
HAL Id: hal-04863066
https://laas.hal.science/hal-04863066v1

Submitted on 3 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DeepMoTIon: Learning to Navigate Like Humans
Mahmoud Hamandi, Mike d’Arcy, Pooyan Fazli

To cite this version:
Mahmoud Hamandi, Mike d’Arcy, Pooyan Fazli. DeepMoTIon: Learning to Navigate Like Humans.
28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN
2019), Oct 2019, New Delhi, India. pp.1-7, �10.1109/RO-MAN46459.2019.8956408�. �hal-04863066�

https://laas.hal.science/hal-04863066v1
https://hal.archives-ouvertes.fr

DeepMoTIon: Learning to Navigate Like Humans

Mahmoud Hamandi1, Mike D’Arcy2, and Pooyan Fazli3

Abstract— We present a novel human-aware navigation ap-
proach, where the robot learns to mimic humans to navigate
safely in crowds. The presented model, referred to as Deep-
MoTIon, is trained with pedestrian surveillance data to predict
human velocity in the environment. The robot processes LiDAR
scans via the trained network to navigate to the target location.
We conduct extensive experiments to assess the components
of our network and prove their necessity to imitate humans.
Our experiments show that DeepMoTIion outperforms all the
benchmarks in terms of human imitation, achieving a 24%
reduction in time series-based path deviation over the next best
approach. In addition, while many other approaches often failed
to reach the target, our method reached the target in 100% of
the test cases while complying with social norms and ensuring
human safety.

I. INTRODUCTION

Robots are gradually moving from factories and labs to
streets, homes, offices, and healthcare facilities. These robots
are currently assigned tasks that require interaction with
humans, such as guiding passengers through busy airport
terminals [20] or roaming around university buildings and
interacting with nearby humans [15], [23].

As robots are increasingly becoming part of our everyday
lives, it is essential for them to be aware of the surrounding
humans while performing their tasks. Navigation is a basic
skill for autonomous robots, but many traditional algorithms,
such as A* and D*, do not consider the fact that the obstacles
in the environment may be humans. While maneuvers made
by these algorithms may produce short paths and avoid
direct collisions, they do not consider social norms, such
as walking on the right side and passing on the left. This
can cause inconvenience for humans. We define human-
aware navigation as the ability of the robot to navigate while
complying with social norms and ensuring human safety.

While many existing systems allow robots to navigate
safely within crowds [6], [19], they still rely heavily on
manually crafted models of human motion. Such models
may capture the aspects of human motion as understood
by their designers, while they may likely miss subtle trends
that characterize their human aspect. In addition, manually
crafted models do not have a way to automatically adapt to
different cultures, so it may require significant manual effort
to be used in a different environment.

1Mahmoud Hamandi is with LAAS-CNRS, Université de Toulouse,
CNRS, Toulouse, France mhamandi@laas.fr

2Mike D’Arcy is with the Department of Computer
Science, Northwestern University, Evanston, IL, USA
m.m.darcy@u.northwestern.edu

3Pooyan Fazli is with the Department of Computer Science, San Fran-
cisco State University, San Francisco, CA, USA pooyan@sfsu.edu

We present DeepMoTIon (Deep Model for Target-driven
Imitation), a deep imitation learning algorithm that elim-
inates the need for an explicit model of human motion
and instead learns the human navigation patterns directly
by observing pedestrians. By imitating the motion patterns
learned from real humans, the algorithm naturally follows
social norms without needing such rules to be manually
specified. Moreover, the network learns to decide on the
direction and speed associated with raw LiDAR data without
any preprocessing. The network is trained to learn the
possible motion patterns it might face in human crowds on
its own.

The goal of this work is to learn directly from pedestrian
data without the need for a predefined human model. With
the absence of a true model, learning the reward governing
human motion is not feasible with current Inverse Reinforce-
ment Learning algorithms such as the one presented in [24].
Our method tackles the imitation problem as a classification
one, where the network learns a specific command for
each observation without simulating the learned policy. This
approach reduces the amount of time required for each
architecture test and allows us to explore multiple network
configurations.

The contributions of the paper are as follows:
1) We present a deep imitation learning algorithm to

generate navigational commands and plan a path to
the target in the environment, similar to humans, for
a mobile ground robot. The proposed method outper-
forms all the benchmarks on time series-based path
deviation and reaches the target in 100% of the test
cases while complying with social norms and ensuring
human safety.

