not only he had encountered the form e−h2x2 before, but he is recognized to be
the first to derive the value of the Gaussian integral as early as 1774 in another problem
(Stigler, 1986, footnote 8, chap 3). Only in 1810, he proved the central limit theorem, which
gave legitimacy to the normal distribution when the number of measurements is large. Then,
later that year, reading Gauss’ 1809 work, Laplace supplemented his work by propagating
that legitimacy to the least squares method14. Furthermore, he showed using Bayes law, that
Gauss’s “most probable” answer was also the maximization of the posterior, which could also
be quantified (the “weight of result”, now known as precision).

Advances were then compiled in the 1812 book Théorie Analytique des probabilités, of
which we have access to the fourth edition (Laplace, 1820), completed in 1820.

The first edition (1812) presents all his results in two books (Livre I, Livre II). In the end of
fourth chapter of Livre II, Laplace (1820, p353) acknowledges Gauss and Legendre significant
role as there was no fixed rule for combining different (linear) equations of observations,
before the least squares method. All existing rules (e.g., Cotes’ rule or Boscovitch’s rule)
were arbitrary and based on vague considerations; sometimes measurements were dropped at
the observer discretion. Legendre and Gauss were thus praised for having managed to avoid
these gropings.

In 1814, Laplace supplemented his 1812 treatise with Essai philosophique sur les prob-
abilités (Philosophical essay on probabilities), a text for the general public explaining the
application of probabilities in various fields, e.g., game of chances, judgement of courts, life
expectancy, marriage, astronomy, and of course, in interest to us, geodetic adjustment.

Laplace (1814b, english translation of 1902) writes in the chapter dedicated to natural
philosophy (emphasis ours):

This method [rendering a minimum the sum of the squares of the errors of observa-
tions] may be employed again with success in geodetic operations. We determine
the length of the great arc on the surface of the earth by a chain of triangles which

14Laplace’s position was to believe Gauss’ priority by recognizing that he had corresponded with some other
astronomers about the method (Laplace, 1820, p353). However, we can remark a facet of the Gauss-Laplace
competition, as he only says in the text that Gauss attempted to link the method with probability theory,
implying he did not fully succeed for his taste. For Stigler (1986, chap 4, Reenter Laplace): Laplace may have
said, Gauss’s derivation was nonsense, but he, Laplace, already had an alternative in hand that was not [i.e.,
the CLT]. Gauss, born in 1777, was a generation younger than Legendre and Laplace, he would instead provide
a better justification in 1823 (Grcar, 2011). Finally, the way Laplace divided the credit between Legendre and
Gauss for the least squares pipeline might have superior motives, as it makes his contribution more important
(in relative terms).
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rest upon a base[line] measured with exactitude. But whatever precision may be
brought to the measure of the angles, the inevitable errors can, by accumulating,
cause the value of the arc concluded from a great number of triangles to deviate
appreciably from the truth. We recognize this value, then, only imperfectly unless
the probability that its error is comprised within given limits can be assigned. The
error of a geodetic result is a function of the errors of the angles of each triangle.

The sentence we emphasize above is structurally similar to the explanation of drifting
in SLAM given in the beginning of this document, and is shown in dash gray on figure 1.6.
Without corrections, unavoidable accumulation of errors leads to drift. This drifting aspect,
an intuitive/qualitative consideration, was evidently identified long ago in SLAM, e.g., in one
of the early papers by Chatila and Laumond (1985, §1.3):

World models are generally built gradually by the robot itself as it moves and
discovers new areas. As long as only new parts of space are discovered, there is no
possibility to find out and correct any errors, in the model being built, that are due
to robot position drifts. But when the robot is to perceive again already known and
modeled regions, inconsistencies may occur, and this correction becomes necessary,
and sometimes possible.

Note that this drifting aspect was not universally well understood among the practition-
ers of geodesic operations. For instance, when he came back from the 1735 Peru/Ecuador
expedition, Condamine (1751, p. 2) wrote that it would be “against all likelihood to suppose
that the errors [...] accumulate instead of compensating each other [...], the amplitude of the
overall error should not be feared from a bigger chain than from a small chain”. Despite this
incorrect reasoning, the chain of triangles in Peru/Ecuador did have a second baseline (in
case that “strange hypothesis” of error accumulation were true, as La Condamine puts it).

In geodetic adjustment, the first possibility to bring correction is via triangle closure, i.e.,
by measuring the angular distance between the 2 previous stations within each triangle (where
flags were generally left to be sighted from afar) from the third station (the third angle) of the
triangle (Laplace, 1814b, Application of the Calculus of Probabilities to Natural Philosophy):

There is then a great advantage in observing the three angles of each triangle and
in correcting them as we have just said [by correcting a third of the difference
between the sum of the three angles and 180 degrees]. This advantage can be
foreseen by basic common sense; but the calculation of probabilities alone is able
to appreciate it and to render apparent that by this correction it becomes the
greatest possible [i.e., the most probable values].

Triangle closure by measurement of the third angle was, historically, straightforward
enough (basic common sense) to not leave room for ad-hoc fuzzy judgements. Assuming
that the errors distribute similarly in the three angles of the triangles, which is reasonable,
each angle could be corrected by a third of the excess summation of the angles from π. Laplace
here merely points out that only a probabilistic framework can prove that this is the best
approach.

However, what was previously vague and confusing (including for Laplace in 1799, see
figure 1.7) is the correcting mechanism associated to the baseline closure. There could be an
infinity of ways to proceed, but the most advantageous corrections were given by the analysis
of probabilities. Laplace (1814b) continues in the same chapter:
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In order to ensure oneself of the exactitude of the value of a great arc which
rests upon a base[line] measured at one of its extremities, one measures a sec-
ond base[line] toward the other extremity; and one concludes from one of these
base[line]s the length of the other. If this length varies very little from the ob-
servation, then there is all reason to believe that the chain of triangles which
unites these base[line]s is very nearly exact and so is the value of the large arc
which results from it. One corrects, then, this value by modifying the angles of
the triangles in such a manner that the base[line] is calculated according to the
base[line]s measured. But this may be done in an infinity of ways, among which
is preferred that of which the geodetic result has the greatest weight, inasmuch as
the same error becomes less probable. The analysis of probabilities gives formu-
lae for directly obtaining the most advantageous corrections which results from
the measurements of the several base[line]s and the laws of probability which the
multiplicity of the base[line]s makes; laws which become very rapidly decreasing
by this multiplicity.

Hence, the most advantageous corrections are those which give the posterior result the
greatest “weight”. Laplace said that his new tools allowed him to come up with an unambigu-
ous approach to the baseline closure correction. Furthermore, even though only two baselines
existed for this arc meridian operation, he could contemplate how multiple baselines would
improve the “weight” of the result. Similarly, multiple loop closures in SLAM generally15

steer the maximum a posteriori (MAP) state closer to the truth. The mathematical details of
this text are given in the second and third supplements of Théorie Analytique des Probabilités
(Laplace, 1820). Those supplements were appended in 1818 and 182016. From that point,
Laplace was able to answer a rich set of questions that could arise from the structure of a
geodetic adjustment problem. Let us identify the ones that are fairly close to SLAM (other
ones relate to the determination of certain aspect of the shape of the earth).

In the introduction of the second supplement, the points mentioned above are repeated
from 1814’s Philosophical Essay on probabilities and expanded upon. Laplace then points
out that the angular errors distribute normally. This is justified by the process of the in-
struments, namely Borda’s repeating circles (see figure 1.2). Indeed, as the reading given
by the instrument is the sum of an arbitrary number of independent measurements, a direct
application of the central limit theorem is identified. Thus, denoting α the angular error, we
have the distribution α ∼ e−hα2 (h not given though). Even though an individual sighting
has unknown distribution, the CLT gives the distribution of the average.

In fact, upon closer inspection, we postulate that at the time, Laplace’s CLT was most
suited to application on data from the Borda’s repeating circle. Indeed, the name of the
chapter (Laplace, 1820, chap 4) is “Results averaged from a large number of observations: on
the probabilities of their errors, and on the most advantageous mean results”. Although a bit
longer than the 20th century branding “central limit theorem”, this title made clear that he
was concerned with observation errors, and not with game of chances like in the preceding
chapter (Laplace, 1820, chap. 3) like Moivre before him. In this fourth chapter, Laplace
first considered the errors to be discrete integer values −n,−n + 1, . . . ,−1, 0, 1, . . . , n − 1, n
(Laplace, 1820, p309) which would correspond to the readings of a graduated instrument,

15Excluding outliers from incorrect loop closure association.
16We can find translations of Laplace work in Pulskamp’s website:

http://www.probabilityandfinance.com/pulskamp/Laplace/index.html.

http://www.probabilityandfinance.com/pulskamp/Laplace/index.html
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before extending it to the continuous case. Finally, the feasibility of getting many observa-
tions, under similar conditions, necessitates (a) the availability of an instrument that allows
repetitions such that one measurement was not affected by the previous (independence con-
dition), and (b) a time invariance of the conditions of observations between the first and last
observation. As mentioned earlier, Borda’s repeating circle (figure 1) could be used both for
astronomical observations and angular measurements between two points at the surface of
the earth. However, in the case of astronomy, due to the persistent relative motion of celes-
tial bodies (especially comets), by the time the observer moves the scope and watches again
(between half a minute to a minute), the relative angulation from the observer to the object
significantly changes. This makes the problem of geodetic adjustment, again, one of the most
eminent of its time as both a recipient and a catalyzer of fundamental scientific progress.

As mentioned, a condition for the CLT to apply is the independence of additive sources of
measurement: Laplace stresses that all observations should be reported, i.e., no guess work
to get rid of some of them. This echoes Delambre’s approach and his critics of the attitude
of former observers.

Remark 1.2. Delambre critics were not just directed towards the conduct of mid-18th century
geodesic operations. He also ended up disapproving of the attitude of his former colleague
Méchain. He eventually realized that Méchain was concealing latitude measurements that
were inconsistent: “Méchain had an unfortunate resemblance to Bouguer[one of the scientist
in the 1735 Peruvian operations], i.e., the weakness leading him to conceal anything that could
diminish the reputation he aspired for: to become an observer whose dexterity and exactitude
are above any other astronomer” (Delambre, 1817, p283).

The first section of the second supplement deals with the processing triangle closure
Laplace (1820, p531). Laplace estimates, via least-squares optimization, the corrected value
ᾱ as a function of the sum of errors and the weight h. The value of h in e−hα2 is inferred
by using the sum of squares, over all n triangles in the chain, of the three observed angles,
minus π. In the second section, the expression of the error on the arc length is deduced as a
function of all the angular errors, and so is its weight. In the third section, Laplace addresses
the question of baseline closure by determining the corrections to be applied to all the angu-
lar errors. These angular errors are denoted α, α(1), . . . , α(n−1), γ, γ(1), . . . , γ(n−1) in the text,
where superscript (i) indexes the ith triangle. The estimation is again done by maximizing an
exponential that holds a sum of squares. The resulting corrections depend on the mismatch λ
between the predicted length of the second baseline and its measurement. Laplace shows that
the “weight” of the resulting arc-length is increased following the baseline closure: in other
words, not only the error terms are subjected to corrections, but their uncertainty decrease.
The reasoning generalizes to multiple baseline closures. Note that in the virtual chain of n
triangles considered, the first and second baselines are assumed to be located in the extreme
ends, which was not the case in the real Dunkerque-Barcelona measurements (figures 1.3 and
1.4).

The third supplement (Laplace, 1820, p581), probably added in 1820, deals with questions
raised by the extension of the meridian. To contextualize, in the new 1806-1807 expedition in
Spain, Biot and Arago added more triangles south of Barcelona along the coast up to Denia,
in a southwesterly direction. Then, forming an “L” shape (figure 1.8), the last triangles go
eastwards to the Balearic Islands of Ibiza, Formentera and Mallorca, thus covering again
the original Dunkerque-Barcelona meridian (Bayart, 2007). Unfortunately, due to an(other)
erupting conflict between France and Spain, no additional baseline length could be measured
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Figure 1.8: Approximate reproduction of the ex-
tension of the Dunkerque-Paris-Barcelona meridian
by Biot and Arago, 1807. Loosely based on Bayart
(2007) and Levallois (1988, fig 20).

on site to provide closure for this part of the arc meridian17. A chain of 26 triangles was
open-ended from the second baseline (Perpignan, figure 1.4), extending approximately over
466 km. Laplace determined the uncertainty associated with this predicted value. In his
formulation, it can be bet 1 to 1 that this error lies within ± 8.0757 meters. The same style of
description of confidence interval is also employed for astronomical examples in Essay (1814).
This is an enrichment of vocabulary compared to the second supplement: Laplace does not
just speak of “weight” anymore. Additionally, we identify the following questions Laplace
answered in this third supplement: what would be those limits if instruments from previous
generations were used ? How much will those limits change if, as contemplated, 2 more
triangles were added which include a new measured baseline ? Then, the topic of baseline
closure is addressed again in the third section of third supplement (Laplace, 1820, p589).
Laplace calculates the “probability of simultaneous existence” of the errors α, γ, α(1), γ(1), . . .
resulting from the processing of the mismatch λ between the second baseline measured length
vs the one deduced from the chain of triangles. Then, the resulting effect on the distribution
of the error of the full arc length is derived. It is then predicted that the measure of the
length of a new baseline in Formentera would yield a mismatch of ±0.3423 meters. The
main difference in the approach with the second supplement is that the prior (to corrections)
distribution of errors are not assumed normal18. Laplace (1820, p590-1) also admits that the
approach for the baseline closure he and colleagues used in 1799 (see figure 1.3) was incorrect,

17The situation of Arago, in particular, became extremely precarious: almost lynched by a mob, he had to
turn himself prisoner in Palma for his safety, he was then announced hanged by local newspaper, he evaded
in a boat to Alger, was attacked by corsairs on the way back to France, ended up detained in continental
Spain, was released but a boat he was in drifted to North Africa due to a sea storm, found itself once more
in Alger, where he was stuck for other reasons (Arago, 1854) etc. Nonetheless, he came back in Paris in 1809
with the observations. The aggregate perils and somewhat amusing anecdotes of Arago, Delambre, Méchain
later inspired a novel by Jules Verne in which protagonists conduct a geodesic operation (Verne, 1872).

18In our interpretation, this still shows that Laplace was not confident on using the normal distribution in
certain situation.
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“in the ignorance that we were with respect to the true theory of corrections”19.

1.4.3 Gauss’ geodetic adjustment

In the 1826 supplement (Supplementum) of his 1823 paper (Bertrand, 1855; Gauss, 1826,
p70-112), it is Gauss who introduces the term adjustment of the observations (observationum
compensationem), which was used by neither Legendre, Delambre nor Laplace. In sections
19 and 20, Gauss acknowledges that calculating the least squares for large systems can be
discouraging. He proposes to divide the problem into “groups” and to proceed iteratively by:
calculating the adjustment for one group, ignoring the second group, then using the results
of the first group to adjust the second group, which would in turn gives new starting values
for adjusting the first group, and so on, until convergence.

Whenever the number of conditional equations is very large, determination [...]
by direct elimination can be very costly. Then it will often be advantageous to
complete the compensation by successive approximations [...]. [Later, on the same
page] After a few iterations we will arrive at stable numbers.

That description, surprisingly, evokes the notion of message passing by loopy belief propaga-
tion (LBP) in graphical systems. LBP appears in probabilistic graphical models (Koller and
Friedman, 2009), with a variant called Gaussian belief propagation. Ironically, the latter was
not named after Gauss, but rather on the fact that it is a variant of LBP with Gaussian dis-
tributions. For examples of applications in SLAM, see loopySAM (Ranganathan et al., 2007)
and FutureMapping (Ortiz et al., 2021; Davison and Ortiz, 2022). Further historical investi-
gations could be done on that particular topic. In this text, Gauss did not clarify whether
this procedure was applicable to circular/loopy clusters. In sections 21 to 25 (Bertrand, 1855;
Gauss, 1826, 101-112), Gauss applies his framework to some small sections of the geodetic
adjustment of Holland (section 22) and Hanover (section 23-25), see figures 1.9 and 1.10. How
different is his treatment from Laplace’s, given that both used least squares ? Both seek to
use the least squares to correct the observations, but Gauss does not pose what he called
“the equations of condition” (constraints) in the same way. He states that his system can be
populated by 3 types of equations of condition which we will name horizon closures, triangle
closures (not new), and chain closure:

• (I) the horizon closures, whereby the sum of the angles around one station should be
2π. This requires the exterior angles of the triangle to be observed;

• (II) the classical triangle closures, whereby the sum of the angles in one triangle should
be π ;

• (III) the chain closures, which concerns a chain of triangles that join itself (like a circuit).
In any triangle, the ratio of the sides lengths is the ratio of sines of the opposing angles.
Type (III) equations consist, for each triangle, in considering sides adjacent to both the
previous and the next triangle in the chain. The product of all those ratios is 1, since
the chain forms a circuit. See figure 1.11 for an example.

19This statement may not just a scientific judgement: the early metric system had been scraped in 1815 by
the new royal authorities. Laplace tended to adapt very well to the numerous regime changes of the period.
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Figure 1.9: Reconstitution of the toy problem addressed by Gauss in 1826 in Supplementum
(Bertrand, 1855, p106-112) which is sampled from the triangulation of Hanover. There are 7 tri-
angles and all 3 angles of each triangle are measured. A baseline has been measured between Wilsede
and Wulfsode (red line).

First note that Laplace did not address the third case, as he only dealt with a chain of
triangles. In that regard, Gauss’ approach applies to a larger set of topologies.

Let us investigate how Gauss tackles the small Hanover problem (figure 1.9). There are
27 angular measurements, and thus 21 corrections to make20. Gauss builds a system with 7
equations of type (II) equations of condition (i.e., the triangle closures), and 8 equations of
type-(III). There are no first type-(I) equations considered in the Hanover problem. Gauss
then raises an important caveat. Given the topology considered whereby some triangles can be
contained with a larger one, only 5 out of 7 equations of type (II) are mutually independent21.
Concerning the 8 possible ways to pose equations of type (III), in other words among the 8
possible ways to consider a circuit of triangles for in figure 1.9, only 2 remained independent.
Consequently, there are only in total 7 equations of condition for 27 decision variables, which
makes the system under-determined (as also corroborated by Grcar (2011, §3.3)). This raises
a completeness issue whereby it cannot be guaranteed that all the information of the problem
have been used to their fullest extent.

Concerning the portion of the Holland network of 9 triangles, see (Grcar, 2011, fig 6) for
illustration, not only the same problem occurs, but also the choice of equation of conditions
is different: 13 equations of condition: 2 type (I) equations, 9 type (II) and 2 type (III)
equations.

Thus, the main difficulty in Gauss’ adjustment framework, apart from the under determi-

20Gauss does not detail in his memoir whether the measurement of the baseline is considered perfect or not.
We assume he does, like Delambre and Laplace did. Nonetheless, it does not affect our analysis.

21In the linear algebra language that did not exist back then, the information matrix was not full rank.
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Figure 1.10: Geodesic network over Hanover which Gauss worked on between 1821 and 1825, re-
produced from Wikipedia Commons (2023). The red box we appended corresponds to the triangles
studied by Gauss in Supplementum (Bertrand, 1855; Gauss, 1826, p106-112) and shown in figure 1.9.

nation aspect, is the difficulty to pick the adequate equations while ensuring independences,
i.e., so that no equation comes as a linear combination of others. Otherwise, the same equa-
tion of condition may artificially be double counted in the product of probabilistic factors
(1.1). Besides, each different network of triangles requires separate careful considerations to
deal with this complication. Specifying all assumptions (in the form of equation of conditions)
Gauss made for a geodetic adjustment was thus not straightforward. We can see that for large
networks, such as figure 1.10, the selection of equations can become non trivial.

1.4.4 The variation of coordinates

In his treatise of geodesy (Tardi, 1934, chap 10), cartographer P. Tardi confirms the difficulty
to build a Gauss adjustment system for large maps, although he does not provide a thorough
analysis. He argues in favor of using another method: the variation of coordinates. Instead
of correcting the errors, this method proposes to formulate the problem on the geographical
coordinates of the geodesic stations, i.e., on the vertices of the triangles. In the previous
formulations, which concerned the corrections of the measurement errors, the geographical
coordinates22 were only the byproduct of the adjusted observations. The coordinates of these
stations are now the decision variables, and the ‘factors’ involved are azimuthal relations
between observed stations. The adjustment, still conducted via least squares, consists in

22Those coordinates could be understood as either: plan coordinates R2, longitude/latitude, or more involved
projections like Lambert, Mercator etc.
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Figure 1.11: Portion of the triangles from figure 1.9 illustrating the principle type (III) of chain
closure. Let αi, βi, γi denote the angles of triangle (i), in clockwise order (only α is shown for clarity).
Let ai, bi, ci denote the lengths of their respective opposing side. Consider the circuit for the ratio of
adjacent sides (1)→ (4)→ (6)→ (1), the product ratio c1

b1
· c4

b4
· c6

b6
amounts to 1 since b1 = c4, b4 = c6

and b6 = c1. Using the law of sines, this leads to the equation of condition: sin γ1
sin β1

· sin γ4
sin β4

· sin γ6
sin β6

= 1,
that Gauss employed in a null sum of logs form (Bertrand, 1855; Gauss, 1826, p109, §24).

finding the coordinates maximizing the product of factors (same as in equation (1.1)).
The motivation for such systems is the simplicity of setting the equations and the fact that

there are fewer stations than measurements. Indeed, consider the Hanover example figure 1.9.
Under the method of variation of coordinates, there are only 7 unidimensional variables (the
stations coordinates)23 and 18 azimuthal relations. This is deduced from Bertrand (1855);
Gauss (1826, data p106, §24). Tardi mentions that the 1830 triangulation of France (figure
1.12), which was built around the Dunkerque-Paris-Barcelona meridian, used this type of
adjustment. However, according to Levallois (1988, p96-7), who was himself a successor of
Tardi, the 1830 map of France was never properly adjusted due to the underestimation of the
time allocated to conduct those calculations. For Jozeau (1997), this period, which roughly
starts after Delambre, Laplace and Legendre deaths (resp., 1822, 1827, 1833), corresponds
to a relative decline in French geodesy, where the various methods of least squares did not
receive much consideration compared to the advances made by Europeans neighbors. Thus,
it is likely that the method of variations of coordinates was used initially just for small scale

23There are 5 stations which imply for a state of size 10 (assuming two coordinates per station). However,
since we are in a projected space, one station should be fixed as the starting point, while at least one other
station should serve to orient the network (by local latitude observation) via one of its component. The station
which orients the network is commonly known as the “Laplace station” in geodesy. Thus, there are only 7
decision variables left.
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Figure 1.12: First order triangulation done for the map of France between 1817 and 1830. Repro-
duced from Berthaut (1898b, p24-5). The orange circles show the areas with the greatest mismatch
due to the absence of global adjustment.

adjustments (see caption of figure 1.12).
We have not found out when, where or by whom precisely the method of variations was

invented, or around what time it overtook methods that considered the errors as decision
variables. Presumably, it was in the late 19th century when additional type of measurements
where introduced such as the telegraphic communication to deduce the longitude at a station.
In his treatise, Liagre (1852, 3rd part) only describes the method of errors. But once the
variations of coordinates took over, there are no signs that the dominance of these methods
were seriously contested. See Golub and Plemmons (1980) for a late 20th century approach
to geodetic adjustment.

1.4.5 A least squares winter in France

Jozeau (1997) investigated on the surprising loss of interest in France for geodesy and ad-



40 CHAPTER 1. PRE-ROBOTICS ADJUSTMENT: THE ERRORS TO BE FEARED

Box 2: The 1830 triangulation of France, and its problems.

Figure 1.12 shows the first order triangulation of France done by the cartographers
of the “Dépôt”. This triangulation builds on the French portion of the Dunkerque-
Barcelona meridian measured between 1792-1799 (0th degree in figure 1.12). The term
“first order” comes from the fact that this network was the main frame of a more
detailed 1 : 80000 French map, published in 279 sheets. Smaller triangulations and
surveying activities could then be attached to this first order triangulation. Hence,
in principle, this is the highest order of a hierarchical map. The shape of this first
order network, which roughly cover 3 meridians and 6 parallels, was initially outlined
by Laplace and Delambre in 1816.
Unfortunately, as noted by Levallois (1988, p96-7), the adjustment due to the closure
at the junctions of the various meridians and parallels were not calculated due to both:
(a) the scale of computation; (b) insufficient manpower for the task. Relating to (a),
Levallois, himself an accomplished 20th century geodesist, estimates that a proper
adjustment would have taken 30 to 40 years to be completed by one calculator: “even
with today’s computers [1980s], it would demand careful planning and preparation”
(Levallois, 1988, p96-7). Relating to (b), Levallois points out the absence of a bureau of
calculus: the observers (a relatively small team of specialists) had the task of calculating
the adjustment during their “rest time” in winter, which only provoked delays and
concessions due excessive workload (Levallois, 1988, p100). At the junctions between
several chains of triangles, the mismatch could reach several tens of meters (orange
areas in figure 1.12). Jozeau (1997) points to the absence of scientific research (&
review) in this topic in the 1830-1855 period. Consequently, small size adjustments
were made within each sheet of the French map, which moved the mismatch in the
overlap of adjacent sheets. “In the country of Legendre, we could have done better”
Levallois (1988, p100) regrets.

justment methods, in particular for the least squares technique. The Borda’s repeating circle
instrument, victim of its success, was used until the 1860s, when it was finally replaced by
more modern hardware such as the theodolite. The method of least squares was taught by
Arago between 1817 and 1836, but without relying on probability theory, which at the time
was considered too abstract (Jozeau, 1997, p46). Even worse, the teaching of least squares
in France was almost stopped by prominent scientists like Le Verrier and Cauchy in 1850
(Jozeau, 1997, p47). Le Verrier considered that the method of least squares leads to excessive
calculation costs and that, instead, the practitioner should use his best conjectural judgement
to find his/her own method to adequately combine observations. On the surface it seems that
ad-hoc and vague considerations were back from the 1750s. But there might be more to it,
we will come back to that issue in a later development.

Belgian geodesist Liagre, who was aware of the difference of interest in the subject between
France and Prussia, noted in the preface of his treaty Liagre (1852) that the employment of
the calculus of probabilities “has raised against it, from the outset, numerous prejudices which
have not yet been entirely dissipated”.

As discussed in section 1.2, missions and post analysis of important geodesic triangulation
were given to high ranking scientists, arguably often the best of their time and discipline. But
starting from 1816, the bulk of geodesist practitioners were attached to a military body, the
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“Dépôt de Guerre” (the War Repository, roughly translated). But this organization was
suboptimal from the viewpoint of scientific progress, it was later even criticized from insiders.
Indeed, it mainly affected the cartographers to unending geodesic campaigns, with the main
focus set on finishing triangulations of France and colonial possessions. The members of
this unit followed strict procedures, and little room was left for critical thinking towards the
established methods, which were considered complete (Levallois, 1988, p127). The practice
of French geodesy was practically cut from foreign scientific advances, which themselves were
initially inspired by successes of the 1792-1799 arc meridian (Jozeau, 1997).

The situation would nonetheless improve in the late 19th century, when the technical and
scientific advances made by scientists such as Gauss (see 1.4.3), Bessel, Struve, Everest finally
pierced, notably thanks to the treatise of Belgian geodesist Liagre (1852) and Bertrand (1855)
translation of Gauss’ contributions to the theory of errors.

But even in the beginning of the 20th century, the methods of least squares, and more
widely the concept of adjustment, still had its sceptics in France. For instance, Henri Bouasse,
physics professor of the University of Toulouse, published a book on geodesy in 1919 (Bouasse,
1919). Our esteemed colleague from a century ago was known for not concealing his strong
views whenever he considered the methods of his peers to be inadequate. In the opening of
his book “Géographie Mathématiques”, Bouasse immediately berates geodesy as a field. For
him, there is not much left that the methods in this field can offer of value (Bouasse, 1919,
p4):

The methods [in geodesy] have been established for a long time; we only hope
for technical improvements in detail, interesting for sure, but presenting the same
order of interest as a more convenient corkscrew or a more economical stove.

H. Bouasse

It is surprising, if not revealing, that in this 500-page book, Bouasse barely addresses the
concept of geodetic adjustment. While in contrast Gauss (1826, §22) referred to geodetic ad-
justment as “geodaesiam sublimiorem” (superior/sublime geodesy) in Supplementum, Bouasse
only covered the topic in less than a page. Mentioning the corrections made in Basis for the
1792-1799 arc meridian dataset (see 1.4.1), Bouasse (1919, p244) expresses dissatisfaction
with Delambre’s explanations a century ago. He writes:

The process of propagating the mismatch between a calculated and a measured
baseline throughout the chain [of triangles] : this is what I call tinkering with the
results.

Evidently, the concept according to which the errors in different observations compensate,
not multiply, still provoked mistrust.

Nonetheless, during the same period, new impactful techniques would emerge from the
field. The Cholesky decomposition is a numerical technique sometimes used in SLAM that
originates from geodetic adjustment. A.L. Cholesky was a cartographer in the military body
mentioned above. He specialized in the processing of geodesic operations (Brezinski and
Gross-Cholesky, 2005). He would come up in 1910 with an algorithm to speed up calcula-
tions, helped by a mechanical calculator. But it would only be published in 1924, years after
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Figure 1.13: On the numerical resolution of systems of linear equations. Draft written by Cholesky
signed and dated Decembre 2nd, 1910. It was found relatively recently, in 2005. The 8-page document
details the efficient linear systems decomposition the author is known for. The motivating problem
was the numerical application of the adjustment of geodesic networks (compensation des réseaux
géodésiques), whereby the “system of linear equations” (today Ax = b) is given by the method of least
squares. As an aside, and of interest to computer scientists, Cholesky points out that the technique
allowed him to use the capabilities of his mechanical calculator with “maximum efficiency” (page
4). Reproduced from the Sabix library (Cholesky, 1910). For further analysis, see (Mansuy, 2008;
Brezinski, 2018).

Cholesky death towards the end of the World War I (1918). The well known Cholesky decom-
position24 is considered a major tool in scientific computing. Its sparse variant, implemented
by Davis (2004); Davis and Hager (2009); Chen et al. (2008), is notably made available in
many software packages through their dependencies on SuiteSparse. An extract of his draft
(Cholesky, 1910) is reproduced on figure 1.13.

Relevant on our discussion, the application of the technique (often noted today as LL⊤ =
A, L lower triangular) concerned a geodetic adjustment of 56 equations to “compensate [i.e.,
adjust] the altitudes of the primary25 chains of triangles of Algeria” (Cholesky, 1910, p8).
This is another case of a useful algorithm coming from geodetic adjustment.

We now make some important points for the remainder of the document, which will be
valuable in view of our ultimate goal: an approach of the SLAM problem through causality
and the explicit representation of measurement errors.

1.5 Analysis and Ramifications

In this section, we seek to categorize the similarities and dissimilarities of the problem de-
scribed above, formalized around 1820, in comparison to the modern view of SLAM.

We highlighted the fact that describing geodetic adjustment in terms of the least squares
technique is not sufficient. A system that employs least square needs to be fed equations of

24Although the Cholesky decomposition is now understood and implemented in the matrix form, the original
draft only deals with system of linear equations.

25The word “primary” may refer to the geodesic stations, i.e. the vertices of the triangles of the primary
chain. The primary chain of triangulation was the main frame of a map, to which local secondary chains
attached themselves to. It has the same meaning to “first order” used for the map figure 1.12.
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Approach Year Limitations Historical Example
Laplace cor-
rections

1812 Presented in limited scope (only
open chain of triangles)

Dunkerque-Paris-Formentera
arc meridian (1806)

Gauss correc-
tions

1826 Difficulty in picking independent
equations; under-determined
system of equations

Hanover (1825), British Isles
(1880)

Coordinates
Variation

Not found Additional considerations are re-
quired due to the projection sys-
tem; higher than expected com-
putational cost

NT France (1959), US National
Geodetic Survey

Table 1.1: Summary of the various approaches to state the geodetic adjustment. Note that once the
problem is posed, each approach has been historically treated with least squares.

condition, a.k.a. likelihood functions, and decision variables. In other words, even if the least
squares became the estimator of choice, the problem of geodetic adjustment still required the
non-trivial step of specifying the functional to be estimated, a.k.a. the estimand. Regarding
which variables can be picked as decision variables, we identified two school of thoughts:
one aims to correct directly the measurement errors, i.e., the theory of errors of Gauss and
Laplace, while the other aims to estimate the projected coordinates in the map given the
measurements, i.e., the method of variations of coordinates.

The method of variation of coordinates appeared mainly due to the limitations, or per-
ceived limitations, of the preceding theory of errors26.

1.5.1 Comparison with SLAM

In no particular order, the commonalities are listed as follows:

A spatial inference problem Even though geodetic adjustment is not concerned with the
locomotion of a robot like SLAM, it is a problem of spatial inference. After all, geodesy
is the study of the shape of the earth, which involves mapping. Measurements are
plagued by uncertainty coming from imperfect observations. In arc meridian problems,
the trajectory could be considered as the meridian curb joining both ends of the chain
of triangles, although, obviously this line which has not been travelled.

Drifting The phenomenons of drift by error accumulation and adjustment by closure af-
fect both SLAM and geodetic adjustment. Any approach of such problems consisting
solely on the minimization of the observations errors is doomed, giving rise to the need
of closure mechanisms and concepts enabling the combination of equations of condi-
tion/likelihood functions.

Hidden systematic errors in some measurements Local biases affect some instruments.
It is the case with the repeating circle, when set in astronomical configuration, as well

26In part of the literature, the method of variation of coordinates is considered as part of the “theory of
errors”. We chose not to include it to mark the difference with the approach of Laplace and Gauss that is
described in §1.4.2 and §1.4.3.



44 CHAPTER 1. PRE-ROBOTICS ADJUSTMENT: THE ERRORS TO BE FEARED

as with modern inertial units (typically both accelerometers and gyroscopes are affected
by bias).

Probabilistic formulation Estimation queries are answered based on a probabilistic for-
mulation: the joint pdf is a product of the densities of the observations. We have seen
that there are several ways to pose the estimand (see table 1.1). In the modern version of
equation (1.1), the elements φ(V −M) are replaced by the conditionals p(zk|Xk) where
zk denotes the k-th measurement and Xk denotes a subset of the hidden parameters X .
Finding the maximum likelihood estimate amounts to maximizing the product:

X̂ = argmax
X

M∏
k=0

p(zk|Xk). (1.3)

This is similar to modern probabilistic SLAM formulations, as we will see in section 2.1.

Modelling of uncertainty by additive Gaussian noise The peculiar process by which
measurements where made with the repeating circle licensed the application of the cen-
tral limit theorem. The modelling of error curves as Gaussians distributions became
justified. Eventually, even for small samples, the assumption that random variable are
normally distributed became a very popular one, including in SLAM, for it leads to easy
mathematical derivations and manipulations (e.g., the simple mechanics of marginal-
izations and conditioning with covariance and information matrices, see Schön and
Lindsten (2011)).

Least Squares A consequence (or motivation) of last point assumption, is that X̂ can be
obtained by nonlinear least squares optimization.

Poses/Positions as decision variables The last approach of geodetic adjustment we re-
ported in 1.4.4 proposes to solve directly on the position of stations of interest, while
previous methods tried to correct the errors. This simplifies the formulation of the joint
pdf compared to Gauss’ approach, as each measurement simply becomes a factor in
the joint pdf. This view is inline with well established SLAM techniques of maximum
likelihood estimation such as factor graphs (Dellaert and Kaess, 2017), GraphSLAM
(Grisetti et al., 2020), etc.

On the other hand, from the view point of established least squares SLAM algorithms,
we can point out some archaisms due to the young age probabilistic theory. We noticed that
Laplace gave confidence intervals only in one dimension. Absent is the notion of correlation
between variables. The topic is avoided by making frequent use of marginalisations in order
to reason on only 1 variable. Whenever a correction affects many decision variables (e.g., due
to baseline closure), the results are given as if marginalizations were done concurrently, not
in a modern joint probabilistic way. Other difference with modern SLAM (and modern data
fusion in general), the measured lengths of the baselines were considered exact by Delambre
(and then by Laplace), which was not the case (Vincent, 1998) as unavoidable errors also
accumulated during this delicate process. A modern and more rigorous view should attach
some uncertainties to those measurements. To adhere to Delambre judgement about the
relative precision of measurements (see quote in 1.4.1), the precision of the baseline lengths
should be superior to the precision of the angles. More broadly, a single adjustment system
that encompasses the baselines, the triangles, the astronomical latitudes (with biases) and the
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ellipse parameters of the meridian is not proposed. They are treated separately by Legendre
and Laplace.

1.5.2 Facets of early geodetic adjustment missing in SLAM

At this point, it may be tempting to establish a parenting link between geodetic adjustment
and the modern prevailing view of SLAM. The scientific achievements of the early 19th cen-
tury celebrated so far in this chapter would just be an inspiring perspective in that regard.
Potentially, this could also evoke further thoughts on the shift from other approaches of state
estimation, like the Kalman filters or the Rao-Blackwellized particle filters27, back to the
“initial” approach, i.e., the one involving the method of least squares.

However, this is not our view. We believe there are other fundamental differences between
the 1820 geodetic adjustments and the established view of SLAM, and that actionable lessons
can be learned here.

Firstly, let’s recall the identification early in 1799 that the baseline closure only affects a
part of the triangles (quote in 1.4.1), in this case those between the first and second baselines.
This has been shown in the 1799 special commission document, and reiterated by Delambre in
Basis, see subsection 1.4.1. The same aspect is known in SLAM, as quoted in the same section
1.4.2 (Chatila and Laumond, 1985), but as we will see in the next chapter those qualitative
considerations have progressively become unused.

Secondly, the geometrical aspects of the adjustment problem lead Laplace to consider the
cases of mismatch (in triangle and baseline closures) as hard constraints. It can be stated that
Delambre shared this view since he spoke of restoring harmony of the geometrical laws, see
1.4.1. In addition, to solve those constraints, it was necessary to know where their violations
come from, i.e., what are their causes. The causes were the unavoidable measurement errors.
Therefore, the decision variables were the errors attached to the observations. Which is
why this early probabilistic framework is often referred as the theory of errors, and Laplace
even mentioned a theory of corrections, as explained in subsection 1.4.2. Any additional
geometrical construct, like the distance from one extremity of the chain to the other (arc
length), is considered to be a function of the errors. This is made clear in the quoted passage
from Essay (Laplace, 1814a). Conceptually, and to our surprise, the angles of the triangle,
the lengths of the sides of triangle, the geographical coordinates of the stations, and any
other geometrical construct are not decision variables in the inference step. These elements
are instead byproducts of the measurements errors, completed by structural knowledge of
geometry. The uncertainty of the deduced geometric elements is also a function of the a
posteriori precision of (some of) the error variables.

This view profoundly differs from the inference strategies employed in modern SLAM
and in the method of variation of coordinates, mentioned in subsection 1.4.4. The decision
variables, i.e., the object of inference, are generally the poses and the landmarks, not the errors
emanating from the sensor imperfections. In the modern and celebrated view of SLAM, the
measurements account for noisy geometric associations between decision variables: these are
soft constraints that appear as factors terms in a joint distribution (similar to equation 1.1).
In contrast, the overall Laplacian approach of geodetic adjustment appears to be of a quasi-
deterministic nature: most functions are deterministic (trigonometric relations) decorated
with probabilities, rather than a largely probabilistic one. To show that this claim has merit,

27Especially since filtering techniques are more recent inference concepts than the method of least squares.
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and understand why the quasi-deterministic approach is a viable alternative, we propose a
deeper investigation of Laplace conception in the next paragraphs.

1.5.3 The Laplacian doctrine: systems, causality and probability

Remark 1.3 (Disclaimer). The purpose of the subsection is to provide explanations about the
Laplacian approach to concepts causal determinism, probabilities and uncertainty in general.
The subject is not to agree or disagree with Laplace on the problems of existential aspects of
the universe, on ontological questions etc. The goal here is to identify his way of thinking,
in particular how the concepts mentioned are organized. This is done in order to see how
it influences his approach to geodetic adjustment, and finally, by virtue of the similarities
that we mentioned above between geodetic adjustment and SLAM, why all this is relevant in
robotics.

The philosophical formalization of Laplace’s concepts on probability theory is given in
the first words of Philosophical essay on probabilities (Laplace, 1814a). The text is only a
few pages long and is no doubt the most discussed aspect of Laplacian thinking (far beyond
geodesy). In this text, a causal deterministic view of the world is proposed. As a thought
experiment, it is postulated that if an entity, at any point in time, possesses complete knowl-
edge of (a) the state of all particles in the world at some point, and (b) all the forces in
nature, then, nothing would be uncertain in the past nor in the future, provided that infinite
computations (a.k.a. Laplace’s computation) are made available to conduct the analysis. An
entity, in the text, is an intellect. This idea is presented at the first pages of the essay, and is
not mentioned later on. Nonetheless, it seems that most subsequent comments which often
mention it as the Laplace demon, ignore the remainder of the essay, for a philosophical es-
say on probabilities should mostly talk about (relatively) dull considerations on probabilities.
Besides, the deterministic view of the world was not a Laplacian specificity. Other scholars
had already proposed the thought experiment. According to Van Strien (2014), “this seems
to have been an idea that was widespread around the time that Laplace first expressed it in
1773, particularly in France”. Van Strien points out that variations of the calculating intel-
lect/demon argument were already given by D’Holbach, Condorcet, Diderot, Maupertuis and
Boscovich. The last two names have already been mentioned in this document in regard to
geodesic triangulations in the mid-18th century. Belgian geodesist Liagre also made, later, a
similar statement when introducing probability calculus (Liagre, 1852, §1). Kožnjak (2015,
2022) shows that the first of such statement was actually given by Boscovich, decades before
anyone. The real question to ask, in the case of Laplace’s statement, is what purpose serves
this proclamation of causal determinism in a book on probabilities ? Contextually, Laplace
intellect/demon statement appears to be well-placed catch phrases in the beginning of an
essay for the general public. But besides the opportunity of capturing the reader’s attention
and imagination, the main point of these first pages is precisely to pinpoint where the con-
cept of probability lies. The word “probability” appears in the main text only once the words
“cause”, “knowledge”, “ignorance”, “system” have occurred, respectively, 6, 3, 4 and 3 times.

