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Performance Bounds for Stochastic Receding Horizon Control
with Randomly Sampled Measurements

Aneel Tanwani Debasish Chatterjee Lars Grüne

Abstract— This article considers the problem of
analyzing the performance of model predictive con-
trollers in minimizing infinite-horizon cost functionals
associated with stochastic dynamical systems when
the measurements received by the controller are ran-
domly sampled in time. In contrast to the standard
model predictive control algorithms which rely on
availability of the state measurements at all times, we
compute control policies which minimize cost func-
tionals over a (finite) rolling-horizon conditioned upon
the information that arrives at random time instants;
although a hard upper bound equal to the length of
the optimization horizon is imposed on consecutive
sampling instants. Sufficient conditions are provided
on the system dynamics, the cost functionals, and
the statistics of the sampling process, such that the
proposed policies result in computable upper bounds
on the infinite-horizon average cost. The case of linear
time-varying system with quadratic cost functionals is
studied for the illustration of our results.

I. Introduction

Developing computational methods for solving optimal
control problems for dynamical systems is of interest
to several disciplines across engineering and economics.
Over the past two decades, model predictive control
(MPC) has proven to be one of the most useful paradigms
for addressing such problems on a rather wide scale,
which comprise different classes of dynamical systems
and several generalizations in the description of optim-
ization problems. Some research monographs and survey
articles published on this topic provide a comprehens-
ive overview of the field. For deterministic problems,
the reader may consult [14], [13], [9]. For stochastic
dynamical systems, there are several references which
address minimization of finite-horizon cost functions and
these tools lie at the core of stochastic MPC problems;
see [5] for standard exposition on this topic, [15] for
a recent survey, and [3], [11] for an account of earlier
developments specific to discrete-time Markov chains.
The central element of the predictive control is that
we want to address an optimization problem over a
large, or infinite, time horizon by solving the problem
on a smaller finite horizon, which is computationally
tractable. Of course, when we implement the control
actions obtained by solving the finite horizon problems,

A. Tanwani is with LAAS–CNRS, Université de Toulouse,
CNRS, 31400, Toulouse. D. Chatterjee is with the Department of
Systems and Control Engineering, IIT Bombay, Mumbai 400076,
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the resulting cost over the infinite horizon is larger
than the minimal cost. One of the central questions is
to analyze how much the performance resulting from
the computationally tractable algorithms has degraded
compared to the theoretically optimal performance. One
way to do so is by quantifying the increase in the value
of the cost functional obtained by implementing MPC-
based policies. Such questions are addressed in [7], [8] and
in this article, we will focus on the performance of model
predictive control under random time sampling of the
state measurements received by the controller (possibly
induced by communication over network). Stabilization
of dynamical systems with random sampling has been
studied in [12], [17], [22], [2], [20], and a survey of
literature with some recent results on this topic can be
found in [19].

Model predictive control problems in discrete-time
settings under the effects of network have been studied
in [10], [16], [18], [21], among others. The authors of [21]
study the problem of ergodic control where a certain cost
is associated to the information sent by the sensors, and
the trade-offs between system performance and increased
cost due to sensor querying are analyzed. The papers [10],
[18] address the stability of the closed-loop dynamical
system subject to the uncertainties in communication
between the plant and the controller. Since dynamic pro-
gramming is an essential tool in solving MPC problems,
the paper [1] also has some relevance to our work as it
deals with computation of finite-horizon optimal controls
for continuous-time linear time-invariant systems using
dynamic programming under random sampling.

The focus of this article is to analyze the performance
of MPC-based algorithms subject to random sampling
of the measurement process. In Section II, we precisely
state the problem formulation and the hypotheses on
the system dynamics for our problem setup. The main
result in Section III provides upper bounds on the min-
imal value of the infinite-horizon average cost associated
with the trajectories of a controlled stochastic dynamical
system in terms of the optimal value associated with a
finite-horizon cost functional. The upper bounds, that
are obtained for the average cost, depend on the second
moment of the noise entering in the dynamics and certain
moments associated with the sampling process. As an
illustration of the framework adopted in this paper, the
case of linear dynamics with quadratic cost functional is
studied in Section IV.



