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Abstract

This work deals with the stability analysis of Lur’e systems under sampled-data control, where
the Lur’e nonlinearity is assumed to be both sector and slope restricted. The stability conditions
are derived by using a hybrid system representation and a generalized Lur’e type timer-dependent
Lyapunov function. Considering a polynomial timer-dependence, the stability conditions are cast in
sum-of-squares optimization problems aiming at computing the largest range of sampling intervals
or the largest sector bounds on the nonlinearity for which the origin of the closed-loop system is
globally asymptotically stable.
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1. Introduction

Lur’e systems and the problem of absolute stability have been extensively studied since 1944,
when A. I. Lur’e and V. N. Postnikov published their seminal work [1]. In the early stages of
research, the advances in the field were summarized by attempts of A.I. Lur’e and other authors
to find necessary and sufficient conditions on the parameters of the system for the existence of a
Lyapunov function to certify the global asymptotic stability of the Lur’e system for any nonlin-
earity that lies in a given sector [2], [3]. More recently, works focusing on stability analysis and
stabilization, considering linear matrix inequalities (LMI) formulations have been proposed (see,
for instance, [4], [5], [6], [7], [8] and references therein). On the other hand, the advent of networked
control systems has caused a renewal in the interest in sampled-data control, mainly regarding
nonlinear systems and the aperiodic sampling [9].

The first results to provide stability conditions for Lur’e systems under sampled-data control
were obtained in the last decade, based on Lyapunov-Krasovskii Functionals. In [10] and [11],
the stability of a sampled-data Lur’e system with aperiodic sampling was studied and certified
with the proposal of LMI conditions. To obtain these conditions, the authors have considered a
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Lyapunov-Krasovskii functional proposed in [12]. The results were extended for robust control in
[13]. Furthermore, in [14] the conditions were derived based on passivity arguments. It should be
noticed that all of the aforementioned references follow the Lyapunov-Krasovskii approach for the
time-delay representation of sampled-data systems [15]. In fact, this approach was also adopted
to deal with the synchronization of Lur’e systems with sampled-data control in [16], [17], [18] and
[19]. Less conservative conditions, by using a more generic looped-functional approach inspired in
the work from [20], have been recently proposed in [21]. Regarding other approaches, conditions to
assess the stability when a periodic sampled-data control law is designed from the Euler approxi-
mated discrete-time Lur’e system were proposed in [22]. We can also cite [23], which proposed the
design of a stabilizing sampled-data control law aiming at guaranteeing cost certification using the
impulsive formulation of [24] and a classical Lur’e-Postnikov type Lyapunov function, where only
the quadratic term is time-dependent. Considering only the periodic sampling case, the conditions
are cast as differential LMIs (i.e. DLMIs - see for instance [25] and [26]) and their solution is
carried out by appropriately griding the intersampling interval and considering a piecewise affine
time dependence for the quadratic term of the Lyapunov function .

Regarding the choice of Lyapunov function candidates to assess stability of Lur’e type systems
(not necessarily with sampled-data control), several structures have been considered in the litera-
ture. The simpler one is a quadratic function depending on the plant state ([27], [5]), which are
also associated to the Circle criterion [28]. The Lur’e-Postnikov function, a candidate associated
to the Popov criterion [28], is used for instance in [29], [30], [31], [32], [4]. Other studies consider
quadratic forms that depend not only on the state but also on the nonlinearity φ. For instance, [7]
proposes a candidate with crossed terms between the state and the nonlinearity for the local sta-
bility analysis of discrete-time Lur’e systems, which is strategically structured to avoid nonconvex
stability conditions. For continuous-time Lur’e system, assuming bounds on the slope of the nonlin-
earity, a structure composed by a full quadractic form involving the state and the non-linearity and
also some extended integral terms is considered in [33]. Thereafter, considering also slope bounds,
[34] and [8] propose a generalized Lur’e-Postnikov type function, in the sense that it relaxes the
necessity of both the positivity of the quadratic term and the nonnegativity of the multipliers of
the integral terms, which are present in the classical version. Clearly, this function encompasses
all the aforementioned structures. More recently, [35] presents a generalization of this structure for
discrete-time systems.

This paper proposes a method to assess the global asymptotic stability of the origin of a Lur’e
system with aperiodic sampled-data control. The closed-loop system is represented as an impulsive
model, based on the hybrid systems framework of [36]. In this framework the system state is
augmented with the control signal and a timer that counts the time elapsed since the last sampling
instant. Thus, the aperiodic sampling is represented by a jump (i.e. an impulsive update) in the
state that occurs in intervals of time ranging from a lower to an upper bound. We consider that the
nonlinearity is sector bounded with slope restrictions. From this setup we propose conditions to
assess the global asymptotic stability of the origin of the closed-loop system. For this, we consider as
Lyapunov function candidate a timer-dependent version of the generalized Lur’e-Postnikov function
proposed in [8]. In this case, the quadratic term depends also on the nonlinearity and is timer-
dependent. Thus, assuming a polynomial timer dependence, the conditions are cast as sum-of-
squares (SOS) constraints and optimization problems are proposed to compute the largest range of
sampling intervals or the largest sector bounds on the nonlinearity, for which the global asymptotic
stability of the origin can be ensured.

