
HAL Id: hal-04866548
https://laas.hal.science/hal-04866548v1

Submitted on 6 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testbed for Multi-access Edge Computing V2X
applications prototyping and evaluation (”Regular

paper”)
Bilel Cherif, Pascal Berthou, Nicolas Riviere, Yann Labit

To cite this version:
Bilel Cherif, Pascal Berthou, Nicolas Riviere, Yann Labit. Testbed for Multi-access Edge Computing
V2X applications prototyping and evaluation (”Regular paper”). ERTS, Jan 2020, Toulouse (France),
France. �hal-04866548�

https://laas.hal.science/hal-04866548v1
https://hal.archives-ouvertes.fr

 Testbed for Multi-access Edge Computing V2X applications prototyping and evaluation

(“Regular paper”)

Bilel Cherif1,2, Pascal Berthou1,2, Nicolas Riviere1,2, Yann Labit1,2

1 CNRS, LAAS, 7 avenue colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse UPS, F-31400 Toulouse, France
Email:{bcherif, pberthou, nriviere, ylabit}@laas.fr

Abstract—Multi-access Edge Computing (MEC) is one of the key enablers behind intelligent transportation systems (ITS)
futuristic applications. To address and evaluate applications that aimed at offering a service in this context, researchers and
developers need a prototyping tool to abstract this system aspects. However, currently available tools do not model this
environment nor give the possibility of running under development MEC services for evaluation purposes. In this paper, we
propose a MEC vehicular application testbed, combining virtual technologies and network emulation tools. The goal is to help
through the process of evaluating proposed solutions and applications destined to offer MEC ITS services.

Keywords— Multi-access Edge Computing, V2X applications, MEC Emulation environment, MEC testbed, ITS, Network
Emulation.

 I. Introduction
The shift toward next-generation automotive systems driven

by intelligent transportation systems (ITS). ITS concept
introduces a new vehicular software model. ITS systems are
intended to offer a whole new set of services to improve the
automotive system's safety, comfort, and efficiency. One primary
concept under the umbrella of ITS is the connected vehicles (CV)
concept, which aims at equipping vehicles with communication
capabilities. Connected vehicles are intended to collaborate
through a network infrastructure and computing platform in order
to realize the aforementioned goals behind the concept of ITS. A
Cloud-based centralized model has become the default approach
for network-based services [1]. However, many vehicular
applications demand stringent latency, reactivity, reliability, and
bandwidth requirements that a centralized Cloud environment
could not satisfy [2] [3] [4]. Current proposals [5] [6] are
promoting a significant shift towards a distributed architecture to
overcome the significant limitations of Cloud IoT platforms
regarding connected vehicle applications, such as mobility,
location awareness, and ultra-low latency.

Multi-access edge computing (MEC) technology is promising
to offer ultra-low latency, high bandwidth, and real-time access to
radio network information that can be leveraged by a new set of
on Cloud vehicular safety and real-time applications. The core
idea of MEC is to move computation closer to the user, whereby
computing capabilities (Micro Data Centers or small servers) that
can host Cloud applications at the mobile network edge. The
"edge" term refers to the fusion of base stations (or access points)
and data centers close to the mobile radio network. Operators can
open their RAN edge to authorized third-parties, which will

motivate connected vehicles industry to deploy innovative
applications and services flexibly and rapidly.

The key components that can provide processing and storage
capabilities at the edge of the network are called MEC hosts [7].
The MEC hosts are involved in the data processing of different
V2X applications. The MEC hosts offer virtualized resources
located between centralized vehicular Cloud and the vehicle’s
onboard system as a middle point. Depending on the application
requirement, they can play the role of relaying points or support
advanced tasks, including data caching, Geo-localization,
real-time analysis, load balancing, resource management, and
security. Regarding the software model, the MEC paradigm
pushes critical service away from the central nodes, e.g.,
Datacenter (DC) or Cloud, to the logical extremes of a network.
Ideally located a "single-hop" away from the user, the closer the
application and the content, the better Quality of Experience
(QoE) is delivered to the end-user [8]. By pushing the critical
services away from the centralized environment, the MEC
paradigm removes bottlenecks and potential points of failure, thus
making it more preferably resilient to failure.

However, The MEC system needs management software that
globally coordinates between MEC infrastructure hosts and
services deployment. The MEC management software will, for
sure, have an impact on the deployed services and their interaction
with the end-user requests. Very recently, fundamental work [9],
[10], [11], [12] by ETSI have proposed a reference architecture,
design goals, and the essential components of the mobile edge
computing platform. In such an environment, the creation of MEC
services involves steps such as: the development of the service
functions; the services distribution between MEC and Cloud
levels; its integration with the system that performs life cycle
management and orchestration; the implementation and test of

management interfaces; the implementation and validation of
service-specific management components.