2) Further, we present a novel loss function to train the
network. The loss function allows us to accommodate
for human motion stochasticity while at the same time
enabling the robot to navigate safely.

We conduct extensive experiments to assess the compo-
nents of our deep neural network and prove their necessity
to imitate humans.

II. BACKGROUND AND STATE OF THE ART

Previous work on human-aware navigation suggested to
apply handcrafted models to control a robot about humans,
define human-centric cost maps, or even follow humans
through crowds.

Helbing and Molar [9] presented the Social Force Model
(SFM), where they modeled the assumed social forces gov-
erning the human motion. Ferrer et al. [6] used the social
force model to navigate in a way similar to humans. In their

work, the robot navigates to the target while abiding by
the social forces, that is, the robot is attracted by its target
and repelled by pedestrians and obstacles. Furthermore, they
extended the social force model to allow the robot to escort
a human while providing a scheme to learn the parameters
of the model.

Inverse reinforcement learning (IRL) has also been inves-
tigated to learn human-like navigation policies from data.
Henry et al. [10] adapted the MaxEnt IRL algorithm to
partially-observed environments for socially-aware naviga-
tion. Vasquez et al. [21] tested a variety of features, such
as crowd density and the social forces to learn a cost map
that replicates the reward maximized in human navigation.
Kim and Pineau [12] developed a navigation system based
on maximum a posteriori Bayesian IRL. Using IRL for
human-like navigation is a two-step process: first, training
a reward function from human data using IRL, and then
using a separate algorithm to find actions for the robot that
are optimal under the learned reward function. On the other
hand, in DeepMoTIon, the network is directly trained to
produce actions that lead to human-like navigation.

Bera et al. [2] predicted human motion after observing
a set of related psychological cues, such as aggressiveness,
tension, and level of activity. The robot then deduces the ac-
ceptable path from the predicted human locations and social
distances inferred from the same psychological features.

Another approach to human-aware navigation was pre-
sented by Mehta et al. [14], where the robot follows a human
through crowds when it cannot navigate on its own. In their
approach, the robot decides to navigate freely when the scene
is clear or compromise its optimal shortest path by following
a human to its goal. When neither possibility is viable, the
robot stops and waits for a clearance.

Sisbot et al. [19] suggested a set of human-centric costs
that allow the robot to navigate safely around humans. The
method applied a cost-based navigation algorithm with a
Gaussian coercing a safety distance about each human. In
addition, the robot attempted to stay in the visual range of
the existing pedestrians and to increase its own visibility near
hidden areas, such as when rotating around a corner.

Lu and Smart [13] proposed another method where the
robot navigates following a human-aware cost map. Their
approach forces the robot to navigate on the right side of a
hallway, allowing opposing humans to navigate on its left. In
addition, the robot communicated its awareness of the nearby
pedestrians by tilting its head toward their eyes.

While these methods provide a model for human motion,
multiple deep learning architectures were also presented in
the literature to learn any navigation algorithm. Pfeiffer et
al. [17] proposed an end-to-end network that allowed the
robot to navigate based on LiDAR scans and target position.
Similarly, Groshev et al. [8] presented a network that learns
reactive policies that imitate a planning algorithm when
provided with current and goal observations. Both papers
presented novel ideas, however, they learn reactive policies
ignoring previous robot states while trying to imitate long-
term planning algorithms.

Target Location

LiDAR Scans

Robot Velocity

Human Safety

DeepMoTIon

Simulator

Pedestrian
Dataset

LiDAR Scans

VelocityVelocityVelocityVelocity

Training

Online

Offline

Target Location

Fig. 1: Algorithm overview: In the offline phase, we train
a deep neural network, called DeepMoTIon, based on a
pedestrian dataset. In the online phase, the network is given
the target location and the last two consecutive LiDAR scans
of the environment, and the network produces speed and
direction outputs that are safe and adhere to social norms.

Chen et al. [3] propose a socially-aware navigation ap-
proach using deep reinforcement learning. However, the
socially-aware behavior of the method was achieved using a
system of handcrafted rewards when training the model. This
contrasts with our method, which aims to learn a socially-
aware navigation policy directly from human trajectory data
without manually specifying social norms, such as passing
on the left.

Crowd simulation methods such as [4] and [11] aim to
produce realistic simulations of human movement. However,
while the methods use local policies that can be conditioned
on a desired destination, they use handcrafted models of
human motion with just a few tunable parameters.

