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Abstract—The growing demand and the diverse traffic patterns
coming from various heterogeneous Internet of Things (IoT)
systems place an increasing strain on the IoT infrastructure
at edge network. Different edge resources (e.g. servers, routers,
controllers, gateways) may illustrate different execution times
and energy consumption for the same task. They should be
capable of achieving high levels of performance to cope with
the variability of tasks handling. However, edge nodes are often
faced with issues to perform optimal resource distribution and
energy-awareness policies in a way that makes effective run-
time trade-offs to balance response time constraints, model
fidelity, inference accuracy and task schedulability. To address
these challenging issues, in this paper we present a dynamic
task scheduling and resource management deep reinforcement
learning approach for IoT traffic scheduling in SDN-based edge
networks. First, we introduce the architectural design of our
solution, with the specific objective of achieving high network
performance. We formulate a task assignment and scheduling
problem that strives to minimize the network latency, while
ensuring energy efficiency. The evaluation of our approach offers
better results compared against both deterministic and random
task scheduling approaches, and show significant performances
in terms of latency and energy consumption.

Index Terms—Task scheduling; SDN; Fog Computing; Deep
Reinforcing Learning; Internet of Things.

I. INTRODUCTION

The Internet of Things (IoT) is increasingly connecting a
huge number of smart objects [1], which generate, gather,
process, infer, and transmit massive amount of sensory data
that should be processed at edge network nodes. Typical
edge nodes, so-called fog computing nodes, often rely on
discoverable, generic, forward-deployed servers and IoT gate-
ways located in single-hop proximity of wireless mobile
IoT devices [2]. With the acceleration of 5G commercial
deployment, individual Fog nodes should be able to coor-
dinate their processing with neighboring helper IoT nodes
by offloading their tasks in order to reduce task execution
delay significantly. Specifically, such Fog nodes should be
able to support the burst and unpredictable IoT traffic at
different time scales, required new types of delay-sensitive
IoT services and applications, such as updating maps for self-
driving cars or delivery drones, energy usage measurements
from a smart grid, emergency monitoring, intelligent manufac-
turing, interactive multiplayer online games, and disaster relief.
However, wireless communication and computing resources

(CPU, memory, storage) are usually highly limited and energy-
consuming, which makes it difficult to meet the increasingly
growing demand and dynamic needs of IoT applications, and
address the heterogeneous requirements smart objects that
communicate over the Internet. Therefore, flexible resource
management, intelligent network control and efficient task
scheduling algorithms play major roles to ensure fair and
guaranteed performance.

Software-Defined Network (SDN) is used to enable flex-
ible and collaborative task offloading service orchestration
in cloud-mobile edge computing (MEC) [3]. A service or-
chestration scheme is proposed to reduce network load along
with a differentiated cloud-edge offloading decision algorithms
have been proposed to improve cloud computation and en-
ergy consumption. Similarly, an SDN scheme for balancing
Edge-Cloud traffic load and improving service response time
has been introduced in [4]. A nature-inspired meta-heuristic
schedulers [5] based on ant colony optimization have been
introduced to effectively load balance IoT tasks between Fog
nodes. Likewise, Cai et al. [6] proposed a framework for tasks
and energy offloading in a fog-enabled IoT network, while
minimizing tasks execution delay. Recently, Machine learning
techniques have become a promising to bring intelligence
to the SDN controller by performing data analysis, network
optimization, and automated provision of network services [7].

However, these network provisioning approaches neither
address the dynamicity of IoT applications nor care about
resource utilization of fog-enabled IoT nodes. To address
this issue, the network must be flexible enough to be repro-
grammed in accordance with any change in IoT application
needs. An additional trend reveals that fog computing devices
should provide : (i) an on-demand basis resource allocation to
support adaptive horizontal and vertical scaling of the network
resources; (ii) flexible infrastructure virtualization that exploits
in-network programmability capabilities to operate inside an
SDN-enabled virtualization platform and; (iii) device-driven
and human-driven intelligence to address the issues of energy
efficiency and ultra-low latency requirements for future reli-
able and real-time IoT applications [8]. To address the above-
mentioned issues, we introduce, in this paper, a Deep Re-
inforcement Learning (DRL) energy-efficient task assignment
and scheduling in SDN-based Fog IoT Network. SDN-Fog