A current issue in this area is the lack of supporting tools to
prototype and test services in MEC scenarios. To the best of our
knowledge, there are no readily available MEC testbeds that can
help researchers and developers to design and verify distributed
algorithms destined to run in a similar environment. At the
development phase of V2X MEC service components, supporting
tools can reduce deployment time, save costs, and improve the
quality of the offered services. These tools should allow testing
MEC services interaction regarding the end-user and the other
hosts, such as exchanging different vehicle onboard sensor data
through the network and also validating its interaction with the
management system.

In this context, Continental Digital Service France (CDSF) and
LAAS-CNRS started the eHorizon project (2017-2021) for
addressing the research and technological issues of ITS systems.
This paper deals with presenting the global ITS system
architecture, as well as an analytical view of the system's
architecture and the requirements of the applications in MEC
vehicular applications (V2X) use case. Finally, a testbed is
proposed to offer a prototyping platform for the MEC V2X
application.

Figure.1 Intelligent transportation system global architecture

II. The global architecture of ITS system
In this section, we describe the global architecture of an ITS

system that will serve later in our system analysis to justify our
technical solutions. First, we present the main components of the
architecture, their corresponding interactions, and the used
technological standards. Finally, we discuss the main challenges
of developing MEC V2X application.

A. Architecture Main Components

The global architecture of an ITS system consists of four main
parts as shown in Figure.1 (1) Vehicles, (2) Network
infrastructure, (3) Cloud platform, and (4) MEC platform:

Vehicles: A vehicle is equipped with a set of sensors and systems
(GPS, Radar, Lidar, Advanced Driver Assistance System
(ADAS), camera, etc.), enabling the surrounding environment
perception (position, speed, neighboring vehicles, temperature,
etc.).

Network infrastructure (cellular network): The upcoming Fifth
Generation cellular network (5G) is one of the leading
technologies that may support different vehicular communication
technologies. It promises to grant a very high network capacity
that guarantees high throughput/bandwidth for demanding
applications. According to [13], 5G networks will natively include
mobile edge computing capabilities by design. Moreover, cellular
networks are characterized by a wide communication range,
which allows a base station to maintain connectivity with a
network node (vehicle) as long as possible, which means fewer
handover operations. In addition, it offers Multicast/Broadcast
transmission services (MBMS/eMBMS) and device to device
(D2D) communication technologies since the Fourth Generation.

Cloud computing infrastructure: The Cloud offers a centralized
high storage and processing capabilities to collect and process
massive data volumes to provide customized ITS services to
different vehicles.

Mobile edge computing infrastructure: The MEC infrastructure
offers a distributed limited storage and processing capabilities in

the vicinity of the end-users (vehicles) to cope with the Cloud
issues regarding real-time services ultra-low latency requirements.

B. Communication types

In the context of ITS, a vehicle could interact with surrounding
systems through various types of communication as specified in
[14], and shown in Figure.1 :

V2V (Vehicle-to-Vehicle): A type of communication where two
vehicles could communicate with each other through the network
infrastructure or using direct communication.

V2P (Vehicle-to-Pedestrian): A type of communication where a
vehicle could communicate with a pedestrian cellphone through
the network infrastructure or using direct communication.

V2I (Vehicle-to-Infrastructure): A type of communication where a
vehicle could communicate with a roadside unit or infrastructure
(traffic lights, traffic signals, etc.) through the network
infrastructure or using direct communication.

V2N (Vehicle-to-Network): A type of communication where a
vehicle could communicate with a serving entity through a
network (internet to access to Cloud/Edge hosts).

C. MEC V2X applications challenges

ITS applications should deal with various data provided
through various communication links. The density and the
mobility of the vehicles are the major factors to take into account
when developing V2X applications that are destined to run in
mobile edge computing distributed environment. In a high-density
scenario, the application must use the available bandwidth
efficiently in order to deliver its service continuously to the
subscribed nodes. The application should also deal with nodes
joining/leaving the network during their mouvement and
guarantee the service continuity. The MEC infrastructure is
intended to offer a management system and a couple of standard
services that facilitate the aforementioned properties. The MEC
infrastructure introduces a whole new service model that requires
an adapted development paradigm.

An important aspect that should be taken into account while
developing a V2X application that targets MEC as a deployment
environment is to ensure the proper interaction of the application
with the management entities and the system components. At the
development phase of a V2X MEC service components testing in
real environment increase deployment time, costs, and
complexity. In the next section, we analyze the standard
deployment architecture proposed by the European
Telecommunications Standards Institute (ETSI) to extract the
main components and their functionalities.

