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Abstract

In an industrial maintenance context, degradation diagnosis is the
problem of determining the current level of degradation of operating ma-
chines based on measurements. With the emergence of Machine Learning
techniques, such a problem can now be solved by training a degradation
model offline and by using it online. While such models are more and more
accurate and performant, they are often black-box and their decisions are
therefore not interpretable for human maintenance operators. On the con-
trary, interpretable ML models are able to provide explanations for the
model’s decisions and consequently improves the confidence of the human
operator about the maintenance decision based on these models. This pa-
per proposes a new method to quantitatively measure the interpretability
of such models that is agnostic (no assumption about the class of models)
and that is applied on degradation models. The proposed method requires
that the decision maker sets up some high level parameters in order to
measure the interpretability of the models and then can decide whether
the obtained models are satisfactory or not. The method is formally de-
fined and is fully illustrated on a decision tree degradation model and a
model trained with a recent neural network architecture called Multiclass
Neural Additive Model.

1 Introduction
Condition monitoring plays an inevitable role in the safety of any industrial
system, especially when it comes to the sensitive parts of machines, like the
bearings in rotating machinery, which are prone to faults. Fault diagnosis of
rotating machinery is a technique of fault detection, isolation and identification,
which can be used as an assistance for system maintenance. As stated for
instance in [9], there are three basic tasks of fault diagnosis in such machines:
determining whether the equipment is normal or not; finding the incipient failure
and its reason; predicting the trend of fault development. Therefore, essentially,
fault diagnosis can be regarded here as a pattern recognition problem that aims
at determining the current degradation state of the rotating machinery based on
the available set of measurements and its possible future trend (prognostics). As
a powerful pattern recognition tool, Artificial Intelligence (AI) and especially
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Machine Learning (ML) has attracted great attention from many researchers
and shows promise in rotating machinery fault recognition applications [3, 2].

While the main reason for using ML techniques is usually the models’ per-
formance (accuracy score, computational speed), the question about the ability
of humans to understand them is of great importance. The interpretability of
models is essential as soon as these models are effectively used in practice to
solve problems and provide decisions for humans and/or for their businesses [16].

In our industrial context, such models are used to solve maintenance decision
problems. Maintenance consists in optimally deciding when to replace a com-
ponent in a system (like a machine tool) so that the system is always operating
properly and manufacturing waste is prevented. To get such a maintenance
strategy, the objective is to add relevant sensors in the system, to acquire time
series at operating time and use a degradation model to check the current health
of every component based on these time series. Amongst these ML methods,
Neural Network approaches are more and more used as they can handle large
and complex computations to produce efficient models. However, even if already
proposed ML methods greatly improve the degradation diagnosis of such equip-
ments, degradation models obtained by deep learning techniques are known to
be black-boxes, meaning that they cannot be open to understand their deci-
sions as interpretable. Some previous works have reached a certain level of
explainability like [11] but these results do not give the full insight about how
interpretable the effective model’s choices are. However, it is important for a
human operator to understand how an algorithmic model determines a mainte-
nance decision with respect to human-interpretable physical laws and quantities:
how and why such a model plans the decision. In fact, by providing the physical
reason why the model decides about a degradation level, model’s interpretability
not only provides a diagnosis of the equipment but also the confidence needed
by a human operator towards trained models [12].

In this paper, we address the problem of how to effectively and quantita-
tively measure the interpretability of a model that results from a Multiclass
Supervised Learning problem and apply this framework to degradation model
of rotating machinery. The proposed method is agnostic in the sense that it
does not rely on a specific ML technique. We actually aim at applying it to dif-
ferent ML techniques that are currently used to solve the maintenance problem
(i.e. Decision Tree (DTs), Multi-Layer Perceptrons (MLPs), Neural Additive
Model for multi-class supervised learning (MNAMs) [5]). We also propose that
the interpretability measure is parameterized, and the initialization of these
parameters is the responsability of the human decision maker.

