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RANK CONDITIONS FOR EXACTNESS OF SEMIDEFINITE

RELAXATIONS IN POLYNOMIAL OPTIMIZATION

JEAN B. LASSERRE

Abstract. We consider the Moment-SOS hierarchy in polynomial optimiza-
tion. We first provide a sufficient condition to solve the truncated K-moment
problem associated with a given degree-2n pseudo-moment sequence φn and
a semi-algebraic set K ⊂ R

d. Namely, let 2v be the maximum degree of the
polynomials that describe K. If the rank r of its associated moment matrix
is less than n− v +1, then φn has an atomic representing measure supported
on at most r points of K. When used at step-n of the Moment-SOS hi-
erarchy, it provides a sufficient condition to guarantee its finite convergence
(i.e., the optimal value of the corresponding degree-n semidefinite relaxation
of the hierarchy is the global minimum). For Quadratic Constrained Qua-
dratic Problems (QCQPs) one may also recover global minimizers from the
optimal pseudo-moment sequence. Our condition is in the spirit of Blekher-
man’s rank condition and while on the one-hand it is more restrictive, on the
other hand it applies to constrained POPs as it provides a localization on K

for the representing measure.

1. Introduction

Consider the polynomial optimization problem (POP):

P : f∗ = min
x

{ f(x) : x ∈ K }(1.1)

with K := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . ,m } ,(1.2)

where f, gj ∈ R[x] are polynomials. In particular, if deg(f) ≤ 2 and deg(gj) ≤ 2
for all j = 1, . . . ,m, then P is called a quadratic constrained quadratic problem
(QCQP). This latter class contains many important problems for which computing
(or even approximating) f∗ “efficiently” is a scientific challenge; indeed P is NP-
hard in general.

A popular strategy to compute (or approximate) f∗ is to provide a monotone
non decreasing sequence of lower bounds that converges to f∗ from below. Some LP
and semidefinite (SDP) relaxations introduced in the nineties [17] and the 2000’s
[10, 11] provide an example of such a strategy and the interested reader is referred
to e.g. [12, 13] for an analysis of their respective advantages and drawbacks.

This paper is concerned with the Moment-SOS hierarchy [5, 8] which applies to
solve not only POPs but also many important problems in Science & Engineering,
provided that they are modeled as instances of the Generalized Moment Problem
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(GMP) with algebraic data; the interested reader is also referred to e.g. [9] for a
recent exposition of such applications.

The Moment-SOS hierarchy for solving P consists of a nested sequence of semi-
definite relaxations (Qn)n∈N of P, whose size increases with n and whose associated
sequence of optimal values (ρn)n∈N is monotone non decreasing and converges to
f∗ as n increases. Moreover it has been shown [15, 14] that generically (i) its con-
vergence is finite, i.e., ρn = f∗ at some step-n of the hierarchy, and (ii) extraction
of global minimizers can be done by exploiting a flatness condition due to Curto &
Fialkow [2] (and related to a certain rank condition on moment matrices). When
ρn = f∗ the semidefinite relaxation Qn is said to be exact.
On rank conditions. Let φ = (φα)α∈Nd

2n
, be a real sequence (up to degree 2n)

with positive semidefinite (psd) moment matrix Mn(φ) � 0 (see definition in §2).
Then φ has a representing measure if there exists a measure φ on R

d such that
φα =

∫
xα dφ for all α ∈ N

d
2n. To identify whether a sequence φ has a representing

measure, an important result is the (unconstrained) flatness condition of Curto and
Fialkow [2, 3] which states that if

(1.3) rank(Mn(φ)) = rank(Mn−1(φ)) ,

then φ has an atomic representing measure on R
d supported on rank(Mn(φ))

atoms. Similarly with dj := ⌈deg(gj)/2⌉, and gj(x) =
∑

β gj,β xβ , j = 1, . . . ,m,

let gj φ = (gjφ)α, α ∈ N
d
2n, be the sequence where (gj φ)α =

∑
β gj,β φα+β for all

α ∈ N
d
2n. Then suppose that φ also satisfies Mn−dj

(gj φ) � 0, j = 1, . . . ,m, and
let v := maxj dj . The constrained flatness condition of Curto and Fialkow [2, 3]
states that if

(1.4) rank(Mn(φ)) = rank(Mn−v(φ)) ,

then φ has an atomic representing measure supported on rank(Mn(φ)) atoms in
K. Finally, by a result of Blekherman [1], it turns out that if

(1.5) rank(Mn(φ)) ≤

{
3n− 3 if n ≥ 3

6 if n = 2,

then the subsequence φn̂ (:= (φα)α∈Nd
2n−1

) of φ has a representing measure on R
d;

see [3]1.

