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Complete Upper Bound Hierarchies for Spectral Minimum

in Noncommutative Polynomial Optimization

Igor Klep∗ Victor Magron† Jurij Volčič‡

January 8, 2025

Abstract

This work focuses on finding the spectral minimum (ground state energy) of a noncommu-
tative polynomial subject to a finite number of noncommutative polynomial constraints. Based
on the Helton-McCullough Positivstellensatz, the Navascués-Pironio-Aćın (NPA) hierarchy is the
noncommutative analog of Lasserre’s moment-sum of squares hierarchy and provides a sequence
of lower bounds converging to the spectral minimum, under mild assumptions on the constraint
set. Each lower bound can be obtained by solving a semidefinite program.

This paper derives complementary complete hierarchies of upper bounds for the spectral min-
imum. They are noncommutative analogues of the upper bound hierarchies due to Lasserre for
minimizing commutative polynomials over compact sets. Each upper bound is obtained by solv-
ing a generalized eigenvalue problem. The derived hierarchies apply to optimization problems in
bounded and unbounded operator algebras, as demonstrated on a variety of examples.
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1 Introduction

In this work we consider hierarchies of upper bounds for minimal eigenvalue of noncommutative poly-
nomials over noncommutative real algebraic sets, i.e., sets defined by finitely many polynomial equa-
tions. Such optimization problems in several operator variables naturally arise in quantum physics;
for example, Bell inequalities, initially introduced by [Bel64], that can be viewed as specific types of
inequalities on eigenvalues of noncommutative polynomials; see [PNA10]. In the commutative set-
ting, polynomial optimization aims at finding the minimum of a polynomial objective function under
finitely many polynomial inequality constraints. As shown, e.g., in [Lau09], this optimization problem
is NP-hard to solve exactly, thus a plethora of approximation schemes have been developed in the
last two decades, in particular the moment-sum of squares (moment-SOS) hierarchy by [Las01], also
known as the Lasserre hierarchy, that relies on the Positivstellensatz by [Put93]. At a given step of
this hierarchy, the corresponding lower bound is computed by solving a semidefinite program, i.e., by
minimizing a linear objective function under linear matrix inequality constraints; see [VB96]. The
Lasserre hierarchy of lower bounds is ensured to converge to the polynomial minimum under mild
natural assumptions often satisfied in practice, e.g., in the presence of a ball constraint. Similarly,
minimal eigenvalues of noncommutative polynomials can be approximated by a lower bound hierarchy,
also known as the Navascués-Pironio-Aćın (NPA) hierarchy; see [DLTW08, NPA08, BKP16], that re-
lies on the Positivstellensatz by Helton-McCullough [HM04]. Exactness of this approximation scheme
is ensured under the same assumption as in the commutative case.

Back in the commutative setting, another hierarchy proposed in [Las11b] yields a monotone se-
quence of upper bounds which converges to the minimum of a polynomial on a given set, and therefore
can be seen as complementary to the standard Lasserre hierarchy of lower bounds. At a given step of
this hierarchy, the corresponding upper bound is computed by solving a so-called generalized eigenvalue
problem. As for the lower bound hierarchy, the sizes of the involved matrix optimization variables are
critical and restrict its use to small size problems. For the lower bound hierarchy, a common workaround
consists of exploiting the structure, e.g., sparsity or symmetry of the input polynomials; see [MW23] for
a recent survey on sparsity-exploiting techniques and [HKP24] for even more sophisticated structure
exploitation techniques applied to Bell inequalities. A first attempt to improve practical efficiency of
the upper bound hierarchy for polynomial optimization has been done in [Las21]. The idea is to use
the pushforward measure of the uniform measure by the polynomial to be minimized. In doing so
one reduces the initial problem to a related univariate problem and as a result one obtains another
hierarchy of upper bounds which involves univariate sums of squares polynomials of increasing degree.
When minimizing a given polynomial on a non-compact set, it was recently proved in [SW24] that this
hierarchy may fail to converge to the global minimum.

By contrast with the commutative setting, obtaining upper bounds for minimal eigenvalues of
noncommutative polynomials has been less explored. Existing methods include the density matrix
renormalization group, e.g., by [Whi92], which is a numerical variational technique devised to obtain
the low-energy physics of quantum many-body systems, or quantum variants of Monte-Carlo methods,
e.g., by [NU98]. A first attempt has been done by [Ric20] to compute minimal eigenvalues of pure
quartic oscillators, but without any convergence guarantees and lack of scalability.

Contributions

The goal of this work is to propose a comprehensive scheme for computing upper bounds in non-
commutative minimization. We derive two complete upper bound hierarchies for spectral minima
of noncommutative polynomials in C∗-algebras A, and their analogs in O∗-algebras of unbounded
operators. These hierarchies can be seen as the noncommutative analogues of [Las11b] and [Las21].
Similarly to the commutative case, the hierarchies are parametrized by the choice of either a faithful
state on A, or more generally, a separating sequence of states on A, and a dense (formal) subalgebra
of A. In both cases, each upper bound is obtained by solving a single finite-dimensional generalized
eigenvalue problem. The effectiveness of this approach relies on computability of states. While every
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separable C∗-algebra A admits faithful states, they do not always admit a closed form suitable for
evaluation. However, often there are separating sequences of states that are effectively computable on
a dense subalgebra of A; one of the advantages of the derived hierarchies is their applicability to such
separating state sequences. Our approach carries potential applications for estimating spectral minima
of polynomial operators pertaining to partial differential equations, ground state energies of composite
Hamiltonians in mathematical physics, and violations of probabilistic inequalities in quantum informa-
tion theory. For example, our framework directly applies to approximate violations of Bell inequalities
by considering tensor products of universal group C∗-algebras with separating state sequences, that
can be evaluated using the calculus for Haar integration over unitary groups [CS06]. Furthermore, we
test the presented hierarchies on polynomial differential operators in the Weyl algebra with the faithful
vector state induced by the normal multivariate Gaussian, and non-polynomial analytic functions in
noncommuting operator variables. For the presented examples, we also provide heuristic estimates for
the convergence rate. A short preliminary version of this paper has been previously presented at the
MTNS conference [KMMV24].
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2 Commutative inspiration

We start by recalling a few useful results in the commutative case. The support of a Borel measure
µ on Rn, denoted by suppµ, is the (unique) smallest closed set X such that µ(Rn\X) = 0. Given a
Borel measure µ with suppµ = X, let z = (zα)α∈Nn be a real sequence whose entries are the moments
of µ, called its moment sequence, i.e., zα =

∫

X
xαdµ(x), for all α ∈ Nn. Let R[x] be the vector space

of commutative polynomials.
For a given sequence z ∈ RN

n

we introduce the Riesz linear functional

Lz : R[x] → R

f

(

=
∑

α∈Nn

fαx
α

)

7→ Lz(f) =
∑

α∈Nn

fαzα.
(1)

With d ∈ N, the truncated commutative multivariate Hankel matrix Md(z) associated with z is the
real symmetric matrix with rows and columns indexed by the canonical basis (xα) and with entries:

Md(z)(α, β) := Lz(xα+β) = zα+β , α, β ∈ N
n
d ,

where N
n
d := {α ∈ N

n | αi ≤ d, i = 1, . . . , n}. This matrix is the multivariate version of a (univariate)
Hankel matrix.