One might wonder how these words organize themselves with the notion of probabilities
into a coherent framework. We believe it is now worthwhile to digress on the Laplacian
mindset as: (a) it will be the one eventually used for practical purposes in this document,
(b) it differs from the dominant so-called Bayesian perspective. The following explanation of
Laplace views can be reasonably inferred by relying on historical context and other writings
from the famous geometer.
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Laplace, born in 1749, was deeply impressed by advances in understanding made in the
prior century28. For him, the 17th century had been deemed as the one that “gives the most
honor to human spirit” (Laplace, 1814a, p218). This suggests that the objective was to dis-
cover the foundational principles (e.g., Newton’s laws, Kepler’s laws), then use them to build
systems to explain nature, packed with deterministic notions. In his book on the arc merid-
ian measure, Guedj (2000, chap 11) calls it the “systematic spirit”. Besides, the regularity
of motions observed in astronomy lead to a cause-effect temporal mechanism, i.e., this is the
causal physical determinism that was stated by many before him (Van Strien, 2014; Kožnjak,
2015, 2022). As a man of the late 18th century29, Laplace moderates these expectations by
declaring the full comprehension of all cause-effects relations in nature (the one achieved by
the intellect) to remain off-limit for the human mind (infinitely far). However, this does not
justify the abandonment of the causal deterministic view of the world. Probabilistic tools
have tremendously helped Laplace in astronomy, particularly by disentangling slight devia-
tions from models being caused either by observation errors or by new phenomena. Laplace’s
achievements in astronomy notably included a first order proof of the stability of the solar
system, and a refined prediction of the motion of the moon (Laplace, 1796). He even derived
from the perturbations of the motion of the moon a precise estimate (for the time) of earth
flattening coefficient: 1/305 (Laplace, 1796, livre IV,chap 5), later refined to 1/301 (Laplace,
1820, p362). For him, the regularity observed in the motion celestial bodies, “without a
doubt”, happens in all things. Hence, systems (by interpreting, causal systems) should be
built to account for the state of understanding for a given topic. This is the “spirit of systems”,
as opposed to the “systematic spirit”. The “spirit of systems” was prevalent in the later 18th
century period (Guedj, 2000)30. Those systems are quasi-deterministic as opposed to fully
deterministic. This is precisely where his conception of probabilities comes: “they are related
partly to our knowledge, partly to our ignorance”. Unavoidable errors may appear once data
(observations, events) are provided, as they induce a mismatch between the deterministic
relations in the system (input from knowledge) and the data (e.g., the closures in geodetic
adjustment). While errors are indeed to be feared, probabilistic tools can be pushed forward
to bet against the errors, e.g., “[...] the mass of Saturn is 3,512th part of that of the Sun.
I find that there are 11,000 to bet against 1, that the error of this result is not a hundredth
of its value” (Laplace, 1814a, chap 8). Thus, the role of probabilities is to mathematically
capture what is not deterministic, i.e. the exogeneous perturbations we ignore, or we chose
to ignore in our model, and to offer quantitative analysis (most probable results, confidence
bounds, etc.). The calculus of probabilities considers the errors as its primary variables of
interest (hence the theory of errors), while the uncertainty affecting other variables can be
deduced downstream, once the errors have been adjusted, using the deterministic relations
(e.g., the interval confidence bounds for the length of a meridian).

The implication of that view is that the causal model is assumed, initially, from assump-
tions derived from domain knowledge, not from the data. In computer science, this paradigm

28His historical review of astronomy occupies a large part of his other book published: “System of the World”
(Laplace, 1796).

29D’Alembert, mathematician and figurehead of the enlightenment, was a mentor of Laplace.
30Some other members of the Académie des Sciences took advantage of the Révolution power shift to organize

society in systems (education, civil rights, territories, etc.). A political leader opposed to those costly projects,
Marat (1791), complained about the system-mania of the scientists in a violent letter entitled Charlatanisme
Académique, hence providing corroboration to the argument made.
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has been championed and further developed by (Pearl, 2009), author of Causality. The data
can only be interpreted throughout either an already established model, or a provisional one.

1.5.4 Causal assessment in geodetic adjustment and lack of formalization

Recall, from subsection 1.4.2, that the application of probability theory to geodesic opera-
tions by Laplace is addressed in two documents: the “Philosophical Essay on Probabilities”
(Laplace, 1814a) and in the second and third supplements of “Théorie Analytique des Prob-
abilités”. In both instances, the description of the problem starts with the same sentence
(Laplace, 1820, p531):

Causal Statement 1.1. We determine the length of the great arc on the surface of the earth
by a chain of triangles which rest upon a base[line] measured with exactitude.

Given that causal statement 1.1 is the starting sentence of the supplement, this corrob-
orates the fact that the model is described first. Furthermore, note that the statement is
directional, i.e., baseline → (triangle 1 → triangle 2 → . . . → triangle 115) → length of a
great arc. This aspect is important: it is a causal statement that describes the structure of the
geometry. It does not just declare that the baseline, the triangles and the arc length covary
(or are linked) with each other. In other words, the statement is not associative. Neither
is it a chronological statement. Indeed, recall from section 1.1 that the geodesic operations
started in 1792 with both Delambre and Méchain covering a distinct portion of the meridian.
The first baseline, Melun-Lieusaint, was only measured in 1798 (Guedj, 2000; Alder, 2003;
Vincent, 1998), after most of the triangles were completed. In the beginning of “Philosoph-
ical Essay on Probabilities”, analyzed in the previous subsection, Laplace speaks of cause
and effect only in terms of chronology, using astronomy as the motivating example. When
it comes to geodetic adjustment, it is crucial to note that causality is expressed in the order
necessary for geometric construction. Indeed, without at least one baseline (pre-1798), the
only data available were the angular measurements which are insufficient to construct any of
the triangles.

In contrast, modern SLAM does not represent the construction of the environment in a
causal way, rather in an associative one. Although it is known that, for a typical SLAM
setting, a robot pose, denoted xi, is caused by the robot pose xi−1 at the previous time (plus
some relative motion), the probabilistic tools used to described that relation only says that
xi−1 and xi correlate with each other31. Besides, the errors are not explicitly introduced as
variables. In that regard, modern probabilistic SLAM shares similarities with the method of
variation of coordinates described in 1.4.4. The whole starting point of the SLAM problem
is in fact often presented as a joint distribution, whose variables (poses and landmarks) are
sparsely connected. It has not always been like that, but we can explain why and other views
are possible, as we will come to see in the next chapters.

Nonetheless, a reason why the mindset presented for geodetic adjustment, which includes
causality, has not been popular in SLAM is the lack of formalization. Indeed, Laplace ‘only’
proposed a calculus for probabilities. How the notion of probabilities fits together with the
wider system and causality viewpoint, as explained in subsection 1.5.3, is only explained in
the text, for left to be parsed by the attentive reader. This is quite unfortunate, since, if
we want this mindset to be an inspiration for SLAM, we need to be able to program the

31This remark encompasses several techniques such as Kalman filters, the Rao-Blackwellized, or Smoothing-
and-Mapping and GraphSLAM techniques
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full paradigm, not just the aspects that relate to probabilities. That was not explained by
Laplace, nor was it, to our knowledge, by his immediate successors32. For a more actionable
framework to approach a causal representation of the SLAM problem, we will eventually turn
to Pearl’s structural causal model (SCM) in this document (Pearl, 2009).

Thus, we can only surmise that since (a) enticing techniques for probabilistic inference
were proposed, and (b) conversely, a mathematical language for causal thinking was not
available, then the early tools of probabilistic inference eventually thrived and were built
upon for estimation tasks and later on for statistics. However, there was no highlight of the
importance of setting probabilistic calculus within a prior causal structure.

Mathematical frameworks to express and manipulate causation are now more advanced
and can, presumably, be employed for a Laplacian quasi-deterministic view of SLAM, just
like there was a Laplacian view of geodetic adjustment.

1.6 Discussion

In this first chapter, we have analyzed the methods for processing geodesic operations. No-
tably, a specific challenge concerns the determination of the arc length of the Paris meridian
(1792-1799). It was related to the advent of the metric system and helped to push forward
probability theory. Thanks to an investigation which included primary sources, the first
contribution of this study is to synthesize and join two reflections together: (1) about the
common patterns between this problem and SLAM (in particular the geodetic adjustment
problem that deals with the closures), and (2) about how this problem accompanied funda-
mental theoretical development in probability theory. On (1), it is inspiring that Laplace
(1820)’s “Théorie Analytique des Probabilités”, spends a large part of the book on a SLAM-
like problem. On (2), solid and enduring principles were laid out in a relative short period
of time, thanks to the intertwined contributions, mainly, of Laplace, Legendre, Gauss and
Delambre. In particular, Laplace’s approach to geodetic adjustment was the most advanced
at the time partly thanks to his mastery of the new mathematical tools, and partly thanks
to his conception of probabilities within a quasi-deterministic causal conception of the world.
Identifying the significance of this facet is the second contribution of this chapter.

The aspects related to causality, which Laplace did not attempt to formalize, are as un-
derappreciated for the problem of geodetic adjustment as they are today for the problem of
SLAM, if not outright non-existent. After 1820, it seems that no serious effort was made
on that topic. As a result, the theory of errors, although it was partly developed in France,
slowly declined despite dire needs for theoretical improvements, as made clear in the case
of the French map of 1830 (figure 1.12). Without the causal doctrine backing the theory of
errors, even the method of least squares became threatened at some point (as per §1.4.5).
One can consider that the notions of causal reasoning are too metaphysical in nature and
that they do not need to be formally represented, that these just concern human cognition33.

32The de-facto reference in questions of geodesy after Laplace’s death was Louis Puissant (Levallois, 1988;
Berthaut, 1898a), a seasoned practitioner of geodesic operations, but not a contributor to probability theory.
Puissant (1842, p410-414) tried to generalize the application of Laplace’s results, given for a chain of triangles,
to a network (the 1830 French map, see figure 1.12). However, this generalization was unwarranted, as chains
and networks have inherently different causal models due to the latter containing loops.

33Recall that prior to the “Gauss-Laplace” synthesis, the definition of error curves and the combinations of
equations was also non-formal (Alder, 2003; Stigler, 1986).



50 CHAPTER 1. PRE-ROBOTICS ADJUSTMENT: THE ERRORS TO BE FEARED

However, for the task of emulating spatial understanding close to human level, these notions
may well be necessary, if only for being able to implement them in a computer which do not
possess, a priori, these cognitive capabilities.

We will address the ramifications for SLAM progressively in the next chapters. An analysis
of the issues of modern SLAM is first given (chapter 2). Notions of graphical representations
are introduced, for our approach to SLAM relies heavily on them to reason about conditional
independences between variables. In chapter 3, we use the structure of Causal Bayesian
Networks to improve upon existing SLAM algorithms in order to exploit causal relationships
along the robot trajectory. This is our first attempt to insert causal knowledge in a SLAM
structure. In chapter 4, we decide to reformulate the SLAM problem using the paradigm of
SCM. We also give some of our perspectives on the problem of spatial understanding.

In the ‘epilogue’ (chapter 5), we come back to the problem of geodetic adjustment, for
which we propose a causal representation, using the tools developed in chapter 4.



Chapter 2

Successes & Anomalies of Modern
SLAM

In the concluding sentences of the previous chapter, we brought up the delineation between
the ability to solve the spatial state estimation problem and the wider notion of spatial
understanding. Solving the spatial state estimation problem, for a robot, consists in inferring
a consistent state of its close environment given local observations of it. In this chapter, we
review the major solutions proposed to the state estimation problem, and we challenge the
currently well-established mathematical representation of SLAM. In particular, we seek to
investigate whether it is capable of transcribing common-sense considerations about SLAM.
This common mathematical representation is the joint probability density function (pdf),
whereby the hidden state is the set of robot poses and landmarks, and the evidence is the set
of observations. There are other formulations, arguably less formal, that we do not include
in this review. They are more tuned for specialized use cases while we try here to remain
general. Such examples notably include variants of volumetric structure (occupancy maps,
etc.).

The following principle is hypothesized: human beings and animals possess basic intuitions
about their situation and evolution within their surroundings, e.g., to give just two generally
agreed upon examples: one’s current position is his/her/its past position plus the relative
motion undergone within the subsequent time interval; if lost in a city or in nature, re-
observing a recognizable landmark informs about the path travelled since the last observation
of the same landmark; etc. Without doubt, these collections of judgements would presumably
be useful in the emulation of human-level spatial understanding. But, even if we limit ourselves
to the scope of state estimation, we expect these judgements to be incorporated in some ways,
so that they participate in the adjustment process.

Thus, by investigating the suitability of the common formulation of SLAM in regard to
these considerations, we will shape an answer about whether (a) we should use the existing
mature formulation and build upon it, or (b) we should instead propose distinct SLAM
statements in the next chapters.

The rest of the chapter is organized as follows: section 2.1 presents the existing ap-
proaches of SLAM, their fundamental assumptions, their possible graphical representation,
and a method to the maximum likelihood estimate (MLE) of the robot trajectory and land-
mark positions. Similarities between (a) the MLE SLAM and (b) both Gauss formulation
and the method of variations in geodetic adjustment problems will surely be noticed. We
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then summarize, in broad outlines, the successes achieved by this paradigm. In section 2.3,
we analyze the adequacy of this formulation along three axis: features, faithfulness and com-
plexity. Finally, the last section discusses the takeaway points in order to articulate the work
of the next chapters.

2.1 Principles of probabilistic SLAM

In the period named as the “classical age” (1986-2004) by Cadena et al. (2016), the first
probabilistic formulations of SLAM were given: the (large) family of Kalman filters (KF)
(Sola, 2014; Bourmaud et al., 2015; Ćesić et al., 2017, e.g.,), the Rao-Blackwellized Particle
filters (RBPF) and maximum likelihood estimators (MLE). Under the MLE terminology, we
broadly gather approaches such as graph-based SLAM (Lu and Milios, 1997; Thrun et al.,
2005), Smoothing-And-Mapping (Dellaert and Kaess, 2006; Kaess et al., 2008, 2011) etc.
Arguably, among those, the most popular have become those based on MLE in view of their
versatility. However, historically, it can be considered that KF and RBPF reached maturity
before MLE. Durrant-Whyte and Bailey (2006) mainly reviewed KF and RBPF approaches. A
pivotal reference that presents these 3 approaches (and much more) is “Probabilistic Robotics”
(Thrun et al., 2005).

The MLE approach is now considered well established (Rosen et al., 2021). Note however,
that these approaches share the same fundamental conceptual basis. Indeed, the main differ-
ence between MLE and filtering techniques is the process by which the joint pdf is reduced1.
For instance, KF systems typically use successive marginalizations so that only the most
recent pose is kept, while the previous poses are integrated out. The starting point of the for-
mulation, the full joint pdf, is however similar. As with geodetic adjustment, we emphasized
three different probabilistic formulations (Table 1.1), but they were different. Two of them
solve for the errors while the remaining one solves for the geographical coordinates (variation
of coordinates). For SLAM, however, all other things being equal, the initial probabilistic
formulation is almost similar for KF, RBPF and MLE. We will develop this formulation and
its implications in the next subsection.

We mainly focus on the MLE framework because it is the more mature, i.e., algorithmically
analyzed2. Overall, it is the most promising, for wider perception systems often build upon
it (e.g., see Hughes et al. (2022)). This framework highlighted the key role of sparsity for
performant SLAM and propelled the development of highly efficient libraries (Grisetti et al.,
2020; Ila et al., 2017; Wang et al., 2018; Dellaert, 2012; Rosen et al., 2019; Kummerle et al.,
2011).

2.1.1 Probabilistic formulation

It is not unusual to present the SLAM estimation problem directly in terms of a joint pdf, or
sometimes, more expediently, as the underlying optimization problem. But as our purpose
is to discuss the adequacy of the mature joint pdf formulation, it is necessary to collate it
with a verbose expression of a SLAM problem. Therefore, throughout this chapter, we give

1In the R.A. Fisher statistical sense of the term reduction (Fisher, 1922): “the object of statistics is the
reduction of data”.

2This is again a reference on the term used in Cadena et al. (2016), where “algorithmic-analysis” age denotes
the period after the “classical age”.
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verbose statements describing several small sized scenarios (toy problems) and we investigate
the suitability of the targeted statement.

Box 3: SLAM Scenario 1

From a starting pose, arbitrarily denoted x0, a robot is fed sequentially 5 control inputs
U ≜ {u0, u1, u2, u3, u4}. A first landmark, denoted la is discovered (no prior knowledge)
by a robot exteroceptive sensor at time t1 and re-observed at t4. A second landmark
lb is discovered at t2 and re-observed at t3. Robot motion and sensor measurements
Z ≜ {z0, z1, z2, z3} are affected by noise. We assume no adverse effect due to the robot
inertia, false sightings, outliers, etc.

Objective: The inference problem consists in establishing the state estimation of the
robot poses X ≜ {x1, x2, x3, x4, x5} and the landmarks position L ≜ {la, lb}.

Figure 2.1: Illustration of the SLAM Scenario 1 presented in box (3).

In box 3 (figure 2.1), we consider toy scenario 1, which we will rely on to present the es-
tablished probabilistic SLAM principles. For now, we abstract away the types of the elements
in X and in L (e.g., resp. SE(2) and R2). X and L can be called the hidden state (estimation
context), the decision variables (in optimization context), or the parameters.

The first step of the probabilistic SLAM approach is to translate the stated objective in
formal probabilistic terms.

Assumption 2.1 (Probabilistic SLAM). The inference problem is expressed as the estimand
p(X ,L|U ,Z, x0), referred as the joint posterior pdf.

We are mainly interested in the mode of p(X ,L|U ,Z, x0), i.e., the most probable values
of X and L given all known variables U and Z. This is referred as the maximum a posteriori
(MAP). The marginal posterior covariance over a subset of the decision variables may also
be part of a query, depending on the task.

In order to detail the expression joint pdf for toy scenario 1, statistical assumptions must
be formulated.

Assumption 2.2 (Probabilistic SLAM). The joint pdf is a product of estimand which involved
a subset of the decision variables, they are named ‘factors’, or ‘potentials’. Each potential es-
tablishes a statistical relation between the local hidden geometric entities (poses, landmarks)
involved at the time of the perception or the control event. The noises affecting the measure-
ments in each factor are considered mutually and individually independent.

In toy scenario 1, the factors emanating from controls are p(x5|x4, u4), p(x4|x3, u3),
p(x3|x2, u2), p(x2|x1, u1), p(x1|x0, u0) ; and the landmark relative observations give p(z0|la, x1),
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p(z1|lb, x2), p(z2|lb, x3), p(z3|la, x4). This may also be referred, respectively, as the motion
model and the observation model (Thrun et al., 2005).

The Bayesian perspective is adopted to link up the factors to the joint pdf p(X ,L|U ,Z, x0):

p(X ,L|U ,Z, x0) ∝ p(U ,Z|X ,L, x0)p(X ,L|x0), (2.1)

where the term p(U ,Z|X ,L, x0) denotes the likelihood function, i.e. the probability of mea-
surements and controls given an assignment (X ,L), and the term p(X ,L|x0) is the prior
probability which captures prior knowledge. Assumption 2.2 gives the license to decompose
the likelihood term p(U ,Z|X ,L, x0) into a product of factors.

Let φk(Xk) denote a factor which involves a subset of the decision variables X . This
subset is denoted as Xk and called the scope of factor φk. The likelihood term rewrites as:

p(U ,Z|X ,L, x0) ∝ φ0(x1)φ1(x1, la)φ2(x1, x2)φ3(x2, lb)φ4(x2, x3)
× φ5(x3, lb)φ6(x3, x4)φ7(x4, la)φ8(x4, x5) . (2.2)

In equation (2.2), a correspondence was made between the motion and observation models
mentioned earlier and the factors: for any k, φ(xk, lk′) ∝ p(zk′′ |xk, lk′) and φ(xk−1, xk) ∝
p(xk|xk−1, uk−1) (Dellaert, 2021, §2.1).

As there is no other prior knowledge, p(X ,L|x0) is flat and the MAP estimation problem
of equation (2.1) also corresponds to the MLE (Cadena et al., 2016). This is the case for toy
scenario 1 (Box 3). But even in problems that contain other prior knowledge on X and L,
these terms p(X ,L|x0) can be viewed as additional likelihood factors (see Cadena et al., 2016,
§2), and their causes of existence (measurement, prior, etc.) are irrelevant in the subsequent
steps of the estimation process3.

Notation simplification: Following the standard adopted in the literature, we repurpose
the symbol X to cover all decision variables, i.e., both poses and landmarks. Since, in the fac-
tor graph paradigm, the distinction between controls and measurements has become nonessen-
tial, both of them are gathered in z (u does not appear anymore) labeled by the index k of
the factor they are attached with.

All in all, defining the full set of factors as Φ, and its cardinality as |Φ|, the following
holds:

ϕ(X ) =
|Φ|−1∏
k=0

φk(Xk). (2.3)

In summary, the conjunction of assumptions 2.1 and 2.2 lead to the representation of
probabilistic SLAM problems as a product of factors, aggregating terms stemming from mea-
surements, control and prior knowledge. Simply put, we now have p(X ,L|U ,Z, x0) ∝ ϕ(X ),
so that ϕ(X ) is the mathematical object of choice to continue the estimation process. Typi-
cally, the MAP (or MLE) is found by maximizing the product of factors:

3When prior knowledge on the landmarks do exist (or more rigorously, on the landmark given the first pose
x0), it is generally artificially reconsidered as a measurement, and subsequently treated as a factor. If there
are no correlations between the prior knowledge of several landmarks, then each landmark receive a unary
factor. For instance, see Dellaert and Kaess (2017, fig 1.2).
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XMAP = arg max
X

ϕ(X ). (2.4)

According to Thrun et al. (2005, §11.10), the seminal introduction of this paradigm was
done by Lu and Milios (1997). The pose-graph problem was addressed, i.e., a SLAM problem
restricted to the robot trajectory, and where the factors typically come from alignment of
laser range scans and/or proprioceptive sensors.

Remark 2.1. As mentioned before, alternative approaches such as KF and RBPF have also
used the joint pdf as the cornerstone to SLAM. For instance, rather than starting by a prior-
likelihood factorization, as in (2.1), FastSLAM (Montemerlo et al., 2002, eq 4) uses Bayes
rule to factorize the landmarks with the last pose, before decomposing the landmarks (using
the assumption that the landmarks become independent conditioned on the trajectory and the
measures). In contrast to the MLE technique, where virtually any information is transformed
into a likelihood factor, these approaches maintain a richer representation of the joint pdf by
preserving other types of conditional probability distributions (CPDs). Typically, the motion
models of the form p(xi|xi−1, ui−1) are not cast as likelihoods. But fundamentally, the key
assumptions 2.1 and 2.2 of probabilistic SLAM remain valid for those approaches. Therefore,
although the arguments developed on the next sections mainly discuss the MLE framework,
the key assumptions of probabilistic SLAM are ultimately questioned.

The next step consists in solving equation (2.4), i.e., how the MAP is inferred. However,
we first give an overview on the possible graphical representations of this view of the SLAM
problem. A valuable feature of graphical representation of joint distributions is their ability
to visually convey conditional independences (Dawid, 1979; Pearl and Paz, 1985), revealing
what assumptions are being made when posing the SLAM as a joint pdf (or what additional
implications are entailed). This will be useful for the remainder of the document.

2.1.2 On the graphical representation of probabilistic SLAM

We split the existing graphical representations of joint pdfs into two classes: directed and
undirected. As the latter can be inferred from the former, the directed graphical is presented
first.

Definition 2.1 (Bayesian Network (BN)). From (Koller and Friedman, 2009, def 3.5), (Dar-
wiche, 2009, def 4.1).

A BN for variables V1, . . . , Vn is a pair (G, P ), where:

• G is a directed acyclic graph (DAG) over the nodes (vertices) V1, . . . , Vn.

• The joint pdf P (V1, . . . , Vn) is expressed as a product of conditional probability distribu-
tions (CPDs), one on each variable in V1, . . . , Vn, i.e.,

P (V1, . . . , Vn) =
n∏

i=1
p(Vi |PaG

Vi
), (2.5)

where PaG
Vi

is the set of Vi’s parents in the DAG G.
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For nodes without parents (a.k.a. source nodes), PaG
Vi

= ∅.
The interest of DAGs is that the independences in the underlying joint pdfs can be visually

identified using a graphical criterion, called directional separation, or d-separation for short.
This is what motivated the development of Bayesian Networks (Pearl, 1985, 2022).

Definition 2.2 (d-separation). , from Pearl et al. (2021, def 2.4.1).
We say that a path between two nodes A and C of G is blocked by a set of nodes Vz if and

only if:

1. the path contains a chain of nodes A→ B → C, or C → B → A, or a fork A← B → C
such that the middle node B ∈ Vz, or,

2. the path contains a collider A→ B ← C such that neither the collision node B nor any
of its descendants belong to Vz.

If Vz blocks every path between two nodes A and C, then A and C are said to be d-separated
conditioned on Vz.

If two variables A and C are d-separated in a graph G conditioned on a set Vz = {B}, then
A and C are conditionally independent, given the set Vz, in the corresponding distribution P
(Darwiche, 2009, theorem 1.2.4). We will note:

(A ⊥⊥ C|B)G =⇒ (A ⊥⊥ C|B)P (2.6)

The set of blocked nodes Vz will henceforth be colored in gray (e.g., nodes B in figure
2.3). In the probabilistic SLAM problem, the gray nodes generally correspond to the available
measurements and controls (U and Z). Figures 2.2 and 2.3 shows different patterns (chains,
forks, colliders) and how d-separation applies in those cases.

Figure 2.2: (a) chain, (b) fork and (c) collider patterns in Bayesian Networks. The set of blocked
nodes is empty, Vz = ∅, therefore, given definition 2.2, (A ⊥⊥ C|Vz)G is true only for the collider (c).

Figure 2.3: (a) chain, (b) fork and (c) collider patterns in Bayesian Networks, where the set of
blocked nodes is Vz = {B}. The d-separation criterion leads to (A ⊥⊥ C|Vz)G for cases (a), (b), but
not for (c).

Remark 2.2. Different authors attach different names to the graphical concepts presented
above. A chain, a fork and a collider are called, resp., a causal/evidential trail (depending on
the direction), a common cause and a v-structure in Koller and Friedman (2009) while, in
Darwiche (2009) they are called a sequential valve, a divergent valve and a convergent valve.
A path that is blocked (or not) is called, resp., an active/inactive trail in Koller and Friedman
(2009), and a closed path (or not) in Darwiche (2009). In this document, for consistency, we
use Pearl’s denominations:
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• “open colliders”, such as node B on figure 2.2-(c), do not create a new path of influences
between parents,

• “closed colliders”, such as node B on figure 2.3-(c), do create a new path of influences
between parents.

Figure 2.4 shows the BN of toy scenario formed by the set of CPDs (the motion models
and the observation models). This BN representation is often found to support KF and RBPF
techniques for SLAM: see, e.g., Stachniss et al. (2016, fig 46.1), Montemerlo et al. (2002, fig 1),
Durrant-Whyte and Bailey (2006, fig 4).

Figure 2.4: Bayesian Network of toy scenario 1 described in box (3). Grey nodes denote the observed
variables.

Figure 2.5: Bayesian Network of toy scenario 1 described in box (3) and where all CPDs are likelihood
functions.

As mentioned before, in the MLE approach, all CPDs are cast into likelihood functions.
This is represented by the BN of figure 2.5. Remark that, in this paradigm, there are no
open colliders, and the latent variables are (sparsely) linked with each other through blocked
colliders. Conceptually, the BN representation has become over-featured for this type of
joint distribution. Furthermore, since any prior knowledge has also become a likelihood
function, the latent variables have implicitly a flat prior, which is arguably not elegant in a BN.
Consequently, from an aesthetic and visually effective standpoint, the factor graphs (bipartite
graph in figure 2.6) are a more appropriate choice to represent the product of factors (2.3) for
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MLE SLAM than a BN is (figure 2.5). The factor graphs, as the name suggests, are bipartite
graphs involving nodes for variables (white circles) and nodes (black dots) for every factor
uniting them in the joint pdf (2.1). This representation has been championed by (Dellaert
and Kaess, 2006, 2017) and co-authors. The notion of ‘blocked path’ for factor graphs (as well
as for other undirected representations such as Markov Random Fields) becomes simplified:
a path between two nodes is blocked if a node in that path is blocked. The qualification of
d-separation does not change: i.e., two nodes of the factor graphs are d-separated if all paths
between them are blocked.

Figure 2.6: Factor graph representation of the toy scenario 1 described in box (3) and equation (2.2).
Grey nodes denote the observed variables. Note that the observed variable x0 does not have to be
represented explicitly. The factor between x0 and x1 would be replaced by a unary factor on x1.

Remark 2.3 (Are BNs causal ?). Although Bayesian Network are often built on the basis of a
causal interpretation of a given problem, it remains nonetheless that BNs expose independence
assumptions, not causal ones. This is made clear, e.g., in Pearl (2009, § 1.3) and Darwiche
(2009, § 4.2). Suppose that a distribution P factorizes over the graph (G1 : A → B) and
that G1 has moreover a sensible causal interpretation (e.g., A corresponds to temperature and
B corresponds to thermometer). Then P also factorizes over (G2 : B → A) by application
of the Bayes rule on the expression of P . In fact, G1 and G2 are equally valid in the context
of BNs, although the latter goes against causal preconception.

However, since building a BN based on causal judgements is more accessible, graphical
structures that carry causal assumption (in addition to conditional independences) also exist,
still in the form of DAGs: these are the Causal Bayesian Network and causal graphs, which
will be addressed in subsequent chapters.

2.1.3 MLE estimator

To solve the MAP estimation problem in (2.4) as well as in geodetic adjustment, the standard
way to proceed is to assume Gaussian additive dynamic and measurement noises, so that

∀k ∈ (0, . . . , |Φ| − 1), φk(Xk) ∝ e− 1
2 h⊤

k (Xk;zk)Ωkhk(Xk;zk), (2.7)

where: hk is the model function linking the decision variables to the observations, (similar
to equations of conditions mentioned in chapter 1); Ωk is the information matrix of each
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k-th additive Gaussian measurement noise. For convenience, we abstract away hk and Ωk by
introducing the residual function rk:

rk(Xk; zk) ≜ ρ⊤
k hk(Xk; zk), with ρkρ⊤

k = Ωk,

where ρk can be obtained from Ωk via Cholesky decomposition. Equation (2.7) becomes:

∀k ∈ (0, . . . , |Φ| − 1), φk(Xk) ∝ e− 1
2 r⊤

k (Xk;zk)rk(Xk;zk) . (2.8)

Remark 2.4. The process by which the MAP in eq (2.2) is solved is akin to Gauss method
for the most plausible values of the parameters in his equation (1.1) published in 1809, and
applied to geodetic adjustment in 1821-1825 (Bertrand, 1855). However, to reiterate our pre-
vious point, the major conceptual difference is that Gauss (and more so, Laplace in “Théorie
Analytique des Probabilités”) would have solved for the measurement errors (and did it in the
case of geodetic adjustment), neither for the poses nor for landmarks.

In that regard, the standard MLE solution to SLAM is closest to the method of variation
of coordinates (subsection 1.4.4), where the core assumption 2.2 of probabilistic SLAM is
also relevant. Indeed, measuring an angle between two geodesic stations from a third one
amounts to create a statistical relation between the three stations (modeled by a new equation of
condition). Besides, it was also remarked that, since there are often less geodesic stations, i.e.,
triangle vertices, than measurements, fewer unknowns lead to a smaller system of equations
(i.e., a smaller matrix system). It was thought that it would simplify the calculations when
the number of chain closure is large (Tardi, 1934). Similarly, in SLAM, |X | is smaller than
the number of factors |Φ|, especially when the number of loop closures is large.

Taking the negative logarithm of (2.2) turns the maximization (2.4) into the least squares
optimization:

XMAP = arg min
X

|Φ|−1∑
k=0
||rk(Xk; zk)||22, (2.9)

where |Φ| = 9 in the toy scenario 1 Box 3.
In cases when the rk(Xk; zk) functions are linear in Xk, the problem could be directly

solved by linear algebra techniques. Unfortunately, the functions rk(Xk; zk) is nonlinear in
most, if not all, practical applications. Notably, the pose of the robot is generally expressed
in non-Euclidean manifolds.

To remedy this, a Taylor expansion is done/performed around a linearization point X̄ , so
that each factor is linearized around its linearization point X̄k ⊆ X̄ along:

rk(X̄k ⊕ δXk; zk) ≈ rk(X̄k; zk) + ∂rk

∂Xk

∣∣∣∣
X̄k

δXk, (2.10)

with δXk a small increment expressed in the tangent space around X̄k.
The matrix Jk ≜ ∂rk

∂Xk

∣∣∣
X̄k

will be referred to as the Jacobian matrix. It can be broken down
as a concatenation of blocks relating to the partial derivatives of rk w.r.t. each element of Xk,
see example 2.1.1.
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Example 2.1.1. Let us instantiate the approximate residual for factor φ1:

r1(x̄1 ⊕ δx1, l̄a ⊕ δla; z1) ≈ r1(x̄1, l̄a; z1) + J1

[
δx1
δla

]
.

The Jacobian matrix J1 can be broken down as follows:

J1 =
[
J1,x1 J1,la

]
≜
[

∂r1
∂x1

∣∣∣
x̄1,l̄a

∂r1
∂la

∣∣∣
x̄1,l̄a

]
(2.11)

Commonly, such optimization problems are solved by iteratively updating the state X̄ after
the optimal increment of δX is found in the local tangential space. There are several meth-
ods to update the iterative step between iterations4 (e.g., gradient descent, Gauss-Newton,
Levenberg-Marquardt, etc.). To expedite the presentation of the principles, we hereinafter
place ourselves in a standard Gauss-Newton scheme.

The incorporation of the Taylor expansion (2.10) into (2.9) yields:

δXMAP = arg min
δX

|Φ|−1∑
k=0
||rk(X̄k; zk) + Jk δXk||22. (2.12)

This least squares optimization problem (2.12) can be cast into the matrix form:

δXMAP = arg min
δX
∥AδX − b∥22, with b ≜ [−r⊤

0 , . . . ,−r⊤
|Φ|−1]⊤. (2.13)

The matrix A is composed of blocks Jk and is generally rectangular sparse with |Φ| sparse
block rows and |X | sparse block columns. The pattern of A and b for the scenario box 3 is
given in figure (2.7).

Figure 2.7: Pattern of the sparse matrix A and vector b of the toy scenario 3.

Problem (2.13) can be solved efficiently via sparse matrix implementations such as sparseQR
or CHOLDMOD (sparse Cholesky). Important points should be raised on the implications
of transforming the problem (2.9), where a global XMAP is sought, to the problem of finding
of local increment δXMAP.

4In Legendre (1805)’s original least squares publication (as per § 1.3.1), the geometer only explicitly lin-
earized once.
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First, this iterative process is applied until some convergence condition is reached. Sec-
ondly, the success of that operation is sensitive to the initialization point chosen to bootstrap
the iterative least squares. One naive choice for the initialization point is to integrate the
odometry measurements (dead reckoning). However, on large maps, the drifting effect leads
to the initialization point being out of the basin of attraction of the true MAP. Carlone et al.
(2015) show that solving a relaxed version of the optimization problem with the technique
of “Chordal Initialization” (Martinec and Pajdla, 2007) leads to compelling results on pose
graph problems. Thus, a popular approach consists in first solving the SLAM estimation on
a relaxed problem, then is using that result to bootstrap the iterative least squares process.

This concludes our brief overview of the MLE approach for the SLAM problem. We first
highlighted the fundamental assumptions that underpin probabilistic SLAM, which are in our
view common to KF, RBPF and MLE SLAM. We then focused specifically on how to turn
the probabilistic formulation and associated the joint posterior, to the BN and factor graph
representation and consequent least squares optimization problem.

2.2 Achievements of probabilistic SLAM

Recall that the formalism describes in 2.1.1 was established in the “classical age” of SLAM. It
has been dramatically enhanced in the subsequent in the “algorithmic-analysis” age, to stick
to Cadena et al. (2016) terminology.

Many successes and significant improvements have since been achieved by MLE SLAM5,
supported by a large body of literature.

A first point concerns the improvements in solvers efficiency and their diversity: a number
of libraries were developed that maximally exploits linear algebra subroutines in modern CPUs
(Kummerle et al., 2011; Ila et al., 2017; Grisetti et al., 2010a, 2020; Hess et al., 2016). Most of
these implementations rely under the hood on efficient and mature decompositions of sparse
matrices (Chen et al., 2008; Davis, 2011) provided in the SuiteSparse package. As SLAM
is fed by measurements coming sequentially over time, it benefits from implementing an
incremental algorithm. Some approaches were proposed in that vein in order to update only
a limited portion of the matrix systems as new measurements become available (Kaess et al.,
2008; Polok et al., 2013; Wang et al., 2018). But matrix-based solvers have their alternatives.
Additional insights are exploited by graphical model approach such as the Bayes tree (Kaess
et al., 2010) for iSAM2 (Kaess et al., 2011), or the clique tree (Paskin, 2002; Pinies et al.,
2012). These structures are useful tree-like graphical representation of the variable elimination
algorithm (Koller and Friedman, 2009, chap. 9) of (2.3).

Remark 2.5. As per §2.1.2, factor graphs and BN are a graphical representation of an un-
derlying joint pdf, exhibiting the sparse statistical relationships between variables. In contrast,
its corresponding clique tree (a.k.a. junction tree) represent graphically the exact inference
process by which belief propagates between cliques (clusters) of variables (by so-called ‘mes-
sage passing’). The general framework of probabilistic graphical models provides algorithms
and techniques to build clique trees from BN or factor graphs, and use them for inferential
tasks. Next chapter 3 will be the occasion to describe various mechanics concerning clique
tree structures: how to build them, how to pass messages, etc.

5Some points in the list also applies well to other variants of probabilistic SLAM, such as EKF/UKF
formulations (Ćesić et al., 2017; Bourmaud et al., 2015).
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This graphical model approach to MLE SLAM solvers has extended use-cases, e.g., for
predictive control (Mukadam et al., 2018; Yang et al., 2021). The library GTSAM (Dellaert,
2012) implements the iSAM1, iSAM2 approaches and extensions.

A major theoretical improvement compared to early SLAM solutions such as described in
Thrun et al. (2005) (where positions and rotations where typically decoupled) concerns the
widespread utilizations of Lie groups to describe the space of admissible robot poses. Indeed,
SLAM decision variables can often be described as elements of special Euclidean Groups such
as SE(2), SE(3). Optimization is then conducted on those smooth manifolds (Chirikjian, 2009;
Grisetti et al., 2010b; Barfoot, 2017). Valuable tutorials have been produced to democratize
these mathematical concepts to roboticists by Barfoot (2017); Solà et al. (2021); Deray and
Solà (2020). Additionally, new Lie groups were proposed, in particular the group of “extended
pose” (Barrau and Bonnabel, 2017) which gathers pose and instantaneous velocities into a
single decision variable. This has proved useful notably for IMU processing (Brossard et al.,
2022).

Deploying SLAM systems in real environment is challenging not only because of the sensor
noise characteristics but also because of false sightings and the data association uncertainty
(due, say, the imperfect capacity to recognize a previously visited place). Several algorithms
to reject outliers were incorporated in the optimization process of SLAM systems, which
can perform well even under many false loop-closures (Sunderhauf and Protzel, 2012, 2013;
Agarwal et al., 2013; Bai et al., 2018; Yang et al., 2020). Robust data association schemes
have also been proposed for factor graphs (Hsiao and Kaess, 2019; Doherty et al., 2019).

Previously mentioned challenges find themselves compounded in collaborative SLAM sys-
tems, where robots are supposed to work jointly, exchange information, to model their en-
vironment. However, remarkable solutions have been proposed in what seems, in our view,
the most difficult experimental and algorithmic setting, see Cunningham et al. (2013); Paull
et al. (2014); Cieslewski et al. (2018); Choudhary et al. (2016); Ortiz et al. (2022).

Finally, since SLAM systems may be deployed in life critical applications and highly
regulated environment, there is a requirement to ensure proper behavior of the solvers in view
of these challenges. Nonlinear least squares algorithms can be trapped in a local minimum,
or can fail to converge. In response to this need, a set of certifiable algorithms have been
proposed to offer global guarantees on the estimate result (Rosen et al., 2019; Holmes and
Barfoot, 2022; Fan et al., 2020; Tian et al., 2021).

However, despite these achievements, probabilistic SLAM (including MLE SLAM) has
profound issues, if not anomalies. In the next section, we identify these points in view of
proposing improvements.

2.3 Analysis of current estimation issues

We now point out some problems in this currently dominant approach along three axes:
reasoning features, faithfulness and complexity. The first axis presents several basic aspects
of spatial reasoning not promoted by the probabilistic formulation. The second axis addresses
inconsistencies and dilemma in the pattern of conditional independences when a loop-closure
shows up. Finally, the third axis discusses general performance challenges faced by solvers of
MLE SLAM.
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2.3.1 Reasoning features

The first axis of issues we explore are the lack of innate spatial reasoning features of proba-
bilistic SLAM when challenged with simple problems. We investigate the capabilities of MLE
SLAM, through its graphical representations, to cope with what we consider to be important
embedded mechanisms of spatial intelligence. These four features will be labeled by symbols
f1, f2, f3, f4. We go through them one by one.

f1· Explaining missing data There is no built-in mechanism able to account for missing
data. If a robot travels roughly in a loop shaped trajectory and overestimates the
travelled path, then when it reaches the area where it is supposed to get a loop closure
observation relating to a place already visited, no data enters the probabilistic SLAM.
This is the scenario considered in box (4), illustrated in figure 2.8, and corresponding
to the factor graph shown on figure 2.9.

Box 4: SLAM Scenario 2

From a starting pose, arbitrarily denoted x0, a robot is fed sequentially 6 control
inputs U ≜ {u0, u1, u2, u3, u4, u5}. The path travelled corresponds to a loop. The
robot is able to recognize a place already visited located in front of it. Dead-
reckoning estimates the robot position to be at x6 close to x1. However, no place
recognition measurement is made. We assume no adverse effect due to robot
inertia, false sightings, outliers, etc.

Objective: The inference problem consists in estimating the robot pose se-
quence X ≜ {x1, x2, x3, x4, x5, x6}.

Figure 2.8: Toy Scenario 2 from Box (4). The state estimation has positioned the estimates of x6
and x1 close to each other, while their ground truth values (in blue) are still far away. It is suggested
by the scenario that a loop closure would have been made by the place recognition module only if
the distance (x1, x6) were as short as estimated. The missing data feature states that the absence of
loop-closure measurement should be explained away to help update the state estimation.

Figure 2.9: Factor graph representation of toy scenario 2 from box (4).
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The robot does not get data because of either (a) a random pattern recognition or
sensor failure; or (b) because of a tangential drift of the estimate forward while the
place already visited (x1) has not yet been reached. A ‘missing data’ feature would
draw upon a mechanism explaining the causes of missing data, in order to then correct
the robot state estimation. Without this kind of feature, many opportunities for better
adjustment are lost. For instance, in human cartography, if one asks what is the most
significant “loop-closure” in History, in terms of the amount of map correction, it is
certainly the circumnavigation of the Magellan expedition (or what was left of it) in
1519-1522. That famous loop-closure, to keep with the SLAM terminology, occurred
when joining Asia from Europe by a longer than expected journey in the Pacific Ocean.
Our interest with this specific example stems from the fact that cartographic corrections
were made to explain away why the crew did not see any land while still navigating
the ocean. It was a reaction to a missing data problem. Indeed, an analysis of the
records of this expedition can show that the map were corrected days before making
any land sighting. We provide the details and supporting material on this historical
fact in appendix A.

f2· No backward influence of odometry or control Consider toy scenario 1 (box (3)),
with associated factor graph in figure 2.6. Suppose a control u5 is sent to the robot,
moving it to a new pose x6. No landmark re-observation is made at x6. Since the effect
of inertia is willfully ignored, we expect no backward influence from the motion noise. In
other words, our representation system should interpret that no updated adjustment is
necessary, so no new path of statistical influence should be created. However, according
the updated factor graph figure 2.10, and the rules of d-separation, the factor between
x6 and x5 opens a path of influence to all other nodes in the factor graph. One might
wish that the independence between those nodes could be exploited, if anywhere, right
at the level of the graphical representation.

Figure 2.10: Factor graph of figure 2.6, scenario box (3), with a new pose x6.

Nonetheless, while the factor graph fails to exhibit this property, the updated Bayesian
network figure 2.11 can cope with the fact that u5 ⊥⊥ x5 due to node x6 being a collider.
Consequently, the BN shows that the incorporation of p(x6|u5, x5) in the joint pdf must
not trigger a new adjustment.