Remark 1.1. Importantly, notice that in contrast to (1.3), on the one hand the
condition (1.5) is only concerned with the single moment matrix Mn(φ), but on the
other hand there is no localization of the support of its measure. Moreover only the
subsequence φn̂ of φ (and not φ) has a representing measure.

Contribution. We are concerned with practical sufficient rank-conditions for finite
convergence of the Moment-SOS hierarchy. With g0(x) = 1 for all x, the degree-n
semidefinite relaxation Qn of the Moment-SOS hierarchy associated with P, reads:

(1.6) Qn : ρn = min
φ

{φ(f) : φ(1) = 1 ; Mn−dj
(gj φ) � 0 , j = 0, . . . ,m } ,

where φ = (φα)α∈Nd
2n
, and Md−dj

(gj φ) is the localizing matrix associated with

φ and the polynomial gj ∈ R[x]. (Mn−d0(g0 φ) = Mn(φ) is the moment matrix

1In [7, Theorem 2.36] Blekherman’s result (1.5) is incorrectly stated. Indeed only the subse-
quence φn,2n−1 of moments up to degree 2n − 1 has a representing measure and not the whole
sequence φ of moments up to degree 2n in general.
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associated with φ.) With φ (in bold) is associated the Riesz linear functional
φ ∈ R[x]∗2n (not in bold face) defined by:

p (=
∑

α∈Nd
2n

pα xα) 7→ φ(p) =
∑

α∈Nd
2n

pα φα , ∀p ∈ R[x]2n .

The truncated K-moment problem is concerned with conditions on φ to guarantee
that φ has a representing measure on K, i.e., φ(p) =

∫
K
pdφ for all p ∈ R[x]2n, for

some measure φ on K; see e.g. [16, 7].
Let df := ⌈deg(f)/2⌉ and dj := ⌈deg(gj)/2⌉, for all j = 1, . . . ,m, and v :=

max{d1, . . . , dm}. Then our first result provides a sufficient condition to solve the
truncated K-moment problem.

Theorem 1.2. With n ≥ v, let φn = (φα)α∈Nd
2n

be such that

(1.7) φ(1) = 1 ; Mn(φ
n) � 0 ; Mn−dj

(gj φ
n) � 0 , j = 1, . . . ,m .

If s := rank(Mn(φ
n)) ≤ n − v + 1 then φn̂ := (φn

α)α∈Nd
2n−1

has a representing

measure supported on at most r (≤ s) points of K. In addition, if r = s then φn

has a representing measure supported on s points of K.

Our second result investigates the impact of Theorem 1.2 on the Moment-SOS
hierarchy.

Theorem 1.3. Let P be as in (1.1). For every n with n ≥ v and 2n− 1 ≥ deg(f),
let φn = (φn

α)α∈Nd
2n

be an optimal solution of the semidefinite relaxation Qn:

(i) If rank(Mn(φ
n)) ≤ n − v + 1 then φn(f) = f∗, that is, ρn = f∗ and the

relaxation Qn is exact.
(ii) Next assume that deg(f) ≤ 2 and deg(gj ≤ 2) for all j, so that v = 1 (and

P is a QCQP). Then one may recover a probability measure supported on global
minimizers of P (e.g., via the extraction procedure of [6]).

Remark 1.4. It is well-known that if rank(Mn(φ
n)) = 1 then φn is the moment

vector of the Dirac measure δx∗ for some global minimizer x∗ ∈ K. So it is fair to
say that the rank-condition in Theorem 1.2 and Theorem 1.3 provides an extension
of this result.

This rank condition is in the spirit of Blekherman’s condition (1.5) (i.e., with
no flatness condition as in (1.3)). While on the one hand it is more restrictive
than (1.5), on the other hand it provides an additional localization on K of the
support of representing measure. This localization feature is crucial for polynomial
optimization as described in Theorem 1.3.