We contrast our problem on human motion imitation with
the literature on human motion prediction [1], [5], where
the primary focus is predicting a human’s future position
based on their current location, surroundings, and a history
of previous states. The predictions in these methods are
not conditioned on a known target, making them unsuitable
for the navigation task. With human motion imitation, we
assume the robot is given a target location, and its objective
is to determine how a human would navigate to it.

Target Re-feed

Skip Connection to Input

LS
TM

 (
72

0)

LS
TM

 (
12

8)

D
en

se
 (

36
0)

D
ro

po
ut

 (
0.

1)

D
en

se
 (

64
)

B
at

ch
N

or
m

Target Location

LiDAR Scans

Robot Direction

Robot Speed

3x1 Conv (8 filters)
(9 layers)

Input
Vector

(721x2) D
en

se
 (

1)

Fig. 2: DeepMoTIon network architecture. DeepMoTIon processes the target location and the last two consecutive LiDAR
scans via a series of convolutional layers with skip connections followed by batch normalization and dropout. The result
is then processed by two separate branches to produce the direction output and the speed output. Each branch consists of
LSTM and dense layers.

In conclusion, methods in the literature show the advan-
tage of imitating humans, although they do not do so from
actual human traces. In what follows, we intend to train
directly from pedestrian data to alleviate the need for any
human modeling through an end-to-end network.

III. PROBLEM DEFINITION

Our assumption is that the best way to teach a robot to
navigate is to let it learn directly from observing humans’
navigation. In this approach, we replace humans one at a
time in a pedestrian dataset with our robot equipped with
a limited range 360◦ LiDAR sensor and let it observe the
environment at each time step. Then the robot should learn
to mimic the human’s navigation for the given observation.

Figure 1 shows the different parts of our human motion
imitation method. In the offline phase, we train a deep neural
network, called DeepMoTIon, based on a pedestrian dataset.
In the online phase, the network is given the target direction,
target distance, and the last two consecutive LiDAR scans
of the environment, and in return the network provides the
robot with navigational commands to reach the target while
moving similar to humans and ensuring human safety.

Our model is trained with the ETH pedestrian dataset [16]
presenting videos of humans navigating in a real-world
environment. The dataset contains environment maps and a
set χ of humans, and for each human h the trajectory ζh that
they took through the environment. Each ζh is a sequence
of locations lh,t, representing the position of human h at
time t. We use a simulator to estimate the target location τh,t,
LiDAR scan zh,t, and velocity vh,t at every time step t
for each human replaced by the robot in the dataset, which
we then use to train the network to imitate the human
trajectories. The simulator uses a manually constructed static
obstacle map for each environment along with the annotated
human trajectories to approximate the LiDAR scans.

After training, the robot processes its target location and
the last two consecutive LiDAR scans via DeepMoTIon

to calculate navigational commands that allow it to reach
the target safely while moving similarly to the humans in
the dataset. This end-to-end learning happens only through
observing humans’ navigation. The ETH pedestrian dataset
is challenging for any autonomous robot due to the dense
crowds and sudden changes of pedestrians’ directions.

IV. DEEPMOTION

DeepMoTIon is a deep neural network f(sh,t) defined as:

vh,t = (dh,t, vh,t) = f(sh,t),

sh,t =

[
zh,t−1 τh,t
zh,t τh,t

]
,

(1)

where sh,t is the input state matrix, and (dh,t, vh,t) is the
output action set describing the direction and magnitude of
the velocity vh,t. The output direction dh,t is represented
as a 360-dimensional vector. This is converted to a scalar
heading in degrees by taking the argmax. The input target
location τh,t is represented in a similar way, being formed
by concatenating a 360-dimensional one-hot target direction
vector with a scalar target distance to produce a 361-
dimensional target location vector. Note that the direction
vectors for the input and output can have any number of
dimensions, as this simply controls the angular resolution
of the direction. We use 360-dimensional vectors because
they provide reasonably precise angular resolution and have
a convenient translation to degrees.

As shown in Equation (1), our network receives the current
and previous LiDAR scans in addition to the target location.
We found that providing the two LiDAR scans greatly
improved the performance of the network compared to only
giving the current LiDAR scan. With only one LiDAR scan,
the network had difficulty distinguishing between moving
and static obstacles.

