
HAL Id: hal-04881773
https://laas.hal.science/hal-04881773v1

Submitted on 12 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced Visual Predictive Control Scheme For The
Navigation Problem

Adrien Durand-Petiteville, Viviane Cadenat

To cite this version:
Adrien Durand-Petiteville, Viviane Cadenat. Advanced Visual Predictive Control Scheme For The
Navigation Problem. Journal of Intelligent & Robotic Systems , 2022, 105 (35), �10.1007/s10846-022-
01623-2�. �hal-04881773�

https://laas.hal.science/hal-04881773v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Advanced Visual Predictive Control Scheme For The
Navigation Problem

A. Durand-Petiteville · V. Cadenat

Received: date / Accepted: date

Abstract This work proposes a Visual Predictive Control (VPC) scheme adapted
to the autonomous navigation problem among static obstacles. To do so, it is nec-
essary to cope with several issues which by now limit the use of VPC in this
context. Among them, we focus on the following ones: the need for precise predic-
tion models to improve the task realization; the need for a long prediction horizon
which is required to perform long range displacements and guarantee stability, but
also results in a high computational burden and a more difficult implementation ;
the possible optimization problem evolution at every iteration due to unexpected
events (e.g., detection of new obstacles), which leads to non convex problems and
therefore makes difficult its resolution.

The proposed VPC allows to tackle the above mentioned challenges. Based
on a more accurate prediction model relying on an exact integration method, it
integrates constraints to deal with actuator saturation, obstacle avoidance along
the trajectory and stability. To deal with the two last mentioned challenges, the
classical VPC scheme has been extended with two methods: the first one allowing
to relax some constraints on the control inputs to reduce the computational bur-
den; the second one for adequately refining the optimized trajectory to avoid local
minima when the optimization problem evolves during the navigation. The pro-
posed approach has been evaluated and compared to other VPC configurations.
The obtained results show than it runs 60 times faster than classical configurations
for similar performances.

A. Durand-Petiteville
Universidade Federal de Pernambuco UFPE, Departamento de Engenharia Mecânica
Av. da Arquitetura, 50740-550, Recife - PE, Brazil
E-mail: adrien.durandpetiteville@ufpe.br

V. Cadenat
CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
Univ de Toulouse, UPS, LAAS, F-31400, Toulouse, France
E-mail: cadenat@laas.fr

2 A. Durand-Petiteville, V. Cadenat

1 Introduction

This paper deals with the autonomous navigation problem in an environment
cluttered with obstacles. This problem, at the core of mobile robotics, has been
tackled through a large variety of approaches which stretch on a wide spectrum
depending on the existence (or not) of a map, the way it is used and the data it
relies on. We thus first propose a brief review of the different classes of solutions
existing in the literature and show the interest of using MPC (Model Predictive
Control) and more specifically VPC (Visual Predictive Control) to address the
navigation problem. Indeed, this latter technique allows to couple the computation
of a feasible trajectory and the reactivity required to handle unexpected events
during the mission. Next, we review the VPC approaches developed for different
types of robotic platforms to list the addressed issues and the limitations of the
proposed solutions. We finally present our VPC-based approach to the navigation
problem dealing with challenges of both VPC and navigation. It allows us to
exhibit the contributions at the core of the paper and to conclude with the paper
outline.

1.1 The navigation methods

As previously mentioned, the literature proposes a large variety of approaches
which range on a wide spectrum. On one side of the spectrum, a first class of
methods, called map-based approaches relies on a map of the environment in
order to plan a trajectory leading to the goal while dealing with constraints such
as the presence of obstacles or the robot kinematics [1]. The challenges of these
methods mainly lie in the construction of the map and in the robot localization.
First, the map has to be accurate enough to allow a precise estimation of the robot
pose. Second, it has to contain all the relevant information to lead to a trajectory
dealing with the constraints, e.g., the presence of obstacles. Thus, these methods
appear relevant to perform long range navigation in the presence of constraints,
but they seem to be less suitable to deal with unexpected obstacles, despite the
existing extensions in the literature (see [2]).

On the other side of the spectrum, a second class of methods, called reactive
or map-less approaches, does not use a map of the environment and benefits from
local information. Most of these methods rely on sensor-based approaches, in the
sense where the current pose and the goal are defined in terms of relevant measures
in the sensor space [1]. Different sensors can be considered such as vision or laser
rangefinders, leading to different spaces of expression [3]. The navigation is then
performed by an output feedback controller to make the error between the current
and reference sensory data vanish. Thus, no localization process with respect to
a global frame or a map is required. The challenge in this class of methods lies
in designing controllers able to guarantee the closed-loop stability while managing
the different constraints required for the task execution (e.g., obstacle avoidance,
actuator saturation, etc.). These methods appear relevant to navigate in the pres-
ence of unknown obstacles, but they seem to be less suitable to deal with numerous
constraints.

Among the numerous methods lying in the middle of the spectrum, we focus
on the Model Predictive Control (MPC) approach [4] [5]. With MPC schemes,

Advanced Visual Predictive Control Scheme For The Navigation Problem 3

the task to achieve is classically defined by a cost function, which is the sum over
a prediction horizon of the difference between the predicted and desired states.
Next, a set of constraints dealing with the specific features of the task is added
to the problem. Finally, at each iteration, a set of commands, and therefore a
trajectory, is obtained via a solver minimizing the cost function while taking into
account the constraints. It thus offers the possibility of dealing with numerous
constraints in a natural way. MPC-based approaches usually strongly lean towards
the map-based side of the spectrum. Indeed, the corresponding controllers are used
to track a path or trajectory calculated before the navigation while dealing with
some constraints [6] [7]. Such approaches require a model of the environment prior
to the start and are not suited to deal with unknown obstacles discovered along
the navigation. However, if the task (and therefore the cost function) is defined
in the sensor space, it becomes possible to couple some of the advantages of the
two aforementioned classes: (i) the capacity to compute a trajectory dealing with
constraints similarly to the map-based methods and (ii) the direct use of the
desired and current measures in the closed-loop process, making unnecessary to
rely on a map and improving the robot reactivity. This kind of approach appears
to be relevant in our context where obstacles might unexpectedly appear on the
robot trajectory during navigation. This idea is at the core of this paper.

1.2 The Visual Predictive Control (VPC)

In this work, it is proposed to use a VPC scheme [8], which is the fusion between
Image-Based Visual Servoing (IBVS) [9] and Nonlinear Model Predictive Control
(NMPC) [4] [5]. The choice of a camera as the main navigation sensor, and there-
fore of the image space as the sensor space, is motivated by the following reasons:
(i) their sensing capacities are not limited to a plane, contrary to planar laser
rangefinders; (ii) it is possible to rely on high-level features such as texture to
identify a landmark; and (iii) their cost remains relatively low with respect to 3D
LIDAR. It is thus possible to consider making the robot move through a complex
environment where one or several embedded cameras identify a natural landmark
used as a reference for the navigation task. Similarly to MPC, the VPC problem is
formulated as the repeated solution of a finite horizon open-loop optimal control
problem expressed in the image space, subject to system dynamics and input and
state constraints. Thus, by defining the task in the sensor space, there is no need
for an initial planning step nor a map. The trajectory described by the robot re-
sults from the optimization problem solved at each iteration and whose constraints
are modified online based on the newly acquired data.

The interest for VPC-based controllers has grown over the last decade and
the contributions are numerous. The following overview aims at analyzing and
comparing some relevant works according to several key features to highlight their
differences, shared characteristics and limitations. At first, it is worth mentioning
that the VPC schemes have been used to control different robotic systems: a cam-
era mounted on a robotic arm [10][11][12] [13][14], a flying camera [15] [16], a mobile
robot [17] or a fixed-wing aerial vehicle [18]. In addition to this first difference, the
mentioned works stand out on several aspects. Regarding the considered visual
cues, VPC schemes generally rely on points to define the task (and therefore the
cost function) in the image space, with the exception of [11] where image moments

4 A. Durand-Petiteville, V. Cadenat

are used to increase the robustness of the control algorithm. Concerning the predic-
tion models, these latters are generally obtained by integrating a first order system
based on the interaction matrix using the Euler’s method, inducing a potential lack
of accuracy. We may nonetheless mention the works by [12] and [14] where other
leads have been followed. In the first one [12], the robotic arm is represented by
a polytopic linear parameter-varying system in order to obtain a model indepen-
dent of the visual feature depth. In the second one [14], the authors use a second
order model allowing to integrate the visual features acceleration to obtain better
and smoother 2D and 3D trajectories. Now, regarding the minimization problem
resolution, most of the works rely on Quadratic Programming or Interior Point
Algorithm. However, other solutions can be considered as proposed in [17] where
a primal-dual neural network is used. Concerning the constraints, the majority of
the mentioned works use them to bound the control inputs (actuator saturation)
and the state variables (visual features visibility). However, more advanced uses
can be considered. For example, [10] and [15] tighten the constraints to take into
account the state uncertainties, allowing to obtain more robust controllers. In [18],
the constraints are used to avoid obstacles in the vicinity of the robot, but their
introduction makes the state and input sets of the minimization problem non-
convex, thus increasing the difficulty of finding the global minima. The stability
problem is also another example where the previously mentioned works may differ.
Only one of them [15] partially addresses this problem by adding a zero terminal
equality constraint, whereas it is a key issue when designing a controller. It is
worth noting that the other works consider scenarii with relatively small camera
displacements, short prediction horizons, and boundaries constraints leading to
convex state and inputs sets. In such cases, VPC schemes without any explicit
stability guarantee are usually sufficient to achieve the task. But they might be
limited to perform a navigation task in a cluttered environment.