III. Multi-access edge computing reference architecture

ETSI MEC reference architecture, as described in [15], is

mainly composed of functional blocks and reference points,
allowing interactions among them. It is essential to understand
that in the proposed architecture, functional blocks may not
necessarily represent physical nodes in the mobile network, but
rather software entities running on top of the virtualization

infrastructure. The reference architecture is split into two main
levels: (1)the host level and (2)the system level. The system-level
management is interconnected to the host level management over
reference points. On the one hand, the system-level management
manages mainly the life cycle, rules and services authorization,
and traffic rules of the application. On the other hand, the host
level management entity ensures the allocation, management, and
release of virtualized resources provided by the virtualization
infrastructure located on the MEC server. By analyzing the
reference architecture, the main building blocks and their
respective functions that are relevant to our work are:

Mobile Edge Platform Manager: Mobile Edge Platform
Manager (MEPM) is responsible for Mobile Edge platform
management, application lifecycle management (instantiation and
termination), application rules management (authorization, DNS
configuration, and resolving...) and application requirement
management functions.

Mobile Edge Orchestrator: Mobile Edge Orchestrator (MEO) is
the core functionality of the MEC system-level management layer.
The MEO maintains an overall view on available computing,
storage, and networking resources and services. The MEO handles
the task of the appropriate ME host selection for requested
services deployment by taking into account the application
requirements, the available resources, and the nodes' positions.
Finally, The MEO is also responsible for scaling up and down the
available resources as required by the running applications.

Virtualization Infrastructure Manager: Virtualization
Infrastructure Manager (VIM) obviously responsible for
virtualized resources management. The VIM tasks consist of
allocating and releasing the storage, networking, and compute
resources offered by the virtualized infrastructure. VIM could also
store application images for faster instantiation procedure when it
is required. VIM also provides support for fault and performance
monitoring by collecting virtual resources and running application
data and transmitting them to the system level management
entities.

IV. Mobile edge computing prototyping testbed requirement
and technologies

In order to evaluate MEC V2X applications, the prototyping
testbed should provide an easy way to install, configure, manage,
upgrade, and terminate the running services. Termination of
services must not affect other services or resources within the
concerned hosts. Edge/Cloud hosts model should have different
resources limitation and management models too. Each host
should include specific resources limits. Services deployment
should be possible on any host as long as free resources are
available. Vehicles mobility induces the creation and destruction
of network topology links at runtime following a mobility model.
The platform should handle the vehicle's mobility by dynamically
adapting the network topology. The different communications
types (V2V, V2N, etc.) should have various link types. Different
links that relay different nodes should be attributed with the
proper properties (bandwidth, delays, etc.).

Based on previously detailed analysis of MEC based V2X
application deployment environment and global ITS system, we
retrieved the main requirement for our testbed platform. Our

testbed architecture is based on technological solutions that meet
the following requirements: (1)low cost deployment, (2)setup
flexibility, (3)network topologies and computing resources
emulation and management (corresponding to ETSI specification),
(4)applications management, (5)node mobility behavior handling,
and (6)the support of real-world protocols and services. We
targeted Open source frameworks because they are the most
cost-effective solutions. However, as far as we know, the existing
solutions do not model MEC environments and V2X systems,
where services can be deployed distributed and managed on edge
(MEC) and Cloud resources. Furthermore, simulators makes it
difficult to support real-world communication protocols and
services interactions. Therefore, in this section, we present the
available Open Source solutions that satisfy our platform
requirements partially and allow the execution of v2x applications
in a dynamic and controllable environment.

A. Mininet network emulator

Mininet [16] is an open-source software emulator for
prototyping a large network on a single machine. Mininet is
widely used by the research community for network architecture
topologies emulation [17], [18], [19]. Mininet can be used to
quickly create realistic virtual network topologies running actual
software application code on a personal computer. Mininet allows
the user to create, interact with, and customize a network
architecture. It uses the Linux kernel tools to create virtual hosts,
switches, and links. Unlike the simulators, it allows the
deployment of protocols and real applications code in a close to
real-world setup. Virtual hosts can run standard Linux software
using Linux namespaces. Furthermore, virtual hosts are isolated
through network namespaces with their own set of network
interfaces, IP addresses, and a routing table. Virtual switches
connect one or more virtual hosts via the creation and destruction
of virtual network links in runtime, which makes it suitable for
modeling nodes mobility and different communications types
modeling. Mininet, by default, does not handle any host mobility
models natively but could be extended for that purpose. Mininet
allows link properties configuration regarding bandwidth, loss
rate, and delay through an extensible Python API. However, the
Mininet virtual host approach downside is the sharing of the host
machine file system by default.