II. System Class and Problem Formulation

We consider discrete-time stochastic nonlinear systems
described by

xt+1 = f(xt, ut, wt), t ∈ N (1)

where xt ∈ Rd is the state, and ut belongs to the
admissible control set U ⊂ Rm for each1 t ∈ N. The
process noise (wt)t∈N is assumed to be such that the
sequence of random variables wt, t ∈ N, is independent
and identically distributed (i.i.d.). The initial condition
x0 ∈ Rd for the state process (xt)t∈N determined by (1)
is assumed to be fixed and known.

For the synthesis of control actions for dynamical
system (1), we introduce an infinite-horizon average cost
functional,

Jave
∞ (x0, u) := lim sup

k−→∞

1
k

E
[ k−1∑
t=0

c(xt, ut)
∣∣∣∣x0

]
, (2)

for some measurable function c : Rd×U −→ R. Obtaining
a control policy that minimizes the cost functional (2)
is often infeasible in practical setups, so we look at the
finite-horizon cost functional

Jν(x0, u) := E
[ ν−1∑
t=0

c(xt, ut) + cF (xν)
∣∣∣∣x0

]
, (3)

where we call ν ∈ N∗ the optimization horizon. The
minimization of the finite-horizon cost functional in (3)
is a rather well-studied topic in the literature and is
considered numerically more tractable than (2). We seek
a control policy that minimizes (3) within a set of ad-
missible feedback policies, which is denoted in the sequel
by Π. A ν-stage feedback policy π ∈ Π is described
as (π0, π1, . . . , πν−1) such that πi : Rd −→ U is a
measurable function. In what follows, it is useful to
introduce the cost-to-go functions,2

Vν−k(xk, πk:ν−1) :=

Eπk:ν−1

[ ν−1∑
t=k

c(xt, ut) + cF (xν)
∣∣∣∣xk], (4)

for 0 6 k 6 ν − 1. In the definition (4), xt+1 is obtained
with the input ut = πt(xt) in (1), for k 6 t 6 ν − 1,
subject to the state value xk at time t = k. The central
ingredient of MPC is to solve the following minimization
problem:

min
π∈Π

Vν(x0, π) subject to (1). (5)

1We adopt the convention that N = N∗ ∪ {0}.
2A slightly general version of the notation introduced in (4)

will be used frequently. With π`1:`2 , `1 6 `2, we denote the
policies (π`1 , . . . , π`2 ). For appropriately defined measurable func-
tions ϕ1, ϕ2, Eπ`1:`2 [

∑s+(`2−`1)
t=s ϕ1(xt, ut) + ϕ2(xs+(`2−`1)+1)]

denotes the expectation where we take us = π`1 , . . . , us+`2−`1 =
π`2 , and for t = s, . . . , s+ `2 − `1, we obtain xt+1 from (1) for this
choice of ut, with xs prespecified.

Remark II.1. We have not included state constraints
in the formulation of the optimization problem (5).
Including such constraints in the stochastic setting with
nonlinear dynamics is rather difficult [4], [6]. However,
one can consider the admissible set of policies Π, or
the admissible control set U, to cater for the input
constraints.

Let us now discuss the characteristics of the solution
to the minimization problem (5). Of particular interest
to us is to take into account the information available to
the controller for computing policies which minimize (5).

A. Policies with perfect state information

For the sake of completeness, we review the case when
the state measurement xt is available for each t ∈ N. The
point of departure in our treatment is that the problem
(5) has a solution in Π.

(H1) The optimization problem (5) is well-defined for
each x0 ∈ Rd and admits a solution π? in the class of
permissible feedback policies Π.