The paper is organized as follows. Section 2 first discusses the notion of in-
terpretability with respect to the notion of local/global explainability in models.
Section 3 describes a first degradation model as a simple decision tree model
that will be used throughout this paper as an illustration of the concepts that
we introduce to measure interpretability. Section 4 formally defines the way
to score interpretability. Finally, Section 5 discusses the way to apply the in-
terpretability scoring framework to a second degradation model that has been
trained with our own recent neural network architecture: Multiclass Neural
Additive Models [5].
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2 About interpretable models
Lately, the Explainable Artificial Intelligence (XAI) community has been using
various terms referring to the comprehension of machine learning models: inter-
pretability, explainability, intelligibility or even comprehensibility [13]. As the
vision behind these concepts seems to be fuzzy and does not refer to a mono-
lithic concept so far [8], we have decided in this paper to propose the following
definitions for explainability and interpretability.

Explainability of a machine learning model is based on the ability to obtain
rules that highlight the relations between attributes and predictions. These rules
are conditional functions like: "IF A > 1 and B < 4 THEN PREDICTION P"
with two features A and B in this example. Based on these rules, two types of
explainability can be defined: local explainability and global explainability.

Local explainability means the ability of identifying, for a given prediction,
the rule that shows the relation between the feature and that specific prediction.
The rule explains why a particular prediction was made based on the features
of the instance in question. Local explainability is inherent in Decision Trees
(DT) because the rule corresponding to a specific prediction can be extracted
from the leaf node where the prediction concludes.

For other methods such as MLP, it can be difficult to extract such a rule
because of the complex interactions between features and the non-linearity of the
model. To address this challenge, various post-prediction processing methods
have been developed. For instance, these include extracting rules from the
weights and activations of a MLP [4]. Additionally, widely-used methods, such
as Local Interpretable Model-agnostic Explanations (LIME) [15] and SHapley
Additive exPlanation (SHAP) [11], can be used to approximate the rules linking
features to predictions. However, all these methods only provide approximations
of the rules and, therefore, do not always accurately reflect the model’s decision-
making process.

Global explainability is a stronger concept than local explainability, achieved
by extracting the entire set of rules used by a model. This allows for a general
understanding of how the model operates and how it will make decisions for
different instances. Whatever the predictions the model will perform in the fu-
ture, they can be explained by these feature-based rules. Global explainability
ensures the algorithmic transparency of the models because of this set of rules;
it becomes possible to determine the classification of any instance without ex-
plicitly running it through the model. DT are inherently globally explainable.
A DT rule is defined by a branch of the tree and the thresholds defined at each
node along the branch. All rules can be displayed, allowing a human to manually
predict outcomes by following these rules. In contrast, Multi-Layer Perceptrons
(MLP) do not provide precise model rules because a fully connected network is
highly complex. Therefore, MLPs are not globally explainable.

Interpretability is the model’s ability to be understood by humans. This
is achieved by keeping the explanation as minimalist as possible. The fewer
the number of rules and the fewer the number of features used within to make
a prediction, the higher the interpretability will be. According to our defini-
tions, interpretability implies global explainability. Interpretability is bringing
up together concepts as simulatability, decomposability from [8] and compre-
hensibility from [13] which are about maximizing the human comprehension
using the minimum set of rules. Any type of model may lack of interpretability.
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For instance, a DT may have a high number of rules or be excessively deep.
Unlike global explainability, interpretability is more of a quantitative property
that should be assessed or scored.

3 Running Example
The way to score model’s interpretability will be illustrated all along this paper
with the following example that is a multi-class supervised learning problem.
This example has been selected as it is based on real data, and it is simple.

3.1 Experimental setup
In Bosch-Rodez, we set up an experimental platform that records time series on
a set of spindles (critical parts of machine tools under maintenance). Figure 1
illustrates this experimental platform. To initiate the experiment and get the
training measured data, an available set of five spindles has been installed on the
test-bed in a closed chamber that simulates the real operating conditions. Each
spindle is connected with cooling oil inlet and outlet for cooling down the spindle
(lubrication of the bearings). Then a VSA 005 sensor (the accelerometer) has
been screwed on the front part of the spindle as it would be inside a machine
tool using this type of spindle at operating time. This vibration sensor is thus
located between the pair of bearings of the spindle. It measures the vertical
acceleration just on the top of these bearings. The cable of the VSA sensor
is connected to an IFM VSE 100 module that contains the software allowing
to record the vibratory signals, a module that is used at operating time. The
objective is to acquire data at 9K RPM so that frequency measurements are
within the range of the available VSA sensor.