However, that representational win of the Bayesian Network 2.11 over the factor graph
2.10 is short-lived. Suppose, with each control event u, that we also incorporate an
odometry observation which measures the undergone motion. Intuitively, the feature
of “No backward influence of odometry and/or control” should be maintained, but the
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Figure 2.11: Bayesian network of figure 2.4, scenario box (3), with a new pose x6.

question remains: can we exhibit that with the Bayesian network ? One possibility is
to consider the odometry zu5 as a conditional pdf of the form p(zu5 |x5, x6). Another
possibility is to consider the odometry zu5 as if it is an additional control p(x6|zu5 , x5).
Figure 2.12 shows the truncated Bayesian networks for the two options.

Figure 2.12: Design issues when a control u5 and an odometry measurement zu5 are both available.
The rest of the Bayesian network (ancestors of x5) is not represented for space reasons (refer to figure
2.11). Sub-figure (a) presents a contemplated solution with the conditional pdf p(zu5 |x5, x6), (b)
presents a contemplated solution with the conditional pdf p(x6|zu5 , x5).

However, these two options have problems. Figure 2.12-(a), corresponds to the incor-
poration of a likelihood function which is equivalent to a black dot in a factor graph,
and we discussed above that it does not expose the independence we want. The second
option, figure 2.12-(b), is not satisfying either, because it implies that the control u5 and
the odometry measurement zu5 are mutually independent: u5 ⊥⊥ zu5 . That is obviously
false. In fact, option (b) is worse than (a) since it creates an unruly independence in
the representation.

f3· No influence of first landmark discovery Whenever a new landmark for which there
is no prior is discovered, the graphical representation should show that no correction is
needed. Indeed, a new element in an unexplored part of the map simply does not inform
about past decision variables. Furthermore, the noise characteristics in the landmark
observation model are irrelevant. The reasoning behind this feature has been long
acknowledged (Chatila and Laumond, 1985, §1.3):

As long as only new parts of space are discovered, there is no possibility to
find out and correct any errors, in the model being built, that are due to robot
position drifts.
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Figure 2.13: Addition of a new landmark

Expanding on the toy scenario box 3, a new landmark lc is discovered, and the factor
graph is shown on figure 2.13. Feature f3 is not exhibited as the graph implies an active
path of influence between lc and x7, and between lc and x5 (for instance). While it
is expected that lc be influenced by x5, the trivial qualitative consideration is that x5
(or x6, x7 etc.) should not be influenced by lc. This report would be the similar for
Bayesian network with the likelihood function p(zlc |x6, lc).
Since the potentials of landmark observation (i.e., the probabilistic observation model)
are assumed of the form p(z|x, l), whether we are dealing with a discovery or a re-
observation, Paskin (2002, §3.3) notes that we cannot resort to a graphical criterion to
avoid computations. Therefore, the best strategy seems to be to detect the fact that
a landmark is new, and via an ad-hoc if-statement, prevent any unnecessary process
of adjustment. Another (no-)strategy consists in doing the moot computations any-
way, which are inconsequential for the result, as proven by Paskin (2002, appendix C)
for Gaussian densities. In our view, the issue might well be solved by, precisely, not
considering the likelihood p(z|x, l) as the correct potential.

f4· No influence on the first variable in a loop Another judgement concerns the scope
of adjustment after loop closures. If the ‘loop’ is only made of relative measurements,
then the scope of corrections can be limited to the variables within this loop. We have
seen in chapter 1 that Delambre observed that the baseline closure only prompted to
correct the triangle in-between the two baselines in the chain of triangles (see 1.4.1).
See also Chatila and Laumond (1985, §3.5) for (perhaps) the first formulation of that
axiom in SLAM. This judgement is not exhibited by the graphical models presented so
far. A less known extension of that judgement concerns the first variable in a graphical
loop. Upon careful examination, the first variable involved in a SLAM loop should
not be influenced by the corrections carried out by the closure6. Although we consider
this aspect to be intuitive once stated, we have not found any acknowledgement nor
discussion on this specific point in the literature. Let us examine this on an example.
Continuing on scenario box 3 at the step of figure 2.13, we consider the addition of a
new pose x8 and the re-observation of landmark lc from x8. The corresponding factor
graph is shown on figure 2.14.
This feature should vouch for the fact that x6, which is the first variable in the graphical
loop x6—x7—x8—lc, is not influenced by the loop-closure induced by the re-observation

6It is here still considered that there are no adverse effect of inertia, etc.



2.3. ANALYSIS OF CURRENT ESTIMATION ISSUES 67

Figure 2.14: Incorporation of x8 and lc re-observation to the toy scenario presented box 3, and
continued from figure 2.13.

of lc. The same reasoning should apply to similar situations in pose-graph problems.

On the motivation of the discussion

The reader might wonder, why bother mentioning these points? Indeed, as stated by property
(2.6) a non-blocked path in the graph does not necessarily imply that the corresponding
conditional independence is nonexistent in the distribution. First, as already stated, since the
larger scientific goal is to emulate spatial understanding, it is reasonable to explore whether
these basic notions could be implemented at the lowest level (representation), and not be a
property exhibited at the optimization level (post-hoc). Second, although points f1, f2, f3 and
f4 are not exhibited by the available graphical representation, they however imply distinct
conditional independences which may jeopardize the faithfulness of those SLAM systems.
This is explored in the next subsection.

2.3.2 Unfaithfulness

Except for feature f1 (missing data), the issues explored in the above subsection 2.3.1 fall in the
category of unexploited statistical independences. In layman terms, for a given multivariate
statistical problem, not exploiting a relation of (conditional) independence may be seen just
as an inefficiency, or alternatively as a missed opportunity to refine such model. For the higher
purpose of spatial intelligence, one might nonetheless start to see these issues as irrecoverable
in that they impair the capacity to emulate reasoning about the environment. Perhaps this is
correct, but this would require additional discussion and this is not our angle in this chapter.
These issues above, by themselves, do not directly cast doubt on the whole estimation process.
However, there is still a strange implication which we will refer as the ‘loop-breaking’ behavior.

Recall that probabilistic graphical models (such as Bayesian Networks, factor graphs,
Markov Random Fields) depict patterns of conditional independences in the underlying joint
pdf. Conceivably, if a probabilistic formulation supports (conditional) independences that do
not exist in the ‘real’ problem it is supposed to represent, then that formulation becomes
unfaithful.

We highlight two of such problems, denoted u1 and u2, below.

u1· Unwarranted loop-breaking The previous feature issue f4, which pertains to the non-
backward influence on the first variable in the loop, is unfortunately not inconsequential.
As a motivating example, consider the problem described in the toy scenario box (5),
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whose factor graphs and BN representations are respectively shown on figure 2.6 and
2.4.

Box 5: SLAM Scenario 3 (pose-graph)

From a starting pose, arbitrarily denoted x0, a robot is fed sequentially 7 con-
trol inputs which drive it sequentially from x0 to x7. Consider that the last 5
controls move the robot about a loop. At x7, the place x1 is recognized, and
the relative situation between both poses is measured. Robot motion and sensor
measurements are corrupted by noise. We assume no adverse effect due to the
robot inertia, false sightings, outliers, etc.

Objective: The inference problem consists in establishing the state estimation
of the robot poses X ≜ {x1, x2, x3, x4, x5, x6, x7}.

Figure 2.15: Factor graph representation of the third scenario presented in box (5).

Figure 2.16: Bayesian network representation of the third scenario presented in box (5).

Let the measurements in the loop be denoted as ua, ub, uc, ud, ue, zf . Likewise, the cor-
responding potentials are denoted φa, φb, φc, φd, φe, φf . Suppose firstly that x5 were
given to us. Node x5 becomes greyed in figures 2.15 and 2.16. This breaks the flow of
influence in the loop, which is expected. The path of influence between x6 and x4 still
exists, but cannot go ‘through’ x5, it is instead a simple chain (x6—x7—x2—x3—x4).
Now, consider instead of x5, that the first variable in the loop x2 is conditioned on.
The flow of influence between (x3—x4—x5—x6—x7) is, according to the rules of prob-
abilistic graphical models, a simple chain. Recall that feature f4 states that x2 should
not be influenced by the statistics of the inner loop. In our view, x2 should not interfere
with the statistical flow inside the rest of the loop (x2—x3—x4—x5—x6—x7) as well
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(but yet it does in figures 2.15 & 2.16, as x2 is considered part of the loop). Expressed
differently, we find it plausible, for instance, that:

x7 ⊥̸⊥ x3 | x2, (2.14)

and that:
x7 ⊥̸⊥ x3 | x5. (2.15)

However, it is difficult to understand why the following should hold:

x7 ⊥⊥ x3 | x2, x5. (2.16)

Yet, this is what the statistical models of figures 2.15-2.16, derived from the key as-
sumption 2.2, states. Consider the marginal posterior pdf of p(x2|Z); whatever its
mean and covariance may depict, it should not change the inner statistical relations
within the ‘submap’ formed by (x3, x4, x5, x6, x7). Intuitively, the mean of p(x2|Z)
only offsets the sub-map by a similarity transform, without potentially blocking paths
between variables of said sub-map, if it is conditioned on, like in (2.16). In other words,
x2 should not influence the sub-map (x3, x4, x5, x6, x7) more than, say, x1 or x0 does.

u2· Gauge-freedom dilemma The gauge-freedom dilemma is a variation of the above issue,
which we apply to the starting pose x0, instead of x2 the above scenario. Contrary
to u1, this issue is somewhat acknowledged in the SLAM literature, especially in V-
SLAM/bundle adjustment. However, existing works on this issue do not, in our view,
go enough into details as to why this issue shows up, and what it reveals.

Box 6: SLAM Scenario 4 (pose-graph) - gauge freedom variation

From a starting pose, arbitrarily denoted x0, a robot is fed sequentially 5 control
inputs, which drive it sequentially from x0 to x5. Consider that this sequence of
controls move the robot about a loop. At x5, the starting pose x0 is recognized,
and the relative situation between both poses is measured. Robot motion and
sensor measurements are corrupted by noise. We assume no adverse effect due
to the robot inertia, false sightings, outliers, etc.

Objective: The inference problem consists in establishing the state estimation
of the robot poses X ≜ {x1, x2, x3, x4, x5}.

To introduce this issue we consider a new toy scenario in box (6). In addition, we
consider the realizations of the measurement zf and control inputs ua, ub, uc, ud, ue to
be exactly the same as before, in the scenario described box (5). Therefore, we should
expect, after adjustment, that the robot trajectory within the loop be exactly the same
as before, up to a similarity transform. However, the graphical model representation
shows a dilemma between two competing ways of characterizing the starting pose x0.
Figure 2.17 shows the two possibilities. Since, according to the scenario in box (6), the
starting pose x0 is fixed (or rather arbitrarily set, in general to the origin) it would
seem that the right choice is (a). But the problem with (a) is that, as in previous point
u1, it breaks the flow of influence in loop: it is as if the factors φa and φf were unary.
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Figure 2.17: Factor representation of the gauge-freedom dilemma. There are two ways to consider
the variable x0, and both have problems.

Contrary to our expectation, it then does not lead to the same loop as in the scenario of
box (5) (though stated measurements are assumed the same). Then, consider solution
(b), where we breach the letter of the scenario (Box 6) and make x0 a decision variable.
This allows to reproduce the same loop as in figure 2.15. But besides being unfaithful
to the scenario, it then raises the question on what to make of the factor φ?? We noted
this factor with an interrogative symbol because it does not correspond to any physical
observation. If φ? is removed, then a singularity appears in the optimization problem,
as there would only be relative measurements left in the problem. Conversely, if φ? is
chosen with infinite information, then it is easy to see that it amounts to the solution
(a). The last solution is probably the worst of both worlds, as it does not only breach
the scenario, but also reproduces the problem of solution (a) noted above. In summary,
this is a dilemma for which we see no proper way to proceed. Our suspicion is that it
is commonly hoped that this choice is numerically inconsequential, especially on large
problems. It still does raise the question of faithfulness, as a variant of problem u1.
The fact that this is a dilemma is corroborated by its various treatments in the litera-
ture. In bundle adjustment, Triggs et al. (2000) introduce the term of “gauge freedom”,
where freedom denotes the free choice of the designer to fix the datum (reference frame).
Strasdat et al. (2010, 2012) confirm that the first frame is typically fixed to eliminate the
gauge freedom which is present because measurements are purely relative. In Graph-
SLAM, a pose-graph SLAM presented by Thrun et al. (2005), infinity terms are inserted
in the diagonal of the first block of the information matrix. This is done in order to
fix the first pose. Another approach is to set the information matrix of the prior on
x0 as a matrix identity (Grisetti et al., 2010a). Solution (a) also exists, whereby x0 is
openly considered a fixed variable (Grisetti et al., 2020). We also note that the ques-
tion is often avoided. To our knowledge, Zhang et al. (2018) are the only ones to have
specifically compared various approaches to the gauge freedom problem. It is shown
experimentally that the choice slightly influences the estimation result, in particular
the posterior covariance (Zhang et al., 2018, fig 5); and the prior weight affects the
convergence time. Zhang et al. (2018)’s problem is considered from the optimization
level, and it is proposed to mitigate the issue. The paper does not go into the whys of
the issue, which are of interest to us.
While there is no doubt in anyone that the first pose should be somehow set, the
probabilistic formulation of SLAM makes this seemingly simple step quite ambiguous
and arbitrary.

Remark 2.6. Anecdotally, the same problem can be identified in geodetic adjustment
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with the method of variation of geographical coordinates (see 1.4.4). Tardi (1934,
chap10) explains that the Panthéon building (in Paris) was chosen as the fixed origin
for the adjustment of the NT France network.

As a final point on u2, note that the issue can manifest itself on a small a three-variable
problem, see the scenario described in box (7) and figure 2.18.

Box 7: SLAM Scenario 5 (pose-graph) - 3 variables dilemma

From a starting pose, arbitrarily denoted x0, a robot is fed sequentially 2 control
inputs which drive it sequentially from x0 to x1, and then from x1 to x2. Consider
that the controls move the robot about a loop. When at x2, the starting pose
x0 is recognized, and the relative situation between both poses is measured.
Robot motions and the sensor measurement are corrupted by noise. We assume
no adverse effect due to the robot inertia, false sightings, outliers, etc.

Objective: The inference problem consists in establishing the state estimation
of the robot poses X ≜ {x1, x2}.

Figure 2.18: A three variable pose-graph problem depicting the gauge freedom dilemma. The scenario
is described in box (7). No proper choice between (a) and (b) exists for the characterization of the
starting variable. Thus, the probabilistic SLAM formulation cannot solve satisfyingly this seemingly
simple three-variable problem (comprised of only 2 decision variables in the scenario).

The problems u1 and u2 are far more concerning than the features f1, f2, f3, f4 explored
earlier. For one, if u1 and u2 lead to the production of ‘wrong’ estimates7, it is not possible
to quantify them at this stage. One would need first to formulate a ‘correct’ model (devoid
of said problems), examine the arguments for and against it, show its value on diverse use
cases, etc.

Another concern is the large scope of SLAM scenarios affected by these issues. The gauge
freedom dilemma u2 applies to some classical mobile robot scenarios, when the loop is closed
on the starting variable, and to most (all?) problems of bundle adjustment. The unwarranted
loop-breaking u1 is unfortunately present in all probabilistic SLAM scenarios.

Remark 2.7. It should be noted, for completeness, that probabilistic SLAM approaches do
evade these issues when used in scenarios that contain no loop-closure. But, as noted by
Cadena et al. (2016), SLAM without some form of closure reduces to odometry.

7If compelling estimation results are produced, we do not know if it is thanks to the strengths or despite
the weaknesses of model.
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What are the causes of all these issues? We trace them back to the key assumption 2.2
of probabilistic SLAM, i.e., to the form of the joint pdf. Note that it does not matter which
graphical representation is used, nor whether variables are incrementally integrated out like
in KF solutions.

The joint pdf defines the frame along which the data are structured. Any inference process
on that joint pdf (even if elegant, sophisticated, and/or astutely designed) only transforms, or
reduces the data (Fisher, 1922), and only within that probabilistic framework. Consequently,
if the pattern of conditional independences defined at the outset is inadequate, it cannot be
fixed by better techniques of filtering or optimization.

2.3.3 Complexity/Performance

As SLAM systems may be embedded in devices used for long term operations, the number
of factors (ego-motions, observations, etc.) and decision variables (poses, landmark, etc.)
inevitably grows. Thus, an issue of scalability arises in the computation of the MAP. This
issue can materialize in excessive memory footprint and/or CPU load. This cost essentially
derives from the notion of treewidth, which corresponds to the size of the maximum clique8,
both for matrix-based and tree-based graphical solvers (Blair and Peyton, 1993; Paskin and
Lawrence, 2003). Note that in the probabilistic graphical model literature, variables are gen-
erally assumed to be discrete and the only complexity measure that matters is the treewidth
(Chandrasekaran et al., 2008). However, when the product of factors (2.3) is made of Gaus-
sian densities, equivalence can be drawn between the sparsity pattern of a linear system and
of the graph representing the joint pdf (factor graphs, BN, etc.). We will give more details
in chapter 3 on this equivalence. But even with Gaussian densities, in the simplified SLAM
scenarios which are not concerned with outlier rejection or data association, the inference cost
is respectively quadratic and cubic to the treewidth, in time and memory footprint (Paskin
and Lawrence, 2003). Another measure of complexity is the so-called elimination tree height
(Bodlaender et al., 1995) which has to do with the ability to parallelize the elimination process
(or the process of decomposition in sparse matrices). Another major source of complexity
concerns the recovery of the posterior covariances. In matrix-based solvers, the full posterior
covariance is obtained by inversing A⊤A, where A is the Jacobian matrix appearing in (2.13)
(see also figure 2.7). While A⊤A (a.k.a. the or information matrix) is large and sparse, its
inverse is large but dense. Hence, computing the full covariance is often untractable in online
robotic applications. In clique tree structures, the situation is better as marginal covariances
can be deduced clique by clique once the belief propagation algorithm is done (see the concept
of ‘ready clique’ Koller and Friedman, 2009, def. 10.4). However, the set of queried variables
(i.e., the variables for which the posterior covariance is queried) might not in general be a
subset of an existing clique, but rather of a span of cliques, leading to additional computa-
tions. Unfortunately, knowing the posterior uncertainty of the MAP estimate is important in
applications that require data association, active SLAM etc. (Ila et al., 2015). As we can see,
both MAP inference and posterior covariance computation cost depends on the sparsity pat-
tern. The sparsity pattern is difficult to anticipate ahead of time, thus, several solutions have
been proposed, such as: using approximate algorithms (Ranganathan et al., 2007; Davison
and Ortiz, 2022; Ila et al., 2015); ‘sparsifying’ the graph and/or removing nodes and factors
(Vallvé et al., 2018, 2019; Carlevaris-Bianco et al., 2014); eliminating nodes viewed as aux-

8The ‘maximum clique’, or maxclique for short, is a is the largest cluster in a clique tree structure.
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iliary (Carlone et al., 2014); proposing pre-integration schemes for IMU data (Forster et al.,
2017; Brossard et al., 2022). All in all, fighting against the consequences of adverse sparsity
pattern is difficult since many theoretical results have shown that inference is costly in gen-
eral (Cooper, 1990). Shimony (1994) showed that finding the MAP is NP-hard in a (discrete)
belief network. The most important complexity measure, the treewidth, is highly sensitive
to the ordering of variable elimination: unfortunately, finding the optimal variable ordering
is itself NP-hard (Arnborg et al., 1987). Consequently, for Cooper (1990), “any attempt at a
general, exact, efficient solution is unlikely to be successful”. Nonetheless, alternative strate-
gies can be used, such as approximate algorithms or specialized algorithms. We put forward,
as a hypothesis, that better complexity measures can be achieved by specialization; and that
specialization is achievable by incorporating in a better way domain knowledge we have about
the SLAM problem.

2.4 Discussion

In this chapter, the existing solutions to represent the adjustment of SLAM were presented.
The principles of the main approach, denoted probabilistic SLAM, were presented in §2.1.
Probabilistic SLAM are a family of approaches which include the dominant approach (MLE
SLAM), but also Kalman filter and particle filters. The main commonality behind this family
is to pose the SLAM estimation problem as a joint posterior pdf (key assumption 2.1), and
the factorization of the joint into a product of local probabilistic models (key assumption
2.2). A non-exhaustive list of achievements reached through the use of this framework was
given (§2.2). In relation to our historical work in chapter 1, we noted that this approach
is closer to the one named ‘method of variation of coordinates’ (see 1.4.4 and table 1.1).
In the ensuing section §2.3, we explored the limitations of that framework along 3 axes:
in terms of its ability to feature spatial reasoning considerations, in terms of faithfulness
representation, and in terms of inherent algorithmic complexity. Deep underlying issues are
pointed out which are traceable to the fundamental assumptions mentioned above. These
issues have, to our knowledge, not yet been properly identified in whole. There is no deny
that current formulations of SLAM have shown (and will continue to show) compelling results
in challenging environments (e.g., large scale maps, badly initialized priors, with outliers, etc.).
This is substantiated by a large body of literature.

But these problems deserve more attention. Yet, SLAM is sometimes considered solved,
in particular the adjustment part. This impression can be found early in highly cited reviews.
For instance, Durrant-Whyte and Bailey (2006) writes that “at a theoretical and conceptual
level, SLAM can now be considered a solved problem”. A decade later, Cadena et al. (2016)
are more cautious, but the probabilistic formulation is not directly questioned; it is instead
suggested that some additional modules are needed to address a wider array of problems in
SLAM. In the book Probabilistic Graphical Models, Koller and Friedman (2009, p679-683)
address tracking, localization and mapping problems via graphical models (using Bayesian
networks) and consider that most instances of the SLAM problem can be tackled, “so that
this problem is now essentially considered solved”. At minimum, the MLE SLAM method
with factor graphs is considered well established (Rosen et al., 2021; Dellaert, 2021).

There are therefore, to our best knowledge, no solutions in sight for the issues depicted in
this chapter. But how important is it to solve these issues? From an historical perspective,
SLAM inherits many traits from geodetic adjustment. This problem embodied several funda-
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mental challenges of the period: the combinations of different observational equations and the
specifications of error curves (Stigler, 1986). The processing of geodesic triangulations started
from a binary question, related to the shape of earth, in the mid 18th century. Ad-hoc meth-
ods were the norm, e.g., not correcting closures or calculating the arithmetic mean. Then, in
the late 18th century, new instruments and more demanding requirements appeared for the
determination of a unit length for the early metric system. Solving rigorously the geodetic
adjustment problem became a scientific basis for a metrological endeavor. In doing so, and
in some instances in parallel with the discipline of astronomy, major advances in theory of
probabilities and inference techniques were made by a relatively small number of people (see
chapter 1). The SLAM problem, or more generally the problem of emulating spatial under-
standing, should be recognized in continuation as a more complex and rewarding problem, i.e.
one which should propel the development of new concepts that go beyond existing estimation
techniques (of which some were invented for geodetic adjustment).

So what can be done in our view? We want to pose the SLAM problem in a way that
depicts all the a priori qualitative judgements, or knowledge, that are available to us. This
motivates the search of a more insightful representation. There are no doubts on the ability
of graphical models to seamlessly carry and illustrate these assumptions. There are also no
doubts that the assumption of Gaussian distributed noises is very practical. The Gaussian
noise assumption has tended to lead, since 1809 (Gauss, 1809), to a (nonlinear) least squares
optimization problem. In geodetic adjustment, we have seen that there were several ways
to state the least squares problem (see 1.4), each one based on different prior qualitative
considerations. Our goal is therefore to explore other representations to state the optimization
problem in SLAM differently.

The outline of the remainder of the manuscript goes as follows. As the achievements
of current SLAM solutions cannot be denied, we propose in chapter 3 to improve on the
probabilistic SLAM via a Causal Bayesian Network, which exploits causal relationships in
the robot trajectory to gain insights that the solver level can exploit.

Another more ambitious endeavor, but that we believe more promising, is to reformulate
SLAM by taking inspiration from the Laplacian conception (§1.5.3), along with relatively
recent tools developed by Pearl and colleagues: the framework of structural causal model
(SCM) and the causal graph representation. This is done in chapter 4.
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In this chapter, we propose to re-investigate SLAM on the basis of Causal Bayesian Net-
works (CBNs), a directed acyclical graph (DAG) structure which has similarities to Bayesian
Networks. The key assumptions 2.1 and 2.2 of probabilistic SLAM are mostly kept, but we
use additional considerations to insightfully insert causal notions in the ego-motion of the
robot. Our motivation is to leverage the fact that new odometry measurements (or control
inputs) do not induce propagation of belief to older part the trajectory/map. Consequently,
this framework exhibits the fact that sometimes it is unnecessary to compute an adjustment,
at least not until a loop-closure event takes place.

In this context, the CBNs (Pearl, 2009, §1.3) are judged as the most suitable models. On
the one hand, they feature d-separation properties, and on the other hand, they can capture
the fact that each trajectory element is jointly caused by its predecessor and by a relative
motion. The directed edges of the CBNs explicitly account for causal relations1.

Our approach can be summarized as follows. Once the CBN of the SLAM problem is
drawn up, the inference proceeds by building an undirected chordal graph, which shows
the fill-in (additional connections between nodes) induced by the successive elimination of
decision variables. This chordal graph is then turned into a clique tree, whose cliques are
fully connected nodes of the chordal graph. Belief propagation is conducted using a message
passing algorithm between cliques. It leads both to the Maximum a Posteriori (MAP) and
marginal posterior distributions within each clique.

The benefits of our approach over other tree-based approaches materializes during the mes-
sage passing step. Depending on the location of the SLAM loop closures, constant messages
can be a priori exhibited in the anti-causal direction, so that efficient incremental inference
can be obtained by only updating the subtree subject to changes. Potentialities of the ap-
proach include: computation of arbitrary marginal posteriors; application to non-Gaussian
(dynamics or measurement) noises; extension to cooperative SLAM. The method is presented
on a pose-graph problem and its strengths and limitations are compared with other graphical
approaches and matrix-based approaches.

The chapter is organized as follows. Section 3.1 states the problem. Section 3.2 gives a
brief reminder on what the involved structures (chordal graph, clique tree) represent, how to
convert CBNs into clique trees and message passing for exact inference. Subsequent sections
describe a numerical experiment. Our last section 3.7 discusses the merits and limits of the
approach. We explain why, ultimately, we foresee a more promising outcome in pursuing a
full-fledged causal structure for the SLAM problem, particularly in view of our analysis in
the previous chapters 1 & 3. This causal structure will be proposed in chapter 4.

3.1 Problem Statement

3.1.1 Basics

Notations

In the sequel, the set X gathers the target unknown variables, i.e., trajectory poses and
landmarks. The sets U and Z are respectively built up with known control inputs and
odometric measurements: IMUs, wheel encoders, scan-matchers etc. The set Y gathers other
kind of measurements: absolute localization such as GNSS measurements, relative perception
of landmarks, loop-closures on past positions, etc. From now on, any uppercase calligraphic

1Recall that this is not the case for BNs, see remark 2.3.
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letter refers to a set of variables, each one being labeled in lowercase. When these variables
live in a matrix smooth manifold such as SE(n) or SO(n), they are typed in small bold font,
and so are their corresponding sets, e.g.,

X ≜ {x0, x1, . . . , xn} , Z ≜ {z0, z1, . . . , zm} . (3.1)

If variables live in a Euclidean space (e.g., known control inputs), then they and their sets
are typed in normal fonts.

The goal is to answer inference questions about the joint posterior pdf p(X ,L|Z,U ,Y).
The Bayes rule is generally invoked, yet another path is taken. To simplify the notations,
but without loss of generality in the reasoning, all bold variables will be assumed to belong
to the same manifold (though Y may be built with heterogeneous elements, but this does not
call into question the approach). The forthcoming notations closely follow the tutorial Solà
et al. (2021). The operator ◦ stands for the matrix Lie group composition. Log denotes the
mapping from an element of the manifold to the Euclidean space isomorphic to its Lie algebra,
and Exp stands for its reciprocal mapping. Though with a slight notation misuse, elements
of the Lie algebra and of its isomorphic Euclidean space will no longer be distinguished. For
instance, if x ∈ SE(2), then its image in the Lie algebra (generally written as log(x) ∈ se(2))
is isomorphic to the 3-dimensional real vector Log(x) ∈ R3 (also written (log(x))∨), so that
se(2) and R3 are not distinguished. Conversely, a vector ν ∈ R3 maps to an element of se(2)
(generally noted ν∧ ∈ se(2)), which itself maps to Exp(ν) = exp(ν∧) ∈ SE(2), see Figure 3.1.

Figure 3.1: Conversion of an element m in a Lie group to the Euclidean space isomorphic to its Lie
algebra, and back, through the Log and Exp mapping functions.

Motivation to work on a pose-graph SLAM

Pose-graph is often considered the backbone of modern SLAM Tian et al. (2021). For instance,
many higher-level spatial perception constructs like Kimera Rosinol et al. (2021) are built on
top it. It also constitutes a simple enough structure to introduce the approach, and compare
it with state-of-the-art back-ends cited above. A toy pose-graph case study is displayed on
Figures 3.2 and 3.3 as a factor graph and a CBN, respectively. All its factors are odometric,
except a loop-closure connecting x2 and x6. A common practice is to set the robot’s initial
at the origin ϵ of the manifold, i.e., x0 = ϵ. Regarding CBN terminology, the initial pose is
viewed as an intervention Pearl (2009) rather than a prior (which would open the question
of how to fill the covariance) or an observation (for it is not a measurement, though it is the
common choice of SLAM practitioners).

The most noteworthy differences between the two models occur on the trajectory part
between any two consecutive spatial entities (poses), where additional unknown variables
depicting the Log of relative motions are inserted. On the CBN Figure 3.3, their names
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Figure 3.2: Factor graph of a toy pose-graph problem.

Figure 3.3: CBN of a toy pose-graph problem.

are λto variable
from variable. On the trajectory part sketched on Figure 3.4, these are named λ. We will

denote Λ the set of relative motions λ. Elements of Λ can be caused by a control input and
can give rise to one or multiple observations (resp. u and z’s on Figure 3.4).

Remark 3.1. On the representation of landmarks.
As per key assumption 2.2, the observation of a landmark is still considered to be of the form
p(z|x, l), where l is a landmark. Its graphical representation does not change in this chapter:
it assumed that the observation z is caused by the robot pose x and the landmark position
l: x → z ← l. However, though the approach in this chapter does not exclude scenarios
with landmarks, a complete reconceptualization of the processing of landmarks will be given
chapter 4.

3.1.2 Trajectory representation

Consider figure 3.4-(left). The unknown consecutive poses x(−) and x(+) belong to the matrix
Lie group. The current pose x(+) is caused by its past x(−) and the relative motion λ,
independently of x(−)’s ancestors, along the definition

x(+) = x(−) ◦ Exp(λ), (3.2)

where λ expresses the relative motion in the Lie algebra of the matrix Lie group. λ is observed
through the random measurement z.

Figure 3.4: Trajectory part between two poses of a pose-graph CBN. x(−) and x(+) respectively stand
for the past (parent) and the current (child) pose. x(+) is caused by x(−) and the relative motion λ.
(Left) λ depends on no external control, and is observed through the random measurement z. Note
that a prior on λ may exist. (Right) The external control input u causes λ through a conditional
probability distribution (CPD), and λ gives rise to multiple measurements (limited to 2, z1, z2, but
the approach can be generalized).
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Figure 3.4(-right) shows a more general case, where it is assumed that the relative motion λ
listens to a stochastic control input u and is then observed by measurements z1 and z2. Figure
3.4(-right) is here to show that the model can be adapted to cover the presence of prior controls
and/or an arbitrary number of sensors that observe the relative motion λ. However, note that
in the case of infrequent and/or unsynchronized sensors, it is assumed that measurements have
been preprocessed to be compatible with the associated CBN representation. The joint pdf
p(x(+), λ, u, z1, z2|x(−)) associated to the trajectory part writes as

p(x(+), x(−), λ, u, z1, z2) = p(λ|u)p(z1|λ)p(z2|λ)p(x(+)|x(−), λ)p(u). (3.3)

The mathematical expressions of p(λ|u), p(z1|λ), p(z2|λ) are known and are parameterized
by the input data u, z1, z2. As for p(x(+)|x(−), λ), it is derived from domain knowledge
(kinematics in view of (3.3)) and boils down to

p(x(+)|x(−), λ) = δ
(
Log

(
(x(−) ◦ Exp(λ))−1 ◦ x(+)

))
(3.4)

= δ
(
x(+) ⊖ (x(−) ⊕ λ)

)
, (3.5)

with δ(.) the Dirac delta function and x⊕ λ ≜ x ◦ Exp(λ) and y⊖ x ≜ Log(x−1 ◦ y).
To the best of our knowledge, this model, though key to the approach, has not been used

recently. We have found that Paskin (2002, Fig. 6) used a comparable model for the filtering
view of probabilistic SLAM and astutely remarks that belief does not propagate backwards
in those situations, but it is not exploited further.

3.1.3 Elimination of the relative motion λ

The marginalization of the pdfs entailed in the full problem with respect to the relative
motions eases inference by message passing. The procedure is hereafter run through for one
trajectory part2 (Figure 3.4-(right)), by eliminating λ though marginalization of (3.3). Its
generalization will be further discussed.

Define

τ(x(+), x(−)) ≜
∫

λ
p(x(+), λ, u, z1, z2|x(−))dλ

=
∫

λ
p(λ|u)p(z1|λ)p(z2|λ)p(x(+)|x(−), λ)p(u)dλ. (3.6)

The graph structure of Figure 3.4-(right) implies that, z1, z2, u are d-separated from each
others given λ. This, together with (3.5), leads to:

τ(x(+), x(−)) =
∫

λ
p(z1, z2, λ|u)p(u) δ

(
x(+) ⊖ (x(−) ⊕ λ)

)
dλ,

= p(z1, z2, u)
∫

λ
p(λ|u, z1, z2) δ

(
x(+) ⊖ (x(−) ⊕ λ)

)
dλ. (3.7)

In view of the inverse and associativity properties of the composition operator ◦, the argument
of the delta function comes as

Log
(
(x(−) ◦ Exp(λ))−1 ◦ x(+)

)
= Log

(
(Exp(λ))−1 ◦ (x(−)

−1 ◦ x(+))
)

, (3.8)

2Similar method is used for elimination loop closure relative motion, though structure differs slightly.
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and admits the following Baker-Campbell-Hausdorff (BCH) first order expansion (Chirikjian,
2012, §10.2.7):

Log
(
(Exp(λ))−1 ◦ (x(−)

−1 ◦ x(+))
)

= −Log(Exp λ) + Log(x(−)
−1 ◦ x(+)) + . . .

= −λ + Log(x(−)
−1 ◦ x(+)) + . . . (3.9)

where Log(Exp λ) = λ is true for small motions, assuming that the frequency of data is
sufficient relative to the velocities and dynamics of the robot.

The Dirac mass is concentrated at:

Log
(
Exp(λ)−1 ◦

(
x(−)

−1 ◦ x(+)
))

= 0, (3.10)

i.e., when (3.9) is zero. The Log(.) of (3.10) can thus be unwrapped, and using the inverse
property of Lie groups leads to

λ = Log(x(−)
−1 ◦ x(+)). (3.11)

Incidentally, (3.11) says that the sum of the first two terms of the BCH expansion (3.9) is
zero, so that the remainder “+ . . .” is necessarily zero in view of (3.10). The following equality
of Dirac distributions

δ
(
x(+) ⊖ (x(−) ⊕ λ)

)
= δ

(
λ− Log(x(−)

−1 ◦ x(+))
)

(3.12)

is henceforth assumed, for their masses are concentrated when (3.10) and (3.11) hold. Inject-
ing (3.12) into (3.7) finally yields

τ(x(+), x(−)) = p(z1, z2, u)p(Log(x−1
(−) ◦ x(+))|u, z1, z2). (3.13)

To understand what is represented by p(Log(x−1
(−) ◦ x(+))|u, z1, z2) in (3.13), consider the

analytical elimination of λ from the joint pdf associated with the trajectory part in (3.3):

∫
λ

p(x(+), λ, u, z1, z2|x(−))dλ = p(x(+), u, z1, z2|x(−))

= p(x(+)|x(−), u, z1, z2)p(u, z1, z2|x(−)) (3.14)

And since (x(−) ⊥⊥ u, z1, z2) can be read from figure 3.4-(right), then p(u, z1, z2|x(−)) =
p(u, z1, z2).

Thus, p(Log(x−1
(−) ◦ x(+))|u, z1, z2) in (3.13) stands for p(x(+)|x(−), u, z1, z2) by identifica-

tion with (3.14).

Remark 3.2. The independence assumption (x(−) ⊥⊥ u, z1, z2) holds if no descendant of x(+)

is conditioned on. However, we can see that this is not the case for x(+) ≡ x2 in the case
study CBN, figure 3.3; as y0 is an observed descendant of x2. We give the justification for
this case, and all other similar such cases, in §3.2.3.

Remark 3.3. In the rest of the chapter, the model for the robot ego-motion will correspond
to the simple case, i.e., figure 3.4(-left). This does not mean that the control or other mea-
surements are dropped nor approximated away. Instead, this is due to the limitation of the
scenario of the subsequent applications of this chapter (in particular, datasets). Adaptation
to more complex scenarios (e.g., figure 3.4(-right)) can still be done thanks to the elimination
process described above.
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3.2 Undirected Tree for Exact Inference

The above section was concerned about the CBN representation of SLAM and the analytical
elimination of the newly introduced relative motions, denoted by the set Λ.

We now detail how to conduct inference in the CBN by means of belief propagation, i.e.,
by message passing techniques into a graph which clusters decision variables. This section
describes the process of building a so-called clique tree, a special clustered structure that
guarantees exact inference after belief propagation. First, a reminder is given on the graphical
representation of elimination (a.k.a. marginalization) together with the concepts of chordal
graph and clique tree. A choice was made set forth these concepts on a simple example
which structure is close to the other CBNs in the present chapter. Then, in the subsequent
subsections, the process is explained for the toy pose-graph problem shown on figure 3.3,
whose joint pdf writes as

p(X , Λ,Z,Y|x0) =
n∏

i=0
p(xi+1|xi, λi+1

i )p(λi+1
i )p(zi|λi+1

i )

×
∏

relevant k,k′

p(λk′
k |xk, xk′)p(yk|λk′

k )p(λk′
k ) (3.15)

where the set {p(yk, λk′
k |xk, xk′)}k,k′ includes, among others, the factors related to loop clo-

sures; and Λ is the set of all relative motions {λj}j .

3.2.1 Reminder on graphical elimination

This subsection introduces the symbolic manipulations yielding the clique tree, as special data
structure which supports exact belief propagation algorithms. We consider, as a motivating
example, the set Θ ≜ {A, B, C, D, E, F}, and its joint (continuous, without loss of generality)
distribution

p(Θ) = p(A)p(B)p(D)p(C|A, B)p(E|C, D)p(F |A, E), (3.16)

which looks like (3.15). Its CBN is portrayed on figure 3.5.
Given E ⊂ Θ, consider the marginal query:

p(E) =
∫

Θ\E
p(Θ)d(Θ \ E). (3.17)

A practical question that emerges in view of (3.17) is the selection of the elimination ordering
to be applied to p(Θ), and its consequences. Consider two elimination orderings: O1 ≜
[D, B, F, A, C] and O2 ≜ [C, A, B, F, D]. Applying order O1 develops as:

Figure 3.5: (Causal) Bayesian Network G of the distribution p(Θ).
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Figure 3.6: Induced (or chordal) graphs reflecting the elimination orderings O1 (left) and O2 (right).
Fill-in edges, i.e., edges not appearing in the original graph, are in red. Different orderings produced
different fill-in schemes.

p(E) =
∫

C

∫
A

∫
F

∫
B

∫
D

p(Θ)dDdBdFdAdC

=
∫

C

∫
A

∫
F

∫
B

p(A)p(B)p(C|A, B)p(F |A, E)
(∫

D
p(D)p(E|C, D)dD

)
dBdFdAdC

and set τ1(C, E) ≜
∫

D
p(D)p(E|C, D)dD,

=
∫

C

∫
A

∫
F

p(A)p(F |A, E)τ1(C, E)
(∫

B
p(B)p(C|A, B)dB

)
dFdAdC

and set τ2(A, C) ≜
∫

B
p(B)p(C|A, B)dB,

=
∫

C

∫
A

p(A)τ1(C, E)τ2(A, C)
(∫

F
p(F |A, E)dF

)
dAdC

and set τ3(A, E) ≜
∫

F
p(F |A, E)dF,

=
∫

C
τ1(C, E)

(∫
A

p(A)τ2(A, C)τ3(A, E)dA

)
dC

and set τ4(C, E) ≜
∫

A
p(A)τ2(A, C)τ3(A, E)dA,

=
∫

C
τ1(C, E)τ4(C, E)dC. (3.18)

Similarly, ordering along O2 leads to:
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p(E) =
∫

D

∫
F

∫
B

∫
A

∫
C

p(Θ)dCdAdBdFdD

=
∫

D

∫
F

∫
B

∫
A

p(A)p(B)p(F |A, E)p(D)
(∫

C
p(C|A, B)p(E|C, D)dC

)
dAdBdFdD

and set τ ′
1(A, B, E, D) ≜

∫
C

p(C|A, B)p(E|C, D)dC,

=
∫

D

∫
F

∫
B

p(B)p(D)
(∫

A
p(A)p(F |A, E)τ ′

1(A, B, E, D)dA

)
dBdFdD

and set τ ′
2(F, B, E, D) ≜

∫
A

p(A)p(F |A, E)τ ′
1(A, B, E, D)dA,

=
∫

D

∫
F

p(D)
(∫

B
p(B)τ ′

2(F, B, E, D)dB

)
dFdD

and set τ ′
3(F, E, D) ≜

∫
B

p(B)τ ′
2(F, B, E, D)dB,

=
∫

D
p(D)

(∫
F

τ ′
3(F, E, D)dF

)
dD

and set τ ′
4(E, D) ≜

∫
F

τ ′
3(F, E, D)dF,

=
∫

D
p(D)τ ′

4(E, D)dD. (3.19)

The scopes of marginalization, i.e., the variables involved in the blue potentials in (3.18)
and (3.19), are a metric for the complexity of the marginalization operation (Koller and
Friedman, 2009, chap.9). The larger the size of the scope, the higher the cost, both in space
and in time. Figure 3.6 shows undirected graphs associated with the orderings O1 and O2.
If two variables are both involved in an integration step (i.e., they appear in blue in the
same expression in resp. (3.18) and (3.19)), then an edge is drawn between them. Figure
3.6 features the edges non-existent in the original BN (figure 3.5) in red. The red edges
are known as “fill-in” edges in the literature3. This representation (figure 3.6) is called the
“induced graph” (i.e., the graph induced by the original graph from elimination) or the “cover
graph” (i.e., the graph that covers the original graph). It is said that the induced graph is
“triangulated”, or “chordal”.

Property 1. For every cycle of length greater than 4 in a graph G, if G has an edge connecting
two non-consecutive nodes in the cycle, then G is triangulated, or chordal.

The process of producing the induced graph from G can be referred as the graph triangu-
lation. It is said that the induced graph covers the original graph4.

Remark 3.4. As developing the analytical equations (such as eq 3.18 and 3.19) can be tedious,
the induced graph can instead be produced from a more astute graphical process, as follows:
at each ordered step of the elimination process, connect with each other the non-eliminated
neighbors of the node to be eliminated.

3Depending on the structure of the original graph and the ordering chosen for elimination, no fill-in edge
might be produced during elimination. This is typically the case if the original graph is already chordal.

4More precisely, the induced graph covers the moralized graph of the original directed graph. The moralized
graph replaces the directed edges of the DAG by simple edges and connects parents of a given node between
each other.
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It can be noticed that ordering O2 leads to more fill-in edges and larger size of variable
scopes than ordering O1 does. As mentioned in §2.3.3, finding the optimal ordering becomes
exponentially difficult as the size of the belief network grows, and heuristics are resorted to.
Popular heuristics include approximate minimum ordering (AMD) (Amestoy et al., 1996),
nested dissection (Kai Ni and Dellaert, 2010), see also Agarwal and Olson (2012) for ordering
strategies for SLAM. In this small example, O1 is the optimal elimination ordering for the
query p(E).

