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Abstract 

In this paper, we present several original methods for classifying sleep stages, including threshold 

based and k-means clustering based methods. The proposed algorithms use only acceleration data 

from non-dominant wrist, resulting in a classification into 4-sleep stages (“awake”, “light sleep”, 

“deep sleep” and “REM (Rapid eye movement)”) for overnight sleep. We validate our methods by 

referring to the results of “Fitbit” and subjective feedbacks from volunteers on quality of sleep. Our 

algorithms compute the duration of each sleep stage to evaluate changes in sleep quality between 

different nights. A method of calculating a sleep score based on the duration of sleep and the duration 

of each sleep stage is proposed, which facilitates the evaluation of sleep quality by a single score. 5 

volunteers were recruited for the tests. Among all the test nights, the proposed algorithm based on k-

means clustering shows a superior or equivalent performance compared to the “Fitbit” results. These 

promising results allow us to consider a new non-intrusive method for users and medical staff to 

monitor the evolution of sleep quality through long-term follow-up. In addition, to evaluate the 

performance of our proposed system in terms of sleep stage classification, we use the PSG 

(Polysomnography) sleep monitoring gold standard to monitor the sleep of one of the volunteers 

throughout the night in a hospital’s professional sleep laboratory. This experiment shows that the 

proposed 5km2 (5 iterations of k-means clustering with k=2) method and the threshold method are in 

good agreement with the PSG results. The accuracy of awake, REM, light sleep and deep sleep 

detection reaches respectively 0.78, 0.96, 0.75 and 0.97 by the Threshold method. More specifically, 

both methods we propose show good performance in the detection of awake and deep sleep.  This 

longitudinal monitoring can help to detect abnormal changes in sleep that are usually a sign of a 

change in health status. 
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1 Introduction 

With the increasing social pressure and the aging of the population, more and more people are 

suffering from sleep problems. Good sleep quality is an important factor of good health. It has 

been reported that sleep disturbance is highly correlated with health deterioration (Dregan & 

Armstrong, 2011). According to the American Academy of Sleep Medicine (AASM) 

(Thorpy, 2017), there are about 90 sleep disorders, including insomnia (one third of the 



population), sleep apnea syndrome (2-4%), restless leg syndrome (6%), narcolepsy (0.04%), 

sleep paralysis (6%), nocturnal terrors, confusional arousals and nightmares (2.2-5%) 

(Ohayon, 2007). Sleep disorders and sleep dysregulation can lead to medical consequences 

such as cardiovascular (arrhythmia, hypertension, stroke), metabolic (diabetes, obesity) and 

psychiatric (depression, irritability, addictive behaviors) disorders (Stephansen et al., 2018). 

Poor sleep quality can affect physical and mental performance, judgment and mood, and is the 

main preventable factor in accidents (Krieger, 2017). In consequence, effective and 

continuous sleep monitoring is of great significance for timely understanding and follow-up 

of our health condition (Leng et al., 2020; Krističević et al., 2018; Vail et al., 2009). In recent 

years, sleep stage classification has been a topic extensively studied as one of the most critical 

steps in the effective diagnosis and treatment of sleep disorders. Obtaining the time spent in 

the different sleep stages in the ordinary daily life environment is of great significance for 

research and commercial applications. For example, obtaining an accurate sleep architecture 

can provide better information to guide behavioral changes and provide recommendations 

related to sleep improvement (Daskalova et al., 2018). PSG is nowadays the gold standard for 

sleep monitoring and sleep stages classification (R or REM for Rapid Eye Movement, N1 to 

N3 for Non-Rapid-Eye Movement and W for Wake). However, it is very invasive, expensive 

and time consuming to implement. Hence, it is very difficult to use the PSG method as a 

home and long-term sleep monitoring device. This is why, in this study, we try to develop a 

non-invasive, less expensive sleep monitoring device suitable for home use and long-term 

monitoring.  So far, many researchers and technicians have tried to develop simple and non-

intrusive systems which allow overcoming these issues. Guettari et al. (2017) adopt self-

organizing map (SOM) algorithm—Kohonen maps to achieve classification of signal 

segments as three phases of sleep: deep/paradoxical sleep (R, N3), agitated and light sleep 

(N1, N2) and awake phase (W) based on body movements signal during sleep collected from a 

thermopile sensor, it shows classification accuracy of 87%. Gu et al. (2015) leverage 

conditional random field (CRF) model to classify sleep stages into wake, light sleep, deep 

sleep and REM based on features of signals from microphone, accelerometer and light sensor, 

the detection accuracy of system is 64.55%. The term “classifier” refers to an algorithm or 

function that associates input data to a specific type of category. The classifier can build a 

classification model based on existing data. The model matchs the data to a given category or 

apply it to data prediction. Therefore, it is possible to build an appropriate classification 

model based on the concept of the classifier to achieve sleep stages classification. Chambon et 

al. (2018) use softmax classifier to classify sleep stages into wake, N1, N2, N3 and REM 

based on EEG (Electroencephalography), EOG (Electrooculography), ECG 



(Electrocardiography) and EMG (Electromyography) signal from PSG. It achieves best 

classification performance with an accuracy of 80% when using data from 6 EEG with 2 EOG 

(left and right) and 3 EMG chin channels. Kumar et al. (2018) propose a coarse-to-fine-level 

envisioned speech recognition framework to classify images imagined by participants using 

an RF (Random forest) classifier based on the EEG signal. Recognition accuracies of 85.20% 

and 67.03% were recorded for the coarse-level and fine-level classifications, respectively. It 

divides the classification task into two steps: coarse and fine classification. Compared to 

direct classification, this approach allows different but more appropriate parameters at each 

classification stage in order to achieve better final performance. However, the items of the 

text class to be recognized have different colors and fonts. Therefore, it is impossible to 

determine whether the different characteristics of the collected EEG signals are due to the 

differences between the characters themselves or to the differences in the colors or fonts seen 

by the participants. Güneş et al. (2010) adopt k-means clustering as feature weighting 

processing and then use k-nearest neighbors and decision tree as classifier to discriminate 

sleep stages into awake, REM, N1, N2, N3 based on EEG signal. The best recognition 

accuracy is 82.21% when using k-NN classifier with k=30. Van et al. (2001) adopt modified 

k-means clustering to automatically detect sleep stages among awake, N1, N2, N3 and 

spindles based on EEG signal. The result shows that stage awake and stage N1 can be clearly 

distinguished, the clusters corresponding to stage N2 and stage N3 are somewhat overlapping. 