Similarly, for all f ∈ R[x], the truncated localizing matrix Md(f z) associated with z and f is the
real symmetric matrix with rows and columns indexed by the canonical basis (xα) and with entries:

Md(f z)(α, β) := Lz(f xα+β) =
∑

γ

fγzα+β+γ , α, β ∈ N
n
d .
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The localizing matrix associated to f = 1 corresponds to the above-defined multivariate Hankel matrix.
Let us recall a key preliminary result provided in [Las11b, Theorem 3.2].

Theorem 1. Let X be compact and µ be a Borel measure with moment sequence z and suppµ = X.
Then a polynomial f is nonnegative on X if and only if Md(f z) � 0 for all d ∈ N.

The result from Theorem 1 is actually valid for every continuous function, thus in a quite general
context, by considering a localizing matrix with entries being

∫

X
f(x)xα+βdµ(x), α, β ∈ Nn

d . In the
polynomial case, it can be concretely applied when the moments of µ and are readily available, for
instance when X is the unit ball/box, and µ is the restriction of the Lebesgue measure on X.

Now, let us fix an arbitrary Borel measure µ with moment sequence z and suppµ = X, and
consider the problem of computing the minimum σmin(f) of a commutative polynomial f over the
compact set X. Invoking Theorem 1, in [Las11b] Lasserre provides a monotone sequence of upper
bounds converging to σmin(f), by solving the hierarchy of semidefinite programs indexed by d ∈ N:

λd = sup
λ∈R

λ

s.t. Md(f z) � λMd(z) .
(2)

Since kerMd(f z) ⊇ kerMd(z) by the Cauchy-Schwarz inequality, (2) boils down to solving a general-
ized eigenvalue problem, that can be performed with efficient linear algebra routine.

Theorem 2 ([Las11b, Theorem 4.1]). Let X ⊆ R
n be a compact set, µ be a Borel measure with

moment sequence z and suppµ = X, and f ∈ R[x]. Consider the hierarchy of semidefinite programs
(2) indexed by d ∈ N. Then:

(a) The problem (2) has an optimal solution λd ≥ σmin(f) for every d ∈ N;

(b) The sequence (λd)d∈N is monotone nonincreasing and λd ↓ σmin(f) as d→ ∞.

More recently, in [Las21] it has been shown that σmin(f) can also be approximated from above by
considering a hierarchy of generalized eigenvalue problems indexed by d, but now involving Hankel
matrices of size d+ 1 instead of

(

n+d
n

)

. The entries of these matrices are linear in the moments of the
pushforward measure of the Lebesgue measure with respect to f .

Pushforward measure. Given compact sets X and Ω, let f : X → Ω ⊆ R be a polynomial
function, and µ be a Borel measure with suppµ = X. The pushforward measure f#µ of the measure
µ through f is defined by

f#µ(C) = µ(f−1(C)), (3)

for any C ∈ B(Ω), where B(Ω) denotes the Borel algebra of Ω, and f−1(C) is the preimage of C by
the mapping f .

The moment sequence of f#µ is denoted by z# = (z#d )d∈N and given by

z#d :=

∫

R

ud df#µ(u) =

∫

X

f(x)ddµ(x) = Lz(fd) .

Let us define

Mk,d(f z) :=
(

Lz(f i+j+k)
)d

i,j=0
= (z#i+j+k)di,j=0.

As in [Las21], let us consider the hierarchy of generalized eigenvalue problems, indexed by d ∈ N:

ηd = sup
η∈R

η

s.t. M1,d(f z) � ηM0,d(f z) .
(4)

Since the support of f#µ is contained in the interval [σmin(f),+∞), the results from [Las11a, Theorem
3.3] imply that ηd is attained for all d ∈ N and ηd ↓ σmin(f) as d→ ∞ (see also [Las21, Theorem 2.3]).
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3 Upper bounds for spectral minimum

Let F be a noncommutative polynomial in m variables. We are interested in optimizing or deciding
positive semidefiniteness of F (X1, . . . , Xm) over all tuples of operators (X1, . . . , Xm) satisfying given
polynomial relations. Such operators can be often seen as representations of a single (typically very
large) operator algebra A, and the positivity of F on such operators is then equivalent to positivity
of a single element f ∈ A. For example, consider the problem of whether F (U1, . . . , Un) is positive
semidefinite for all tuples of unitaries U1, . . . , Un acting on a separable Hilbert space. This is equivalent
to f = F (W1, . . . ,Wn) being positive semidefinite, where W1, . . . ,Wn are the unitary generators
of the universal group C∗-algebra C*

full(Z
⋆n). Thus we develop our approach to noncommutative

positivity eigenvalue optimization in terms of positivity of elements in operator algebras. Our goal is
to approximate from above the minimum of the spectrum of f , i.e., σmin(f) = sup{α ∈ R : f−α1 � 0}.
Note that the spectral minimum or the ground state energy of f is in general smaller than the lowest
eigenvalue of f (for example, f ∈ A = L∞([0, 1]) acting on L2([0, 1]) as f(g)(t) = tg(t) has no
eigenvalues, and σmin(f) = 0).

3.1 Positivity in C∗-algebras via faithful functionals

Let A be a (unital) C∗-algebra. Let us introduce some terminology pertaining to states (unital positive
linear functionals) on A and ∗-subalgebras of A that is used in this section. A state φ on A is faithful
if φ(a∗a) = 0 implies a = 0 for a ∈ A. A sequence of states (φd)d on A is separating if for every
nonzero a ∈ A there exists d ∈ N such that φd(a∗a) > 0. If (φd)d is a separating sequence on A, and

φ̃d =

(

2d

2d − 1

d
∑

i=1

1

2i
φi

)∞

d=1

, (5)

then (φ̃d)d converges (in the weak-* topology) to a faithful state on A. Note that separable C∗-algebras
(in particular, finitely generated C∗-algebras) always admit faithful states [Tak02, Exercise I.9.3, or
proof of Theorem I.9.23]. Given a subset S ⊂ A let C〈S〉d denote the span of all ∗-words in S (i.e.,
products of elements of S and their adjoints) of length at most d, and let C〈S〉 denote the ∗-algebra
generated by S. We say that S is generating if A is the closure in the strong operator topology of
C〈S〉.