computing model allows reducing network latency and traffic
overhead by centralizing the network control and orchestration
in a single SDN controller layer. We also introduce a deep
reinforcement learning algorithm to address task allocation
and resource planning problem in dynamic and distributed
IoT environment to improve latency minimization and reduce
energy consumption. Our Deep RL uses intelligent agents
that learn to make better decisions directly from experience
interacting with the environment.

The remainder of this paper is organized as follows: Sec-
tion II compares our work with related research. In Section III,
we depict the details of our architecture, and we describe the
analytical model for our DL-based dynamic task scheduling
and resource management. Section IV evaluates our solution
to validate our claims of flexible data delivery and low
latency communication overhead. Finally, Section V presents
concluding remarks, alluding to lessons learned and future
work.

II. RELATED WORK

This section draws on the research directions on task of-
floading and resource allocation problem using Reinforcement
Learning and empowering cognitive and autonomic control
and management IoT services in a fog-enabled network with
SDN.

A. Reinforcement Learning for Task Allocation

Task scheduling problem in dynamic IoT environment is
often one of the most challenging resource management prob-
lems as it often manifests as a difficult online decision-making
where appropriate solutions usually depend on the dynamic
workload and the interaction with the surrounding environ-
ment [9]. Lei et al [10] provides a comprehensive survey of au-
tomating and orchestrating IoT resources using reinforcement
learning (RL) in order to achieve autonomy. Wan et al. [11]
introduced a DRL-based scheduling for Cellular Networks.
They proposed two methods, i.e., learning from a dual AI
module and learning from the expert solution to perform link
adaption, feedback and scheduling mechanisms used in real
LTE networks. The former uses two independent agents to
train and learn from each other. The latter uses Proportional
Fair (PF) scheduling algorithms as method, the PF algorithm
is employed as expert knowledge to help with DRL agent
training. Sen et al. [12] proposed a Machine Learning (ML)
approach for scheduling application tasks in distributed Intel-
ligent Cognitive Assistants (ICA). They introduced a heuristic
method for solving task assignment problem between the three
tiers in the edge computing system (i.e., remote cloud, fog
and edge devices). Hongzi et al. [13] introduced DeepRM
framework to build autonomous and intelligent systems that
learn to manage resources directly from their own experience.

Likewise, the authors in [14] proposed a DRL approach
for decentralized resource allocation mechanism for vehicle-
to- vehicle (V2V) communications. They introduced a DRL
agent that makes decisions to find optimal sub-band and power
level for transmitting V2V data. Dhoha et al. [15] proposed a

cooperative DRL-based task allocation process that combines
learning agents capabilities to improve resource sharing and
distributed task allocation. Wang et al. [16] proposed a DRL-
based incremental approach for learning allocation strategies.
They extracted diverse task patterns from the large volume
of historical allocation data to improve learning efficiency.
The authors in [17] introduced a reinforcement learning ap-
proach for learning the scheduling policy automatically and
reduces the estimation error on data centers. Similarly, Ma
et al. [18] proposed an IoT-based deadline and cost-aware
task scheduling optimization scheme to satisfy the Quality of
Service (QoS) requirements in cloud-hosted IoT applications.
The proposed algorithm uses heuristic approaches to minimize
the execution cost of a workflow under deadline constraints in
the infrastructure as a service (IaaS) model.