Velicu et al. (2016) used Kushida’s algorithm derived equation to process the wrist activity 

data as the discriminator for wake/sleep, wake/REM and light/deep by applying three 

different thresholds. For a test of 3 hours and 43 minutes, approximately 2 sleep cycles were 

detected, each around 110 minutes. In the study of Kalkbrenner et al. (2019), body sound 

microphone attached to the subject’s neck to record tracheal body sound is used in order to 

detect respiratory and heart beats and to extract cardiorespiratory features. Inertial 

measurement unit including accelerometer and gyroscope attached to the thoracic belt is used 

to record movements and sleep positions in order to extract movement features. Then a linear 

discriminant (LD) classifier is used for automated sleep staging obtaining 56.5% accuracy for 

Wake/REM/light sleep/deep sleep classification compared to PSG. Beattie et al. (2017) use a 

wrist-worn device that measures wrist movement using a 3D accelerometer and measures 

heart rate using an optical pulse photoplethysmograph (PPG). They also estimate breathing 

rate with measured heart rate. Based on the extracted features of left-wrist movement, heart 

rate and breathing rate, an overall accuracy of 69% for automated sleep staging of Wake, 

Light (N1 or N2), Deep (N3) and REM (REM) is obtained by using linear discriminant 



classifier. A systematic review on sleep monitoring can be found in our review paper (Pan et 

al., 2020), where state of the art and a comparative study are included. 

In the literature, most research adopts supervised machine learning methods that typically 

require large amounts of learning data to train the classifier and computation to implement the 

model. However, some works adopt unsupervised methods such as k-means clustering to 

achieve sleep stage classification. It is usually based on signals directly related to sleep stages 

such as EEG signal which is very intrusive and not easy to collect in a home environment. 

Acceleration data measured by an accelerometer can be used to measure the intensity of 

movement. The more intense the movement, the more the acceleration data changes over 

time. In this paper, we propose a k-means clustering approach using only the acceleration data 

from a sensor worn on the wrist to achieve sleep classification into four classes: wake, light 

sleep, deep sleep and REM. The k-means clustering method requires a relatively smaller 

amount of computation (Xu & Tian, 2015) which could make the algorithm implementation 

easier and more efficient. Moreover, the acceleration data of a wrist sensor is very easy to 

collect. The subject only needs to wear a small and lightweight watch like on his wrist, very 

suitable for home environment and long-term monitoring.  

The paper is organized as follows: section 2 describes the module (or device) developed to 

collect movements and presents the data preprocessing; section 3 focuses on the threshold-

based methods; section 4 focuses on k-means-based method; section 5 presents the tests and 

results on five volunteers and also the definition of a sleep score; section 6 presents a 

conclusion and some perspectives. 

 

2 Data acquisition and preprocessing 

2.1 Sensing device and settings 

A smart module (Figure 1) already designed in our team is used as the sensing device. This 

module is an embedded system powered by a button battery (3V) whose basic components 

are: 

- A NRF51822 microcontroller containing a 32-bit ARM Cortex M0 processor and a 256kB 

flash memory. This microcontroller is equipped with a low energy Bluetooth module, + 4dBm 

power and a sensitivity of -93dBm, for data transfer. 

- A 2MB non-volatile FRAM memory for data backup during sleep. 

- An low-power ADXL362 tri-axial accelerometer. 

- I/O ports to interface other sensors, depending on the parameters to be observed. 

Programs are written in C using Keil μVision. 

 



 

Figure 1: Integrated sensing device used. 

The ADXL362 accelerometer of the smart module is adopted to acquire acceleration data in 

the experiment. The parameters of the ADXL362 are: 

-Measurement range: -2g ~ 2g,  

-Output data rate (ODR): 12.5 Hz, 

-Output resolution: 8 bits. 

Although the ODR is 12.5Hz, we only sample the output acceleration data every second. This 

reduces the amount of data and limits storage space, which could be a great advantage for 

long-term monitoring applications. 

We position the smart module on the non-dominant wrist, wearing it like a watch as shown in 

Figure 2. After switching on the smart module, it will first search for the corresponding 

Bluetooth slave device (in this case a PC) to try to pair with it. If the smart module can pair 

with the Bluetooth slave device within 10 seconds (usually 10 seconds is enough for pairing if 

the Bluetooth slave device is advertising), it will start to send stored data in FRAM to the 

Bluetooth slave device for further processing. Otherwise, it will start to acquire acceleration 

data every second and store it in FRAM. 

                 

Figure 2: Position of the smart module 

 

 

 



2.2 Data preprocessing 

With acceleration values Ax, Ay, and Az, a corresponding movement level Mi for sample i, 

will be calculated by equation (1), where N is the number of samples.  

1,...,3,2,1,111   NiAzAzAyAyAxAxM iiiiiii                          (1) 

The overnight movement level data is cut into 30-samples epochs, noted as Sj (j = 1, 2, 3,…, 

L, L being the total number of epochs for one night). Each epoch is the shortest unit for 

further sleep stage classification, which has a duration of 30s, as in Rechtschaffen and Kales 

Guidelines Guidelines (Rechtschaffen & Kales, 1968). Using a sleep stage classification 

algorithm, each epoch will be classified as awake, light sleep, deep sleep and REM. 

In each epoch, movement levels of the corresponding 30 samples are summed to obtain an 

epoch movement level EMj, as in equation (2). 


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Where j is the index of epochs, L is the number of epochs. 

As sleep is a process that is continuously changing, it is necessary to associate the previous 

and subsequent periods when analyzing the sleep state at a given time. Thus, for each epoch, 9 

epochs are considered before and after it. A weighted PM value is defined (see equation (3)) 

to further facilitate sleep analysis. 
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The data preprocessing scheme is illustrated in Figure 3. 

 

Figure 3: Overnight data preprocessing scheme 

 

For each accelerometer sample 

i, calculate movement level Mi 

using equation (1) 
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equation (2)  

Compute PM, as in equation 

(3) using 19 EMj 



 

Figure 4: Illustration of M, EM, PM for a same night 

As shown in Figure 4, for the overnight data, M is very scattered which further complicates 

the real sleep analysis. On contrary, PM has a more orderly data evolution which is helpful for 

the further sleep stages classification. Based on the calculated PM, we have implemented two 

methods for classifying sleep stages: the threshold method and the k-means method. The 

threshold method is the simplest and most direct approach. Initially, it was used as an attempt 

to determine performance. After testing, it was found to be good, so we decided to adopt it. 

The K-means clustering is also a very common and traditional clustering method. This 

method is easy to implement and its working mechanism is easy to understand. A better 

understanding of this clustering method allows us to know how to use it, for example, to 

choose the parameters and how to organize the clustering framework for better results. The 

threshold method and the k-means clustering method are described in detail in the following 

sections.  

 

3 Threshold method 

3.1 Sleep and Awake discrimination 

Wrist movement can be considered an indicator of wakefulness (Christine & Monique, 2006). 

The amount of wrist movement can therefore be a sign of sleep or awake state. We define 

TS/W as a threshold (Figure 5(a) which shows an overnight PM evolution) for discriminating 

‘Awake’ and ‘Sleep’ epochs, which is 1350 determined from experimental observation and 



testing. When the PM value of an epoch is greater than TS/W, the epoch is classified as 

‘Awake’. Otherwise, it is classified as ‘Sleep’ and the discrimination process continues to 

refine the classification.  