As shown by this overview, the coupling of IBVS with MPC requires to address
several issues: (i) design of a sufficiently accurate and robust prediction model
in the image space, (ii) design of constraints dealing efficiently with the system
and environment specificities, (iii) design of an optimal problem guaranteeing the
closed-loop stability, and (iv) selection or design of a numerical solver computing
within an acceptable time a local or global solution for convex or non-convex
problems. The above mentioned works take into account only one or two of these
issues at a time, whereas the navigation problem in an environment cluttered with
unexpected obstacles requires to address all of them. Our objective is to design a
VPC scheme adapted to the navigation task.

1.3 Proposed solution and contributions

In this work, we consider a differential wheeled robot equipped with a camera
used as the main sensor for navigation task, coupled with a laser rangefinder
allowing to detect the obstacles in its vicinity. For this system, we propose: (i) an
accurate prediction model benefiting from the particular mechanical structure of
the considered robotic system that relies on the visual features depth; (ii) a set of
constraints suitable to guarantee non collision along the trajectory, stability and
actuator non saturation; (iii) a solution based on inputs constraints relaxation to

Advanced Visual Predictive Control Scheme For The Navigation Problem 5

ease the terminal constraint satisfaction and guarantee the closed-loop stability
while being computationally efficient and (iv) a solution to handle sub-optimality
and local minima problems. The contributions lie in points (ii), (iii) and (iv). We
now describe the proposed solution.

Let us start by the contribution stated in point (iii) from which follow the two
other ones (ii) and (iv). We thus focus our efforts on the design of a VPC con-
troller guaranteeing the closed-loop stability while being time-processing efficient.
To do so, let us first recall that nominal NMPC schemes, and therefore VPC, only
guarantee a stable closed-loop when considering an infinite prediction horizon [4].
For solutions relying on a finite prediction horizon, which is the case for all the
above mentioned works, two main classes of approach are identified to guarantee
stability. The first one enforces stability by adding a zero terminal equality con-
straint at the end of the prediction horizon [19, 20]. The second one relies on the
quasi-infinite horizon method [21], which consists in adding a terminal penalty
term to the cost function and a terminal region constraint. Both are determined
off-line such that the modified cost function gives an upper bound on the infinite
horizon cost and guarantees a decrease in the cost function. This second class of
solution does not seem to be appropriate to the navigation problem. Indeed, the
obstacles are detected during the navigation and the constraints related to obstacle
avoidance might be updated at every iteration. It is then impossible to determine
a terminal region at the beginning of the navigation. Moreover, the quasi-infinite
horizon method requires that there exists a known control law, local to the termi-
nal region, that stabilizes the system and satisfies the constraints. One more time,
it is impossible to prove the existence of such a local control law without knowing
the constraints in the terminal region. This is the reason why it is proposed here
to guarantee the stability by adding a zero terminal equality constraint as in [15].

To this end, we propose to enlarge the size of the feasibility set, set for which
there exists a trajectory reaching the goal while dealing with the constraints. This
size depends on both the length of the prediction horizon and the boundaries
of the control inputs. Large prediction horizons leading to large computational
times, it seems more relevant to act on the control input boundaries than on
the prediction horizon. To do so, one proposes to define two sets of constraints
for the control inputs. The first ones correspond to the actual boundaries of the
system and are applied on the first part of the prediction horizon, whereas the
second ones are relaxed and applied to the rest of the prediction horizon. Thus,
the command applied to the robot, which is in the first part of the prediction
horizon, respects the actuators limits, while the feasible region is enlarged by the
use of relaxed boundaries. It is worth mentioning that this solution makes sense for
the navigation problem where the camera and laser ranges are limited. Indeed, it is
important to consider actual constraints close to the robot where the environment
is correctly perceived. On the contrary, far from it, it may be envisioned to consider
relaxed ones as the image and the laser data are not available yet.

However, in order to preserve an efficient and safe navigation system while re-
laxing the control input boundaries, it is required to deal with two issues leading
to contributions (ii) and (iv). First, the constraints applied to the system, e.g., to
avoid collisions with obstacles, have to be checked along the predicted trajectories
and not only for the predicted states as it is usually done. Indeed, due to possible
large commands, the predicted trajectory between two states can be sufficiently

6 A. Durand-Petiteville, V. Cadenat

large to pass through an obstacle without violating the state-centered collision con-
straints. Next, one has to deal with the sub-optimality of the computed solution.
Indeed, predictive control schemes of complex systems usually rely on numerical
solvers computing a local solution. It leads to a sub-optimal trajectory and in the
worst case scenario, the first command might be null or very small. Since tradi-
tionally only the first command is applied, this means that the robot would be
stopped, leading to a navigation failure. It will be shown in the following that the
insertion of relaxed constraints increases the chance of navigation failures due to
sub-optimal trajectories. Thus, in addition to the insertion of relaxed constraints,
one presents in this work two other contributions: (i) a constraint to avoid col-
lisions along the robot trajectory, and (ii) a method based on equivalent control
vectors [22] to refine the obtained trajectory and reduce the chances of navigation
failure.

The paper is organized as follows. First, the models of the different parts of the
robotic system are presented. Next, the VPC scheme and the set of constraints to
deal with obstacles and actuator boundaries are introduced. One then describes
the equivalent control vector method developed for the considered robotic system.
Next one introduces our two-steps approach to refine the computed trajectory and
thus prevent the navigation task from failing. Finally, one presents results obtained
with a 2D simulator where we consider ideal sensors (RGBD camera and laser
rangefinder) in the presence of static obstacles. These results aim at illustrating
our contributions and highlight the relevance of the proposed approach.

2 Preliminaries

This section is intended to introduce the elements that are required to build our
VPC scheme, namely: the robot model, the visual features and their prediction
model.

2.1 Robot Modeling

In this paper, we aim at controlling a camera embedded on the pan-platform
of a differential robot using VPC. To model the robotic system, the following
frames are introduced as shown in Figure 1(a): Fo(O,xo,yo, zo) as the world frame,
Fr(Or,xr,yr, zr) as the robot frame, Fp(Op,xp,yp, zp) as the pan-platform frame,
and Fc(Oc,xc,yc, zc) as the camera frame. The considered camera is modeled us-
ing the perspective camera model and its focal length is denoted by f (see Figure
1(b)). Finally, the camera state can be defined as follows:

χc = [xc, yc, θc]
T (1)

where xc and yc are the coordinates of the point Oc in Fo, while θc = θr + θp, θr
and θp being respectively the direction of the robot with respect to xo, and the
orientation of the pan-platform with respect to xr.

As the camera is mounted on the pan-platform of a differential drive robot, its
motion is controlled via the robotic system, and its number of degrees of freedom
(DOF) is reduced to three (two translation motions along yc and zc, one rotation

Advanced Visual Predictive Control Scheme For The Navigation Problem 7

(a) Differential drive robot model

camera focal length

optical axis

im
a
g
e
 p

la
n
e

(b) Perspective Camera Model

Fig. 1: System model

motion around xc) as shown by Figure 1(a)). The camera kinematic screw νc can
be written as follows [23]:

νc =

− sin(θp) ∆rp cos(θp) + cx cx
cos(θp) ∆rp sin(θp)− cy −cy

0 −1 −1

Q (2)

where cx and cy are the coordinates of Oc along axes xp and yp, ∆rp being the
distance between Or and Op (see Figure 1(a)).Q = [υ, ωr, ωp]

T denotes the control
input vector of the system where υ and ωr are the mobile base linear and angular
velocities, and ωp is the pan-platform angular velocity with respect to Fr. Finally,
using Equation (1), it is also possible to establish the camera kinematic model as
follows: ẋc

ẏc
θ̇c

 =

υ cos(θr)− ωr∆rp sin(θr)
υ sin(θr) + ωr∆rp cos(θr)

ωr + ωp

 (3)

2.2 The Visual Features and their prediction model

As explained above, the navigation task consists in making the robot move with
respect to a reference landmark tracked by the camera. In the case of visual ser-
voing and thus in VPC, the task is defined in the image space [9]. In this work, as
in most of the reviewed works in Section 1, we consider that the reference land-
mark can be characterized by Nv interest points, these latter being extracted by
a dedicated image processing algorithm such as [24] when the landmark is made
of an AprilTag. Let us denote by pj one of the Nv aforementioned 3D interest
points (j ∈ [1, ..., Nv]). Its coordinates in Fc are defined by (xj , yj , zj). Following
the perspective camera model, its projection is given by Pj whose coordinates are
Sj = (Xj , Yj) in the image plane. As a consequence, the visual features vector is
given by the following 2Nv dimensional vector S:

S = [X1, Y1, ..., XNv
, YNv

]T (4)

8 A. Durand-Petiteville, V. Cadenat

For the given robotic system and for a sole point Pj , the time derivative of Sj is
given by [9]:

Ṡj = LjJQ (5)

where J is the robot Jacobian (see equation (2)) and Lj is the so-called interaction
matrix associated to the considered visual features Sj . For pointwise cues and
considering that the camera has only three DOF, its expression reduces to [9]:

Lj =

 Xj

zj

XjYj

f −(f +
X2

j

f)

Yj

zj
(f +

X2
j

f)
−XjYj

f

 (6)

Now, let us derive the visual features prediction model required to set up the
VPC scheme. The robot is a sampled system whose inputs evolve at each instant
tk = kTs, where Ts is the sampling time. Let us consider two different instants
tk and tk+1. Assuming that the inputs Q(tk) remain constant during this time
interval, it is possible to solve Equation (5) between these two instants and obtain
an analytical prediction of the visual feature Sj(tk+1) knowing Sj(tk) and Q(tk).
We obtain (see [25] for more details):

Xj(tk+1) =
zj(tk)Xj(tk)

zj(tk+1)
(7)

Yj(tk+1) =
f

zj(tk+1)

{
C1 cos(A)− C2 sin(A) +∆rp sin(θp(tk+1))

+ υ(tk)
ωr(tk)

cos(θp(tk+1))− cy
} (8)

zj(tk+1) = C1 sin(A) +C2 cos(A)−∆rp cos(θp(tk+1)) +
υ(tk)

ωr(tk)
sin(θp(tk+1))− cx

(9)
where:

A =
(
ωr(tk) + ωp(tk)

)
Ts

C1 =
Yj(tk)zj(tk)

f
−∆rp sin(θp(tk))−

υ(tk)

ωr(tk)
cos(θp(tk)) + cy

C2 = zj(tk) +∆rp cos(θp(tk))−
υ(tk)

ωr(tk)
sin(θp(tk)) + cx

Equations (7), (8) and (9) are analytic expressions that can be used to predict
exactly the coordinates of the visual features. The proposed solution benefits from
the robot particular mechanical structure to provide an exact integration of the
differential equation (5). It thus offers a more accurate solution than solving this
latter numerically using Euler’s method as it is classically done [8] (see section
1). Moreover, it does not require any advanced/complex operation, maintaining
the computational effort at a low cost. The first VPC challenge for navigation
mentioned in the introduction is thus fulfilled.

3 Visual Predictive Control

In this section, we first recall the VPC framework and the main parameters im-
pacting the controller behavior. Then, we present three constraints that have to
be taken into account in the VPC problem in order to guarantee the convergence
of the closed-loop system and the safety of the robot during a navigation task.

Advanced Visual Predictive Control Scheme For The Navigation Problem 9

3.1 The VPC Scheme

As already mentioned, VPC is the result of coupling NMPC with IBVS. It thus
shares characteristics from these two particular control techniques. As NMPC, it is
the solution of a constrained optimal problem. More precisely, it consists in finding
an optimal control sequence Q

∗
(k) that minimizes at instant tk a cost function

JNp
over a Np steps prediction horizon under a set of user-defined constraints

C(Q
∗
(k)). The obtained optimal control sequence Q

∗
(k) = [Q∗(k|k),Q∗(k +

1|k), ...,Q∗(k + Np − 1|k)] is a Np dimensional vector where Q∗(k + 1|k) is the
k + 1th optimal control input calculated at the kth iteration. Moreover, we de-
fine Nc as the control horizon. It means that the N th

c first predictions of the Np

long prediction horizon are computed using independent control inputs, while the
remaining ones are all obtained using a unique control input equals to the N th

c

element of Q
∗
(k) As IBVS, the cost function is defined in the image space instead

of the state space as it is classically done in NMPC. It expresses as the sum of the
quadratic error between the visual feature coordinates vector Ŝ(k) predicted over
the horizon Np and the desired ones S∗1. The optimal problem is then defined as
follows:

Q
∗
(k) = min

Q(k)

(
JNp

(S(k),Q(k))
)

(10)

with

JNp
(S(k),Q(k)) =

k+Np∑
p=k+1

[Ŝ(p)− S∗]T [Ŝ(p)− S∗] (11)

subject to

Ŝ(l + 1) = f(Ŝ(l),Q(l)), with l ∈ [k, ..., k +Np − 1] (12a)

Ŝ(k) = S(k) (12b)

C(Q(k)) ≤ 0 (12c)

where Q(k) = [Q(k), ...,Q(k + Np − 1)]. Equation (12a) corresponds to the pre-
diction model and is instanciated by Relations (7), (8) and (9). Equation (12b)
guarantees that the predicted visual features at instant tk are given by the last
measure provided by the image processing algorithm. Finally, Equation (12c) gath-
ers all the constraints which must be taken into account to successfully perform
the navigation task. These latters are described in the following sections.

Remark 1: VPC generally works as follows. The minimization problem (10) is
first solved, leading to the optimal sequence Q

∗
(k). Usually, only its first term is

sent to the system. Then, this process is repeated until the task is achieved.
Remark 2: Numerical solvers require to define an initial value for the vector to

optimize, called initial guess. Its choice can have a strong impact on the obtained
solution, especially for solvers providing local minima. Indeed, a smart initial guess
allows not only to converge faster towards a solution but also to influence the
local minimum which will be reached. In this work, the results of the previous
optimization are used to build the initial values of the current one. To do so, the
first command of Q

∗
(k), i.e., Q∗(k|k), is discarded, the remaining commands are

1 They correspond to the visual features obtained when the task is performed, i.e., when the
camera is correctly positioned with respect to the landmark of interest.

10 A. Durand-Petiteville, V. Cadenat

shifted by one index lower, and the last command is set up to zero. Thus, if the
robot has perfectly achieved the motion due to the first command, the trajectory
used as an initial guess is the same as the one computed at the previous step minus
the last piece of motion of the robot. This solution increases the chances of finding
a new solution close to the previous one, thus reducing possible oscillations.

3.2 The Zero Terminal Equality Constraint

As previously mentioned, the stability of our VPC scheme is achieved by introduc-
ing a zero terminal equality constraint. This constraint is expressed as the error
between the value of the predicted visual features Ŝ(k +Np) obtained at the end
of the prediction horizon, and the desired ones S∗. We get:

||Ŝ(k +Np)− S∗|| = 0 (13)

As this strict equality constraint is almost impossible to achieve, it is proposed to
replace it by the following inequality constraint:

||Ŝ(k +Np)− S∗|| − δtc ≤ 0 (14)

where δtc is a user defined threshold. It must be small enough to influence the
optimization process as the equality would do, while offering an efficient imple-
mentation of the constraint. If constraint (14) is fulfilled at each iteration, there
exists a trajectory leading from the current state to the desired one, thus guar-
anteeing the recursive feasibility [4]. On the contrary, if the solver cannot find a
solution to this constrained problem, this means that the number of predictions is
too small and/or the constraints on the control inputs are too restrictive to reach
the goal [5]. This problem will be tackled in Section 4.

Remark 3: Although it is a well known solution to guarantee the stability
of MPC controllers, the terminal constraint is not used in most of the works
mentioned in the literature review proposed in Section 1. One of the reason could
be the need for a large prediction horizon increasing the time required to minimize
the optimal problem. Instead, authors usually weight the last predicted value based
on the distance to the desired one. However, as shown in Section 1, this approach
is not adapted to perform a navigation task, which is why we have tackled this
problem in this work.

Remark 4: The terminal constraint guarantees the task achievement under the
assumption that the predicted states are sufficiently accurate. If they are strongly
erroneous, the camera might not converge towards its desired pose, leading to
a task failure. In this context, the interest of using the above mentioned exact
prediction model instead of a solution based on Euler’s integration method appears
clearly.

3.3 The Input Constraints

The control input constraints are defined by boundaries to avoid actuator satura-
tion. They allow to ensure that the obtained optimal control sequence respects the

Advanced Visual Predictive Control Scheme For The Navigation Problem 11

robot physical bounds. However, for a given number of prediction steps Np, they
also limit the size of the feasibility set. We propose to deal with this problem by
splitting the set of control input constraints into two subsets. In the first one, the
boundaries, called ’tight boundaries’, are defined by the actuators actual limits. In
the second one, they lose their physical sense and are increased to enlarge the fea-
sibility set. In this case, they are called ’relaxed or extended boundaries’. Following
this reasoning, we propose to define the input constraints as shown below:[

Q(i)−Qu|t
Ql|t −Q(i)

]
≤ 0, if 1 ≤ i ≤ Nc −Nr

[
Q(i)−Qu|r
Ql|r −Q(i)

]
≤ 0, if Nc −Nr < i ≤ Nc

(15)

where i ∈ [1, ..., Nc], Nr is the number of prediction steps with relaxed boundaries,
Ql|t and Qu|t are respectively the lower and upper tight boundaries corresponding
to the actuators limits, and Ql|r and Qu|r are respectively the lower and upper
relaxed boundaries. Thus, the command applied to the robot, which belongs to
the first part of the prediction horizon, respects the actuators boundaries, while
the extended boundaries allow to enlarge the feasible set2.