Suppose that the query of p(C) is contemplated, instead of p(E). Consider elimination
ordering to be [D, B, F, A, E]. It can be quickly noticed that similar operations of integration
are carried out as in (3.18), except for the last one. The same remark stands for the query
p(C, E). Based on the insight that some of these operations can be cached, the clique tree
data structure has been proposed in the literature (Lauritzen and Spiegelhalter, 1988; Shenoy
and Shafer, 1990).

Definition 3.1. Adapted from Darwiche (2009, def 9.13).
A clique tree T = (C, S) of a DAG G is a tree which connects cliques C (or clusters) via
separator edges S such that:

• A clique Ci is a set of nodes from G.

• Each conditional probability distribution (CPD) in the underlying distribution of G must
be embedded in one clique whose scope is compatible (a.k.a. family preservation prop-
erty).

• If a node appears in two cliques Ci and Cj, then it must also appear in every clique Ck

on the path connecting Ci and Ck. This is known as the “running intersection property”
(RIP).

Figure 3.7: Clique trees of the distribution p(Θ) induced by orderings O1 and O2. The treewidth
of the clique tree on the left is lowered, which entails better performance.

Every graph is known to have (at least) one associated clique tree (Koller and Friedman,
2009, Theorem 4.12). Clique trees can be built from the induced graphs: the cliques are
formed out of the fully connected nodes, and the separators are deduced from the RIP5.
Then the potentials (make up the joint distribution 3.3) are allocated, each in only one clique
to avoid double counting (“family preservation property”). Figure 3.7 shows the clique trees

5Alternatively, the edges of the clique tree can be deduced from the maximum spanning tree of the cliques
pairwise intersection set (Darwiche, 2009, theorem 9.9).
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corresponding to the induced graphs of figure 3.6. The treewidth comes as the size of the scope
of the maximum clique. For ordering O1, the treewidth is 3, while it is 5 for ordering O2.

The other interest of clique trees, besides to avoid the repeatition of some elimination
steps, comes from the fact that new mechanics emerge for inference. These mechanics are
difficult to foresee from the analytical perspective. Procedural so-called “message passing”
algorithms on such structures have been designed to find the MAP or to compute marginals
of arbitrary scope. Conceptually, the structure can even be generalized to other semi-ring
operations (Aji and McEliece, 2000).

A clique belief ΨCi (product of potentials affected to a clique Ci) is the posterior marginal
over Ci’s scope once it has received all messages from neighboring cliques (Koller and Fried-
man, 2009, §10.2.2 & §10.3.3). Several programming architectures exist to arrange this mes-
sage passing scheme (Lepar and Shenoy, 2003).

The cost of inference materializes when computing messages from one clique to a neigh-
bor. In the case when the potentials are Gaussian densities, the marginalization operations
are matrix decompositions (see, e.g., Dellaert and Kaess (2017, chap.3)). Closely related
structures have already been exploited in SLAM (Pinies et al., 2012; Kaess et al., 2010).

3.2.2 Graph triangulation for the CBN and Clique Tree building

Equipped with the necessary tools to conduct inference on a graphical model, we return to
the processing of our toy case study presented figure 3.3 whose posterior joint pdf writes
as (3.15).

The used triangulation method proceeds as follows: first, an edge is added connecting
the parents of each node in the trajectory xi → xi+1 ← λi; second, the remaining variables
are virtually eliminated following an ordering given by the Approximate Minimum Degree
algorithm Amestoy et al. (1996). The elimination is virtual in that no summation is ex-
plicitly made: the aim is to just simulate the fact that additional edges appear to link up
unconnected and unmarked neighbors of eliminated variables, where a variable is marked
once eliminated. The resulting induced graph is depicted on Figure 3.8. Red edges are filled
through triangulation.

Figure 3.8: Induced graph for the decision variables of the SLAM CBN of Figure 3.3 (fill-in edges
in red).

Cliques are retrieved by maximally clustering the fully connected nodes of the cover graph.
This defines the max-cliques in the clique tree. To produce the clique tree edges (separators)
compliant with the RIP, the following interwoven steps are taken: a candidate edge is drawn
between any pair of cliques which has a non-empty intersection; the edges are weighted ac-
cording to the size of the intersection set (or scope); the well-known maximum spanning tree
algorithm is used to fetch the clique tree (figure 3.9) (Koller and Friedman, 2009, §10.4.2 & Fig-
ure 10.10).
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Figure 3.9: Clique tree of the pose-graph Figure 3.3. Cliques involving the relative motions λ are
stroked in yellow and in purple in the case of the loop closure. The terms in blue shows in which clique
each group of potentials is affected. Cliques in black strokes are initially empty.

Here, the decision variables xi, xi+1, λi involved in any trajectory part are completely
connected in the induced graph (xi and xi+1 constitute the Markov blanket of λi), so they
are guaranteed to belong to a common clique.

The belief Ψ(Ci) of any clique Ci associated to a trajectory part (orange and purple in
Figure 3.9) is initialized with the potential indicated in blue on figure 3.9, the product∏i Ψ(Ci)
being equal to the joint pdf (3.15). Since this toy pose-graph entails no control input u and
a single odometric measurement z, the structure of the trajectory corresponds to figure 3.4,
so (3.3) simplifies into

p(x(+), λ, z|x(−)) = p(λ)p(z|λ)p(x(+)|x(−), λ). (3.20)

The beliefs of the remaining cliques (black in Figure 3.9) are initially empty, i.e., they have a
potential of 1 until they receive messages from neighbors. This protocol is described next.

3.2.3 Message Passing Protocol

The next goal is to answer inference questions using the built clique tree by proposing a
message passing scheme. Sum-product belief propagation algorithms are selected Darwiche
(2009); Koller and Friedman (2009). The messages are passed between cliques by computing
the marginal of the clique belief over6 the separator set. A clique can only send a message
to a neighboring clique once it has received all the messages from its other neighbors. This
is why message passing can only start from the clique tree “leaves” and process recursively
towards a selected clique named “root”, then return from the root to the leaves.

6To avoid potential ambiguity on the word “over”, it means that the variables in the clique belief scope,
but not in the separator scope, are to be eliminated.
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By virtue of the selected SLAM model, orange and purple cliques are leaves. The re-
maining black cliques are named “core”. The message flowing from clique Ci to clique Cj

is denoted τ j
i (Sj

i ), with Sj
i the separator of {Ci, Cj}. Some messages will be shown to be

constant. In the other cases, when no analytical result can be leveraged, we revert to the
customary message passing computations.

Message passing from leaves to core

Figure 3.10: Message passing from leaf to core cliques.

Messages starting from leaves must be computed first. Messages flowing from leaves to
core are nothing else than the steps described in §3.1 for the elimination of λ. Indeed, from
the clique tree excerpt on Figure 3.10, one gets

τ1
1′(S1

1′) ≜
∫

λ
Ψ(C′

1)dλ, (3.21)

with C1′ = {x(+), x(−), λ}, C1 = {x(+), x(−)}, S1
1′ = {x(+), x(−)}. In view of Subsection 3.2.2,

the initial belief of each leaf clique is set to the potentials associated with the data received
when the robot is at x(+)(see blue potentials in figure 3.9). Thus, to eliminate λ in (3.21), we
finally use a variant of the result (3.13), leading to

τ1
1′(S1

1′) ≜ p(z)p(Log(x(−)
−1 ◦ x(+))|z). (3.22)

And, given (3.14), we know that p(Log(x(−)
−1 ◦ x(+))|z) stands for p(x(+)|x(−), z).

Note that this step is purely analytical and requires no computation.

Anti-causal constant message passing for latest odometry measurements

Consider the three lower core cliques C7, C6, C5 (upwards) of figure 3.9, reproduced figure 3.11,
which is representative of a sequence of odometry measurements. Messages are assumed to
have been passed from their respective leaf cliques, according to §3.2.3. For now, the message
coming to clique C5 from core cliques other than C6 is ignored. Rather, the focus is put on
the messages flowing along the direction C7 → C6 → C5 → . . .. From C7 to C6, one gets

τ6
7 (x8) =

∫
x9

p(x9|x8, z8)p(z8|x8)dx9 = p(z8|x8) = p(z8). (3.23)
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Figure 3.11: Message passing be-
tween core cliques representative of
odometry.

?

Figure 3.12: Costs of the message pass-
ing computations in the clique tree Fig-
ure 3.9. The weights of yellow edges is
known at runtime. Those associated with
green and red edges are structurally zero
(see Subsection 3.2.3).

This step is repeated from C6 to C5, C5 to C3, etc. Consequently, only the evidences {p(zi)}
constitute such messages (Figure 3.11). In other words, messages between core cliques in the
anti-causal direction are recursively constant. This result is inline with the intuition of many
SLAM practitioners that the belief does not propagate backwards in such a structure. In fact,
only loop-closures break that structure.

Anti-causal constant message passing for pre-loop trajectory

So far, we have shown that messages in the anti-causal direction are constant, but only for the
latest odometry measurements, i.e., the ones occurring after the last loop-closure. However, it
can be shown that the computation the message before the loop x2−x6 can also be avoided.
Figure 3.12 represents the cliques of the case study problem, except that the undirected edges
of the clique have been replaced by directed edges which weights denote the cost of computing
messages from the source clique to the destination clique. Yellow edges mean that the cost of
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local message passing is non-zero and will be known at runtime. Green edges are associated
with a zero-cost in view of the previous paragraph. In what follows it is explained why the
red edge is also zero-cost.

Let us consider the variation of the toy problem CBN shown on figure 3.13. The relevant
difference with the CBN of figure 3.3, has to do with the parents of the relative motion
node λ6

2, i.e., the loop-closure. Figure 3.3 has considered x2 and x6 to be the parents7 of
λ6

2. By contrast, in figure 3.13, the parents of λ6
2 are all the intermediate relative motions.

Geometrically, both statements are true:{
Exp

(
λ2

6
)

= x6
−1 ◦ x2,

Exp
(
λ2

6
)−1 = Exp

(
λ3

2
)
◦ Exp

(
λ4

3
)
◦ Exp

(
λ5

4
)
◦ Exp

(
λ6

5
)

.
(3.24)

Figure 3.13 is more appropriate to show that τ1
2 (x2) = const (zero-cost red edge in figure

3.12), because it becomes graphically evident that: (a) x2 ⊥⊥ y0, and (b), for all i ≥ 2,
x2 ⊥⊥ zi. These d-separations are not depicted by figure 3.3. They graphically prove that
no loop-closure observation yk influence the estimate of x2: (x2 ⊥⊥ y0) in figure 3.13. The
reasoning can be extended to all poses before loop-closures, but not within a loop-closure.

On the other hand, in the context of inference in probabilistic graphical model, the initial
representation of figure 3.3 is more convenient for belief propagation algorithms. Indeed, a
major flaw of the CBN figure 3.13 is that it leads to a completely different clique tree where
sparsity is, essentially, destroyed. As it is known, by construction, that the number of parents
per node has a direct effect on treewidth (Darwiche, 2009, §6.8), it can be anticipated that
the treewidth will correspond to the value of largest observed loop-closure λi

j
8, i.e., j− i. This

discards the CBN modeled figure 3.13 as a basis for belief propagation. Its single interest
is therefore to justify additional zero-cost messages (red arrow in figure 3.12) in clique trees
made from the CBN figure 3.3.

Nonetheless, we will return to the merits of figure 3.13 representation in the next chapter
(4), where a non-Bayesian view is explored.

Figure 3.13: Alternative view of the loop-closure were λ6
2 is made dependent on other λs. On the

one hand, this structure allows the exhibition of more independences (e.g., x2 ⊥⊥ λ6
2). However, this

alternative representation has an adverse effect on sparsity as larger cliques will be inevitably produced
by the elimination.

7This view of the loop-closure is compatible with existing BN for pose-graph, in that a loop-closure creates
a statistical link between 2 poses.

8For instance, if a pose is re-observed K timesteps after it is created, that alternative view would guarantee
a clique which scope size is K.
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Root Selection

Belief propagation in the clique tree is achieved through forward/backward message passing to
a clique designated as root. Any clique can in fact be the root. But it is clear that choosing a
root clique approximately in the “middle” of the clique tree would leverage better parallelism.
On the other hand, choosing a leaf clique as the root would create a bottleneck.

Furthermore, the championed CBN view of the SLAM structure exhibits constant message
passing in some areas, at zero computational cost. A directed graph can be constructed of
all the message passing costs involved in the tree. Its nodes are the cliques, and its directed
edges are weighted by the cost of message passing from a source clique to a target clique,
once a said source has received all other messages from its other neighbors (Figure 3.12).

The green arrows are 0-weighted because the message passed is constant, as deduced
from the structure. The weights of all other arrows can be known analytically only once
the mathematical expressions of the clique beliefs are available, independently of the values
taken by the variables (e.g., size of matrices that represent the density, cardinality of discrete
beliefs). Once the weights of that symbolic graph are evaluated, the goal is to find the center
of the graph, in order to best parallelize the belief propagation. An instance of the betweenness
centrality algorithm was run to find which root is (close-to) equidistant to the leaves, in terms
of message computation costs.

3.3 Incremental Inference

The inference is now adapted to incremental cases. The various inference structures described
in the previous section and depicted in Figures 3.12-3.9 are studied in view of new measure-
ments. Next Subsections 3.3.1 and 3.3.2 describe in Figure 3.14 the incorporation of new
odometry measurements and the handling of a large loop closure y1.

Figure 3.14: Progression of the pose-graph of Figure 3.3. New decisions variables are in blue. New
measurements to be incorporated sequentially are bolded in blue.

3.3.1 Additional Odometry Measurements

The incorporation of a sequence of measurements z9, z10, z11 is considered. Three new cliques
(C8, C9, C10) are appended to the clique tree of Figure 3.9. In view of constant message
passing in the anti-causal direction, it can be structurally anticipated that a zero-cost message
τ7

8 (x9) = p(z9) is propagated from C8 = {x9, x10} to C7. In the causal direction, the new
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clique C8 (and C9, C9 thereafter) is passed the message τ8
7 that does not depend on the new

measurements.
Applying a pattern similar to equation (3.23), backwards from clique C10 to C8, constant

messages are exhibited. This proves that the cost of message passing associated with marginal
and MAP inference is constant, whenever new (purely) odometric measurements are added.
Furthermore, a new clique C is broken up into {C, C′} ← C whereby C′ is connected to C. The
belief of C′ gets initialized with the new measurement density. This is done to maintain the
distinction between core and leaves (see Figure 3.9).

3.3.2 Additional Loop closure

A large loop closure is described by measurement y1. Consequently, a backdoor path between
x13 and x3 is activated. To maintain the clique tree properties (RIP, family preservation),
its structure must be partially updated. Algorithm 1 details the process, complemented by
Figure 3.15. From the inherited clique tree, the path involving the loop closure decision
variables is first identified. For large loop closure, this amounts to a significant part of the
clique tree. For measurement y1, the identified path is the subtree C3, C5 − · · · − C10. Those
cliques are removed and the corresponding joint pdfs form a partial CBN (including pdfs
related to y). The fill-in edges issued by the inherited clique tree are maintained (yellow
edges in Figure 3.15). The partial CBN is then turned into a new chordal graph along §3.2.2.
A clique subtree is assembled and joined to the genuine clique tree. This process shows some
similarities with loop closure management in iSAM2.

Algorithm 1: Partial reordering algorithm of a clique tree following a loop closure
measurement

Input: Clique Tree T , measurement y
Output: Updated Clique Tree T ′

1 Trm ← identifySubTree(T, y);
2 T ′ ← T \ Trm;
3 pCBN ← expandDensities(Trm) ∪ y;
4 CG← triangulation(pCBN);
5 wCG← weightSetIntersection(CG);
6 T ′ ← T ′ ∪maxSpanningTree(wCG);
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Figure 3.15: The partial reordering algorithm (Algorithm 1) following loop closure. Only core cliques
are represented to declutter the depiction. In clockwise order: (a) clique tree before the measurement
y1; (b) the subtree C3, C5 − · · · − C10 is removed; (c) the joint pdfs in the removed cliques plus the
ones associated with new measurements form a partial CBN, fill-in edges (yellow) are inherited from
the existing tree structure; (d) the partial CBN is transformed into a chordal graph; (e) the clique tree
structure is reformed.



3.4. NUMERICAL APPLICATION FOR THE CASE STUDY PROBLEM 93

3.4 Numerical application for the case study problem

A numerical experiment in SE(2) is conducted, based on Figure 3.3 assuming additive Gaus-
sian dynamics and measurement noises. The manif library (Deray and Solà, 2020) has been
used for computations over manifolds. The order of message passing computations described
above have been precoded. Figure 3.17 compares the matrix view and Bayes tree of the prob-
lem. The Bayes tree structure is similar to the core of the clique tree structure of Figure 3.9.
The beliefs in the cliques take the form of dense matrix-vector structure (information matrix
and information vector). The messages between cliques (marginalization) are computed using
Schur complements. As mentioned above, the elimination of the relative motions λ is ana-
lytical, and does not appear explicitly in the implementation. The only explicit information
in the implementation concerns which messages are zero-cost, as that a number of message
computations can be avoided. We ignore the cost of incorporating the messages into clique
beliefs (matrix additions).

Since the densities are only Gaussian locally with respect to the decision variables, the
problem is solved iteratively for some δx around a composite linearization point x̃, until
convergence. The message passing is visually depicted figure 3.16.

Figure 3.16: Depiction of the message passing between the cliques. First, the message C1 → C2 is
sent (only once). Clique C3 is selected as the root node. In the K iterative steps required during
the run, the messages only need to flow from C2 → C3, and from C3 back to C2 (dashed arrow). The
backward message C3 → C2 only occurs when C4 is received, and without sending back the message
C2 → C3 to avoid double counting. Concurrently, the message C4 → C3 flows and then back C3 → C4
(dashed arrow) once C3 has received the message from C2. Then, the potentials in the clique in the
yellow area re-linearized, and this process is repeated, until convergence condition is met. A number
of re-linearizations and message computations can thus be avoided, compared to a standard matrix
based implementation of MLE SLAM. The exact number depends on the structure of the graph and
the number of iterative steps K.
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We fix the measurement noise as Σ ≜

 90 200 −50
200 470 −120
−50 −120 100

 (including for the loop closure)

and we make it so that the randomly generated trajectory stays within a 10×10 square meters
area. Applying the message passing protocol, step (2) in figure 3.16 requires between 3 and
4 iterations in our tests. For each generated experiment, our MAP results from this protocol
is similar to the solution of the matrix-based view of MLE SLAM (figure 3.17-(left)), which
was expected. Compared to the matrix view of the problem the proposed approach enables
less re-linearizations thanks to zero-cost message passing (green are red arrows in figure 3.12).
This has been tested over several runs with different noise characteristics.

Figure 3.17: Matrix view Kaess et al. (2008); Ila et al. (2017); Wang et al. (2018) vs Bayes tree Kaess
et al. (2010) of the problem of Figure 3.3. For both approaches, the root is highlighted in blue. Notice
the similarity of the core part (i.e. leaves excluded) of the (undirected) clique tree Figure 3.9 with the
Bayes tree.

3.5 Experiment on a larger graph

An experiment is conducted on the dataset ‘Manhattan M3500’ (Olson et al., 2006; Carlone
and Censi, 2014). It features a robot travelling within a city block urban environment, which
measures its own displacement thanks to a fairly poor odometry and is able to detect loop
closures. Its view from above is portrayed figure 3.18. Our motivation for this dataset, in
the context of this chapter, is the causal link between the right side (older) and left side
(more recent), as highlighted in figure 3.18. The node x2947 is chosen as a separator. This
loosely-coupled situation that can be representative of many real world SLAM problems.
Constant message passing is exhibited from the loosely connected left side towards the right
side. This means, in accordance with the presented message passing scheme, that inference
can be conducted separately on both sides. In some sense, this is a causal dissection.

The MAP inference conducted for the left side expresses as:
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"left side" "right side"

Figure 3.18: Depiction of a solved CBN of the ‘Manhattan 3500’ dataset. Left and right side are
distinguished and solved separately in this work.

arg max
Xleft

p(Xleft|Z, do(x2947 = ε)),

where Xleft = {xi, i ∈ (2947, ..., 3500)}, and x2947 is set at the origin (via Pearl’s do-
operator notation). The clique tree can be visualized on a web support, described hereafter.

3.6 Visualization of the data structure

An animated visualization of the inference process (from initial guess to MAP) is provided on
a web support (figure 3.19 and 3.20). It consists in the visualization of the CBN (which nodes
are positions in the trajectory) and the associated clique tree (as a force graph). We provide
below links to visualize several trajectories (from a small, to medium, to large graph)9:

• The visualization of a small graph https://jtari.net/sub_cbn/small.

• The left side of the M3500 dataset https://jtari.net/sub_cbn/left_side.

• The right side of the M3500 dataset https://jtari.net/sub_cbn/right_side.
In the CBN/trajectory screen, pressing the keys ’backspace’, ’s’ and ’space’ respectively

increase, decrease, and reset the dimensions of the element to declutter the view. Pan and
zoom are available via the mouse. To replay the animation, simply refresh the page.

9NOTE FOR REVIEWERS: the links proposed here are temporary for the draft version. For the final
version, the content will eventually be served on a more permanent institutional website.

https://jtari.net/sub_cbn/small
https://jtari.net/sub_cbn/left_side
https://jtari.net/sub_cbn/right_side
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Figure 3.19: Screenshot of the animation step of adjustment of the graph.

The corresponding clique tree can be accessed through the drop-down menu (burger shaped
button) located in the top left of the screen. The clique tree visualization is implemented as
a force graph. Hovering above a given variable makes the running intersection property
apparent (black stroke in figure 3.20). However, due to the large number of nodes, which
implies a large number of ‘html‘ elements, the clique tree of the right side of the graph (the
largest one among examples provided) is currently very slow.

The current implementation is available here: https://github.com/JoelTari/CarlitViz
and is based on the “D3JS” Javascript library. Under the hood, our solution (C++ and Julia
scripts) produces a “json” file containing the results. Future work will provide a user inter-
face as well as additional features for our next contribution (CARLIT) presented in the next
chapter.

https://github.com/JoelTari/CarlitViz
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Figure 3.20: Clique tree visualization. Hovering over a given variable makes the running intersection
property apparent. This screenshot shows the RIP of x10, i.e., all cliques and separator containing
this variable. This clique tree visualization has proved useful observing how loop closures that overlap
each other produce a greater treewidth.

3.7 Discussion

In this chapter, we presented a new conceptualization of the SLAM problem and belief prop-
agation based inference. Contrarily to other strategies, causal intuition in the PGMs is
enforced, that enables to benefit from zero-cost backward propagation along the robot trajec-
tory (in some sense, the intuition that supports preintegration schemes Forster et al. (2017) is
made explicit). A symbolic graph can be set up, whose edges are message passing costs, that
helps to decide which root is best suited to each inference question. No assumption is made
on the nature of the involved pdfs as long as analytical calculations and computational cost
evaluations can be conducted (they could be nonparametric Fourie et al. (2016), etc.). Com-
pared to state-of-the-art, additional unknowns (λ’s) are needed, but they can be discarded
analytically at no cost. The method shows theoretical advantages, and besides, the proposed
“rootless” clique tree may be an asset for collaborative SLAM.

On the one hand, more can be done on this basis, and a thorough timing analysis could
be done to flourish the approach. However, the structure only addresses fully one aspect of
the issues mentioned in 2.3, which is f2 (no backward influence of odometry). Consequently,
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we rather spend more focus on the important scientific question, which concerns the research
of a new structure for the SLAM problem able to reproduce more basic aspects of spatial
understanding.

One of the motivations behind this CBN SLAM contribution was to maintain compatibil-
ity with the modern probabilistic SLAM formulation, which has many successes (see §2.2).
Unfortunately, most of the other issues identified in 2.3 (that is f1, f3, f4, u1, u2) are also
transferred to this CBN approach of SLAM.

The visualization system we presented highlights another concerning fact: the size of
the cliques gets considerably bigger as the size of SLAM size grows. In the biggest cliques
of medium-sized problems (e.g., Manhattan 3500), grouped variables may be separated by
an appreciably big distance so that there may be no reason, a priori, to think of them as
potentially gathered. The complexity issue comes from the known theoretical result that the
size of the largest clique is the prime indicator of the inference cost (see §2.3.3 and §3.2.1).

A profound ramification of this last point comes from the fact that this issue is not
specific to any clique based representation. We have seen that the sparsity pattern between
the decomposed sparse matrix structure and the clique tree structure are similar (see figure
3.17). The problem is traced back to the key assumptions 2.1 and 2.2 of probabilistic SLAM.
These assumptions lead us to solve a system heavier that initially thought, whichever support
is used (decomposed sparse matrix, clique tree, etc...).

To overcome these issues, our next solution is to come up again with a different structure.
Consider again the interesting structure on figure 3.13. Its single interest was to make a point
about an independence relation, yet it was discarded because it leads to a solver with unfa-
vorable metric (high treewidth). In the next chapter, inspired by a variant of this figure, we
propose a novel view of the SLAM problem which finally articulates the Laplacian conception
(1.5.3), the theory of errors, and Pearl’s paradigm on causality.
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This chapter attempts to synthesize our initial historical analysis, our observations on
modern SLAM, and our understanding of causality and graphical models. This results in an
extra probabilistic view of the SLAM problem.

CARLIT (Causal Approach to Represent Localization and Internalized Topography) is the
name given to our approach. It is based on the Structural Causal Model (SCM) framework of
Pearl & colleagues (Pearl, 2009). Its privileged mode of graphical representation is the causal
graph.

Figure 4.1 shows different modes of representation of the small toy pose-graph scenario
studied in chapter 3. Each representation depicts a different approach to the SLAM problem
(see caption). In this chapter, we will progressively introduce formally the graphs (c) and (d)
which concern the CARLIT approach. But first, notice that the graph (c) is reminiscent of
the graph described in figure 3.13. The main difference versus figure 3.13 is that additional
ζ-variables have been incorporated, which represent explicitly the external errors affecting
the measurements.

The overall goal of our approach is to address the faithfulness and feature issues identified
in section 2.3 and, then, only by opportunity, to discuss the improvements brought in terms
of complexity.

Since this approach is appreciably different from existing SLAM formulations, we present
the process step by step. Section 4.1 will formally introduce the SCM framework and discuss
its merits. Section 4.2 studies the causal representation of pose-graph scenarios. This will
give us the opportunity to restate the fundamental concept of loop closure. In section 4.3,
we detail our constrained least squares solution to a CARLIT pose-graph. Nonetheless, pose-
graph problems are only a limited subset of SLAM problems. This is why in section 4.4,
we address the question of mapping with landmarks. The notion of internalized topography
(‘IT’ in ‘CARLIT’) is presented. Conceptually, it is an important section. To improve the
sparsity pattern of the solver, the composition of summarized motion is presented in section
4.5. In section 4.6, we showcase on a small example how covariance queries can be answered in
such quasi-deterministic framework. Finally, concluding remarks and perspectives are given
in section 4.7.
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Figure 4.1: Various representation of the same toy problem. (a) is the factor graph representation
of probabilistic SLAM. (b) is the CBN representation we introduced in chapter 3. (c) is the causal
graph of the CARLIT approach. (d) is the wrapped causal graph for which compositions and virtual
measurements are introduced to safeguard sparsity; this will be described in section 4.3.
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4.1 The Structural Causal Model framework

4.1.1 On Structural Causal Models and their implied conceptual hierar-
chies

As we assume the reader to be less familiar with causal framework, we present in this sec-
tion the Structural Causal Model (SCM) and its ramifications when approaching the SLAM
problem.

The definition given is based on Pearl (2009); Pearl and Dechter (2013); Pearl et al. (2021).

Definition 4.1 (Structural Causal Model (SCM)). An SCM is a 4−tuple, SCM =< V, E , p(E), {fi} >
where:

• V is the set of endogenous variables.

• E is the set exogenous variables. They are generally the disturbances or the error terms.
They will commonly be referred to as ‘errors’ in this work.

• p(E) is the joint pdf over the errors.

• F = {i ∈ (1, . . . , |V |) : fi} is a set of deterministic functions such that:

∀vi ∈ V, vi := fi(pai, Ei).

The set pai ⊂ V are the parents of vi. Ei ⊆ E is the set of errors affecting vi. The symbol
:= denotes the assignment operator, meaning that vi is determined by the right-hand side
of the assignment operator.

In a strictly causal deterministic view of the world, the errors E do not result of inherent
randomness but rather of ignorance of some underlying processes. As noted by Laplace (and
before him Condorcet, Maupertuis, d’Hollbach and Boscovich, see §1.5.3), since knowledge
of all laws in Nature is out of reach, and/or for convenience reasons1, we do not explicitly
attempt to detail the causes of the errors. The formalism of probability theory captures the
behavior of these exogenous variables. As was remarked in chapter 1, this is in fact precisely
how probability theory was introduced in the first paragraphs of Essay (Laplace, 1814a).

Definition 4.2 (Causal graph). from Pearl (2009, §7.1).
Every SCM (M) can be associated with a directed graph, GM , in which each node corresponds
to a variable in the set E ∪ V . The directed edges point, for each vi ∈ V , from members of
pai and Ei toward vi.

Remark 4.1. From definitions 4.1 and 4.2, error nodes have no parent in the graph. They
are root nodes.

The graphical criterion of d-separation applies for GM in the same way as it does for
Bayesian networks (BN). Causal graphs could conceivably be cyclical, but they are all acyclical
in this work (DAGs). A causal graph is a graphical abstraction of the cause-and-effect relations

1One might be willing to ignore phenomena he/she knows about for convenience reasons. Such phenomena
often ignored can be countless and are left captured by the exogenous variables. They include, e.g., the known
effect of frictions, known play in the robot joints, effect of shadows on perception systems, etc.
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that the SCM embodies, and thus, of the causes-and-effects assumed by the modeler of a given
SCM. There comes its attractiveness, from the fact that it is able to convey transparently
assumptions through the absence of arrows, the direction of arrows and d-separation. In
relation to d-separation and the fact that it is a directed graph, it is worth stressing the
conceptual difference between a BN and a causal graph, especially given the fact that SLAM
practitioners are relatively familiar with the former. The BN, as noted in §2.1.2 (remark 2.3),
is only a representation of the patterns of independences in a corresponding joint pdf. The
direction of the arrows in a BN do not imply causal assumptions, since the joint distribution
can be reformulated in the form of various products, by Bayes rules. Thus, there are as
many possible BNs for a joint distribution as there are applications of the Bayes rules in
this distribution. Hence, BN cannot be the only basis for problems that necessitate the
manipulation of causal considerations.

One such potential manipulation is an intervention. It consists in setting a variable vj in
V to an arbitrary value to study the effect. By “setting the arbitrary value of vj”, it is meant
that the value of variable vj is no longer assigned by its parents. Instead, vj is controlled by
something external, intervening from outside the scope of the SCM. The analytical operator
do(vj), and the double circled nodes in the graph, are both used to denote an intervention
(e.g., see x0 figure 4.1-(b), -(c) and -(d)). A DAG can interpret interventions only if the
arrows represent cause-and-effect relations and not just Bayesian conditionals. The Causal
Bayesian Network (CBN - used in the previous chapter), for its part and as its name suggests,
remains a representation of a joint pdf enforcing causal constraints. It opens the opportunity
to model interventions. The causal graph (definition 4.2) goes beyond the BN representation:
it abstracts the structural equations of the SCM (definition 4.1).

Definition 4.3 (Set of observations and set of interventions). Let Z and A respectively denote
the set of observations and interventions applied on a subset of the endogenous variables V
of an SCM.

• The set Z correspond to the variables being observed, i.e., conditioned on in the inference
process. Its corresponding nodes in the causal graph G are depicted in gray.

• The intervention set A corresponds to the variables appearing in the do-operator, do(A).
Its corresponding nodes in the causal graph G are depicted in gray with a double-circle.
Unlike other endogenous variables, nodes in A do not have parents.

In this work, the inference objectives are achieved by first computing the MAP estimate
of the errors, the peak of the posterior pdf p(E|Z, do(A)). Then, the robot poses X and the
landmarks L are deduced. Under precautions to be detailed, these are also the MAP estimate
of p(X ,L|Z, do(A)).

Remark 4.2 (Inference with interventions). In the causal inference literature, especially in
comparative studies, inferring the effect of interventions can be difficult because implementing
an intervention may be costly, impossible, or even unethical (e.g., typically, one cannot force a
cohort to smoke in order to study the effect of smoking). In those situations, a set of methods
called do-calculus (Pearl, 2012) is leveraged. While do-calculus is a powerful tool to keep in
mind for future work, we will see that setting the interventions do(A) poses no difficulties
in this work. For instance, the implementation intervention do(x0) is a matter of tweaking
a configuration file. In fact, one can ask why not just cast x0 and other elements of A as
observations. The reason for this is twofold: first, in all rigor, only interventions have no
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parents, while observations do (because observations have cause(s) in the model), and x0 has
no parents; second there are conceptual ramifications concerning the causal interpretation in
the model, to be discussed for each entity in A. In this instance, setting of x0 is an arbitrary
choice, external to the model.

The SCM approach proposes a coherent framework to answer inferential queries on (1)
an associational level (e.g., estimating the marginal over the last pose given observations),
(2) an interventional level (e.g., what happens if we send a control signal u?), and (3) a
counterfactual level (e.g., what would have happened had a control signal u′ been sent, given
the fact that we did send control signal u?). These three layers (or rungs) constitute the ladder
of causation, or the Pearl Causal Hierarchy (PCH). Bareinboim et al. (2022) emphasized the
need for causal models to answer estimation queries on all 3 layers of the PCH.

4.1.2 On the relevance of SCMs for SLAM

In the robotics context, one can naturally expect great benefits in designing a causal SLAM
system if his/her objective includes answering interventional and counterfactual queries about
the environment2. But independently of that fact, one can argue that a SLAM system for-
mulated on the first layer of the PCH, i.e., via a joint pdf represented by a BN or by a
factor graph, is sufficient to solve questions related to SLAM, such as joint state estimation.
However, in this chapter, we intend to show the merits of a causal model for SLAM, i.e., of
a system based on the whole PCH, even when the SLAM problem is restricted to the first
rung of the PCH, i.e. to state estimation conditioned on local observations.

The idea according to which the SLAM endeavor can be formulated as an extra probabilis-
tic problem is actually far from novel. This can be identified already in one of seminal paper
on robotic localization and mapping (not yet termed as SLAM) by Chatila and Laumond
(1985). Table 4.1 shows a lexicometric analysis of this paper. For each keyword of interest,
we give the occurrence and corresponding layer in the PCH. This corresponding layer means
that the considered keyword advocates for a problem formulation via a framework of layer i
(in the PCH) or above.

This paper describes general ideas to correct the errors in order to model and understand
the environment. The notion of (spatial) understanding is presented as being the ultimate
goal. The word “model”, which occurs most often, could refer to several constructs (e.g., a
probabilistic model, a geometric model); however, in conjunction with other words (such as
“perception”, “error”, “structure”), it then tends to suggest a richer conception. It can be
interpreted that the potential solution system, i.e. the “model” the authors were after, should
be capable of answering the broadest types of inference queries, not limited to state estima-
tion. Overall, we can see that the vocabulary employed by Chatila and Laumond (1985), if
put in an SCM context as a thought experiment, suggests the need of a third layer, e.g. a
structural model. One can also notice that the vocabulary significantly differs from SLAM
contributions, from the ‘classical age’ (as coined by Cadena et al. (2016)) to today, which
words are generally focused on the first layer, i.e. probability theory considerations and state
estimation techniques. Conversely, what makes Chatila and Laumond (1985) paper intriguing
is precisely its non-commitment to a purely probabilistic view. It should be recalled here that
Bayesian networks were just invented at the time (Pearl, 1985) and that further research on
the SCM framework would not take shape until around the late 90s. The formalization of

2This will be addressed in future work.
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Keyword Count PCH layer
model 100+ -
percep* + perceive 58 3
frame 46 2
uncertain* 33 -
error 25 3
(in)accuracy 18 1
system 15 -
structure 15 3
consistent* 10 1
prediction 10 1
knowledge 8 3
understand 6 3
data 4 1
prior 1 1
probabil* 1 1
likel* 0 1
learn* 0 1
estim* 0 1
correlation 0 1
causal 0 3

Table 4.1: Lexicometric analysis of Chatila and Laumond (1985) and would-be correspondence with
the PCH layers in the third column.

causal SLAM through SCM can now be explored, in view of: the issues mentioned in chapter
2, the compatibility in spirit with the historical approaches of geodetic adjustment in chapter
1.

Before proceeding, an important disclaimer must be raised concerning the nature of as-
sumptions made in the next sections. It should be understood beforehand that causal as-
sumptions are stronger than statistical assumptions, in that the former imply the latter.
Usually, the implied statistical relations are testable3. However, ‘purely’ causal parts often
rely on arguments and our qualitative judgements, and no attempts are made to prove them.
For instance, consider the consecutive robot poses (xi, xi+1), and the relative motion noted
Λi+1

i between them. It is algebraically equivalent to say that xi+1 = xi ◦ Λi+1
i and that

xi = xi+1 ◦(Λi+1
i )−1. However, only the assignment xi+1 := xi ◦Λi+1

i is assumed to be causal
here. This assumption, already used in chapter 3, relies solely on the intuitive and largely
shared notion of temporal precedence as an indicator of causal directionality.

Causal assumptions are introduced progressively in the rest of the chapter. In the next
section, we explore a causal representation of pose graph SLAM. In section 4.3, we address a

3Note that this is usually true for sparsely connected causal networks, but may not hold for small &
completely connected networks. For instance, this causal graph: {X → Y ; Z → X; Z → Y } inspired from
(Pearl, 2019, p3) is made by definition of causal assumptions, but does not contain any testable conditional
independence statement. And hence this model cannot be refuted by studying the statistics of the experimental
data.
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new method for adjustment for this representation. The so-called CARLIT approach is sub-
sequently extended to landmarks in section 4.4. In section 4.5, we explore how to compose
together intermediary motions in an effort to lower complexity in the presence of overlap-
ping loop-closure. In section 4.6, we show how to process covariance queries in such quasi-
deterministic system. Our conclusions and perspectives for causal SLAM, and causal robotics,
are given in section 4.7.

4.2 Representation of pose graph problem

Assumption 4.1. In this work, all errors of the set E are mutually independent4, see also
(Pearl, 2009, def 2.2.2):

p(E) =
∏

i

p(Ei) .

Of course, the factorization of p(E|Z) is DAG dependent. Furthermore, every Ei only affects
one node in the graph (which is not always the case in causal inference literature), and, unless
stated otherwise, the errors are always zero-mean Gaussian.

4.2.1 Simple robot trajectory (no loop-closure)

Box 8: Simple trajectory scenario for a controlled robot.

From a starting pose, arbitrarily denoted x0, a robot is fed sequentially 4 independent
control inputs U ≜ {u0, u1, u2, u3}. We assume absence of inertia in the robot motion,
no false sightings, no outliers, etc.

Objective: The inference problem consists in establishing the state estimation of the
robot poses X ≜ {x1, x2, x3, x4}.

Consider first a sequence of N robot poses {x0, . . . , xN}, as described per the toy scenario
(Box 8), for which no form of loop-closure observation is available. The SCM approach is
introduced via the interpretation of the following statement:

Causal Statement 4.1 (Robot Trajectory). The trajectory of a robot is the ordered set of
poses X ≜ {x0, . . . , xN}. It is determined by a sequence of N relative motions

{
Λi

i−1
}

i∈1...N
cumulated on a pose x0.

On the basis of this toy scenario (Box 8) and causal statement 4.1, we build the SCM
(M1) by stating the set of functionals:

(M1) :
{
∀i ∈ (1, . . . , N), Λi

i−1 := Exp (ui−1 + υi−1) ,

∀i ∈ (1, . . . , N), xi := xi−1 ◦Λi
i−1,

(4.1)

where it is assumed that the elements xi and Λi
i−1 are Lie group elements (typically, of the

Special Euclidean groups SE(2) or SE(3)); and the control inputs ui and corresponding errors
4The notation Ei is kept for meta purposes, it abstracts the different types of errors υ, ζ, ϵ, ν that exist in

this chapter, owing to the variety of robot sensors and control signals.
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υi are expressed in a Euclidean space isomorphic to a Lie algebra (typically se(2)∧ or se(3)∧).
Notations are similar as in the previous chapter (Solà et al., 2021), where Exp (·) and Log (·)
transform elements to/from the manifold from/to the Euclidean space isomorphic to their Lie
algebra (see figure 3.1). Note that half of the structural equations of (4.1) are deterministic.

Figure 4.2: Representation of the toy scenario (Box 8) for N = 4. The d-separation criterion shows
that all errors υi are independent from each other.

The corresponding causal graph GM1 on figure 4.2 abstracts (M1). We can learn a few
important points from it:

• First, the errors on the control inputs are, under this model, independent of each other:
for any i ̸= j, (υi ⊥⊥ υj)GM1

is verified in figure 4.2. Consequently, no correction is
possible through adjustment, which is useful information in itself. Remark that this
statement is derived from modelling assumptions, and not claimed from start, which is
partly the purpose of our efforts on representation.
In a noise-free problem, the poses can be obtained by applying the functionals (4.1)
recursively, and considering the zero mean of each error:

∀i ∈ (1 . . . N), xi = x0 ◦
i∏

j=1
Λj

j−1 = x0 ◦
i∏

j=1
Exp (uj−1) ,

where the product ∏ stands for the composition ◦ developed on the right, as it is
non-commutative on the usual Lie groups encountered in SLAM.

• Second, the drift, i.e., the growing uncertainty on the localization of the robot, is easily
visualized on the graph G(M1). As each pose xi is only influenced by independent error
terms that are its ancestors, i.e., the set {υj}j∈1...i−1, then the bigger the value i, the
bigger the set of error terms influencing xi.

• The third point concerns the modeling of control signals. They are modeled as interven-
tions, which amounts to consider that their values are arbitrary, and that their causes
are out of scope, as per remark 4.2. However, in practical real world scenarios, there is
always an intent underlying the control signals sent. This could be: a feedback control
law or some higher level planning, or the desire of an operator via a remote device. Any
of these causes could, with some efforts, be causally incorporated in the SCM, so that
some solutions could create additional paths of influence between relative motions. It
is a matter of what the modeler is willing to incorporate.

• Lastly, the strongest assumption exhibited by figure 4.2 is the absence of arrow between
relative motions. It assumed that the relative motions from one pose to the next are
only determined by the control signal, and that no effect of inertia remains from past
motions (as stated in Box 8). For dynamical systems and/or under-actuated systems
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scenarios, this assumption would not be realistic, so that either the value of the previous
relative motion should be included Λi

i−1 in the functional of Λi+1
i (i.e., an arrow should

connect one relative motion to the next), or more involved family of Lie groups should
be required. In the remainder of this work, we will carry on with the current assumption
(no connection), as it is often the case in existing SLAM problems. The main point is
that, in contrast to other representations, the causal graph makes explicit some of the
judgements that were implicit before, which is viewed positively.

The previous scenario describes a simple trajectory described by a robot with known con-
trols. However, sometimes, SLAM scenarios are only ‘passive’, i.e., only sensor measurements
are known, and control inputs are ignored (or unknown). This variant is presented in Box 9.

Box 9: Simple trajectory scenario for a robot (odometry variant).