 

3.2 Deep sleep and Light sleep/REM discrimination 

A lower movement level corresponds to a deeper sleep state (Pollak et al., 2001). It is possible 

to define a threshold PM value or standard deviation of several continuous PM values to 

discriminate light sleep from deep sleep. REM sleep is characterized by an activated brain in a 

paralyzed body, but muscle twitches often accompany REM sleep (Carskadon & Dement, 

2005). So we can suppose that the overall movement level during REM is very low, but the 

standard deviation of movement level could be relatively high because of the muscle twitches. 

Based on the above analysis, we think that deep sleep is characterized by the lowest standard 

deviation of movement level, which could be used as a feature to distinguish it from light 

sleep and REM. Hence, it is possible to define a threshold of standard deviation of several 

continuous PM values to distinguish deep sleep from light sleep and REM. For epochs first 

classified as ‘Sleep’, 6-epochs groups G are formed (representing 3-minutes data). For each 

G, the standard deviation (SD) of PM values is calculated. If SD is less than a threshold TD/LR 

(as illustrated in Figure 5(b)), epochs in G are classified as ‘Deep sleep’. The value of TD/LR is 

10 derived from testing, observation and correction. 

 

3.3 Light sleep/REM discrimination 

Light sleep and REM sleep are characterized by relatively high and low movement levels 

respectively. So, a threshold on PM value can be used to discriminate them. After the two 

previous steps, remaining epochs noted as H can be classified as ‘Light sleep’ or ‘REM’. To 

discriminate these two stages, a 500 value threshold TL/R is defined (as illustrated in Figure 

5(c)), derived from tests, observations and threshold adjustments. When the PM of H is 

greater than TL/R, it will be classified as ‘Light sleep’ otherwise as ‘REM’. 

The overall procedure of classification is described in Figure 6.  



 

Figure 5: Illustration of three thresholds in sleep stages discrimination 

a) Sleep/Awake threshold   b) Deep sleep threshold   c) Light sleep/REM threshold 
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Figure 6: Procedure of sleep stages discrimination 

 

3.4 Detection of falling asleep and waking up 

Based on the “sleep” and “awake” detection implemented by the threshold method described 

above, we have defined the falling asleep point and the waking up point to indicate the 

beginning and the end of an overnight sleep respectively. Once monitoring begins, if “sleep” 

state lasts at least 5 minutes, the first point of the 5 minutes will be considered as the starting 

point of falling asleep, noted as asleep point. Starting from the end of recording and doing 

backward checking, if the “sleep” state lasts at least 5 minutes, it will be considered as the last 

epoch of “sleep”. So the next epoch is considered as the starting point of the awakening, noted 

as awakening point. The epochs between asleep point and awakening point are defined as 

sleep segment. 

3.5 Optimization processing 

After obtaining the result of the sleep stages classification using the procedure shown in 

Figure 6, some steps are necessary to optimize results: 

1) Modify all epochs before falling asleep point to be “awake”. 

2) Modify all epochs after awakening point to be “awake”. 

 

  

Calculate PMj using 

equation (3) 

  

PMr > TS/W? 

  

 

Yes 

  

No 

  

  

Sr is classified 

as “Wake” 

  

  

S
r 
is classified 

as ‘Sleep’ 

  

  

Group each 6 ‘Sleep’ 

epochs in order, 

obtained Gu 

  

  

Calculate the standard 

deviation SDu of Gu
 

SDu ≤ TD/LR?  
  

Yes 

  

No 

  

  

All Sr included in 

Gu are classified 

as “Deep sleep” 

PM
r
 > T

L/R
? 

  

  

Yes 

  

No 

  

  

S
r 
is classified as 

“Light sleep” 

  

  

S
r 
is classified 

as “REM” 

  



3) When ‘light sleep’ does not last more than 1 minute and there is an “awake” state 

before and after, set this ‘light sleep’ period so that it is classified as ‘awake’.  

4) When “REM” lasts less than 1 minute and there is a ‘light sleep’ before and after, set 

this “REM” period as a ‘light sleep’ one. 

 

Figure 7: Result of the “Threshold method” for an overnight sleep 

Figure 7 shows a result of the “Threshold method” including detection of time of falling 

asleep, waking up and hypnogram with corresponding PM evolution. 

The “Threshold method” uses three thresholds which are all absolute values to classify sleep 

stages. It means that the same thresholds will be applied to different people. This is difficult to 

make this a universally applicable method because people's movements during sleep are 

different, the amplitude and frequency of movements have individual differences that can be 

caused by factors such as body height and weight, gender, physical condition, age, etc. In 

order to develop a universal method suitable for different people, we plan to test k-means 

clustering that makes this possible. 

 

4 K-means method 

4.1 K-means clustering 

As a classic machine learning method, k-means clustering (MacQueen, 1967) has been 

commonly used in fields as varied as image segmentation, data compression, wireless sensor 

network routing, data mining, etc. It is an effective method to automatically classify dataset 

into k-groups based on the similarity of features of each data group. First, it randomly selects 

k initial cluster centers Ci and then iteratively performs the following steps: 

1. Assign each sample si to its nearest clustering center; 

2. Update each Ci clustering center with the mean of samples currently in the cluster. 

The algorithm converges when the assignment of samples to clusters no longer change. For 

the k-means clustering algorithm, the selection of initial cluster centers could significantly 

affect the final clustering result. As the initial clustering centers are randomly selected, the 

clustering result also has some uncertainty. During the experiments, we found that the final 
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clustering results using randomly selected cluster centers did not generally change much, but 

in a few cases the final clustering results were very far from the others. In order to prevent 

that these rare cases become the final clustering result, we repeat the same clustering 

procedure several time, and then determine the final clustering result by voting, as described 

in the “Voting rule” section. 

The k-means method is applied to sleep epochs to obtain a hypnogram which contains 

“Awake”, “Light sleep”, “Deep sleep” and “REM”. The sleep epochs begin from the time 

where we fall asleep until we wake up, which is detected by the threshold method described in 

section 3. As far as we know, there are several works (Diykh et al., 2016; Van & Philips, 

2001; Güneş et al., 2010) that adopt k-means method to classify sleep stages using the EEG 

signal, but no one uses the wrist movement signal. 

4.2 Feature extraction 

A 2-dimension feature based on PM is used for k-means clustering. We directly use PM as the 

first dimension of the feature. All PMs are grouped sequentially, and each group contains six 

PM values. The standard deviation of the PM values in each group is used as the second 

dimension of feature for the corresponding six epochs in the group. In other words, the second 

dimension of feature of the six epochs in one group is the same, which is the standard 

deviation of their corresponding PM values. 

4.3 Sleep stages clustering  

The overall procedure of this “k-means” method includes 5 iterations of k-means clustering 

with k=2, noted as 5km2. 