The main contributions of the paper can therefore be summarized as follows:
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• The use of a hybrid system framework to address the stability analysis of sampled-data Lur’e
systems;

• The generalization of the Lur’e-Postnikov function proposed in [8] considering it dependent
on a timer variable;

• The development of timer-dependent matrix inequalities that guarantee the global asymptotic
stability of the origin of the closed-loop system, and further formulation as sum-of-squares
expressions;

• The formulation of two sum-of-squares optimization problems: one related to the maximiza-
tion of the upper bound of the inter-sampling interval and another related to the maximization
of the sector and/or slope bounds of the nonlinearity, for which it is possible to ensure the
asymptotic stability of the origin under aperiodic sampled-data control;

• The demonstration, by means of numerical examples, of the conservatism reduction by consid-
ering the use of the generalized Lur’e-Postinikov Lyapunov function with polynomial timer-
dependent terms of appropriate degrees.

The paper is organized as follows. In Section 2, we present the Lur’e system with sampled-data
control, and the problems of interest. In Section 3, the hybrid system framework is introduced as
a representation of the sampled-data system, along with a timer-dependent generalized Lur’e-type
Lyapunov function. In Section 4, based on the proposed Lyapunov function, stability conditions
are developed in the form of matrix inequalities. In Section 5, the timer dependence of the Lya-
punov function candidate is assumed to be polynomial and the stability conditions are cast as
sum-of-squares (SOS) constraints. In Section 6, optimization problems are proposed to estimate
the maximum upper bound on the intersampling interval, or the sector of the Lur’e system nonlin-
earity, while ensuring that the sampled-data system is globally asymptotically stable. Numerical
examples follow in Section 7. Finally, concluding remarks are presented in Section 8.

Notation

N is the set of natural numbers, R is the set of real numbers, and R�0 is the set of nonnegative
real numbers. The ith element of a vector v ∈ Rn is denoted by v(i). The vector v has Euclidean

norm given by |v| =
√
v2

(1) + · · ·+ v2
(n). The distance of a vector v to a closed set A is denoted |v|A

and it is defined as |v|A = infy∈A |v−y|. The induced 2-norm of a matrix M is represented by |M |.
Sn is the set of symmetric matrices of order n, and for a symmetric matrix S ∈ Sn, S � 0 means that
S is positive definite. Dn and Dn�0 are the sets of the diagonal and positive semidefinite diagonal

matrices of order n, respectively. M> denotes the transpose of M , and He{M} = M> + M . The
matrices In and 0n×m denote an identity matrix of order n and a n×m matrix of zeros, respectively.

2. Problem statement

Consider a Lur’e system, given by the following set of equations:{
ẋ(t) = Ax(t) +Buu(t) +Bφφ(y(t))

y(t) = Cx(t)
(1)
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where A ∈ Rn×n, Bu ∈ Rn×p, Bφ ∈ Rn×m, and C ∈ Rm×n. The vector x ∈ Rn represents the plant
state, u ∈ Rp is the input and y ∈ Rm is the argument of the function φ, which depends linearly
on the state.

The nonlinear function φ : Rm → Rm characterizes the Lur’e system, being a decentralized
vector valued function, that is:

φ(y(t)) ,
[
φ(1)(y(1)(t)) , ... , φ(m)(y(m)(t))

]>
. (2)

We assume that the nonlinear function φ is sector bounded with slope restrictions, that is, for all
y ∈ Rm it satisfies

φ(i)(0) = 0 , (3)

φ(i)(y)

y(i)
∈
[
δ(i), δ(i)

]
, (4)

dφ(i)(y)

dy(i)
∈
[
γ

(i)
, γ(i)

]
, (5)

for all i = 1, 2, · · · ,m, where δ ∈ Rm and δ ∈ Rm are, respectively, the vectors of lower and upper
sector bounds, and γ ∈ Rm, γ ∈ Rm are, respectively, the vectors of lower and upper slope bounds.

Therefore, δ(i) ≤ δ(i) and γ
(i)
≤ γ(i) ∀i ∈ {1, · · · ,m}. Along the text, we consider the following

diagonal matrices defined from these bounds:

∆ , diag{δ(1), · · · , δ(m)},

Γ , diag{γ
(1)
, · · · , γ

(m)
},

∆ , diag{δ(1), · · · , δ(m)},
Γ , diag{γ(1), · · · , γ(m)}.

We consider that the control signal u(t) is given as a sampled-data feedback control law composed
by terms depending on the state, on the previous value of the control signal, and on the nonlinearity
φ, as follows:

u(t) = Kxx(tk) +Kuu(tk−1) +Kφφ(y(tk)) (6)

= Kxx(tk) +Kuu(tk−1) +Kφφ(Cx(tk)), ∀t ∈ [tk, tk+1) (7)

where Kx ∈ Rp×n, Ku ∈ Rp×p and Kφ ∈ Rp×m are the controller gains, and tk, k ∈ N denote the
sampling instants.

