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Abstract—This paper addresses the estimation of trajectories
of interacting vehicles at a microscopic scale, as a prerequisite
to their prediction for risk assessment. A state-space solution is
investigated, where both the Markov hidden state (continuous-
valued, which captures the joint histories of vehicles) and the
measurements (low-dimensional and noisy) admit a vehicle-
wise structure. The vehicles’ transition models are assumed
independent of each other, time- and vehicle-invariant, and
coequal to an “egocentric” prior dynamics pdf. To cope with
the vehicles’ interactions, this pdf is conditioned on the full
state vector as the past time index, which imposes a centralized
estimation/prediction of the fleet motion. The two fundamental
pillars of the approach are developed: learning of a Gaussian
mixture egocentric transition model by means of Deep Neural
Networks; synthesis of a stochastic variational Bayes filtering
algorithm which features a decentralized vehicle-wise structure
but takes into account interactions. Tests on highway scenarios
are presented.

Index Terms—Autonomous vehicles, Intelligent transportation
systems, Robotics, Interactive vehicle dynamics, Neural-network
models, Stochastic filtering techniques.

I. INTRODUCTION

Detecting and predicting dangerous situations is one of the
major challenges of road safety. It allows preventing measures
to be taken in order to avoid potentially deadly outcomes. To
do so, Advanced Driver Assistance Systems (ADAS) must be
able to model the current traffic situation and its evolution. The
complex and evolving dependencies between drivers constitute
an important issue for such systems.

Vehicle motion models are reviewed in [1]. They can be
classified as physics-based, maneuver-based or interaction-
aware. The first two models cannot constitute the basis for
midterm motion prediction because of their lack of represen-
tation power. Only interaction-aware models can capture ego-
motions together with road configurations and others drivers.
So, they alone are suited to risk assessment based on drivers’
joint motion estimation and prediction [2].

This work has been partially funded by the French National Research and
Technology Agency, in the framework of a CIFRE project involving LAAS-
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Interaction-aware models are often made of two distinct
highly coupled parts : intent estimation and motion prediction.
According to [3], one way of handling their complexity is to
consider multiple discrete maneuver hypotheses and estimate
their posterior probabilities. The posterior maneuver estimate
can in turn constitute a basis for continuous motion prediction.
Intention estimators usually rely on the discriminative classi-
fication of specific maneuvers with respect to the vehicles’
status and environmental cues, e.g., by using support vector
machines (SVMs) [4], Long-Short Term Memory (LSTM)
neural networks [5], heuristic rules via expert knowledge [6],
or generative Hidden Markov Models [7]. Motion prediction
can be addressed by means of Gaussian processes [7], Mixture
Density Networks [8], LSTM Networks [5], Conditional Vari-
ational Auto-Encoders [9], or optimization-based planning [3].

Intention and motion estimation can be jointly performed.
In [10], a driver model is learned by Inverse Reinforcement
Learning so as to predict the actions of all vehicles in a high-
way traffic scene considering various intentions/maneuvers.
In [11], a LSTM Network is trained with relational fea-
tures between drivers so as to predict their future motions,
implicitly capturing their intentions if the dataset is large
enough. Stochastic filtering techniques have also been used
to estimate intention and predict motion. The road scene is
often modeled as a Markov process by means of a Dynamic
Bayesian Network, which captures the dependencies between
agents [12]–[15]. This setting often implies mixed (discrete-
continuous) state-spaces and nonlinear models, so that con-
ventional techniques do not apply. Moreover, no instantaneous
measure of drivers’ intentions is available.

This paper proposes a state-space approach to motion es-
timation where both the Markov hidden state (continuous-
valued, which captures the joint histories of vehicles) and the
measurements (low-dimensional and noisy) admit a vehicle-
wise structure. Section II states the problem, and introduces
the “egocentric” prior dynamics pdf common to all vehicles
at all times. Then, Section III introduces the two cornerstones
of the approach, viz. the learning of a Gaussian mixture ego-
centric transition model by means of Deep Neural Networks,



Fig. 1. Typical configuration of an highway traffic scenario that leads to
strong interactions between drivers. The red car motion is influenced by blue
cars around it.

and the stochastic variational Bayes filtering algorithm which
enables the decentralized vehicle-wise motion estimation while
taking into account interactions. Tests on highway scenarios
constitute Section IV. Open issues conclude the paper.