Figure 1: Experimental test-bed.
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These time series consist of vibration data. The degradation state of each
spindle that is measured is known by expertise and leads to five classes C =
{1, . . . , 5} that represents the degradation of a spindle: from Class 1 that char-
acterises new spindles to Class 5 that characterises worn-out and failing spindles.
In this context, the objective of maintenance is to be able to determine at op-
erating time what is the effective class of the measured spindle. Especially if
the operating spindle is in Class 4, its replacement would be necessary as it is
about to fail.

3.2 Degradation model
Our objective is then to learn from the time series a degradation model M that
is able to predict the degradation class c ∈ C of a spindle. To do so, available raw
time series have been converted to spectrograms (short fast Fourier transforms)
so that each time series is represented by a set of 409 frequency amplitudes
(from 0Hz to 9985Hz with a resolution of 24.414Hz). We denote by X the
available dataset, each individual x ∈ X is then composed of 409 features. In
the following, fa(x, f) will denote the frequency amplitude at the frequence f
in the individual x. Experts were able to label any individual x with an ageing
class denoted ℓ(x) ∈ C.

fa(x, 3800) ≤ 186.224
N0 = 4720

r0 : [793, 791, 798, 778,1560]
class: 5

fa(x, 175) ≤ 277.893
N1 = 2357

r1 : [0,791, 770, 778, 18]
class: 2

fa(x, 9800) ≤ 363.553
N3 = 1566

r3 : [0, 0, 770,778, 18]
class: 4

fa(x, 7175) ≤ 133.045
N7 = 796

r7 : [0, 0, 0,778, 18]
class: 4

⊤
N11 = 778

r11 : [0, 0, 0,778, 0]
class: 4

T

⊤
N12 = 18

r12 : [0, 0, 0, 0,18]
class: 5

F

T

⊤
N8 = 770

r8 : [0, 0,770, 0, 0]
class: 3

F

T

⊤
N4 = 791

r4 : [0,791, 0, 0, 0]
class: 2

F

T

fa(x, 5850) ≤ 213.832
N2 = 2363

r2 : [793, 0, 28, 0,1542]
class: 5

⊤
N5 = 1542

r5 : [0, 0, 0, 0,1542]
class: 5

T

fa(x, 6350) ≤ 7711.399
N6 = 821

r6 : [793, 0, 28, 0, 0]
class: 1

⊤
N9 = 28

r9 : [0, 0,28, 0, 0]
class: 3

T

⊤
N10 = 793

r10 : [793, 0, 0, 0, 0]
class: 1

F

F

F

Figure 2: Degradation diagnostic model of a spindle based on vibration frequen-
cies.

Figure 2 presents the degradation model M that has been trained on these
labeled data. It is a DT that can be used to assist the maintenance decision. For
instance, if at operating time, a new individual x is available and if fa(x, 3800) ≤
186.224 and fa(x, 175) > 277.893, the model M predicts the spindle is currently
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in class 2 and no replacement is required yet. Each node is also associated with
the following information: Ni is the number of individuals from X that are
covered by the node, and a vector of numbers that shows the distribution of
these individuals with respect to their label. For instance the root node covers
4720 individuals (that is the size of X), 793 individuals are labeled 1, 791 are
labeled 2, etc.

While this DT has been trained on real data, it must be however noticed that
this model is not satisfactory yet in terms of performance and accuracy as the
available dataset X is still limited and more recordings are required to enrich
the dataset X. This model is however satisfactory for the sake of illustration of
the way to measure its interpretability.1

4 Rule-based interpretability score
This section formally introduces a method to score the interpretability of a
model that is globally explainable. For the sake of illustration, this method is
applied to the DT that is detailed in Section 3. As detailed in Section 2, a
model M is globally explainable if there exists a set of feature-based rules that
can be used to provide an explanation for any prediction.

In the following, A denotes the set of available attributes of the problem.
An individual is generally denoted x = (x1, . . . , x|A|) where xi is the value of x
associated with the ith attribute of A. The space of every possible individuals
is denoted X and the available dataset for training the model is denoted X,
obviously X ⊆ X . Let B denote a subset of A, XB denotes the projection of X
on the attributes in B.