In fact, in [1, p. 72] it is wrongly stated that (1.5) provides a stopping criterion
for exactness of the hierarchy of SOS relaxations associated with POPs. The reason
why it is incorrect is because again there is no localization of the support of the
representing measure. On the other hand, in Section 4 we prove that indeed (1.5)
provides a sufficient condition to detect whether the single semidefinite relaxation
associated with the unconstrained POP: inf{f(x) : x ∈ R

d} (where f is an even
degree polynomial) is exact. The proof is not trivial because if rank(Mn(φ)) ≤
3n−3 then only the subsequence of moments up to degree 2n−1 has a representing
measure, say µ, on R

d, and f is of degree 2n and not of degree 2n− 1; hence φ(f)
is not necessarily equal to

∫
fdµ.
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2. Notation, definitions and preliminary results

Let R[x] denote the ring of polynomials in the variables x = (x1, . . . , xd) and let
R[x]n be the vector space of polynomials of degree at most n (whose dimension is

s(n) :=
(
n+d
n

)
). For every n ∈ N, let Nd

n := {α ∈ N
d : |α| (=

∑
i αi) ≤ n}, and let

vn(x) = (xα), α ∈ N
d, be the vector of monomials of the canonical basis (xα) of

R[x]n. A polynomial f ∈ R[x]n is written

x 7→ f(x) =
∑

α∈Nd
n

fα xα = 〈f ,vn(x)〉 ,

where f = (fα) ∈ R
s(n) is its vector of coefficients in the canonical basis of mono-

mials (xα)α∈Nd . For real symmetric matrices, let 〈B,C〉 := trace (BC) while the
notation B � 0 stands for B is positive semidefinite (psd) whereas B ≻ 0 stands
for B is positive definite (pd).

The Riesz linear functional. Given a sequence φ = (φα)α∈Nd (with φ in bold),
the Riesz functional is the linear mapping φ : R[x] → R (with φ not in bold) defined
by:

(2.1) f (=
∑

α

fα xα) 7→ φ(f) =
∑

α∈Nd

fα φα , ∀f ∈ R[x] .

Moment matrix. The degree-n moment matrix associated with a sequence φ =
(φα), α ∈ N

d, is the real symmetric matrix Mn(φ) with rows and columns indexed
by N

d
n, and whose entry (α,β) is just φα+β, for every α,β ∈ N

d
n. Alternatively, let

vn(x) ∈ R
s(n) be the vector (xα), α ∈ N

d
n, and define the real symmetric matrices

(B1
α) by

(2.2) vn(x)vn(x)
T =

∑

α∈Nd
2n

B1
α xα, ∀x ∈ R

d.

ThenMn(φ) =
∑

α∈Nd
2n

φα B1
α. If φ has a representing measure φ then Mn(φ) � 0

because 〈f ,Mn(φ)f〉 =
∫
f2dφ ≥ 0, for all f ∈ R[x]n; in this case φα is the α-

moment of φ.
A measure whose all moments are finite, is moment determinate if there is no

other measure with same moments. The support of a Borel measure φ on R
d

(denoted supp(φ)) is the smallest closed set Ω such that φ(Rd \Ω) = 0.
In the TCS community, a vector φ = (φα) whose moment matrix is psd, is called

a vector of pseudo-moments (and moments if φ has a representing measure).

Localizing matrix. With φ as above and g ∈ R[x] (with g(x) =
∑

γ gγx
γ), the

degree-n localizing matrix associated with φ and g is the real symmetric matrix
Mn(gφ) with rows and columns indexed by N

d
n, and whose entry (α,β) is just∑

γ gγφα+β+γ , for every α,β ∈ N
d
n. Alternatively, let Bg

α be the real symmetric
matrices defined by:

(2.3) g(x)vn(x)vn(x)
T =

∑

α∈Nd
2n+deg g

Bg
α xα, ∀x ∈ R

d.

Then Mn(gφ) =
∑

α∈Nd
2n+degg

φα Bg
α. Importantly,

(2.4) Mn(gj φ) � 0 ⇔ φ(f2 gj) ≥ 0 , ∀f ∈ R[x]n .
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Next, if φ has a representing measure φ whose support is contained in the set
{x : g(x) ≥ 0} then Mn(gφ) � 0 for all n because 〈f ,Mn(gφ)f〉 =

∫
f2 gdφ ≥ 0,

for all f ∈ R[x]n.

Homogenization. Let φn = (φα)α∈Nd
2n
. Its homogenization is the vector φ̃

n
=

(φ̃n
i,α)i+α=2n defined by:

φ̃n
2n−|α|,α = φn

α, α ∈ N
d
2n,

and the homogenization M̃n(φ̃
n
) of the moment matrix Mn(φ

n) is defined by:

M̃n(φ̃
n
)((i,α), (j,β)) = Mn(φ

n)(α,β) = φ̃n
i+j,α+β, i+ |α| = j + |β| = n.