Theorem 3. Let A be a C∗-algebra, S its generating set, and (φd)d a sequence of states on A con-
verging to a faithful state φ. For f = f∗ ∈ C〈S〉, the following are equivalent:

(i) f � 0 in A;

(ii) φ(h∗fh) ≥ 0 for all h ∈ C〈S〉;

(iii) for every d ∈ N, φd(h∗fh) ≥ 0 for all h ∈ C〈S〉d;

(iv) φ(p(f)2f) ≥ 0 for all p ∈ R[t];

(v) for every d ∈ N, φd(p(f)2f) ≥ 0 for all p ∈ R[t]d.

Proof. The implications (i)⇒(ii)-(v) are clear.
(ii)⇒(i): Since S is generating, we have φ(a∗fa) ≥ 0 for all a ∈ A. Let π : A → B(H) be the

cyclic ∗-representation of A induced by φ by the Gelfand-Naimark-Segal (GNS) construction [Tak02,
Theorem 9.14]. Then π is a ∗-embedding since φ is faithful, and π(f) � 0 in B(H). Therefore f � 0
in A by [Tak02, Proposition I.4.8 and Theorem I.6.1].

(iii)⇒(ii): Let h ∈ C〈S〉 be arbitrary, and let d0 ∈ N be such that h ∈ C〈S〉d0 . Then φd(h∗fh) ≥ 0
for all d ≥ d0. Consequently, φ(h∗fh) ≥ 0.

(v)⇒(iv): The argument is analogous to (iii)⇒(ii).
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(iv)⇒(i): Let B be the abelian C∗-subalgebra in A generated by f . By the proof (ii)⇒(i) (with B
and {f} in place of A and S, respectively), f � 0 in B. Therefore, f = b∗b for some b ∈ B, so f � 0
in A.

Example 4. The following are some well-known separable C∗-algebras and their faithful states, or
separating sequences of states (which give rise to sequences converging to faithful states as in (5).

(a) Let G be a finitely generated discrete group. Then the canonical tracial state τ on the reduced
C∗-algebra C*

red(G), determined on G by

τ(g) =

{

1 if g = id ,

0 otherwise ,

is faithful.

(b) The graph C∗-algebra of a finite graph Γ (in particular, the Cuntz algebra) admits a faithful
state that is evaluated in terms of paths and vertex degrees in the graph Γ [AG11, Theorem 2.1].

(c) The full C∗-algebra C*
full(Z

⋆n) admits a separating sequence

φd(w) =
1

d

∫

U∈Ud(C)n
trw(U) dU. (6)

The separating property of (6) follows by [Cho80, Theorem 7] (cf. [KVV17, Corollary 4.7]). Via
(5), the states φd give rise to a sequence converging to a faithful state on C*

full(Z
⋆n). Note that

when restricted to C[Z⋆n], the sequence (φd)d itself converges to the canonical tracial state τ on
C[Z⋆n] [Voi91, Theorem 3.8], which leads to the C∗-algebra C*

red(Z⋆n); thus, (5) is required when

working with C*
full(Z

⋆n). The states (6) can be efficiently evaluated using the Collins-Śniady
calculus for Haar integration over unitary groups [CS06, Corollary 2.4].

(d) Suppose A1 and A2 are C∗-algebras with faithful states φ1 and φ2, respectively. Then the state
φ1⊗φ2 on the minimal (injective) tensor product A1⊗minA2 is faithful [Tak02, Theorem IV.4.9],
and the state φ1⋆φ2 on the reduced free product A1⋆A2 is faithful [Dyk98, Theorem 1.1]. Values
of φ1 ⊗ φ2 and φ1 ⋆ φ2 are easily expressible with values of φ1 and φ2.

(e) Combining (c) and (d), one obtains an explicit separating sequence for the algebra C*
full(Z

⋆m)⊗min

C*
full(Z

⋆n). See Section 4 for more details. As a side remark, note that C*
full(Z

⋆m)⊗min C*
full(Z

⋆n)
is not isomorphic to C*

full(Z
⋆m) ⊗max C*

full(Z
⋆n) ∼= C*

full(Z
⋆m × Z⋆n) for m,n ≥ 2 by the refu-

tation [JNV+21] of Connes’ embedding conjecture [Con76, KS08] (and its equivalent Kirchberg
conjecture [Kir93, Oza13]).

In the case of discrete groups, let us comment on the distinction between the full and reduced
C∗-algebra, from the positivity perspective.

Remark 5. Let G be the free group on n generators S = {g1, . . . , gn}. By [KVV17, Corollary 4.13]
(see also [HMP04, Section 4.2]), the following are equivalent for f ∈ C〈S〉d:

(i) f � 0 in C*
full(G);

(ii) f � 0 on UK(C)n, where K = (2n+ 1)d+1;

(iii) f =
∑

i h
∗
i hi for hi ∈ C〈S〉d+1.

These conditions are in general strictly stronger than f � 0 in C*
red(G) if n ≥ 2. For example,

let f =
√
2n−1
n

− 1
2n

∑n

i=1(gi + g−1
i ). Then f � 0 in C*

red(G) by [Kes59b, Theorem 3], but f is
negative under the homomorphism induced by the trivial representation of G when n ≥ 2, namely
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f(1, . . . , 1) =
√
2n−1
n

− 1 < 0.
More generally, letG be a discrete group generated by n generators g1, . . . , gn, and letm = 1

2n

∑n

i=1(gi+

g−1
i ). Then 1 −m− ε is negative under the trivial representation of G for every ε > 0; on the other

hand, 1 − m − ε � 0 in C*
red(G) for some ε > 0 if and only if G is not amenable by [Kes59a, §3

Theorem].