Definition 1 (Rule) Let B be a subset of features A, a rule r over B on a
class c ∈ C is a Boolean function

r : XB → {T,F}
xB 7→ r(xB).

The purpose of a rule r is to assert whether the prediction of an individual x ∈ X
is c or not according to the rule. Such a rule can be used as an explanation of
why the prediction of individual x given by the underlying model M is class c:

M predicts class c for individual x because r(x) is true.

As opposed to a model, a rule r is usually defined over a subset of features B.
This subset is called the support of rule r. In the following, r(x) denotes the
effective prediction r(xB) where B is the support of r.

In Figure 2, each node of the DT is associated with a rule. For instance,
consider the node associated with rule r3. This node is associated with class 4
as it is the class of the largest set of individuals from the training dataset X
covered by this node (i.e. 778 individuals over 1566). Rule r3 associated with
this node informally states that any individual whose frequency amplitude at
3800Hz is smaller than 186.22 and frequency amplitude at 175Hz is smaller than
277.893 should be of class 4. The support of r3 only consists of two attributes

1Interpretability does imply accurracy and reciprocally.
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(frequency amplitude at 3800Hz and frequency amplitude at 175Hz ) over 409
attributes. Rule r3 on class 4 is formally defined as follows:

r3(x) iff fa(x, 3800) ≤ 186.224 ∧ fa(x, 175) ≤ 277.893

Another example is rule r5 on class 5 that is associated with a leaf node
of the DT. The support of rule r5 is the frequency amplitudes at 3800Hz and
5850Hz , formally:

r5(x) iff fa(x, 3800) > 186.224 ∧ fa(x, 5850) ≤ 213.832

Note that the root node of the tree is also associated with a rule r0 on class 5.
The support of r0 is empty and ∀x ∈ X , r0(x).

Definition 2 (Rule coverage) Let r be a rule on a class c, the coverage of
the rule r over a dataset X is:

cvr(r) = {x ∈ X, r(x)}. (1)

The correct coverage of the rule r over a dataset X is:

ccvr(r) = cvr(r) ∩ {x ∈ X, ℓ(x) = c}. (2)

Two rules r1 and r2 are disjoint if:

cvr(r1) ∩ cvr(r2) = ∅. (3)

Back to Figure 2, the dataset X is composed of N0 = 4720 individuals
and rule r0 covers all of them (|cvr(r0)| = N0). Generally speaking, for every
rule ri in Figure 2, |cvr(ri)| = Ni. Any node of the tree displays the size of
the associated set ccvr(r) in bold: for example, |ccvr(r1)| = 791 (among 2357
individuals covered by r1, only 791 are labeled with class 2). Disjoint rules in
a DT are rules that do not belong to the same branch. For instance, rules r12
and r5 on class 5 are disjoint, while r2 and r5 are not (rule r2 subsumes r5).

Definition 3 ((τ, ε)-rule) Let τ ∈ [0, 1], ε ∈ [0, 1], a (τ, ε)-rule on a class c
over a dataset X is rule r such that:

|ccvr(r)|
|{x ∈ X, ℓ(x) = c}|

≥ τ (4)

|cvr(r) \ ccvr(r)|
|cvr(r)|

≤ ε (5)

Parameter τ is a minimal coverage rate that is selected by the decision
maker before the extraction of a set of interpretable rules. A rule r with an
effective coverage rate lower than τ is considered by the decision maker not
enough significant as it covers too few individuals from the dataset. Rules
with low coverage rate might in fact be due to overfitting and could not be
considered as interpretable. Parameter ε is the maximal error rate. This error
rate is also selected by the decision maker before the extraction of a set of
interpretable rules. If a rule on a class c has a low error rate ε, it means that
the explanation provided by the rule for class c is given with a high level of
confidence 1− ε. Individuals misclassified by the rule and included in the error
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rate can be considered anomalies or noise if this rate is low. This is valid within
the context of the dataset used to train the model, as it reflects the model’s
perspective based on the data it has seen.