Remark 5: Coupling the terminal constraint with the extended boundaries
allows guaranteeing the closed-loop stability by computing a trajectory leading to
the desired pose while dealing with constraints. Even if the calculated trajectory
cannot be followed by the robot, due to the control inputs outside of the actuators
boundaries, it proves the existence of a path towards the goal. To make possible
the tracking of the trajectory, it would be sufficient to break down the pieces of
trajectory obtained with the relaxed constraints, into smaller pieces respecting the
actuators boundaries. It would naturally require to increase the number of control
steps.

3.4 The Obstacle Avoidance Constraints

To perform a safe navigation, it is necessary to ensure non collision. Constraints
can be naturally used to fulfill this purpose. In most of applications, it is proposed
to guarantee a minimal distance between one or several points of the obstacles
and the centroid of the robot for each predicted pose. However, this solution is
not sufficient in our case because the use of relaxed input boundaries may lead to
large displacements. The risk of collision must then be checked not only for the
predicted poses, but also all along the trajectories.

To this end, it is proposed to characterize the pieces of trajectory performed
by the robot. First, let us recall that the control inputs are assumed to be constant
during one sampling period. From this, it follows that, for the given robotic system,
the pieces of trajectory realized between two consecutive poses are either a line
segment when ωr = 0 or an arc of circle when ωr ̸= 0. To verify whether a collision
may occur or not, it thus suffices to check the distance between the laser points
and the corresponding segment or arc of circle which respectively characterize the

2 At first glance, it may appear interesting to set the relaxed constraints to infinity. However,
this solution cannot be applied because most of the solvers require finite boundaries.

12 A. Durand-Petiteville, V. Cadenat

current obstacle and robot trajectory. Thus, for all No points Cm representing the
obstacles, with m ∈ [1, ..., No], the set of constraints can be written as:

δc −∆(Cm, χ̂(n)|χ̂(n+ 1)) ≤ 0 (16)

where n ∈ [1, ..., Np−1] and ∆(Cm, χ̂(n)|χ̂(n+1)) is the shortest distance between
Cm and the piece of trajectory between two consecutive predicted poses χ̂(n) and
χ̂(n + 1). Finally, δc is a user-defined distance preventing collisions. At this step,
the second and third VPC challenges for navigation mentioned in the introduction
are fulfilled, leading to contributions (ii) and (iii). In the next section, we will deal
with the last one which is related to the solution sub-optimality. It will be the last
contribution of this paper.

4 Refinement of the Sub-Optimal Solution

In this section, we first describe the sub-optimality problem that might occur
when relying on a solver providing a local solution and we mention the issues that
have to be taken into account in order to achieve the navigation task. Next, we
present the equivalent control vector method which allows to merge sequences of
commands. Finally, one introduces the Trajectory Refinement Algorithm, a two
steps methods aiming at avoiding local minima.

4.1 The Sub-Optimal Solution Problem

After having stated the optimal control problem, it is necessary to compute a
solution at each iteration, which is usually achieved by a numerical solver. For
complex problems (nonlinear cost functions and constraints, non convex sets, large
control input vectors), it is challenging to compute the global solution, and usually
the solver only provides a local solution, i.e., a sub-optimal solution.

Fig. 2: Example of trajectories with Nc = 9 and Nr = 2. (a) Global solution: the
first extended command allows reaching the goal and the second one is null. (b)
Local solution: the two extended commands are used to reach the goal.

Advanced Visual Predictive Control Scheme For The Navigation Problem 13

To illustrate the issues that might occur when relying on a sub-optimal so-
lution, we use the regulation problem. When a global solution is computed, all
the predicted states are as close as possible to the desired values while dealing
with the constraints. Thus, in the case where there are more prediction steps than
required to reach the goal, the unnecessary steps are the last ones and have null
command values. For the proposed approach, it means that the global solution
minimizes the use of the last steps with the relaxed constraints. They only allow
completing the trajectory and are null when unnecessary (see Figure 2). When
only a local solution can be computed, there is no more guarantee the pieces of
trajectory obtained with the relaxed constraints are minimal (see Figure 2). In
the worst case scenario, the first control inputs are null and the trajectory is only
composed of the steps with the extended control inputs. In such a case, either the
closely similar ones, the first command is null, or quasi null, and the robot stops
navigating.

In [26], it is proposed to deal with the sub-optimality problem by adding a
constraint forcing the cost function to decrease. However, this approach cannot be
used for the navigation problem. Indeed, in this context, the optimization problem
can be modified over the navigation. For example, when a new piece of obstacle
or an obstacle is discovered, the obstacle constraints are updated, modifying the
optimization problem. It might then be necessary to let the cost function increase
in order to compute a trajectory leading to the goal while dealing with the con-
straints. Thus, to take full advantage of the introduction of the relaxed constraints
while dealing with such issues, one proposes to refine the obtained trajectory. The
objective is to conserve the overall shape of the trajectory while modifying the se-
quence of control inputs to avoid local minima. To do so, we rely on the equivalent
control vector method presented in the following section.

4.2 Equivalent Control Vector

The equivalent control vector method aims at computing the smallest sequence of
control inputs Q̃t1|t2 connecting two states of a system at instants t1 and t2, where

t1 < t2. It can be used to substitute a sequence of commands Q = [Q(t1),Q(t1 +
Ts), ...,Q(t1 + N ∗ Ts)], with N ∈ N∗+, as it is shown in Figure 3. In the case
of a VPC scheme, it is necessary to calculate the smallest sequence of commands
connecting two images. To do so, a first solution presented in [23] calculates the
equivalent control vector between two states of the whole robotic system, i.e., the
mobile base and the pan-platform. Because of the non-holonomic constraint on
the mobile base, a two steps solution is obtained. In order to obtain a simpler
solution, we consider in this work the camera state. Indeed, in the following, we
first prove that the camera can be controlled with a unique command by studying
its controllability. Next, we present the steps to obtain the camera equivalent
control vector.

4.2.1 Controllability

To determine the smallest number of commands necessary to connect two camera
states, we need to calculate the controllability of the following nonlinear discrete

14 A. Durand-Petiteville, V. Cadenat

L
a
n
d
m
a
rk

Fig. 3: Example of equivalent control vectors for a camera

system:

χc(k) = g(χc(k − 1),Q(k − 1)) (17)

where g(χc(k − 1),Q(k − 1)) is obtained by analytically solving Equation ((3))
between instants tk−1 and tk. Its expression is given by:

xc(k) = xc(k − 1) +
2υ(k − 1)

ωr(k − 1)
sin(η1) cos(η2) + 2∆rp sin(η1) sin(η2) (18)

yc(k) = yc(k − 1)− 2υ(k − 1)

ωr(k − 1)
sin(η1) sin(η2) + 2∆rp sin(η1) cos(η2) (19)

θc(k) = θc(k − 1) + (ωr(k − 1) + ωp(k − 1))Ts (20)

with η1 = ωr(k−1)Ts

2 and η2 = 2θ(k−1)+ωr(k−1)Ts

2 and when ωr ̸= 0 (the problem
is straightforward if ωr = 0). According to [27], such a system is controllable in p
steps if the following matrix P is full rank.

P =

∂g(χc(p−1),Q(p−1))

∂Q(p−1)
∂g(χc(p−1),Q(p−1))

∂χc(p−1)
∂g(χc(p−2),Q(p−2))

∂Q(p−2)

...
∂g(χc(p−1),Q(p−1))

∂χc(p−1) ... ∂g(χc(1),Q(1))
∂χc(1)

∂g(χc(0),Q(0))
∂Q(0)

T

(21)

For a controllability in one step, i.e., p = 1, the P matrix becomes:

P =
∂g(χc(0),Q(0))

∂Q(0)
(22)

Using Equations (18), (19) and (20) in Equation (22), one obtains:

P =

 2
ω(0) sin(η1) cos(η2) ζ1 0
2

ω(0) sin(η1) sin(η2) ζ2 0

0 Ts Ts

 (23)

where

ζ1 = −2υ(0)

ω2
r(0)

sin(η1) cos(η2) +
υ(0)

ωr(0)
Ts cos(η1 + η2)−∆rpTs sin(η1 + η2)

Advanced Visual Predictive Control Scheme For The Navigation Problem 15

and

ζ2 = −2υ(0)

ω2
r(0)

sin(η1) sin(η2) +
υ(0)

ωr(0)
Ts sin(η1 + η2) +∆rpTs cos(η1 + η2)

The camera is controllable in one step, if the matrix given in Equation (23) is full
rank. To determine if the P matrix is full rank, one computes its determinant:

det(P) =
υ(0)

ωr(0)
sin(η1)Ts +∆rp cos(η1)Ts (24)

The determinant is non-null, and thus the P matrix is full rank, for tan(η1) ̸=
−∆rpω(0)

υ(0)
3. Thus, it exists a constant control input vector Q̃t1|t2 , named equivalent

control vector, allowing to reach in one step any camera state χc(t2) from χc(t1),
with t2 > t1. This equivalent control vector allows to link two images without the
need of intermediate ones as it is illustrated in Fig. 3.

4.2.2 Computation of the equivalent speeds

Now that it has been determined that the camera is controllable with one step,
one focuses on the computation of the equivalent control vector Q̃ = [υ̃, ω̃r, ω̃p]

T .