3.2 Positivity in O∗-algebras

Let us record an observation for unbounded operator algebras in the spirit of Theorem 3. Since working
with unbounded operators brings along certain subtleties, we first introduce some suitable auxiliary
terminology [Sch90]. Let H be a complex Hilbert space, and D its dense subspace. A set O of closable
operators D → H is an O∗-algebra on H with domain D [Sch90, Definition 2.1.6] if O contains the scalar
multiples of the identity on D, aD ⊆ D for all a ∈ O, O is closed under addition and multiplication,
and for every a ∈ O, its adjoint a∗ on H is defined on D and a⋆ := a∗|D ∈ O. Furthermore, O is closed
[Sch90, Definition 2.2.8] if its domain D is complete in the graph topology of O (the locally convex
topology defined by seminorms {v 7→ ‖av‖ : a ∈ O}). A vector u ∈ D is cyclic for O if O · u is dense
in D with respect to the graph topology of O; then φ : O → C given as φ(a) = 1

‖u‖2 〈au, u〉 is called a

faithful vector state on O.
An operator f in an O∗-algebra O with domain D is positive semidefinite if 〈fv, v〉 ≥ 0 for all

v ∈ D. If u ∈ D is a cyclic vector for O, denseness in the graph topology implies that for checking
f � 0, it suffices to restrict to v ∈ O · u. This leads to the following observation.

Proposition 6. Let O be a closed O∗-algebra, and φ a faithful vector state on O. For f = f⋆ ∈ O,
the following are equivalent:

(i) f � 0 in O;

(ii) φ(h⋆fh) ≥ 0 for all h ∈ O.

Proposition 6 is weaker than Theorem 3 in several aspects. While Theorem 3 addresses positive
semidefiniteness in all ∗-representations of a C∗-algebra, Proposition 6 essentially only addresses pos-
itive semidefiniteness in one representation (namely, the concrete given realization of the O∗-algebra,
and not in its other representations). Next, while every positive semidefinite element of a C∗-algebra
is a hermitian square, and every unital linear functional positive on nonzero hermitian squares is a
faithful state, the analogs of these conclusions for O∗-algebras fail (hence the more restricted setup for
Proposition 6 is required). Finally, Proposition 6 does not admit a part (iv) as in Theorem 3. In fact,
a direct unbounded analog of Theorem 3 fails in this aspect. This is shown in [SW24], and we present
a streamlined self-contained example in Subsection 3.2.1 below.

The following are some well-known examples of closed O∗-algebras and their cyclic vector states.

Example 7. Consider the Weyl algebra W = C〈x, y : xy − yx = 1〉 with x⋆ = −x and y⋆ = y.
By the Stone-von Neumann theorem [RS80, Theorem VIII.14], W has a unique representation as an
O∗-algebra, as follows. The Schrödinger representation of W [Sch90, Example 2.5.2] on L2(R) is the
O∗-algebra O with domain S(R), the Schwartz space of rapidly decreasing functions, generated by
operators X,Y defined as Xs = d

dts and Y s = ts for s ∈ S(R) (and the closures of iX and Y are self-

adjoint operators). The unit vector u = 1
4
√
π
e−

t2

2 ∈ S(R) is cyclic for O by [Sch90, Example 8.6.15]. Let

φ be the faithful vector state induced by u; let us view φ as a functional on W (by identifying x, y with
X,Y ). Note that W = C〈a, a⋆ : aa⋆ − a⋆a = 1〉 where a = x+y√

2
(the Fock-Bargmann representation of

W [Fol89, Section 1.6]). On the basis {a∗man : m,n ∈ {0} ∪ N} for W , the faithful vector state φ is

7



then given as

φ(a⋆man) =

〈(−X + Y√
2

)m(
X + Y√

2

)n

u, u

〉

=
√

2
−m−n

∫

R

((

d
dt + t

)m
u
) ((

d
dt + t

)n
u
)

dt

=

{

1 if m = n = 0,
0 otherwise.

By Proposition 6, f(X,Y ) acting on S(R) is positive semidefinite if and only if φ(h⋆fh) ≥ 0 for all
h ∈ W .

More generally, the same reasoning applies to the nth Weyl algebra W⊗n, whose representation
on L2(Rn) with domain S(Rn) is generated by differential operators d

dt1
, . . . , d

dtn
and multiplication

operators t1, . . . , tn. Its cyclic unit vector is π−n
4 e−

t21+···+t2n
2 .

Example 8. Consider the representation of C[x1, . . . , xn] on L2(R), where Xjs = tjs for s ∈ S(Rn).

The unit vector u = π−n
4 e−

t21+···+t2n
2 is cyclic for this representation. The faithful vector state is then

given by

φ(Xd1
1 · · ·Xdn

n ) =

{

∏n
j=1 2−

dj

2 (dj − 1)!! if d1, . . . , dn are all even,

0 otherwise.

Again, let us view φ as a functional on the ⋆-algebra C[x1, . . . , xn], and let f ∈ R[x1, . . . , xn]. Observe
that f is nonnegative on Rn if and only if f(X1, . . . , Xn) is positive semidefinite. Also, note that

φ(h⋆fh) = φ((h+h̄
2 )2f)+φ((h−h̄

2i )2f) for h ∈ C[x1, . . . , xn]. Thus, f ≥ 0 on Rn if and only if φ(h2f) ≥ 0
for all h ∈ R[x1, . . . , xn] by Proposition 6.

3.2.1 A pushforward counterexample

In this subsection we give an example to show that Proposition 6 does not admit a part (iv) as in
Theorem 3. The failure of the pushforward hierarchy in the unbounded case and its thorough analysis
was first presented in [SW24]; our example gives an alternative proof.

Consider the representation of C[x] on L2(R) given by Xs = ts, and its faithful vector state

φ(a) =

∫

R

a(t)
e−t2

√
π

dt

as in Example 8. Let f = (x − 1)6 − ε for ε > 0. Since f is not a nonnegative polynomial, the
unbounded operator f(X) on L2(R) is not positive semidefinite; in particular, there exists h ∈ R[x]
such that φ(h2f) < 0.

On the other hand, we claim that if ε > 0 is small enough, then φ(p(f)2f) ≥ 0 for all univariate
polynomials p. To see this, denote

q̃ : R≥0 → R, q̃(y) =
(

cos
(

2
√

3y
1
3

)

−
√

3 sin
(

2
√

3y
1
3

)

)

e−y
1
3 ,

q : R → R, q(t) = q̃
(

(t− 1)6
)

e2(t−1) =
(

cos
(

2
√

3(t− 1)2
)

−
√

3 sin
(

2
√

3(t− 1)2
)

)

e1−t2 .