For instance in dimension d = 2, and for n = 1:

M1(φ
n) =




φn
00 φn

10 φn
01

φn
10 φn

20 φn
11

φn
01 φn

11 φn
02


 = M̃1(φ̃

n
) =




φ̃n
2,00 φ̃n

1,10 φ̃n
1,01

φ̃n
1,10 φ̃n

0,20 φ̃n
0,11

φ̃n
1,01 φ̃n

0,11 φ̃n
0,02




Theorem 2.1. (Blekherman [1, Theorem 2.3]) Let φn and φ̃
n
be such that M̃n(φ̃

n
) �

0. If s := rankM̃n(φ̃
n
) ≤ 3n− 3 when n ≥ 3 (or s ≤ 6 when n = 2) then φ̃

n
has

an atomic representing measure on R
d+1 supported on s atoms.

For every n and φn = (φn
α)α∈Nd

2n
, define φn̂ := (φn

α)α∈Nd
2n−1

. That is, φn̂ is the

restriction of the vector φn to its “moments” up to degree 2n− 1.

Corollary 2.2. (Fialkow [3]) Let φn and φ̃
n
be such that M̃n(φ̃

n
) � 0 and s :=

rankM̃n(φ̃
n
) ≤ 3n−3 (or ≤ 6 if n = 2). Then φn̂ (= (φα)|α|≤2n−1) has an atomic

representing measure on R
d.

See also the comment after Theorem 1.3 in [4, p. 948]. We will also need the
following consequence:

Corollary 2.3. Let φn and φ̃
n
be such that M̃n(φ̃

n
) � 0 and rankM̃n(φ̃

n
) ≤

3n − 3 (or ≤ 6 if n = 2). Then φ
n̂ (= (φα)|α|≤2n−1) has an atomic representing

measure on R
d supported on at most r ≤ s points, and with mass φn(1). If r = s

then the whole sequence φn has a representing measure supported on s points of
R

d.

Proof. Let {(x0(1),x(1)), . . . , (x0(s),x(s))} ⊂ R
d+1, be the support of φ̃

n
with

associated (strictly) positive weights λ1, . . . , λs. Let ∆ := {i : x0(i) 6= 0}. Then for
every α ∈ N

d
2n with |α| < 2n,

φ̃n
2n−|α|,α = φn

α =

s∑

i=1

λi x0(i)
2n−|α|

d∏

j=1

xj(i)
αj

=
∑

i∈∆

λi x0(i)
2n

d∏

j=1

(
xj(i)

x0(i)
)αj =

∫

Rd

xα dµ ,

with µ =
∑

i∈∆ λi x0(i)
2nδ

(
x1(i)

x0(i)
,··· ,

xd(i)

x0(i)
)
. That is, µ is a representing measure for

φ
n̂. In addition, µ(1) = φn(1) because φ̃n(x2n

0 ) = φn(1) = µ(1). Next, for every α
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with |α| = 2n,

φ̃n
0,α = φn

α =
s∑

i=1

λi x0(i)
2n−|α|

d∏

j=1

xj(i)
αj

=
∑

i∈∆

λi x0(i)
2n

d∏

j=1

(
xj(i)

x0(i)
)αj +

∑

i6∈∆

λi

d∏

j=1

xj(i)
αj ,

and therefore, if |∆| = s we may and will conclude that φn
α =

∫
Rd x

α dµ for all

α ∈ N
d
2n, i.e., µ is a representing measure of the whole sequence φn. �

3. Main result

WithK as in (1.2), let v := max1≤j≤m⌈deg(gj)/2⌉. Given sequence φn(φn
α)α∈Nd

2n

recall the notation φn̂ = (φn
α)α∈Nd

2n−1
, i.e., φn̂ is the restriction of φn to moments

up to degree 2n − 1. Our first result provides a sufficient condition to solve the
K-moment problem.

Theorem 3.1. With n ≥ v, let φn = (φα)α∈Nd
2n

be such that

(3.1) φ(1) = 1 ; Mn(φ
n) � 0 ; Mn−dj

(gj φ
n) � 0 , j = 1, . . . ,m .

If s := rank(Mn(φ
n)) ≤ n− v + 1 then φn̂ has a representing measure supported

on at most r ≤ s points of K. In addition, if r = s then φn has a representing
measure supported on s points of K.