– Computation of ω̃r:
In order to compute ω̃r, one first defines:

∆xc = xc(t2)− xc(t1) ∆yc = yc(t2)− yc(t1)

It is then possible to re-write Equations (18) and (19) such as:

∆xc + 2∆rp sin(η1) sin(η2) = 2
υ̃

ω̃r
sin(η1) cos(η2) (25)

∆yc − 2∆rp sin(η1) cos(η2) = 2
υ̃

ω̃r
sin(η1) sin(η2) (26)

Multiplying Equations (25) and (26) by sin(η2) and cos(η2) respectively, and
subtracting the results, one obtains :

∆xc sin(η2)−∆yc cos(η2) + 2∆rp sin(η1) = 0 (27)

ω̃r can be deduced from Equation (27) using classical relationships of trigonom-
etry. One finally obtains:

ω̃r =
2

Ts
arctan

(
−∆xc sin(θ(t1)) +∆yc cos(θ(t1))

2∆rp +∆xc cos(θ(t1)) +∆yc sin(θ(t1))

)
(28)

3 The determinant is null when υ(0) and ∆rp = 0. However, this case is not considered as
∆rp ̸= 0 is a necessary condition to perform visual servoing [22]

16 A. Durand-Petiteville, V. Cadenat

– Computation of υ̃:

One now computes the equivalent linear velocity of the mobile base υ̃ depending
on its equivalent angular velocity. To do so, Equations (18) and (19) are squared
and then summed. One obtains:

∆2
xc

+∆2
yc

= υ̃2

ω̃2
r

(
1− 2 sin(θ(t1) + ω̃rTs) sin(θ(t1))

−2 cos(θ(t1) + ω̃rTs) cos(θ(t1)) + 1
)

+∆2
rp(1− 2 cos(θ(t1) + ω̃rTs) cos(θ(t1))− 2 sin(θ(t1) + ω̃rTs) sin(θ(t1)) + 1)

(29)

∆2
xc

+∆2
yc

= 4 sin2(η1)

(
υ̃2

ω̃2
r
+∆2

rp

)
(30)

Finally, one obtains the following equation for the equivalent linear velocity:

υ̃ =

√
ω̃2
r

(
∆2

xc
+∆2

yc

4 sin2(η1)
−∆2

rp

)
(31)

– Computation of ω̃p:

Using Equation (20), one directly obtains the angular velocity of the pan-
platform such as:

ω̃p =
1

Ts
(θp(t2)− θp(t1) + θr(t2)− θr(t1) + ω̃rTs) (32)

4.3 Trajectory Refinement

In this work, it is proposed to refine at each iteration the solution Q
∗
(k) of the

optimization problem to prevent the robot from stopping before the goal. To do so,
we propose a two steps method relying on the equivalent control vector method.
First, one merges the commands of the computed sequence that are too small.
Thus, it is guaranteed that the first command is non-null, preventing the robot
from stopping before achieving the navigation task. Next, in order to prevent null-
commands in the middle of the trajectory, one extracts new commands from the
large pieces of trajectory obtained with the relaxed commands. Thus we provide
better initial conditions for the next optimization process. One now presents these
two steps with greater details.

4.3.1 Commands Merging

In order to merge commands, one first computes the Np equivalent control vectors
Q̃k|k+i between the initial camera pose at instant tk and the Np predicted ones at
the predicted instants tk + iTs, with i ∈ [1, ..., Np]. Next, one needs to find among
the Q̃k|k+i respecting the boundaries Ql|t and Qu|t and the collision constraints,

the one providing the largest piece of trajectory. It corresponds to the Q̃k|k+i with
the highest value for i among the ones dealing with the constraints. One denotes

Advanced Visual Predictive Control Scheme For The Navigation Problem 17

the highest value of i as Nm and one defines QM = Q̃k|k+Nm
. When Nm > 1, it

means that QM merges the Nm first control inputs Q(k), ...,Q(k +Nm − 1).
Now that a merging command dealing with the constraints has been computed,

it has to be included in the sequence Q
∗
(k). Let first define Ns as the number of

tight commands that are conserved in the merging process and Nz as the number
of commands that disappear and need to be replaced.

Ns = Nc −Nr −Nm

Nz = Nm − 1
(33)

To include the merging command QM , the control sequence Q
∗
(k) is modified as

follows (see figure 4.b for an example):

– The first element Q
∗
(1) is equal to QM .

– The Ns following elements [Q
∗
(2), ...,Q

∗
(2 + Ns − 1)] are equal to [Q(k +

Nm), ...,Q(k +Nm +Ns − 1)].
– The Nz following elements [Q

∗
(2 +Ns), ...,Q

∗
(1 +Ns +Nz)] are null.

– The last Nr elements are not modified.

4.3.2 Extraction of New Commands

The merging command being calculated and included, it is now proposed to
extract tight commands from the relaxed ones to replace the null ones intro-
duced in the previous step. The approach consists in extracting a piece of the
trajectory obtained with the relaxed commands. One first defines two indices
un ∈ [Nc − Nr − Nz, ..., Nc − Nr] and ue = Nc − Nr + 1 to respectively iter-
ate over the null commands and the extended ones. Next, one defines a gain λ to
extract from the extended command the longest piece of trajectory lying within
the tight bounds. It is computed as follows:

λ = max

(
τυ

|υ(ue)|
,

τωr

|ωr(ue)|
,

τωp

|ωp(ue)|

)
(34)

where τυ, τωr , and τωp are the upper boundaries on υ, ωr, and ωp. If υ(ue), ωr(ue)
and ωp(ue) are null or within the tight boundaries, then the index ue is incremented
by one to consider the next extended control inputs. λ being calculated, one obtains
the new commands as follows:

QE(un) = λQ(ue) (35)

Finally, after extracting a new tight command from an extended one, one
updates the extended command to conserve the original trajectory. To do so, one
computes the new state χ̂c(k + un) obtained with QE(un). It is then possible to
compute the equivalent control vector Q̃k+un|k+ue

between this new state and the
end of the trajectory piece obtained with the extended command. This equivalent
control vector is used as the updated extended control input (see figure 4.c).

The use of this method guarantees that the first command is non-null, which
prevents the robot from stopping before reaching the goal. Moreover, the two
steps are repeated to process the whole control sequence. At each new passage the
control sequence is updated by removing its first element from the merging process

18 A. Durand-Petiteville, V. Cadenat

Fig. 4: Example of trajectory refinement. (a) Initial trajectory with Nc = 9 and
Nr = 2. (b) The two first commands are merged, Nm = 2, Ns = 5, and Nz = 1.
The merging command is included as the first element, the five remaining tight
commands are copied and the seventh one is null. (c) The null command is replaced
by a tight one (brown) extracted from the extended one. The extended command is
updated (yellow). (d) Next iteration: the first element is removed from the merging
process. (e) The second element is now the command merging the second and third
commands. A tight command is included in the seventh element to compensate
the merging one and the first extended command is updated. At this point the
trajectory cannot be improved anymore.

(see figure 4.d). Thus, the whole control sequence is improved. Although only the
first command is applied, providing a modified control sequence as initial values
to the next optimization process allows improving the next calculated trajectory.
Finally, it should be noted that even if our two-steps method is applied at each

Advanced Visual Predictive Control Scheme For The Navigation Problem 19

Table 1: Configuration description - TC: terminal constraint - OC: obstacle con-
straint (Number of obstacles) - TR: trajectory refinement

Np Nc Nr TC OC TR

Ω1 15 15 0 No Yes (1) No

Ω2 60 60 0 Yes Yes (1) No

Ω3 15 15 5 Yes Yes (1) No

Ω4 15 15 5 Yes Yes (1) Yes

Ω5 15 15 3 Yes Yes (2) Yes

Ω6 15 15 5 Yes Yes (2) Yes

Ω7 15 15 7 Yes Yes (2) Yes

Ω8 25 25 15 Yes Yes (3) Yes

iteration to the whole control sequence to improve the sub-optimal solution, it
does not always modify it.

5 Results

In this section, we present the results obtained simulating a VPC servoing for a
differential drive robot equipped with a camera. The program was implemented
using the C++ language and the cost function minimization was done with the
SQP solver from the NLopt package [28]. The tests were performed on an Intel
Core i7-10700 running at 2.90Ghz coupled with 16 GB of RAM.

In this work, we consider the depth of the visual features as known, as it would
be the case with a stereo camera like an Intel RealSense4 one. Moreover, at the
first step, the minimization problem is solved with a control vector equal to zero.
For the next navigation steps, it is initialized with the results of the previous
minimization. Finally, the tight boundaries are setup such as 0 ≤ υ ≤ 0.4m/s,
−0.1rad/s ≤ ωr ≤ 0.1rad/s, and −0.1rad/s ≤ ωp ≤ 0.1rad/s, and the extended
ones are ten times larger. In the figures representing the robot driving in the scene,
the robot and the camera are represented in dark blue, the path of the mobile base
by a plain orange line, and the predicted path of the camera by a dashed orange
line. The desired camera pose is symbolized by a red triangle and the landmark is
represented by red points. The obstacles are represented by plain green circles and
the safety boundaries by pointed green circles. In the figures representing the visual
features evolution, blue dots are the values for the initial robot pose, green dots
are the values for current pose, and red dots the values for the last predicted pose.
The dark blue circles represent the area corresponding to the terminal constraints
and their center are the desired visual features values. Finally, plain and dashed
lines correspond to the evolution of past and predicted visual features respectively.