From a starting pose, arbitrarily denoted x0, a robot carries out 4 relative motions{
Λ1

0, Λ2
1, Λ3

2, Λ4
3
}
. These motions are measured by an odometer: Z ≜

{
z1

0, z2
1, z3

2, z4
3
}
,

corrupted by noise. We assume absence of inertia in the robot motion, no false sightings,
no outliers, etc.

Objective: The inference problem consists in establishing the state estimation of the
robot poses X ≜ {x1, x2, x3, x4}.

Let (M2) denote the SCM of the toy scenario Box 9:

(M2) :
{
∀i ∈ (1, . . . , N), zi

i−1 := Λi
i−1 ◦ Exp

(
ζi

i−1
)

,

∀i ∈ (1, . . . , N), xi := xi−1 ◦Λi
i−1,

(4.2)

where the error terms of the odometry ζi
i−1 are expressed in the Euclidean space isomorphic

to the Lie algebra of the manifold.

Figure 4.3: Representation of the toy scenario (Box 9) for when N = 4. The d-separation criterion
shows that all measurement errors ζi

i−1 are independent from one another.

This toy scenario (Box 9), in contrast to previous scenario (Box 8), completely ignores
the causes of relative motions Λ. Consequently the Λ nodes have no parents in the DAG
GM2 figure 4.3. In this scenario (Box 9), this is an unknown. In all rigour, all endogenous
variables should have parents (according to Pearl et al. (2021, §1.5.1)), except those which
are intervened upon like x0. Aside from that, 3 points out of the 4 exhibited for the previous
scenario remain valid: the errors are independent, the drift is graphically exhibited and,
explicit assumptions are made concerning the null effect of inertia.
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Similarly, the deduced noise-free values for the pose xi can be established by setting the
error terms ζi

i−1 = 0:

∀ i ∈ 1 . . . N, xi = x0 ◦
i∏

j=1
Λj

j−1 = x0 ◦
i∏

j=1
zj

j−1,

which holds because Λi
i−1 = zi

i−1 ◦ Exp
(
−ζi

i−1
)

= zi
i−1 as Exp

(
ζi

i−1
)

is identity.

Remark 4.3 (Data as intervention versus data as observation). We can see by comparing
the two previous toy scenarios that there are two ways of specifying errors in relation to the
data. By data, we gather sensor readings and control signals. Firstly, one can associate
the error and the data as a common cause of the endogenous variable. This is the case for
data corresponding to noisy control signals (scenario Box 8): u → Λ ← υ. In this scenario,
the error and the data are considered to be jointly responsible for the endogenous variable.
Secondly, one can explain the data as the joint effect of the endogenous variable and the error.
This is the case for odometry measurements (scenario Box 9): Λ→ z← ζ.

At this point, it might be tempting to systematically categorize data as follows: actuator
data in the first way and measurement data in the second way. However, we will see in the
section about landmarks (§4.4) that this is not true.

4.2.2 Incorporation of loop-closures through summarized motions

The formulation of pose-graph loop-closures in the CARLIT framework is inspired by what
was done in the CBN (see figure 3.13 & corresponding comments). However, the structure
was not fully exploited as it was deemed impractical from the solver perspective. Importantly,
relative motions in the used Lie groups can be composed, or summarized, as follows:

∀j > i + 1, Λj
i = Λi+1

i ◦Λi+2
i+1 ◦ · · · ◦Λj

j−1. (4.3)

In causal terms, the summarized motion value Λj
i is assigned by all the relative motions

between i and j, which are therefore the parents of Λj
i . To include (4.3) in the SCM, the

following functional defined by the assignment operator := is used (see definition 4.1):

∀j > i + 1, Λj
i :=

j−1∏
k=i

Λk+1
k . (4.4)

Figure 4.4 shows such summarized motion in the node Λ4
1. Note that the summarized mo-

tion Λ4
1 is an open collider, thus no path of influence is added between its parents Λ2

1, Λ3
2, Λ4

3.
The error terms ζ remain d-separated so that the previous analysis applies: no adjustment
is possible. Conceivably, all combinations of summarized motions could be added as collider
nodes in the graph. But as these nodes are purposeless in terms of belief propagation and to
avoid cluttering the visual representation, they are not explicit drawn.

Summarized motions are interesting when they generate the loop-closure measurements
data, i.e., when they are the cause of loop-closure measurement.

Causal Statement 4.2 (Loop-closure in pose-graphs). A loop-closure event occurs when
the observation of a transform between two non-consecutive poses is available. The value of
this observation is generated by (a) the summarized motion between the two poses, and (b) a
measurement error.
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Figure 4.4: Representation of the toy scenario (Box 9) for N = 4, with the explicit representation of
the summarized motion Λ4

1.

Expanding the previous scenario (Box 9), we consider the incorporation of a loop-closure
between the poses x4 and x1, i.e, a relative transform measurement z4

1 between the two poses
is available. The SCM (M ′

2), which builds on (M2) in (4.2), writes as:

(M ′
2) : (M2)

⋃{
Λ4

1 := Λ2
1 ◦Λ3

2 ◦Λ4
3,

z4
1 := Λ4

1 ◦ Exp
(
ζ4

1
)

.
(4.5)

Figure 4.5 shows the loop-closure measurement z4
1 as caused by the summarized motion

and an error term.

Figure 4.5: Extension of toy scenario (Box 9) for N = 4, see SCM (M ′
2) in (4.5). Compared to figure

4.3, this SCM contains the loop-closure measurement x4—x1 and error term ζ4
1 . The overlaid orange

rubans highlight new paths of influence between the errors that are created thanks to the observed
node z4

1 (a closed collider).

At this point, we should discuss the consequences of our causal assumptions, and how
they differ from the core assumptions in probabilistic SLAM (see key assumption 2.2). We
can see from the DAG on figure 4.5 that the loop-closure measurement is not a descendant of
the involved poses x1 & x4. By contrast, for models which adhere to the probabilistic SLAM
key assumption 2.2, whenever a geometric transform is observed between two poses, it entails
a statistical relation between them. Here, a statistical relation between x1 and x4 would be
introduced, bypassing over x2 and x3

5. Figure 4.6 shows these probabilistic graphical model
5This is the case for BN, factor graphs, as well as the CBN model of chapter 3, through the mediation of
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representations (BN is not shown, which is similar to CBN for this discussion).

Figure 4.6: Factor graphs (top) and CBN (bottom), had the key assumptions of probabilistic been
followed for the extension of toy scenario (Box 9) for when N = 4, with loop-closure and using
probabilistic models.

From a probabilistic viewpoint, the following conditional independency can be read from
graphs figure 4.6:

x2 ⊥⊥ x4|x1, x3,

which is not the case in the causal graph. Conversely, probabilistic graphical models do not
depict well the following property seen on figure 4.5, i.e.,

x1 ⊥⊥ z4
1| Z ,

which is the fact that the loop-closure does not influence the value of x1 (and, carrying on,
does not influence the first error ζ1

0 ). Note that our modelling assumptions lead to the fact
that we are compliant with the reasoning feature f4 (see §2.3), which is the guarantee that
the first variable in the loop is not influenced by the closure (without, so far, any additional
assumption on the distribution of errors). Moreover, conditioning on x1 or intervening on x1
does not interfere with the inner statistical relations introduced by the loop-closure. In other
words, it does not “break the loop” as it is the case for probabilistic representations. This is
the issue u1, in §2.3, noted in the probabilistic framework. In graphical terms, x1 is not in
the orange path drawn on figure 4.5. Issue u1, it is henceforth considered solved now.

On the important distinction between equality and assignment, remark that both following
statements are true:

z4
1 ◦ Exp

(
−ζ4

1

)
= x1

−1 ◦ x4 and z4
1 ◦ Exp

(
−ζ4

1

)
= Λ4

1 . (4.6)

However, causal modelling require committing to a structural relation (with the := oper-
ator), which is chosen to be z4

1 := Λ4
1 ◦ Exp

(
ζ4

1
)
.

The rationale behind this conceptualization of the loop-closure as being explained by a
sequence of relative motions, and not descendant of the poses, relies purely on an opinionated

an intermediary transform.
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adherence to causal considerations. We consider that the poses composing the trajectory
are artificial entities which build on an arbitrary starting point. In other words they do
not exist per se, the experiment, they are only the (Cartesian) byproduct of the relative
motions. Therefore, in our view they cannot be causes of a measurement owing to their
fictional nature. On the other hand, relative motions

{
Λi

i−1
}

are considered as practical
entities of the experiment and can explain, by composition of a number of them, the value of
the loop-closure measurement.

Remark 4.4. In practice, the loop-closure measurement is governed not by Λ4
1, but from

its inverse. Indeed, typically the data is obtained from the robot current pose (there, x4)
to the ‘revisited’ pose (in this case, x1) by front algorithms such as ICP. The real available
data is hence denoted z1

4 with the measurement error captured as ζ1
4

′ (of which we assume
to know the noise characterics). Thus, the structural equation should be, in rigor: z1

4 :=
(Λ4

1)−1 ◦ Exp
(
ζ1

4
′). Nonetheless, we rely on the inversion property of Lie groups to state the

structural equation as z4
1 := Λ4

1 ◦Exp
(
ζ4

1
)
, without adverse effect on the causal interpretation

developed so far. A pre-process step is implied to translate the pair (z1
4, ζ1

4
′) into (z4

1, ζ4
1 ),

whereby z4
1 ≜ (z1

4)−1. For the relation between error terms, we use the adjoint relation (Solà
et al., 2021, eq 30) to retrieve: ζ4

1 ≜ −Adz1
4
ζ1

4
′.

We do this to conveniently standardize the notations and facilitate the derivation of various
operations in the remainder of the chapter.

It is now established that the loop-closure introduces new paths of statistical influence
between the errors

{
ζ2

1 , ζ3
2 , ζ4

3 , ζ4
1
}
. By default, if one considers these errors to be zero a priori

(assumption 4.1), a mismatch inevitably appears in that:

z2
1 ◦ z3

2 ◦ z4
3 ̸= z4

1. (4.7)

The mismatch motivates the procedure of adjustment of errors, described next.
Note that several adjustment problems can be treated concurrently. Consider the exten-

sion of the previous scenario (Box 9) with another loop-closure, as represented in figure 4.7.
In this case, as the loop-closures do not overlap with each other, the adjustments denoted in
the blue boxes are independent of one another. For a similar type of problem, it was shown in
the CBN chapter that the computation of message passing could be avoided in the anti-causal
direction for the clique tree structure. However, conceptually, the CARLIT representation is
arguably more appropriate for it translates the benefits of this scenario at the representational
level (where independences can be exploited), instead of at the solver level (i.e., the clique
tree structure).

Finally, we can come back on the issue u2 (the gauge freedom dilemma) uncovered in
chapter 2, §2.3. It was noted that whenever we close the loop on the first variable x0,
there is a dilemma whether x0 should be left as a fixed variable (at the risk of changing the
statistics inside the loop) or whether a prior should be prepended on x0 (thus making it a
decision variable, and drifting from the letter of the scenario). For convenience, we reproduce
in figure 4.8 the factor graph of the scenario Box 7, with the corresponding CARLIT new
representation.

We can see from figure 4.8-(c) that closing the loop on x0 requires no different consider-
ations than closing the loop on another variable (e.g., the 2nd loop-closure in figure 4.7), so
that the gauge freedom dilemma u2 is avoided in CARLIT.
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Figure 4.7: Further extension of toy scenario (Box 9) with another loop-closure (not overlapping
with the first one). The two blue boxes depict the fact that two independent adjustment problems
exist. As for the error ζ1

0 (leftmost error), there is no way to correct it.

Figure 4.8: Reproduction of figure 2.18 with the addition in (c) of our causal approach.

4.3 Adjustment of errors

In the previous section, a causal representation of pose-graph SLAM was proposed. Important
aspects of representation are yet to be introduced for landmark-based SLAM. This is deferred
to the next section. In this section instead, we set forth to eliminate the geometric mismatch
which emerges following a loop-closure. “Harmony” is restored (as coined by Delambre, see
§1.4.1) by bringing correction to the error terms. Throughout the manuscript, this has been
referred to as the “adjustment process”.

Algorithm 2 describes the steps leading to the posterior estimate of the trajectory X .
The inference actually proceeds by temporarily removing the trajectory in order to conduct
concurrent adjustment on K independent blocks. For instance, if the toy scenario figure 4.7
is considered, the function SplitIndependentMotionBlocks lays K = 2 adjustments: the
two d-separated blue blocks. The most probable corrections to the errors are sought for the
two subset of E , namely, Ê(1) ≜

{
ζ̂2

1 , ζ̂3
2 , ζ̂4

3 , ζ̂4
1

}
and Ê(2) ≜

{
ζ̂5

4 , ζ̂6
5 , ζ̂6

4

}
. These correspond to

the function AdjustMotionBlock calls of algorithm 2. As for the error ζ1
0 (i.e., the leftmost

error in figure 4.7), the d-separation criterion guarantees that no adjustment can be made.
Thus, ζ̂1

0 = 0, i.e., the mode (and mean) of the prior pdf of ζ1
0 . The elements of the trajectory

are deduced in the last step of algorithm 2 by using the deterministic functionals of the SCM
given in (4.2). This leads to the relation:
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Algorithm 2: CARLIT: Inference procedure in pose-graph problems.
Input: SCM & Causal graph G containing evidence Z, intervention x0
Output: Adjusted errors Ê , trajectory X̂

1 G\X ← RemoveTrajectory(G) ;
2
{
G(k)

Λ

}
k∈1...K

← SplitIndependentMotionBlocks(G\X ) ; // Split

3 for k ∈ 1 . . . K ; // Concurrently

4 do
5 /* Adjust errors Ê(k) in k-th block */

6 Ê(k) ← AdjustMotionBlock(G(k)
Λ );

7 end
8 Ê ←

⋃
k∈1...K

{
Ê(k)

}
; // Join adjusted errors

9 X̂ ← DeduceTrajectory(G, Ê) ; // Deduce trajectory

10 return
(
Ê , X̂

)
;

∀i ∈ 1 . . . N, xi = x0 ◦
i∏

j=1
zj

j−1 ◦ Exp
(
−ζj

j−1

)
. (4.8)

In subsection 4.3.1, the adjustment method is presented for one ‘block’ and it is henceforth
experimented.
Remark 4.5 (From MAP of the errors to MAP of the trajectory).
The AdjustMotionBlock calls of algorithm 2 aim at finding the maximum a posteriori
(MAP) of the errors, i.e.,

Ê = argmax
E

p(E|Z) . (4.9)

The details are described below, in §4.3.1. When it comes to deducing the MAP of the tra-
jectory from Ê, the deterministic function (4.8) is nonlinear. This is slippery, because for a
nonlinear function f linking a pose xi to the errors, xi = f(E), it cannot be said (without
precautions) that the MAP of xi is given by x̂i = f(Ê).

Instead, we will limit ourselves in stating that it holds true that x̂i = f(Ê) around a first
order development of (4.8) around the point Ê.

4.3.1 Adjustment principles

The following SCM represents the relations between n relative motions and the summarized
motion:

SCM :


∀ i ∈ (1, . . . , n), zi

i−1 := Λi
i−1 ◦ Exp

(
ζi

i−1

)
,

Λn
0 :=

n∏
i=1

Λi
i−1,

zn
0 := Λn

0 ◦ Exp (ζn
0 ) .

(4.10)

We assume, as before, Gaussianity the error terms E : ∀ i ∈ (1, . . . , n), ζi
i−1 ∼ N (0 , Σrm)

and ζn
0 ∼ N (0 , Σsm), where subscripts rm and sm correspond to relative and summarized

motions, respectively. Figure 4.9 shows the corresponding causal graph of SCM (4.10).
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Figure 4.9: Loop-closure over n + 1 relative motions.

A geometric constraint can be deduced from SCM (4.10):

zn
0 ◦ Exp (−ζn

0 ) =
n∏

i=1
zi

i−1 ◦ Exp
(
−ζi

i−1

)
. (4.11)

The above constraint is expressed under the form Cs(E) = ds, where:


Cs(E) ≜ Log

(n−1∏
k=0

Exp
(

Ad−1∏j<n

j=n−k
zj+1

j

ζn−k
n−1−k

))−1

◦ Exp (ζn
0 )

 ,

ds ≜ Log

( n∏
i=1

zi
i−1

)−1

◦ zn
0

 .

(4.12)

This is achieved by grouping together the z terms and the error terms E in eq (4.11), so that
the adjoint terms Ad show up. Then Log (·) is applied on both sides6.

Example 4.3.1. For n = 2, we have: E =
{
ζ1

0 , ζ2
1 , ζ2

0
}
, and Cs(E) = ds with

Cs(E) = Log
((

Exp
(
ζ2

1

)
◦ Exp

(
Ad−1

z2
1

ζ1
0

))−1
◦ Exp

(
ζ2

0

))
,

ds = Log
((

z1
0 ◦ z2

1

)−1
◦ z2

0

)
.

(4.13)

Example 4.3.2. For n = 3, we have: E =
{
ζ1

0 , ζ2
1 , ζ3

2 , ζ3
0
}
, and Cs(E) = ds with

Cs(E) = Log
((

Exp
(
ζ3

2

)
◦ Exp

(
Ad−1

z3
2

ζ2
1

)
◦ Exp

(
Ad−1

z2
1z3

2
ζ1

0

))−1
◦ Exp

(
ζ3

0

))
,

ds = Log
((

z1
0 ◦ z2

1 ◦ z3
2

)−1
◦ z3

0

)
.

(4.14)

6This assumes that the mismatch is not large as, in general, it is not automatically true that Log (Exp (x)) =
x for x ∈ SE(·). Additional consideration regarding this is given in §4.5.
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Example 4.3.3. For problems expressed in a vector space Rd (i.e., both z and ζ are in Rd),
the constraint (4.12) simplifies to the linear function:

Cs(E) = ζn
0 −

n∑
i=1

ζi
i−1 ,

ds = zn
0 −

n∑
i=1

zi
i−1 .

(4.15)

Note that the problem in Rd is also linear in the probabilistic SLAM formulation, thus, it
should not be surprising that the causal approach preserves this property.

The adjustment process consists in searching the most probable corrections to be brought
to the errors E given the observations Z, i.e., the MAP of E , denoted Ê .

Lemma 4.3.1. The following constrained least squares minimization problem enables to find
out the MAP estimate of the errors Ê given the observations Z

Ê ≜ argmin
E

1
2
∥∥∥ρ⊤E

∥∥∥2

2
s.t. Cs(E) = d, (4.16)

with

ρρ⊤ ≜


Σrm

. . .
Σrm

Σsm


−1

,

obtained by Cholesky decomposition of the information matrix of the errors.

Proof. The MAP of the errors writes as:

Ê ≜ argmax
E

p(E|Z) = argmax
E

p(Z|E)p(E) (4.17)

The prior term p(E) is known to be, according to assumption 4.1,

p(E) = p(ζn
0 )

n∏
i=1

p(ζi
i−1) = N (ζn

0 ; 0, Σsm)
n∏

i=1
N
(
ζi

i−1; 0, Σrm
)

. (4.18)

The main insight of the proof consists in identifying that the likelihood function p(Z|E) is a
Dirac formulated from the geometrical constraint (4.10):

p(Z|E) = δ
(
Log (Λn

0 )− Log
(
Λ1

0 ◦ · · · ◦Λn
n−1

))
, (4.19)

where each term Λ can be replaced by the form z ◦ Exp (−ζ), as in (4.10).
Thus, the likelihood function can be expressed in the form δ (Cs(E)− ds). Consequently,

the ‘argmax’ in (4.17) is only achieved under the explicit constraint Cs(Ê) = ds:

Ê = argmax
E

p(E) s.t. Cs(E) = ds . (4.20)
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Furthermore, using (4.18), and developing the negative log of p(E), yields:

Ê = argmin
E

1
2

(
ζn

0
⊤Σ−1

smζn
0 +

n∑
i=1

ζi
i−1

⊤Σ−1
rmζi

i−1

)
s.t. Cs(E) = ds . (4.21)

And, lastly, the term 1
2(. . . ) of (4.21) can be formatted in a matrix, leading to (4.16).

Unfortunately, due to the expression of the constraint (4.11), the system cannot be solved
directly, except for the simplest Lie groups such as vector spaces in (4.15). Therefore, (4.16)
is solved iteratively in the local tangent space close to a changing linearization point Ẽ . The
choice of the initial linearization point is naturally Ẽ = 0. Notice that, by contrast, the choice
of an initialization point can be delicate in probabilistic SLAM. The constraint equation
around Ẽ rewrites as:

Cs(Ẽ + δE) ≈ Cs(Ẽ) + Cs,Ẽ δE , with Cs,Ẽ ≜
∂Cs

∂E

∣∣∣∣
Ẽ

. (4.22)

Then, the linearized constrained least squares system is solved for δE :

δ̂E ≜ argmin
δE

1
2
∥∥∥AδE − b̃

∥∥∥2

2
s.t. Cs,Ẽ δE = d̃ , (4.23)

for which,
A ≜ ρ⊤, b̃ ≜ −ρ⊤Ẽ and d̃ ≜ d− Cs(Ẽ) . (4.24)

The Lagrangian L of the optimization problem (4.16) is used to reformulate it as a matrix
system. Introducing λ as the vector of Lagrange coefficients7 leads to

L(δE , λ) = 1
2
∥∥∥AδE − b̃

∥∥∥2

2
+ λ⊤

(
Cs,Ẽ δE − d̃

)
. (4.25)

The saddle point
{

δ̂E , λ̂
}

of (4.25) satisfies:

M

[
δ̂ξ

λ̂

]
=
[
A⊤b̃

d̃

]
with M ≜

[
A⊤A C⊤

s,Ẽ
Cs,Ẽ 0

]
. (4.26)

The whole step of the adjustment is summarized in algorithm 3.
The cost for the adjustment is dominated by the inversion of the matrix (4.26). Since

this matrix is sparse, symmetric (but not generally definite positive), an implementation of
the Cholesky decomposition variant LDL⊤ might be most suited, as discussed later. The
formulae for the computations of the Jacobians of Cs,Ẽ from (4.22), are given hereafter. We
have used the derivative rules from Solà et al. (2021, eq 65,66,75,79,82,83):



∂Cs,Ẽ
∂ζn

0

∣∣∣∣∣
Ẽ

= J−1
r

(
Cs,Ẽ(Ẽ)

)
Jr

(
ζ̃n

0

)
,

∀ i ∈ (1 . . . n),
∂Cs,Ẽ
∂ζi

i−1

∣∣∣∣
Ẽ

= −J−1
l

(
Cs,Ẽ(Ẽ)

)
Ad−1∏k<i−1

k=0 Exp

(
Ad−1∏j<n−1

j=i−k
zj+1

j

ζ̃i−k
i−1−k

)

×Jr

(
Ad−1∏j<n−1

j=i
zj+1

j

ζ̃i
i−1

)
Ad−1∏j<n−1

j=i
zj+1

j

,

(4.27)

7Not to be confused with the λj
i in the previous chapter.
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Algorithm 3: Iterative Adjustment of a Motion closure.
Input: Normed matrix A, vector d & function of constraints Cs(E)
Output: Most probable adjustment for the errors Ê

1 /* Initialize the linearization point to null errors */

2 Ẽ ← 0;
3 while !StopCondition() do
4 // Determine the necessary quantities from eq (4.24), (4.27)

5 d̃← d− Cs(Ẽ);
6 Cs,Ẽ ←

∂Cs
∂E

∣∣∣
Ẽ
;

7 b̃← −ρ⊤ Ẽ ;
8 // Apply eq (4.26)

9
{

δ̂E , λ̂
}
← SaddlePoint(A, Cs,Ẽ , b̃, d̃);

10 // Update the linearization point of the errors

11 Ẽ ← Ẽ + δ̂E ;
12 end
13 Ê ← Ẽ ;
14 return Ê

where notations follow Solà et al. (2021, eq 67,71,75), i.e., Jr(ζ) ≜ ∂Exp(ζ)
∂ζ

∣∣∣
ζ̃

is the Jacobian
“on-the-right” and Jl is the Jacobian“on-the-left”. Both relate via Jr(ζ) = Jl(ζ) ◦Ad−1

Exp(ζ).

Examples of implementation of the Jacobians blocks are given for n = 2 in (4.28) and
n = 3 in (4.29).

Example 4.3.4. For n = 2, we have:

∂Cs

∂ζ2
0

∣∣∣∣
Ẽ

= J−1
r

(
Cs(Ẽ)

)
Jr(ζ̃2

0 ),
∂Cs

∂ζ1
0

∣∣∣∣
Ẽ

= −J−1
l

(
Cs(Ẽ)

)
Jr

(
Ad−1

z2
1

ζ̃1
0

)
Ad−1

z2
1

,

∂Cs

∂ζ2
1

∣∣∣∣
Ẽ

= −J−1
l

(
Cs(Ẽ)

)
Ad−1

Exp
(

Ad−1
z2

1
ζ̃1

0

)Jr

(
ζ̃2

1

)
.

(4.28)
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Example 4.3.5. For n = 3, we have:

∂Cs

∂ζ3
0

∣∣∣∣
Ẽ

= J−1
r

(
Cs(Ẽ)

)
Jr(ζ̃3

0 ),
∂Cs

∂ζ1
0

∣∣∣∣
Ẽ

= −J−1
l

(
Cs(Ẽ)

)
Jr

(
Ad−1

z2
1z3

2
ζ̃1

0

)
Ad−1

z2
1z3

2
,

∂Cs

∂ζ2
1

∣∣∣∣
Ẽ

= −J−1
l

(
Cs(Ẽ)

)
Ad−1

Exp
(

Ad−1
z2

1z3
2

ζ̃1
0

)Jr

(
Ad−1

z3
2

ζ̃3
2

)
Ad−1

z3
2

∂Cs

∂ζ3
2

∣∣∣∣
Ẽ

= −J−1
l

(
Cs(Ẽ)

)
Ad−1

Exp
(

Ad−1
z3

2
ζ̃2

1

)
Exp
(

Ad−1
z2

1z3
2

ζ̃1
0

)Jr

(
ζ̃3

2

)
.

(4.29)

Since the pose-graph loop closures do not necessarily start at index 0, a more general
formula is given for summarized motion Λs+n

s that starts at index s:

∂Cs,Ẽ

∂ζs+n
s

∣∣∣∣∣
Ẽ

= J−1
r

(
Cs,Ẽ(Ẽ)

)
Jr

(
ζ̃s+n

s

)
,

∀ i ∈ (1 . . . n),
∂Cs,Ẽ

∂ζs+i
s+i−1

∣∣∣∣∣
Ẽ

=

−J−1
l

(
Cs,Ẽ(Ẽ)

)
Ad−1∏k<i−1

k=0 Exp

(
Ad−1∏j<n−1

j=i−k
zs+j+1

s+j

ζ̃s+i−k
s+i−1−k

)

×Jr

(
Ad−1∏j<n−1

j=i
zs+j+1

s+j

ζ̃i
i−1

)
Ad−1∏j<n−1

j=i
zs+j+1

s+j

,

(4.30)

Remark 4.6 (Implementation tricks). In the first iteration, since the initialization point is
Ẽ = 0, only the rightmost adjoint term in (4.30) remains, as all other terms simplify to the
matrix identity. Therefore, the computations of most terms can be avoided if the relevant
measurement values z are updated between iterations instead, z′ ← z ◦ Exp

(
−ζ̂
)
. Using that

trick, every iteration can proceed at Ẽ = 0. However, if such strategy is followed, then the
expression of ds must be updated with the new values z′.

Moreover, for n = 2, as instantiated in example (4.28), only one of the three Jacobians
block has to be updated under that strategy, i.e., Ad−1

z2
1

. It is useful to keep that in mind because
adjustments having n > 2 can be, by compositions, transformed into connected adjustments
each sized n = 2, as will be discussed in section 4.5.

4.4 Landmarks and Internalized Topography

This section addresses questions related to landmarks: how to represent their discovery, their
re-observation (loop-closure), and when and how the adjustment process is triggered.

To support our approach to landmark incorporation, the toy scenario box 10 is presented,
which is closely similar to the toy scenario box 3 introduced in chapter 2. Figure 4.10 provides
a sketch as well as the factor graph representation for comparison with causal graph. The
landmarks are denoted by l1,I. The Arabic subscript 1, 2, . . . of a landmark stands for the time
(or robot pose index) when the landmark is discovered. The roman letter I,II,III,IV,... terms the
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landmark index at this pose (conceivably, several landmarks l1,I, l1,II, . . . can be discovered
from the same robot pose). The relative position from the robot pose to the landmark l1,I

is noted yk
1,I, with k terms the time elapsed since discovery, i.e., yk

1,I is the relative position
from x1+k to l1,I. A measurement is noted with a ‘bar’, e.g. ȳk

1,I, and the noise (error term)
is symbolized νk

1,I. It is considered that relative positions y are expressed in the action group
of the Lie group of x and Λ. Landmarks belonging in the Lie group (oriented landmarks) are
also considered in what follows.

Box 10: SLAM Scenario 1 (variant of box 3)

From a starting pose, arbitrarily denoted x0, a robot operates 5 relative motions.
A first landmark, denoted l1,I is discovered (no prior knowledge) by a robot extero-
ceptive sensor at time t1 and re-observed at t4. A second landmark l2,I is discov-
ered at t2 and re-observed at t3. Robot motion measurements and landmark relative
measurements Z ≜

{
z1

0, z2
1, z3

2, z4
3, z5

4, ȳ0
1,I, ȳ3

1,I, ȳ0
2,I, ȳ1

2,I

}
are affected by noise, denoted

E =
{

ζ1
0 , ζ2

1 , ζ3
2 , ζ4

3 , ζ5
4 , ν0

1,I, ν3
1,I, ν0

2,I, ν1
2,I

}
. We assume no adverse effect due to the robot

inertia, false sightings, outliers, etc.

Objective: The inference problem consists in establishing the joint estimation of the
robot poses X ≜ {x1, x2, x3, x4, x5} and the landmarks positions L ≜ {l1,I, l2,I}.

Figure 4.10: Factor graph (top) and sketch (bottom) of a toy scenario as per box 10 description.

It was noted, under the reasoning feature f3 in §2.3, that it would be relevant that the
representation upholds the fact that the discovery of new landmarks does not induce ad-
justment (which is featured neither by BN nor by factor graphs). To express the reasoning
feature f3 in terms of desirable (in)dependences between errors, we want the error associated
with the landmark first observation to be independent of all other errors. However, when the
landmark is re-observed, i.e., when a loop is closed, then the errors should become dependent
conditioned on the first and last observations. From those two restrictions comes the difficulty
of coming with a representation.

Hereafter, the landmark discovery process is enunciated first (§4.4.1), and then the closure
associated with the re-observation is explored (§4.4.2).
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4.4.1 Landmark discovery

Let us consider the scenario at the time when the robot pose is x2. The landmark l1,I and
l2,I have been discovered and, by scenario box 10, no prior knowledge of their existence was
available. Once more, we introduce the representation via a causal statement.

Causal Statement 4.3 (Landmark discovery). At discovery time, The relative position of
a landmark, is dictated by the value read from the measurement (e.g., range-bearing), and
affected by the error that comes with that measurement. The landmark absolute position is
determined by (a) the robot pose and (b) the relative position of the landmark, both at discovery
time.

The causal statement 4.3 is implemented by the last 4 lines of this SCM:

(SCM) :



x1 := x0 ◦Λ1
0

x2 := x1 ◦Λ2
1

z1
0 := Λ1

0 ◦ Exp
(
ζ1

0
)

z2
1 := Λ2

1 ◦ Exp
(
ζ2

1
)

y0
1,I := ȳ0

1,I + ν0
1,I

y0
2,I := ȳ0

2,I + ν0
2,I

l1,I := x1 · y0
1,I

l2,I := x2 · y0
2,I

, (4.31)

where the operator ·, as in x · y, denotes the action of x on y. Typically, if x ∈ SE(3), then
y ∈ R3.

Figure 4.11: Causal graph of SCM (4.31). The error terms ν are d-separated from the remainder
errors.

The causal graph on figure 4.11 depicts the d-separation between each landmark observa-
tion error term (ν0

1,I and ν0
2,I) and all other errors, thanks to the open colliders l1,I and l2,I.
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Thus, this scheme conforms with reasoning feature f3: there is at this stage no way to correct
those errors as they are mutually independent.

One seemingly curious aspect of the representation figure 4.11 is the fact that the ob-
servations ȳ0

1,I and ȳ0
2,I are root nodes, i.e., interventions (hence the double-circled nodes).

Furthermore, the measurement value is not caused by another variable through some physical
process: it is instead modeled an arbitrary causal intervention, by a force/stimulus exter-
nal to the scope of the model. This marks a conceptual difference with the approaches of
BN and factor graphs that process landmark measurements as likelihood functions, caused
by the robot pose and the landmark position. The causality implied by those schemes is
{pose→ measurement← landmark}, e.g., see Stachniss et al. (2016, fig 46.1) and figure 2.4.

This aspect will be justified in further remarks in the next subsection.

4.4.2 Landmark re-observation

The full steps of the toy scenario box 10, when both landmarks l1,I and l2,I are re-observed,
is addressed through the following causal statement.

Causal Statement 4.4 (Landmark re-observation). The relative position of a landmark at
re-observation time is determined by (a) the relative position of the landmark at discovery
time, and (b) the robot interval motion between discovery and re-observation.
The value read from the re-observation measurement is dictated by the relative position of the
landmark at re-observation time. It is affected by an error from said measurement.

The causal statement above is implemented by supplementing new functionals to the SCM
(4.31):

(SCM) : (4.31)
⋃


y1
2,I := (Λ3

2)−1 · y0
2,I,

Λ4
1 := Λ2

1 ◦Λ3
2 ◦Λ4

3,

y3
1,I := (Λ4

1)−1 · y0
1,I,

ȳ1
2,I := y1

2,I + ν1
2,I,

ȳ3
1,I := y3

1,I + ν3
1,I,

(4.32)

Figure 4.12 shows the causal graph corresponding to SCM (4.32). It also portrays the
path of influence between errors terms E(1) ≜

{
ζ2

1 , ζ3
2 , ζ4

3 , ν0
1,I, ν0

2,I, ν3
1,I, ν1

2,I

}
(orange ruban),

following the incorporation of the observations ȳ1
2,I and ȳ3

1,I (closed colliders).
The reasoning is similar to the one in pose graphs: mismatches come into play between the

deduced values of y3
1,I, y1

2,I and their measured values ȳ3
1,I, ȳ1

2,I. This compels an adjustment
over the set E(1) to restore harmony.

Remark 4.7. The landmarks nodes l1,I and l2,I are open colliders in the graph. Although the
inference objective is to estimate their values, they play no role in the adjustment process. In
that regard, a similar point is made for the set of landmarks L as was made for set of poses X
in the previous section: the landmarks are Cartesian constructs, and we deduce their estimate
after adjustments occurring in the error space.

This representation preserves the intuitive notion that the position of a landmark gets
corrected after every re-observation of it. Indeed, the adjustment process will bring correction
to the discovery error ν0

1,I (resp. ν0
2,I), which will then affect l1,I (resp. l2,I) downstream.

Moreover, echoing our discussion for representation of loop-closures in pose-graph SLAM
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Figure 4.12: Causal graph of SCM (4.32) which represents, in comparison to figure 4.11, the re-
observation of errors. Orange path depicts the path of influence between the exogenous variables.

§4.2.2, we can see that x1 does not ‘break the loop’ in the DAG figure 4.12 like it does in the
corresponding factor graphs representation figure 4.10. Indeed, it graphically verified that, in
figure 4.12, (x1 ⊥⊥ ν3

1,I|Z, do(A))8. Therefore, in this causal representation, reasoning feature
f4 is maintained (i.e., no influence on the first variable in a loop), and issue u1 (loop-breaking)
is avoided.

World model or Internalized Topography? At this point, a fundamental question must
be raised about what is being modelled. In the ‘real world’, there is no doubt: the physical
process that generates the sensor measurement is similar whether the landmark is discovered
or re-observed. Thus, a candidate causal model, which aims at describing a world model
(i.e., a model of how things physically work), would not be able to differentiate between the
discovery and the re-observation, and would then be unable to exhibit a satisfying pattern
of conditional independences when building the map. However, in CARLIT, the SCM (4.32)
depicts the sensor measurement either as a set root cause for the hidden landmark relative
position (i.e., do(ȳ0) → y0 ← ν0 when discovering), or as an observed effect of the hidden
landmark relative position (i.e., k > 0, yk → ȳk ← νk when re-observing).

Although it has often been assumed that mobile robots must build world model through
mapping (Chatila and Laumond, 1985), the causal approach in this chapter clearly takes
a different approach by being centered around the robot/device viewpoint. What is being
modelled here is the internal process of topography: the landmark, as a thing in itself, does
not exist as an entity generating data. In this scheme, any explicit requirement to build a
world model or a rendering structure (such as the set of landmarks and poses) would rather
be achieved by appending open colliders, which do not influence the adjustment process.

Remark 4.8 (Magnet analogy). To offer an analogy for the process of internalized topog-
raphy, one can reproduce the cartographic process with magnets on a board. The board is

8Or, more bluntly put, the orange rubans in figure 4.12 cannot be extended to x1.
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initially blank. When a new entity is discovered, an action is taken to place the magnet on
the board, this is the intervention. And whenever an entity is re-observed, the magnet position
on the board is re-adjusted thanks to the new observation.

Adjustment of errors (with landmarks)

The constraint established on by the re-observation of l2,I formulates as:

ȳ1
2,I =

[
Exp

(
ζ3

2

)
◦ (z3

2)−1
]
·
[
ȳ0

2,I + ν0
2,I

]
+ ν1

2,I , (4.33)

from which the forms Cro and dro are defined:Cro(E) ≜
[
Exp

(
ζ3

2

)
◦ (z3

2)−1
]
·
[
ȳ0

2,I + ν0
2,I

]
+ ν1

2,I,

dro = ȳ1
2,I .

(4.34)

To leverage a variant of algorithm 3, the expression of the Jacobian blocks of Cro relative
to the errors must be determined, at linearization point Ẽ :



∂Cro

∂ν1
2,I

∣∣∣∣∣
Ẽ

= I ,

∂Cro

∂ν0
2,I

∣∣∣∣∣
Ẽ

= JM·p
p

(
Ẽ
)

,

∂Cro

∂ζ3
2

∣∣∣∣
Ẽ

= JM·p
M

(
Ẽ
)

Adz3
2

Jr

(
ζ̃3

2

)
,

(4.35)

with JM·p
p () and JM·p

M () being defined as the Jacobian blocks of the group action (operator
·), which expression depends on the manifold considered in the scenario. For the commonly
used SE(2) and SE(3) manifolds, see Solà et al. (2021, eq 166,167,182,183).

The more general formulae are given below, for a landmark ls,I, i.e. discovered at time s,
and re-observed after n steps. First, the constraint is formulated as:

Cro(E) ≜
(

n∏
i=1

zs+i
s+i−1 ◦ Exp

(
−ζs+i

s+i−1

))−1

·
[
ȳ0

s,I + ν0
s,I

]
+ νn

s,I ,

dro ≜ ȳn
s,I .

(4.36)

Then, the Jacobian blocks write as:

∂Cro

∂νn
s,I

∣∣∣∣∣
Ẽ

= I ,

∂Cro

∂ν0
2,I

∣∣∣∣∣
Ẽ

= JM·p
p

(
Ẽ
)

,

∀ i ∈ (1, . . . , n), ∂Cro

∂ζi
i−1

∣∣∣∣∣
Ẽ

= JM·p
M

(
Ẽ
)

Ad∏n

j=1 zs+j
s+j−1

∂h

∂ζi
i−1

∣∣∣∣∣
Ẽ

,

(4.37)

where the quantity ∂h
∂ζi

i−1

∣∣∣∣
Ẽ
, is defined hereafter, for space reasons:



4.4. LANDMARKS AND INTERNALIZED TOPOGRAPHY 125


h(Ẽ) ≜

n∏
i=1

Exp
(
−Ad−1∏n

j=i+1 zs+j
s+j−1

ζ̃i
i−1

)
,

∂h

∂ζi
i−1

∣∣∣∣∣
Ẽ

= Ad∏i−1
j=1 Exp

(
−Ad−1∏n

k=j+1 zs+k
s+k−1

ζ̃s+j
s+j−1

) Jr

(
Ad−1∏n

k=i+1 zs+k
s+k−1

ζ̃s+i
s+i−1

)
Ad−1∏n

k=i+1 zs+k
s+k−1

,

(4.38)

Example 4.4.1. For problems expressed in a vector space Rd, (4.36) simplifies to the linear
function:

Cro(Ẽ) = ȳ0
s,I + ν0

s,I + νn
s,I −

(
n∑

i=1
zs+i

s+i−1 − ζs+i
s+i−1

)
. (4.39)

Figure 4.13 depicts the pattern of the sparse matrix M involved in (4.26), for the adjust-
ment of SCM (4.32). The lower-left part of M are the Jacobian blocks given by (4.37): the
first and second rows correspond respectively to the re-observation of landmark l1,I and l2,I.
The upper-right part of M is the transpose of the lower-left.

Figure 4.13: Pattern of the square matrix in the Langragian expression (4.26), with the last 2 lines
and last 2 columns contain the Jacobian blocks of the constraints related to the re-observation of
landmarks l2,I and l1,I (resp. first and second line in the constraint block).

When landmarks are specified in the manifold

For landmarks which are expressed in the manifold instead of the action group, we denote by
y the relative position (noted before as boldless y). The constraint and Jacobian expressions
must be adapted for this variant. The constraint following re-observation, noted Cro,m is:

Cro,m(E) ≜
(

n∏
i=1

zs+i
s+i−1 ◦ Exp

(
−ζs+i

s+i−1

))−1

◦ ȳ0
s,I ◦ Exp

(
ν0

s,I

)
◦ Exp

(
νn

s,I

)
,

dro,m ≜ ȳn
s,I .

(4.40)
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And the Jacobian blocks are consequently:



∂Cro,m

∂νn
s,I

∣∣∣∣∣
Ẽ

= J−1
r

(
Cro,m(Ẽ)

)
Jr(νn

s,I) ,

∂Cro,m

∂ν0
s,I

∣∣∣∣∣
Ẽ

= J−1
r

(
Cro,m(Ẽ)

)
Ad−1

Exp
(

ν̃n
s,I

)Jr(ν0
s,I) ,

∀ i ∈ (1, . . . , n), ∂Cro,m

∂ζi
i−1

∣∣∣∣∣
Ẽ

= Ad−1
ȳ0

s,I◦Exp
(

ν̃0
s,I

)
◦Exp

(
ν̃n

s,I

)Ad∏n

j=1 zs+j
s+j−1

∂h

∂ζi
i−1

∣∣∣∣∣
Ẽ

,

(4.41)

with h holding the same definition as in eq (4.38).

4.4.3 Experiment

Figure 4.14: SLAM experiment conducted at Université de Toulouse, in the court and parking
of building U4 (right photo - Google Maps). The “D’Artagnan” mobile robot (right photo) from
Twinswheel starts from the parking spot (blue triangle in the lower left of the right photo), makes
loops and goes back to the original spot. GNSS trace is in green (precision < 2 cm). Four landmarks,
each being a bundle of five “April Tags” (Wang and Olson, 2016), are scattered in the scene (purple
points), to be detected by the robot frontal camera (Intel RealSense D435).

The CARLIT approach has been tested on a large scale experiment conducted in the
Toulouse III Paul Sabatier Campus. All the facilities were provided by the autOCampus
plaftorm (https://www.irit.fr/autocampus/en/accueil-eng/ funded by Occitanie Re-
gion (laregion.fr). The “d’Artagnan” mobile robot, provided by TwinswHeel company
(https://www.twinswheel.fr/) was navigated in the Campus. Its RTK-GNSS track was
computed by GUIDE GNSS Geolocation Test Lab (https://guide-gnss.com/). We grate-
fully acknowledge the autOCampus steering staff, TwinswHeel and GUIDE-GNSS, as well as
Anushree Shrivastava and Augusto Capone, intern students at LAAS-CNRS.