We have also tried to classify the four sleep stages directly using only one iteration of k-

means clustering with k=4, noted as 1km4.  

We have adopted “Fitbit charge 2
TM

” as the reference device to evaluate the results of the 

“Threshold”, “5km2” and “1km4” methods. The “Fitbit charge 2
TM

” is a commercial device 

that has been compared with the PSG (polysomnography) gold standard and validated as 

promising for sleep stages and sleep-wake detection (Zambotti et al., 2018). “Fitbit Charge 2
TM

” 

showed a sensitivity of 0.96 (accuracy to detect sleep), a specificity of 0.61  (accuracy to 

detect wake), an accuracy of 0.81 in detecting N1+N2 sleep (“light sleep”), an accuracy of 

0.49 in detecting N3 sleep (“deep sleep”), and an accuracy of 0.74 in detecting rapid-eye-

movement (REM) sleep (Zambotti et al., 2018). The classification results of the Fitbit, threshold 

method, 5km2 and 1km4 methods will be presented in section 5.3, and the hypnograms and 

pie chart for the proportion of each two-night sleep stage obtained by each method are 

presented in Figures 7 and 8 respectively.  



According to the study (Carskadon & Dement, 2005), for normal young adults who live on a 

conventional sleep-wake schedule and without sleep disorders: 

 Waking up during sleep usually represents less than 5% of the night. 

 Light sleep generally accounts for about 47% to 60% of sleep. 

 Deep sleep generally constitutes about 13% to 23% of sleep. 

 REM sleep usually accounts for 20% to 25% of sleep. 

It has been found that the proportion of light sleep should be much higher than that of deep 

sleep. However, given the experimental results, the 1km4 method still obtains too much  deep 

sleep time and not enough light sleep time, which is contradictory with the results of the study 

(Carskadon & Dement, 2005) obtained by the PSG method. The 5km2 and threshold methods 

have comparable results to those of the study (Carskadon & Dement, 2005). We will therefore 

present the 5km2 method in detail. 

  

Figure 8: Sleep stages classification result of four methods for two nights 
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Figure 9: Proportion of each sleep stages derived from four methods for two nights 

4.3.1 Awake 

After a k-means clustering (k=2) on sleep segment defined by the “Threshold” method, the 

cluster with the highest mean value of PM is classified as “awake”. The other cluster is S1. 

4.3.2 Light sleep 

The “Light sleep” comes from 2 sources. Firstly, after a second k-means clustering on the 

previous cluster S1, the cluster with the highest mean value of PM is classified as “Light 

sleep”. The other cluster is noted S2. Then, a third k-means clustering is performed on S2, the 

cluster with the highest mean value of PM is defined as quasi-REM noted S3, the cluster with 

the lowest mean value of PM is defined as quasi-Deep sleep noted S4. Finally a fourth k-

means clustering is performed on S3, and the cluster with the highest mean value of PM is 

also classified as “Light sleep”. In summary, “light sleep” corresponds to cluster S2 and the 

last mentioned cluster. 

4.3.3 Deep sleep 

On the quasi-Deep sleep noted S4, a new k-means clustering is carried out. The cluster with 

the lowest mean value of PM is classified as “Deep sleep”. 

4.3.4 REM 

The “REM” also comes from 2 sources. On the one hand, after a k-means clustering for quasi-

REM S3, the cluster with the lowest mean value of PM is classified as “REM”. On the other 

hand, with the k-means clustering performed over quasi-Deep sleep S4, the cluster with the 

highest mean value of PM is also classified as REM. 

The procedure of sleep stages clustering is illustrated in Figure 10. 
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Figure 10: Procedure of sleep stages clustering 

4.4 Voting rule 

For the k-means clustering, the primary clustering centers are randomly selected, which gives 

randomness to the final result. In our experience, most of the time the final results will be the 

same or very close whatever the randomly selected primary clustering center is. However, in a 

few extreme cases, the final sleep stages distribution will be very different from the one 

reported in (Carskadon & Dement, 2005). To eliminate these extreme cases, a voting rule has 

been designed. 

First of all, we performed the above-mentioned sleep stages clustering procedure ten times. 

Thus, for each epoch, we obtained 10 clustering results. Then, for the 10 clustering results, the 

classification to which the epoch finally belongs is determined by a majority vote.  
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5 Experiment results 

5.1 Computational complexity and processing time 

For an algorithm, too high a computational complexity will increase the time required to 

execute the algorithm which will affect the real-time performance, while also increasing the 

cost of the hardware platform. The computational complexity of all the proposed methods is 

relatively low. The computational complexity of the “Threshold” method is of constant order, 

i.e., O(1), and the computational complexity of both the “1km4” and “5km2” methods is of 

linear order, i.e., O(n). In addition to analyzing the theoretical computational complexity of 

the proposed methods to demonstrate their efficiency, we also experimentally measured the 

execution time required for these methods. 

In the experiment, the “Threshold”, “1km4” and “5km2” algorithms are all implemented on 

the same computer with “Intel i7-2600 CPU @ 3.40GHz, 8GB RAM” on “MATLAB 

R2011b”. For 8-hour night-time data processing, the time spent on the "Threshold method", 

"1km4 method" and "5km2 method" is 1.04s, 1.73s and 1.84s respectively. We can see that 

the processing time for all the algorithms is very short, less than 2 seconds, and the hardware 

platform required is common. This indicates the proposed methods can be easily used in a real 

time application, giving fast results. 

5.2 Falling asleep/waking up detection analysis 

We recruited 5 young adults (3 women, 2 men) as test subjects. The physical factors of the 

subjects are presented in Table 1. The Mean±STD of the 5 subjects’ age, weight and height is 

29.8±2.2 years, 56.4±7.9 kg and 167.8±9.9 cm. A total of 15 overnights sleep are tested by 

four sleep stage classification methods, namely “Fitbit”, “Threshold (the method presented in 

section 5 which uses 3 thresholds)”, “5km2” and “1km4”. The “Threshold”, “5km2” and 

“1km4” methods are all implemented solely based on wrist movement data.  Considering all 

nights, we collected 30 results of falling asleep/waking up detection. The difference between 

Fitbit and the proposed “Threshold method” in detected time of falling asleep and waking up 

are illustrated in Table 2.  