II. PROBLEM STATEMENT AND CONTEXT
OF ITS SOLUTION

A. Trajectories estimation as a prerequisite for prediction

A multiple-lane highway section is considered, which com-
prises no intersection nor access ramp (Figure 1). At any
time instant nTs, with n = 0, . . . , N and Ts the sampling
period, a set V of K vehicles V1, . . . ,VK (cars or trucks)
moves rightwards. The considered situations entail interactions
among V and can be coarsely depicted in terms of the
maneuvers being executed, e.g., free ride, following, braking,
overtaking, etc.

As a prerequisite to subsequent risk assessment, the predic-
tion of the trajectories of all vehicles must be performed at a
microscopic scale, i.e., over horizons ranging between 1 and
5 seconds (as commonly found in the literature).

B. Towards a State-Space Solution

1) Overview: A state-space approach is sought for, in which
a hidden random state vector captures the status of the whole
fleet V . This vector, termed xn at time n, comes as the
stacking of subvectors {xkn}k=1,...,K . For any pair k, k′ in
{1, . . . ,K}, xkn and xk

′

n report the same kind of informa-
tion on vehicles Vk and Vk′ . Importantly, the hidden state
random process x0:n = x0, . . . , xn is assumed Markov. In
the same way as xn =

(
(x1
n)T , . . . , (xKn )T

)T
, with .T the

transpose operator, the measurement random variable at any
time n features a vehicle-wise structure and writes as zn =(
(z1
n)T , . . . , (zKn )T

)T
. Given a sequence z0:n of noisy low-

dimensional measurements1, the aim is to determine the state
vector filtering probability density function (pdf) p(xn|z0:n),
with first moments x̂n|n, Pn|n. From this distribution, m-step-
ahead prediction pdfs p(xn+m|z0:n) can be obtained for the

1Throughout the paper, the same notation is used for random vari-
ables/processes and for their outcomes in a random experiment.

whole fleet V , and risk assessment can be conducted, e.g., on
the basis of their approximate confidence sets.

The prior knowledge on the hidden state process is com-
posed of the initial pdf p(x0) and the prior dynamics pdf
p(xn|xn−1), n ≥ 1. It is henceforth assumed that, conditioned
on the previous state of the whole fleet, all the vehicles
dynamics are mutually independent, i.e.,

∀n ≥ 1, p(xn|xn−1) =

K∏
k=1

p(xkn|xn−1). (1)

In addition, it can reasonably be postulated that the admissible
transitions of vehicle Vk between times n − 1 and n only
depend on its state xkn−1 and on the states of the set Nn−1(Vk)
of its neighbors at time n− 1, i.e.,

p(xn|xn−1)=

K∏
k=1

p(xkn|xkn−1, {xln−1}Vl∈Nn−1(Vk)
). (2)

Last, the vehicle-wise (or “egocentric”) transition model
p(xkn|xkn−1, {xln−1}Vl∈Nn−1(Vk)

) can be deemed time-
invariant (independent of n) and common to all vehicles
(independent of the selected ego-vehicle Vk). Note that this
set of assumptions does not prevent the prior dynamics pdf
from fully capturing all the interactions among vehicles.

As for the measurement model p(zn|xn), besides vehicle-
wise structure, vehicle-wise independence is assumed, so that

∀n ≥ 0, p(zn|xn) =

K∏
k=1

p(zkn|xkn). (3)

2) Potential benefits and Challenges: This fairly classical
state-space statement fundamentally differs from recent pow-
erful approaches which aim to predict output time sequences
on the basis of, say, Recurrent or Long Short Term Memory
Neural Networks, in two respects: the prediction from the
sequence of past measurements entails the explicit definition
and selection of a Markov state vector which, at any time,
captures the history of V; at any time, the measurements are
noisy low-dimensional expressions of the hidden state. Each
state subvector xkn associated to Vk may be made of discrete-
valued indexes expressing driver intentions and/or maneuvers,
together with continuous-valued variables depicting the fine-
grained nature of the motion.