A detailed proof is postponed to §6.1. The case n = 1 is only meaningful when
v = 1. In this case s ≤ 1 implies that the whole sequence φn has a representing
measure, the Dirac at some point x ∈ R

d.
We next investigate the consequence of Theorem 3.1 for polynomial optimiza-

tion. With f as in (1.1), define df := ⌈deg(f)/2⌉ and recall that dj := ⌈deg(gj)/2⌉,
for all j = 1, . . . ,m, and v := maxj≤m dj .

Theorem 3.2. Let P be as in (1.1). For every n with n ≥ v and 2n− 1 ≥ deg(f),
let φn = (φn

α)α∈Nd
2n

be an optimal solution of the semidefinite relaxation Qn:

(i) If s = rank(Mn(φ
n)) ≤ n− v + 1 then φn(f) = f∗, that is, ρn = f∗ and the

relaxation Qn is exact. Moreover, φn̂ has a representing measure supported on at
most s global minimizers of P.

(ii) Next assume that deg(f) ≤ 2 and deg(gj ≤ 2) for all j, so that v = 1 (and
P is a QCQP). Then one may exhibit a probability measure supported on global
minimizers of P.

A detailed proof is postponed to §6.2. So at an optimal solution φn of Qn,
Theorem 3.2 provide a sufficient rank condition on Mn(φ

n) to ensure that the
semidefinite relaxation Qn is exact. In addition, for QCQPs one may extract global
minimizers by looking at moment matrices (submatrices of the moment matrix
Mn(φ

n)), of degree lower than n.

Remark 3.3. The rank condition in Theorem 3.1 and Theorem 3.2 more severe
than in Theorem 2.1. However this is quite natural as the rank conditions must also
guarantee an important additional feature of a representing measure of φn, namely
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its support should be contained in K, whereas in Corollary 2.2, φn̂ being in now
way related to any set K ⊂ R

d, one cannot expect any localization property of its
representing measure whenever the latter exists.

4. The unconstrained case

In [1, p. 72] the author claims: “Theorem 2.1 also leads to an interesting stopping
criterion for sum of squares relaxations. Sum of squares methods lead to a hierarchy
of relaxations indexed by degree.” and later still in p. 72:
“Stopping criterion for SOS relaxations.

Suppose that the sum of squares relaxation truncated in degree 2d with d ≥ 3, returns
an optimal linear functional with moment matrix of rank at most 3d− 3. Then the
relaxation is exact.”

The above statement is incorrect because for constrained POPs in (1.1), even if
in an optimal solution φ∗ of the relaxation Qn, rank(Mn(φ

∗)) = 3n− 3 (in [1] d is
the degree whereas for us n is the degree) then a representing measure for φ is not
garanteed to be supported on K. Precisely, Theorem 3.1 provides more restrictive
rank conditions to ensure that the support of φ∗ is indeed in K; see Remark 3.3.

However, we next show that indeed Blekherman’s result is useful for uncon-
strained polynomial optimization, that is, so solve:

(4.1) P : f∗ = inf
x∈Rd

f(x)

where f ∈ R[x]2n with n ≥ 2 (the case n = 1 being trivial). With P is associated
the single semidefinite relaxation:

(4.2) ρ = inf
φ∈Rs(n)

{φ(f) : φ(1) = 1 ; Mn(φ) � 0 } .

Indeed there is no hierarchy to consider. Either f−f∗ is SOS and ρ = f∗, or f−f∗

is not an SOS and then ρ < f∗ (with possibly ρ = −∞). The dual of (4.2) reads:

(4.3) ρ∗ = sup
λ

{λ : f − λ ∈ Σ[x]n } ,

where Σ[x]n ⊂ R[x]2n is the convex cone of SOS polynomials of degree at most 2n.

Theorem 4.1. Consider the unconstrained POP in (4.1) and its associated (single)
semidefinite relaxation (4.2). Let ρ > −∞ and let φ∗ be an optimal solution of
(4.2). Suppose that r := rank(Mn(φ

∗)) ≤ 3n− 3 if n ≥ 3 or r =: rank(φ∗) ≤ 6 if
n = 2. Then ρ = f∗ and there exist some k (≤ r) global minimizers.

Proof. We prove the result when n ≥ 3 while the arguments are similar for the case
n = 2. Let f̃ (or hom(f)) be the homogenization of f , that is, f̃ ∈ R[x0,x]2n with

(4.4) f̃(x0,x) =

{
x2n
0 f(x/x0) if x0 6= 0

f2n(x) if x0 = 0
,

where f2n is the degree-2n homogeneous part of f . So f̃(1,x) = f(x) and f̃(0,x) =
f2n(x) for all x ∈ R

d. In particular if a polynomial is nonnegative or SOS then so
is its homogenization and the converse is true as well.