Under this assumption, the optimal solution to (5) is a
ν-stage feedback policy π?0:ν−1 := (π?0 , · · · , π?ν−1). The
closed-loop system under this policy is described as:

x?t+1 = f(x?t , π?t (x?t ), wt), x?0 = x0 given, t = 0, . . . , ν−1.

For each 0 6 k 6 ν − 1, we let V ?ν−k(x) :=
Vν−k(x, π?k:ν−1), and it is instructive to recall that

V ?ν−k(x) = Ew
[
V ?ν−k−1(f(x, π?k(x), wk))

]
+ c(x, π?k(x)),

and the optimal control policy π? satisfies

π?k(x) := arg min
πk

{
Ew
[
V ?ν−k−1(f(x, πk(x), wk))

]
+ c(x, πk(x))

}
. (6)

The receding horizon control policy, π̂ := (π?0 , π?0 , . . . ), is
then implemented by choosing

ut = π?0(xt), t ∈ N. (7)

B. Randomly sampled measurements

We are primarily interested in studying the perform-
ance of MPC-based algorithms when the information
between the plant and the controller is transmitted over
a communication channel. As a result, the state meas-
urements may not be communicated to the controller
at all time instants either because of the underlying
communication protocol, or due to the packet dropouts.
For the problem studied in this paper, we model such
scenarios by assuming that the state xt is only available
to the controller at some random time instants. These
time instants, at which the state measurements are suc-
cessfully transmitted, are given by a monotonically non-
decreasing nonnegative integer-valued sequence (τn)n∈N



taking values in N. We introduce a nonnegative integer
valued stochastic process Tt, defined as Tt := t − τNt ,
with Nt given by

Nt := sup
{
n ∈ N

∣∣ τn 6 t
}

for t ∈ N. (8)

For the results in this paper, it is stipulated that

(H2) The sequence of random variables
{(τi+1 − τi)}i∈N, is i.i.d., and independent of the
process noise. Also, the random variable Tt satisfies the
hard bound Tt 6 ν − 1, for each t ∈ N∗.

A hard bound, equal to the length of optimization
horizon, is being imposed on the random sampling in-
tervals; this was also the case in [10] so that the policies
consistent with MPC could be implemented in case some
measurements are not received by the controller. We next
explain how this assumption leads to a rather natural
choice for control policy.

C. Policies with imperfect state information

Because of the loss of information due to random
sampling of the state measurements, the receding horizon
policy given in (7) cannot be implemented and hence
appropriate adjustments are required in computing the
control actions that minimize (5). We now describe an
algorithm for computing a ν-step policy û, whenever the
new state measurements arrive. In contrast to the case
with perfect state information, the policies computed
here are such that ût depends on a function of xτNt , and
does not depend on the state values xt, for τNt < t <
τNt+1 and we recall that, under (H2), τNt+1 6 τNt+ν−1.

To understand how we compute the control policies
under random sampling, fix (momentarily) τ0 = 0, and
assume that x(0) = x0 is received by the controller at
time t = 0. The objective is to compute ût, 0 6 t 6 ν−1
that minimizes (5) conditioned upon randomly occurring
sampling events. Adopting the dynamic programming
route to compute the policy, we introduce the functions,
for 0 6 k 6 ν − 1,

V̂ν−k(x0) = min
πk:ν−1

Eπk:ν−1
[
Vν−k(xk, πk:ν−1)

∣∣∣x0

]
. (9)

Compared to V ?ν−k, the difference in the definition of
the functions V̂ν−k is due to the expectation conditioned
upon x(0), as the former provides the optimal cost to
go for a given value of xk, whereas the later provides the
minimal cost to go for an expected value of xk given {x0}.
In (9), the state xk is obtained by applying û0:k−1(x0)
which are to be computed as a function of last received
state measurement x0. In particular, ûk(x0) is chosen as
a minimizer of V̂ν−k(x0), that is,

ûk(x0) :=

arg min
uk∈U

{
E
[
Ew
[
V ?ν−k−1(f(xk, uk, wk))

]
+ c(xk, uk)

∣∣x0

]}
,

(10)

for 0 6 k 6 ν − 1. Note that, by definition (10), û0(x)
coincides with π?0(x), for each x ∈ Rd. As a result of
random sampling, and the aforementioned definition of
the policies, the control input is given by

ut =
{
π?0(xt), if Tt = 0,
ûk(x(τNt)), if Tt = k > 0,

(11)

where uk(x(τNt)) is defined as in (10) with x0 replaced
by x(τNt).