We use eight configurations described in Table 1 to highlight the different ideas
developed in this paper. Each configuration is denoted by Ωi, with i ∈ [1...8], and
is characterized by the prediction horizon Np, the control horizon Nc, the number
of relaxed control inputs Nr, the use of the terminal constraint, the number of

4 https://www.intelrealsense.com/

20 A. Durand-Petiteville, V. Cadenat

obstacles and the use of the introduced refinement trajectory method. The eight
configurations are organized within three different sets. The first one (Ω1, Ω2,
Ω3 and Ω4) allows to illustrate the need of a large prediction to guarantee the
system stability and the improvements offered by the presented solution over the
classical ones. Moreover, configuration (Ω4) is used to provide some insight about
the performances of the proposed VPC scheme and about the way it works. The
second one (Ω5, Ω6 and Ω7) allows to show the performances of the proposed
VPC scheme for different parameters, illustrating their respective effect. Finally,
the third one (Ω8) is used to compare the proposed VPC scheme with a classical
IBVS controller coupled with an obstacle avoidance one [29] in a more challenging
environment.

5.1 Impact of the prediction horizon

In this first set of simulations, one considers the first four configurations described
in table 1. For the four simulations the navigation task is identical: the initial
robot configuration is [xr = 0, yr = 0, θr = 0, θp = 0] and the desired camera pose
is [xc = 2, yc = 0.5, θc = 0]. Moreover, the robot has to avoid one circle-shaped
obstacle positioned at [xo1 = 0.75, yo1 = −0.25], with a radius of ro1 = 0.4 meter
and safety distance δc = 0.1 meter.

For the first one Ω1 (Np = 15 and Nr = 0), the range covered by the prediction
horizon does not allow reaching the desired state from the initial one as it can be
seen in the Cartesian space (Figure 5(a)) or in the image space (Figure 5(b)). With
such a configuration, the stability is not guaranteed and the navigation might fail.
This is what happens in this example where the robot reaches a local minima in
the neighborhood the obstacle while driving towards the goal (Figure 5(c)). Thus,
the VPC scheme fails to make the visual features converge towards the desired
ones (Figure 5(d)).

With the second configuration Ω2 (Np = 60 and Nr = 0), the prediction
horizon is sufficiently large to guarantee the navigation stability when the global
solution of the optimization problem is calculated. However, the complexity of the
optimization problem only allows the use of local solvers. Thus, from the initial
pose, the solver only manages to compute a local optimum which does not respect
the terminal constraint (Figures 5(e) and 5(f)). At each iteration, the solution
optimality improves, and the solver eventually computes a trajectory dealing with
the terminal constraint (Figure 5(h)) and leading to the desired pose (Figure 5(g)).
From now on, the terminal constraint is respected and the VPC scheme allows the
robotic system to reach the goal in the different spaces (Figures 5(i) and 5(j))
despite the computation of a non-optimal solution at each iteration. Using a large
number of prediction steps indeed manages to safely achieve the navigation task.
However, the large value of Np leads to large computational times (see Table 2),
limiting the use of this approach for a real-time application.

The third configuration Ω3 (Np = 15 and Nr = 5) is a first attempt to offer
a large prediction horizon while limiting the number of prediction steps, and thus
the processing time, by including five relaxed control input constraints. Similarly
to the previous example, the prediction range is large enough, and it takes the
local solver a couple of iterations to eventually compute a trajectory reaching the
desired pose (Figure 5(k)) and dealing with the terminal constraint (Figure 5(l)).

Advanced Visual Predictive Control Scheme For The Navigation Problem 21

(a) Ω1 - Initial pose (b) Ω1 - Initial visual
features

(c) Ω1 - Final pose (d) Ω1 - Final visual
features

(e) Ω2 - Initial pose (f) Ω2 - Initial visual
features

(g) Ω2 - Intermediate
pose

(h) Ω2 - Intermediate
visual features

(i) Ω2 - Final pose (j) Ω2 - Final visual
features

(k) Ω3 - Intermediate
pose

(l) Ω3 - Intermediate
visual features

(m) Ω3 - Final pose (n) Ω3 - Final visual
features

(o) Ω4 - Initial pose (p) Ω4 - Initial visual
features

(q) Ω4 - Internediate
pose

(r) Ω4 - Internmedi-
ate visual features

(s) Ω4 - Final pose (t) Ω4 - Final visual
features

Fig. 5: Simulated results for different configurations (1 obstacle)

22 A. Durand-Petiteville, V. Cadenat

Table 2: Processing performances for Ω2 and Ω4

Average Number of Average Average
Optimization Optimization Time Refinement

Time Iterations Per Iteration Time

Ω2 592 ms 51 17 ms /

Ω4 9.5 ms 59 0.17 ms 0.11 ms

But unlike the previous example, the robot stops before reaching the goal, due
to the use of a local solver, and the navigation fails. At the corresponding state,
the non-optimal solution offers a trajectory long enough to reach the desired pose
but mostly relying on the steps with extended constraints. The steps with tight
constraints are under-used, with null or quasi-null values (Figure 5(m)). With such
a trajectory, the first predicted command, i.e., the one actually used to control
the system, is null, the robot stops, and the task fails (Figure 5(n)).

Finally, the example with configuration Ω4 shows the relevance and efficiency
of the proposed approach, i.e., large prediction horizon obtained by composing
with tight and relaxed constraints (Np = 15, Nr = 5) and refinement of trajectory
to improve a sub-optimal solution. First, similarly to the previous examples, the
use of a local solver initially requires few iterations to compute a solution dealing
with the terminal constraint and reaching the desired pose (Figures 5(o), 5(p),
5(q) and 5(r)). Then, once the terminal constraint is respected, i.e., the trajectory
leads to the desired pose, the refinement of the trajectory guarantees that the pre-
dicted steps with tight constraints, and especially the first one, are non-null. With
such a configuration, the VPC scheme thus manages making the visual features
converge towards their reference values (Figure 5(t)), and the camera reaches the
desired pose. This example highlights the necessity to include both the terminal
constraint and the method refining the trajectory in the VPC scheme in order to
guarantee its stability when using relaxed constraints. Finally, the main advantage
of this approach with respect to configuration Ω2 is the significant decrease of the
processing time. As it is shown in Table 2, the average time to solve the optimiza-
tion problem is around 10 ms, i.e., 60 times faster than for configuration Ω2. It
can be seen that the average time to solve one optimization iteration is around 100
times faster than for Ω2 but in this case it is also necessary to take into account the
refinement time which is about 0.11 ms. Finally we can notice that the use of the
relaxed constraints does not make the problem significantly more challenging to
solve. Indeed, the number of iterations required to solve the optimization problem
are similar for both configurations Ω2 and Ω4. Thus, with the proposed approach,
the stability is guaranteed and the processing time is compatible with a real-time
application.

5.2 Close-up on the proposed solution

In this part we provide complementary data regarding the example using con-
figuration Ω4. First, we focus on the terminal constraint value plotted in Figure
6(a). As mentioned in the previous section, the constraint is initially not respected
(positive value) due to the use of a local solver computing a too short trajectory.

Advanced Visual Predictive Control Scheme For The Navigation Problem 23

(a) Terminal constraint (b) Up: cost function value — Down:
Variation of the cost function due to
refinement

(c) System velocities (d) Obstacle constraint - Each curve
represents the distance between the
obstacle and one piece of the pre-
dicted trajectory

Fig. 6: Complementary data for Ω4

However, as it can be seen in the upper part of Figure 6(b), the solver manages
to improve the sub-optimal solution and the cost function value decreases at each
new iteration, leading to trajectories which are longer and closer to the desired
pose. Thus, the solver eventually computes a trajectory respecting the final con-
straint, i.e., the terminal constraint value is equal to zero or negative. In the lower
part of Figure 6(b) it can be seen the evolution of ∆JNp

which corresponds to
the difference between the cost function value obtained by the solver and the new
cost function value after the refinement step. While the predicted trajectory has
to deal with the obstacle, i.e., up to the 25th iteration, the computed trajectory
is modified by the refinement method to avoid the navigation failure seen with
configuration Ω3. This results in an increase of the cost function: ∆JNp

is mostly

negative or null before the 25th iteration. After avoiding the obstacle, the refine-
ment step merges sub-optimal pieces of trajectory and has an opposite impact on
the cost function. Indeed, the cost value decreases: ∆JNp

is positive or null after

the 25th iteration. Thus, we can see that refining the trajectory to guarantee the
success of the navigation task might imply either an increase or a decrease of the
cost function if required.