B. Task Scheduling for SDN-enabled Edge Computing

Additionally, SDN has been widely used to empower dy-
namic and effective resource allocation in diverse cloud [19]
and data centers [20] networks, and providing on-demand
application and resource management in wireless sensor net-
works [21] and edge network [22]. For example, Wu et al. [23]
introduced UbiFlow framework that combines ubiquitous flow
control and mobility management in urban heterogeneous net-
works. UbiFlow adopts distributed SDN controllers pattern to
divide traffic scale among geographically distributed IoT net-
work islands or partitions, where each controller can maintain
network scalability, load balancing and consistency. Chen et
al. [24] proposed a SDN-based heuristic model for offloading
distributed computing resource in ultra-dense network. They
formulated the task offloading problem as a mixed integer non-
linear program to solve task placement and resource allocation
problem in mobile edge computing. Similarly, Pen et al. [25]
introduced a mobile task offloading framework for device-to-
device (D2D) Fogging. They leverage Lyapunov optimization
D2D Fogging methods for achieving energy efficient task
executions for network wide users and reduce time-average
task execution in order to avoid over-exploiting and free-riding
behaviors.

Furthermore, Kuang et al. [26] investigated a joint problem
of partial offloading scheduling and resource allocation for
Mobile edge computing (MEC) ti run multiple independent
tasks. They formulated their framework as non-convex mixed-
integer optimization problem based on Lagrangian dual de-
composition in order to minimize the weighted sum of the
execution delay and energy consumption while guarantee-
ing the transmission power constraint of the tasks. Zhang
et al. [27] proposed a fair and energy-minimized task of-
floading algorithm based on a fairness scheduling metric.
Their scheme considers task offloading energy consumption,
historical average energy demand and the FN priority to offer
optimal transmission power for wireless Fog-enabled mobile
IoT nodes. Chalapathi et al. [28] proposed a Latency Aware
Task Assignment (LATA) scheme for multi-cloudlet network
to optimize the latency monetary cost in computing the tasks of
mobile devices by making optimal task assignment among the



micro-clouds. LATA model proposes an admission control pol-
icy to maintain optimality in high traffic conditions. Besides,
the authors in [29] addressed the problem of task offloading
in SDN-enabled network by offering a computation scheme
for multi-hop IoT access-points (APs). The proposed scheme
is formulated as an integer linear program (ILP) and greedy-
heuristic-based approach to offer an optimal decision on local
or remote task computation, optimal fog node selection, and
optimal path selection.

C. Paper Contribution

Unlike the aforementioned approaches, which are mostly
based on meticulously designed heuristics which ignore the
patterns of incoming tasks, our approach used SDN to enhance
the control and management of For-enabled IoT networks in
terms of flexibility and intelligence. Our approach provides
an intelligent IoT network communication system to create a
single, coherent and unifying control framework for supporting
future real-time and time-sensitive Fog-enabled IoT network
design, by combining smart connectivity, reinforcement learn-
ing, distributed SDN communication, automated and greatly
cost reduced network operation.

Furthermore, compared with existing researches for the
energy consumption in fog-enabled networks, which mostly
focused on minimizing the overall energy consumed by the
task offloading services, our approach introduces an online
Deep Reinforcement Learning task assignment and scheduling
scheme for optimizing IoT network performance, minimizing
the energy demand and consumption especially in the sce-
narios with battery-powered distributed IoT nodes, offering
predictive behaviors on the network, and preventing the impact
of failures. The SDN capabilities offered by the controller,
e.g. logically centralized control, global view of the network,
software-based traffic engineering, and dynamic updating of
forwarding rules, make it straightforward to apply deep rein-
forcement learning for fully automated tasks assignments and
scheduling in IoT network. Specifically, our approach offers
a fully automated service deployment and resource/capacity
planning mechanisms for fast-path forwarding across ultra-
low latency SDN-enabled virtualized Fog infrastructure. Our
SDN-based solution offers programmable analytics to the
application layer through open interfaces, instantiate service
intelligence at the edge network.

III. MODEL FOR TASK ASSIGNMENT AND SCHEDULING
PROBLEM

This section delves into the architectural details that enable
to support task assignment and scheduling, dynamic, and
flexible resource management with our SDN-based framework,
and presents the problem statement and the algorithms to
instantiate service intelligence at the edge network .