Our deep neural network architecture is shown in Figure 2.
The input to the network is the target location (361×1) and

Fig. 3: Gaussian distribution (blue) about the human-chosen
direction (red) with a standard deviation σ.

the last two consecutive LiDAR observations (360×2). We
concatenate two copies of the target location (361×2) with
the 360×2 LiDAR matrix to create the network’s input vector
(721×2). The network has 9 convolutional layers, each with
8 (3 × 1) filters and a stride size of 1. The input to each
filter was padded to conserve its size, and each filter was
followed by a tanh activation function. In this architecture,
the skip connections from the input were inspired by classical
planning algorithms [8], such as value iteration and greedy
search. However, after the convolutional layers, we re-feed
only the raw target location to the network due to its direct
correlation to the velocity direction, while the LiDAR scans
add minimal value in their raw state. We found through
experimentation that only shared convolutional layers were
required for the network to correctly deduce the direction
and speed from the input state, while adding specialized
convolutional layers for each of the two outputs, similar to
[8], reduced its performance.

In addition, for a planning algorithm each state and the
corresponding action are tightly related to the previous
observations. The LSTM layer was added to the network to
keep some memory of all the previous steps, because these
layers have been shown to improve the prediction of future
states based on their memory of the past [7]. We later provide
a thorough experimental comparison to show the LSTM’s
necessity. Batch normalization was necessary to assure the
boundedness of the input to the LSTM layers. The final dense
layers process the LSTM output to provide the direction and
speed to be used by the robot.

A. Loss Function

Our loss function is designed to train the network to output
the direction and speed as seen in the human dataset by
minimizing the squared error of the speed and the cross
entropy error of the output direction.

However, human imitation presents a challenge due to
its stochasticity. In fact, two humans might behave differ-
ently even with the same observations depending on their
personality and other hidden factors. This suggests that the
correct direction might be one of many directions in a range
about the ground-truth. As such, it is desirable to penalize

the network less for cases where it is close to the ground
truth than cases where it is completely wrong. To this end,
we model the output direction as a Gaussian distribution
about the human-chosen direction with a standard deviation
σ shown in Figure 3. The standard deviation σ over the
human chosen direction is challenging to derive from the
pedestrian dataset due to the fact that we only observe a
single sample for any given navigational situation. We do not
know the range of possible directions that different humans in
the same situation might choose because the chosen direction
is conditioned on the target position, current location, and
observed obstacles, which are different at each timestep
for each human. Therefore, we cannot simply compute
the standard deviation over all direction choices made by
humans in the dataset, and we instead tune σ as a model
hyperparameter.

As such, our complete loss function for a batch of N
training examples can be expressed as follows:

Speed Loss︷ ︸︸ ︷
1

N

N∑
i=1

(vi − v̂i)2 +

Direction Loss︷ ︸︸ ︷
1

N

N∑
i=1

H(di(σ), d̂i),
(2)

where vi is the actual human speed, v̂i is the predicted
speed, H(·, ·) is the cross entropy loss function, di(σ) is
the Gaussian distribution about the human-chosen direction
with standard deviation σ, and d̂i is the predicted direction
distribution.

V. EXPERIMENTS AND RESULTS

To evaluate the performance of DeepMoTIon when imi-
tating humans, we conducted experiments on the ETH BIWI
walking pedestrians dataset [16]. The dataset provides anno-
tated trajectories of 650 humans recorded over 25 minutes of
time on two maps. We randomly assigned 2/3 of the data to
the training set and 1/3 to the test set. To avoid overfitting and
allow the network to generalize to unseen maps, the training
data was augmented by replicating each path while rotating
the map at random angles.

The dense crowds and sudden changes of pedestrian
direction in this dataset make it sufficiently challenging for
our experiments. We conducted two types of experiments on
this dataset. First, we assessed the different components of
the network, and then we compared it with other benchmark
methods in terms of human imitation, safety, and target
reachability.

It should be noted that our algorithm runs in real-time de-
spite the depth of the network due to the low dimensionality
of its input state vector. GPU was only used for training.
During testing, the algorithm runs in real-time on a single
core of a 3.3 GHz CPU (0.084 seconds per forward pass),
which can be set up easily on a mobile ground robot.

A. Benchmarks

To assess the performance of DeepMoTIon, we ran sev-
eral baseline algorithms in our experiments for comparison.

These include two deep learning algorithms as well as a
human-aware navigation method from the literature.