Finally, in Figures 6(c) and 6(d), the evolution of the system velocities and
of the obstacle constraints are presented. Regarding the control inputs, it can be
noticed that they stay within the tight boundaries despite the use of relaxed bound-

24 A. Durand-Petiteville, V. Cadenat

Table 3: Example of trajectory refinement

Initial sequence After merging First extraction Second extraction

Prediction υ ωr ωp υ ωr ωp υ ωr ωp υ ωr ωp

1 0.002 0.097 0.1 0.002 0.097 0.1 0.002 0.097 0.1 0.002 0.097 0.1

2 0.036 0.1 -0.061 0.036 0.1 -0.061 0.036 0.1 -0.061 0.036 0.1 -0.061

3 0 0.1 0.092 0 0.1 0.092 0 0.1 0.092 0 0.1 0.092

4 0 0.097 0.1 0 0.097 0.1 0 0.097 0.1 0 0.097 0.1

5 0 0.098 0.1 0 0.098 0.1 0 0.098 0.1 0 0.098 0.1

6 0.149 0.099 0.090 0.149 0.099 0.090 0.149 0.099 0.090 0.149 0.099 0.090

7 0.399 0.1 0.098 0.399 0.1 0.098 0.399 0.1 0.098 0.399 0.1 0.098

8 0 -0.094 0.1 0.002 -0.094 -0.097 0.002 -0.094 -0.097 0.002 -0.094 -0.097

9 0 0.1 -0.097 0 0 0 0.007 0.1 -0.079 0.007 0.1 -0.079

10 0.002 -0.1 -0.1 0 0 0 0 0 0 0.007 0.1 -0.078

11 0.078 1 -0.795 0.078 1 -0.795 0.070 0.910 -0.716 0.062 0.821 -0.638

12 0.251 0.523 -0.963 0.251 0.523 -0.963 0.251 0.523 -0.963 0.251 0.523 -0.963

13 3.866 -1 0.997 3.866 -1 0.997 3.866 -1 0.997 3.866 -1 0.997

14 3.990 -0.992 -0.541 3.990 -0.992 -0.541 3.990 -0.992 -0.541 3.990 -0.992 -0.541

15 0 0.028 1 0 0.028 1 0 0.028 1 0 0.028 1

aries to enlarge the prediction horizon. Concerning, the obstacles constraints, they
are respected all along the navigation for each piece of the predicted trajectory.

Finally, we provide an example of a trajectory refinement in Table 3. It presents
the evolution of the calculated 15 steps (the first 10 ones with tight constraints and
the last 5 ones with relaxed constraints) during this particular refinement phase.
The commands computed by the solver are given in the first set of three columns,
while the ones obtained after merging are given in the second set of three. First, the
algorithm detects that the commands highlighted with blue are sufficiently small
to be merged in a unique command. It results in the commands highlighted with
orange, where the one in the 8th line is the result of the merging step and the ones
on the two following ones are substituted with null values. It is then necessary to
extract twice a tight command from the first relaxed one, on the 11th line, in order
to replace the null commands of the 9th and 10th lines. The results are presented
in the last two sets of three columns. First, the commands highlighted with green
correspond to the first extraction with the new non-null tight command on the
9th line and the updated relaxed one on the 11th line. Similarly, the commands
highlighted with red correspond to the new non-null tight command and to the
updated relaxed one. For both extractions, the limiting component was the mobile
base angular velocity. This is why they are equal to the tight bounds while the
other ones, mobile base linear velocity and pan-platform angular velocity, were
scaled accordingly. The sequence of control inputs presented in the last set of
three columns corresponds to the result of the optimality refinement algorithm
and is now the new solution to the optimization problem.

5.3 More advanced examples

One now proposes a set of three simulations exploring different scenarii with the
proposed approach. To do so, the configurations Ω5, Ω6 and Ω7 presented in Table
1 are used. For the three of them, a second circle-shaped obstacle is positioned

Advanced Visual Predictive Control Scheme For The Navigation Problem 25

at [xo2 = 1.5, yo2 = 0.5], with a radius of ro1 = 0.1 meter. Unlike the previous
obstacle, this one cannot be initially detected by the laser rangefinder as one con-
siders its range limited to one meter. Thus, the second obstacle is detected during
the navigation, modifying the optimization problem along the servoing. It thus
allows to propose a simulation closer to a real experiment where the optimization
problem is constantly modified via the updates of the obstacle constraints.

(a) Ω5 - Before detec-
tion of the 2nd obsta-
cle

(b) Ω5 - After detec-
tion of the 2nd obsta-
cle

(c) Ω5 - Final pose (d) Ω5 - Final visual
features

(e) Ω6 - Before detec-
tion of the 2nd obsta-
cle

(f) Ω6 - After detec-
tion of the 2nd obsta-
cle

(g) Ω6 - Final pose (h) Ω6 - Final visual
features

(i) Ω7 - Before detec-
tion of the 2nd obsta-
cle

(j) Ω7 - After detec-
tion of the 2nd obsta-
cle

(k) Ω7 - Final pose (l) Ω7 - Final visual
features

Fig. 7: Simulated results for different configurations (2 obstacles)

The results of the simulation performed with configuration Ω5 (Np = 15,
Nr = 3 and optimality refinement algorithm) are presented in Figures 7(a), 7(b),
7(c) and 7(d). As it is shown in Figure 7(a), the predicted trajectory initially passes
through the second obstacle which has not been detected yet and therefore is not
taken into account in the constraints. As soon as it is detected, the constraints
are modified accordingly and the resulting trajectory avoids the newly discovered
obstacle (Figure 7(b)). The insertion of a new obstacle constraint significantly
modifies the trajectory and the solver does not manage to respect the terminal
constraint. Similarly to the beginning of the servoing, the optimality of the solu-
tion is improved at each new iteration and the terminal constraint is eventually
respected. Thus, the visual features converge towards their reference values 7(d))
and the robot reaches the desired pose (Figure 7(c)).

26 A. Durand-Petiteville, V. Cadenat

The last set of simulations obtained with configurations Ω6 and Ω7 are shown
in Figures 7(e), 7(f), 7(g), 7(h), 7(i), 7(j), 7(k) and 7(l). The configurations are
similar to Ω5 except for the number of relaxed constraints increased to Nr = 5
for Ω6 and to Nr = 7 for Ω7. For the configuration Ω6, the robot trajectory and
the visual features evolution are strongly similar despite a different number of
relaxed constraints. For the configuration Ω7, the robot trajectory is different as
the robot manages to pass between the two obstacles. Indeed, due to the larger
value of Nr, the part of the trajectory made of the relaxed constraints has more
degrees of freedom and is less rigid. Thus, the solver can compute at an early
stage a trajectory passing between the obstacles. Despite these small differences,
this highlights the ease of selection of the number of relaxed constraints. Indeed,
it is sufficient to offer a prediction horizon long enough to guarantee the stability,
while the approach is not over sensitive to the value of Nr.

Finally, in Figure 8, the evolution of the cost function is plotted for configu-
rations Ω5, Ω6 and Ω7. For the three configurations, we notice a raise of the cost
function value when the constraint related to the second obstacle is introduced.
This raise, which is more or less important depending on the considered configu-
ration, prevents the use of the cost function constraint to deal with sub-optimality
as done in [26]. When relying on such a constraint, it is mandatory to be able to
compute a trajectory whom cost is smaller than the one at the previous iteration.
This seems relevant when the optimization problem is constant over the whole ser-
voing. However, as it has been shown with these examples, the approach presented
in this paper is more appropriate when the constraints vary over time, e.g., when
using obstacle constraints.

(a) Ω5 (b) Ω6 (c) Ω7

Fig. 8: Evolution of the cost functions

5.4 Comparison with classical IBVS coupled with obstacle avoidance

To conclude this section, one proposes to compare the results obtained when per-
forming a navigation task with the proposed VPC scheme, with the ones obtained
by coupling a classical IBVS controller [9] with an obstacle avoidance one [30]
(IBVS-OA). With the IBVS-OA approach, the robot is initially controlled relying
a classical IBVS controller. When the robot is too close from an obstacle, i.e., when
the current distance to one obstacle is smaller than a defined threshold d0, one
switches to the obstacle avoidance controller. This latter allows the mobile-base
to follow an envelope at a distance d0 from the contour of the obstacle. During

Advanced Visual Predictive Control Scheme For The Navigation Problem 27

(a) Final pose (b) Final visual features (c) System velocities

Fig. 9: Simulated results obtained (IBVS-OA)

(a) Final pose (b) Final visual features (c) System velocities

Fig. 10: Simulated results obtained (VPC)

the obstacle avoidance phase, the camera is controlled using a modified IBVS con-
troller to keep the landmark in the center of the camera field of view. One switches
back to the IBVS controller when the obstacle is avoided, i.e., when the camera
is aligned with the mobile base (θp = 0). To guarantee the continuity of the con-
trol inputs, one does not switch directly from one controller to the other. One
relies on dynamical sequencing which guarantees that the values of two successive
controllers are identical at the switching time [29]. The parameters to be set in
this approach are the controllers gains (λvs for the visual servoing controller and
λoa for the obstacle avoidance one), the safety distance triggering the obstacle
avoidance (d0) and the time constant of the dynamical sequencing (τ).

The two navigation modes are tested using the following scenario. The initial
robot configuration is [xr = 0, yr = 0, θr = 0, θp = 0] and the desired camera pose
is [xc = 2, yc = 0, θc = 0]. Moreover, the robot has to avoid 3 obstacles: a wall
([xw = 1.25, yw = 0.25], 1 meter of height and 0.4 m of width) and two circle-
shaped obstacles ([xo1 = 1.25, yo1 = −0.75] with a radius of ro1 = 0.1 meter, and
[xo2 = 1.75, yo2 = −0.25] with a radius of ro2 = 0.05 meter). For both modes, one
uses a 0.1 meter safety distance, i.e., δc = 0.1 for VPC and d0 = 0.1 for IBVS-
OA. The VPC scheme is setup with the Ω8 configuration while the IBVS-OA
parameters are λvs = 0.35, λoa = 2 and τ = 2 seconds.