Figure 4.14 portrays the experimental setting. The robot, running the Robot Operating
System (ROS), is controlled manually up to a max-speed of 2m/s. An embedded frontal
camera registers the April Tag detections and an internal node provides a measure of their
relative position ȳ using the known camera parameters and the tags configuration.

The robot path is made of a total of N ≜ 6797 poses, and 203 landmarks relative position
measurements (including 4 discoveries). The problem is approximated to be planar: the set

https://www.irit.fr/autocampus/en/accueil-eng/
laregion.fr
https://www.twinswheel.fr/
https://guide-gnss.com/
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of poses x0, . . . , xN is in SE(2), the motion errors are in the Euclidean space isomorphic to
the Lie algebra of SE(2) (i.e., ∀i, ζi

i−1 ∈ se(2)∨), and the relative position measurement errors
are in R2.

The first step of this SLAM algorithm consists in identifying, from the causal representa-
tion, the set of independent blocks that are to be adjusted (as per the SplitIndependentMo-
tionBlocks function in algorithm 2). In this problem, 1743 of such independent blocks are
identified, and all but one are made of a lone, independent error. A single block of mutually
dependent errors regroups all the landmark re-observations: it will be denoted as ‘main’ block
in what follows. The remaining 1742 independent systems are: (a) 979 lone motion errors
gathered at the beginning of the experiment, before the first landmark re-observation, and
(b) 763 lone motion errors after the last landmark re-observation. Only the ‘main’ block can
be adjusted. In the experiment on figure 4.14-(right), the independent errors are associated
with the poses close to the starting and final point (blue triangle in the parking).

Figure 4.15: Left-Side: Path of the robot according to: fusion of IMU and wheel odometry (dash
gray), GNSS trace (green), and MAP estimate resulting from the application of the CARLIT adjust-
ment (purple). Right-side: the pattern of the sparse matrix M appearing in (4.26) and the pattern of
its Cholesky decomposition LDL⊤. The matrix block of the constraints is visible at the bottom part
of M and its transpose at the left part.

The approach is implemented in a Julia module. The ‘main’ adjustment block is composed
of 5054 motion errors and 199 re-observations of landmarks. All these errors, noted E(1), are
mutually dependent a posteriori. In view of the above, 199 constraints of the form (4.36) are
exhibited, and the MAP estimate is sought for according to the variant of the formulation
(4.16):

Ê(1) ≜ argmin
E

1
2
∥∥∥ρ⊤E(1)

∥∥∥2

2
s.t. Cro(E(1)) = dro , (4.42)
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with

ρρ⊤ ≜



Σrm
. . .

Σrm
Σl

. . .
Σl



−1

. (4.43)

The covariance of the motion errors and of the landmark relative position measurements are

set to be, respectively, Σrm ≜

10−7

10−9

10−6

, and Σl ≜

[
1/44

1/44

]
.

Then, from an initialization point of E(1), a linearized constrained least squares system is
solved, as in (4.26), and reiterated 7 times, until convergence is achieved. The pattern of the
involved sparse matrices are shown figure 4.15-(right). The robot poses and landmarks are
then deduced.

The purple path on figure 4.15-(left) depicts the MAP estimate, and it can be seen that
the estimate is appreciably closer to the ground truth (GNSS path in green) than the filtered
odometry (in dash gray).

More thorough analysis of this experiment is deferred for later, as additional developments
are needed to represent (causally) the structural relationship between the robot relative mo-
tions and the GNSS data. A difficulty arises from the fact that the GNSS data and the robot
motions are not at the same frequency, and that the IMU-odometry fusion (out of reach) is
imperfect. This is an interesting problem that the causal approach can address in the future.

4.5 Composition of motions to decrease treewidth

The adjustment processes in the previous sections 4.3 and 4.4 notably include the solutions
of a matrix system, as per (4.26). Specifically, the pattern of the symmetric square matrix in
such a system is:

M ≜

[
A⊤A C⊤

C 0

]
, (4.44)

where A⊤A is block diagonal, and the sparsity of C is dependent on the problem. The
complexity of the adjustment process can be studied through the sparsity pattern of M ,
since, to solve (4.26), the decomposition step of M is a computational bottleneck for such
large matrix.

Consider the classical variant of the Cholesky decomposition such that LDL⊤ = M , with
L a lower triangular matrix and D a diagonal matrix. It is known, in scientific computing,
that the graph GL associated with the sparsity pattern of L is the induced/cover graph of M
(Kepner and Gilbert, 2011).

With the material presented so far in this chapter, the complexity of the pose-graph Man-
hattan 3500 dataset (Olson et al., 2006) is analyzed and compared with the complexity of
a matrix based probabilistic SLAM solution. Firstly, on a positive note, the causal repre-
sentation can divide this adjustment problem into several independent problems, following
the approach described in section 4.2. The split step (line 2 in algorithm 2) shows that this
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particular dataset is divisible in 15 independent adjustment blocks, including 3 blocks which
span, respectively, 2945, 417 and 96 motion steps, 2 other small adjustment blocks, and the
remainder 10 blocks being lone errors (and thus non adjustable).

Approach Matrix size non-zeros number treewidth timing of LDL⊤ decomposition
graph SLAM 3 499 21 992 44 2.2ms ± 276µs

CARLIT M3500 2945 6 226 1 025 286 561 218ms ± 32ms

CARLIT M3500 417 914 37 456 178 3.867ms ± 301µs

CARLIT M3500 96 38 2 863 38 210µs ± 301µs

Table 4.2: Metrics of the sparsity patterns of the matrices shown figure 4.16. Timing data are
produced in the Julia language with an i7 10th gen CPU.

In figure 4.16, the semantic pattern9 of the involved sparse matrices for both a proba-
bilistic view of SLAM and the CARLIT approach are depicted. In table 4.2, we analyze
performance metrics in the treewidth, the number non-zeros count and timings associated
with the Cholesky decomposition.

The results show that, although the causal approach can leverage the independence prop-
erty to decompose its blocks in parallel, each of the 2 largest blocks have each worse per-
formance than the matrix based approach of probabilistic SLAM. The fact that the sparsity
is worse for the causal case can in fact be judged directly on figure 4.16, especially for the
lower triangular matrices. More concerning for large scale applications, the largest block
coined M3500 2945 (which gathers the right side of the Manhattan map) is analyzed to have
a treewidth of 561 (i.e., the size of the maximum clique), which is dramatically greater than
the treewidth of 44 for probabilistic SLAM.

In view of our discussion §2.3.3, we consider the treewidth to be a significant metric
for judging the ability of the approach to perform well at scale. Therefore, this motivates to
research improvements to decrease the treewidth. The main insight is to observe that motions
can be heuristically composed in order to gather overlapping summarized motions in another
relative motion. This is described thereafter.

4.5.1 Wrapping Procedure

In what follows, the term ‘unwrapped’ graph denotes the causal graph built according to the
approach described in the previous sections 4.2, 4.3, 4.4. The goal here is to ‘wrap’ the causal
graph (or made it ‘compact’), by introducing new intermediary summarized motions, such
that each summarized motion has only two parents and as few children as possible. For those
purposes, virtual measurements z̆ and virtual errors ζ̆ are introduced, distinguishable from
‘real’ measurements and ‘real’ errors by the breve “̆ ” overlay. Note that this is an exact step,
as no approximation is introduced.

Consider the causal graph figures 4.1-(c) and 4.1-(d) in the introduction of this chapter,
which main motion block is reproduced figure 4.17 for convenience. The (partial) SCM, which

9The ‘blocks’ of the matrix are either i or −1, as if the problem was projected in R. This is done in order
to reason at the semantic level.
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Figure 4.16: Comparison of the sparsity patterns of the matrix based probabilistic approach (left)
and the CARLIT approach (right), on the Manhattan 3500 dataset (drawn at the top). The matrix
based probabilistic approach portrays the information matrix and its LDL⊤ decomposition below it.
The CARLIT approach only depicts the 3 largest independent blocks (there are 15 in total) with, for
each, the matrix M from (4.44) and its corresponding LDL⊤ decomposition below it. Sizes of the
matrices are shown on heterogeneous scale.

the motion block of figure 4.17-(b) is based on, writes as:

(SCM) :



Λ6
2 := Λ3

2 ◦Λ4
3 ◦Λ5

4 ◦Λ6
5

z3
2 := Λ3

2 ◦ Exp
(
ζ3

2
)

z4
3 := Λ4

3 ◦ Exp
(
ζ4

3
)

z5
4 := Λ5

4 ◦ Exp
(
ζ5

4
)

z6
5 := Λ6

5 ◦ Exp
(
ζ6

5
)

z6
2 := Λ6

2 ◦ Exp
(
ζ6

2
)

. (4.45)

The structural equation Λ6
2 := Λ3

2 ◦Λ4
3 ◦Λ5

4 ◦Λ6
5 can be decomposed into three structural

equations, with no repercussion, on for the causal interpretation: Λ4
2 := Λ3

2 ◦ Λ4
3, Λ5

2 :=
Λ4

2 ◦Λ5
4 and Λ6

2 := Λ5
2 ◦Λ6

5.
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Figure 4.17: Partial graphs reproduced from figure 4.1-(c) and 4.1-(d). These causal graphs only
depict of the central motion block (loop-closure between x2—x6).

This leads to the wrapped SCM:

(SCM) :



Λ4
2 := Λ3

2 ◦Λ4
3,

Λ5
2 := Λ4

2 ◦Λ5
4,

Λ6
2 := Λ5

2 ◦Λ6
5,

z̆4
2 := Λ4

2 ◦ Exp
(
ζ̆4

2

)
,

z̆5
2 := Λ5

2 ◦ Exp
(
ζ̆5

2

)
,

z3
2 := Λ3

2 ◦ Exp
(
ζ3

2
)

,

z4
3 := Λ4

3 ◦ Exp
(
ζ4

3
)

,

z5
4 := Λ5

4 ◦ Exp
(
ζ5

4
)

,

z6
5 := Λ6

5 ◦ Exp
(
ζ6

5
)

,

z6
2 := Λ6

2 ◦ Exp
(
ζ6

2
)

,

(4.46)

where we introduce virtual measurements
{
z̆4

2, z̆5
2
}

and virtual errors
{

ζ̆4
2 , ζ̆5

2

}
. Virtual errors

are given flat priors. Virtual measurement values are set arbitrarily, which should be a middle-
of-the-road guess between the real measurements in the ancestor and descendant motion
set. Different types of averaging methods can be imagined depending on the Lie group.
This step can be viewed as replacing the selection of the initial point which bootstraps the
optimization process in MLE SLAM. A ‘good’ guess would ensure that no overflows occurs
for large mismatches between real measurements, as per the assumption made in footnote 6,
i.e. that Log (Exp (x)) = x for x ∈ SE(·). Thus, the setting of z̆ values deserves its own study,
and is not the focus in this section (decreasing the treewidth).

Remark 4.9 (No change in existing pattern of conditional independences). The introduction
of the virtual measurements produce closed collider nodes in the wrapped causal graph, figure
4.17-(b). As the error nodes within the motion block are already mutually dependent in the
unwrapped graph on figure 4.17-(a), it can be verified that no changes are made to existing
patterns of conditional independences.

The heuristic aspect of the approach concerns the selection of the Λ-motion to be com-
posed. Another option would have been to exhibit Λ6

4 or Λ5
3. The rational here is to sum-

marize ‘old’ motions first in order to open to the opportunity to remove older measurements
and grouping them together into one motion (by then approximating the virtual measure-
ments/errors as ‘real’) for long term navigation purposes.
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Figure 4.18: Block pattern of the M matrices of the unwrapped SCM (4.45) and the wrapped SCM
(4.46).

The effect of this wrapping on the adjustment process is portrayed on figure 4.17. The
form of the matrices M are depicted for both unwrapped and wrapped cases. In the case of
figure 4.17-(b), note the addition of the columns

{
ζ̆4

2 , ζ̆5
2

}
with no value (zero blocks) in the

A⊤A block, illustrating the fact that they have flat priors and will not change the end result
of the inference process (they are free parameters).

Furthermore, the single constraint that existed in the unwrapped SCM (4.45) has been
split into 3 constraints in the wrapped SCM (4.46). First, the constraint available from the
unwrapped SCM (4.45) is, following our explanations section 4.3:

z6
2 ◦Exp

(
−ζ6

2

)
= z3

2 ◦Exp
(
−ζ3

2

)
◦z4

3 ◦Exp
(
−ζ4

3

)
◦z5

4 ◦Exp
(
−ζ5

4

)
◦z6

5 ◦Exp
(
−ζ6

5

)
, (4.47)

while the constraints stemming from the wrapped SCM (4.46) are:
z6

2 ◦ Exp
(
−ζ6

2
)

= z̆5
2 ◦ Exp

(
−ζ̆5

2

)
◦ z6

5 ◦ Exp
(
−ζ6

5
)

,

z̆5
2 ◦ Exp

(
−ζ̆5

2

)
= z̆4

2 ◦ Exp
(
−ζ̆4

2

)
◦ z5

4 ◦ Exp
(
−ζ5

4
)

,

z̆4
2 ◦ Exp

(
−ζ̆4

2

)
= z3

2 ◦ Exp
(
−ζ3

2
)
◦ z4

3 ◦ Exp
(
−ζ4

3
)

.

(4.48)

Consequently, each constraint only involves 3 errors, which materializes downstream into
3 Jacobian blocks per block row in the constraint matrix C of M (4.44), whatever the span
range of the loop-closure. From a complexity/cost perspective, it has a positive impact on
the sparsity pattern, while the trade-off are the increases of (a) the size of the sparse matrix,
and (b) the number of non zeros blocks.

In this toy example, there are limited gains to be expected: in both wrapped and un-
wrapped cases, the treewidth is 2 following the decomposition of matrix M . The real interest
of the wrapping approach appears when loop closures overlap each other. Hereafter, we apply
a candidate wrapping procedure, formally presented in algorithm 4, to two examples of §4.5.2
and §4.5.3.

Algorithm 4 proceeds by pairing consecutive Λ motions together, starting from the relative
motions Λi

i−1. For each pair
{

Λi
i−i, Λi+1

i

}
, an intermediary motion is created if both nodes

have the same set of children, i.e., if they are in the same loop-closures. The pairs
{

Λi
i−i, Λi+1

i

}
are served in a queue and processed one-by-one; details are given in algorithm 5. Whenever
an intermediary motion is created, it can in turn be paired with the next motion and join the
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Algorithm 4: Wrapping procedure of a causal graph in Carlit.
Input: Unwrapped Causal Graph G
Output: Wrapped Causal Graph Gw

1 GΛ ← RemoveTrajectory(G) ;
2 G ← SplitIndependentMotionBlocks(GΛ) ; // Split graph by Λ sets

3 for G
(i)
Λ ∈ G do

4 k ← 0 ;
5 Q0 ← ConsecutivePairs(G

(i)
Λ );

6 while Qk ̸= ∅ do
7 Qk+1, G

(i)
Λ ← ProcessQueue(Qk, k, G

(i)
Λ ) ; // See alg 5

8 k ← k + 1 ;
9 end

10 end
11 Gw ← Merge(G);
12 return Gw ;

queue. When the queue of pairs that have the same set of children (noted Q0) is ended, the
process continues with pairs that have some difference(s) in their children set, noted Qk with
k increasing from 1 on. This is iterated until all summarized and intermediary motions have
two parents.

Additional details such as the functions used in algorithm 5 are provided in appendix B.
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Algorithm 5: ProcessQueue: Given a queue of consecutive pairs of Λ-motions
of a motion block graph GΛ, wrap the elements of the queue whose setdiff score does
not exceed k. This results in a new queue Qk+1 and modified graph GΛ .

Input: Queue Qk , Graph GΛ, integer k
Output: next queue Qk+1, Graph GΛ recomposed

1 Qk+1 ← ∅ ;
2 updateFirst ← False;
3 previousComposition ← ∅ ;
4 StagedPair ← ∅ ;
5 while Qk ̸= ∅ do
6 pair ← Take(Qk) ; // pair =

{
Λj

i, Λk
j
}

7 if updateFirst == True then
8 pair ← Join(previousComposition, pair);
9 updateFirst ← False;

10 end
11 Iijk ←ChildrenIntersection(GΛ, Λj

i , Λk
j );

12 Uijk ←ChildrenUnion(GΛ, Λj
i , Λk

j );
13 if Iijk = ∅ then
14 continue ; // Do nothing, continue to next element in queue

15 else if |Uijk| − |Iijk| > k then
16 // the pair should be processed in the next queue: stage it first

17 if StagedPair ̸= ∅ then // commit prior staged pair to next Q

18 Qk+1 ← Qk+1 ∪ StagedPair ;
19 end
20 StagedPair ← pair;
21 else
22 if |Iijk| > 1 or Λk

i /∈ GΛ then // if more than 1 common child

23 Λk
i , GΛ ← Recompose(GΛ , pair);

24 previousComposition ← Λk
i ;

25 if StagedPair ̸= ∅ then
26 StagedPair ← Join(Λk

i , StagedPair);
27 end
28 updateFirst ← True;
29 end
30 end
31 previousPair ← pair;
32 end
33 if StagedPair ̸= ∅ then
34 Qk+1 ← Qk+1 ∪ StagedPair ;
35 end
36 return Qk+1, GΛ ;
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4.5.2 Motion Recomposition of Mini Manhattan

The first case study is a cut of the first 15 steps of the synthetic dataset experiment Manhattan
3500, denoted MiniManhattan. The case is interesting in that it depicts 4 loop-closures which
overlap each other in an inconvenient way over the robot pose variables {x7, x8, x9, x10}.
Figure 4.19 portrayed a probabilistic SLAM view of the problem with the factor graph and

Figure 4.19: Factor graph and clique tree of the MiniManhattan case study. Red edges in factor
graph correspond to the fill-in edges of the elimination process. The treewidth (size of the maximum
clique) of the clique tree is 4.

the corresponding clique tree. Red edges are the fill-in edges appearing in the elimination
process, giving rise to the clique tree. The treewidth, 4, is rather high for such a small
problem.

Figure 4.20: Causal graph of the unwrapped SCM of MiniManhattan.

For the CARLIT approach, the causal graph is depicted on figure 4.20. It is built according
to the principles delineated in section 4.2, where the four observed summarized motions{
Λ10

3 , Λ9
5, Λ14

8 , Λ15
7
}

are the loop-closure. The SCM is not explicitly given here, for it bears
no interest in this section.

In the adjustment process of the causal approach of MiniManhattan, the constraint matrix



136 CHAPTER 4. CAUSAL SLAM FOR INTERNALIZED TOPOGRAPHY

Figure 4.21: Constraint matrix of the unwrapped SCM of the MiniManhattan case study, whose
causal graph is shown figure 4.20.

C is produced. Its block pattern is depicted on figure 4.21. The four block rows correspond
to the four closures.

The application of the wrapping procedure (algorithm 4) leads to the wrapped causal
graph on figure 4.22. The pattern of the new constraint matrix is given on figure 4.23.
Ten new block columns (for ten virtual error variables) and ten new block lines (for ten new
constraints) have been added to the previous constraint matrix. Finally, figure 4.24 represents
the pattern of the full M matrix and its LDL⊤ Cholesky decomposition.

The main result from the analysis of the patterns of the various matrices, in the unwrapped
and wrapped case, is that the treewidth of the decomposed matrix LD gets decreased from
4 to 3. Note that the treewidth in the wrapped case now scores better (i.e., lower) than the
one of probabilistic SLAM: see the clique tree, figure 4.19, which has a treewidth of 4.

Figure 4.22: Causal graph of the MiniManhattan problem, after application of the proposed wrapping
procedure. Ten virtual measurements and virtual errors have been added to the problem compared to
the unwrapped version from figure 4.20.
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Figure 4.23: Constraint matrix of the wrapped MiniManhattan problem. The unwrapped version is
given on figure 4.21.

Figure 4.24: Pattern of the full M matrix (left) after the wrapping procedure is applied, and (right)
pattern of the lower triangular matrix from the LDL⊤ decomposition of M . The blue area in M
denotes the constraint matrix (figure 4.23); the diagonal in the beige area, called A⊤A block in eq
(4.44) contains the priors on the errors. Note the zeros in lower right of the diagonal, which illustrates
the fact that the virtual errors introduced have flat priors.
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4.5.3 Motion Recomposition of Mini Victoria Park

Figure 4.25: Factor graph and clique tree of the MiniVictoriaPark case study. Red edges in factor
graph correspond to the fill-in edges of the elimination process. The treewidth (size of the maximum
clique) of the clique tree is 4.

The second case study concerns of first twelve steps of the Victoria Park datasets, denoted
MiniVictoriaPark in the remainder, in which the re-observations of two landmarks overlap.

The probabilistic view (factor graph and clique tree) is depicted on figure 4.25. The clique
tree has a treewidth of four. The causal view is depicted on figures 4.26 (causal graph) and
4.27 (constraint matrix and clique tree of the decomposition). The equivalent clique tree
(from the causal approach) on figure 4.27 also has a treewidth of four.

Following the application of the wrapping procedure, the resulting causal graph is por-
trayed on figure 4.28, and the pattern of the constraint matrix as well as the clique tree
corresponding to the Cholesky decomposition of M , are shown on figure 4.29.

Compared to the unwrapped case, the clique tree post-wrap procedure has a larger amount
of cliques, but its treewidth has been decreased to 3, from 4. Note that this treewidth scores
also better than the clique tree of the probabilistic SLAM (figure 4.25).

The results shown on these examples are promising, and the effects of wrapping will be
studied in future work to large scale maps10. As takeaway from this section, representing a
given spatial inference problem with more variables does not necessarily create adverse effects
on the complexity. Recall indeed that, usually, there are more errors than poses and landmarks
(or, in probabilistic SLAM terms, there are more factors than there are poses+landmarks).
Yet, pursuing the conjunction of (a) representing decision variables as the errors, and (b)
proposing a causal view of the problem, actually creates the opportunity to leverage other
aspects of structure. On such opportunity concerns the fact that motions can be composed
and decomposed according to a heuristic.

Concerning the selected heuristic of the wrapping procedure, at this stage and due to its
novelty, it is difficult to evaluate its adequacy: it is not known how well it performs compared
to a potential ‘optimal’ heuristic. A parallel with the mature elimination ordering algorithms
could be made here: theoretical results are available, such as the theorem that finding the
optimal ordering is NP-hard (Arnborg et al., 1987) but several quasi-optimal heuristics have
been well covered in the literature (AMD, Methis, Scotch, etc.), some dedicated to SLAM

10So far, it has not been implemented.



4.5. COMPOSITION OF MOTIONS TO DECREASE TREEWIDTH 139

Figure 4.26: Causal graph of the unwrapped SCM of MiniVictoriaPark.

(Agarwal and Olson, 2012).
Finally, note that these compositions are exact, and new mechanics can emerge from there

for long term navigation, which were barely touched upon in this section, to make approximate
inference by better managing/removing measurements.
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Figure 4.27: Constraint matrix (top) of the unwrapped SCM of the MiniVictoriaPark case study,
which causal graph is shown figure 4.26. The clique tree (bottom) is inferred from the (symbolic)
matrix decomposition of the matrix M , which contains the constraint block above. Its treewidth is 4.

Figure 4.28: Causal graph of the MiniVictoriaPark problem, after application of the proposed wrap-
ping procedure. 8 virtual measurements and virtual errors have been added to the problem compared
to the unwrapped version from figure 4.26.
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Figure 4.29: Constraint matrix of the wrapped MiniVictoriaPark problem (top) and clique tree
induced from the replacement of this constraint matrix in M (bottom). The unwrapped version is
given figure 4.27.
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4.6 Covariance Recovery

This section addresses the problem of covariance query. So far the proposed CARLIT ap-
proach has only tackled the MAP estimate. Covariance query is, often, both (a) necessary
in view of the robot task and decision-making; and (b) costly to recover. Typically, in MLE
families of SLAM (as per our review of this method in §2.1), the query of the full (and exact)
covariance requires the inverse of the information matrix, which is very costly in time and
in memory11. More astute techniques leverage the Bayes Tree/Clique tree structure (Kaess
et al., 2011, 2010). The performance of the query depends on how far away the most distant
variables (in the queried set) are from each other in the tree. In CARLIT, the issues that
arise when tackling this question are also conceptual: first, do we want a covariance over the
error(s) E or over the robot poses/landmarks?

Our approach to covariance recovery is presented in a 4-variable problem in a 1-dimensional
world, on figure 4.30. Three motions are made from x0 to x3, of which the measures are cor-
rupted by additive Gaussian noise. At x3, the distance from x0 is measured, so that a
loop-closure appears. All processes are linear. The noise variances are noted as σ2

rm for the
relative motions, and σ2

sm for the single loop-closure measurement.

Figure 4.30: Simple 1-dimensional pose-graph SLAM (robot on a rail).

Below, subsections 4.6.1 and 4.6.2 address respectively covariance recovery in the error
space and in the robot pose space.

4.6.1 Covariance query on a subset of errors

The SCM of the problem on figure 4.30 writes as:



z1
0 := Λ1

0 + ζ1
0 ,

z2
1 := Λ2

1 + ζ2
1 ,

z3
2 := Λ3

2 + ζ3
2 ,

Λ3
0 := Λ1

0 + Λ2
1 + Λ3

2,

z3
0 := Λ3

0 + ζ3
0 ,

x1 := Λ1
0 + x0,

x2 := Λ2
1 + x1,

x3 := Λ3
2 + x2,

(4.49)

Our approach consists in writing the first four equations of (4.49) in a posterior joint pdf
of the errors, with a Dirac delta function in place of the deterministic relation between the
errors:

11While the information matrix is sparse, its inverse is dense.



4.6. COVARIANCE RECOVERY 143

p(E|Z) = N
(
ζ1

0 ; 0, σ2
rm

)
N
(
ζ2

1 ; 0, σ2
rm

)
N
(
ζ3

2 ; 0, σ2
rm

)
N
(
ζ3

0 ; 0, σ2
sm

)
× δ

(
ζ3

0 − (z3
0 − z1

0 + z2
1 + z3

2 + ζ1
0 + ζ2

1 + ζ3
2 )
)

. (4.50)

It is noticed that no valid full covariance over E can be studied, for the Dirac delta δ(·) would
lead to a singular matrix.

Consider the covariance query over Eq ≜ [ζ1
0 , ζ2

1 , ζ3
2 ]⊤. The joint pdf (4.50) marginalizes

using the Dirac identity (Dirac elimination):∫
ζ3

0

p(E|Z) dζ3
0 = N

(
ζ1

0 ; 0, σ2
rm

)
N
(
ζ2

1 ; 0, σ2
rm

)
N
(
ζ3

2 ; 0, σ2
rm

)
ϕq (Eq; Z) , (4.51)

with the potential ϕq proportional to

ϕq (Eq; Z) ∝ exp
{
−1

2 (AqEq − bq)⊤ (AqEq − bq)
}

, (4.52)

with

Aq ≜


σrm

σrm
σrm

σsm σsm σsm σsm

 and bq ≜


0
0
0

z3
0 − z1

0 − z2
1 − z3

2

 . (4.53)

The covariance over Eq is given by

ΣEq =
(
A⊤

q Aq

)−1
(4.54)

Remark 4.10. Note that A⊤
q A is not sparse, which can be problematic for large loop closures.

This reinforces the motivation for compositions described in the section 4.5, as (1) more Dirac
terms would be introduced in the expression of p(E|Z) in (4.50), (2) the Dirac elimination
step is symbolic (no computations). However, more implementation efforts are required to
support this technique.

4.6.2 Covariance query on a subset of robot poses

We determine the variance over a single robot pose, noted xq, by writing its deduced value,
according to (4.8, p114):

xq = x0 +
q∑

i=1

(
zi

i−1 − ζi
i−1.

)
(4.55)

For the queried pose xq = x3, this yields:

x3 = x0 + z1
0 + z2

1 + z3
2 − ζ1

0 − ζ2
1 − ζ3

2 , (4.56)

the covariance of which is deduced by the standard computation

Σxq = [−1,−1,−1] ΣEq [−1,−1,−1]⊤ . (4.57)
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Now, considering the joint queried pose as Xq ≜ [x1, x2]⊤, the deduced value is:{
x1 = x0 + z1

0 − ζ1
0 ,

x2 = x0 + x1 + z1
0 + z2

1 − ζ1
0 − ζ2

1 ,
(4.58)

which leads to the covariance

Σx1,x2 =
[
− 1 0 0
−1 −1 0

]
ΣEq

[
− 1 0 0
−1 −1 0

]⊤

. (4.59)

Numerical application: We consider a large sample application of the on 1-dimensional
pose-graph. Let the value of the genuine hidden motions be defined by Λ1

0 = Λ2
1 = Λ3

2 = 5 m
and σsm = σrm = 1. Then, one gets

ΣEq = 1
4

 3 −1 −1
−1 3 −1
−1 −1 3

 . (4.60)

Then, from (4.57) and (4.59):

Σx3 = 3
4 and Σx1,x2 = 1

4

[
3 2
2 4

]
(4.61)

Let us now compare this result with the (matrix-based) probabilistic view of SLAM. It
was noted earlier that this type of pose-graph, which has a loop-closure on x0, suffers from
a dilemma of representation (u2 in §2.3.2). The choice between choosing x0 as a decision
variable or as an observation was ambiguous. Let Afixed denote the measurement matrix of
the probabilistic SLAM system (MLE SLAM) for which x0 is fixed, and Aprior for the case
when a prior is set on x0 (which becomes a decision variable).

We have:

Afixed =


1
−1 1

−1 1
1

 =⇒ Σfixed = (A⊤
fixedAfixed)−1 = 1

4

3 2 1
2 4 2
1 2 3

 , (4.62)

and, let us set the prior on x0 to σ2
x0 ≜ 1:

Aprior =


1
−1 1

−1 1
−1 1

−1 1

 =⇒ Σprior = 1
4


4 4 4 4
4 7 6 5
4 6 8 6
4 5 6 7

 (4.63)

We can see that (4.61) and (4.62) reach the same values. This suggests that the specifi-
cation for the gauge freedom dilemma fixing x0 is compatible with the CARLIT framework.

In tables 4.3 and 4.4, we test the values of the posterior marginal variances for 100 000 runs
to see if a predicted portion of those realizations fall within a 1 σ distance from the ground
truth. As the tested marginal variables are scalars, this portion should be around 68.27%.
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Approach Posterior variance
σpost

Sample count of
|x̂1 − x1| < σpost

Sample count of
|x̂2 − x2| < σpost

Sample count of
|x̂3 − x3| < σpost

MLE SLAM
with fixed x0

σ2
x1 post = 0.75

σ2
x2 post = 1

σ2
x3 post = 0.75

68281 67963 68091

MLE SLAM
with prior on x0

σ2
x1 post = 1.75

σ2
x2 post = 2

σ2
x3 post = 1.75

87357 84128 87181

CARLIT σ2
x1 post = 0.75

σ2
x2 post = 1

σ2
x3 post = 0.75

68281 67963 68091

Table 4.3: 1σ confidence interval tests for the simple 1-dimensional pose-graph SLAM experiment.
The approach CARLIT is tested, along with the two MLE SLAM approach, one which fixes x0 and
the other one which sets a prior on x0. Out of 100 000 samples, we count the number which falls under
a 1− σ distance of the true value. Parameters: σsm = σrm = 1.

Approach Posterior variance
σpost

Sample count of
|x̂1 − x1| < σpost

Sample count of
|x̂2 − x2| < σpost

Sample count of
|x̂3 − x3| < σpost

MLE SLAM
with fixed x0

σ2
x1 post = 0.67

σ2
x2 post = 0.67

σ2
x3 post = 0.01

68299 68378 68495

MLE SLAM
with prior on x0

σ2
x1 post = 1.67

σ2
x2 post = 1.67

σ2
x3 post = 1.01

88709 88649 100000

CARLIT σ2
x1 post = 0.67

σ2
x2 post = 0.67

σ2
x3 post = 0.01

68299 68378 68495

Table 4.4: 1σ confidence interval tests for the simple 1-dimensional pose-graph SLAM experiment.
Compared to table 4.3, the parameters have been set at σrm = 1 and σsm = 0.1.

For each draw, the measurements z1
0, z2

1, z3
2, z3

0 are produced, and the data of each draw is
fed to the three tested approaches. One experiment is generated with the noise parameters
σsm = σrm = 1 (table 4.3), and the other with σsm = 1, σrm = 0.1 (table 4.4).

The CARLIT approach and the MLE SLAM with fixed x0 have exactly the same results,
for their covariance matrix is the same, and the MAP estimate turns out to be the same
as well. Additionally, the sample counts of falling within 1 σ distance is about ±0.3% from
the predicted 68.27%, across all tests. In contrast, for the MLE SLAM with a prior on x0
(selected to be σx0 = 1), more samples than expected fall within the 1 σ distance, suggesting
that the posterior variance too conservative. This suggests that, in probabilistic SLAM, the
correct specification when facing a gauge freedom dilemma is to fix the first variable x0.

4.7 Conclusion and Perspectives

In this chapter, we explored a new statement of SLAM via Structural Causal Models (SCMs).
The motivations were given in section 4.1. The approach, named CARLIT (Causal Approach
to Represent Localization and Internalized Topography), relies on a series of causal statements
leading to a representation that supports the conditional independences discussed in chapter
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2. Notably, causal statements lead to the modeling of loop closures as sequential sums of rel-
ative motions, rather than pairwise relations between robot poses, as described in section 4.3.
Our representation and processing of landmarks is analyzed in section 4.4, and tested on a
real scale experiment, with tags as landmarks. It is analyzed that, conceptually, landmarks
are addressed through the viewpoint of internalized topography rather than through a world
modelling. The errors E are the decision variables of the adjustment process (§4.3 and §4.4),
which is implemented as a nonlinear constrained least squares problem. Importantly, the iter-
ative algorithm to find the MAP estimate of the errors is bootstrapped at E = 0. Anticipating
on the complexity induced by loop closures that overlap each other, we consider structural
compositions of intermediary motions to decrease the treewidth (a performance metric for the
underlying adjustment procedure), in section 4.5. These compositions are done heuristically
and proof of concepts are given on small scale problems. Finally, as it is important to be able
to evaluate the posterior uncertainty in inference problems, an approach to answer arbitrary
covariance queries is explored in section 4.6.

Although the CARLIT approach is based on different assumptions than the probabilistic
view of SLAM (as per key assumptions 2.1 and 2.2, p53), no differences were so far noticed
on the MAP estimates of the poses and landmarks. No definitive conclusions are proposed so
far in that regard, as it is not impossible that the differences in assumptions materialize in
distinct MAP estimates on some other scenarios or real case applications. However, we argue
that the main interest of the approach comes from the novel mechanics that the structure can
offer, some which are specific to the SLAM problem (such as the astute management of data
for long term navigation through compositions), while other novel mechanics could come from
the incorporation of relatively recent advances in causal inference. For instance, we briefly
explore the notion of informative missing data (Mohan et al., 2013) on appendix A.

Before that, much remains to be done with the theoretical material proposed in this
chapter. This includes: a more thorough study of the compositions in different scenarios, and
their associated heuristics; the adaptation to incremental SLAM; the study of the algorithm
in challenging maps where the initialization process is generally tricky. As mentioned in
section 2.2 (p. 61), a lot has been achieved in the SLAM literature. Thus, in particular,
the processing of IMU measurements should be proposed in this framework, as well as the
modeling of bias for this purpose (or for calibration purposes), and the incorporation of
absolute GNSS measurements. We also believe there are interesting implications in addressing
the data correspondence problem in a causal framework.

Finally, on a conceptual level, this work is the product of several refinements in under-
standing after the previous chapter 3: (a) spatial inference problems (such as SLAM) can be
stated with a full-fledged causal framework, (b) there are advantages in selecting the errors
as the decision variables of the adjustment problem (though the set of errors becomes greater
than the set of poses and landmarks), and, (c) most relations in the system are deterministic.

The historical analysis in chapter 1 has been instrumental in that regard.
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Figure 5.1: A simple triangle, with the red side de-
noting the baseline. To avoid overloading the next
figures, we standardize the nomenclature in the dis-
plays. We will only make visible the purple angular
symbol and go by the rule that it corresponds to α,
and that β is the next angle in the clockwise direc-
tion. Additionally, a, b and c are the sides opposite
to, respectively, α, β and γ.

The main body of this document begins with the study of geodetic adjustment in triangu-
lations (chapter 1), before addressing the modern question of SLAM. In this epilogue, we shall
return once more to the problem of geodetic adjustment, not in order to tackle an outdated
late 18th/early 19th century problem, but instead to show that the concepts emphasized in
the causal SLAM contribution (chapter 4) are well suited to address the unresolved issues
noted in pre-robotics adjustment methods. By the end of chapter 1, many questions arose
such as: how can we specify the assumptions geometers did when tackling their triangulations,
other than verbosely ? What was the proper way of applying corrections to the observation
errors (the errors to be feared) ? Were the formulations employed at the time correct ?

Surely, if SLAM and geodetic adjustment are problems that share many structural com-
monalities, then we should in turn be able to employ the causal framework described in the
previous chapter to answer those questions. Hence, in this epilogue, armed with the concepts
developed and the SCM framework, we provide a causal representation of the triangulation
operations and an approach to adjust the measurement errors following closure events (trian-
gle closures, baseline closures & chain closures).

Incidentally, this epilogue aims to deliver a corroboration for several important points
highlighted in the preceding SLAM chapter. These points concern (a) the causal graph
allowing a finer exploitation of pattern of conditional independences, (b) the relevance of
the distinction between interventions and observations for the same physical process (see
our treatment of landmark discovery §4.4), (c) the closure as an event that blocks already
existing open colliders (see §4.2 for CARLIT), and (d) the constrained optimization approach
to adjustment.

The approach is introduced in ascending order of difficulty. Section 5.1 shows the approach
for one single triangulation; section 5.2 introduces it for the chain of triangles, with and
without the measurement of second baseline; section 5.3 then generalizes the representation
for a network of triangles. Finally, in section 5.4, we discuss various inadequacies that had
prevented the development of causal inference at the time of the early metric system: although
historical, we believe these last remarks are not devoid of epistemic value for the question of
spatial inference in modern robotics. We limit the scope of the representations to cases of
planar triangulations (i.e., no triangle-on-sphere considerations).

5.1 Representation of a single triangulation

Consider a basic geodesic operation to build the simple triangle shown figure 5.1. The pro-
cess of triangulation is performed via the measurements of one baseline length and two angles
adjacent to the baseline. All measurements are considered subject to errors. The goal is to
represent how these measurements combine with each other so that opportunities of adjust-
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ment can be identified. The challenge is to pose this problem in terms of a Structural Causal
Model (SCM).

Let ā1 denote the measured length of the side a1, a.k.a. the baseline. Let τa1 be the
exogenous variable capturing the measurement error. Let β̄1 and γ̄1 be the measurements of
the angles β1 and γ1 respectively. Relating to the angular measurements errors, ϵβ1 and ϵγ1

are the respective exogenous variables.
In this basic problem, the three following equations enter our SCM:

a1 := ā1 + τa1

β1 := β̄1 + ϵβ1

γ1 := γ̄1 + ϵγ1

(5.1)

Figure 5.2: Causal graph for the basic 1-triangle geodesic operation. Note that all measurements
are cast as ‘interventions’. Furthermore, the errors are disconnected from one another.

The corresponding causal graph is shown figure 5.2. Firstly, note that all 3 measurements
are actually cast as ‘interventions’, not observations. The argument here is similar to the
one made with the first landmark observation in our causal SLAM (§4.4): the viewpoint
of topography is adopted whereby the characteristics of the triangle are determined by the
length of one side and two angles, which are set these 3 measurements.

Secondly, note the disconnection between the variables. Without more structural equa-
tions, it is impossible to establish a dependency between the three errors. Hence, at this
point, nothing can be done to adjust the SCM. This last fact is inline with our intuition,
but other probabilistic frameworks (which would consider the vertices as decision variables)
would not be able to convey that useful information.

Since we have sufficient information to define the triangle as a mathematical object, we can
deduce variables that have not been measured: γ1, b1 and c1. This is done via deterministic
trigonometric equations (the law of sines) that complete the SCM (5.1).

a1 := ā1 + τa1

β1 := β̄1 + ϵβ1

γ1 := γ̄1 + ϵγ1

α1 := π − β1 − γ1

b1 := a1
sin β1

sin(β1+γ1)
c1 := a1

sin γ1
sin(β1+γ1)

(5.2)

The expanded causal graph is represented on figure 5.3. Note that the three deduced
variables are unobserved colliders. Thus, they do not create a path of influence between the
parents. The independences between the errors, as noted in figure 5.2, is still present. We
have deduced more geometric variables with existing information does not create any type of
closure. This is again, inline with basic intuition one can have about this problem.
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Figure 5.3: Causal graph of the basic triangle, where, compared to figure 5.2, additional geometric
entities are deduced. These entities are the length b1 and c1. The graph is an abstraction of SCM (5.2).
Since deduced the entities are open colliders, it is graphically verified that the errors {τa1 , ϵβ1 , ϵγ1}
remain here independent of one another.

Suppose, as practiced by all observers since the 17th century (see chapter 1), that we
measure the third angle α1 of the triangle. In other words, we create a triangle closure. This
implies a mismatch between the deduced value α1 and measured value noted ᾱ1 that can
only be explained by the errors during the measurement process of α1, β1 and γ1. Although,
physically, there is no doubt that the measurement process for getting ᾱ1 is the same as
for β̄1 and γ̄1, the causal approach compels us to treat it as an observation rather than an
intervention. The functional of the measurement is added in SCM (5.3).

a1 := ā1 + τa1

β1 := β̄1 + ϵβ1

γ1 := γ̄1 + ϵγ1

α1 := π − β1 − γ1

b1 := a1
sin β1

sin(β1+γ1)
c1 := a1

sin γ1
sin(β1+γ1)

ᾱ1 := α1 + ϵα1

(5.3)

We see in figure 5.4 the causal graph of SCM (5.3). According to the rules of propagation
of influence in the graph, the errors ϵα1 , ϵβ1 and ϵγ1 become statistically linked. On the
other hand, the error on the length of the first baseline remains independent of them. As
understood by most observers at the time, and established by Laplace (1820) (see subsection
1.4.2) using probability theory, the triangle opens the opportunity to bring corrections to the
angular error terms {ϵα1 , ϵβ1 , ϵγ1}. Furthermore, after the adjustment process, it is expected
that the precision of these errors be improved (or the ‘weights’ as referred in the period).
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Figure 5.4: Causal graph of the basic triangulation, where all angles have been measured. Compare
to the previous figure 5.1, note the addition of the closed collider on ᾱ1 which creates a dependency
between the errors ϵα1 , ϵβ1 and ϵγ1 .