Table 1, Physical factors of subjects 

Subjects Gender Age 
Weight 

(kg) 

Height 

(cm) 

Physical 

condition 

1 Male 31 65 176 Normal 

2 Male 28 60 180 Normal 

3 Female 27 45 156 Normal 

4 Female 31 60 164 Normal 

5 Female 32 52 163 Normal 



Table 2: Comparison between the Fitbit method and the “Threshold method” for the detection 

of the time of falling asleep and the time of waking up 

Subjects 
Nights 

index 
Methods 

Time of 

falling 

asleep 

Time of 

waking 

up 

Difference 

in time of 

falling 

asleep/min 

Difference 

in time of 

waking 

up/min 

1(male) 

1 
Fitbit 02:34 09:22 

0 5 
Threshold 02:34 09:17 

2 
Fitbit 00:21 08:19 

4 5 
Threshold 00:25 08:14 

3 
Fitbit 02:06 09:32 

1 0 
Threshold 02:05 09:32 

2(female) 

4 
Fitbit 00:10 07:51 

1 7 
Threshold 00:11 07:44 

5 
Fitbit 23:50 07:19 

8 0 
Threshold 23:58 07:19 

6 
Fitbit 03:09 09:29 

2 0 
Threshold 03:07 09:29 

3(female) 

7 
Fitbit 03:09 09:29 

2 0 
Threshold 03:07 09:29 

8 
Fitbit 02:52 12:50 

3 0 
Threshold 02:55 12:50 

9 
Fitbit 03:06 09:30 

0 4 
Threshold 03:06 09:26 

4(male) 

10 
Fitbit 02:53 08:05 

4 0 
Threshold 02:57 08:05 

11 
Fitbit 00:49 08:00 

3 3 
Threshold 00:52 07:47 

12 
Fitbit 01:21 08:09 

1 0 
Threshold 01:22 08:09 

13 
Fitbit 01:50 08:07 

3 12 
Threshold 01:53 07:55 

5(female) 

14 
Fitbit 23:33 08:07 

14 5 
Threshold 23:47 08:02 

15 
Fitbit 23:57 09:01 

2 49 
Threshold 23:59 08:12 

16 
Fitbit - - 

- - 
Threshold 22:21 08:12 



 

Table 3 shows that 25 out of 30 results have a time difference of not exceed 5 minutes. For 

night 14, subject 5 reported going to bed around 11.30pm, then watching his smartphone for 

10 minutes and then falling asleep. The time of falling asleep detected by the proposed 

“Threshold method” is therefore more accurate than Fitbit's for that night. For night 15, the 

difference in waking time is 49 minutes. However, subject 5 reported waking up around 

8:00am that morning. Therefore, the 09:01am wake-up time determined by Fitbit is clearly 

incorrect. Subject 5 agrees with the wake-up time determined by waking up time of the 

“Threshold method” proposed for night 15.   

Table 3: Number of results of the sleep and wake-up detection in different time difference 

ranges 

Time difference ≤ 5 min 
> 5 min, 

≤ 10 min 

> 10 min,≤ 

15 min 
> 15 min 

Number of 

results 
25 2 2 1 

 

5.3 Sleep stages classification analysis 

The results of the sleep stage classification are presented in Table 4. They are compared with 

users' self-reported feedbacks. 

Table 4: Comparison of the four methods in sleep stages classification 

Subject Night Method Awake 
Light 

sleep 

Deep 

sleep 
REM 

Sleep 

score 

Declarative feedback from 

the subject  on his sleep 

1(male) 

1 

Fitbit 71 192 62 86 75.0 

Very poor sleep, awake 

sleep many times 

Threshold 108.5 163.5 18 112 50.0 

5km2 30 158.5 117.5 97 83.4 

1km4 14 20 262.5 106.5 73.1 

2 

Fitbit 67 247 74 107 79.5 
Very tired before sleep, 

sleep much better than the 

first night, less sleep awake  

Threshold 66.5 154 66 181 62.9 

5km2 29.5 134.5 117 187.5 73.7 

1km4 17.5 32 321.5 97.5 77.3 

3 

Fitbit 59 264 46 81 73.2 

Normal sleep 
Threshold 85 169 51 142 63.2 

5km2 75 181 64 127 71.5 

1km4 15.5 59.5 248 124 78.4 

2(female) 4 

Fitbit 53 184 112 111 84.3 

Very light sleep with 

distinct awake sleep 

Threshold 12.5 175.5 153 112 91.1 

5km2 19.5 210 66 175.5 77.5 

1km4 8.5 16 299.5 147 73.1 



5 

Fitbit 51 262 54 82 77.5 

Sleep better than last night 

(night 4) 

Threshold 41 265 54 81 79.6 

5km2 116.5 198 54 73.5 63.4 

1km4 25.5 83.5 180 153 74.2 

6 

Fitbit 60 236 55 79 76.6 

Normal sleep with sleep 

awake  

Threshold 29.5 95.5 132 151.5 71.4 

5km2 23 259.5 35 112 77.4 

1km4 19 59.5 222.5 128.5 76.5 

3(female) 

7 

Fitbit 15 216 59 90 79.2 

Very poor sleep, with 

distinct awake sleep 

Threshold 3 95.5 132 151.5 70.5 

5km2 61.5 146.5 6 169 41.8 

1km4 18.5 44 240 80.5 71.5 

8 

Fitbit 56 373 61 115 62.4 

Sleep much better than last 

night (night 7)  

Threshold 22.5 287 48 237 55.4 

5km2 10.5 315 23.5 246.5 48.3 

1km4 8.5 23.5 360.5 203 58.7 

9 

Fitbit 25 229 31 100 70.3 

Normal sleep 
Threshold 11 102 42 225 49.8 

5km2 10 197 35 139 67.7 

1km4 9.5 32.5 203 136 65.7 

4(male) 

10 

Fitbit 38 161 48 65 60.0 

Normal sleep 
Threshold 18 155.5 45 89 60.6 

5km2 34.5 161.5 44.5 67.5 59.4 

1km4 9.5 29 162 107.5 53.3 

11 

Fitbit 45 199 99 87 87.3 

Normal sleep 
Threshold 30.5 243 90 51.5 83.2 

5km2 136 152.5 94 33.5 57.6 

1km4 33 76.5 192 114.5 76.3 

12 

Fitbit 59 195 82 79 80.7 
Very poor sleep, experience 

an unpleasant thing before 

sleep 

Threshold 32 317.5 30 28 58.5 

5km2 121 249.5 30 8 45.1 

1km4 6.5 75.5 169.5 157 73.2 

13 

Fitbit 79 156 92 49 65.0 
Very poor sleep, feel very 

anxious before sleep which 

affecting the sleep 

Threshold 23.5 279.5 36 22.5 55.6 

5km2 126.5 127.5 6.5 102 34.6 

1km4 45 79 150 88.5 65.8 

5(female) 
14 

Fitbit 43 272 33 166 66.6 
Good sleep, left bed at about 

6:30 then returning  to bed 

continue to sleep 

Threshold 16 280.5 66 132 86.6 

5km2 10.5 270 136.5 78.5 93.3 

1km4 7.5 6 334.5 147.5 73.1 

15 Fitbit 39 379 35 91 64.8 Poor sleep, many dreams 



Threshold 7.5 393 42 51 66.3 and awake during this sleep. 