Here are a few examples based on Figure 2. Rule r2 is on class 5, |ccvr(r2)|
is 1542. The number of individuals in X labelled with class 5 is 1560 (see details
in node r0). So the coverage rate of r2 is (1542/1560) = 98.89%. Looking now
at the error rate of r2, it is given by (2363−1542)/2363 = 34.74%. Therefore, by
Definition 3, rule r2 is a (τ, ε)-rule for any couple (τ, ε) such that τ ∈ [0, 0.9889]
and ε ∈ [0, 0.3474]. While r2 is covering most individuals of class 5 in X,
explaining that an individual x ∈ X is of class 5 by rule r2 (i.e. r2(x) is true)
is 34.74% erroneous. As a second example, now let us have a look at rule r8
on class 3. Its coverage is 770/798 = 96.49% and the error rate is 0%. Any
individual x ∈ X such that r8(x) is of class 3, r8(x) explains the prediction of
x without error. Moreover, 96.49% of the individuals of class 3 in X can be
explained by r8. All the results are presented in Table 1.

Table 1: Couples (τmax, εmin) for every rule in the decision tree of Figure 2.

Rules r0 r1 r2 r3 r4 r5 r6

Class 5 2 5 4 2 5 1
τmax

(%) 100 100 98.89 96.49 100 98.89 100

εmin

(%) 66.94 66.44 34.74 50.31 0 0 3.41

Rules r7 r8 r9 r10 r11 r12

Class 4 3 3 1 4 5
τmax

(%) 100 96.49 3.51 100 100 1.1

εmin

(%) 2.26 0 0 0 0 0

We propose to score the interpretability of a model M based on the following
definition.

Definition 4 ((T, P, τ, ε)-interpretability) A model M is (T, P, τ, ε)-interpretable
for a class c ∈ C if there exists a set of rules I = {r1, . . . , rk} on class c from
M such that:

• Rule ri is a (τ, ε)-rule, for any i ∈ {1, . . . , k}

• k ≤ P

• Any pair of distinct rules in I is disjoint

•

T ≤
|
⋃k

i=1 ccvr(ri)|
|{x ∈ X, ℓ(x) = c}

|
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A model M is (T, P, τ, ε)-interpretable if it is (T, P, τ, ε)-interpretable for every
class c ∈ C.

To score the interpretability of a model M , the decision maker must set up
four parameters and extracts the rules according to these parameter settings:

1. Parameter T is the global covering rate. This parameter ensures that the
set of extracted rules covers a minimal amount of individuals in X labeled
with the same class c. The higher T is, the more chance is that an new
individual x ∈ X such that M(x) = c can be explained by one of these
extracted rules, hence a better interpretability.

2. Parameter P is the maximal number of rules to extract. The lower P is,
the more interpretable the model is (for a given set of parameters T, τ, ε)
as the set of extracted rules are then more concise.

3. Parameter τ , as explained above, is a minimal coverage rate for a rule to
be part of the selection. If parameter τ is too low, the decision maker
accepts to select rules that cover very few individuals with regards to the
dataset X. A rule with a τ that is low may be trustful due for instance
to overfitting problems.

4. Parameter ε is the maximal error rate. The higher ε is, the more error-
prone, the selected rules will be.

As a first example, let us consider that P = 1, T = 98%, τ = 80% and ε =
0%. With these settings, the decision maker is expecting that the model is highy
interpretable by looking for one rule that covers most of the individuals without
any error. In Figure 2, there exists such a rule, it is rule r4 on class 2. Therefore,
the DT is highly interpretable for class 2. For any individual x ∈ X such that
the model predicts class 2, it can also provide the following explanation:

r4(x) iff fa(x, 3800) ≤ 186.224 ∧ fa(x, 175) > 277.893 (6)

In the context of maintenance, it simply means that the operator does not
require any maintenance on the spindle as it is still in class 2 and the explanation
provided by the model for this degradation class is that the current frequency
amplitude at 3800Hz is lower than 186.224 (the spindle is not new) and the
current frequency amplitude at 175Hz is greater than 277.893 (the spindle has
not yet reached class ≥ 3). The model is as highly interpretable for class 3. The
rule that covers most of the individuals of class 3 is rule r8 but its covering rate
is below T = 98%, there is no rule that can be selected for class 3 based on the
previous settings. The model is (96%, 1, 80%, 0)-interpretable for class 3, it is
also (100%, 2, 3%, 0%)-interpretable: by selecting rules r8 and r9, there is a full
coverage, and it is not error-prone, however, the selection of r9 requires a low
minimal covering rate which might be considered as a suspicious explanation.