5.1.1 Triangle closure adjustment

We have established that corrections were applicable to the errors ξ ≜ [ϵα1 , ϵβ1 , ϵγ1 ]⊤ in
the SCM (5.3) following the measurement of the third angle ᾱ1. We presently address the
question on how to provide the corrections to the errors, i.e., how to adjust the error terms.
It is easy to see that the first four equations of (5.3) lead to the formulation of the following
constraint:

ᾱ1 − ϵα1 = π − β̄1 − ϵβ1 − γ̄1 − ϵγ1 . (5.4)

Let us define, from eq (5.4), the following quantities:

{
dtc,1 ≜ ᾱ1 + β̄1 + γ̄1 − π

Ctc,1(ξ) ≜ ϵα1 − ϵβ1 − ϵγ1 ,
(5.5)

where subscript ‘tc, 1’ stands for ‘triangle closure’ of triangle 1.
It is assumed that the measurements errors in ξ are i.i.d. Gaussians of variance σ2. The

assumption is especially well justified with the CLT if an instrument such as the repeating
circle is used (see figure 1.2). The constrained minimization problem, as in CARLIT (see
§4.3) writes as:

argmin
ξ

1
2
(
∥ϵα1/σ∥22 + ∥ϵβ1/σ∥22 + ∥ϵγ1/σ∥22

)
s.t. Ctc,1(ξ) = dtc,1. (5.6)

Similarly as in the CARLIT method, we solve this problem using the Lagrangian formulation,
by introducing a Lagrange parameter λ1:



152 CHAPTER 5. EPILOGUE: QUASI-DETERMINISTIC TRIANGULATIONS

L(ξ, λ1) ≜ 1
2
(
∥ϵα1/σ∥22 + ∥ϵβ1/σ∥22 + ∥ϵγ1/σ∥22

)
+ λ1(Ctc,1(ξ)− dtc,1) . (5.7)

Classically, this leads to the matrix system:

H


ϵα1

ϵβ1

ϵγ1

λ1

 =


0
0
0

dtc,1

 , (5.8)

where

H ≜


1/σ2 1

1/σ2 −1
1/σ2 −1

1 −1 −1 0

 (5.9)

Solving the system eq (5.8) is trivial since the function Ctc,1(ξ) is linear in ξ ≜ [ϵα1 , ϵβ1 , ϵγ1 ]⊤.
Once the errors have been adjusted, i.e. once that system (5.8) has been solved, the others

variables of the problem (angles, lengths) can be deduced easily from the SCM (5.3).

5.1.2 Comparison with Laplace’s 1818 work

In §1.4.2 and §1.5.3, we investigated the Laplacian paradigm for probability theory and how
his views were employed for geodetic adjustment. It consisted in first stating causal assertions
about the problem, which provided the foundation to probabilistic inference.

Given that the Laplacian paradigm was an inspiration in our work, a natural question
arises: is Laplace treatment of geodetic adjustment equivalent to the describes above, using
contemporary causal inference tools (Pearl, 2009) ?

In the second supplement of ‘Théorie Analytique des Probabilités’, Laplace (1820, p537)
considers the case of a triangle where the 3 angles are measured. He states that the probability
of the 3 errors is (with slight modification of notations to maintain consistency with the rest
of the section):

e
−hϵ2

α1 −hϵ2
β1

−hϵ2
γ1 , (5.10)

with h being some notion of precision (back then referred as weight), which is linked to the
more familiar concept (and recent) of variance by h = 1

2σ2 . Thus, equation (5.10) is the joint
of the measurement priors, considered independently. Then, the constraint pdf between the
angles of the triangle is noted as:

ϵα1 + ϵβ1 + ϵγ1 = T, (5.11)

where T is the excess of the 3 measured angles on π. Firstly, note that, in the SCM (5.3), we
express the relations between errors and measurements differently. Indeed, for angles γ1 and
β1, the structural relation is γ1 := γ̄1 + ϵγ1 and β1 := β̄1 + ϵβ1 . On the other hand, for α1, the
relation is ᾱ1 := α1 + ϵα1 which implies that α1 = ᾱ1 − ϵα1 .

This difference in the structural equations has arisen because we treat the measurements
of γ1 and β1 as interventions which participate in the building of the triangle, while the
measurement on α1 is treated as observation of an already existing quantity (since its value
can be deduced from: sum of angles equals π). This is why we have our constraint in the
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form ϵα1 − ϵβ1 − ϵγ1 = T (see eq. (5.5)) rather than ϵα1 + ϵβ1 + ϵγ1 = T . The distinction we do
between observation/intervention for geometric problem is not made by Laplace, nor to our
knowledge by anyone else: posing a different structural equation to the same physical process
on the basis of qualitative causal considerations is novel1.

Nonetheless, eq. (5.10) implicitly states that the measurements are i.i.d. Gaussian, and
submitted to the constraint (5.11).

The next step is more contrived: the expression of ϵγ1 from eq (5.11) is substituted into
(5.10) and rearranged, leading to

e−2h(ϵβ1 + 1
2 ϵα1 − 1

2 T )2− 3h
2 (ϵα1 − 1

3 T )2− h
3 T 2

. (5.12)
Then, the term (5.12) is integrated over ϵβ1 to result in (Laplace, 1820, p537):

∫ +∞

−∞
e−2h(ϵβ1 + 1

2 ϵα1 − 1
2 T )2− 3h

2 (ϵα1 − 1
3 T )2− h

3 T 2
dϵβ1

= e− 3h
2 (ϵα1 − 1

3 T )2− h
3 T 2

∫ +∞

−∞
e−2h(ϵβ1 + 1

2 ϵα1 − 1
2 T )2

dϵβ1 . (5.13)

It is then stated that the probability of ϵα1 is the factor e− 3h
2 (ϵα1 − 1

3 T )2− h
3 T 2 , and that

therefore, the most probable correction of ϵα1 is the one which sets to zero the quantity
ϵα1 − 1

3T .
However, this is not correct. While it is true that the most probable correction is ϵ̂α1 = 1

3T
(an intuitive result), their remains an ϵα1 term inside the integral. This case highlights the
difficulty of working with system of multivariate errors, without notions of correlations to rely
upon (a concept, like covariances etc..., that would be introduced much later).

Consequently, Laplace deduces from his factor that 3h
2 is the a posteriori weight. And

since 3h
2 > h, the intended purpose was to show that the weight of the result rises after the

correction. The fact that the precision of the error is improved a posteriori should also be intu-
itively true, but by how much ? Is the value given by Laplace correct, or under/overconfident ?

Instead, let us determine the covariance matrix from the SCM framework using the Dirac
technique seen in the previous chapter. For comparison with the substitution, we also Dirac-
eliminate ϵγ1 The joint probability distribution inside the triangle is:

p(ξ|ᾱ1, do(β̄1), do(γ̄1)) ∝

exp
{
− 1

2σ2

(
ϵ2
α1 + ϵ2

β1 + ϵ2
γ1

)}
δ
(
ϵγ1 −

(
π − β̄1 − ϵβ1 − γ̄1 − ᾱ1 + ϵα1

))
(5.14)

Then, ϵγ1 is integrated out to remove the Dirac term δ. This results in:

p(ϵβ1 , ϵα1 |ᾱ1, do(β̄1), do(γ̄1)) ∝

exp
{
− 1

2σ2

(
ϵ2
α1 + ϵ2

β1 +
(
π − β̄1 − ϵβ1 − γ̄1 − ᾱ1 + ϵα1

)2
)}

. (5.15)

1The same logic was applied for landmarks in §4.4, whereby the structural equation is not the same if the
landmark is discovered, or re-observed.
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The covariance is retrieved via the identification of the form exp

−1
2

∥∥∥∥∥A
[
ϵα1

ϵβ1

]
− b

∥∥∥∥∥
2

2

,

where A and b are commonly known as measurement and measurement matrix and vector.
The identification leads to:

A ≜
1
σ

1
1

1 −1

 , b ≜

 0
0

γ̄1 + ᾱ1 + β̄1 − π

 . (5.16)

Thus,

Σ ≜ (A⊤A)−1 = σ2

3

[
2 1
1 2

]
= 1

6h

[
2 1
1 2

]
. (5.17)

The marginal weight of ϵα1 is thus in fact
(
Σ(1,1)

)−1
= 3

2h, which is the same as Laplace.
However, since Laplace shunned the correlation between the errors, the equivalent covariance
used in the next phase of the reasoning should be (by extrapolating the logic) ΣLaplace ≜

1
3h

[
1 0
0 1

]
. Therefore, since the determinants have |Σ| < |ΣLaplace|, the weight of the result

does improve following a triangle closure adjustment but his result was underconfident when
the errors ϵα1 , ϵβ1 are considered jointly. Next, we will see how it influences the result on the
adjustment of a chain of adjacent triangles.

5.2 Representation of a chain of triangles

Figure 5.5: Small chain
of triangles.

Having been able to fully formulate a basic triangulation (one tri-
angle) in the SCM framework, we now seek to represent a chain
of triangle. Historically, the chain of triangles was in geodesy the
mathematical object to build in order to measure the arc-length of
a meridian, or a parallel. An iconic example, that we have covered
in chapter 1 is the 1792-1799 Dunkerque-Paris-Barcelona meridian.

5.2.1 Open chain of triangles

Consider the chain of three triangles on figure 5.5. Triangle (1) is
the same as in the previous section. Triangle (2) is built adjacently
to triangle (1) (we have two notations, b1 and a2, covering the same
variable depending on which triangle is considered). Triangle (3) is
built in turn adjacently to the second triangle. Consider directly a
scenario where the observers have measured all angles of all triangles.

The following SCM (5.18) describes the system:
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First baseline:
a1 := ā1 + τa1

First triangle:
β1 := β̄1 + ϵβ1

γ1 := γ̄1 + ϵγ1

α1 := π − β1 − γ1

ᾱ1 := α1 + ϵα1

b1 := a1
sin β1

sin(β1+γ1)
Second triangle:

β2 := β̄2 + ϵβ2

γ2 := γ̄2 + ϵγ2

α2 := π − β2 − γ2

ᾱ2 := α2 + ϵα2

c2 := a2
sin γ2

sin(β2+γ2)
Third triangle:

β3 := β̄3 + ϵβ3

γ3 := γ̄3 + ϵγ3

α3 := π − β3 − γ3

ᾱ3 := α3 + ϵα3

c3 := a3
sin γ3

sin(β3+γ3)

(5.18)

and figure 5.6 plots the corresponding causal graph. For convenience, we do not show the
variables c1, b2, b3 which would all be graphical colliders (if they were to be explicitly rep-
resented). The same remark that was made in CARLIT (chapter 4) can be repeated here:
when the problem size grows, the number of variables that can optionally be plotted becomes
large. In the case of CARLIT, these were all possible i, j combinations of relative motions
Λj

i. But since those variables are all open colliders, unless the small subset of them that
are observed, they do not create any additional influence path between errors (and thus no
additional simultaneous corrections). They can therefore not be explicitly shown in order to
declutter the graphs.

Previously in this chapter 5, we have shown that the pattern of conditional independences
is compatible with our (human) intuition. As the size of the triangulation problem grows,
it becomes progressively more difficult to maintain clairvoyance on which parts of the tri-
angulation are (in)dependent from one another2. Causal graphs offer an algorithmic answer
to that question thanks to d-separation. But arguably, even without an algorithmic query,
it is easy to read directly on the graph which areas of the graph are d-separated. In figure
5.6, we can see that a correction from a triangle closure does not ‘influence’ other triangles
in view of the open colliders in b1, c2 and c3. This can be found evidently without a causal
graph by qualitative considerations (we highlighted this in chapter 1), but as the size and

2One might argue however, that this type of human intuition is not guaranteed in small problems either.
These problems are sometimes referred as paradoxes in statistics. For an analysis of them through the lens of
causal inference, see Pearl and Mackenzie (2020), in particular, the Monty Hall problem.
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complexity grows, the causal graph becomes the most reliable tool to reveal those conditional
independences.

Figure 5.6: Causal graph of the SCM 5.3 corresponding to the chain of triangles on figure 5.5.

Moreover, observe in figure 5.6 that b1 is affected by the errors τa1 , ϵγ1 , ϵα1 and ϵβ1 . In
turn, c2 is affected by the same errors affecting b1 plus new errors: ϵγ2 , ϵα2 and ϵβ2 . In turn, c3
is affected by the errors of c2 and new errors, etc... The causal graph is able to visually convey
the notion of drifting: the sides of the triangles become less and less precise as the number of
triangles in the chain grows. We mentioned in section 1.4.2 that Laplace also identified this
notion of drifting in a chain of triangles, which motivated the need to measure a side length
(a.k.a. a second baseline) at the extremity of the chain. The causal graph shows indeed that,
if c3 were to be given, new statistical links would exist between all the errors. These insights
are available to us thus far without any data.

Remark 5.1. From our experience, it is essential to stress that obtaining a model exhibiting
these insights is nearly only possible if the graph is constructed causally, and the designer
follows a Laplacian quasi-deterministic mindset. Indeed, while other probabilistic graphical
model frameworks, like the Bayesian Networks (rung 1 in the PCH), or even the Causal
Bayesian Networks (rung 2 in the PCH) can in theory deliver as many insightful conditional
independences as a causal graph does, we have not seen much applications of them recently
in SLAM. The primary reason for this limited adoption is that although they can conceivably
reproduce the conditional independences of a causal graph at the associational level, there are
still conceptual problems. As graphical representations of joint probability distributions, the
BN and CBN frameworks promote a probabilistic approach. In this view, writing a product
of, e.g., Gaussians and Dirac distributions (as a cheap proxy for deterministic relations) does
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not bring forward immediately a clear method to conduct inference, i.e. there are no general
efficient solver to rely upon. On the other hand, the designer that employs a BN or CBN (or an
undirected representation, but that is besides the point here) is implicitly encouraged to treat all
available data as measurement to form a product of likelihood functions (or product of factors),
without reasoning about the opportunity of distinguishing between observation and intervention
(like we in contrast do in, both for CARLIT and causal triangulations). This is because the
product of likelihood leads to a seducing and easy way to formulate least squares optimization
problem; this is known since Gauss (1809), see equation (1.1). This may be the main reason
why approaching a problem containing both stochastic and deterministic components (e.g.
spatial inference problems) with the willingness to (a) maximally exploit domain knowledge
and (b) use a strictly probabilistic framework is not impossible, but a risky proposition. In
contrast, the SCM offers no conceptual resistance when incorporating completely deterministic
functionals. And as it happens, models in robotics are inherently largely populated by those
deterministic functions.

This remark is orthogonal to the other possibilities that SCM offers over probabilistic
frameworks: contemplated actions via the do-operator and counterfactual queries. We merely
point out that, even if the problem concerns ‘only’ the inference of measurement error terms
(i.e., a seemingly rung 1 query), our takeaway message is that the SCM framework should
still be preferred. Furthermore, as we have shown both with landmark SLAM problems and
triangulations, the appropriate structure for spatial inference is actually of rung 2 of the PCH
because of the necessity to use interventions (do-operators and double circles in the causal
graph).

5.2.2 Baseline closure

Figure 5.7: Representation of
a second baseline measurement
(baseline closure) at side c3, to
be added to figure 5.6.

Consider now that a second baseline is measured at c3. Keep-
ing similar notations as above, the new functional c̄3 :=
c3 + τc3 enters our previous SCM, which becomes:
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First baseline:
a1 := ā1 + τa1

First triangle:
β1 := β̄1 + ϵβ1

γ1 := γ̄1 + ϵγ1

α1 := π − β1 − γ1

ᾱ1 := α1 + ϵα1

b1 := a1
sin β1

sin(β1+γ1)
Second triangle:

β2 := β̄2 + ϵβ2

γ2 := γ̄2 + ϵγ2

α2 := π − β2 − γ2

ᾱ2 := α2 + ϵα2

c2 := a2
sin γ2

sin(β2+γ2)
Third triangle:

β3 := β̄3 + ϵβ3

γ3 := γ̄3 + ϵγ3

α3 := π − β3 − γ3

ᾱ3 := α3 + ϵα3

c3 := a3
sin γ3

sin(β3+γ3)
Baseline closure at c3:

c̄3 := c3 + τc3

, (5.19)

The figure 5.6 can be completed by binding a closed collider to c3 (figure 5.7).
Graphically, we can deduce from the closed collider c̄3 that new dependencies are created

between the errors ξ = {τa1 , τc3 , ϵβ1 , ϵγ1ϵβ2 , ϵγ2ϵβ2 , ϵγ2}. In terms of new corrections, this new
pathway of influence can be translated to a new constraint and added in the solver.

We now show how to infer the most probable corrections to the error following this baseline
closure.

Similarly as in §5.1.1 (and inspired by CARLIT §4.3), we pose a constrained minimization
problem aiming at “restoring harmony”:

argmin
ξ

1
2

(
∥τa1/σl∥22 + ∥τc3/σl∥22 +

3∑
i=1

(
∥ϵαi/σ∥22 + ∥ϵβi

/σ∥22 + ∥ϵγi/σ∥22
))

s.t. C(ξ) = d, (5.20)

where it is assumed that the baseline measurement errors τa1 and τc3 are distributed according
to N

(
0, σ2

l

)
, and that the angular measurement errors are distributed according to N

(
0, σ2).

C(ξ) = d are the constraints which arise from the closures.
Let us first list the constraints between the errors. The category of constraints already

dealt with in §5.1.1 are the triangle closures. There are 3 of such constraints in the SCM
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(5.19), i.e. one for each triangle:


ϵα1 − ϵβ1 − ϵγ1 = ᾱ1 + β̄1 + γ̄1 − π

ϵα2 − ϵβ2 − ϵγ2 = ᾱ2 + β̄2 + γ̄2 − π

ϵα3 − ϵβ3 − ϵγ3 = ᾱ3 + β̄3 + γ̄3 − π

. (5.21)

The constraint which concerns the baseline closure writes as:

(ā1 + τa1) sin(β̄1+ϵβ1 )
sin(β̄1+γ̄1+ϵβ1 +ϵγ1)

sin(γ̄2+ϵγ2 )
sin(β̄2+γ̄2+ϵβ2 +ϵγ2)

sin(γ̄3+ϵγ3 )
sin(β̄3+γ̄3+ϵβ3 +ϵγ3) + τc3 = c̄3. (5.22)

Cbc(ξ) = (ā1 + τa1) sin(β̄1+ϵβ1 )
sin(β̄1+γ̄1+ϵβ1 +ϵγ1)

sin(γ̄2+ϵγ2 )
sin(β̄2+γ̄2+ϵβ2 +ϵγ2)

sin(γ̄3+ϵγ3 )
sin(β̄3+γ̄3+ϵβ3 +ϵγ3) + τc3

dbc = c̄3 .
(5.23)

Equations (5.22) and (5.21) constitute the components of C(ξ) = d in the minimization
problem (5.20).

Unfortunately, due to the form of the constraint (5.22), the system cannot be solved
directly but rather by succesive linearizations. As in CARLIT, the natural initialization
point is ξ̃ = 0.

We thus solve for {δξ, λ} around ξ̃ (null errors). The Lagrangian writes as:

L(δξ, λ) = 1
2
∥∥∥Aδξ − b̃

∥∥∥2

2
+ λ⊤

(
∂C

∂ξ

∣∣∣∣
ξ̃

δξ − d̃

)
, (5.24)

where 
A ≜ Diag ([1/σl, 1/σl, 1/σ, . . . , 1/σ])
b̃ ≜ −Diag ([1/σl, 1/σl, 1/σ, . . . , 1/σ]) ξ̃

d̃ ≜ d− C(ξ̃)
. (5.25)

Define the matrix Cξ̃ ≜ ∂C
∂ξ

∣∣∣
ξ̃

as the Jacobian matrix of the constraints:

C(ξ̃ + δξ) ≈ C(ξ̃) + Cξ̃ δξ . (5.26)

In this present case study, Cξ̃ ∈ R4×11 and is expressed as:

Cξ̃ =


1 −1 −1

1 −1 −1
1 −1 −1

Jτ̃a1
1 0 Jϵ̃β1

Jϵ̃γ1
0 Jϵ̃β2

Jϵ̃γ2
0 Jϵ̃β3

Jϵ̃γ3

 , (5.27)

where the column order in Cξ̃ is [δτa1 ,δτc3 ,δϵα1 ,δϵβ1 ,δϵγ1 ,δϵα2 ,δϵβ2 ,δϵγ2 ,δϵα3 ,δϵβ3 ,δϵγ3 ] and where the
J terms are:
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Jτ̃a1
= 1

ā1+τ̃a1

(
Cbc(ξ̃)− τ̃c3

)
Errors at the numerators of sin functions in Cbc:

Jϵ̃β1
= sin(γ̄1+ϵ̃γ1 )

sin(β̄1+ϵ̃β1 ) sin(β̄1+ϵ̃β1 +γ̄1+ϵ̃γ1 )

(
Cbc(ξ̃)− τ̃c3

)
Jϵ̃γ2

= sin(β̄2+ϵ̃β2 )
sin(γ̄2+ϵ̃γ2 ) sin(β̄2+ϵ̃β2 +γ̄2+ϵ̃γ2 )

(
Cbc(ξ̃)− τ̃c3

)
Jϵ̃γ3

= sin(β̄3+ϵ̃β3 )
sin(γ̄3+ϵ̃γ3 ) sin(β̄3+ϵ̃β3 +γ̄3+ϵ̃γ3 )

(
Cbc(ξ̃)− τ̃c3

)
Errors exclusively at the denominator of Cbc:

Jϵ̃γ1
= −cotan(β̄1 + ϵ̃β1 + γ̄1 + ϵ̃γ1)

(
Cbc(ξ̃)− τ̃c3

)
Jϵ̃β2

= −cotan(β̄2 + ϵ̃β2 + γ̄2 + ϵ̃γ2)
(
Cbc(ξ̃)− τ̃c3

)
Jϵ̃β3

= −cotan(β̄3 + ϵ̃β3 + γ̄3 + ϵ̃γ3)
(
Cbc(ξ̃)− τ̃c3

)

. (5.28)

The d̃ term in the Lagrangian (5.24) is deduced:

d̃ ≜


ᾱ1 − β̄1 − γ̄1 − π

ᾱ2 − β̄2 − γ̄2 − π

ᾱ3 − β̄3 − γ̄3 − π
c̄3

− C(ξ̃) . (5.29)

The saddle point
{

δ̂ξ, λ̂
}

for the linearized system around ξ̃ is sought for:[
δ̂ξ

λ̂

]
=
[
A⊤A C⊤

ξ̃

Cξ̃ 0

]−1 [
A⊤b̃

d̃

]
. (5.30)

As in CARLIT (§4.3), the system (5.30) is solved, iteratively, by updating the value
of Cξ̃, d̃, b̃ until some stopping condition is achieved (e.g.,

∥∥∥δ̂ξ
∥∥∥

2
converges). Algorithm 6

summarizes the process, which mostly echoes the Algorithm 3 we proposed for causal SLAM.

Covariance Query

In the previous paragraph, we have determined a locally optimal adjustment of the errors ξ̂. In
this paragraph, we propose to establish the variance of the length c3 (the second baseline), and
we investigate how this quantity evolves with or without the second baseline measurement.

According to SCM (5.19), we can recover ĉ3 by using a function of the errors, noted f(ξc3).
ξc3 ⊂ ξ is the set of errors which intervene in f . Besides, c3 is given at the adjusted value of
the errors ξ̂c3 .

c3 = f(ξ̂c3)

c3 = (ā1 + τ̂a1) sin(β̄1 + ϵ̂β1)
sin
(
β̄1 + γ̄1 + ϵ̂β1 + ϵ̂γ1

) sin(γ̄2 + ϵ̂γ2)
sin
(
β̄2 + γ̄2 + ϵ̂β2 + ϵ̂γ2

) sin(γ̄3 + ϵ̂γ3)
sin
(
β̄3 + γ̄3 + ϵ̂β3 + ϵ̂γ3

)
(5.31)
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Algorithm 6: Iterative Adjustment of a Chain of Triangles.
Input: Normed matrix A, vector d & functional of constraints C(ξ)
Output: Most probable adjustment for the errors ξ̂

1 /* Initialize the linearization point to null errors */

2 ξ̃ ← 0;
3 while !StopCondition() do
4 // Determine the necessary quantities from eq (5.25), (5.27)

5 d̃← d− C(ξ̃);
6 Cξ̃ ←

∂C
∂ξ

∣∣∣
ξ̃
;

7 b̃← −Diag ([1/σl, 1/σl, 1/σ, . . . , 1/σ]) ξ̃ ;
8 // Apply eq (5.30)

9
{

δ̂ξ, λ̂
}
← SaddlePoint(A, Cξ̃, b̃, d̃);

10 // Update the linearization point of the errors

11 ξ̃ ← ξ̃ + δ̂ξ;
12 end
13 ξ̂ ← ξ̃;
14 return ξ̂

The variance associated to ĉ3, in the neighborhood of the corrections ξ̂, is approximated
by:

σ2
c3 = ∂f

∂ξc3

∣∣∣∣
ξ̂c3

Σξc3

∂f

∂ξc3

∣∣∣∣⊤
ξ̂c3

. (5.32)

The expression of the partial derivatives of f can be found by recycling the derivative of
the constraint Cbc, see equations (5.28). The next step is to determine the covariance matrix
Σξc3

of the estimation error ξc3− ξ̂c3 . This covariance is not the same depending on which case
we are considering: with or without the measurement of baseline closure. As we have already
shown how to establish the covariance of two angles measurement errors within a triangle, we
show how to deal with several triangles, and baseline measurements. Again, similarities with
CARLIT in the philosophy of the approach may be noticed (see §4.6).

Consider firstly the case when no second baseline is measured. In this situation, the
covariance Σξc3

is easily established by noticing the d-separation in the graph (figure 5.6)
between 4 groups of errors: (a) the measurement error on the first baseline τa1 , and (b, c, d)
the measurement errors ϵα, ϵβ, ϵγ . This tells us that the covariance is block-diagonal. In each
distribution which concerns the errors ϵα, ϵβ, ϵγ of one of the triangles, we repeat the sequence
of steps from equations (5.14) to (5.17). The difference from the previous step is that instead
of δ-eliminating ϵγ from (5.14) to (5.15), we integrate out ϵα terms.

This yields:

A(β1,γ1) = 1
σ

1
1

1 1

 =⇒ Σ(β1,γ1) = Σ(β2,γ2) = Σ(β3,γ3) = σ2

3

[
2 −1
−1 2

]
, (5.33)
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and the block-diagonal covariance, in the no-baseline-closure case:

Σξc3
=



σ2
l

σ2

3

[
2 −1
−1 2

]
σ2

3

[
2 −1
−1 2

]
σ2

3

[
2 −1
−1 2

]


, (5.34)

where the variable ordering in the matrix is O = [τa1 , ϵβ1 , ϵγ1 , ϵβ2 , ϵγ2 , ϵβ3 , ϵγ3 ].

Secondly, consider now the situation where a second baseline has been measured in c3
(baseline closure). The error on the new measurement has a prior p(τc3) and is linked to the
other errors in ξ by the constraint Cbc(ξ) = dbc, of eq (5.22). This can be represented by the
product:

p(τc3)δ
(

τc3 −
(

c̄3−(ā1+τa1 )
sin(β̄1+ϵβ1 )

sin(β̄1+γ̄1+ϵβ1 +ϵγ1)
sin(γ̄2+ϵγ2 )

sin(β̄2+γ̄2+ϵβ2 +ϵγ2)
sin(γ̄3+ϵγ3 )

sin(β̄3+γ̄3+ϵβ3 +ϵγ3)

))
. (5.35)

Next, τc3 is δ-eliminated. We can write the joint distribution of the remaining errors:

p(ξc3 | . . . ) = p(τa1)p(ϵβ1 , ϵγ1 | . . . )p(ϵβ2 , ϵγ2 | . . . )p(ϵβ3 , ϵγ3 | . . . )

×p

(
c̄3−(ā1+τa1 )

sin(β̄1+ϵβ1 )

sin(β̄1+γ̄1+ϵβ1 +ϵγ1)
sin(γ̄2+ϵγ2 )

sin(β̄2+γ̄2+ϵβ2 +ϵγ2)
sin(γ̄3+ϵγ3 )

sin(β̄3+γ̄3+ϵβ3 +ϵγ3)

)
. (5.36)

All terms in eq (5.36) are Gaussian. Since there are no more Dirac expressions (which
we used to mimicked deterministic relations), we can proceed to determine a non-singular
covariance matrix. First, establish the measurement matrix Aξ̃c3

around the linearization
point ξ̃c3 :

Aξ̃c3
=



1/σl

1/σ
1/σ

1/σ 1/σ
1/σ

1/σ
1/σ 1/σ

1/σ
1/σ

1/σ 1/σ
Aσ̃a1

Aϵ̃β1
Aϵ̃γ1

Aϵ̃β2
Aϵ̃γ2

Aϵ̃β3
Aϵ̃γ3



, (5.37)

where
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h(ξ̃c3) ≜ (ā1 + τ̃a1) sin(β̄1+ϵ̃β1 )
sin(β̄1+γ̄1+ϵ̃β1 +ϵ̃γ1)

sin(γ̄2+ϵ̃γ2 )
sin(β̄2+γ̄2+ϵ̃β2 +ϵ̃γ2)

sin(γ̄3+ϵ̃γ3 )
sin(β̄3+γ̄3+ϵ̃β3 +ϵ̃γ3)

Aτ̃a1
= − 1

σl

1
ā1+τ̃a1

h(ξ̃c3)

Aϵ̃β1
= − 1

σl

sin(γ̄1+ϵ̃γ1 )
sin(β̄1+ϵ̃β1 ) sin(β̄1+ϵ̃β1 +γ̄1+ϵ̃γ1 )h(ξ̃c3)

Aϵ̃γ2
= − 1

σl

sin(β̄2+ϵ̃β2 )
sin(γ̄2+ϵ̃γ2 ) sin(β̄2+ϵ̃β2 +γ̄2+ϵ̃γ2 )h(ξ̃c3)

Aϵ̃γ3
= − 1

σl

sin(β̄3+ϵ̃β3 )
sin(γ̄3+ϵ̃γ3 ) sin(β̄3+ϵ̃β3 +γ̄3+ϵ̃γ3 )h(ξ̃c3)

Aϵ̃γ1
= 1

σl
cotan(β̄1 + ϵ̃β1 + γ̄1 + ϵ̃γ1)h(ξ̃c3)

Aϵ̃β2
= 1

σl
cotan(β̄2 + ϵ̃β2 + γ̄2 + ϵ̃γ2)h(ξ̃c3)

Aϵ̃β3
= 1

σl
cotan(β̄3 + ϵ̃β3 + γ̄3 + ϵ̃γ3)h(ξ̃c3)

. (5.38)

The relevant linearization point to pick is ξ̃c3 = ξ̂c3 , i.e. so that the covariance is given at
the tangent space around the most probable errors. This linearization point ξ̂c3 is determined
after processing the Lagrangian (5.24).

Finally, note that it is not inconceivable to create virtual measurements of the baselines
at b1 and c2 nodes, as was done in CARLIT, in order to improve the sparsity patterns of
the matrix Cξ̃ and bring down the complexity of the saddle point computation of equation
(5.30). This can also be used advantageously to improve the process of covariance query, for
the same reasons. However, the small problems presented in this epilogue chapter are not
worth the effort.

In the next paragraphs, we show in a numerical application how a baseline closure improves
the confidence in the results of the corrected errors, given different values of parameters. Then,
in another case study, we further analyse the pattern of independencies offered by the causal
graph that represents a chain of triangle whose baselines are not located in the extreme ends
of the chain. In both applications, we also discuss the results in comparison to the writings
of Laplace and Delambre on the subject.

Numerical Application

We consider a simplified triangulation problem modeled for a chain of n = 26 equilateral
triangles: 

ā1 + τ̃a1 = 25 km
∀i ∈ 1, . . . , 26, β̄i + ϵ̃βi

= π
3

∀i ∈ 1, . . . , 26, γ̄i + ϵ̃γi = π
3

∀i ∈ 1, . . . , 26, β̄i + γ̄i + ϵ̃γi + ϵ̃βi
= 2π

3

(5.39)

For various values of the variance of the angle measurement error, σ2, we investigate the
effect of the baseline closure on the posterior variance σ2

cn
of the length of the second baseline
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cn. cn is the side located at the end the chain of triangles, similar to c3 in the showcase figure
(5.5).

The number of triangles chosen (n = 26) corresponds to the operations done for the
extension of the Dunkerque-Paris-Barcelona meridian to the Balearic Islands (figure 1.8).
The length of the triangle sides (25 km) is roughly representative of the dimension of the
triangles3.

Tables 5.1 and 5.2 show the results of the posterior standard deviations σcn and σpost for
various input (or prior) values of standard error distribution σ and σl. The prior standard
deviation on the baseline measurement error σl = 0 corresponds to the consideration made
by Delambre et al. that the baseline measurement were exact, or near exact. σl = 0.5 m
corresponds on the other hand to a more realistic value. Regarding the prior errors on the
angle measurement, σ = 1′′ corresponds to the advertised precision of the Borda’s repeating
circle. σ = 4′′ would be a more realistic value given the analysis of excesses of the 3 angles from
π on the 115 triangles of the Dunkerque-Paris-Barcelona meridian4. σ = 40′′ is more faithful
for the instruments used in the mid 18th century by figureheads such as Cassini, La Condamine
and Maupertuis. Table 5.1 show these results without taking into account the baseline closure
(no baseline measurement at cnj). On the other hand, table 5.2 serves to appreciate the effect
of baseline closure. We also want to gauge the implication of Laplace method, which difficulty
for dealing with multivariate errors was noted in the previous paragraph 14, we give the results
in two columns: one for the SCM method and one for Laplace’s method (Laplace, 1820).

Table 5.1: Chain of n = 26 equilateral triangles, without baseline closure. σpost is the standard
deviation of the error a posteriori on the angle measurement; and σcn is the posterior standard deviation
of cn, the length of the side c of the n-th triangle of the chain, given also a posteriori. ‘A posteriori’
refers here to the improvement of precision following the adjustment procedure with n triangle closures.

SCM Laplace
σl value σ value σcn (m) σpost σcn (m) σpost

σl = 0.5 m

σ = 1′′ 0.8150 0.816′′ 0.8212 0.816′′

σ = 4′′ 2.079 3.266′′ 2.653 3.266′′

σ = 40′′ 20.1906 32.66′′ 26.0627 32.66′′

σ = 1′ 30.28 48.99′′ 39.09 48.99′′

σ = 1◦ 1816.60 48.99′ 2345.21 48.99′

σl ≈ 0 m

σ = 1′′ 0.5046 0.816′′ 0.651 0.816′′

σ = 4′′ 2.018 3.266′′ 2.6057 3.266′′

σ = 40′′ 20.18 32.66′′ 26.06 32.66′′

σ = 1′ 30.28 48.99′′ 39.09 48.99′′

σ = 1◦ 1816.60 48.99′ 2345.21 48.99′

First, consider the value of the variance σ2
l on the baseline measurements error. We

note no significant effect of choosing σl = 0 over σl = 0.5, except when the variance on the
angle error is the smallest (σ = 1′′) without closure. In this case, the standard deviation of
the unmeasured side cn at the end of the chain is 0.815m (if the baseline measurement is
considered perfect), versus 0.5046m (for σl = 0.5). Above σ = 4′′, no change is perceptible.

3One side between the station ‘Desierto’ in the Spanish coast and the station ‘Campvey’ in Island of Ibiza
was actually 160 km in length.

4This is treated in Laplace’s 2nd supplement (Laplace, 1820).
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Table 5.2: Incorporation of the baseline closure. σpost is the standard deviation of the error on the
angle measurement, given a posteriori; and σcn is the standard deviation of cn, the length of the side c
of the n-th triangle of the chain, given also a posteriori. ‘A posteriori’ refers here to the improvement
of precision following the adjustment procedure employing both the triangle closures and the baseline
closure.

SCM Laplace
σl value σ value σcn (m) σpost σcn (m) σpost

σl = 0.5 m

σ = 1′′ 0.409 0.816′′ 0.427 0.815′′

σ = 4′′ 0.486 3.266′′ 0.4914 3.254′′

σ = 40′′ 0.4998 32.66′′ 0.4999 32.534′′

σ = 1′ 0.4999 48.99′′ 0.4999 48.801′′

σ = 1◦ 0.4999 48.99′ 0.4999 48.801′

σl ≈ 0m

σ = 1′′ ≈ 0 0.816′′ ≈ 0 0.813′′

σ = 4′′ ≈ 0 3.2641′′ ≈ 0 3.2516′′

σ = 40′′ ≈ 0 32.66′′ ≈ 0 32.53′′

σ = 1′ ≈ 0 48.99′′ ≈ 0 48.80′′

σ = 1◦ ≈ 0 48.99′ ≈ 0 48.801′

Remark 5.2. The standard deviation of σcn = 0.651 m corresponds more or less to the results
given by Laplace in the third supplement of Théorie Analytique des Probabilités, where it is
stated that “if a second baseline were to be measured exactly at the end of chain (at cn), you can
bet one to one that the error would stay within a third of meter”. Translated in more modern
jargon for the 68% confidence interval, it is stated that σcn ≈ 0.5 m for the scenario without
baseline closure. The difference with σcn = 0.651 m stems undeniably from the fact that
the triangles were not equilateral like in this simplified case, and other considerations must
be taken into account in the real historical case (elevation, earth shape, etc...). Additional
details on these calculations were not given in the book. Note finally that the SCM method
produce more confident results at σcn = 0.5046 m.

In the scenario without baseline closure (table 5.1), since we know by design that the
error τa1 (which distributes according to the parameter σl) is independent of the errors on the
angle, the values of σpost are unchanged according to the value of σl, as expected. Obviously,
in the baseline closure situation, the choice of σl ≈ 0 has a direct impact on σcn ≈ 0 from the
logical implication that the second baseline cn is measured with perfection.

Secondly, concerning the effect the baseline closure on the posterior standard deviation
σpost of the angle measurement errors, we found no noticeable improvement from σ → σpost
attributed to the baseline closure. The appreciable difference between σ and σpost is essentially
due to the triangle closures, whereby σtr,post =

√
2
3σ. Even for the largest standard deviation

of σ = 1◦, we found no change attributable to baseline closure above the order of 10−7. This
suggests that to appreciably improve the posterior precision of the angle measurement, more
baseline measurements are needed along the chain.

.
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Case Study : Longer Chain of Triangles

The larger problem which was presented figures 1.1 (p15) and 1.6 (p25)gives us the opportu-
nity to develop additional insights on the exploitation of conditional independences, thanks
to the causal graph representation. The chain of triangles is reproduced for convenience on
the left of figure 5.8. The right of figure 5.8 shows the truncated causal graph. For brevity,
we do not write down the full SCM model: it is similar in pattern to SCM (5.19).

The measurement of b̄10 is the second baseline, and represents a baseline closure event.
This yields the functional b10 := b̄10 + τb10 , where b̄10 is the measurement value and τb10

the exogenous variable (noise). In the 1799 commission report that established the value of
the unit meter (figure 1.7 and quote subsection 1.4.1), it was noted that the two baselines
(Melun and Perpignan) were “linked” [sic. liées] with each other by a chain of 53 triangles
in-between. In the book Basis, Delambre (1807) postulated that the mismatch between the
calculated and measured length of the second baseline should be removed by correcting the
errors in the angles of the 53 triangles. Implicitly, Delambre qualitative consideration was
that only 53 out of the 115 triangles should be entitled for corrections.

Can the causal graph figure 5.8 depict such an insight ? To answer the question, we have
to see which errors are influenced by the closed collider b̄10. Let EG denote all the observations
in the causal graph 5.8 (named G) and let AG denote all the actions (interventions). We have:

A =
{

β̄i

}
i=1,...,13

∪ {γ̄i}i=1,...,13 ∪ {ā1} , E = {ᾱi}i=1,...,13 ∪
{

b̄10
}

. (5.40)

• Due to the open colliders b11, b12 and b13, there are no possibilities to correct the angles
in the triangles (11), (12), (13) thanks to the second baseline:

∀i ∈ {11, 12, 13} ,


τb10 ⊥⊥ ϵαi |EG,AG

τb10 ⊥⊥ ϵβi
|EG,AG

τb10 ⊥⊥ ϵγi |EG,AG

. (5.41)

• Due to the open colliders c1 and c3, there are no possibilities to correct the angles in
triangle (3) (the triangle above the first baseline):{

τb10 ⊥⊥ ϵβ3 |EG,AG

τb10 ⊥⊥ ϵγ3 |EG,AG

. (5.42)

• Finally, since b̄10 ∈ EG, according to the rules of d-separation, all errors which are in
the ancestor set of b̄10 in G are mutually dependent:

∀i ∈ {1, . . . , 10} ,



τb10 ⊥̸⊥ ϵαi | EG,AG

τb10 ⊥̸⊥ ϵβi
| EG,AG

τb10 ⊥̸⊥ ϵγi | EG,AG

τa1 ⊥̸⊥ ϵαi | EG,AG

τa1 ⊥̸⊥ ϵβi
| EG,AG

τa1 ⊥̸⊥ ϵγi | EG,AG

τb10 ⊥̸⊥ τa1 | EG,AG

, (5.43)

which provides the occasion to make simultaneous corrections (baseline closure).
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Figure 5.8: A larger chain of triangles (left) represented by a causal graph (right). Two sides
(baselines) are measured.
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Hence, the fact that the adjustment scope is limited to the triangles in-between the base-
lines is also validated by the graph. One difference with Delambre though, is that in this
example, the errors on the baselines length τa1 and τb10 also get adjusted. As mentioned ear-
lier, the measure of the baseline lengths were considered exact back then, which should not
have been the case5. But it is easy to see, under the assumption that a1 ∈ AG and b10 ∈ EG

(no exogenous variables τa1 and τb10), that the same conclusion occurs for the scope of the
corrections.

5.3 Representation of a network of triangles

For completeness, we now address the problem of representing the ‘chain closure’. Chain clo-
sure occurs whenever a chain of triangles joins itself. This was typically a challenging problem
in 19th century triangulation. An interesting example on the consequences of avoiding this
problem can be recognized with the history of the 1830 French map, see remark 5.3.

Remark 5.3. The 1830 French map was constituted of several chains of triangles which
roughly followed meridians and parallels, see figure 1.12. In 1817, Laplace and Delambre had
chosen this triangulation pattern likely for geodesic studies (Berthaut, 1898a). Unfortunately,
both men died before all the observations were finished in 1830. Laplace (1820), who cham-
pioned causality (subsection 1.5.3 and 1.5.4), did not attempt to provide an approach to deal
with this type of closure. Consequently, and in addition to other problems (box 2), the map
was adjusted by various combinations of baselines closures (there were 7 baselines), but not
for chain closure type. Anecdotally, this resulted in residual mismatches that polluted this
map. The inconsistencies in the map, in the order of tens of meters in the worst places, were
moved in the overlapping margin of the published 270 sheets of the map6. But the problem was
still there, and before the second world war, the ‘Dépôt’ was compelled to produce emergency
spreadsheets containing ad-hoc rule-of-thumbs correcting offsets. The map users could then
apply these offsets to smoothen out the mismatches between adjacent and overlapping sheets
so that these maps were useful (presumably for military planning, artillery, etc...). This is
described in Levallois (1988, p190-191). Nevertheless, these issues were identified and a new
triangulation of France (‘Nouvelle Triangulation’ or NT France) was actually decided already
by the end of the 19th century with the willingness, this time, to plan more carefully the
calculations. Unfortunately again, due to numerous delays in the observations, NT France
adjustment would only be finished in 1959 (Levallois, 1988, p216-217)!

Our representation, based on causal graph, can cope with the chain closure type. We
show our approach first on a simple example figure 5.9, which is a closed version of the simple
chain of figure 5.5. The approach is then explained on a more realistic case study (figure 5.14)
in the after-next paragraph 5.3.

Case Study : Simple Network

Figure 5.9 shows the simple network we work with, which is an extension of the simple chain
figure 5.5. We assume that all angles of all four triangles have been measured.

5Contemporary GPS precision experiments reported a 10−5 relative error (Vincent, 1998), Puissant (1842)
also noted that there were errors when the baselines were measured again for the 1830 French map.

6An assemblage of the polished 1830 map can be seen in https://www.geoportail.gouv.fr/carte, by
selecting “Carte de l’Etat Major”.

https://www.geoportail.gouv.fr/carte
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Figure 5.9: Sim-
ple network of tri-
angles. The fourth
triangle can be un-
derstood as induced
by the other ones.