Slater’s condition holds for (4.2). Indeed let µ be the Gaussian measure N (0, I)
on R

d (with identity matrix I as covariance matrix). Then Mn(µ) ≻ 0 and µ(f)
is finite. Therefore ρ = ρ∗. Next, by optimality of φ∗ and the necessary KKT
optimality conditions, there exists X∗ � 0 such that

f(x)− ρ = vn(x)
T X∗ vn(x) ∀x ∈ R

d ; 〈Mn(φ
∗),X∗〉 = 0 .
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Recall the homogenization φ̃
∗
= (φ̃∗

2n−|α|,α), α ∈ N
d
2n of φ which reads φ̃∗

2n−|α|,α =

φ∗
α for everyα ∈ N

d
2n, and observe that the homogeneous moment matrix M̃n(φ̃

∗
) (=

Mn(φ
∗)) of φ̃

∗
satisfies

wn(x0,x)
T M̃(φ̃

∗
)wn(x0,x) = hom

(
vn(x)

TM(φ∗)vn(x)
)
,

where wn(x0,x) = hom(vn(x)). Next, if r := rank(Mn(φ
∗)) ≤ 3n − 3 then by

Theorem 2.1, φ̃
∗
has a representing measure φ̃∗ on R

d+1 supported on at most r
atoms {(x0(1),x(1)), . . . (x0(r),x(r))} ⊂ R

d+1, and

φ∗
α =

∫

Rd+1

x
2n−|α|
0 xα dφ̃∗(x0,x) =

r∑

j=1

λj (x0(j)
2n−|α|x(j)α , ∀α ∈ N

d
2n .

In particular, let

(x0,x) 7→ hom(f − ρ) = f̃(x)− ρ x2n
0

be the homogenization of f − ρ. Then

x 7→ f(x)− ρ is SOS ⇒ (x0,x) 7→ hom(f − ρ) = f̃(x0,x)− ρ x2n
0 is SOS.

Moreover,
∫

f̃(x0,x)− ρ x2n
0 )︸ ︷︷ ︸

SOS

dφ̃∗(x0,x) = φ∗(f − λ) = 〈X∗,Mn(φ
∗)〉 = 0 ,

and therefore f̃(x0(j),x(j))− ρ x0(j)
2n = 0 for all j = 1, . . . , r. Next, let Γ := { j :

x0(j) 6= 0 }, and assume that Γ 6= ∅. Then invoking (4.4), one obtains

x0(j)
2n ( f(x(j)/x0(j))− ρ) = 0 , ∀j ∈ Γ ,

which implies f(x(j)/x0(j)) = ρ for all j ∈ Γ, and therefore for every j ∈ Γ,
x(j)/x0(j) is a global minimizer of f and f∗ = ρ. It remains to prove that Γ 6= ∅.
But this follows from 1 = φ∗(1) =

∫
x2n
0 dφ̃∗. �

In the atomic support of φ̃
∗
, the above proof needs to treat separately points

with x0(j) 6= 0 from points with x0(j) = 0. Indeed if φ̃
∗
has a representing measure

φ̃∗ on R
d+1, only the subsequence (φ∗

α)|α|≤2n−1 has a representing measure φ∗ on

R
d. Then

0 =

∫

Rd+1

f̃(x0,x) − ρ x2n
0 ) dφ̃∗(x0,x) 6⇒ 0 =

∫

Rd

(f − ρ) dφ∗(x) ,

because as deg(f) = 2n > 2n− 1, φ∗(f − ρ) 6=
∫
Rd(f − ρ) dφ∗ in general.

5. Conclusion

We have provided a rank condition on the moment matrix of an optimal solu-
tion of the degree-n semidefinite relaxation of the Moment Hierarchy applied to
POP. When satisfied, the corresponding semidefinite relaxation is exact, i.e., the
Moment-SOS hierarchy has finite converge (and for QCQPs, global minimizers can
be extracted). These conditions are in the spirit of Blekherman’s condition, i.e.,
are concerned with a single moment matrix in contrast to Curto & Fialkow’s flat
extension condition. While they are are more restrictive, they apply to constrained
POPs whereas Blekherman’s condition only helps for unconstrained POPs.
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6. Appendix

6.1. Proof of Theorem 3.1.

Proof. Observe that if s ≤ n − v + 1 then s ≤ 3n − 3 if n ≥ 3 and s ≤ 6 if
n = 2. Then by Corollary 2.2, φn̂ has an atomic representing measure φ supported
on at most r points x(1), . . .x(r) ∈ R

d with r ≤ s. That is, there exist λi > 0,
i = 1, . . . , r, such that

φ =

r∑

i=1

λi δx(i) and

∫
xα dφ = φn

α , ∀α ∈ N
d
2n−1 .