Remark 1. The gains Ku and Kφ can be seen as additional degrees of freedom for the controller.
Beyond the fact of being more generic, the use of the nonlinear term Kφφ can be useful to convexify
synthesis conditions in a continuous-time or discrete-time framework (see for instance [37], [5] and
[27]). On the other hand, when a hybrid system framework is considered to model a sampled-data
system, the state is augmented with the control signal and then the use of information about the
control applied at the last sampling instant (i.e. u(tk−1)) can also be helpful to convexify synthesis
conditions (see for instance [38]). Note that the control law (6) can be reduced to a linear state
feedback if Ku = 0p×p and Kφ = 0p×m, or a nonlinear state feedback if only Ku = 0p×p.
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It is assumed that the sampling intervals are possibly aperiodic, ranging from a lower value T1

to an upper value T2, that is
0 < T1 ≤ tk+1 − tk ≤ T2. (8)

From the setup above, considering a given closed-loop system formed by the connection of the plant
(1) with the controller given by (6), we are interested in the following problems:

P1. Given the system (1) and controller (6) parameters, the sector and slope bounds δ(i), γ(i)
, δ(i),

and γ(i) for i = 1, · · · ,m, and the lower bound T1 on the sampling interval, find an estimate
for the maximum T2 such that the origin of the closed-loop system given by (1) and (6) is
globally asymptotically stable.

P2. Given the system (1) and controller (6) parameters, the sampling interval bounds T1 and T2,
and the lower sector and slope bounds δ(i), γ(i)

, find estimates for the maximum δ(i), and γ(i)

for i = 1, · · · ,m such that the origin of the closed-loop system given by (1) and (6) is globally
asymptotically stable.

To tackle these two problems we consider a hybrid system framework as described next.

3. Hybrid System Representation

Under the considered sampled-data policy, the control signal u(t) experiences a jump (i.e. its
value is instantaneously updated) at each sampling time and it is held constant between two suc-
cessive sampling times. The input then follows a jump dynamics, whereas the state x follows
a continuous-time evolution. The resulting closed-loop system can therefore be elegantly repre-
sented by the hybrid dynamical systems framework described in [36]. In this context, considering
z = [x> u>]>, we define the hybrid system state η = [z> τ ]>, where the state τ is a timer that
counts the time elapsed since the last sampling instant. In this case, a jump can be triggered (i.e.
the update of the control signal with the sampled value of the state) when τ ∈ [T1, T2]. After the
jump, the value of τ is reset to 0.

Hence, the closed-loop system described by (1) and (6) is cast as an hybrid system H, described
generically as follows:

H


η̇ =

[
ż
τ̇

]
= f(η), ∀η ∈ C

η+ =

[
z+

τ+

]
= g(η), ∀η ∈ D

(9)

The sets C = Rq × [0, T2] and D = Rq × [T1, T2], with q = n + p, are the flow and the jump sets,
respectively, while the function f : Rh → Rh, with h = q + 1, is the flow map and the function
g : Rh → Rh is the jump map. In our case, functions f and g are defined as follows:

f(η) =

[
AFz +BFφ(Czz)

1

]
(10)

g(η) =

[
AJz +KJφ(Czz)

0

]
(11)
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with:

AF =

[
A Bu

0p×n 0p×p

]
, BF =

[
Bφ

0p×m

]
, Cz =

[
C 0m×p

]
,

AJ =

[
In 0n×p
Kx Ku

]
, KJ =

[
0n×m
Kφ

]
.

The system H has solutions given in terms of a hybrid arc η(t, k) defined in the domain dom η =
∪∞k=0([tk, tk+1], k), which is complete and, because T1 > 0, without Zeno behavior. In this case,
system (9) satisfies the basic conditions for well-posedeness (i.e closedness of C and D, and continuity
of f and g) [36]. Note that, with this formalism, η is in fact a function of the continuous-time t and
the discrete-time k.

The stability of system H is associated to a compact set A, containing the origin and the domain
of the timer. The set is defined as follows:

A = {0} × [0, T2]. (12)

As introduced above, τ is in fact an auxiliary variable to model the sampling phenomenon:
during the flow, τ(t, k) = t − tk, and, at jumps, τ(tk, k) = 0. Since we are assuming that t0 = 0,
it follows that τ(0, 0) = 0. Thus, we consider that the initial conditions are expressed as η(0, 0) =[
z(0, 0)

0

]
.

The next theorem provides three conditions to be satisfied by a Lyapunov function V in order
to ensure the uniform global asymptotic stability of the attractor A. This theorem corresponds to
relaxed conditions of Theorem 3.18 in [36], since system (9) does not involve set-valued maps and
the attractor A is compact.

Theorem 1. If there exist a function V : Rh → R�0, class K∞ functions α1 and α2, and a
continuous positive definite function ω (namely a function such that ω(0) = 0 and ω(s) > 0 for all
s > 0) such that

α1(|η|A) ≤ V (η) ≤ α2(|η|A) ∀η ∈ (C ∪D) (13)

〈∇V (η), f(η)〉 ≤ −ω(|η|A) ∀η ∈ C\A (14)

V (g(η))− V (η) ≤ −ω(|η|A) ∀η ∈ D (15)

then the compact set A is uniformly globally asymptotically stable.