B. Docker Containers engine

Docker [20] is a software platform that allows the creation of
containers. Containers are a lightweight, standalone executable
package that includes application code and its dependencies, such
as executable system libraries and configuration settings. Docker
container uses the operating system's level virtualization and
offers a lightweight virtualization infrastructure. However, unlike
VM images, the containers do not bundle a full operating system.
Furthermore, Docker containers isolate the instances resources
using the same technologies that Mininet does for its virtual hosts,
based on Linux cgroups and kernel namespaces. They both use
virtual Ethernet interface pairs to connect the virtual hosts to the
virtual switches.

C. Docker Swarm

Docker swarm mode allows the orchestration and management
of a cluster of Docker Engines, natively within the Docker
platform. Docker swarm, easily deploy application services to a
swarm and manage swarm behavior. The main function of docker
swarm are (1) Coordinate between containers and allocate tasks to
groups of containers, (2) Perform health checks and manage the
lifecycle of individual containers, (1) Provide redundancy and
failover in case nodes experience failure, (3) Scale the number of
containers up and down depending on load, and (4) Perform
rolling updates of software across multiple containers. Which
makes it a perfect candidate for MEC hosts management in our
case.

V. Testbed Architecture
In this section, we present the global architecture of our

emulation tool. In order to build a flexible tool capable of
emulating the MEC environment, we propose an architecture built
on top of some existing tools, and we extended some of their
functions to fit our targeted system. For the purpose of developing
our testbed, we extended the Mininet framework to allow the
management of Docker containers as virtual nodes, handle host
mobility, allow resources management, and connectivity
management. The developed testbed provides capabilities to run,
manage, and orchestrate MEC vehicular applications under
various conditions and network typologies.

The general architecture and the essential components of our
proposed testbed, as well as their interconnections, are illustrated
in Figure.2. The MEC testbed API is the core component of the
testbed. It implements the required functions and interfaces to
create the emulation environment. The MEC testbed API
implements an abstraction for Mininet core functions that are
necessary to build an emulated network environment (topology
definition, virtual nodes/switches instantiation, and links creation).
Furthermore, it allows the user to apply limitation models that
define the available resources for each host, and interact with the
emulated components (execute commands on a certain host,
record log files, etc.).

The emulated environment is built of virtual nodes, virtual
switches, and virtual connections. The MEC testbed API interacts
with Mininet to instantiates the virtual nodes from pre-created
Docker container images. A container image can be instantiated
more than once in an emulated environment. A virtual instance is
a collection of virtual nodes and their respective resources model
to emulate a group of MEC hosts or a Cloud environment. The
virtual instance abstraction allows the management of the related
set of virtual nodes and virtual switches as a single entity. The
V2X services could run in one or more virtual nodes inside a
virtual instance.

The developed MEC testbed API enables adding/removing,
and connecting/disconnecting containers to virtual instances
dynamically within the created network topology. These extended
features allow the emulation of real-world MEC and Cloud
infrastructures in which it is possible to start and stop services
instances at any point in time. Also, it allows the adjustment of
the containers and the virtual instances resource limitations (CPU
allocated resource, and memory resources) at runtime by
interacting with the Docker engine. The application running

environment can be created by deploying virtual nodes and virtual
instances into a virtual network environment running on a host
machine. Preconfigured container images could be launched as
virtual nodes in the emulated environment once it is created. Each
container image comprises part of a distributed application, as
well as the required services and protocols.

The mobility API interacts with the Mininet core and the
virtual hosts in order to initiate/update vehicle nodes position,
create/destroy communication's virtual links, and manage mobility
models. A real-world map could be imported to the SUMO
mobility simulator to model an accurate mobility model that
simulates vehicle movements. For this purpose, we designed a
custom client interface that interacts with SUMO through the
Tracii interface. The Tracii interface follows a client-server model
where the mobility model API instance requested the up to date
vehicle positions from the running SUMO instance at each
simulation step.

The management system connects the emulated environment
using the MEC testbed developed API. The management system
starts the required process and services in each virtual node to run
the under test application. The different emulation processes are
interconnected to this entity to ensure the coordination between
the emulation components. The Docker swarm, when used, it
takes in charge the task of orchestrating the different Docker
virtual nodes. Docker swarm implements a node check function
and nodes replacement in case of failure. When a node fails,
Docker swarm replaces this node by a new instance and
communicates with the management system to set up the
appropriate updates. The management systems also coordinate
between the emulated environment and the docker swarm to add
or eliminate virtual nodes from virtual instances. The management
system also keeps track of the available resources on each virtual
instance. The amount of available resources is checked every time
before instantiating a new virtual node to determine if the
operation is possible or not. In order to set up an appropriate
environment for evaluating MEC V2X services, our testbed
architecture was designed to offer the following features:

Topology flexibility: Through the use of Mininet virtual switches
to connect virtual hosts, the MEC testbed API creates easily
flexible network typologies to include the different host's
interconnections links (V2V links, V2I links; etc.). The API also
uses the native traffic control offered by (TC) Linux kernel to
attribute different properties to the created network typologies
(delay, bandwidth, etc.).