Looking now at the interpretability of the model from a global viewpoint, by
setting P = 1, T = 96%, τ = 80% and ε = 0%, it can be noticed one rule can
be extracted from the tree for each class c ∈ C, namely: 1 → r10, 2 → r4, 3 →
r8, 4 → r11, 5 → r5. Therefore, the model is (96%, 1, 80%, 0)-interpretable.
However, if the decision maker looks for rules with the maximal coverage 100%,
then it minimally enforces P = 2 and τ = 2%, the same model is therefore
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(100%, 2, 1%, 0)-interpretable (the extracted rules are then all the rules associ-
ated with the leaf nodes of the tree).

As this DT has been trained on a small experimental dataset, it has excellent
performance due very likely to overfitting. Most of the time, rules are error-
prone, hence the high interpretability of this model. Suppose now for the sake
of illustration that nodes associated to rules r7, r8, r11, r12 are not present in
this tree. Then the model would be (100%, 1, 100%, 51%)-interpretable on class
4. The only rule that could be used as an explanation for class 4 would likely
fail to do so by providing an explanation for individuals that are actually not
in class 4, hence a low interpretability of the model for class 4.

5 How to score the interpretability of a Multi-
class Neural Additive Model?

5.1 Multi-class Neural Additive Models
There are plenty of supervised learning methods available at different scales that
aim at learning interpretable models such as Linear Models, Decision Trees or
Generalized Additive Models (GAMs) [10]. However, more complex and per-
formant methods such as Multi Layer Perceptron (MLP) are usually required
to learn accurate degradation models for maintenance. However, MLP are still
considered as black box models so far, as the interactions between the hidden
layers of the model cannot be interpreted. Recently, to overcome this issue in
such models, Neural Additive Networks (NAMs) [1] have been introduced. This
supervised method proposes to use the concepts of GAMs applied to neural
network structures. To date, NAMs have been able to solve supervised task
like regression problems or binary classification problems [14]. We have recently
proposed the Multi-class Neural Additive Model (MNAM) as an extended ver-
sion of the NAM algorithm for multi-class classification and applied it to solve
a predictive maintenance problem [5]. The objective of this extension is to im-
prove the interpretability of the models while keeping the benefit of a Neural
Network architecture (performance, accuracy, ...). The MNAM architecture is
presented in Figure 3 and briefly described here below (for more details see [5]).

A MNAM architecture is made of |A| feature networks. Each feature network
Snni is composed of its input xi, a structure Hi made up of successive hidden
layers defined during the model design phase, and its output fi(xi). The Hi

structure can be composed of several hidden layers, generally made up of regular
units, using a ReLU activation function. One of the problems with Snn that
have only one input feature is that they often struggle to approximate 1D sharp
jump functions with the regular unit and a ReLU activation function on the
first layer of Hi. To solve this issue, a new hidden unit, called EXp-centered-
Unit (ExU), has been introduced [1] and is preferably placed in the first layer of
the Hi structure. It can learn and adjust the weight parameters in logarithmic
space. Each new hidden unit using an activation function σ compute h(x) as
follows:

h(x) = σ(ew(x− b)). (7)

In case that x may have negative values, these first layer units can also be
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Figure 3: MNAM architecture.

replaced by ExpDive hidden units as proposed in [7]. A ExpDive hidden unit is
defined by:

h(x) = σ((ew − e−w)× (x− b)). (8)

The structure of each Snni
is composed of one output fi,c(xi) for each class

c involved in the classification problem. The layer s of the MNAM architecture
then gathers the outputs of the feature networks for each class c as a sum of
these outputs:

si(x) =

|A|∑
i=1

fi,1(xi) + βi (9)

where βi is a bias. Finally, since the network now has C outputs, a softmax
function is applied to transform the layer s into a probability distribution that
produces the MNAM output ŷ :