Note that if A is uniformly globally asymptotically stable for the hybrid system (9) with flow and
jump maps given by (10) and (11), it follows that 0 (the origin) is a globally asymptotically stable
equilibrium point for the closed-loop system given by (1) and (6). Thus, the conditions of Theorem
1 allow us to address the problems P1 and P2. With that in mind, based on a generalized timer-
dependent Lur’e-Postnikov function, we cast the conditions of Theorem 1 as timer-dependent LMIs,
in order to develop a method to numerically evaluate these stability conditions.

4. Preliminary lemmas

From properties (3), (4) and (5), the following lemmas regarding the nonlinearity φ can be
stated [8]:
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Lemma 1. If φ satisfies (3)-(5), then the relation

(φ(y)−∆y)>U(∆y − φ(y)) ≥ 0 (16)

is satisfied for all y ∈ Rm, with any matrix U ∈ Dm�0.

Lemma 2. If φ satisfies (3)-(5), then the relation

(φ̇(y)− Γẏ)>U(Γẏ − φ̇(y)) ≥ 0 (17)

is satisfied for all y ∈ Rm, with any matrix U ∈ Dm�0.

The Lyapunov function candidate is defined here as a timer-dependent generalized Lur’e-Postinikov
function, given by:

V (η) , V (z, τ) = V0(z, τ) +

m∑
i=1

λ(i)

∫ Cz(i)z

0

(φ(i)(s)− δ(i)s)ds, (18)

where the term V0 : Rh → R is a timer-dependent quadratic function on z and φ(Czz) as follows

V0(z, τ) ,

[
z

φ(Czz)

]>
P (τ)

[
z

φ(Czz)

]
, (19)

P being a matrix function P : [0, T2]→ Sq+m with each element being a continuous Lipschitz func-
tion of τ . Compared to a classical Lur’e-Postinikov function [28], this generalized version presents a
quadratic term that depends also on the nonlinearity φ. Furthermore, differently from the classical
one, the matrix P is not necessarily positive definite and the multipliers λ(i) are not necessarily
nonnegative. In this case, the positive definiteness of the Lyapunov function should be ensured by
other means. Of course, this would be straighforwardly achieved by forcing P (τ) � 0 and λ(i) ≥ 0,
i = 1, · · · ,m. However, proceeding this way can be conservative. A less conservative condition
to ensure the positivity of V (η) and to satisfy condition (13) can be obtained by considering a
timer-dependent version of the Lemma 4 proposed in [8], given as follows:

Lemma 3. Consider V (η) as in (18), where φ satisfies (3)-(5), and define Λ , diag{λ(1), . . . , λ(m)}.
If there exist matrix functions U0 : [0, T2]→ Dm�0 and Λ̃ : [0, T2]→ Dm�0 such that

ΨΛ(τ) � 0 , ∀τ ∈ [0, T2] (20)

ΨV (τ) � 0 , ∀τ ∈ [0, T2] (21)

where

ΨΛ(τ) =Λ + Λ̃(τ),

ΨV (τ) =P (τ)− 1

2

[
C>z

0m×m

]
(∆−∆)Λ̃(τ) [Cz 0m×m] + He

{
1

2

[
(∆Cz)

>

−Im

]
U0(τ)

[
∆Cz − Im

]}
,

then there exist class K∞ functions α1 and α2 for which condition (13) holds.
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Proof. To prove that α2 exists, consider P (τ), without loss of generality, expressed as:

P (τ) =

[
P1(τ) P2(τ)
? P3(τ)

]
. (22)

From(22), the function candidate (18)-(19) is rewritten as:

V (η) =z>P1(τ)z + He{z>P2(τ)φ(Czz)}+ φ(Czz)
>P3(τ)φ(Czz) +

m∑
i=1

λ(i)

∫ Cz(i)z

0

(φ(i)(s)− δ(i)s)ds.

From (4), note that
0 ≤ φ(i)(s)− δ(i)s ≤ δ(i)s− δ(i)s = (δ(i) − δ(i))s.

Hence, it follows that
|φ(s)−∆s| ≤ |(∆−∆)s|, (23)

and, taking into account the norm relation |a| − |b| ≤ |a− b|, we have that

|φ(s)| − |∆s| ≤ |φ(s)−∆s|.

Combining the last expression with (23), it follows that

|φ(s)| ≤ |(∆−∆)s|+ |∆s|.

Considering now the norm relation |ab| ≤ |a||b|, an upper bound for V (η) is thus given by

V (η) ≤|P1(τ)||z|2 + 2|P2(τ)|(|(∆−∆)Cz|+ |∆Cz|)|z|2

+ |P3(τ)|(|(∆−∆)Cz|+ |∆Cz|)2|z|2 +
1

2
|C>z Λ(∆−∆)Cz||z|2

=Ψ(τ)|z|2 ≤ max
τ∈[0,T2]

{Ψ(τ)}|z|2.

(24)

Note that from the definition of A in (12) it follows that |z| = |η|A for all τ ∈ [0, T2]. Therefore,
one can conclude that

V (η) ≤ α2(|η|A) = α̂2|η|2A = α̂2|z|2,
with

α̂2 = max
τ∈[0,T2]

{Ψ(τ)},

which proves the existence of a class K∞ function α2.
Now we prove the existence of a class K∞ function α1 verifying (13). With condition (20)

verified, a lower bound for the V (η) given by (18) is provided as follows [8]:

V (η) = V0(η) +

m∑
i=1

λ(i)

∫ Cz(i)z

0

(φ(i)(s)− δ(i)s)ds ≥ V0(η)−
m∑
i=1

λ̃(i)(τ)

∫ Cz(i)z

0

(φ(i)(s)− δ(i)s)ds.