Nevertheless, two major challenges are raised by the context
of interactive vehicles. On the one hand, hand-crafting of
the prior dynamics model would be difficult and limited by
its ability to capture the huge variability of situations. For
instance, not only the combinatorics of admissible intentions
and maneuvers is very high, but their thorough description
through a model like (2) would be cumbersome. On the other
hand, conventional recursive Bayesian filtering or prediction
techniques may be unsuitable to this problem, as the very
high-dimensional state-space necessary to depict V may induce
an inability to compute/approximate the posterior pdfs, a
prohibitive computational complexity, or even unacceptable
systematic computation errors. These challenges have given
rise to the cornerstones of the approach described next.



III. FUNDAMENTALS OF THE APPROACH

A. Definition of the Hidden State Process

The state vector xn includes no discrete-valued variable.
The (continuous-valued) entries of each subvector xkn are the
x- (longitudinal) position and velocities of vehicle Vk followed
by its y- (transversal) positions and velocities. It is expected
that this definition of xkn ∈ R4 is rich enough so that the
egocentric transition model p(xkn|xkn−1, {xln−1}Vl∈Nn−1(Vk)

)
involved in (2) can grasp a broad range of admissible mo-
tions. This is an important issue, especially because such
an egocentric model must implicitly encode the drivers’ in-
tentions/maneuvers2. Strikingly, if intentions/maneuvers were
explicitly captured by discrete state variables, these would
not follow a homogeneous Markov chain. Instead, their prior
dynamics would take the form of a transition matrix which
depends on the continuous-valued (past) state variables in
a hardly identifiable way. In summary, defining the state
vector as continuous-valued simplifies the problem in terms
of required prior knowledge and estimation complexity.

Closed-form transition models do exist, e.g., the intelligent
driver model [16] or social forces for pedestrian motion.
However, they convey limited representation possibilities, as
they can only capture simple interactions involving few agents.
As Gaussian Mixture Models (GMMs) can approximate a huge
set of probability density functions [17], the egocentric prior
dynamics pdf has instead been set to a conditional GMM of
the form (“:=” means “is defined as”)

p(xkn|xkn−1, {xln−1}Vl∈Nn−1(Vk)
) :=

M∑
m=1

λm(xkn−1, �)G(xkn;µm(xkn−1, �),Σm(xkn−1, �)),

where � = {xln−1}Vl∈Nn−1(Vk)
(4)

and G(x;µ,Σ) terms the multivariate Gaussian pdf of x with
mean µ and covariance matrix Σ.

At any time n, the observations are assumed to be indepen-
dent noisy measurements of the genuine x- and y- positions
of the vehicles, so that (3) is defined as

p(zn|xn) :=

K∏
k=1

G(zkn;Hk
nx

k
n, R

k
n), Hk

n =
(

1 0 1 0
0 1 0 1

)
, (5)

with Rkn ∈ R2×2 the known (maybe time- and vehicle-
dependent) covariance matrix of the additive zero-mean mea-
surement noise.

B. Learning Prior Dynamics with Deep Neural Networks

The weight λm ∈ [0; 1], mean vector µm ∈ R4 and covari-
ance matrix Σm ∈ R4×4 associated to each mth hypothesis of
the egocentric transition GMM (4) are functions of the state
vector entries associated at the past time index to the ego-
vehicle given in argument and to its neighbors. Though with

2Note that the implicit encoding of discrete maneuvers into a transition pdf
on continuous random vectors does not preclude the explicit learning of their
temporal dynamics, see Section III-B.

some loss of generality and at the expense of handling need-
lessly conservative (spreaded) prior dynamics, the covariance
matrices Σm are henceforth assumed diagonal, i.e., with �
defined above and for all m∈{1, . . . ,M},