A. System Architecture

Figure 1 illustrates the architectural design of our deep
reinforcement assignment and scheduling solution to address
the task scheduling problem in IoT network. We added the

task scheduler at the SDN controller level to find and select the
best scheduling decision policy. The Task scheduler algorithm
consists of a queue containing task processing requests coming
from mobile IoT applications, and learning-based input rep-
resentative and a planning decision maker based on learning.
First, the SDN controller uses a planner algorithm to manage

Reinforcement 
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SDN Controller
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Fog node Fog node Fog node
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Fig. 1: Task Scheduling architecture

task processing requests and create historical data-set from
incoming task requests. The controller learns a data-set to
represent the state information of all the fog nodes and the
task requests in order to create a latent representation model
to avoid any kind of noise, useless and less important data.
Once the information available on the dataset are well filtered
and represented in form of network graph, the SDN controller
starts the learning process to generate learning policies to input
programming decision values (Q-value). Then, it selects the
best fog node and sends the decision in form of OpenFlow
rules for handling the tasks. Finally, the SDN controller assigns
the fog nodes to decision for processing the tasks requests.
Thereafter, the mobile device can download data from the
assigned fog node.

B. Problem Statement

The task planning in fog computing is represented by
N different tasks T1,T2,...,Tn, which will be assigned to the
different fog nodes F1,F2,...,Fm in order to minimize energy
consumption and time delay by making the most of the use
of transmission channel. Lets consider:

• Xi j(t): denotes the assignment of task Ti on fog node Fj

Xi j(t) =
{

1, if Ti per f orm on Fj
0, otherwise (1)



• Execution time to Ti task at fog node Fj

T TCi j(t) = Di(t)θi/C j(t) (2)

Where Di(t) is the data size, θi is the computing intensity
and C j(t) is the computing resource on fog node Fj.

• The transmission time delay for task Ti on fog node Fj
is denoted by equation 3:

T T Ri j(t) =
Di(t)
ri j(t)

;

ri j(t) = w(t)∗ log(1+
h(t)∗ p(t)

σ
)

(3)

Where w(t) is the bandwidth, h(t) is the channel power
gain, p(t) is the transmission power, and σ is the noise
power.

• The total time delay is denoted by equation 4:

T Ti j(t) = T T Ri j(t)+T TCi j(t) (4)

• Similarly, the energy consumption is denoted by equa-
tion 5:

ECi j = T T Ri j(t)∗ pir(t)+T TCi j(t)∗ pie(t) (5)

Where pir(t) is the transmission power and pir(t) is the
idle power.

We model the tasks scheduling problem as a nonlinear multi-
objective combinatorial optimization problem with several
objectives. The objective function is multi-variables and multi-
constraints. That is, it becomes difficult to find an optimal
solution using polynomial method, hence the need to design a
hybrid heuristic algorithm is proposed in this section to build
a task scheduling strategy. In order to simplify the complexity
of the problem into a single objective problem and reduce the
difficulty of solving, we consider the following hypotheses:
• Each task is independent and there are no constraints

between the tasks.
• Each task can only be assigned to a node fog.
• No task can be allocated repeatedly.
• The task in the calculation process doesn’t consider the

impact of the mobility of the terminal equipment.
• All nodes are static, and the current task cannot be

interrupted.
The objective function of task scheduling in fog nodes is
shown in equation 6, where both time delay and energy
consumption constraints is formulated as follows:

f = min
n

∑
i=1

(Wit

m

∑
j=1

[Xi j(t)∗T Ti j(t)]+Wie

m

∑
j=1

[Xi j(t)∗ECi j(t)])

(6)
Where Wit is the weight of delay and Wie is the weight of
energy consumption.