(25)

Then, taking into account the function candidate (19), and that
∫ Cz(i)z

0
(φ(i)(s)−δ(i)s)ds = 1

2z
>C>z(i)(δ(i)−

δ(i))Cz(i)z −
∫ Cz(i)z

0
(δ(i)s− φ(i)(s))ds, the inequality (25) is equivalently expressed as

V (η) ≥
[
z
φ

]>
Ψ(τ)

[
z
φ

]
+

m∑
i=1

λ̃(i)(τ)

∫ Cz(i)z

0

(δ(i)s− φ(i)(s))ds, (26)
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where

Ψ(τ) = ΨV (τ)−He

{
1

2

[
(∆Cz)

>

−Im

]
U0(τ)

[
∆Cz − Im

]}
.

From the positivity of ΨV (τ) given by (21), and the positivity of the last term given by relation (16)

in Lemma 1, it follows that Ψ(τ) � 0, ∀τ ∈ [0, T2]. Furthermore, as λ̃(i)(τ) ≥ 0 and
∫ Cz(i)z

0
(δ(i)s−

φ(i)(s))ds ≥ 0, i = 1, · · · ,m, one can conclude from (26) that

V (η) ≥
[
z
φ

]>
Ψ(τ)

[
z
φ

]
+

m∑
i=1

λ̃(i)(τ)

∫ Cz(i)z

0

(δ(i)s− φ(i)(s))ds ≥
[
z
φ

]>
Ψ(τ)

[
z
φ

]
.

Considering α̂1 the minimum eigenvalue of Ψ(τ) for τ ∈ [0, T2], we have that

V (η) ≥ α̂1

∣∣∣∣[zφ
]∣∣∣∣2 ≥ α̂1 |z|2 = α1(|η|A),

which proves the existence of a class K∞ function α1, finishing the proof.

Remark 2. Lemma 3 proposes a condition of positivity for the generalized Lur’e-Postinikov func-
tion defined in (18). Compared to a classical Lur’e type Lyapunov function, Lemma 3 provides some
relaxation about the positivity necessity of the generalized quadratic term and the nonnegativity ne-
cessity of the integral multipliers λ(i). Indeed, the positivity of the Lyapunov function is satisfied
only for nonlinearities φ satisfying (16) in Lemma 1. Furthermore, for other nonlinearities, such as
deadzone and saturation functions, the integral part of function (18) assumes a generalized quadratic
form on z and φ(z), leading to a sign-indefinite quadratic form V (η) which could be described as in
(19). In this particular case, more suitable relaxations can be employed (see for instance [39]).

5. Stability conditions

The next theorem states sufficient conditions for the stability of the closed-loop system, con-
sidering the Lyapunov function candidate (18)-(19). Before presenting the theorem, we define the
following matrices:

M1 ,
[
Iq 0q×m 0q×m

]
, M2 ,

[
0m×q Im 0m×m

]
MF1 , AFM1 +BFM2, M3 ,

[
0m×q 0m×m Im

]
M12 ,

[
M1

M2

]
, MJ ,

[
AJ KJ

0m×q Im

]
, MF2 ,

[
AF BF 0q×m

0m×q 0m×m Im

]
Theorem 2. If there exist matrix functions P : [0, T2] → Sq+m, Λ̃ : [0, T2] → Dm�0 and Uj :
[0, T2]→ Dm�0, j = 0, 1, 2, and a matrix Λ ∈ Dm such that

ΨΛ(τ) � 0 ∀τ ∈ [0, T2] (27)

ΨV (τ) � 0 ∀τ ∈ [0, T2] (28)

ΨF(τ) ≺ 0 ∀τ ∈ [0, T2] (29)

ΨJ(τ) ≺ 0 ∀τ ∈ [T1, T2] (30)
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where

ΨΛ(τ) =Λ + Λ̃(τ),

ΨV (τ) =P (τ)− 1

2

[
C>z

0m×m

]
(∆−∆)Λ̃(τ) [Cz 0m×m] + He

{[
(∆Cz)

>

−Im

]
U0(τ)

[
∆Cz − Im

]}
,

ΨF(τ) =M>12Ṗ (τ)M12 + He{M>12P (τ)MF2} − 0.5He
{

(M>1 (∆Cz)
> −M>2 )ΛCzMF1

}
+ He{(M>2 −M>1 (∆Cz)

>)U1(τ)(∆CzM1 −M2)}
+ He{(M>3 −M>F1(ΓCz)

>)U2(τ)(ΓCzMF1 −M3)},
ΨJ(τ) =M>J P (0)MJ − P (τ),

then the origin of the closed-loop system given by (1) and (6) is globally asymptotically stable.