Nodes mobility support: The developed mobility API
implements easily different mobility models. The nodes positions
could be extracted through the interaction with a real-world map
offered by the interconnection with SUMO emulator, or with a
mobility model that calculates the successive node position
following the implemented mobility model. The mobility support
is achieved through the use of the mobile nodes’ positions
regarding the fixed host (Edge hosts) to create and destroy
communication links in runtime.

Virtual instances resources management, adjustment, and
orchestration: The management system and the testbed API
interacts with the virtual instances to ensure the allocated

resources limitation, and keep track of used resources quantity of
each virtual instance. On the one hand, the MEC test API manages
the launching of Docker's application instance on the appropriate
hosts and offer their lifecycle management. On the other hand, it
groups the virtual nodes under different virtual instance with
tagged labels to ease their orchestration using Docker Swarm.

Figure.2 An overview of MEC testbed architecture

Fully functional application deployment environment: Our
platform is capable of modeling a close to real-world emulation
environment by modeling the network topology, the host’s
resources, and locations, the running application chunks (the MEC
host services, the Cloud host services, and the onboard
application).

Services and host isolation: Deploying virtual nodes in the form
of Docker instances offers a virtualized isolated environment for
service execution at each host level. Using the cgroups, and
namespaces each node is isolated from the others that are
executing on the same virtual instance. The use of virtual
interfaces and virtual links allows different nodes and instances to
communicate easily.

Real-world protocols support: It is possible to use virtual
interfaces to interconnect running docker instances with
real-world protocol stacks. The use of real-world protocols is very
useful in the process of validating the different service's
interactions among each other, and with the management
instances.

VI. MEC testbed workflow
In this section, we provide full details about the steps required

to use our testbed tool. At each step, the underlying details to
achieve the specified step are briefly explained. A MEC testbed
emulation using our testbed platform involves many steps to
describe the desired network architecture and the different
configurations. An example of a MEC environment emulation in
the context of ITS is illustrated in Figure.3, where three types of
containers were used to instantiate the different node actors in this
context. Each container image bundles a part of the distributed
application (service), required protocols, could run a particular
Linux distribution, and could even emulate a specific processor
architecture.

Figure.3 MEC testbed workflow

Figure.3 shows the high-level workflow and the different
steps to launch an emulated environment using our emulator to
evaluate a particular scenario. (a) First, the developer should
provide the container images of the different actors that are
relevant to his scenario. Each container should include the
application slice that runs on each type of node and its
dependencies, such as the executable code, required scripts,
configuration files, required libraries, and so on. (b) Next, the
developer should define the network topology and the link’s
properties of the fixed part of the network (Cloud hosts and
Mobile Edge Cloud hosts) of the under test scenario. (c) The
developer defines the mobility model for the mobile nodes
(vehicles in our case). At this step, the developer provides a
scenario file that contains all the previous steps configurations
(Network topology, docker images, mobility model, etc.). (d) The
next step is to launch the management system that connects to the
emulated environment by using the MEC testbed API. At this
stage, the management system initiates the mobility model and
deploys the application on the platform by starting the required
processes and services on each virtual node. Furthermore, the
management API launches the association control manager, which
creates and destroys dynamic network links based on the mobility
of the nodes. In order to fulfill the previous operation, the
management system uses the scenario description file provided by
the developer. (e) The application starts running inside the
platform and interacts with the virtual network. (f) Finally, the
network flow statistics and the application interactions could be
collected and stored for analysis purposes. Furthermore, the
developer could interact with the environment using the provided
CLI interface and check each instance state using docker swarm
provided web GUI.

To simulate a scenario using our testbed, an experiment file that
describes the network topology (MEC hosts, Cloud hosts, vehicles
….), the used mobility model, the different network links
properties. The creation of a scenario file could be done using the
following steps:
A. Host images building: at this step, after coding and verifying
the application code that needs to be deployed on each node, a
docker file should be created for each type of nodes. A docker