We introduce the following assumption to quantify the
increase in the value of the objective function due to the
loss of perfect state information.

(H3) For each x0 ∈ Rd, and each k ∈ {0, . . . , ν − 2},

E
[
Ew[Vν−k−1(f(xk, ûk(x0), wk), π?k+1:ν−1)]

∣∣∣x0

]
+

E
[
c(xk, ûk(x0))

∣∣∣x0

]
6 E[V ?ν−k(xk) |x0]

+ E[c̃(ûk(x0)− π?k(xk)) |x0], (12a)

and the similar inequality holds for k = ν − 1, that is,

E
[
Ew[cF(f(xν−1, ûν−1(x0), wν−1))]

∣∣∣x0

]
+ E

[
c(xν−1, ûν−1(x0))

∣∣∣x0

]
6 E[V ?1 (xν−1) |x0]

+ E[c̃(ûν−1(x0)− π?ν−1(xν−1)) |x0] (12b)

for some real-valued positive-definite function c̃ : Rm −→
R, and xk, 1 6 k 6 ν − 1 is obtained from (1) by taking
x0 the value of state at t = 0, and using û0, . . . , ûk−1 as
the input.

In other words, (H3) says that the increase in the value
of Vν−t by applying ût at time t > 0, compared to the
optimal value V ?ν−t(xt) obtained by applying π?t (x), is
no more than the expected value of c̃(ût(x0) − π?t (xt))
conditioned upon the last received measurement.

D. Problem formulation

Within the setup described in this section: controlled
stochastic process subject to randomly sampled meas-
urements, we are interested in computing the bounds on
the infinite-horizon average cost functional Jave

∞ defined
in (2), by implementing the control policies given in (11).

III. Bounds on Infinite-Horizon Cost

As a solution to the aforementioned problem, the result
we obtain eventually appears in Theorem III.2, and we
need the following additional assumptions in our problem
formulation to state this result:

(H4) There exists a feedback map g : Rd −→ U, a
constant b > 0, and a bounded set K ⊂ Rd such that

sup
z∈K

{
c(z, g(z))− cF(z) + E

[
cF(f(z, g(z), w0))

]}
6 b,

(13a)



c(z, g(z))− cF(z) + E
[
cF(f(z, g(z), w0))

]
6 0, z 6∈ K.

(13b)

Assumption (H4) was also used in [7, Theorem 3] for
analyzing the performance of MPC with perfect state
information. In addition to guaranteeing the existence
of a stabilizing feedback law, the assumption (H4) also
requires the stage cost c and the final cost cF to be
compatible with each other. Due to process noise, it
is natural to require the decrease in the cost function
only when the state is outside a bounded set. The next
assumption (H5) also relates the running cost with the
final cost, and can be interpreted as the detectability
property associated with the stage cost function and
becomes useful in relating the cost function with the
value function.

(H5) For each z ∈ Rd and u ∈ U, and some α ∈]0, 1],
the stage cost satisfies the inequality

c(z, u) > αcF(z). (14)

The last assumption, given below, basically puts a bound
on the growth of the value function which is incurred by
applying the policy (11) due to unavailability of state
measurements over time intervals of random length.