Proof. From Lemma 3, it follows that (27) and (28) ensure that (13) is verified.
Taking into account that

d

dt

[
m∑
i=1

λ(i)

∫ Cz(i)z

0

(φ(i)(s)− δ(i)s)ds

]
= −(z>(∆Cz)

> − φ>(Czz))ΛCz ż, (31)

and denoting 〈∇V (η), f(η)〉 , ∇V f , one obtains

∇V f =He

{[
z

φ(Czz)

]>
P (τ)

[
ż

φ̇(Czz)

]}

+

[
z

φ(Czz)

]>
∂P (τ)

∂τ

[
z

φ(Czz)

]
τ̇ − (z>(∆Cz)

> − φ>(Czz))ΛCz ż,

(32)

Consider now U1, U2 : [0, T2] → Dm�0, and recall that the nonlinearity φ satisfies the sector bounds
(4) and slope bounds (5). If

∇V f + 2(φ(Czz)−∆Czz)
>U1(τ)(∆Czz−φ(Czz))

+ 2(φ̇(Czz)− ΓCz ż)
>U2(τ)(ΓCz ż − φ̇(Czz)) < 0

(33)

for all τ ∈ [0, T2], we can conclude from Lemmas 1 and 2 that ∇V f < 0 for all τ ∈ [0, T2],
and therefore the condition (14) of Theorem 1 is satisfied. Recalling from (10) that τ̇ = 1 and
ż = AFz +BFφ(Czz), and defining ζ = [z> φ>(Czz) φ̇

>(Czz)]
>, an equivalent expression for (33)

is given as follows:

ζ>
(
M>12Ṗ (τ)M12 + He{M>12P (τ)MF2} − 0.5He

{
(M>1 (∆Cz)

> −M>2 )ΛCzMF1

}
+ He{(M>2 −M>1 (∆Cz)

>)U1(τ)(∆CzM1 −M2)}

+ He{(M>3 −M>F1(ΓCz)
>)U2(τ)(ΓCzMF1 −M3)}

)
ζ < 0.

(34)

Thus, from (34), we conclude that (14) holds provided that condition (29) is satisfied.
Note now, from the definition of g(η) , g(z, τ) in (11), that (15) can be rewritten as follows:

∆V ,V (g(z, τ))− V (z, τ) =

[
z+

φ(Czz
+)

]>
P (0)

[
z+

φ(Czz
+)

]
−
[

z
φ(Czz)

]>
P (τ)

[
z

φ(Czz)

]
.
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Recalling that Cz = [C 0m×p], from (11) we have that Czz = Czz
+. Thus, it follows that[

z+

φ(Czz
+)

]
= MJ

[
z

φ(Czz)

]
. (35)

Then we can conclude that ∆V < 0 ∀τ ∈ [T1, T2], provided that condition (30) holds, which ensures
that (15) is verified at the jumps. Note that since LMIs (29) and (30) are strict, it is always possible
to determine a quadratic positive definite function ω formally satisfying (14) and (15).

Hence, the conditions of Theorem 2 guarantee the verification of conditions of Theorem 1 with
V as defined in (18)-(19), which concludes the proof.

Remark 3. Since the LMIs in Theorem 2 depend on P (τ) and Ṗ (τ) =
∂P (τ)

∂τ
τ̇ , with τ being

a timer that counts the time between the last sampling instant, they can be seen as DLMIs in the
sense presented in references [25] and [26]. Note, however, that in the hybrid system framework, τ is
considered as a state with τ̇ = 1. In this case, they can also be seen as “timer” parameter dependent
LMIs, similar to the ones that appear in the literature of linear parameter varying systems (LPV)
(see for instance [40] and [41]) and also referred as “clock” dependent conditions in [42].

5.1. Polynomial dependence on τ

Theorem 2 is quite generic in the sense that the stability can be certified if we are able to
find some matrix functions depending on τ . However, nothing is specified about the suitable
structure of these functions. Furthermore, once we fix a certain structure (or dependence on τ), the
conditions must be verified for all τ in the considered intervals, which leads to an infinite dimensional
problem. To overcome this problem, we could consider, for instance, gridding techniques similar
to the ones performed in the context of linear parameter varying (LPV) systems [40], but loosing
in this case the formal certification of stability. Another possibility is to consider an affine [43],
[44], [45] or piecewise affine [23] dependence leading to a finite test of LMIs. On the other hand,
as any continuous nonlinear function can be approximated by a polynomial function of appropriate
degree, we propose here to consider matrix functions with polynomial dependence on τ , which can
be generically described as follows:

M(τ) =

d∑
i=0

Miτ
i = M0 + τM1 + · · ·+ τdMd, (36)

where d is the degree of the matrix polynomial function and Mi, i = 1, . . . , d are constant matrices.
In this case, conditions in Theorem 2 can be expressed as sum-of-squares (SOS) conditions [46],
[47], [42] and efficiently solved by available software packages such as SOSTOOLs [48]. We recall
that a matrix M(τ) is said to be a SOS matrix, or simply “SOS”, if it can be written as M(τ) =
H(τ)>H(τ). Hence, if M(τ) is SOS it follows that M(τ) � 0, ∀τ .