C. Deep Reinforcement Learning for resolving Task Schedul-
ing Problem

Figure 2 depicts our approach to resolve the task scheduling
problem using deep reinforcement learning. Since the task
planning module contains a small amount of information about

the future arriving tasks, the SDN controller uses historical
tasks to build the deployment decisions. The DRL algorithms
we implemented inside the controller can analyze the perfor-
mance of all connected fog-enabled IoT nodes in order to build
an efficient scheduling to execute several simultaneous tasks
and predict optimal scheduling on the network that meets both
the low-latency and efficient-energy requirements.
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Fig. 2: Deep Learning for Task Scheduling
First, we should train the SDN controller to represent the

data-sets of all tasks and fog-enabled nodes intelligently in
order to perform tasks assignments using the best optimal way
under the aforementioned constraints of minimizing the net-
work latency and reduce the energy consumption. Therefore,
we introduced the DRL algorithm to choice and apply the
best decision that places the tasks on available fog nodes.
As shown in Figure 2, the A compressed low-dimensional
representation of the input are used to the find a latent
representation of the data between tasks that will be executed
and fog node states ready to execute these tasks. Then, the
encoder later, which model as a function g(x) = sg(Wx+b),
is used to reduce the input X in a representation of latent
space Z. Thereafter, a bottleneck layer Z = g(x) is used to
filter the incoming data from the encoder layer. Then, a
decoder function f (x) = sg(W ′z+ b′) is used to reconstruct
X (input) from Z (representation of latent space). The latent
representation Z obtained at the output of the encoder, i.e.
S∗ = Z = g(S), is then used to train the SDN controller to
assign task Ti to node Fj and generate the optimal decision to
schedule the tasks.

Algorithm 1 illustrates the task assignment approach per-
formed by the SDN controller, which collects information
from the underlying SDN routers about the available fog nodes
capacities, including their available energy. Then, the algo-
rithm receives a list of tasks along with their characteristics
and assign them to available fog nodes. The DRL algorithms
selects fog nodes based on their available energy and their
current occupation rates in order to reduce the processing
time delay. Once the controller assigned tasks to their relevant
nodes, it keeps an historical dataset of the current node’s pro-
cessing and available energy. Each time a tasks is successfully



assigned to a fog node, the the controller increase the value
of local reward and select the next action according to the
expected reward. Then, to maximize the objective function
(see equation 6), the algorithm apply argmax operation to find
the maximum values satisfying the constraints of low-energy
consumption and lower network latency.

Algorithm 1: Tasks Assignment to Fog Nodes
Input: Detection nodes N = {n1,n2, . . . ,n j} with their

available energies, Set of tasks
T = {t1, t2, . . . , ti} with their characteristics

Output: Assign task ti to node n j
1 while 1 do // infinite loop

// learn according to cases
2 Replay (n, t)

// Predict the value of the reward
3 act-values = predict (n, t)

// Choose the action according to
the expected reward

4 a = argmax(act-values[0])
5 Send t to n
6 end

As described in algorithm 2, the SDN controller implements
a Deep Q-learning algorithm) in form of a learning agent that
maps states of the environment to actions the agent can take to
move from one state to another, in order to maximize a numeri-
cal reward over time. Specifically, SDN controller selects these
actions during run-time, even if an agent doesn’t complete the
knowledge of rewards and state transition functions. In each
state, the agent can choose between two types of behavior:
either the controller can continue exploring the state space to
find optimal decision policy, or its can exploit the information
already present in the Q values defined by equation 7:

Q(S∗) = R+ γ maxQ(s′,a′)

Action a = argmax
a′

Q(s,a′) (7)

The total reward is given by equation 8:

R =
n

∑
i=1

(Wit

m

∑
j=1

[Xi j(t)∗T Ti j(t)]+Wie

m

∑
j=1

[Xi j(t)∗ECi j(t)])

(8)

Where Wit is delay weight and Wie is weight of energy
consumption.

We implemented the training algorithm that uses a regres-
sion loss function to minimize the total training data error.
The deep learning neural network loss function to predict the
states of Q values is defined by equation 9:

L =
1
2
[r+ γ max

a′
Q(s′,a′)−Q(s,a)]2 (9)

The algorithm 2 learns allocation policy to provide an
optimal decision with respect to both the aforementioned con-
straints (i.e. in terms of latency and energy) and performance
of the system. First, in order to start the learning process, the

Algorithm 2: DEEP Q-LEARNING ALGORITHM WITH
EXPERIENCE REPLAY
Input: Initialize replay memory M ; Initialize

action-value Q with random weights ; Observe
initial state s

Output: model trained to assign task to node
1 repeat
2 select an action a with probability ε