Get up at nearly 8:15 5km2 135.5 189.5 37.5 132 51.5 

1km4 31 96.5 242 125 80.1 

16 

Fitbit - - - -  

Normal 
Threshold 14.5 381.5 42 153 65.8 

5km2 141 341 8.5 101.5 31.9 

1km4 45 111 139.5 296.5 46.3 

(In this table, the unit of the number representing the duration of the sleep stages is the minute). 

Considering all nights, 10 nights show better results with the 5km2 method, 4 nights show 

comparable performance between the 5km2 method, “Fitbit” and “Threshold” methods, and 2 

nights show lower performance for the 5km2 method compared to the “Fitbit” and 

“Threshold” methods. The test results for nights 2, 4, 7, 8 and 11 - 16 show that the “5km2” 

method appears to have superior performance in sleep stages classification. 

On night 2, the volunteer reported having slept well. Comparing the results of the “Fitbit”, 

“Threshold” and “5km2” methods, the 5km2 has the least “Wake” and “Light sleep” and the 

most “Deep sleep” and “REM”, which is consistent with the subject's feedbacks. 

During the fourth night, the volunteer felt that he slept poorly, with very light sleep and  a 

distinctly awake sleep. It can be seen that the k-means method finds more “Light sleep” and 

less “Deep sleep” than the other two methods, which is more indicative of the subject's true 

state of sleep.   

During night 7, the volunteer felt that he had a very little sleep, which is associated with 

distinct awake sleep. We note that the results of the 5km2 k-means method show a much 

higher “Wake” and a much lower “Deep sleep”. Compared to the “Fitbit” and “Threshold” 

methods, the 5km2 method better highlights sleep problems according to the subject's 

feedback. 

During night 8, the volunteer mentioned better sleep compared to the previous night (night 7). 

Compared to the result of night 7, the results of the k-mean method show a significant 

decrease in “Wake” and an increase in “Deep sleep” on night 8. However, the other two 

methods even show a significant increase in “Wake” and a near or significant decrease in 

“Deep sleep”, which may not indicate an improvement in sleep quality.   

The test results of nights 1 and 5 show that the k-means method is less effective in classifying 

sleep stages. 

On night 1, the subject reports poor sleep and repeated awake sleep, but the k-means method 

gives the least “Wake” and the most “Deep sleep”, which is contrary to the actual sleep state. 



On night 5, the subject sleeps better sleep than the previous night (night 4). However, the k-

means method shows a dramatic increase in “Wake” and a slight decrease in “Deep sleep”, 

which is also contrary to the actual sleep state. 

Nights 3, 6, 9 and 10 are considered by the subjects as normal sleeps. The results of the k-

means method are comparable to those of two other methods for these nights.   

On nights 12 and 13, subject 4 reports very poor sleep. For the “5km2” and “Threshold” 

results, we can see the significant decrease in deep sleep time on nights 12 and 13 compared 

to nights 10 and 11 which are considered normal sleep by subject 4. However, for the of 

“Fitbit” results, the deep sleep time even increase significantly on nights 12 and 13 compared 

to night 10. 

As shown in Table 4, the deep sleep times obtained by “Fitbit”, “Threshold” and “5km2” 

increased, decreased and decreased respectively between nights 14 and 15. A study (Brand et 

al., 2014) showed that individuals are less awake after the onset of sleep and that people who 

sleep more deeply report less daytime sleepiness. It can therefore be assumed that being 

awake is negatively correlated with good sleep and that deep sleep is positively correlated 

with good sleep. According to the feedback of sleepers, the sleep of night 14 is good and the 

sleep of night 15 is bad. Therefore, the decrease in the duration of deep sleep from night 14 to 

night 15 may better reflect the real change in sleep quality between these two nights. 

However, in order to evaluate this assertion, additional experiments need to be conducted over 

several nights. 

 

5.4 Sleep score 

After obtaining hypnogram we can obtain the duration of each sleep stages, which is closely 

related to the quality of sleep. It is therefore possible to assess sleep quality by defining a 

sleep score based on the hypnogram, which helps users without relevant sleep knowledge to 

intuitively understand the results of their sleep monitoring.  

For healthy sleep, the total sleep duration and the proportion of each sleep stage should be 

within a reasonable range. The appropriate sleep duration (Hirshkowitz et al., 2015) for 

individuals of different generation is shown in Table 5.   

 

 

 

 

 

 



Table 5: Appropriate sleep duration for each generation 

Generation Appropriate sleep duration 

newborns 14 ~ 17 h 

infants 12 ~ 15 h 

toddlers 11 ~ 14 h 

preschoolers 10 ~ 13 h 

school-aged children 9 ~ 11 h 

teenagers 8 ~ 10 h 

young adults and adults 7 ~ 9 h 

older adults 7 ~ 8 h 

 

In this paper, all volunteers belong to the young adult and adult generation. The normal 

proportion of each sleep stage for individuals of this generation without sleep complaints is 

shown in Table 6 (Carskadon & Dement, 2005). 

 

Table 6: Proportion of normal sleep stages for young adults and adults 

 

Sleep stage Normal proportion 

Awake < 5% 

Light sleep 47% ~ 60% 

Deep sleep 13% ~ 23% 

REM 20% ~ 25% 

 

The definition of the symbols is presented in Table 7. These symbols are used in the flowchart 

of the sleep score calculation. 

 

 

 

 

 

 

 

 

 

 



Table 7: Definition of symbols 

 Awake Light sleep Deep sleep REM 

Duration DW DL DD DR 

Lower limit of 

normal proportion 
PWL PLL PDL PRL 

Upper limit of 

normal proportion 
PWU PLU PDU PRU 

Total sleep 

duration 
T 

Lower limit of 

appropriate sleep 

duration 

TL 

Upper limit of 

appropriate sleep 

duration 

TU 

Sleep score S 

 

The steps for calculating the sleep score are shown in Figure 11. The sleep score is calculated 

on the basis of the total sleep duration and the duration of each sleep stage. Depending on the 

normal range given in Tables 5 and 6, any parameter outside the range will result in a lower 

sleep score. Besides, within the normal range, a deeper and less awake sleep will result in a 

higher sleep score. After obtaining the sleep score, we rescale it to a range of 0 ~ 100, with 

the higher score meaning better sleep. The rescaling method is the last step in the diagram in 

Figure 10. Use the result of the 5km2 of night 1 in Table 4 as an example to calculate the 

sleep score. The duration of awake, light sleep, deep sleep and REM is 30, 158.5, 117.5 and 

97 minutes. Thus, DD is 117.5, DW is 30. According to Table 6, PDL is 0.13, PDU is 0.23, PWL is 

0, PWU is 0.05. According to the first step described in Figure 10, we can obtain the primary 

sleep score Sp from equation (4). 
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By introducing the value into the equation, we can obtain Sp=117.5×(1-(0.13+0.23)/2)-30×(1-

(0+0.05)/2)=67.1. Then we check if the proportion of deep sleep, light sleep and REM are in 

the normal range or not.  