The matrix polynomial structure of finite degree on τ , given in equation (36) can therefore
approximate a generic nonlinear function, leading to more degrees of freedom in the search for
an appropriate Lyapunov function. Note that in the SOS framework, for each matrix variable
M(τ), one has M0, . . . ,Md as free matrices to be determined, which can be used to “fit” a suitable
nonlinear function leading to the stability certification. Of course, there is a trade-off between the
degree of the polynomial, that should be chosen a priori, and the numerical complexity.

The next theorem exploits this structure and presents the stability conditions cast in the sum-
of-squares programming framework.
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Theorem 3. If there exist matrix polynomials P : [0, T2]→ Sq+m, Λ ∈ Dm, Λ̃ : [0, T2]→ Dm, Qj :
[0, T2] → Sm, j ∈ {0, 1, 2, 3, 4}, Q5 : [0, T2] → Sq+m, Q6 : [0, T2] → Sq+2m, Q7 : [0, T2] → Sq+m,
Uj : [0, T2]→ Dm, j ∈ {0, 1, 2}, and a scalar ξ > 0, such that

Qj(τ), j ∈ {0, 1, 2, 3, 4}, are SOS (37)

U0(τ)−Q0(τ)τ(T2 − τ) is SOS (38)

U1(τ)−Q1(τ)τ(T2 − τ) is SOS (39)

U2(τ)−Q2(τ)τ(T2 − τ) is SOS (40)

Λ̃(τ)−Q3(τ)τ(T2 − τ) is SOS (41)

ΨΛ −Q4(τ)τ(T2 − τ) is SOS (42)

ΨV (τ)−Q5(τ)τ(T2 − τ)− ξIq+m is SOS (43)

−ΨF(τ)−Q6(τ)τ(T2 − τ)− ξI2(q+m) is SOS (44)

−ΨJ(τ)−Q7(τ)(τ − T1)(T2 − τ)− ξIq+m is SOS (45)

then, the origin of the closed-loop system (1) and (6) is globally asymptotically stable.

Proof. If the conditions in (37) are verified, then

Qj(τ) � 0, j ∈ {0, 1, 2, 3, 4}, ∀τ.

Noting that τ(T2 − τ) � 0 for τ ∈ [0, T2], provided that Q0(τ) � 0 ∀τ , it follows that (38) ensures
that

U0(τ) � 0 τ ∈ [0, T2]. (46)

Similarly, as Q1(τ), Q2(τ), Q3(τ), Q4(τ) � 0 ∀τ , the conditions (39), (40) and (41) imply that
U1(τ), U2(τ), Λ̃(τ) and (Λ − Λ̃(τ)) � 0 ∀τ ∈ [0, T2]. Moreover, since Q5(τ) � 0 ∀τ and ξ > 0, the
condition (43) implies that

ΨV (τ) � ξIq+m � 0 ∀τ ∈ [0, T2], (47)

and therefore that (28) is satisfied. Similarly, since Q6(τ) � 0 ∀τ , one has that (44) implies (29).
Finally, noting that (τ −T1)(T2− τ) � 0 for τ ∈ [T1, T2], provided that Q7(τ) � 0 ∀τ , it follows

that (45) ensures (30).

6. Optimization problems

Here we formulate optimization problems to solve problems P1 and P2 defined in Section 2,
based on the constraints of Theorem 3. In fact, P1 and P2 can be cast as the following optimization
problems

P1 ∼

{
max T2

subject to (37) – (45)
(48)

P2 ∼

{
max f(∆,Γ)

subject to (37) – (45)
(49)
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Observe that in optimization problem (49), a generic objective function f(∆,Γ) depending on ∆
and Γ, that is, on the upper bounds of the sector and/or the slope of the nonlinearity, is considered.
The basic idea is to enlarge the sector for which the stabilty can be certified. For instance, we can
consider f(∆,Γ) =

∑m
i=1(δ(i) + γ(i)) and δ(i) = γ(i) = β, ∀i and maximize β.

On the other hand, it should be noticed that the objective variable T2 of problem (48) and ∆
and Γ of (49) cannot be directly considered as decision variables, because they are multiplied by
other decision variables in (45) and (44). Thus, to solve (48) or (49), an SOS feasibility problem
is solved repeatedly, each time increasing the value of T2 or β, respectively, until the constraints
become unfeasible. Hence, solutions to both (48) and (49) can be obtained with the SOStools
toolbox [48].

7. Numerical examples

Example 1

Consider system (1) with the following parameters

A =


−0.5 −6.2 −0.105 −1.2

1 0 0 0
0 1 0 0
0 0 1 0

 , Bu =


1
0
0
0

 , Bφ =


0.5
0
0
0

 , C =
[
0 0.2 0 0

]
,

and with nonlinearity sector and slope bounds given by ∆ = β, ∆ = 0, Γ = β, Γ = −β, where
β =
√

2/2, and a control law (6) with:

Kx = [0.1 0.2 0.005 0.2], Ku = 0 and Kφ = 0.5.

Defining dX the degree of a polynomial decision variable X(τ), we consider dΛ̃ = dU0
= dU1

=
dU2

= dQ0
= dQ1

= dQ2
= dQ3

= dQ4
= 0, and dQ5

= dQ6
= dQ7

= 2, and dP = 4. In this
case, the values of T2 resulting from the solution of (48) considering different values of T1 are
shown in Table 1. As a comparison, the results obtained with the recent method of [21] based on
a looped-functional approach are also shown in the same table. The table also displays the results
considering only the quadratic part V0(η) of the Lyapunov function (that is, for V (η) = V0(η)), that
results in conditions with reduced complexity. It can be noted that the present method provides less
conservative estimates of T2, surpassing the limit of T1 = T2 = 5 reached by the looped-functional
based method, and that the more general Lur’e-type candidate significantly improves the estimates.