Observe that q is bounded on R, and q(1) = 1. For n ∈ N0, let us calculate

mn =

∫

R

q(t)(t − 1)6ne−t2 dt

=

∫ ∞

0

(

q(y
1
6 + 1)e−2y

1
6 + q(−y 1

6 + 1)e2y
1
6

)

yne−y
1
3 −1 y

− 5
6

6
dy

=
1

3e

∫ ∞

0

q̃(y)yn−
5
6 e−y

1
3 dy,

8



where we substituted t− 1 = ± 6
√
y. By [Ber88, Proposition 2],

∫ ∞

0

(

cos
(
√

3y
1
3

)

−
√

3 sin
(
√

3y
1
3

)

)

yn−
5
6 e−y

1
3 dy = 0

for all n ∈ N0 (using the integral representation of the gamma function). Consequently,
∫ ∞

0

q̃(y)yn−
5
6 e−y

1
3 dy =

∫ ∞

0

(

cos
(

2
√

3y
1
3

)

−
√

3 sin
(

2
√

3y
1
3

)

)

yn−
5
6 e−2y

1
3 dy

= 2
5
6−n

∫ ∞

0

(

cos
(

2
√

3y
1
3

)

−
√

3 sin
(

2
√

3y
1
3

)

)

(2y)n−
5
6 e−2y

1
3 dy = 0,

and so mn = 0 for all n ∈ N0. Since q is analytic, bounded and q(1) > 0, there exist η, ε > 0 such that
(t− 1)6 + ηq(t) ≥ ε for all t ∈ R. Then for every univariate polynomial p,

φ
(

p(f)2f
)

=

∫

R

p
(

(t− 1)6 − ε
)2(

(t− 1)6 − ε
)e−t2

√
π

dt

=

∫

R

p
(

(t− 1)6 − ε
)2(

(t− 1)6 − ε+ ηq(t)
)e−t2

√
π

dt ≥ 0,

where we used the fact that mn = 0 for all n ∈ N0.

3.3 Complete hierarchies of upper bounds

Let A be a C∗-algebra with a finite generating set S. Impose an order on S, and let Sd be the list
of ∗-words in S of length at most d, ordered degree-lexicographically. To a state φ on A, d ∈ N and
f = f∗ ∈ A we assign the moment matrix

MS,d(f φ) :=
(

φ(u∗fv)
)

u,v∈Sd

.

In the special case S = {f}, write

Mk,d(f φ) := M{f},d(fk φ) =
(

φ(f i+j+k)
)d

i,j=0

for k ≥ 0. In the next corollary we derive a hierarchy of generalized eigenvalue problems converging
to the minimum of the spectrum of f (i.e., its ground state energy), that is σmin(f) = sup{α ∈
R : f − α1 � 0}.

Corollary 9. Let A be a C∗-algebra, S its generating set, and (φd)∞d=1 a sequence of states on A
converging to a faithful state φ. For f = f∗ ∈ C〈S〉 and d ∈ N denote

λd = max {λ ∈ R : MS,d(f φd) � λMS,d(1φd)} ,
ηd = max {η ∈ R : M1,d(f φd) � ηM0,d(f φd)} .

Then the sequences (λd)d and (ηd)d are bounded by σmin(f) from below, and

lim
d→∞

λd = lim
d→∞

ηd = σmin(f).

If furthermore φd = φ for all d ∈ N, then (λd)d and (ηd)d are nonincreasing sequences.

Proof. Let λ = σmin(f). Then f −λ � 0 in A, so λd, ηd ≥ λ for all d ∈ N by Theorem 3. Now let ε > 0
be arbitrary, and let φ = limd φd. Then f − λ − ε 6� 0 in A, so by Theorem 3 there exists h ∈ C〈S〉
such that φ(h∗(f − λ − ε)h) < 0. Therefore, φd(h∗(f − λ − ε)h) < 0 for all large enough d ∈ N, so
λd < λ+ ε for all large enough d. Hence, limd λd = λ. Analogously we see that limd ηd = λ.

Lastly, if (φd)d is a constant sequence φ, then λd ≥ λd+1 and ηd ≥ ηd+1 because MS,d(f φ) −
λMS,d(1φ) (resp. M1,d(f φ) − ηM0,d(f φ)) is a submatrix of MS,d+1(f φ) − λMS,d+1(1φ) (resp.
M1,d+1(f φ) − ηM0,d+1(f φ)).
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The sequences (λd)d and (ηd)d can be viewed as the noncommutative analogues of the sequences
recalled in (2) and (4), of upper bounds for standard polynomial optimization from [Las11b] and
[Las21], respectively. At a given relaxation order d computing either λd or ηd boils down to solving a
generalized eigenvalue problem.

Similarly, Proposition 6 yields the following weak analog of Corollary 9 for unbounded operator
algebras.

Corollary 10. Let O be a closed O∗-algebra with domain D, and φ a faithful vector state on O.
Suppose O is generated by a finite set S as a ∗-algebra. For f = f⋆ ∈ O and d ∈ N denote

λd = max {λ ∈ R : MS,d(f φ) � λMS,d(1φ)}

Then (λd)d is nonincreasing sequence, and

lim
d→∞

λd = inf{〈fu, u〉 : u ∈ D, ‖u‖ = 1}.

Given a self-adjoint element f of a finitely generated C∗-algebra A, Corollary 9 gives two sequences
of generalized eigenvalue problems whose solutions converge to the minimum of f in A, as long as
there is an separating sequence of states on A that is efficiently computable (note that the converging
sequence (5) is then likewise computable). Analogously, inner product (numerical range) optimization
in an O∗-algebra is handled by Corollary 10.

4 Bell inequalities

Now we apply the above framework to obtain lower bounds for maximal violation levels for Bell
inequalities. One particularly famous Bell inequality is the CHSH inequality of [CHSH69], where the
setting is a quantum system consisting of two measurements for each party, each with the two outcomes
±1. The measurements can be modeled by four unitary operators x1, x2, y1, y2 satisfying x2i = 1 = y2j .
Since we are interested in the non-local behavior of our quantum system, we impose the additional
constraint that the operators xi’s act on one Hilbert space, and yj ’s act on another Hilbert space. The
maximum violation of CHSH corresponds to −σmin(f), where f = −x1⊗y1−x1⊗y2−x2⊗y1+x2⊗y2
(acting on the tensor product of Hilbert spaces) under the above unitary/commutativity constraints.

More generally, we consider a bipartite Bell scenario, where the parties have m and n inputs, re-
spectively, and binary outputs. A Bell inequality for such a scenario is given by (quadratic) polynomial
f in hermitian unitaries1 x1, . . . , xm and y1, . . . yn, where the xi’s commute with the yj ’s, such that f is
positive semidefinite in the separable C∗-algebra C*

full(Z
⋆m)⊗min C*

full(Z
⋆n). The analysis of positivity

in this C∗-algebra depends on m and n, as follows.

Proposition 11. Let m,n ∈ N, and G = Z⋆m
2 × Z⋆n

2 . The following holds.

(a) G is amenable if and only if m,n ≤ 2.