1) Generalized Reactive Planner (GRP): GRP is a
deep neural network architecture composed of multiple
convolutional layers, each with a skip connection from
the input, followed by fully connected layers to the
output [8]. In addition, the input of GRP is a concate-
nation of the observation and target. GRP is trained to
learn reactive policies that allow the robot to imitate a
planning algorithm.

2) End-to-end Motion Planning (EMP): EMP is another
deep neural architecture that relies on a relatively small
number of deep convolutional layers and two residual
shortcut connections [17]. Moreover, the target in this
network is provided after the convolutional layers.
EMP is trained to learn a navigation algorithm.

3) Social Force Model (SFM): SFM calculates a set
of imaginary ‘social’ forces that govern the human
motion in a crowd [6]. These forces can be grouped
as repulsive to obstacles and other humans as well as
attractive to the target.

The optimizer for all deep architectures in our experiments
(GRP, EMP, and DeepMoTIon) was Adadelta, with a learn-
ing rate of 1 and an L2 regularization weight of 0.001.

B. Metrics

To assess our network and the benchmark algorithms,
we compared their performance when trying to navigate
from a start position to the final target. The start and final
positions are chosen from the dataset, where the simulator
replaces one of the humans with a robot and compares the
resemblance of their paths, as well as the safety of the
robot and other humans in the environment. Formally, we
compare the performance of our network and the benchmark
algorithms based on the following metrics:

1) Squared Path Difference (SPD): The trajectories of
the robot and the corresponding human are modeled
as discrete-time trajectories Tr,0..n and Th,0..m re-
spectively. The squared path difference can then be
expressed as

max(n,m)∑
i=1

||Tr,i − Th,i||2, (3)

where the last location in the shorter path is compared
with the remaining steps of the other. This metric
indirectly penalizes the difference in length between
the robot’s and the human’s paths.

2) Dynamic Time Warping (DTW): DTW is a metric
described in [18] to measure the similarity between
two temporal sequences, which may vary in speed.
The metric finds the optimal time warp to match the
segments of the two paths and measures the similarity
between them following that warp. While SPD reflects
an algorithm’s ability to replicate both direction and
speed, DTW compares the two paths irrespective of
their speed. For instance, similarities in walking could

be detected using DTW, even if the imitating robot was
walking faster or slower than the human, or if there
were accelerations and decelerations over the course
of the navigation.

3) Proximity: Proximity is the closest distance the robot
comes to a human on its path. In the case of any
collision along the path, it is assigned a value of 0.
We report the average proximity over all the test cases.

4) Number of Collisions: The number of times the
robot collides with a human while navigating in the
environment.

5) Target: The percentage of trials where the robot
reaches the goal within the 400-step threshold.

It should be noted that unlike most human-aware naviga-
tion papers [6], [22], we are reporting the average number
of collisions as a comparison metric. However, when imple-
mented in real-world settings, a low-level obstacle avoidance
controller is to be added to the algorithm to assure complete
human safety and accommodate for any failures similar
to [12].

C. DeepMoTIon Variants

To study the necessity of the LSTM layer, we
tested two variants of the network, where we refer to
DeepMoTIonLSTM as the network with the architecture ex-
plained before and DeepMoTIonConv as the network without
any LSTM layers. More convolutional layers were added to
DeepMoTIonConv to accommodate for the depth difference.
Both variants of DeepMoTIon were trained with the full loss
function shown in Equation (2) and with a fixed σ = 5.

Table I shows that DeepMoTIonLSTM imitates humans
better than DeepMoTIonConv and exhibits a better per-
formance in all metrics. DeepMoTIonLSTM outperforms
DeepMoTIonConv with regard to path difference (SPD and
DTW) and safety (proximity and the number of collisions)
and reaches the target in 100% of the trials. The results prove
the necessity of the LSTM layer and the fact that having two
consecutive LiDAR scans fed into the network does not work
on its own.

Figure 4 also shows example robots navigating with the
two variants of DeepMoTIon’s architecture. Figure 4 (left)
shows an example where DeepMoTIonconv is accumulating
error throughout its path and finally misses the target. This
behavior was observed throughout the trials on many occa-
sions, which explains the difference in performance of the
two networks. The figure also shows that DeepMoTIonLSTM

was able to follow the human path all the way to the target.
These observations suggest the necessity of the LSTM layer
for the network to acknowledge the existence of the error and
correct it when required. Figure 4 (right) shows an example
where both networks reached the target, with the LSTM
variant imitating the human more closely.