(H6) For each ` ∈ N and each k ∈ {0, . . . , ν − 1}, there
exist scalars C1,k, C2,k > 0 such that,

Eûτ`:τ`+k
[τ`+k∑
t=τ`

c̃(π?t (xt)− ût)
∣∣∣∣x(τ`)

]
6

C1,k + C2,kV
?
ν (x(τ`)). (15)

Remark III.1. In case of linear (possibly time-varying)
dynamics, and quadratic costs, it will be shown in Sec-
tion IV that C1,k depends on variance of the noise in
plant dynamics and is linear in k, while C2,k = 0.
However, in general, for nonlinear dynamics C2,k is not
necessarily zero.

We now use these assumptions to state our main result,
which uses the following notation:
C1 := E[C1,τ1−τ0 ], d := C1 + ανb+ E[τ1 − τ0],
C2 := E[C2,τ1−τ0 ], γ := (1 + C2 − α).

(16)

Note that due to i.i.d. assumption on the sampling
process in (H2), for each ` ∈ N, Ci = E[Ci,τ`+1−τ` ],
i = 1, 2. For brevity, we let Ci,` := Ci,τ`+1−τ` .

Theorem III.2. Consider the dynamical system (1)
subject to the sampling process Tt, and the control input
ut given in (11). If assumptions (H1)–(H6) hold, and
moreover,

γ < 1,

then the infinite-horizon average cost (2) is bounded, and
satisfies

lim sup
k−→∞

1
k

E
[ k−1∑
t=0

c(xt, ut)
∣∣∣∣x0

]
6 b+ C1 + dC2.

To derive this result, several intermediate steps are
required which we describe next.

A. Intermediate Results

The first statement that we need is a direct con-
sequence of our certainty equivalence based hypo-
thesis (H3). In what follows, we use the notation ] for
concatenation of policies, so that we can write uk1:k2 =
uk1:k]uk+1:k2

for any k1 6 k < k2.

Lemma III.3. Under the hypotheses (H1), (H2) and
(H3), for each sampling instant τ` ∈ N, and each k ∈
{0, . . . , ν − 1}, we have

Eû0:k]π
?
k+1:ν−1

[τ`+ν−1∑
t=τ`

c(xt, ut) + cF(xτ`+ν)
∣∣∣x(τ`)

]
6

Eπ
?
0:ν−1

[τ`+ν−1∑
t=τ`

c(xt, ut) + cF(xτ`+ν)
∣∣∣x(τ`)

]
+ Eû0:k

[ k∑
j=0

c̃(π?t (xj+τ`)− ûj(xτ`))
∣∣∣x(τ`)

]
(17)

where c̃ : Rd −→ R is the positive definite function
introduced in (H3).

The next statement provides an upper bound on the
value function V ? at a sampling instant τ` in terms of the
last successfully received measurement at time τ`−1, and
makes use of the inequality (17) given in the preceding
lemma.

Lemma III.4. Under the hypotheses (H1), (H2),
(H3), and (H4), the following inequality holds for each
sampling instant τ` ∈ N,

Eû0:τ`+1−τ`−1
[
V ?ν (x(τ`+1))

∣∣∣x(τ`)
]
6 V ?ν (x(τ`))

− Eû0:τ`+1−τ`−1
[τ`+1−1∑
t=τ`

c(xt, ut)
∣∣∣x(τ`)

]
+ b(τ`+1 − τ`)

+Eû0:τ`+1−τ`−1
[τ`+1−τ`−1∑

j=0
c̃(π?j (xj+τ`)−ûj(xτ`))

∣∣∣x(τ`)
]
.

(18)

The last statement that we need for our main result is
a stability-like estimate which provides a uniform bound
on the value function for a particular realization of the
sampling instants. It builds on the inequality (18) given
in Lemma III.4 and additionally uses (H5) and (H6).

Proposition III.5. Consider dynamical system (1) with
the input given by (11), and assume conditions (H1)–
(H6). For each sampling instant τ` ∈ N, it holds that

Eûτ`:τ`+1−1
[
V ?ν (x(τ`+1))

∣∣∣x(τ`)
]
6 (1−α+C2,`)V ?ν (x(τ`))

+ C1,` + b(τ`+1 − τ`) + ανb. (19)



B. Proof of Theorem III.2

We now use the inequalities provided in Lemma III.4
and Proposition III.5 to derive the bound stated in
Theorem III.2.