Σm(�) :=diag(σ2
m,1(xkn−1, �), . . . , σ2

m,4(xkn−1, �)). (6)

Assuming that a dataset of “clean” sequences of state vectors
is available, the consequent model (4),(6), i.e., the dependency
of λm, µm, σm,1, . . . , σm,4 on their arguments, is learned
by machine learning techniques. Mixture Density Networks
(MDNs) were proposed in [18] as a direct way of learning
the GMM parameters in (4). However, in our problem, the
high dimensions of the inputs and outputs of the MDN lead
to mode collapsing, a phenomenon acknowledged in [19]: the
native MDN implementation reduces the sought multimodal
prior dynamics to a single Gaussian distribution.

To overcome this limitation, GMM parameters are learned
separately by distinct feed-forward Deep Neural Networks
(DNNs). First, a DNN learns the parameter functions
{λm(xkn−1, �)}m=1,...,M , which map the states at time n− 1
of the ego-vehicle and its neighbors to the probability of each
mth intended maneuver by the ego-vehicle at time n. This
DNN entails multiple fully connected layers: an input layer
of the size of the states of the ego-vehicle and its neighbors;
several fully connected hidden layers; an output layer which
size is the number M of considered maneuvers. To ensure that∑M
m=1 λm(xkn−1, �) = 1, the activation function of last layer

is set to the Log-Softmax function

log λm = yλm − log
( M∑
l=1

exp yλl

)
, (7)

with {yλm ∈ R}m=1,...,M the outputs from the last layer.
The Log-Softmax function is preferred to the conventional
Softmax activation function in view of its superior nu-
merical stability. If the dataset is structured into KN tu-
ples

{(
xkn, {xln}Vl∈Nn(Vk)

,mk
n

)}
gathered on ego-vehicles k =

1, . . . ,K over times n = 1, . . . ,N, where mk
n terms the genuine

pre-labeled maneuver, then the classification network is trained
so as to minimize the loss function

Loss := −
n=N,k=K∑
n=1,k=1

log p(mk
n|xkn, {xln}Vl∈Nn(Vk)

). (8)

Secondly, once the probability distribution of the maneuvers
intended by the driver has been learned, M independent DNNs
are trained. Each mth DNN learns the functions µm(xkn−1, �)
and Σm(xkn−1, �), which map the states at time n − 1 of
the ego-vehicle undergoing the mth maneuver and the states
of its neighbors to the moments of the Gaussian distribution
from which the state at time n of the ego-vehicle is sam-
pled. Each mth DNN also features multiple connected layers.
Its last layer outputs are yµm ∈ R2 and yσ1

m , . . . , y
σ4
m ∈ R.

The sought functions µm, σm,1, . . . , σm,4, which must fulfill
σm,1 > 0, . . . , σm,4 > 0, are obtained by

µm = yµm, σm,i = exp(yσi
m ), i = 1, . . . , 4. (9)



Each mth network is trained with KmNm tuples{(
xkn−1,m, {xln−1,m}Vl∈Nn−1(Vk)

, xkn,m
)}

gathered on Km

vehicles engaged in the maneuver indexed by m over Nm
times. The corresponding loss function writes as

Lossm :=−
n=Nm,k=Km∑

n=1,k=1

log G
(
xkn,m;µm(xkn−1,m, o),Σm(xkn−1,m, o)

)
,

with o = {xln−1}Vl∈Nn−1(Vk)
. (10)

C. State Estimation by Variational Bayes Particle
Filtering

1) Basics: Particle filtering can in principle get an approx-
imation of the filtering pdf. However, the underlying random
sampling of the high-dimensional state-space may induce the
“gaps and clusters” phenomenon, and lead to a poor efficiency
at a high computational cost. This is why variational Bayes
approximations have been envisaged.