Let 1 ≤ j ≤ m be fixed arbitrary.
Case r = s. Then by Corollary 2.3, the whole sequence φn has a representing
measure φ supported on s points x(1), . . . ,x(s) ∈ R

d. Next, since 2(n − dj) +
deg(gj) ≤ 2n, the localizing matrix Mn−dj

(gj φ) contains only moments of degree

at most 2n and therefore, φn(q gj) =
∫
q gj dφ for all q ∈ R[x]2(n−dj). Next, by

(2.4),

(6.1) 0 � Mn−dj
(gj φ

n) ⇒ φn(q gj) =

∫
q gj dφ ≥ 0 ,

for every SOS polynomial q ∈ R[x]2(n−dj). From this we deduce that at least one
point x(i) satisfies gj(x(i)) ≥ 0, i.e., the cardinality |Γ| of the set Γ := {i : gj(x(i)) ≥
0} is at least 1. Next, suppose that |Γ| < s. Then consider the polynomial p ∈
R[x]2|Γ| defined by:

(6.2) x 7→ p(x) :=
∏

i∈Γ

(
d∑

k=1

(xk − xk(i))
2

)
=
∏

i∈Γ

‖x− x(i)‖2 .

Then p(x(i)) = 0 for every i ∈ Γ and p(x(i)) > 0 for every i 6∈ Γ. Moreover, p is
an SOS of degree 2|Γ| < 2s, and as s ≤ n − v + 1, 2|Γ| ≤ 2n − 2v ≤ 2(n − dj).
Hence by (6.1), 0 ≤ φn(p gj) =

∫
p gj dφ, and one obtains the contradiction

0 ≤

∫
p gj dφ =

∑

i∈Γ

λi p(x(i))︸ ︷︷ ︸
=0

gj(x(i)) +
∑

i6∈Γ

λi p(x(i))︸ ︷︷ ︸
>0

gj(x(i))︸ ︷︷ ︸
<0

.

Therefore |Γ| = s which implies gj(x(i)) ≥ 0 for all i = 1, . . . , s. As j was arbitrary,
x(i) ∈ K for all i = 1, . . . , s, i.e., φ is supported on K.

Case r < s. Then by Corollary 2.3, φn̂ has a representing measure φ supported
on r points x(1), . . . ,x(r) ∈ R

d. Next, since 2(n− 1 − dj) + deg(gj) ≤ 2n− 1, the
localizing matrix Mn−1−dj

(gj φ) contains only moments of degree at most 2n− 1,

and therefore φn(q gj) = φn̂(q gj) =
∫
q gj dφ for all q ∈ R[x]2(n−1−dj). Moreover

Mn−dj
(gj φ) ⇒ Mn−1−dj

(gj φ) � 0, and therefore, by (2.4),

(6.3) 0 � Mn−1−dj
(gj φ

n) ⇒ φn(q gj) = φn̂(q gj) =

∫
q gj dφ ≥ 0 ,

for every SOS polynomial q ∈ R[x]2(n−dj−1). Again we deduce that at least one
point x(i) satisfies gj(x(i)) ≥ 0. So the cardinality of the set Γ := {i : gj(x(i)) ≥ 0}
is at least 1. Next, suppose that |Γ| < r. Let p ∈ R[x]2|Γ| be the SOS polynomial
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defined in (6.2). As r < n− v + 1 and |Γ| < r, |Γ| ≤ n− v − 1, and so p is an SOS
of degree at most 2(n− dj − 1). Moreover, as

deg(gj p) ≤ 2(n− dj − 1) + deg(gj) ≤ 2n− 2 ,

φn(p gj) = φn̂(p gj) =
∫
p gj dφ. By (6.3), one obtains the contradiction

0 ≤ φn̂(p gj) =

∫
p gj dφ

=
∑

i∈Γ

λi p(x(i))︸ ︷︷ ︸
=0

gj(x(i)) +
∑

i6∈Γ

λi p(x(i))︸ ︷︷ ︸
>0

gj(x(i))︸ ︷︷ ︸
<0

.