Proof. Using the inequality (18), for each ` ∈ N, and
employing the notation ∆` = τ`+1 − τ`, we obtain

Eû0:∆`−1

[τ`+1−1∑
t=τ`

c(xt, ut)
∣∣∣∣x(τ`)

]
6 V ?ν (x(τ`))

− Eû0:∆`−1
[
V ?ν (x(τ`+1))

∣∣∣x(τ`)
]

+ Eû0:∆`−1

[∆`−1∑
j=0

c̃(π?j (xj)− ûj)
∣∣∣∣x(τ`)

]
+ b∆`.

Moreover, by invoking hypothesis (H6),

Eû0:∆`−1
[τ`+1−1∑
t=τ`

c(xt, ut)
∣∣∣x(τ`)

]
6 V ?ν (x(τ`))

− Eû0:∆`−1
[
V ?ν (x(τ`+1))

∣∣∣x(τ`)
]

+ C2,`V
?
ν (x(τ`)) + C1,` + b∆`.

Adding these intersample bounds for first k samples, and
letting ûk denote the concatenation of the policies given
in (10) from time t = 0 to τk − 1, that is,

ûk = (û0:τ1−1, û0:τ2−1, . . . , û0:τk−1),

we obtain

Eû
k

[τk−1∑
t=0

c(xt, ut)
∣∣∣∣x(τ0)

]
6 V ?ν (x(τ0))− V ?ν (x(τk))

+ b(τk − τ0) +
k−1∑
`=0

C2,`V
?
ν (x(τ`)) + C1,`. (20)

So far, we have worked with fixed values of {τ`}`∈N
along one sample path. We now compute expectation
with respect to the random variables associated with the
inter-sampling times. Before doing so, we need to get a
bound on the term

∑k
`=0 C2,`V

?
ν (x(τ`)); and for that, let

γ` := (1− α+ C2,`) and d` := C1,` + b(τ`+1 − τ`) + ανb.
It was observed in (19) that

V ?ν (x(τ`)) 6
∏̀
i=1

γiV
?
ν (x(τ0)) +

`−1∑
i=1

∏̀
j=i+1

γjdi + d`.

This immediately leads to
k∑
`=0

C2,`V
?
ν (x(τ`)) 6 V ?ν (x(τ0))

k∑
`=1

C2,`
∏̀
i=1

γi

+ d1

(
C2,1 +

k∑
`=2

C2,`
∏̀
i=2

γi

)

+ d2

(
C2,2 +

k∑
`=3

C2,`
∏̀
i=3

γi

)
+ · · ·

· · ·+ dk−1(C2,k−1 + C2,kγk) + C2,kdk.

Now, let γ := E[1− α+C2,`)], and d := E[d`], which are
uniform with respect to ` ∈ N due to i.i.d. assumption on
the sampling process. Computing the expectation (with
respect to sampling times) of each term on the right-hand
side of (20), we get

1
k

E{τ`}
[ k∑
`=0

C2,`V
?
ν (x(τ`))

]
6 V ?ν (x(τ0)) 1

k
C2

k∑
`=1

γ`

+dC2+ 1
k
dC2

(
k∑
`=2

γ`

)
+ 1
k
dC2

(
k∑
`=3

γ`

)
+· · ·+ 1

k
dC2.

Taking the limit as k −→ ∞ we see that the right-hand
side is bounded by the constant dC2 as all the remaining
terms converge to zero, so that

lim sup
k−→∞

1
k

E{τ`}
[ k∑
`=0

C2,`V
?
ν (x(τ`))

]
6 dC2.

Coming back to (20), we now take expectation with re-
spect to random sampling intervals, divide the resulting
expression on both sides by k (note that k > τk), and
take the limit as k −→∞, to get

lim sup
k−→∞

1
k

E{τ`}
[
Eû

k

[τk−1∑
t=0

c(xt, ut)
∣∣∣∣x(τ0)

]]
6

b+ C1 + dC2 (21)

and hence the desired assertion holds.