(b) If m,n ≤ 2, C*
full(Z

⋆m) ⊗min C*
full(Z

⋆n) ∼= C*
red(G), and thus every f = f∗ ∈ C[G] attains its

spectral minimum in C*
red(G).

(c) If m ≥ 3 or n ≥ 3, the linear polynomial (g1 + · · · + gm) ⊗ 1 + 1 ⊗ (g1 + · · · + gn) ∈ R[G],
where gi denotes the generator of Z2 in the ith free factor, does not attain its spectral minimum
in C*

red(G).

Proof. (a) (⇒) The group Z2 ⋆ Z2 ⋆ Z2 contains the free group on two generators as a subgroup (e.g.,
g1g3 and g2g3 are free), so no group containing Z2 ⋆ Z2 ⋆ Z2 can be amenable.

1In Bell inequalities, the measurement operators are sometimes formulated as being projections; however, the affine

coordinate change xi 7→ 2xi − 1 maps projections to hermitian unitaries.
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(⇐) If n,m ≤ 2, then G has subexponential growth (concretely, is finite if m = n = 1, has linear
growth if only one of m,n equals 2, and quadratic growth if m = n = 2), and is therefore amenable,
see [Tak03, Theorem XIII.4.7] or [Jus22, Section 2.6].

(b) Follows by (a) and [Tak03, Theorem XIII.4.6].
(c) If m ≥ 3 or n ≥ 3, then G is not amenable by (a). Then the spectral minimum of (g1 + · · · +

gn) ⊗ 1 + 1 ⊗ (g1 + · · · + gm) in C*
full(G) is strictly smaller than its spectral minimum in C*

red(G) by
Remark 5.

Let G = Z⋆m
2 × Z⋆n

2 . When minimizing f = f∗ in C*
full(Z

⋆m) ⊗min C*
full(Z

⋆n), we thus distinguish
two cases.

4.1 m,n ≤ 2

In this case, the algebra C*
full(Z

⋆m) ⊗min C*
full(Z

⋆n) is isomorphic to C*
red(G) by Proposition 11. On

C*
red(G), there is the canonical faithful state τ given by

τ(id) = 1, τ(g) = 0 for id 6= g ∈ Z
⋆m
2 × Z

⋆n
2

as in Example 4(1) above. Thus for h ∈ C[G], τ(h) is simply the constant term of h. For d ∈ N let
Md(h τ) be the matrix indexed by words u, v ∈ G of length at most d, with the (u, v)-entry equal to
τ(u∗hv). Note that Md(1 τ) = Is(d), where s(d) is the number of words u, v ∈ G of length at most d.
Given f = f∗ ∈ C[G], we now consider the hierarchy of eigenvalue problems indexed by d ∈ N:

λd = max
λ∈R

λ

s.t. Md(f τ) � λ Is(d) ,
(7)

Corollary 9 implies that (λd)d converges to the minimum of f in C*
red(G), and thus C*

full(Z
⋆m) ⊗min

C*
full(Z

⋆n).

4.2 General m,n ∈ N

If m ≥ 3 or n ≥ 3, there exists f = f∗ ∈ C[G] whose minimum σmin(f) in C*
full(Z

⋆m) ⊗min C*
full(Z

⋆n)
is strictly lower of the limit of the hierarchy (7). Our strategy to obtain upper bounds converging to
σmin(f) is to rely on tensor products of separating sequences (6) from Section 3.3 by parameterizing
hermitian unitaries by unitaries and signatures, i.e., by writing each hermitian unitary Xi of size d as

Xi = Ui

[

Iri 0
0 −Id−ri

]

U∗
i for some ri ≤ d and Ui ∈ Ud(C). It turns out that it is sufficient to consider

only Xi of even size 2d with ri = d. One can then consider the state that on a word w in x1, . . . , xn
evaluates as

1

2d

∫

U∈U2d(C)n
tr

[

w

(

U1

[

Id 0
0 −Id

]

U∗
1 , . . . , Un

[

Id 0
0 −Id

]

U∗
n

)]

dU.

Since tr(w1 ⊗ w2) = tr(w1) tr(w2) for words w1 in the xi’s and words w2 in the yj ’s, one relies on
products of such state evaluations when preparing the generalized eigenvalue problems as in Corollary
9. To justify the above strategy, we require the following auxiliary statement.

Proposition 12. Let f = f∗ be a polynomial in m+n noncommuting variables x1, . . . , xm, y1, . . . , yn,
and let σmin(f) denote the minimum of the spectrum of the canonical image of f in C*

full(Z
⋆m
2 ) ⊗min

11



C*
full(Z

⋆n
2 ). Then

σmin(f) = inf
d,e∈N

min
{

mineig f(X1 ⊗ Ie, . . . , Xm ⊗ Ie, Id ⊗ Y1, . . . , Id ⊗ Yn) :

Xi = X∗
i ∈ Ud(C), Yj = Y ∗

j ∈ Ue(C)
}

= inf
d∈N

min
{

mineig f(X1 ⊗ Id, . . . , Xm ⊗ Id, Id ⊗ Y1, . . . , Id ⊗ Yn) :

Xi = X∗
i , Yj = Y ∗

j ∈ U2d(C), trXi = trYj = 0
}

.

(8)

Proof. The first equality in (8) holds because C*
full(Z

⋆n
2 ) is a residually finite-dimensional algebra (see

for instance [KVV17, Proposition A.2]), and then so is C*
full(Z

⋆m
2 ) ⊗min C*

full(Z
⋆n
2 ) by the definition of

the spatial tensor product ⊗min. The ≤ part of the second equality in (8) is clear. Conversely, let
Xi = X∗

i ∈ Ud(C), Yj = Y ∗
j ∈ Ue(C) be arbitrary, and let k ≥ d + maxi | trXi|, e + maxj | tr Yj | be

an even number. Then one can find diagonal matrices Di ∈ Mk−d(C), Ej ∈ Me−d(C) with ±1 on the
diagonal such that the k× k hermitian unitaries X ′

i = Xi ⊕Di, Y
′
j = Yj ⊕Ej satisfy trX ′

i = tr Y ′
j = 0.

Clearly,
mineig f(Xi ⊗ I, I ⊗ Yj) ≥ mineig f(X ′

i ⊗ I, I ⊗ Y ′
j )

holds. Since Xi, Yj were arbitrary,the ≥ part of the second equality in (8) follows.

Note that every X = X∗ ∈ U2d(C) with trX = 0 is unitarily equivalent to ( I 0
0 −I ) with d×d blocks.