image should be created for each type of node bundling each node
application, scripts, and dependencies with a specific docker
image name.
B. Experiment file definition: This step consists of writing an
experiment file that describes all the emulation parameters. This
file should describe the whole emulated environment. The
experiment definition file is taken by the system manager to build
the virtual environment and lunches the scenario emulation. The
experiment file should contain the following elements:
- Resource model specification: The resource tables are an
abstraction that holds the allocated resources for each host in our
scenario. This step consists of defining the resources tables for
each type of the participating nodes(MEC hosts, Cloud hosts).
Default resource tables are provided through our MEC testbed
code. If the user defines none, the default resource tables are used
instead.
- Topology and nodes instantiation: this step consists of
creating an experiment instance through our specified MEC
testbed API. The topology class is an abstract class that stores the
hosts, their resources tables, and vehicles participating in our
scenario. The topology instance uses the resources tables to
calculate the remaining resources at each host after deploying
services on them. Specific service deployments on a particular
host could be rejected if the remaining host resources are not
enough for that purpose.
- Topology Definition: This step consists of defining the fixed
network topology that links the nonmobile nodes (MEC hosts and
Cloud hosts). Our testbed API provides the necessary functions to
create virtual switches and virtual links between the different
hosts to create a virtual network. The virtual network is created
using our API by calling Mininet emulator core and instantiating
the necessary components to create the described network
topology.
- Link specification: Our testbed API provides a link abstraction
that uses the Linux traffic control (TClink) tool to create a virtual
link with specific parameters (bandwidth, delay …..). TClink tool
is a part of the Netemu package that gives the user the ability to
configure the kernel packet scheduler. The TClink tool controls a
specific link bandwidth and delay through the queueing discipline
(Qdisc) approach in Linux. A Qdiscs in Linux is a packet
scheduler (e.g., FIFO), which gives a flexible way to control
different links properties (such as bandwidth and delay). At this
step, we specify each type of links parameters for each type of
link (e.g., vehicle to MEC host link or MEC host to Cloud link etc
..).
- Mobility model definition: We provide two ways to define the
mobility model for the instantiated vehicle nodes. This could be
done through an external mobility simulator, SUMO mobility
simulator in our case. If we choose to use mobility traces from
SUMO mobility simulator is launched with a provided map
template. The second way supported by our testbed platform is to
instantiate a thread that holds a mathematical mobility model to
calculate the vehicle nodes positions at each emulation step. Our
code bundles some mathematical mobility models like the random
mobility model or the Gauss-Markov model that could be used
directly just by specifying the model's required parameters.
- Association control Model: The association control class is an
abstraction of the rules that are used to create a virtual link

between two nodes. A simple association control model could use
the algebraic distance between nodes to create a new link or
destroy an existing one at each emulation step. This step consists
of defining the association control model parameters, such as the
communication range. The association control thread when
launched, it verifies at each step the position of mobile nodes
toward the fixed hosts’ nodes to create new links or destroy
existing ones.
- Experiment definition: The last step consists of instantiating an
experiment object that takes all the previously configured
parameters. The experiment instance is used by the management
system to lunch the Emulation scenario with the set parameters
and manages the emulation at runtime. Our API provides different
methods to configure each parameter taken by the experiment
object.

VI. Use case
To study the benefits of using our testbed, we designed a use

case application of real-time traffic monitoring where vehicles
communicate with MEC deployed services to post/update their
locations and speed. The MEC host service analyzes the collected
vehicles’ data to determine the vehicles’ traffic flow.
Additionally, the MEC services post/update traffic flow
information to remote Cloud service of its deployment region.
Finally, the Cloud services store the traffic flow information in a
database and make them accessible to the other hosts.

Figure.4 Vehicles traffic monitoring service architecture

B. Use case application

As illustrated in Figure.4, the architecture of the use case
application is split into five microservices. The traffic collection
microservice provides a restful API to the vehicles to register into
the service and update their respective positions at each
timestamp. It communicates periodically with the traffic database
microservice. Collected data are triggered by the traffic analysis
microservice to compute the traffic density factor that is then
stored in a dedicated database. Finally, the notification
microservices compare the up-to-date traffic density factor with
the recorded history of the traffic density factor at the same hour
of the day. If the notification microservice detects an abnormal
augmentation of traffic density factor at a specific time, it sends a

notification to a group of vehicles to inform them about the
probability of having a road hazard on a specific zone.

B. Use case implementation and discussion

In order to evaluate the testbed architecture, we implemented a
full application prototype. The implementation of the prototype
applications was developed with a microservices oriented
architecture pattern as detailed in the previous section. We
developed two scenarios. In the first, we generated an emulated
environment with a single Cloud host. In the first scenario, all the
application microservices are deployed on the Cloud host. The
vehicles communicate only with the Cloud host during this
scenario to update their positions or to receive notification
messages from the notification service. The second scenario was
implemented in a mixed Cloud MEC environment where part of
the microservices are deployed on the MEC hosts and the rest on
the central Cloud. The services partitioning criteria was based on
resources that are available on each type of resource (MEC host
are resource-constrained compared to Cloud hosts) and on the
network link delay. Table 1 resumes the characteristics of the used
computer and the simulation parameters for both scenarios.