The proportion of deep sleep is 29.2%. According to Table 6, the proportion of deep sleep is 

too high. This results in a reduction of the score by equation (5). 
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Where Sp has been calculated in the previous step, the value is 67.1. T is the total sleep 

duration which is the sum of each sleep stage duration, i.e. the sum of 30, 158.5, 117.5 and 

97, i.e. 403. By introducing this value into the equation we can get SD=67.1-(117.5-

403×0.23) ×(1-(0.13+0.23)/2)=46.76.
 

The proportion of light sleep is 39.3%. According to Table 6, the proportion of light sleep is 

too low. This results in a reduction of the score by equation (6). 
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Where SD has been calculated in the previous step, the value is 46.76. According to Table 6, 

PLL is 0.47, PLU is 0.6. DL is 158.5. By introducing the value into the equation we can 

obtain SDL=46.76-(403×0.47-158.5) ×(1-(0.47+0.6)/2)=32.4.
 

The proportion of REM is 24.1%. According to Table 6, the proportion of REM is within the 

normal range. The score will not change at this step, namely: 

DLDLR SS                                                                          (7) 

Finally, we check the total sleep duration is within the normal range or not. The total sleep 

duration T=403 minutes (6.7h) is not in the normal range for young adults and adults, which 

should be 7~9h according to Table 6. This will result in a reduction of the score by equation 

(8). 

)( TTSS LDLRDLRT 
                                                           (8) 

Where SDLR  has been calculated in the previous step, the value is -69.1. According to Table 

6, TL=420 minutes (7h). By introducing the values to the equation SDLRT=32.4-(420-

403)=15.4 can be obtained. The SDLRT is the raw sleep score, we rescale the raw sleep score 

in the range of 0~100 to obtain the final sleep score S. The rescaling is carried out by equation 

(9).
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Where Smin means the raw sleep score of a bad sleep, Smax means the raw sleep score of a very 

good sleep.  We have set the sleep with a duration of five minutes and the five minutes are all 

light sleep as the worst sleep. For the worst sleep, the duration of awake, light sleep, deep 

sleep and REM is 0, 5, 0 and 0. We can then calculate the corresponding raw sleep score 

Smin= -417.2. And we set the sleep with the duration of upper limit, the deep sleep proportion 

is also upper limit, no awake and both the light sleep and REM are in normal range as the best 

sleep. For the best sleep, the duration of awake, light sleep, deep sleep and REM is 0, 280.8, 



124.2 and 135. We can then calculate the corresponding raw sleep score Smax= 101.8. 

According to the equation, we can obtain the final sleep score S=(15.4-(-417.2))/(101.8-(-

417.2))×100=83.4. This is the whole procedure of sleep score calculation with the given 

duration of each sleep stage.
 
  

We are trying to find a lower limit of sleep score for a good sleep. Here we define a lower 

limit for good sleep as sleep where the lower limit of the appreciate duration, the lower limit 

of the normal deep sleep proportion, the upper limit of the normal awake proportion, and light 

sleep, REM are both within the normal range. For the lower limit of good sleep, the duration 

of awake, light sleep, deep sleep and REM is 21, 252, 54.6 and 92.4 minutes. The 

corresponding sleep score is defined as the lower limit of the sleep score for good sleep also 

as the basis for good sleep, which is 85.1. The sleep scores calculated for all volunteers on the 

basis of the hypnogram given by four methods are presented in Table 4. As can be seen, for 

the total 16 test nights, only the sleep score of night 4 with the threshold method, night 11 

with the Fitbit method and night 14 with the threshold and 5km2 methods is above the lower 

limit of the sleep score for good sleep. Thus, according to the method proposed for calculating 

the sleep score and the good sleep baseline, the rate of good sleep with the Fitbit method is 

6.67% (1/15); the rate of good sleep with the Threshold method is 13.3% (2/15); the rate of 

good sleep with the 5km2 method is 6.67% (1/15). It should be pointed out that the 5 

volunteers for the tests are all PhD students. One study showed that only 11.5% of the 

students surveyed met the criteria for good sleep quality (Buboltz et al., 2009). Thus, the 

relatively low rate of good sleep obtained by the methods we propose can be considered a 

reasonable result.  



 

Figure 11: Procedure for calculating the sleep score 

 

6 Performance evaluation with the PSG gold standard 

6.1 materials and methods 

The PSG is the gold standard for sleep monitoring, It is widely used to evaluate the 

performance of new sleep monitoring devices. In this study, we also use the PSG to test the 

two proposed methods. We use the sleep monitoring wristband developed by our group and 
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the PSG to simultaneously monitor the sleep of a volunteer in the sleep laboratory located in 

the university hospital center of Toulouse in France. The real sleep monitoring environment 

of this experiment and of the volunteer with the PSG and our wristband on his body is shown 

in Figure 12. The volunteer recruited is a 28-year-old man with a BMI (body mass index) of 

18.3. A one-night test was carried out for a primary evaluation of the performance of the two 

proposed methods. 

 

Figure 12. The volunteer with PSG and our wristband on body in real environment of this 

experiment. 

6.2 Results 

We compare the hypnogram obtained from the PSG and the two methods proposed, epoch by 

epoch. We compare hypnograms obtained by the threshold method and the 5km2 method with 

the hypnogram obtained by the PSG as shown in Figure 13. 



 

Figure 13. Hypnogram obtained from the PSG, Threshold method and 5km2 method. 

Table 8: Cumulative duration (in min) of each sleep stage obtained from the PSG, threshold 

and 5km2 methods 

 Awake Light sleep Deep sleep REM 

PSG 254 41.5 15.5 0 

Threshold method 237 56 6 12 

5km2 method 119 155.5 16 20.5 

Unit: minute 
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Figure 14. Proportion of each sleep stage obtained from the PSG, threshold and 5km2 

methods. 

Table 8 shows the duration of each sleep stage obtained by the PSG, the threshold method and 

the 5km2 method. Figure 14 shows the proportion of each sleep stage obtained from the PSG, 

the threshold method and the 5km2 method. 