IV. Linear Quadratic Case

We consider the special case where the dynamics are
linear time-varying and described by3

xt+1 = Atxt +Btut + wt, (22)

where the noise process {wt}∞t=0 is a zero mean Gaussian,
and satisfies the i.i.d. assumption. The cost function we
consider in this case is quadratic:

Jave
∞ (x0, u) = lim sup

k−→∞

1
k

E
[ ∞∑
t=0

x>t Qtxt + u>t Rtut

∣∣∣x0

]
.

During a particular realization, and given the sampling
time τNt , the finite-horizon cost functional which we
consider for computing the control policy, is defined as

Jν,τNt (x(τNt), u) :=

E
[τNt+ν−1∑

s=τNt

x>s Qsxs + u>s Rsus

+ x>τNt+νQτNt+νxτNt+ν

∣∣∣∣x(τNt)
]
.

It is assumed that the matrices {Ai, Bi, Qi, Ri}i∈N belong
to a compact set with (Ai, Bi) controllable, and Qi, Ri

3In contrast to model given in (1), the system (22) is time-
varying, but our results carry over to this case with obvious
modfications.



positive definite, for each i ∈ N. Following the develop-
ment carried out in [5, Chapters 3 & 4], it can be shown
that the control policy given in (10) results in

ût = Lt−τNtE[xt |xτNt ]

for some appropriately chosen matrices Lt−τNt . Thus,
the computed policy is a linear feedback that uses the
estimate of the current state conditioned upon the last
received measurement. To give an expression for the
gains Lt−τNt , fix Nt = 0 and let τ0 = 0 for the sake
of simplicity. In this case, for 0 6 k 6 ν − 1,

Lk = −(Rk +B>k Kk+1Bk)−1B>k Kk+1Ak

by setting Kν = Qν , and for 0 6 k < ν, we let

Pk = A>kKk+1Bk(Rk +B>k Kk+1Bk)−1B>k Kk+1Ak.

Kk = A>kKk+1Ak − Pk +Qk.

We next show that with this choice of gains, the chosen
policy indeed satisfies all the hypotheses. In the sequel,
we only check (H3) and (H6). To see that (H3) holds,
it can be verified, using the dynamic programming prin-
ciple, that

V ?ν−k(xk) = E[x>k+1Kk+1xk+1] + E[w>k+1Qkwk+1].

Moreover,

V̂ν−k(x0)

= min
uk

E
[
x>k Qkxk + u>k Rkuk + V ?ν−k+1(xk+1)

∣∣∣x0

]
= E[x>k Qkxk |x0] + min

uk
E
[
u>k Rkuk + x>k+1Kk+1xk+1

∣∣∣x0

]
+ E

[ ν−1∑
j=k+1

w>j Qjwj

]
.

The control policy ûk = LkE[xk |x0] is indeed a minim-
izer that yields V̂ν−k(x0). Let x̂k := E[xk |x0]. Observing
that xk − x̂k is independent of the policy used (because
of the linearity structure), we get

V̂ν−k(x0) = E[x>kKkxk |x0] + E
[ν−1∑
j=k

w>j Qjwj

]
+ E[(xk − x̂k)>Pk(xk − x̂k) |x0].

Hence, recalling the definition of Pk, the hypothesis (H3)
is seen to hold with

c̃(v) = max
06k6ν−1

v>(Rk +B>k Kk+1Bk)v.

To see that (H6) holds, for each k ∈ {0, . . . , ν − 1}, let
C1,k = kcE[w2

0] for some c > 0 large enough. It readily
follows that

Eû0:k−1

[k−1∑
t=0

c̃(Lt(xt − x̂t))
∣∣∣∣x0

]
6 C1,k, (23)

so that (15) is satisfied with C2,k = 0.
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