Figure.5 Different link types round trip delay

In the following, we present the data that we collected after
running our application in both scenarios. We chose to present
only logged data that are relevant to our testbed platform and
excluded the data related to the running service functionalities.
Our test platform provides various logging capabilities that could
be used to evaluate services implementation through the whole
development cycle. The data that we considered relevant to our
testbed architecture are the vehicles’ positions, network
topologies, and delay time data.

First, we collected the different network round trip delay on
both scenarios network architectures to evaluate the accuracy of
our modeled virtual environment network. Figure.5.a shows the
collected round trip delay values for the first scenario using only

Cloud host architecture. As shown in the Figure, first, the delay is
higher than the configured delay parameter, then it remains stable
at the theoretical value (20 ms). Figure.5.b shows the round trip
delay value collected on the second scenario, where we have a
mixed MEC Cloud network topology. The collected results show
that the round trip delay between vehicle and MEC host is very
close to the configured value (20 ms).

a. Scenario 1

b. Scenario 2
Figure.6 Different link types round trip delay

Next, we took mobility snapshots from our test scenario in

order to verify that the testbed creates links between nodes in the
range of each host accurately. As previously mentioned in Table
1, we implemented a Gauss-Markov mobility model to evaluate
our scenarios. Figure.6 shows a snapshot of the network
configurations took from random scenarios’ execution at random

time steps. Figure.6.a shows a sample of the collected topologies
logs during the first scenario execution. We see that using a single
edge host with a wide range result a persistent communication for
a long time between the Cloud host and the in range vehicle. In
some topologies, some nodes are not connected to the edge host
because they are out of the communication range.

We intentionally deployed a scenario where the edge host range
does not cover the whole simulation area to test the association
control manager. In Figure.6.b, we notice that the association
control manager successfully changes the network links of
vehicles regarding their distance to the MEC host. A new link is
created/destroyed each time a vehicle enters/leaves the
communication range of one of the scenario hosts. Some vehicles
are disconnected from both MEC hosts at some time stamps
because they are out of the range of both hosts. Table 1 also
shows the placement of each microservice at each simulation
setup. At the experimentation runtime, we verified that each
microservice is deployed at the specified host.

VII. Conclusion and future work
With the aim of offering a prototyping environment to address

V2X MEC application's developments and its evaluation process,
we provide an architecture of a testbed for this purpose. In order
to provide such a tool, in this paper, we demonstrated that this
task could be achieved through the extension of existing network
emulation and software virtualization tools. The proposed testbed
offers a flexible and easy to use tool to model the MEC V2X
services deployment environment. The tool usage could be
customized according to the user through the exploitation of
execution log records. On the one hand, user evaluation could be
more oriented to a performance analysis by evaluating the
communications delay, and the hosts' load. On the other hand,
user evaluation could be more oriented towards the validation of
the application’s behavior and interactions.

Our future work will focus on offering a more accurate
network model that supports a more realistic cellular network
propagation and handover model. Further, we want to investigate
a way to use our platform logging capabilities with an automated
log analysis tool to automatically validate the execution results of
full-service implementation under various scenarios.

 Scenario 1 Scenario 2
CPU Intel(R) Core(TM) i7-4750HQ CPU

CPU(s): 8
Thread(s) per core: 2
Core(s) per socket: 4
Frequency: 2.00GHz
Max frequency: 3.2 GHz

Intel(R) Core(TM) i7-4750HQ CPU
CPU(s): 8
Thread(s) per core: 2
Core(s) per socket: 4
Frequency: 2.00GHz
Max frequency: 3.2 GHz

RAM 16 GB RAM
Speed: 1600 MT/s

16 GB RAM
Speed: 1600 MT/s

Allocated resources per host
(CPU in cpu numbers)
(Memory in Megabyte)

Vehicles: {"cpu": 0.25, "memory": 64}
Cloud: {"cpu": 2, "memory": 2048}

Vehicles: {"cpu": 0.25, "memory": 64}
Cloud: {"cpu": 2, "memory": 2048}
MEC: {"cpu": 1, "memory": 512}

Link delay Vehicle-Cloud: 100 ms
Vehicle-Vehicle: 10 ms

Vehicle-MEC: 10 ms
Vehicle-Vehicle: 10 ms
Cloud-MEC: 50 ms

Simulation parameters Mobility: Gauss-Markov model
velocity_mean =3 0
alpha = 0.9
variance=0.5
Dimension = (300, 10)
Number of nodes = 10
Number of Cloud hosts = 1
Cloud host position = (100, 5)
Association control model: Algebraic distance
communication range = 100