ŷ = σsoftmax ([si(x)]i∈{1,...,C}) =

[
esi(x)∑C
j=1 e

sj(x)

]
i∈{1,...,C}

(10)

5.2 MNAM interpretability
MNAMs are glass-box models defined in [5] which use a methodology belonging
to the family of Generalized Additive Models [6] known for their ability to
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capture linear and non-linear relations between features and predictions while
remaining globally explainable. The global explainability of MNAM mainly
rely on the existence of so-called shape functions that can be computed once
the model has been trained. They represent the exact description of the model
decision process for all features [1]. The shape function of a feature ai for the
class j ∈ {1, . . . , C} is given by the plot of all predictions from dataset X, that
is, for any individual x = (x1, . . . , xC) ∈ X, the plot of (xi, fi,j(xi)).

Figure 4: Example of two shape functions extracted from a Multi-class Neural
Additive Model showing how the model classifies individuals with respect to the
given features (namely Peak_BPFI, Kurtosis_BSF) [5]

Figure 4 illustrates a selection of two shape functions from a MNAM model
that has been trained on a similar problem [5] as the one detailed in Section 3
(degradation diagnosis of bearings amongst the class healthy, stage 1, stage 2 ).
The main difference here is that instead of spectrograms of frequency amplitudes
as inputs, the selected features are statistics over a set of predefined frequency
values that have a physical meaning (BSF: Ball Spin Frequency, BPFI: Ball Pass
Frequency Inner, ...). This figure shows how the trained model actually classifies
any individual of the dataset X with respect to its Kurtosis_BSF feature (kbsf )
and its Peak_BPFI feature (pbpfi). The shape functions for Kurtosis_BSF
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feature clearly defines a rule between the kurtosis and the degradation of the
spindle bearings: for a Kurtosis_BSF within the range [0, 25], it predicts a
healthy stage, for a range in [25,32] the stage 1 and for [32,72] only stage 2.
In this example, this rule is simple enough for a human to understand the
model’s decision and is therefore interpretable. Similarly, as the shape functions
associated with Peak_BPFI feature are all of them flat, it is pretty intuitive
that the interpretation of the bearing’s degradation does not rely on this feature.

In the aim of measuring the interpretability of such a model with the frame-
work that is defined in Section 4, rules as defined in Definition 1 must be ex-
tracted from the shape functions. Consider for the sake of simplicity, that the
diagnosis machine learning problem defined here above is only based on both
features A = {pbpfi , kbsf }. For any individual x ∈ X, according to the MNAM
model, a possible way to design a rule r on class c ∈ C = {healthy , stage1 , stage2}
is as follows:

r(x) = {pbpfic(xpbpfi) + kbsf c(xkbsf ) = max
c′∈C

(pbpfic′(xpbpfi) + kbsf c′(xkbsf )}.
(11)

Intuitively speaking, such a rule r asserts that an individual x is in class c iff
the sum of the shape functions for x for every feature in A is greater than any
sum of the shape functions for x for another class c′ (it is always the maximum
by definition of the MNAM architecture, see Eq (10)).

It must be noticed that the support of such a rule is the entire set A. But the
design of rules from the shape functions might be more complex to obtain finer
rules with a partial feature support. For instance here, as soon as xkbsf > 3.0,
xpbpfi is insignificant, so the design of a rule r only based on feature kbsf is
possible.

6 Conclusions and perspectives
In this paper, we have redefined the concepts of local and global explainability
using feature-based rules derived from a machine learning model to diagnose
system degradation. While global explainability is an absolute measure, the in-
terpretability of each model is inherently subjective, posing challenges in scoring
and comparing models across different methodologies. We introduced a novel
approach to quantify interpretability using a framework based on four param-
eters defined by the decision-maker, referred to as (T, P, τ, ε)-interpretability.
Our results demonstrate that this rule extraction methodology can be extended
to other techniques, such as MNAM, due to its additive structure.

This work paves the way for several future research directions. Our imme-
diate focus will be on enhancing the algorithm to incorporate the entire rule
set from a model to accurately determine its (T, P, τ, ε)-interpretability score.
Subsequently, we aim to generalize rule extraction across diverse machine learn-
ing methods to enable a universally applicable interpretability scoring system,
independent of the underlying method.
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