3 select a random action otherwise select a =
argmaxa′Q(s,a′)

4 execute action a
5 observe reward r and new state s′

6 store experience < s,a,r,s′ > in memory M
7 sample random transitions < ss,aa,rr,ss′ > from

memory M
8 calculate target for each minibatch transition
9 if ss′ is terminal state then

10 tt← rr
11 else tt← rr+ γ max′a Q(ss′,aa′)
12

13 train the Q network using (tt−Q(ss,aa))2 as loss
14 s = s′

15 until terminated

algorithm initializes a decision matrix with weights (Q-values)
of random policies and observed initial states of the SDN
network. Then, assign tasks to random nodes (i.e. fills matrix
with calculated policies in real-time) chosen with their smaller
probability. Once the first step is completed, the controller
can now move to new next states i.e. returning a reward and
continue performing the calculation and transitioning from
one state to another. Each newly calculated step is saved in
the matrix, and every the existing policy is compared against
the previous one, if the newer policy is better than it will
be considered as optimal (i.e. local optimization) and so on.
The operation is performed repeatedly until a global optimal
assignment is obtained for each task. Then, the operation is
repeated until all tasks in the waiting queue are satisfied and
assigned to the best available fog nodes.

IV. PERFORMANCE ANALYSIS

This section describes the testbed setup and show the eval-
uation of our solution. Specifically, we describe the results for
different network metrics such as latency, energy-efficiency,
and network scalability.

A. Testbed Setup

We implemented our framework using an emulated SDN
environment comprising Mininet [30] as our network emula-
tors with OpenFlow virtual switches used for creating different
IoT scenarios where Docker containers are used as IoT nodes
in emulated Kubernetes clusters. We also implemented the
framework using the Python-based Ryu [31] SDN controller
to help manage traffic flows. We developed our solution using
the TensorFlow python interface for interacting with our SDN



environment, which we used to run tests more than 100 nodes,
each running over 1000 tasks simultaneously. We evaluated
our solution against deterministic task placement and random
tasks placements approaches. For the former, a deterministic
agent plans tasks according to their order of arrival and
assigns them to their near nodes with respect to their minimum
latency. The random agent assigns tasks to available nodes in
a stochastic order, i.e. it assigns tasks to available node with
the non-strategy. That is, if a selected node doesn’t have the
capacity to execute an incoming task, the random agent leave
it in hold state in the waiting queue and assigns tasks to other
nodes.

B. Pre-processing

The first step we performed on our data-sets consists on pre-
processing input data in order to realize the apprenticeship of
our SDN controller (Ryu). Carrying out data refinement allows
properly representing and preparing data for our deep Q-
learning model to perform tasks assignments and scheduling.
Therefore, we implemented different techniques to reducing
the dimension of our datasets to find the best representation
of our data.
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Fig. 3: Data Pre-Processing

Figure 3 illustrates the Mean Square Error (MSE) re-
gression loss function we obtained for different refinement
techniques, including Principal Component Analysis (PCA),
Independent Component Analysis (ICA), Sigmoid function,
and reLU piecewise function. As expected from Figure 3,
the Sigmoid function perform better filtering and refinement
results while keeping the MSE error minimum. Because the
sigmoid function makes the loss function non-convex, rather
than creating a single global minimum for our training, we
create multiple local minima to find optimal tasks assignment
strategies.

C. Cumulative reward

The SDN agent performs deep learning in run-time, collects
states from the environment, and sends back information to
the controller. By trying different actions the agent learns to

optimize the reward that he gets from the environment. The
controller can either decide to take the current policy as the
best decision to place tasks on the selected Fog-enabled nodes
or continue learning from the available distributed nodes to
find a better candidate to place the current task requests.
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Figure 4 compares the cumulative reward obtained by our

approach against the deterministic and random approaches.
After the deterministic agent increases to almost 550 accumu-
lated rewards, it decreases and starts losing rewards. It starts
losing its computation power and its ability to complete the
planning of newer coming tasks. For the random agent, his
cumulative reward curve slowly increases, which means there
are tasks that have not been assigned, and they are put on
hold state. Our approach performs better cumulative rewards
compared to both the deterministic and random case, which
selects the available node based on the energy level. The
cumulative reward curve increases very quickly compared to
other agents, which means that the agent has a very optimal
placement strategy. To evaluate the stability and the scalability