Let x be a random variable and x1, . . . , xK its partition
into K blocks. Let Q be the set of separable pdfs of x, i.e.,
Q = {q̃(x) =

∏K
k=1 q̃(x

k)}. A (separable) pdf q(x) is termed
the (separable) variational Bayes (VB) approximation of a
given pdf p(x) if it minimizes, over Q, the Kullback-Leibler
divergence to p(x), i.e.,

q(x) :=

K∏
k=1

q(xk) = arg min
q̃(x):=

∏K
k=1 q̃(x

k)

KL
(
q̃(x)‖p(x)

)
. (11)

The well-known solution to (11) writes as

q(x) :=

K∏
k=1

q(xk), q(xk)∝exp
(
Eq(xk−)

[
ln p(x)

])
, (12)

where xk− stands for the complement of xk in x. Definition
(11) implies that q(x) cannot take high values while p(x)
is small, or, equivalently, that the modes of q(x) capture at
least some modes of p(x). Its solution (12) shows that the
imposed stochastic independence of the marginals of q(x) is
traded off with the mathematical dependence of each q(xk)
on expectations involving {q(xk′)}k′ 6=k.

Variational methods have long been used for inference
and learning [20], [21]. Their potential for Bayesian fil-
tering [22], [23] has also been investigated, with the
aim to recursively approximate the filtering pdf p(xn|z0:n)
by q(xn|z0:n) :=

∏K
k=1 q(x

k
n|z0:n) which minimizes

KL
(
q̃(xn|z0:n)‖p(xn|z0:n)

)
over separable pdfs q̃(xn|z0:n).

[24] derive a computationally efficient “multiple” filtering
strategy, which, thanks to VB approximations, enables a solu-
tion by running K separate (though interacting) particle filters
on respective partitions of the hidden state vector. Figure 2
instantiates their algorithm for a simplified problem. One key
point lies in the VB approximation q(xkn|xkn−1, z0:n−1) of
the genuine partition-wise prior dynamics p(xkn|xn−1), which
eliminates its conditioning on xk−n−1 (i.e., the complement of
xkn−1 in xn−1):

q(xk
n|x

k
n−1,z0:n−1)∝ exp

(
E
q(x

k−
n−1

|z0:n−1)
[ln p(xk

n|xn−1)]
)
, (13)

Figure 2 also reports the way how to approximately sample
from such a pdf.

2) Application to interacting vehicles: For the considered
filtering problem, the state vector is partitioned vehicle-wise,
so that K can stand both for the number of partitions and the
number of vehicles. However, the assumptions (2),(4) stated
in the considered context of interacting vehicles do not match
with these of [24]. Nevertheless, by simplifying the problem, a
solution can be set up, through at the expense of an extension
of [24]. The simplification consists in approximating the GMM
transition model (4) by its moment-matched single Gaussian
approximation

p(xk
n|x

k
n−1,�) =

∑M
m=1 λm(xk

n−1,�)G(xk
n;µm(xk

n−1,�),Σm(xk
n−1,�)),

≈ p̄(xk
n|x

k
n−1,�):=G(xk

n;µ(xk
n−1,�),Σ(xk

n−1,�)), (14)
with µ(.) =

∑M
m=1 λm(.)µm(.)

Σ(.) =
∑M

m=1 λm(.)(Σm(.)+(µm(.)−µ(.))(µm(.)−µ(.))T ).

As it is, Part I of Figure 2 cannot handle Gaussian
prior dynamics such as (14). The whole algorithm from
[24] must then be extended to the case when the matrix
Qn := blkdiag(Q1

n, . . . , Q
K
n ) is a function of xn, i.e.,

Qn(xn) := blkdiag(Q1
n(xn), . . . , QKn (xn)). Going back to

(13), and doing the calculations leads to replacing the first
item of Part III by

q(xkn|xkn−1, z0:n−1) = G(xkn;mk
n(xkn−1),Λkn(xkn−1)), (15)

with Λk
n(xk

n−1):=

(
E
q(x

k−
n−1

|z0:n−1)

[(
Qk

n−1(xn−1)
)−1])−1

and

mk
n(xk

n−1):=Λk
n(xk

n−1)E
q(x

k−
n−1

|z0:n−1)

[
(Qk

n−1(xn−1))−1fk
n−1(xn−1)

]
.