D. Comparison with Benchmarks

Table I shows the performance of each algorithm we
evaluated on the test set. We randomly assigned 2/3 of the
data to the training set and 1/3 to the test set. The numbers

Fig. 4: Demonstrations of our network navigating from the start location (green) to the goal location (red). The left figure
shows a scenario where DeepMoTIonConv fails, while DeepMoTIonLSTM finds the target. The right figure shows a case
where both networks reach the target, with the LSTM variant imitating the human more closely.

TABLE I: Performance Metrics Comparison

SPD DTW Proximity Collisions Target

DeepMoTIonLSTM 151 39 0.31 0.67 100%
DeepMoTIonConv 732 131 0.25 0.89 69%
SFM [6] 3817 51 0.29 0.26 100%
EMP [17] 15437 1187 0.001 7.69 32%
GRP [8] 334 52 0.18 0.78 84%

in the table are averages over all test examples. The results
illustrate the ability of DeepMoTIonLSTM to imitate humans
better than the other benchmark algorithms. SPD and DTW
show that DeepMoTIonLSTM has the lowest path difference
among all the tested algorithms, with the next best algorithm,
GRP, showing more than double the path difference.

We note that DeepMoTIonLSTM and SFM both reach the
target on 100% of the trials, while other networks often fail.
EMP reaches the target in 32% of trials and GRP reaching
the target in 84% of the trials. The proximity parameter shows
DeepMoTIonLSTM keeps an average proximity of 0.31m to
any human, which is safer than the other benchmark algo-
rithms. SFM keeps an average proximity of 0.29m despite
explicitly weighting its repulsive force to humans higher than
the other social forces.

With regard to the number of collisions, SFM has the
lowest rate among all the algorithms. This can be explained
by the ability of the algorithm to stop in the case of dense
crowds, while all the other networks were not trained on any
human demonstration that exhibited that type of behavior.
We expect DeepMoTIon to learn to stop and avoid collisions
better when trained on more pedestrian data showing a wider
set of possible navigation scenarios. We also expect that
with enough training data in a variety of environments with
different features, e.g., crowd density or crowd speed, the
network can learn to perform well even when placed in a
new environment that it had not been trained on.

Finally, we note that our network was able to navigate
even with a LiDAR range other than the one it was trained

on. All the algorithms above were trained and tested on a
LiDAR with a 30m range. To show the ability of our network
to generalize to different ranges, we tested its performance
with a 6m LiDAR range without any retraining. The network
was still able to reach the target on 97% of the trials, with
an increase in DTW to 47 and a decrease in the number of
collisions to 0.51. The decrease in collisions was expected,
as the network is observing obstacles in locations that were
supposed to be free, and thus the robot becomes more careful.

VI. CONCLUSION AND FUTURE WORK

We introduced a novel deep imitation learning framework
and studied its performance when learning to navigate from
human traces. We trained the deep network to predict robot
command velocities from raw LiDAR scans without the
requirement of any preprocessing or classification of the sur-
rounding objects. Our experiments showed DeepMoTIon’s
ability to generate navigation commands similar to humans
and plan a path to the target on all test sets, outperforming
all the benchmarks on path difference (SPD and DTW) and
proximity metrics, and all except SFM on the number of
collisions. In addition, we presented a novel loss function to
train the network. The loss function allowed us to accommo-
date for human motion stochasticity while at the same time
enabling the robot to navigate safely. Finally, we presented
a comparative assessment that showed the necessity of an
LSTM layer for a planning algorithm via a deep neural
network, where the robot navigating with the non-LSTM
variant of our network was led astray on many test cases.

In the future, we plan to train the network to navigate using
raw images instead of LiDAR scans, where we believe the
larger bandwidth of the data can help the network understand
human motion from their point of view. However, unlike
DeepMoTIon, special consideration has to be taken when
training the network with images to provide a navigation
model that runs in real time when implemented on a mobile
platform.

REFERENCES

[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese. Social LSTM: Human trajectory prediction in crowded
spaces. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, CVPR, pages 961–971, 2016.

[2] A. Bera, T. Randhavane, R. Prinja, and D. Manocha. Sociosense:
Robot navigation amongst pedestrians with social and psychological
constraints. arXiv:1706.01102, 2017.