Table 1: Example 1 - Obtained values of T2 for different valus of T1

T1 (Given) 0.5 1 2 3 4 5 17.9

T2 from (48) 6.8 7.5 12.4 15.2 16.6 17.9 17.9
T2 with V0(η) 5.7 6.0 6.4 6.6 6.7 6.8 unfeas.
T2 [21] 2.9 3.3 3.9 4.4 4.8 5 unfeas.

Now, consider the control law (6) with following gains

Kx = [−2.8322 − 2.5547 − 6.6458 − 1.3226] , Ku = 0 and Kφ = 0.
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In this case, considering T1 = T2 = T , i.e., a periodic sampling case, the maximum estimate obtained
for the sampling period ensuring the global stability of the origin, obtained with the conditions in
Theorem 2, is given by T = 0.607. To illustrate how near this estimate is to a value that results
in divergent trajectories, the system is simulated with a nonlinearity belonging to the considered
sector with β =

√
2/2, defined as φ(y(t)) = 0.1sin(5y(t)) + 0.15y(t). Figure 1 shows the simulation

of the system for the initial condition x(0) = [1 1 1 1]> considering T = 0.607 and T = 0.61. Note
that with T = 0.61, the origin is not globally asymptotically stable, which means that a small
increase of 0.5% in the estimated value of T is enough to result in divergent trajectories for the
plant states x(1), x(2), x(3) and x(4).

0 20 40 60 80 100

-8

-6

-4

-2

0

2

4

6

8

10

0 20 40 60 80 100

Figure 1: Example 1 - Simulations of the closed-loop system for x(0) = [1 1 1 1]> considering T = 0.607 (left), and
T = 0.61 (right).

Consider now T1 = 0.5. Solving the problem (49) to maximize the sector and slope bounds, the
objective function defined as f parameterized by β, i.e. considering the maximization of β. For
different values of T2, Figure 2 shows the maximum obtained β considering different polynomial
degrees for the variables.

The results can be seen as a short blanket dilemma: larger values of T2 lead to smaller admissible
sectors, (i.e. smaller is the optimal β), and vice-versa. Furthermore, it can be observed that less
conservative results are obtained with some polynomial variables of larger degree. When the degrees
are 2 or less, for example, no estimate greater than T2 = 8 could be obtained. Another conclusion
is that the degree of P significantly reduces the conservatism, compared to the polynomial degrees
of other variables.
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Figure 2: Example 1 - Trade-off between β and T2. The lines in this plot correspond to different combinations for
the polynomial degrees of dP , dΛ̃, dU0 , dU1 and dU2 .

Example 2

Consider now the system (1) tackled in [14], where

A =

[
−2 1
1 1

]
, Bu =

[
0
1

]
, Bφ =

[
1
2

]
and C =

[
0 1

]
.

The nonlinearity is defined as φ(y(t)) = sin(y(t)) − y(t), which satisfies (3), (4), and (5) with
∆ = 1.2173, ∆ = 0, Γ = 0 and Γ = −2. In [14], the control law (6) is parameterized by a single
value κ, as follows:

Kx =
[
0 κ

]
, Ku = 0 and Kφ = 0. (50)

In Figure 3, we compare now the results obtained with the proposed approach with T1 = 0.1
and the ones of [14], which is based on Lyapunov-Krasovskii functionals, regarding P1. The graph
shows the estimates of T2 for varying values of κ, ranging from -1.9 to -16. We can observe that
larger bounds for T2 are obtained with the proposed method. The conservatism reduction is in
particular greater for smaller values of κ.

-2 -4 -6 -8 -10 -12 -14 -16

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3: Example 2 - Estimate of the maximal admissible T2 for different values of parameter κ.
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8. Conclusion

This paper proposed theoretical conditions for the stability analysis of Lur’e systems with
sampled-data control by using the hybrid dynamical system framework. A generalized Lur’e-
Postnikov function depending on a timer variable was considered. Then, timer-dependent matrix
inequalities were proposed to guarantee the global asymptotic stability of the origin of the closed-
loop system. Considering a polynomial timer dependence, these conditions were tackled through
sum-of-squares expressions, usefull to deal with some optimization problems, such as the maximiza-
tion of the upper bound of the inter-sampling interval and the maximization of the sector and/or
slope bounds of the nonlinearity, for which it is possible to ensure the asymptotic stability of the
origin. Finally, the conservatism reduction was illustrated by considering the use of the general-
ized Lur’e-Postinikov Lyapunov function with polynomial timer-dependent terms of appropriate
degrees. The results pave the way for future works, such as the case where particular nonlinearities
are considered (such as saturation or deadzone, in which case it would be possible to switch Lemma
3 for Lemma 2 in [39]) or the case where the plant inputs are also affected by nonlinearities issued
from the actuators modeling.
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