Monte Carlo approximations of mk
n(xkn−1),Λkn(xkn−1) can still

be obtained in the vein of the second item of Part III. Im-
portantly, (15) again shows that though the variational Bayes
multiple particle filter can lead to a separable approximation
to the posterior pdf, this is not at the expense of neglecting
the interactions among vehicles.

IV. CASE STUDY

A. Implementation

Using 4K footage recorded from an aerial drone and state-
of-the-art deep learning video segmentation techniques, the
HighD dataset provides positions and velocities of interacting
vehicles on a highway segment about 420 meters long, during
a visibility median duration of 13.6 s per vehicle. Data points
are recorded at 25 fps. A downsampling factor of 13 is applied,
so that the final time step is Ts = 0.52s.

HighD is deemed accurate enough to be used as a surrogate
for the genuine dataset X of hidden states. As stated in
Section III-A, vehicle longitudinal+lateral positions+velocities
are collected. X is then manually segmented and labeled with
the maneuver intended by each vehicle, among: forward (the
vehicle stays at least 3 seconds into the same lane); sheer in
and sheer out (the vehicle moves from its current lane to
its nearest right or left lane, respectively, during a 3 seconds
interval).



I - PROBLEM

• Assumptions

◦ xn+1 =

 x1n+1

...
xKn+1

 = fn(xn) + wn =

 f1n(xn)+w1
n

...
fKn (xn)+wK

n

 , wn ∼ G(0, Qn := blkdiag(Q1
n, . . . , Q

K
n )), w0:n white;

◦ zn =

 z1n

...
zKn

 = Hxn + vn =

 H1
nx

1
n+v1n

...
HK

n xKn +vKn

 , vn ∼ G(0, Rn := blkdiag(R1
n, . . . , R

K
n )), v0:n white indep. of w0:n and x0.

• Goal of each kth separate particle filter
◦ Given the discrete pdf q̂(xkn−1|z0:n−1) =

∑S
s=1 λ

k,(s)
n−1 δ(x

k
n−1 − x̃

k,(s)
n−1 ) which approximates q(xkn−1|z0:n−1) such that

q(xn−1|z0:n−1) :=
∏K
k=1 q(x

k
n−1|z0:n−1) ≈ p(xn−1|z0:n−1), determine the approximation q̂(xkn|z0:n) =

∑S
s=1 λ

k,(s)
n δ(xkn − x̃

k,(s)
n )

of q(xkn|z0:n) which satisfies q(xn|z0:n) :=
∏K
k=1 q(x

k
n|z0:n) ≈ p(xn|z0:n).

II - MAIN ALGORITHM

• [If n = 0, then: replace steps 1 and 2 below by sample {xk,(s)0 }s=1,...,S i.i.d. from p(x0); then do step 2b.]
• For each k = 1, . . . ,K,

1) Sample {xk,(s)n−1 }s=1,...,S i.i.d. from q̂(xkn−1|z0:n−1) (i.e., resample the weighted particle set {(x̃k,(s)n−1 , λ
k,(s)
n−1 )}s=1,...,S into

{(xk,(s)n−1 ,
1
S
)}s=1,...,S).

2) For each s ∈ {1, . . . , S},
a) draw x̃

k,(s)
n ∼ q(xkn|x

k,(s)
n−1 , z0:n−1), where q(xkn|xkn−1, z0:n−1) is the approximation of the genuine partition-wise prior dynamics

p(xkn|xn−1) (which is also equal to p(xkn|xn−1, z0:n−1)) by variational Bayes arguments so as to drop the statistical dependence
between xkn and xk−n−1 conditionally on xkn−1 and z0:n−1;

b) set λk,(s)n = p(zkn|x
k,(s)
n ).

3) Renormalize the weights, i.e., for each s ∈ {1, . . . , S}, set λk,(s)n = λ
k,(s)
n∑S

r=1 λ
k,(r)
n

.