In analogy with Example 4(5), Proposition 12 implies that

ψd(u⊗ v) =
1

4d2

(

∫

U∈U2d(C)m
tr u(U1SU

∗
1 , . . . , UnSU

∗
n) dU

)

·
(

∫

V ∈U2d(C)n
tr v(V1SV

∗
1 , . . . , VmSV

∗
m) dV

) (9)

is a separating sequence of states for C*
full(Z

⋆m
2 ) ⊗min C*

full(Z
⋆n
2 ). By Corollary 9, this separating

sequence gives rise to a hierarchy of generalized eigenvalue problems whose solutions converge to
σmin(f).

5 Numerical examples

Our experiments are performed with Mathematica 13, together with the NCAlgebra package [HdO24]
to handle noncommutative polynomials. All results were obtained on an Intel Xeon(R) E-2176M CPU
(2.70GHz x 6) with 64Gb of RAM.

5.1 Bell inequalities

Example 13. We consider the CHSH inequality, already mentioned at the beginning of Section 4,
where f = x1 + y1−x1y1−x1y2−x2y1 +x2y2, and the four operators x1, x2, y1, y2 satisfy x2i = 1 = y2j
and xiyj = yjxi. The minimal eigenvalue of f is known to be σmin(f) = (−1−

√
2)/2 ≃ −1.207. With

the canonical faithful state τ defined in Section 4.1 and the hierarchy from (7), we report on Figure
1 the values of λd for d = 1, . . . , 20. The corresponding computation time is 6 hours. The empirical
convergence behavior of the sequence seems to match with the theoretical minimal eigenvalue. The
displayed dotted curve is the function d 7→ σmin(f) + 0.7d−1.46, so for this particular example we
conjecture a heuristic estimate of O(d−1.46) for the convergence rate.

For comparison purpose, we also considered the separating state sequence from Section 4.2, given

12



in (9). Preliminary computation outcomes based on the IntU Mathematica library by [PM17] are the
upper bounds (λ1, λ2) = (−0.854,−1.016), obtained in a few hours. Therefore, one likely needs to be
able to efficiently compute quite a few steps before one gets close to the actual value. Further work
directions include a more careful algorithmic implementation towards this goal.

0 5 10 15 20
−1.2

−1.1

−1

−0.9

−0.8

d

λd

Figure 1: Values λd for d ≤ 20 in Example 13

5.2 Weyl algebras

Example 14. Here we illustrate our approximation framework in the unbounded operator setting,
for the Weyl algebra W = C〈x, y : xy − yx = 1〉 with x⋆ = −x and y⋆ = y, previously mentioned in
Example 7. After applying the change of variable a = x+y√

2
one has W = C〈a, a⋆ : aa⋆ − a⋆a = 1〉, and

one considers the faithful vector state φ:

φ(a∗man) =

{

1 if m = n = 0,
0 otherwise.

For h ∈ W let Md(hφ) be the (d + 1)2 × (d + 1)2 matrix indexed by a∗man for m,n ≤ d, whose
(a∗kaℓ, a∗man)-entry equals φ(a∗ℓakh a∗nam). Given f ∈ W , Example 7 and Corollary 10 show that
the values

λd = max {λ ∈ R : Md(f φ) � λMd(1φ)}
form a decreasing sequence converging to σmin(f).

We consider several examples from [Cim10] where the author derives a hierarchy of lower bounds
computable by semidefinite programming, and based on representations of positive polynomials in
Weyl algebras by Schmüdgen [Sch05].

(a) We start with the polynomial f1 = (x2 − y2)2 from [Cim10, Example 1]. The first order of the
lower bound hierarchy from [Cim10] provides the value 1 ≤ σmin(f1). After applying the change of
variable a = x+y√

2
, one has f1 = 1 + 8a∗a+ 4a∗2a2, thus φ(f1) = λ0(f1) = 1. This proves that 1 is an

upper bound for σmin(f1), implying that σmin(f1) = 1.
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(b) Next we consider f2 = −x2 + y2 + βy4 as in [Cim10, Example 2]. Accurate approximation of
σmin(f2) for various β are reported in [Ban78, Table 1].

Results for β = 1 are reported (up to 6 digits) in Table 1. They were computed symbolically
in Mathematica by solving a generalized eigenvalue problem. The value from [Ban78] is σmin(f2) ≃

d 1 2 3 4 5 6

λd 1.750000 1.412603 1.412603 1.395071 1.395071 1.394907

Table 1: Computational results for β = 1.

1.392352.
For β = 0.1 the results are given in Table 2. The value from [Ban78] is σmin(f2) ≃ 1.065286.

d 1 2 3 4 5 6

λd 1.075000 1.065833 1.065833 1.065376 1.065376 1.065287

Table 2: Computational results for β = 0.1.

(c) Finally, we consider the polynomial f3 = x4 + y4 from [Cim10, Example 1]. The second order
of the lower bound hierarchy from [Cim10] yields the value 1.396726 ≤ σmin(f3). The values provided
by our complementary upper bound hierarchy are given in Table 3.

d 1 2 3 4 5 6 7 8

λd 3/2 3/2 3/2 1.400166 1.400166 1.400166 1.400166 1.396835

Table 3: Computational results for f3.

5.3 Motzkin polynomial

Example 15. Consider the Motzkin polynomial f = 1 − 3x2y2 + x4y2 + x2y4 ∈ R[x, y]. It is well
known that f is a nonnegative polynomial, with minimum 0 attained on {−1, 1}2, and f + λ is not a
sum of squares in R[x, y] for any λ ∈ R. Let φ : R[x, y] → R be the linear functional given as

φ(xmyn) =

{

2−
m+n

2 (m− 1)!!(n− 1)!! if both m and n are even
0 otherwise.

For h ∈ R[x, y] let Md(hφ) be the
(

d+2
2

)

×
(

d+2
2

)

matrix indexed by xmyn for m + n ≤ d, whose
(xkyℓ, xmyn)-entry equals φ(xk+myℓ+nh). Example 8 and Corollary 10 show that the values

λd = max {λ ∈ R : Md(f φ) � λMd(1φ)}

form a decreasing sequence converging to minR2 f . For example,

λ1 = 1, λ2 = λ3 =
13 − 3

√
10

4
,

and Figure 2 lists the values of λd for d = 1, . . . , 34. Here again, the figure confirms that the sequence
gets reasonably close to the minimum of f when d increases. The displayed dotted curve is the function
d 7→ σmin(f) + 3d−0.65, so for this particular example we conjecture a heuristic estimate of O(d−0.65)
for the convergence rate.

14



0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

d

λd

Figure 2: Values λd for d ≤ 34 in Example 15

5.4 Optimizing an exponential function

Example 16. As in [AGN24, § V-B], consider the spectral minimum of exp(X0X1 + X1X0) for
arbitrary orthogonal projections X0, X1 on a Hilbert space.