Therefore |Γ| = r, which implies gj(x(i)) ≥ 0 for all i = 1, . . . , r, and as j was
arbitrary, x(i) ∈ K for all i = 1, . . . , r, i.e., φ is supported on K. �

6.2. Proof of Theorem 3.2.

Proof. (i) By Theorem 3.1, φn̂ has an atomic representing measure φ supported on
at most r (≤ s) points x(1), . . . ,x(r) ∈ K. Moreover, as deg(f) ≤ 2n− 1,

f∗ ≥ ρn = φn(f) = φn̂(f) =

∫

K

f dφ =

r∑

i=1

λi︸︷︷︸
∈(0,1]

f(x(i))︸ ︷︷ ︸
≥f∗

≥ f∗ ,

(with
∑

i λi = 1) which proves that Qn is exact, and f(x(i)) = f∗ for all i =
1, . . . , r.

(ii) For every k ≤ n, let µk := (φn
α)|α|≤2k. Suppose that r = rank(Mn−1(µ

n−1)) =
rank(Mn(φ

n)). As v = 1 and Mn−1(gj φ
n) � 0 for all j = 1, . . . ,m, then by the

flat extension theorem of Curto and Fialkow [2, 3], φn has an atomic representing
measure µ supported on r atoms of K, and the r atoms can be extracted; see e.g.
[6]. hence the result follows.

On the other hand, if rank(Mn−1(µ
n−1)) < rank(Mn(φ

n)) (≤ n), then

(6.4) rank(Mn−1(µ
n−1)) ≤ n−1 = (n−1−v+1) and µn−1(f) = φn(f) = f∗.

Observe that µn−1 satisfies the condition in Theorem 3.1 (with n− 1 in lieu of n).
– If n−1 = 1 then rank(Mn−1(µ

n−1)) ≤ 1 and in fact = 1 (because µn−1(1) = 1),
which in turn implies that µn−1 has a representing measure on K which is the Dirac
at some point x∗ ∈ K, and the result follows.

– If n − 1 > 1, then 2n − 2 > 2 and so µn−2(f) = φn(f) = f∗. Moreover

as rank(Mn−1(µ
n−1)) ≤ n − 1 = (n − 1 − v + 1), then by Theorem 3.1, µn̂−1

has a representing measure on K supported on r ≤ n − 1 points of K and as

µn̂−1(f) = φn(f) = f∗ (because 2n− 3 ≥ 2), the r points are global minimizers of
P.

We may and will repeat the argument with µn−1 in lieu of φn. Suppose that
rank(Mn−2(µ

n−2)) = rank(Mn−1(µ
n−1)). Then as Mn−2(gj µ

n−1) � 0 for all
j, again by the flat extension theorem of Curto & Fialkow, µn−1 has an atomic
representing measure supported on r = rank(Mn−1(µ

n−1)) (≤ n− 1) points of K
that can be extracted; see [6]. As µn−1(f) = φn(f) = f∗ and f ≥ f∗ on K, then
all points are global minimizers and the result follows.

On the other hand, if rank(Mn−2(µ
n−2)) < rank(Mn−1(µ

n−1)) (≤ n− 1) then

rank(Mn−2(µ
n−2)) ≤ n− 2 and µn−2(f) = φn(f) = f∗ ,
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because n−2 ≥ 1. That is, we are back to the case (6.4) but now with n−2 instead
of n− 1. By iterating, we stop with a measure µn−k and either:

• n−k > 1, rank(Mn−k(µ
n−k)) = rank(Mn−k−1(µ

n−k−1)), and in addition,
µn−k(f) = φn(f) = f∗, Mn−k−1(gj µ

n−k) � 0, j = 1, . . . ,m. Hence
by Flat extension theorem of Curto & Fialkow, µn−k has a representing
measure supported on rank(Mn−k(µ

n−k)) global minimizers of P, and the
minimizers can be extracted [6]; hence the result follows.

• or n − k = 1 in which case rank(Mn−k(µ
n−k)) = 1 because µn−k(1) =

φn(1) = 1. Then µn−k is represented by the Dirac measure at the point
x∗ = (µn−k(x1), . . . , µ

n−k(xd)), and as v = 1,Mn−k−1(gj µ
n−k) = gj(x

∗) ≥
0 for every j = 1, . . . ,m. Hence x∗ ∈ K, µn−k(f) = φn(f) = f∗, and so
the result follows.

�
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Email address: lasserre@laas.fr