The main insight in the treatment of this kind of problem is to consider
the fourth triangle as already induced by the other 3. In other words,
there should be no causal intervention (do-operator) to ‘build’ the fourth
triangle. First, remark that the angle α4 can be deduced as the sum of
angles around the central vertex should sum to 2π. Then, having access
one angle and 2 sides, the fourth triangle is fully defined.

The question is then how to deduce astutely the angles β4 and γ4. A
first approach consists in using the Al-Kashi theorem to get a4, and then
to use Al-Kashi again to get β4. γ4 is then deduced easily by summing
the angles to π.

The corresponding truncated SCM model is:

α4 := 2π − β3 − β2 − α1

a4 :=
√

b2
4 + c2

4 − 2b4c4 cos α4

β4 := arccos
(

c2
4+a2

4−b2
4

2a4c4

)
γ4 := π − α4 − β4

(5.44)

To get the full SCM model, append the truncated model to the simple
chain SCM (5.18) which describes the functionals the first 3 triangles. It
is not reproduced here for brevity. The causal graph of the concatenation
of SCM (5.44) and (5.18) is given on figure 5.10. The additions from the
partial SCM (5.44) are shown in blue. These are all open colliders for now.

To incorporate the measurements, we need to add them as observations in the graph (not
as interventions). This is shown figure 5.11 (blue elements). The crucial aspect of the causal
interpretation materializes in the fact that (1) for the triangles in a chain, 2 of the 3 angle
measurements are cast as interventions; (2) in contrast for some triangles in a network (such
as triangle 4 in figure 5.10), all 3 angles are already determined, therefore measurement data
describing them can only be incorporated as observation.

One remark should be made from analyzing the pattern of newly created dependencies.
In figure 5.11, the error τa1 correlates with the angular errors ϵ (all of them), which was not
the case before (see figure 5.10). However, intuitively, acting on the value of the baseline
should not influence the relation between the angles. Visually, one can imagine geometrically
scaling up or down the size of this same network of triangles (figure 5.9) while preserving the
angles. The only action available to achieve this size shift is acting upon the baseline length
via ā1.

The point of these considerations is as follows: the implications of an SCM/causal graph
design can be checked a posteriori (and potentially criticized) to highlight logical flaws or
inefficiencies, in order to then come up with an improved or more astute SCM.

To propose another solution to this problem, we will (1) remove the functional on a4; (2)
change the functional on β4.

Our second approach goes as follows: similar to what was described figure (1.11) for the
Hanover triangulation, we propose to multiply the ratio of sides in the circuit (1) → (2) →
(3)→ (4)→ (1). This product equals one:

c1
b1
· a2

c2
· a3

c3
· c4

b4
= 1, (5.45)
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Figure 5.10: Causal graph of the simple network of triangles (figure 5.9) according to SCM (5.44).
Additions from the partial SCM (5.44) are shown in blue.

which is true since b1 = a2, c2 = a3, c3 = c4, c4 = b1 and b4 = c1. Using the law of sines,
replace the ratios of sides by ratio of sines:

sin γ1
sin β1

· sin α2
sin γ2

· sin α3
sin γ3

· sin γ4
sin β4

= 1 . (5.46)

Let us replace sin γ4 by sin(α4 + β4):

=⇒ cos α4 + sin α4 cot β4 = sin β1 sin γ2 sin γ3
sin γ1 sin α2 sin α3

, (5.47)

=⇒ cot β4 =
sin β1 sin γ2 sin γ3
sin γ1 sin α2 sin α3

− cos α4

sin α4
. (5.48)

We have identified our new functional on β4:

β4 := acot

 sin β1 sin γ2 sin γ3
sin γ1 sin α2 sin α3

− cos α4

sin α4

 (5.49)

Recall that the other functionals for the chain closure event are α4 := 2π − β3 − β2 − α1,
γ4 := π − α4 − β4. This yields the full SCM (5.50). The corresponding causal graph is



5.3. REPRESENTATION OF A NETWORK OF TRIANGLES 171

Figure 5.11: Causal graph from figure 5.9 of the simple network of triangles, completed with the
measurements as observations (blue elements).

portrayed figure 5.12 without the angular measurements in the fourth triangle. Note that
this is a cleaner graph compared to figure 5.10.
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Figure 5.12: The second approach for the simple network problem of figure 5.9. New elements
relevant to this problem are in blue. The main insight to solve the chain closure is to recognize that
the 4th triangle is already implicitly defined by the existing geometry of the other 3 triangles.



First triangle:
a1 := ā1 + τa1

β1 := β̄1 + ϵβ1

γ1 := γ̄1 + ϵγ1

α1 := π − β1 − γ1

ᾱ1 := α1 + ϵα1

b1 := a1
sin β1

sin(β1+γ1)
Second triangle:

β2 := β̄2 + ϵβ2

γ2 := γ̄2 + ϵγ2

α2 := π − β2 − γ2

ᾱ2 := α2 + ϵα2

c2 := a2
sin γ2

sin(β2+γ2)
Third triangle:

β3 := β̄3 + ϵβ3

γ3 := γ̄3 + ϵγ3

α3 := π − β3 − γ3

ᾱ3 := α3 + ϵα3

c3 := a3
sin γ3

sin(β3+γ3)

⋃


Chain closure of the network:
α4 := 2π − β3 − β2 − α1

β4 := acot
(

sin β1 sin γ2 sin γ3
sin γ1 sin α2 sin α3

−cos α4

sin α4

)
γ4 := π − α4 − β4

. (5.50)
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Figure 5.13: The second approach for the simple network problem of figure 5.9, with measurements
(blue elements).

Adding the angular measurements from the fourth triangle as observation, we can see
that, reading the independences on the graph figure 5.13, the corrections made from the
measurements in blue do not involve the error on the baseline τa1 . This makes this model
more suitable than the one presented in figures 5.10 and 5.11.

To incorporate the chain closure as a constrain in our solver, we use equation (5.47). In
this document, we only set the constraint formulation:


Ccc,4(ϵ) ≜ cos(ᾱ4 − ϵα4) + sin(ᾱ4 − ϵα4) cot(β̄4 + ϵβ4)− sin(β̄1+ϵβ1 ) sin(γ̄2+ϵγ2 ) sin(γ̄3+ϵγ3 )

sin(γ̄1+ϵγ1 ) sin(ᾱ2−ϵα2 ) sin(ᾱ3−ϵα3 )

dcc,4 = 0
(5.51)

As expected, the chain closure event introduce a constraint between a larger number of
error terms (all angles in the case of model (5.50)).

Finally, in the previous SCM, the value of a4 in figure 5.9 can be deduced easily since all
other elements of the 4th triangle are available:

a4 := b4
sin α4
sin β4

. (5.52)

Remark 5.4. In figure 5.13, note that the elements of fourth triangle, in particular the
variables β̄4 and γ̄4, differ from the elements of the other 3 triangles. In the induced fourth
triangle, β̄4 and γ̄4 are not interventions (double-circles). This remark gives us the occasion to
insist once more on the merits of distinguishing between seemingly similar variables according
to their causal interpretation, for yet the same physical process (angle measurement). This
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subtlety would arguably be difficult to underscore in a purely probabilistic framework (see
remark 5.1). On the other hand, this distinction naturally surfaces in the causal approach.

Case Study : Parallels-Meridians Network

A case study is considered on figure 5.14, which mimics the representation of overlapping
chain of triangles. Two chains follows their respective meridian, while two others follow their
respective parallel. The meridian and parallels are represented by green dashed lines.

The question at hand, which is posed by the 1830 French map (see remark 5.3) is: how
to properly represent and adjust this type of triangulation ?

The main insight consists in identifying this type of problem as a generalization of the
chain closure problem treated in the simple network of triangles problem (figure 5.9).

The first step involves the removal of the last triangles, numbered 27 and 28, so that the
problem simplifies to a single chain of triangle (or rather, a single tree since it can branch
out). This incomplete network is represented on figure 5.15. Its causal representation, and
the method by which it is adjusted, is no different from what was described sections 5.1 and
5.2.

We then make use of the notion of induced triangles introduced earlier in this section for
the simplest network problem. The goal is to rebuild the triangles 27 and 28, from existing
triangles. However, this is not directly possible as there would be no avenue to deduce the
angles of these triangles. Hence, this is why it is necessary to first deduce additional triangles
tv1 , tv2 , tv3 , tv4 in the inner part of the structure. This is shown figure 5.16. Each tvi triangle is
built similarly as the 4th triangle in case study 5.3. Then, triangles 27 and 28 can be deduced
in turn. Overall, the order in which these triangles are built is O ≜ [tv1 , tv2 , tv3 , tv4 , t27, t28].
Hence, the corresponding causal graph would be extended with open colliders of the variables
of the deduced triangles. Finally, the measurements available for triangles 27 and 28 creates
mismatches between the deduced elements and the measured ones, creating new opportunities
for adjustment. In the scope of this document, we only address this last problem qualitatively,
to show that there is no impediment to tackle this problem using the SCM framework.

The induced triangles tv1 , tv2 , tv3 , tv4 represented in figure 5.16 are not necessarily the
only possible combination to build the triangles 27 and 28. This suggests that, in order to
automate the process, a heuristic should be proposed that picks the induced triangles to be
built. But this goes out of the scope of this work.

It is not cleared to us at this time, whether there exists a map which makes use of the
methods described in this chapter, or whether they reached equivalent results but in a non-
explicit manner.

The practice described in Puissant (1842) treatise, if applied to this network of trian-
gles, was to solve for a baseline closure problems in a chain, using various combinations of
paths from baseline to baseline. Thus, one baseline closure was conducted via the path p1 =
(1, 2, 4, 5, 6, 7, 8, 9, 10), and another proceed via the path p2 = (1, 2, 4, 5, 28, 27, 26, 25, 23, 22, 21, 17, 16, 15, 14, 9),
as if in both cases the other path had not existed. However, as noted by Levallois (1988), this
produced a mismatch since the correction via one path generated a mismatch from the point
of view of the other path.

As mentioned in the chapter 1 for the Hanover network (figure 1.9), another practice
introduced by Gauss & colleagues consisted in identifying closures in the network by consid-
ering as many geometric constraints as possible, and using them as constraint equations in
an under-determined least square system (Grcar, 2011). In principle, the method could be
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Figure 5.14: Network of triangles representative of the difficulty of closed chain triangulation. This
type of problem was not solved in the 19th century, due to the lack of adequate mathematical tools
to represent causal assumptions one might have about the problem.
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Figure 5.15: Incomplete representation of the triangulation problem from figure 5.14, for which the
triangles numbered 27 and 28 have been removed.
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Figure 5.16: Representation of the triangulation problem from figure 5.14, with the induced triangles
tv1 , tv2 , tv3 , tv4 highlighted. These induced triangles are necessary to build causally triangles 27 and
28.
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equivalent to the one proposed here, but it seems that there was no systematic way to ensure
that all relevant closures were considered, or that some were not implicitly double counted.

As noted later by Tardi (1934, chap. 10), a system that uses directly the geographical
coordinates of the vertices as decision variables was easier to set7. This may explain, why,
both in modern SLAM and geodetic adjustment, the errors are typically not the decision
variables: it is not because its scientific grounds are better or worse, but it leads more easily,
and without ambiguity, to the formulation of a (least squares) optimization problem.

5.4 Final remarks on the early metric system

In this last section, we take a step back from the theoretical developments in this manuscript
in order to shed a new light in the link between (a) the modern day scientific question of
spatial understanding in robotics, and (b) the geodetic adjustment problem which occurred
during the creation of the early metric system (late 18th century). Problem (b) is in essence
similar to the chain of triangles presented figure 5.8, since, with the help of some additional
geometry, its SCM can be expanded to encompass the distance [DB] which is use to find the
arc length, and then to deduce the meridian length which was the favored quantity to define
the early metric system. More generally any result can be inferred by the addition of open
colliders, whether the purpose of the inference process is metrological, or cartographic.

The causal representation applied to (b) in this chapter does refine our views given in
chapter 1 about the historical development of probabilistic inference techniques in that pe-
riod. We observed that there were indeed problems with these approaches due to several
factors, including (1) the absence of method to address multivariate problems and (2) the
lack of formalism concerning the articulation of causal assumptions. Issue (1) ended up being
fixed by contributions in the early 20th century (by, e.g., Pearson, Fisher et al.). However,
while we have showed that the tools of Pearl & co-authors can be judiciously employed to
tackle issue (2), they are arguably not yet widespread in spatial inference problems. Yet,
continuing on issue (2), it was recognized early in Essay (Laplace, 1814a, p11) that correctly
enunciating the assumptions of a problem was non-trivial : “the theory of probabilities ties in
to considerations so delicate, that it is not surprising that, with the same data, two individu-
als get a different result, particularly in very complex topics”. Case in point, the problem of
geodetic network adjustment was one of such “complex topic”. As shown in §5.3, there was
no proper adjustment proposed for a network of triangles (versus just a chain of triangles) be-
cause it was not recognized that a different structural formulation was needed for the triangles
involved in the chain closure events. Ideally, this type of problem should have highlighted the
need to bridge the gap for the development of a better-than-verbose method to specify those
“delicate considerations”, for they are an essential first step to address inference problems
that are causally not trivial (like SLAM or geodetic networks).

We put forward some answers as to why, in the fallout of the early metric system, many
opportunities were missed to settle on a somewhat cohesive framework which couples causal
statements and analytical probabilities.

7This could conceivably be represented by a factors graph were the nodes are the vertices of the triangle.
However, in large geographical surveys, it required to commit earlier in the development to one coordinate
projection system (Lambert, Mercator etc...), while in contrast the system based on the adjustment the errors
could avoid this difficulty during the optimization process.
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We classify those answers in two categories: one which explains why the direct contributors
of the metric system (Delambre, Legendre, Laplace et al.) did not manage to develop a causal
framework (despite causal determinism being a widespread view at the time, as recalled by
Van Strien (2014)), and the second category which explains why their successors were not
able to tackle the shortcomings leftover from the period of the early metric system.

5.4.1 The role of the contributors

One of the most important theme of our work is the relevance of graphs, particularly DAGs,
to represent faithfully the assumptions one has on a given spatial inference problem. More
broadly, the benefits of directed graphs in statistical and causal inference topics have been
well delineated by Pearl (Pearl and Mackenzie, 2020). Notice however that, although the ma-
nipulation of graphs are nowadays generally studied within the field of computer science, their
relevance to probability theory is not particularly tied to technological capacities. The asso-
ciation of statistical independences and graphical notions, a.k.a. the graphoid axioms (Pearl
and Paz, 1985), were built on the work of conditional independences (Dawid, 1979). These
works are relatively recent, but one does not need computers and programming languages
to find graphs useful, whether we need them for expressing assumptions of the statistical
type (Bayesian networks, MRF, factor graphs, etc...) or of the causal type (causal graphs).
Besides, the first publication on graph theory is generally attributed to Euler, back in 1736.
Thus, one would think that the concept of graphs was not alien to the scholars of the early
19th century.

In our view, the most likely explanation for the lack of popularity of graphs in early prob-
ability theory was the domination of another mode of expression which overshadowed other
modes (including geometry and graphs): the analytical expression, in a broad sense. Kožnjak
(2015) revealed that the geodesian and polymath Boscovich, who contributed to the doctrine
of determinism by being the first writer of the tirade commonly known as the ‘Laplace de-
mon’ (decades before Laplace, as mentioned in §1.5.3), routinely used unpopular geometric
methods (Maire and Boscovich, 1755) which were repudiated by prominent members of the
Académie such as D’Alembert and Lagrange. Kožnjak (2022, note 42) recalls that Lagrange
was proud of the fact that his book “Mécanique Analitique [sic]” did not contain any graphical
representation, and Laplace himself (author of the “Analytical theory of probabilities”) crit-
icized Boscovich for using geometrical notions (Kožnjak, 2022, note 50). This of course was
not limited to the dispute with Boscovich and his adversaries, Fourier’s “Théorie Analytique
de la chaleur” (analytical theory of heat) (Fourier, 1822) and even Legendre presentation of
the method of least squares (Legendre, 1805) are other major examples of pure analytical
achievements. In a paper commemorating the two hundred years of the publication of the
method of least squares, Falguerolles and Pinchon (2006) regrets the absence of graphics in
Legendre’s presentation. We can thus conclude that this historical period did not favor the
outbreak of a variant of causal graphs8.

5.4.2 The role of the successors

Overall, despite those scientific problems exposed in hindsight, the scientific aspects of the
early metric system endeavor were nonetheless initially considered as a great success. These

8Pearl attributes the invention of causal graphs (then named ‘path diagrams’) to biologist Sewall Wright
in 1922 (Pearl and Mackenzie, 2020, chap. 2), i.e. more than a century later and far from this environment.
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efforts participated in finally solving a rampant societal challenge: establishing a unifying
weights and measures system (see §1.1). For the anecdote, it is even reported that when De-
lambre (1810) presented the third volume of Basis of the decimal metric system to Napoléon,
the ruler expressed admiration: “Conquests come and go, but these operations will remain.”
(Alder, 2003). The conception of the metric system was a source for national pride too: its
motto, ‘For all times, for all people’, shows that the objective was to solve once and for all the
proliferation of weight and measure standards, not only in France, but also internationally, to
facilitate trade. As such, it can be considered that the metric system was not just a scientific
endeavor, but that there were a soft power operation (Guedj, 2000).

Box 11: The schemes of a Big Science project

Since geodesic operations were at the time a discipline dominated by France (Jozeau,
1997), it influenced, at the political level, the decision of selecting the meridian arc
length as the basis of the unit meter (Guedj, 2000). But the Académie also had its
own agenda: a drive to keep studying of the shape of the earth. Biot (1803, p35-36)
admitted a few years later that the true motives for recommending the meridian arc
length over the ‘seconds pendulum’a was concealed: “sometimes to serve men, we must
resolve to deceive them”. One can also suspect money to be a factor, Borda could
promote his repeating circles instruments (figure 1.2), and the grant secured for the
project was three times the yearly budget of the Académie (Alder, 2003, chap 3). In
contrast, the data & arguments in favor of the seconds pendulum was already available
for decades, thanks to Condamine (1748) who knew that measuring a meridian arc
length was not the best choice (i.e., 57 years before Legendre’s conclusion, see §1.3.1).
Ironically, in post analysis, the 1740 measurement of the Paris meridian arc length,
done by the famous cartographer Cassini (the 3rd of his name) and calculated by the
geometer La Caille, ended up being slightly closer to the aspired value (Guedj, 2000,
chap 17) than the value proclaimed by the 1799 commission. While the scope of the
project was ‘just’ to standardize weights & measures, the temptation of making a clean
state won out: in the euphoria of the Révolution, the scholars would help to create a
new kind of human being, one who would be free from the corrupting influences of the
old regime. Some of these scientists (including Monge and Lagrange) helped to push
forward in 1793 the extension of the decimal mode of counting to clocks and calendars
(i.e., 10 hours watches and 10 days per week, with new names), a taint that survived
a few years.
As Bouasse (1919, p274) later commented, the ability to measure angles at 1′′ of pre-
cision does not make people of bad company virtuous. The metric system would be
temporarily abandoned in 1815, and is no more defined on the meridian arc length,
although its nominal value was kept for back-compatibility.

aThe “seconds pendulum” refers to a simple pendulum with a specific length such that the period
of oscillation is 2 seconds. This length was debated to be the basis of the metric system, over the
meridian arc length.

Anyway, some careers were greatly boosted, particularly Méchain’s, Delambre’s and a few
years later Arago’s. It is then easy to conceive that this prestige also radiated into the novel
methods and instruments either employed or invented for the occasion.
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More broadly, it seems that the metric system enterprise was afterwards surrounded by
an aura of deference, to an unwarranted degree (see box 11). This had adverse effect on the
work of the next generations of geometers. In addition, it seems that the theoretical results
in probability theory achieved by Laplace, Gauss et al. were not understood by their peers
(Crepel, 1989; Hald, 2007). Besides, it is recognized that Laplace was difficult to read: his CLT
proof was not the clearest (Haggstrom, 2015) and most developments are indeed tedious (see,
e.g., Pulskamp’s translation notes9). Consequently, as mentioned in §1.5, the post-Laplacian
treatise on geodesy written by Puissant (1842) only reproduced Laplace’s results without much
of an explanation. All in all, this resulted in a slower pace of innovation in designing new
instruments or researching new methods (especially concerning causality). Several anecdotes
signal that an unfortunate gatekeeping attitude settled in. For instance, the repeating circle
(figure 1.2) was used by the French geodesians for more than sixty years (Jozeau, 1997) while
neighboring countries instruments were steadily improving. A second anecdote highlight a
missed opportunity to trigger a research project. In 1900, a new expedition to measure a
meridian arc length in Peru/Ecuador was contemplated, more than one century and a half
after the tumultuous expedition of La Condamine & colleagues. Asked by a state minister
whether or not it would appropriate for the Académie des Sciences to send some eminent
members there, mathematician Poincaré (1900) (then a figurehead of the Académie) argued in
favor of sending instead cartographers from the army (the ‘Dépôt de Guerre’ organization, i.e.
the unit mentioned in §1.4.5 and of which Cholesky was a member). Poincaré was aware of the
various challenges encountered by his predecessors and pointed out that the expedition would
benefit from having a disciplined, well-trained and cohesive team. The missed opportunity
in this anecdote stems from the fact that he considered that there were no more scientific
challenges in geodetic adjustment: the correct methods and procedures have already been
established following the 1792-1799 Dunkerque-Paris-Barcelona meridian operations and the
cartographers of the ‘Dépôt’ were adequate gatekeepers of the “traditions” of French geodesy.
The use of the word “tradition” in the letter clearly signals that not only geodetic adjustment
was not an active field of research, but also that the deference towards the work done at the
time of the early metric system (and shortly after) persisted. This actually hindered scientific
progress and innovation. Essentially, what would remain of the Gauss-Laplace synthesis
period were probability theory (mostly misunderstood) and the successes of the least squares
technique. Minimizing the least squares of the errors was straightforward, and had been well
presented by its inventor (or co-inventor), Legendre (Stigler, 1981; Legendre, 1805). But in
itself, the method of least squares is just a data fitting technique, and does not help in the
specification of qualitative considerations one has about his or her problem. To the contrary,
since a result can be produced via the method of least squares, it may diminish the otherwise
necessary effort to pay attention to the subtleties of the starting assumptions. Indeed, getting
those subtleties wrong can still produce a credible result such as, e.g., a seemingly compelling
cartography, but it is not assessable whether a seemingly good result is obtained thanks to
the quality of the method employed or despite its shortcomings. In that regard, the critics of
the least squares, who were mentioned in a bad light in §1.4.5 for their defiance vis-à-vis the
least squares technique, should be partially rehabilitated. In the 1850s, astronomer Le Verrier
indeed push in favor of abandoning the teaching of the least squares so that students can use
their judgements, which suggests that they were mindlessly applying it without wisdom. We
also mentioned the case of 1910s physicist Bouasse from Toulouse (Bouasse, 1919), who did

9http://www.probabilityandfinance.com/pulskamp/Laplace/index.html

http://www.probabilityandfinance.com/pulskamp/Laplace/index.html
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not take the ‘adjustment’ part of geodetic adjustment (done via least squares) seriously: it
was a way to tinker with the results. The overall message of these no-nonsense characters was
to favor reasoning. Though anecdotal, it is amusing to notice that the only scholar Bouasse
has any respect for is La Condamine (of the tumultuous 1735 Peru/Ecuador expedition to
determine a meridian arc length). Despite the fact that La Condamine adjusted his chain of
triangles using ad-hoc averaging methods, he was willing to discuss thoroughly his reasoning
when it came to the application of corrections he applied to his measurements, unlike the
two others scholars in his company. The “most sympathetic among the scholars involved in
the study of the shape of earth” (Bouasse, 1919, p274) reported his approach in his journal
(Condamine, 1745, art25-26 p455-63). All in all, the only issue we have with the arguments
of the least squares opponents, is that they considered the method in itself to be the culprit.
Rather, there is no doubt that the least squares method has its place, but causality should be
expressed first, then exploited, in order to bring about a tailored least squares problem (e.g.,
as in (4.16) and/or (5.24)) which abides by the starting assumptions (expressed via SCM
and causal graphs). The least squares method simply derives from the normal distribution of
error terms, which have strong justification in large sample situations (CLT).

5.4.3 An explainable system

Questionable aspects related to the setup of the metric system were mentioned above, as well
as some adverse effects it has had on successors. Nonetheless, it would be fair to emphasize a
positive aspect in the design of this system: the fact that it was envisioned as an explainable
system, where once the meter value is taken in nature, all other quantities could be deduced
from reasoning. Mineralogist René Haüy (1743-1822), secretary of the weights & measures
commission emphasized on the cause-and-effect thinking deeply rooted in the design of the
metric system (Haüy, 1793, p11-12):

Everything is linked in this [metric] system, entities are held together via intimate
relationships, every result follows from the preceding one, and brings about the
following one, so that once established that the unit of measure must be taken in
nature [i.e., by measuring an arc length of a meridian], the plan of the system was
already plotted in advance, by the precise genealogical order of ideas.

Hence, the early metric system itself was, profoundly, a causal system. Once the chain of
triangles is established, that its errors are adjusted, and that the latitudes are measured, then
the value of the unit meter can be deduced from the arc length. Then the other quantities
of this system (surfaces, volumes and weights) were in turn deduced downstream: meter →
meter2 → meter3; (meter3 + water)→ kilogramme.

By framing the metric system as an explainable construct, its adoption was significantly
facilitated, as humans inherently tend to trust these frameworks over arbitrary quantification.
This realization should serve as a valuable inspiration for addressing the societal impact of
robotics. Autonomous machines designed as much as possible on principles of cause-and-effect
will be more transparent and more reliable than those based on excessively large and opaque
algorithms.

Remark 5.5. In SLAM terminology, appellations such as ‘dense SLAM’, ‘topological SLAM’,
‘semantic SLAM’ or ‘metric SLAM’ are sometimes employed to broadly categorize the hy-
potheses and data structure a given approach of SLAM is tied to. These designations are
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often seen as slight abuses of language, but are mostly tolerated as commonly used shorthand
expressions. Using a modest play on words and an openly anachronistic statement, we will
allow ourselves to reverse the logic of ‘metric SLAM’, for it is in fact the early metric system
which can be in essence categorized as an ancestral causal SLAM system.
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Appendix A

On Magellan’s loop-closure

The Magellan shipping expedition, which occurred in the early XVIth century, is universally
best known for being the first recorded circumnavigation of Earth. Concerning the under-
standing of world, the period (a.k.a. the age of discovery) is also associated with a drastic
improvement of world maps. Magellan’s circumnavigation has the particular property that
a previously known and visited territory (South East Asia & the Indonesian Islands) was
reached via the Pacific route1. Of particular interest to us is the event associated with the
loop closure by missing data during the crossing of the Pacific2: i.e. how under (1) low confi-
dence on the precision of the available map (see fig A.1), (2) the growing uncertainty on the
ships position, and (3) the absence of expected land sighting, an informative map adjustment
was nonetheless conducted.

The purpose of this appendix is twofold. A first goal is to highlight the fact that this type
of adjustment, although significant in human cartography, is so far not well covered in robotics
(as remarked § 2.3.1). This in turn prompts a discussion on an approach for adjusting under
similar missing data situations, as this type of corrections should be an essential component
in robotics spatial inference. We give our perspective on that prospect, notably in relation to
the causal framework discussed in chapters 4 and 5, which constitutes the second purpose of
this appendix.

A.1 Background

Before 1500, Asia was very clearly overvalued in its dimensions and its extension towards
the East (Duviols and Castro, 2019, p10-11). Between 1500 and 1519, the already visited
places (including by Magellan himself) in S.E. Asia, by the route of the Indian Ocean, lead
to the adjustment of S.E. Asia to relatively more realistic proportions3 Nonetheless, the
contour of East Asia were vastly inaccurate and Islands such as Japan were only known via
secondary accounts4. Concerning the position of the Moluccas on the map (archipelago near

1See, e.g., the Wikipedia entry https://en.wikipedia.org/wiki/Magellan_expedition. Our main source
for this discussion is Castro and Bernand (2010); Duviols and Castro (2019) book on the subject, a reference
that reproduced direct testimonies on the expedition and analyzed them.

2See the trajectory February and March 1521 in the Wikipedia link provided.
3See for comparison with the 1519 map of J. Reinel (fig A.1), the 1492 globe of Martin Behaim (https:

//gallica.bnf.fr/ark:/12148/btv1b55008737g/f1.medres3d).
4The cartographic and navigation considerations are hereby only developed from the limited knowledge

available of the sailors (i.e. from Spain and Portugal), not inhabitants of the region, for the point is to study
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Figure A.1: Jorge Reinel 1519 map of the world, which is suspected to have been the map employed
for the Magellan expedition. The vertical red dashed line, slightly visible in the middle of the map,
splits the world in two zones in which newly discovered territories could be claimed either by Spain
(left side) and Portugal (right side) under treaty. The left and right edges of the map denote the
anti-meridian, i.e. the prolongation of the treaty line on the other side of the earth. The Moluccas
archipelago (a.k.a. spice islands, visible far left on the map) was close to the anti-meridian and claimed
by both European powers. The Magellan expedition main goal was to reach this strategic location, to
the benefit of Spain, by navigating south of Brazil and by crossing the uncharted Pacific Ocean. In
reality, the Moluques Islands were in the Portuguese side. In practice, this means that this map under-
estimated the length of the trip by a few degrees. Document reproduced from Gallica - Bibliothèque
Nationale de France (Reinel, 1519).

the left edge of figure A.1), they were positioned to be 5 degrees to the east of anti-meridian,
while in reality they should be 5 degrees west of it (Duviols and Castro, 2019, p215). As
additional inaccuracies affected the size of the earth, overall, the size of the uncharted Pacific
Ocean was slightly underestimated (although not by an order of magnitude). Thus, when
crossing the Pacific Ocean from the Magellan strait (south America) to Guam and then to
the Philippines, from December 1520 to March 1521, Magellan ships underestimated the
distance to be travelled by a few longitudinal degrees. An unfortunate and aggravating factor
was that no rich land was encountered during the crossing, which would have allowed to
resupply.

Of interest here is the process by which cartographic adjustment were inferred before the
end of the crossing. This process was triggered not by ‘closing the loop’ on known territory,
but precisely by the lack of land sighting. To develop this point, we rely on two online
accessible accounts of the expedition.

The first account is from Albo’s log book (Albo, 1522), who was the pilot of one of the ship.
It contains a fair amount of navigation information such as direction of the ship, latitudes and
longitudes. The determination of precise latitudes were generally easy in celestial navigation,
and Castro and Bernand (2010, p660) note that the errors were low: out of 37 latitude
measurements compared, only 1 of them has an error of more than 1 degree. By contrast,

how they coped with their localisation and mapping uncertainties.
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the determination of longitudes was unreliable and error-prone, and were only done on land
(it would remain a challenge until the invention of Harrison chronometers in the XVIIIth
century). (Castro and Bernand, 2010, p664) analyzes that the errors of the longitudinal values
established were between 2.5 and 10 degrees, under some conservative hypotheses. Thus, by
the beginning of March 1521, before encountering the islands of Guam, the longitudinal
component of the ships localization was extremely unreliable (and known to be so) due to
both the unreliable process of establishing the longitude values and the long distance travelled
since the last longitude measurement.

The second relevant account of the expedition is Pigafetta’s book (Pigafetta, 1522). Al-
though not a sailor, he was considered close to Magellan and was aware of the decisions made
by him. During the crossing, Pigafetta mentioned the following (Pigafetta, 1522) :

In going by this course we passed near two very rich islands; one is in twenty
degrees latitude in the antarctic pole, and is called Cipanghu [i.e. Japan, which
was incorrectly believed to be on the path]; the other, in fifteen degrees of the
same pole, is named Sumbdit Pradit. After we had passed the equinoctial line
we navigated between west, and north-west and a quarter west, by north-west.
Afterwards we made two hundred leagues to westwards, then changed the course
to a quarter of south-west, until in thirteen degrees north latitude, in order to
approach the land of Cape Gaticara, which cape (under correction of those who
have made cosmography), (for they have never seen it), is not placed where they
think, but is towards the north, in twelve degrees or thereabouts.

As analyzed by Castro and Bernand (2010, p386), the “cape Gaticara” mentioned in
the quote was supposed to be encountered by the expedition. It was in fact a non-existent
cape on the east-most region of Asia which was based on indirect information (“for they
[the cartographers] have never seen it”). The crucial bit of information contained in the
above concerns the adjustment of this imaginary cape Gaticara on the map: given all stated
uncertainties, concerning both the low confidence on the information on their map and the
localization of the ships, it was decided to adjust the position of this landmark. Had the ship
been localization been more precise, the adjustment would have occurred earlier, not a couple
of days before the first land sight (at Guam).

In other words, in the judgement of these experimented sailors, the lack of expected
land sighting was informative, for actionable conclusions could be inferred by attributing the
absence of data to a certain disposition of the map or of the ship localization (in that case,
the former).

In his romanced biography of Magellan, writer Stefan Sweig would exaggerate the death
toll and the sense of hopelessness of the crew during Pacific crossing. He nonetheless fittingly
conveyed the idea that it is the absence of land sighting that triggered Magellan to revise
pre-established cartographic notions:

[...] and still there came no land, nor any sign to give hope that they were drawing
near the land. [...] For thousands upon thousands of hours did Magellan’s fleet
move onward into vacancy.
Since November 28, when Cabo Deseado [near Horn’s cape] had faded out of sight
on the horizon, they had had neither maps nor means of measurement [this is how-
ever untrue, see above]. False had proved Faleiro’s estimate of distances [Magel-
lan’s astronomer who helped prepare the expedition]. Long since, thought Magellan,
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he must have got beyond Cipangu (as Marco Polo had called it), the Land of the
rising Sun. Yet at the time when he believed this, he had not yet traversed as
much as a third of the width of the vast ocean which, because it was so peaceful,
he called the Pacific.

Magellan by (Zweig, 1938, chap. 10).

As it happens, once the indications of the surviving crew were incorporated into a new
world map (see Ribeiro, 1529), the dimensions of the major continents as well as the unex-
plored areas were then drawn in correct proportions and more precise contours than Reinel’s
world map of figure A.1. This was an important milestone in the so-called Age of Discovery.
In particular, the map of S.E. Asia and Indonesia was greatly improved, despite mainland
Asia having not been visited directly by the expedition. One exception is the localization of
the Moluccas Islands, which were still located too far east, mostly for geopolitical reasons (it
was a contested location where the sought-after cloves could be found).

In the next section, we discuss how this type of reasoning, that should in our opinion be
embedded in spatial inference systems, can be emulated for SLAM problems. We mention an
existing framework to can be employed and outline the remaining challenges ahead.

A.2 Perspective on the representation of missing observations

What is described in the Magellan story fall under the ability to reason about the causes
of missing observation. Modern causal inference framework have shown to be appropriate
to address the cause of missing data, typically for discrete value problems as developed by
Mohan et al. (2013) (see also Mohan et al., 2022). Thus, the CARLIT framework (chap.
4), as a specialization of a causal inference framework for SLAM, is a potential candidate to
represent this type of inference. We discuss that perspective on a toy SLAM scenario and the
foreseen limitations.

Box 12: SLAM Scenario - Missing Data

From a starting pose, arbitrarily denoted x0, a robot observes 5 relative motion events
U ≜

{
z1

0, z2
1, z3

2, z4
3, z5

4
}
. A first landmark, denoted l1 is discovered (no prior knowledge)

by a robot exteroceptive sensor at time t1. The landmark is not re-observed. Robot
motion and sensor measurements Z ≜ {z0, z1, z2, z3} are affected by noise. Further-
more, we assume that the realization of the noises puts the estimated position of the
robot in expected range of the landmark l1 when in the estimated position x̂5 (see fig-
ure A.2). We assume no adverse effect due to the robot inertia, false sightings, outliers,
etc...

Objective: The inference problem consists in establishing the state estimation of the
robot poses X ≜ {x1, x2, x3, x4, x5} and the landmark position L ≜ {l1}.

Box 12 describes a scenario where only one landmark l1 is observed and, after a curve
observed by poor quality odometric measurements, the landmark l1 is expected to be seen
again. Figure A.2 shows a sketch of this scenario where the ground truth trajectory is in
green, and the estimated trajectory is in gray. The sighting area of the embedded landmark
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Figure A.2: A toy scenario to motivate
the treatment of missing data in SLAM.
This figure represents the scenario described
box 12. The green path represents the
ground truth of the robot trajectory, while
the gray path represents the dead-reckoning
estimate of the trajectory. The red dashed
cones C denote the area of sighting at dif-
ferent poses. A landmark l1 is discovered
while the robot is at pose x1. l1 is predicted
to be re-sighted at the estimated pose x̂5.
However, no sighting is made (symbol “?”)
due to the drift accumulated in the trajec-
tory. The issue at stakes here is to consider
whether a procedure to bring some correc-
tions to the errors in this setting can and
should be proposed, given that, in this sce-
nario, there are no classical loop-closure.

measurement sensor is represented by the red cone C (field of view and range). As the
estimated pose x̂5 is widely inaccurate, no landmark observation of l1 is possible in those
circumstances. Figure A.3 represents the causal graph and, comparatively, factors graph
of the problem, without considerations for the missing observation. The causal graph (a)
in figure A.3 shows the first landmark sighting cast as an intervention. This representation
corresponds to what is described for CARLIT (refer to §4.4). Fig A.3-(a) also exhibits that all
errors are statistically independent of one another: therefore no opportunity for adjustment
is offered by the model.

However, intuitively, in this situation, assuming the sensor is fully reliable (i.e. no missing-
completely-at-random to employ Mohan et al. (2022) terminology) the errors on the odometry
measurements of the robot and/or the initial landmark measurement sensor error should be
corrected in such a way that the field of view at x̂5 does not cover the landmark l1. In typical
state of the art sparse probabilistic SLAM systems, nothing is done to infer such adjustment
(as pointed out in chap. 2).

Nonetheless, existing missing-data approach, developed by Mohan et al. (2013) for the
SCM framework, should be adapted to warrant the correction of errors, while being mindful
of the mechanisms explaining the lack of re-sighting.

To represent this process, the causal graph is completed with additional elements on figure
A.4. Let y4

1 denote the position of landmark l1 from the robot perspective 4 four steps after its
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Figure A.3: (a) Causal graph and (b) factors graph representations to the scenario box 12 without
considerations to the lack of re-sighting of l1 (see fig A.2).

discovery. The graph on figure A.4 represents the following additional structural equations:
y4

1 :=
(
Λ5

1
)−1 · y0

1

ȳ4⋆
1 :=

{
y4

1 if y4
1 ̸∈ C

m if y4
1 ∈ C and ȳ4

1 not available .

(A.1)

In equation (A.1), ȳ4⋆
1 is a proxy for y4

1, the behavior of ȳ4⋆
1 changes depending on whether

a sighting should occur. This proxy node appears when a real measurement is not available,
i.e. when the structural equation ȳ4

1 := y4
1 + ν4

1 does not occur. Then, if the landmark is not
predicted to be within the sighting area (i.e. y4

1 ̸∈ C), the proxy ȳ4⋆
1 ‘collapses’ onto y4

1, and
y4

1 is an open collider. In this case, the causal graph is equivalent to figure A.3-(a). Finally,
ȳ4⋆

1 takes the value m (as missing) if a sighting of l1 was predicted in this area (y4
1 ∈ C).

If ȳ4⋆
1 = m, this signals the underlying solver (see 4.3) that the set of errors ξ ≜{

ν0
1 , ζ2

1 , ζ3
2 , ζ4

3 , ζ5
4
}

should be corrected with the constraint y4
1 ̸∈ C (i.e. the landmark does not

find itself in the sighting area of x̂5):

argmin
ξ

1
2ξ⊤ξ s.t. y4

1 ̸∈ C. (A.2)

The constraint in equation (A.2) can be formulated, in the case of cone C as two inequal-
ities, one on the extent of the field of view (angle) and another on the range.

Remark however that there are several roadblocks that would prevent to generalize this
missing data specification in SLAM problems. Firstly, the proxy variable, as being an ob-
servation node in figure A.4, creates a ‘closure’ in the sense that it makes all relevant errors
mutually dependent (according to the graphical rules of d-separation). In practice, if such
proxy variables ȳ⋆ were to be added at every time step and for every landmark, any bene-
fit from sparsity would be lost, making the optimization problem untractable. A naive way
to address the issue is to conduct inference without concern for the missing data and only
introduce the proxy variables in a second optimization process, for the variables yj

i whose
estimates fall under yj

i ∈ C. But there is no a priori guarantee that the end result would
be similar to the dense untractable system. Furthermore, as the optimization process is in-
herently nonlinear, the set of variables yj

i affected by a proxy variable might evolve following
re-linearization. Secondly, the proposed specification is currently unable to mix with another
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Figure A.4: Causal graph to represent scenario 12, including the exploitation of missing data ȳ4 ⋆
1 .

mechanism behind missing data: the random failure of the sensor (or, equivalently, of the seg-
mentation software), in situations when the landmark is in fact well within the sighting area
C. Indeed, the proposed scheme assumes perfect occurrence detections and non-detections,
not to be confused with sensor noise.
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Appendix B

Algorithms for structural
recomposition of Λ-motions

Additional algorithms for causal graphs manipulations, used in section 4.5 in support of
algorithm 5.

Algorithm 7: Recompose a pair
{

Λj
i , Λk

j

}
into Λk

i in a directed graph G . If the
new node Λk

i does not exist, createe that part of the graph It also deals with the
reconfiguration of the edges in the intersection Iijk .

Input: Graph G, pair
{

Λj
i , Λk

j

}
Output: Composed element Λk

i , Graph G recomposed
1 G′ ← G ; // make a copy

2 if Λk
i /∈ G′ then

3 /* if Λk
i does not exist, create it */

4 AddVertices(G′, Λk
i , Zv

k
i, ξk

i );
5 AddEdge(G′, Λj

i → Λk
i );

6 AddEdge(G′, Λk
j → Λk

i );
7 AddEdge(G′, Λk

i → Zv
k
i);

8 AddEdge(G′, ξk
i → Zv

k
i);

9 end
10 for Λ ∈

{
Iijk \Λk

i

}
do

11 /* Outgoing Edges to the intersection set (excluding Λk
i ) are removed and replaced

by edges outgoing from Λk
i to the intersection set

{
Iijk \ Λk

i
}

. */

12 RemEdge(G′, Λj
i → Λ) ; // remove old edges

13 RemEdge(G′, Λk
j → Λ);

14 AddEdge(G′, Λk
i → Λ);

15 end
16 return Λk

i , G′ ;

193
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Algorithm 8: ChildrenIntersection: returns the intersection of the outedges
(children) of 2 vertices in a graph.

Input: Graph G, vertices Λj
i & Λk

j
Output: Iijk intersection set of children

1 V1 ← GetOutEdges(G, Λj
i) ;

2 V2 ← GetOutEdges(G, Λk
j ) ;

3 Iijk ← V1 ∩ V2;
4 return Iijk

Algorithm 9: ChildrenUnion: returns the union of the outedges (children) of 2
vertices in a graph.

Input: Graph G, vertices Λj
i & Λk

j
Output: Uijk union set of children

1 V1 ← GetOutEdges(G, Λj
i) ;

2 V2 ← GetOutEdges(G, Λk
j ) ;

3 Uijk ← V1 ∪ V2;
4 return Uijk
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//gallica.bnf.fr/ark:/12148/bpt6k1051290z.

Condamine, L. (1748). Nouveau projet de mesure invariable propre à servir de mesure
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