4) From the discrete pdf q̂(xkn|z0:n) =
∑S
s=1 λ

k,(s)
n δ(xkn − x̃

k,(s)
n ) which approximates q(xkn|z0:n), deduce the kth partition-wise

approximation x̂kn|n =
∑S
s=1 λ

k,(s)
n x̃

k,(s)
n and P̂ kn|n =

∑S
s=1 λ

k,(s)
n (x̃

k,(s)
n − x̂kn|n)(x̃

k,(s)
n − x̂kn|n)T of the genuine posterior mean

xn|n and posterior covariance Pn|n of p(xn|z0:n).

III - DETAIL OF STEP 2a: HOW TO SAMPLE FROM q(xkn|x
k,(s)
n−1 , z0:n−1)

• Equation (13) leads to q(xkn|xkn−1, z0:n−1) = G(xkn;mk
n(x

k
n−1), Q

k
n−1) with mk

n(x
k
n−1) := E

q(xk−n−1|z0:n−1)

[
fkn−1(xn−1)

]
.

• mk
n(x

k
n−1) cannot be computed in closed-form, but a Monte Carlo approximation m̂k

n(x
k
n−1) = 1

J

∑J
j=1 f

k
n−1(X

(sj)

k,n−1), e.g.,

with J = S, can be easily obtained by setting X (sj)

k,n−1 :=
(
(x

1,(sj)

n−1 )
T
, . . . , (x

k−1,(sj)

n−1 )
T
, (xkn−1)

T
, (x

k+1,(sj)

n−1 )
T
, . . . , (x

K,(sj)

n−1 )
T )T ,

where for each r 6= k: ∀j = 1, . . . , J, x
r,(sj)

n−1
i.i.d.∼

∑S
s=1

1
S
δ(xrn−1 − x

r,(s)
n−1 ). In other words, for each kth partition, m̂k

n(x
k
n−1) is

computed as the average of {fkn−1(X
(sj)

k,n−1)}j=1,...,J , where: whatever j = 1, . . . , J , the kth subvector of X (sj)

k,n−1 is set to the variable

xkn−1; each other rth subvector of X (sj)

k,n−1, r 6= k, is obtained by sampling within the set {xr,(1)n−1 , . . . , x
r,(S)
n−1 } obtained after step 1, this

process being of course repeated for j = 1, . . . , J .

Fig. 2. Variational Bayes multiple particle filter of [24] for a simplified problem.

This labeled dataset
{(

xkn, {xln}Vl∈Nn(Vk)
,mk

n

)}
constitutes

the basis of DNN-based prior dynamics learning, as per
Section III-B. Each vehicle is considered in turn as the ego-
vehicle. The set N.(Vk) associated to any kth ego-vehicle is
made up with eight neighbors: the preceding vehicle, the vehi-
cle in front of the preceding vehicle, the following vehicle, the
vehicle behind the following vehicle, the vehicles on the right
and left lanes which are preceding or driving alongside the
ego-vehicle. When a neighbor does not exist, its longitudinal
distance is set to a large number (in front of behind) and
its velocity and lateral position are set to these of the ego-
vehicle. A total of 90, 000 data points is splitted into 80% for
training and 20% for validation. Half of the training dataset
is labeled as the forward maneuver, while the remaining half
is evenly distributed between the sheer in and the sheer out
maneuvers. DNNs Performance metrics are calculated on a

test set of 20, 000 different frames. Submetric RMSEs were
obtained for the three regression networks. The classification
network obtained a balanced accuracy of 97%.

The maneuver classification network is composed of 3
hidden layers of 128 neurons each, with the Tanh activation
function. A dropout layer is added after each hidden layer in
order to improve generalization during training. Incidentally,
the inputs to this DNN are

{(
xkn, {xkn − xln}Vl∈Nn(Vk)

,mk
n

)}
.