[3] Y. F. Chen, M. Everett, M. Liu, and J. P. How. Socially aware motion
planning with deep reinforcement learning. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS, pages 1343–1350, 2017.

[4] T. B. Dutra, R. Marques, J. Cavalcante-Neto, C. A. Vidal, and J. Pettr.
Gradient-based steering for vision-based crowd simulation algorithms.
Computer Graphics Forum, 36(2):337–348, 2017.

[5] T. Fernando, S. Denman, S. Sridharan, and C. Fookes. Soft+ hardwired
attention: An LSTM framework for human trajectory prediction and
abnormal event detection. arXiv:1702.05552, 2017.

[6] G. Ferrer, A. G. Zulueta, F. H. Cotarelo, and A. Sanfeliu. Robot
social-aware navigation framework to accompany people walking side-
by-side. Autonomous Robots, 41(4):775–793, 2017.

[7] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and
J. Schmidhuber. LSTM: A search space odyssey. IEEE Transactions
on Neural Networks and Learning Systems, 28(10):2222–2232, 2017.

[8] E. Groshev, A. Tamar, S. Srivastava, and P. Abbeel. Learning general-
ized reactive policies using deep neural networks. arXiv:1708.07280,
2017.

[9] D. Helbing and P. Molnar. Social force model for pedestrian dynamics.
Physical Review E, 51(5):4282, 1995.

[10] P. Henry, C. Vollmer, B. Ferris, and D. Fox. Learning to navigate
through crowded environments. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, ICRA, pages 981–986,
2010.

[11] I. Karamouzas, B. Skinner, and S. J. Guy. Universal power law govern-
ing pedestrian interactions. Physical Review Letters, 113(23):238701,
2014.

[12] B. Kim and J. Pineau. Socially adaptive path planning in human
environments using inverse reinforcement learning. International
Journal of Social Robotics, 8(1):51–66, 2016.

[13] D. V. Lu and W. D. Smart. Towards more efficient navigation for
robots and humans. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS, pages 1707–
1713, 2013.

[14] D. Mehta, G. Ferrer, and E. Olson. Autonomous navigation in
dynamic social environments using multi-policy decision making. In
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS, pages 1190–1197, 2016.

[15] U. Patel, E. Hatay, M. D’Arcy, G. Zand, and P. Fazli. Beam: A
collaborative autonomous mobile service robot. In Proceedings of
the AAAI Fall Symposium on Artificial Intelligence for Human-Robot
Interaction, AI-HRI 2017, 2017.

[16] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool. You’ll never
walk alone: Modeling social behavior for multi-target tracking. In
Proceedings of the 12th IEEE International Conference on Computer
Vision, ICCV, pages 261–268, 2009.

[17] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena. From
perception to decision: A data-driven approach to end-to-end motion
planning for autonomous ground robots. In Proceedings of the IEEE
International Conference on Robotics and Automation, ICRA, pages
1527–1533, 2017.

[18] D. Sankoff and J. Kruskal. Time Warps, String Edits, and Macro-
molecules : The Theory and Practice of Sequence Comparison.
Addison-Wesley, 1983.

[19] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon. A human
aware mobile robot motion planner. IEEE Transactions on Robotics,
23(5):874–883, 2007.

[20] R. Triebel, K. Arras, R. Alami, L. Beyer, S. Breuers, R. Chatila,
M. Chetouani, D. Cremers, V. Evers, M. Fiore, et al. Spencer: A
socially aware service robot for passenger guidance and help in busy
airports. In Proceedings of the Conference on Field and Service
Robotics, FSR, pages 607–622, 2016.

[21] D. Vasquez, B. Okal, and K. O. Arras. Inverse reinforcement learning
algorithms and features for robot navigation in crowds: an experi-
mental comparison. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS, pages 1341–
1346, 2014.

[22] D. Vasquez, P. Stein, J. Rios-Martinez, A. Escobedo, A. Spalanzani,
and C. Laugier. Human aware navigation for assistive robotics. In
Experimental Robotics, pages 449–462. Springer, 2013.

[23] M. Veloso, J. Biswas, B. Coltin, S. Rosenthal, T. Kollar, C. Mericli,
M. Samadi, S. Brandao, and R. Ventura. Cobots: Collaborative robots
servicing multi-floor buildings. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS,
pages 5446–5447, 2012.

[24] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum
entropy inverse reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, AAAI, pages 1433–1438, 2008.