By observing the PSG hypnogram in Figure 13, we can see that the sleep of this night consists 

mainly of awake and light sleep. This result is similar to that of the threshold method and the 

5km2 method. These two methods give a hypnogram consisting mainly of awake and light 

sleep. According to Table 8 and Figure 14, the difference is that the hypnogram of the 

threshold method contains relatively more awake (76%) which is closer to that detected by the 

PSG (82%) method, the hypnogram from the 5km2 method contains relatively less awake 

(38%) but more light sleep (50%). In the PSG hypnogram, the longest duration of deep sleep 

is located around 03:18:46. The threshold method and the 5km2 method also detected deep 

sleep at this time, but the proportion of deep sleep detected by the 5km2 method (5%) is 

higher and the same as that detected by the PSG (5%). In general, the hypnogram obtained by 

the threshold method and the 5km2 method have a similar profile to that of the PSG, and the 

5km2 method is relatively more efficient than the threshold method. The PSG did not detect 

any REM epochs but both the Threshold method and the 5km2 method detected some REM 

epochs. However, the cumulative duration of the REM detected by the Threshold method and 

the 5km2 method is relatively short, being 12 minutes and 20.5 minutes respectively. 
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Figure 15. Confusion matrix of the two methods proposed  

We compare the results of the sleep stage classification of the threshold method and the 5km2 

method with the PSG, epoch by epoch. Two confusion matrices are created to show the result, 

as illustrated in Figure 15. To evaluate the agreement between the two proposed methods and 

the classification of sleep stages using the PSG method, Cohen’s Kappa coefficient (κ) is 

calculated. According to the guidelines of Landis & Koch (1977), the Threshold method 

shows a fair agreement with the PSG (κ = 0.24), the 5km2 method shows a slight agreement 

with the PSG (κ = 0.09). 

As shown in the confusion matrix between the Threshold method and the PSG, most awake 

epochs are correctly classified as awake, a small proportion  are incorrectly classified as light 

sleep, no awake epochs are classified as deep sleep or REM. The light sleep epochs are 

mainly classified as awake or light sleep, but most are wrongly classified as awake. For deep 

sleep epochs, the classification results are scattered, but most are classified as deep sleep and 

REM. For the confusion matrix between the 5km2 method and the PSG, most awake epochs 

are classified as awake and light sleep, no one is wrongly classified as deep sleep but a very 

small amount is wrongly classified as REM. Most light sleep epochs are classified as awake 

and light sleep with a small amount classified as deep sleep and REM. Most deep sleep 

epochs are correctly classified, none are wrongly classified as awake and only one epoch is 

incorrectly classified as light sleep.  

In general, the classification errors of these two methods exist mainly in the confusion 

between awake and light sleep, and between deep sleep and REM. It should be noted that 

neither of the two proposed methods involves confusion between deep sleep and awake, and 

there is only little confusion between deep sleep and light sleep. For physiological 

significance, deep sleep is very different from awake and light sleep. Therefore, confusion 

between deep sleep and awake, and confusion between deep sleep and light sleep can be 
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considered as serious error. Fortunately, both proposed methods have very few errors in this 

respect.  

 

Figure 16. Confusion matrix for the recognition of each sleep stage with the threshold method  

 

 

Figure 17. Confusion matrix for the recognition of each sleep stage with the 5km2 method  
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The confusion matrices for the recognition of each sleep stage using the Threshold method 

and the 5km2 method are shown in Figures 16 and 17. Six performance assessment indexes 

based on the confusion matrix are calculated, including sensitivity, specificity, accuracy, 

precision, balanced accuracy and F1 score, as presented in Table 9. These indexes assess 

performance from different perspectives. They all range from 0 to 1, and a higher value means 

better performance. In order to make an overall assessment of classification performance for 

the two proposed methods, the values of all the indexes in Table 9 are averaged and the 

results are presented in Table 10. 

Table 9: Assessment indexes for recognition of each sleep stage with threshold and 5km2 

methods 

Evaluation indexes Method Awake REM Light Deep 

FNTP

TP
ySensitivit




 

Threshold 0.83 0 0.25 0.39 

5km2 0.42 0 0.46 0.77 

TNFP

TN
ySpecificit




 

Threshold 0.55 0.96 0.83 1.00 

5km2 0.76 0.93 0.49 0.99 

FNTNFPTP

TNTP
Accuracy






 

Threshold 0.78 0.96 0.75 0.97 

5km2 0.48 0.93 0.49 0.98 

FPTP

TP
Precision




 

Threshold 0.89 0 0.19 1.00 

5km2 0.89 0 0.12 0.75 

2
FNTN

TN

FPTP

TP
accuracy Balanced 















 

Threshold 0.66 0.50 0.53 0.98 

5km2 0.56 0.50 0.49 0.87 

ysensitivitprecision

ysensitivitprecision2
scoreF1






 

Threshold 0.86 0 0.22 0.56 

5km2 0.57 0 0.19 0.76 

 

Table 10: The average of all the performance evaluation indexes in Table 8. 

Method Awake REM Light Deep 

Threshold 0.76 0.40 0.46 0.82 

5km2 0.61 0.39 0.37 0.85 

 

According to Table 9, the classification for deep sleep shows good performance in both of the 

proposed methods. The performance of the classification for awake is acceptable in both 

proposed methods, but the Threshold method is better than the 5km2 method. The 

performance of the classification for REM and light sleep is relatively lower in the two 

proposed methods. For the REM classification performance, the two proposed methods are 

very close, but the Threshold method is also better than 5km2 method for the light sleep 

classification performance. 



7 Conclusion 

In this paper, we propose sleep stages classification algorithms based only on wrist 

movements acquired by a worn accelerometer. The proposed algorithms include the 

“Threshold method” and the “5km2 method”. The “Threshold method” uses three thresholds 

to achieve falling asleep/ waking up detection and sleep stages (“awake”, “light sleep”, “deep 

sleep” and “REM”) classification. The “5km2 method” achieves sleep stages (“awake”, “light 

sleep”, “deep sleep” and “REM”) classification by performing k-means clustering (k=2) 5 

times. We enrolled 5 volunteers (2 males, 3 females) who carried out validation tests for 16 

full nights. Among the 16 nights, 10 nights show that the “5km2” method is better than the 

“Fitbit” and the “Threshold” methods, 4 nights show a close performance, only 2 nights show 

that the “5km2” method is worse. However, the Fitbit is not the gold standard for sleep 

monitoring, just as subjective feedback on sleep is not sufficiently reliable as a reference 

either. Moreover, we have defined a sleep score calculation method to assess the sleep quality 

of a full night. With tests conducted over 15 nights, the sleep score obtained by the method we 

propose shows promising performance in determining the sleep is good or not. As a 

preliminary validation of the two methods proposed for the sleep stages classification, one 

volunteer done a full night's sleep monitoring with the PSG at the hospital. Based on the 

confusion matrix analysis, the results show that the proposed 5km2 method and the Threshold 

method has a slight and fair agreement with the PSG respectively. Both methods are 

particularly efficient in the detection of awake and deep sleep. In the future, we plan to adopt 

the PSG as a reference device for testing the proposed methods by recruiting more subjects 

and organizing more trials for each subject. In addition, some classical machine learning 

methods such as multilayer perceptron, support vector machines and random forests (Maior et 

al., 2020; Tsekoura and Foka, 2020); time-frequency transform methods such as Fourier 

transform, wavelet transform and statistical feature extraction methods (Mohammed et al., 

2019) as well as the popular neural networks (Arefnezhad et al., 2020) have performed well in 

similar research areas. In our future work, we also plan to try to adopt these methods to 

improve the performance of our proposed algorithms. 
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