The universal C∗-algebra
A = C*〈x0, x1 : x2j = x∗j = xj〉

is isomorphic to C*
full(Z2 ⋆Z2) = C*

red(Z2 ⋆Z2) (via xj 7→ 2xj − 1 =: ej), and thus admits the canonical
tracial state τ as in Example 4(a).

Let W denote the set of alternating words in x0, x1. Then the state τ depends only on the length
of a word in W , so we let tn denote the value of τ on a word of length n. By the cyclic property,
t2n+1 = t2n for all positive integers n. Note that t0 = 1 6= 1

2 = t1. To find the values of tn, consider
the representation of A within 2 × 2 matrices over continuous functions on the interval [0, 2π],

π : A →M2(C[0, 2π]),

x0 7→
[

1 0
0 0

]

,

x1 7→ 1

2

[

1 + cos(φ) sin(φ)
sin(φ) 1 − cos(φ)

]

.

Define the state

τ ′ : A → C,

W ∋ w 7→ 1

2π

∫ 2π

0

Tr(π(w)) dφ,

where Tr denotes the normalized trace on M2(C). We claim that τ ′ = τ . Observe that the group
generators ej = 2xj − 1 of A are mapped under π into

π(e0) =

[

1 0
0 −1

]

, π(e1) =

[

cos(φ) sin(φ)
sin(φ) − cos(φ)

]

.
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Then for r ∈ N,

π
(

(e0e1)r
)

=

[

cos(rφ) sin(rφ)
− sin(rφ) cos(rφ)

]

,

whence

τ ′
(

(e0e1)r
)

=
1

2π

∫ 2π

0

cos(rφ) dφ =

{

1 r = 0,

0 otherwise.

Similarly, τ ′
(

(e0e1)re0
)

= 0 for all r. By the (obvious) tracial property of τ ′ we deduce τ = τ ′.
This makes it possible to evaluate τ in terms of x0, x1. Namely,

π
(

(x0x1)r
)

=

[

1
2r (1 + cos(φ))r ∗

0 0

]

,

so

t2r = τ
(

(x0x1)r
)

= τ ′
(

(x0x1)r
)

=
1

2π

∫ 2π

0

1

2r
(1 + cos(φ))r dφ =

Γ
(

r + 1
2

)

2
√
π Γ(r + 1)

=
Γ
(

r + 1
2

)

2
√
π r!

.

Let f = ex0x1+x1x0 . Then

π(f) =
1

2
e−2 sin2( φ

4 ) cos(φ

2 )

·





(

e2 cos(φ

2 ) − 1
)

cos
(

φ
2

)

+ e2 cos( φ

2 ) + 1 sin
(

φ
2

)(

e2 cos( φ

2 ) − 1
)

sin
(

φ
2

)(

e2 cos(φ

2 ) − 1
)

−
((

e2 cos( φ

2 ) − 1
)

cos
(

φ
2

))

+ e2 cos(φ

2 ) + 1



 ,

and

Tr
(

π(f)
)

=
1

2
e− cos(φ

2 )+ cos(φ)
2 + 1

2 +
1

2
ecos(

φ

2 )+ cos(φ)
2 + 1

2 ,

so

τ(f) =
1

2π

∫ 2π

0

(

1

2
e− cos( φ

2 )+ cos(φ)
2 + 1

2 +
1

2
ecos(

φ

2 )+ cos(φ)
2 + 1

2

)

dφ.

However, τ(f) does not seem to have a closed-form expression, but is easy to compute numerically to
desired precision (τ(f) ≈ 2.33563), so we proceed numerically.

We can now construct

Md(f τ) = (τ(u∗fv)
)

u,v∈W, |u|,|v|≤d
, Md(1 τ) = (τ(u∗v)

)

u,v∈W, |u|,|v|≤d

for d ∈ N. By Corollary 9,

λd = max {λ ∈ R : Md(f τ) � λMd(1 τ)}

is a decreasing sequence whose limit is the spectral minimum of exp(X0X1 + X1X0) for orthogonal
projections X0, X1.

Figure 16 lists the values of λd for d = 1, . . . , 22. Here again, the figure confirms that the sequence
gets reasonably close to the minimum of f when d increases. The displayed dotted curve is the function
d 7→ σmin(f) + 0.4d−1.58, so for this particular example we conjecture a heuristic estimate of O(d−1.58)
for the convergence rate. The minimum in this example is σmin(f) = exp(− 1

4 ) ≈ 0.778801.
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Figure 3: Values λd for d ≤ 22 in Example 16

6 Conclusion

We derived complete hierarchies of upper bounds for the spectral minimum of noncommutative poly-
nomials. These are the noncommutative analogues of the Lasserre hierarchies approximating the
minimum of commutative polynomials from above. As in the commutative case, each upper bound
is computed through solving a generalized eigenvalue problem. We applied the derived hierarchies
to both bounded and unbounded operator algebras, as well as non-polynomial analytic functions in
noncommuting variables, demonstrating their flexibility and broad applicability.

In the commutative case, while there is no empirical evidence that the Lasserre hierarchy of upper
bounds could outperform classical numerical schemes such as brute-force sampling methods based on
Monte-Carlo or local optimization solvers based on gradient descent, it turns out that the asymptotic
behavior of the upper bound hierarchy has been better understood than for the lower bound hierarchy.
In [dKLS16], the authors obtain convergence rates which often match practical experiments and are
no worse than O(1/

√
d), where d is the relaxation order in the hierarchy. On some specific sets this

convergence rate has been improved to O(1/d2), e.g., for the box [−1, 1]n by [DKHL17] and for the
sphere by [dKL22]. Recently, similar convergence rates could be obtained by [Slo22] for the standard
hierarchy of lower bounds by combining upper bound rates with an elegant use of Christoffel-Darboux
kernels; see [LPP22] for a recent survey on these kernels. For the presented examples of this paper, we
provided heuristic estimates for the convergence rate. A comprehensive and rigorous analysis of the
convergence rate is beyond reach for the current framework, and is left to be explored in future studies.
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noncommutative polynomial optimization. Proceedings of the 26th International Sympo-
sium on Mathematical Theory of Networks and Systems (MTNS), 2024. Invited Session
Extended Abstract.

[KS08] Igor Klep and Markus Schweighofer. Connes’ embedding conjecture and sums of Hermitian
squares. Adv. Math., 217(4):1816–1837, 2008.

[KVV17] Igor Klep, Victor Vinnikov, and Jurij Volčič. Null- and Positivstellensätze for rationally
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