Fig. 5: Local Rewards with Increasing number of nodes
of our approach, we increased the number of fog nodes up



to 50 as shown in Figure 5. We observed that our SDN-
enabled decision-maker agent can quickly learn from the SDN
topology network to make optimal decisions. The local reward,
i.e. local optimal assignment rapidly becomes close to 300 in
a few dozen episodes as illustrated in Figure 5, which means
that optimal local minimum (i.e. local optimization) can be
performed rapidly.

We also experimented our approach with over 100 in other
scenarios (not shown in Figure 5) and we observed the same
behavior. That is, we argue that our deep learning approach
successfully can help to implement both local optimal and
global optimal tasks assignments and scheduling for SDN-
enabled IoT network, while ensuring the respect of QoS
constraints.

D. Energy-Efficiency

Our objective is to reduce the energy consumption on run-
ning Fog-enabled IoT nodes as we described in equation 5 and
perform better energy-efficiency as we considered all nodes are
batteries-powered. In order to evaluate the energy efficiency
of our SDN-enabled solution, the SDN controller trained the
agent by 1,000 episodes during which the agent should be
able to plan 100 tasks to energy-constrained fog nodes. That
is, each fog node has a limited power capacity, i.e. their
battery level during this planning process is close to 5000wh.
Figure 6 illustrates the energy consumption of two available
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Fig. 6: Energy Consumption in two tasks’ executing Fog
Nodes
Fog nodes, each running up to 100 tasks simultaneously, using
our training approach against both deterministic and random
training agents. It is clear that throughout the planning strategy
of these tasks, the DRL agent in our approach keeps better
battery level in both nodes compared to deterministic and
random agents.

Recall that our main objective is to minimize the overall
energy consumption of our SDN-enabled Fog network, as we
described in equation 5. Figure 7 shows that our approach
performs better energy-efficiency, i.e. up to 87% compared
against both deterministic agent, which performs 48% of

energy efficiency, and random agent which performs 58% of
energy efficiency, too.
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Fig. 7: Energy Efficiency for all available Fog Nodes

E. Evaluating the Latency

As our optimization approach aims at minimizing the net-
work latency for available nodes during the tasks executions
as we described in equation 4. We measured the total time
delay expected by available Fog-enabled nodes to processing
the current tasks requests and communicate the results to
remote IoT senders. Figure 8 compares the time delay, i.e.
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latency, of our approach in two batteries-powered nodes
and shows the instantaneous reward obtained by our task
scheduling algorithm during the SDN controller agent training.
During the planning of tasks by the SDN-enabled agent we
implemented, the latency in all fog nodes remains lower when
they have been selected (action) by our agent. We repeated the
experiments five times, and we find the latency is close to 12.5
milliseconds. Therefore, our agent ensures to keep a minimum
latency of all the fog nodes of our network.



V. CONCLUSION

In this paper we presented a Deep Reinforcement Learning
(DRL) approach to create an intelligent SDN-enabled Fog IoT
network. By blending DRL and SDN, our solution allows
training DRL agents to select optimal allocation decision
policies for tasks assignments and scheduling in real-time.
The performance evaluation shows the effectiveness of the
proposed solution to perform both local and global optimiza-
tion, ensure lower-latency communication, and increase energy
efficiency.

Our future work will focus on developing a Federated
Machine Learning (FedML) approach to solve the issue of data
ownership and privacy, by training statistical security models
inside Fog nodes, while keeping data samples localized inside
Fog nodes. It becomes increasingly appealing to make IoT
devices generating and keeping their data locally and push
the network computation to edge. This promising undertaking
will greatly expand the capacity of federated learning to keep
individual data sets localized inside fog nodes, while updating
central model parameters and distributing them back to all
edge nodes.
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