Mobility: Gauss-Markov model
velocity_mean = 30
alpha = 0.9
variance = 0.5
Dimension = (300, 10)
Number of nodes = 10
Number of MEC hosts = 2
MEC host 1 position = (0, 5)
MEC host 1 position = (0, 100)
Association control model: Algebraic distance
communication range = 50

Microservices placement Everything on the Cloud host MEC host:
Registry.
Traffic collection microservice.
Notification microservice

Table.1 Simulation Setup configuration

References
[1] F. Ana Juan, M. Joan Manuel, and J. Josep. 2019. Towards
the Decentralised Cloud: Survey on Approaches and Challenges
for Mobile, Ad hoc, and Edge Computing. ACM Comput. Surv.
51, 6, Article 111 (January 2019), 36 pages.

[2] S. Maheshwari, D. Raychaudhuri, I. Seskar, and F. Bronzino,
"Scalability and Performance Evaluation of Edge Cloud Systems
for Latency Constrained Applications," 2018 IEEE/ACM
Symposium on Edge Computing (SEC), Seattle, WA, 2018, pp.
286-299.

[3] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach and F.
Giust, "Mobile-Edge Computing Architecture: The role of MEC
in the Internet of Things," in IEEE Consumer Electronics
Magazine, vol. 5, no. 4, pp. 84-91, Oct. 2016.

[4] H. Truong and M. Karan, "Analytics of Performance and Data
Quality for Mobile Edge Cloud Applications," 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD), San
Francisco, CA, 2018, pp. 660-667.

[5] M. Emara, M. C. Filippou and D. Sabella, "MEC-Assisted
End-to-End Latency Evaluations for C-V2X Communications,"

2018 European Conference on Networks and Communications
(EuCNC), Ljubljana, Slovenia, 2018, pp. 1-9.

[6] S. Zhou, P. P. Netalkar, Y. Chang, Y. Xu and J. Chao, "The
MEC-Based Architecture Design for Low-Latency and Fast
Hand-Off Vehicular Networking," 2018 IEEE 88th Vehicular
Technology Conference (VTC-Fall), Chicago, IL, USA, 2018, pp.
1-7.

[7] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta and D.
Sabella, "On Multi-Access Edge Computing: A Survey of the
Emerging 5G Network Edge Cloud Architecture and
Orchestration," in IEEE Communications Surveys & Tutorials,
vol. 19, no. 3, pp. 1657-1681, third quarter of 2017.

[8] Y. Cao and Y. Chen, "QoE-based node selection strategy for
edge computing enabled Internet-of-Vehicles (EC-IoV)," 2017
IEEE Visual Communications and Image Processing (VCIP), St.
Petersburg, FL, 2017, pp. 1-4.

[9] ETSI MEC ISG, “Mobile Edge Computing (MEC); Technical
Requirements,” ETSI, DGS MEC 002, 2016.

[10] ETSI MEC ISG, “Mobile Edge Computing (MEC); General
principles for Mobile Edge Service APIs,” ETSI, DGS MEC 009,
July 2017.

[11] ETSI MEC ISG, “Mobile Edge Computing (MEC); Study on
MEC Support for V2X Use Cases,” ETSI, DGS MEC 009,
September 2018.

[12] S. Dario, S. L. Vadim, T. Linh, K. Sami, P. Pietro, R. Ralf,
XinhuiLi, F. Yong gang, D. Dan, G. Fabio, C. Luca, F.Walter, P.
Bob, and H. Shlomi, ETSI White Paper No. 20 : Developing
Software for Multi-Access Edge Computing, February 2019.

[13] G. Slawomir, "Next generation ITS implementation aspects
in 5G wireless communication network," 2017 15th International
Conference on ITS Telecommunications (ITST), Warsaw, 2017,
pp. 1-7.

[14] 3rd Generation Partnership Project; Technical Specification
Group Services and System Aspects; Study on LTE support for
Vehicle to Everything (V2X) services (Release 14).

[15] ETSI GS MEC 003 V1.1.1. Mobile Edge Computing (MEC);
Framework and Reference Architecture, 2016.

[16] Mininet, “project home page”, Available Online at:
http://mininet.org/

[17] L. Bob, H. Brandon, and M. Nick. A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks. 9th ACM
Workshop on Hot Topics in Networks, October 20-21, 2010,
Monterey, CA.

[18] Y. Lisa, M. Nick. Learning Networking by Reproducing
Research Results. SIGCOMM CCR, April 2017.

[19] H. Nikhil, H. Brandon, J. Vimal, L. Bob, and M. Nick.
Reproducible Network Experiments using Container-Based
Emulation. CoNEXT 2012, December 10-13, 2012, Nice, France

[20] Docker, “project home page”, Available Online at
https://www.docker.com