The M subsequent (independent) trajectory DNNs feature a
common architecture: they are composed of 2 hidden layers
of 512 neurons each, with Tanh activation functions. All
the DNNs are trained using the Adam optimizer with a
learning rate of α = 0.00004 for the maneuver classification
network and α = 0.0008 for the trajectory networks. The
models are implemented using PyTorch [25]. Note that once
the estimation is done, the plausible future of all vehicles can



PF VBPF
pos. vel. pos. vel.

Scenario 1 4.35 2.50 0.45 0.35
Scenario 2 ∞ ∞ 0.32 0.34
Scenario 3 4.31 2.40 0.37 0.31
Scenario 4 2.24 1.72 0.27 0.26
Scenario 5 5.72 2.65 0.64 0.42
Scenario 6 1.96 1.80 0.34 0.40

TABLE I
RMS POSITION AND VELOCITY ERRORS OVER TIME AND OVER VEHICLES

FOR THE SIX CONSIDERED SCENARIOS. THE GAUSSIAN MEASUREMENT
NOISE 99%-PROBABILITY CONFIDENCE INTERVAL SPANS

± 1
4

STANDARD VEHICLE SIZE.

be predicted by means of the dynamic model learned this way.
The set {zk0:n} used in the estimation scheme are also

derived on the basis of the HighD dataset, by adding to each
genuine vehicle position a Gaussian zero-mean measurement
noise of given variance, i.e., following (5) with

Rkn =
(
σ2
k(x) 0

0 σ2
k(y)

)
. (16)

Values for σ2
k(x), σ

2
k(y) are selected to simulate a mea-

surement noise 99%-probability confidence interval of
± 1

4 × (the size of a standard vehicle).

B. Results

To validate the method and compare the implemented
filtering algorithms, 6 scenarios are built from the highD
dataset. They comply with the assumptions made in Section II:
common highway section; common three lanes; same direction
of motion; no intersection; no access ramp.
• Scenario 1 is composed of 8 vehicles driving across the

whole highway segment without changing lane.
• Scenario 2 features 6 vehicles driving across the whole

highway segment with multiple changing lane maneuvers
and a vehicle inserting itself between two others.

• Scenario 3 and 4 is composed of 1 and 2 vehicles
overtaking another one respectively.

• Scenario 5 and 6 involves multiple overtakes and lane
changes between 5 and 6 vehicles respectively.

The cumulative duration of all scenarios is approximately
two minutes. The proposed Variational Bayes Particle Filter
(VBPF) and a standard Particle Filter (PF) are compared. Their
respective numbers of particles are set to 120 and 10000, so
that the induced complexities are reasonable.

Table I shows the root mean squared position and velocity
errors (RMSEs) over time and over vehicles for both filtering
algorithms. These attest the good performances of the algo-
rithm as a prerequisite to motion prediction. The VBPF leads
to a good overall RMSE but is slightly optimistic. As for the
PF, in view of the sharpness of the measurement likelihood
function, its number of efficient particles drops to 1 right at
the first couple of estimation steps. This leads to inconsistent
estimates and a poor RMSE.

Figures IV-A sketches the position and velocity estimates
along time together with their covariances on the second and

third scenarios. The VBPF estimates are close to the ground-
truth across the whole road segment for both scenarios.

V. PROSPECTS

Instead of considering diagonal matrices for the egocentric
transition models, full covariance matrices will be considered.
They can indeed lead to less spreaded prior dynamics, by
capturing cross-correlation between state variables. This will
be done by modifying the trajectory DNNs so as to learn
the Cholesky square roots of the (non-diagonal) covariance
matrices {Σm(xkn−1, �)}.

Several improvements can be brought to the DNN architec-
tures used for prior dynamics learning. Convolutional layers
can be considered as a way of taking in account the spatial
structure of the road scene data. Also, generative models such
as CVAEs may be able to extract more meaningful information
from the data. Last, degeneracy of Mixture Density Networks
must be revisited.

The state-space can be augmented with a discrete index rep-
resenting the vehicle type as this information can realistically
be acquired from various sensors. Models can be re-learned
accordingly.

On the computational side, parallelizing possibilities offered
by the VBPF together with synchronization requirements will
be investigated, in order to get real time performance.
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