In Figures 9 and 10, the results obtained with both navigation modes are
shown. In both cases the navigation task is accomplished: the visual servoing
is achieved (Figures 9(b) and 10(b)) while collisions are avoided (Figures 9(a)
and 10(a)). However the obtained trajectories are significantly different. With the
IBVS-OA controllers, the robot first moves straight up encountering the wall.
At this instant, it switches to the obstacle avoidance controller which allows to

28 A. Durand-Petiteville, V. Cadenat

follow the envelope defined by d0. Once the obstacle is avoided, it switches back
to the IBVS controller. Once again the robot is too close from an obstacle and the
obstacle avoidance controller is re-activated. Finally, after bypassing the obstacle,
it switches back to the IBVS controller to reach the desired pose. On the other
side, the VPC controller allows to take into account the presence of an obstacle
since the beginning of the navigation. Thus, the robot drives towards the goal
while anticipating the wall and the first round-shaped obstacle. It manages to
pass between these two obstacles while respecting the safety distance constraint.
Finally, it detects the second round-shaped obstacle, avoids it and reaches the
desired pose. Thanks to the predictive nature of the VPC controller, the robot
manages to drive towards the goal and avoid obstacles while traveling a shortest
distance than with the first method: 2.43 meters with VPC versus 2.67 meters
with IBVS-OA. Moreover, it should be noted that with the IBVS-OA mode the
robot is close to crashing the wall and does not manage to properly follow the
envelope around the second round-shaped obstacle. Two solutions could be used
to solve these problems. First, one can increase the safety distance, which triggers
the obstacle avoidance earlier. Thus the robot has more time and space to move
towards the envelope. However, a too large value of d0 would close the gap between
the wall and the bottom obstacle. It would not then be possible for the robot to
drive between the two obstacles. The second solution would consist in increasing
λoa to make the robot converge faster towards the envelope. This solution would
significantly increase the values of the control inputs, and they might overpass
the boundaries tolerated by the robotic system. Thus, one can see that it can
be challenging to adequately setup the parameters of the IBVS-OA while it is
sufficient to provide a long enough prediction horizon for the VPC.

Finally, one focuses on the commands for both modes (Figures 9(c) and 10(c)).
One can notice that the IBVS-OA mode generates peaks for the angular veloci-
ties ωr and ωp. They happen when the robot switches to the obstacle avoidance
controller in order to follow the given envelope. The computed commands can be
outside of the admissible bounds depending on the values of the parameters λoa

and τ . One more time, the setup of the parameters is a key process to achieve the
navigation. On the other side, the command constraint used with a VPC controller
allows to keep the computed commands within the given range of values as seen
in Figure 10(c). This constraint is sufficient and there is no need for extra tuning.

This comparison shows the interest of the VPC approach over the coupling
of an IBVS and obstacle avoidance controllers: the method tuning is easier and
the obtained trajectory is shorter due to the predictive nature of the controller.
However, the VPC approach is more expensive in terms of calculation and might
not be successfully applied if this problem is not properly taken into account.

6 Conclusion

This work has proposed an advanced visual predictive control scheme adapted to
the autonomous navigation problem. Indeed, VPC appears to be an interesting ap-
proach to deal with both local and global aspects of this problem. However, despite
numerous works, it is still difficult to apply this technique to this particular con-
text because of several issues including stability management, high computational
burden, optimization problem non convexity, etc. The proposed VPC scheme ef-

Advanced Visual Predictive Control Scheme For The Navigation Problem 29

ficiently deals with these issues thanks to several contributions: (i) a method for
relaxing the input constraints in order to be able to consider large prediction
horizons, thus guaranteeing stability while reducing the computational burden;
(ii) a two-steps approach based on the equivalent control vectors for refining the
optimized trajectory, thus preventing the robot from stopping and avoiding task
failures. The approach has been deeply tested and evaluated with numerous simu-
lations of navigation among obstacles. It has also been compared to classical VPC
approaches (without input constraints relaxation and trajectory refinement). The
obtained results show that the proposed method solves the optimization problem
60 times faster than these latter, thus outperforming them.

Based on these promising results, future works will extend this approach to take
into account further constraints and to deal with other important navigation issues
such as the visibility of the visual features, the avoidance of dynamical obstacles,
etc. It is also planned to experiment it on our robots. Regarding the optimization
problem itself, it seems interesting to model the navigation as a multi-objective
optimization problem and/or to consider different classes of solvers. By exploring
these methods, we might be able to obtain better results in terms of navigation
and computational performances.

7 Statements

Funding: The authors did not receive support from any organization for the sub-
mitted work.

Conflicts of interest: The authors declare they have no conflict of interest.

Code or data availability: This work does not content any code or data publicly
available.

Authors’ contributions: Conceptualization and Methodology: A. Durand-Petiteville
(ADP) and V. Cadenat (VC); Formal analysis and investigation: ADP; Writing -
original draft preparation: ADP; Writing - review and editing: ADP and VC.

Ethics approval: Not applicable.

Consent to participate: Not applicable.

Consent for publication: Not applicable.

References

1. R. Siegwart and I.R. Nourbakhsh. Introduction to autonomous mobile robots.
A bradford book, Intelligent robotics and autonomous agents series. The MIT
Press, 2004.

2. Javier Minguez, Florant Lamiraux, and Jean-Paul Laumond. Motion planning
and obstacle avoidance. In Springer handbook of robotics, pages 1177–1202.
Springer, 2016.

30 A. Durand-Petiteville, V. Cadenat

3. F. Bonin-Font, F. Ortiz, and G. Oliver. Visual navigation for mobile robots :
a survey. Journal of intelligent and robotic systems, 53(3):263, 2008.

4. Frank Allgower, Rolf Findeisen, Zoltan K Nagy, et al. Nonlinear model predic-
tive control: From theory to application. Journal-Chinese Institute Of Chem-
ical Engineers, 35(3):299–316, 2004.

5. Lars Grüne and Jürgen Pannek. Nonlinear model predictive control. In Non-
linear Model Predictive Control, pages 45–69. Springer, 2017.

6. Tiago P Nascimento, Carlos Eduardo Trabuco Dórea, and Luiz Marcos G
Gonçalves. Nonlinear model predictive control for trajectory tracking of non-
holonomic mobile robots: A modified approach. International Journal of Ad-
vanced Robotic Systems, 15(1):1729881418760461, 2018.

7. Tiago T Ribeiro and André GS Conceição. Nonlinear model predictive visual
path following control to autonomous mobile robots. Journal of Intelligent &
Robotic Systems, 95(2):731–743, 2019.

8. G. Allibert, E. Courtial, and F. Chaumette. Predictive control for constrained
image-based visual servoing. IEEE Trans. on Robotics, 26(5):933–939, October
2010.

9. F. Chaumette and S. Hutchinson. Visual servo control, part 1 : Basic ap-
proaches. Robotics and Automation Mag., 13(4), 2006.

10. A. Assa and F. Janabi-Sharifi. Robust model predictive control for visual
servoing. In 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2715–2720, Sep. 2014.

11. Adrian Burlacu, Cosmin Copot, and Corneliu Lazar. Predictive control ar-
chitecture for real-time image moments based servoing of robot manipulators.
Journal of Intelligent Manufacturing, 25(5):1125–1134, 2014.

12. A. Hajiloo, M. Keshmiri, W. Xie, and T. Wang. Robust online model predictive
control for a constrained image-based visual servoing. IEEE Transactions on
Industrial Electronics, 63(4):2242–2250, April 2016.

13. Antonio Paolillo, Teguh Santoso Lembono, and Sylvain Calinon. A memory
of motion for visual predictive control tasks. In International Conference on
Robotics and Automation, number CONF, 2020.

14. Franco Fusco, Olivier Kermorgant, and Philippe Martinet. Integrating fea-
tures acceleration in visual predictive control. IEEE Robotics and Automation
Letters, 2020.

15. S. Heshmati-alamdari, G. K. Karavas, A. Eqtami, M. Drossakis, and K. J. Kyr-
iakopoulos. Robustness analysis of model predictive control for constrained
image-based visual servoing. In 2014 IEEE Int. Conf. on Robotics and Au-
tomation, pages 4469–4474, May 2014.

16. Aaron Mcfadyen, Peter Corke, and Luis Mejias. Visual predictive control of
spiral motion. IEEE Transactions on Robotics, 30(6):1441–1454, 2014.

17. F. Ke, Z. Li, H. Xiao, and X. Zhang. Visual servoing of constrained mobile
robots based on model predictive control. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 47(7):1428–1438, July 2017.

18. Daewon Lee, Hyon Lim, and H Jin Kim. Obstacle avoidance using image-
based visual servoing integrated with nonlinear model predictive control. In
2011 50th IEEE Conference on Decision and Control and European Control
Conference, pages 5689–5694. IEEE, 2011.

19. David Q Mayne and Hannah Michalska. Receding horizon control of nonlinear
systems. In Proceedings of the 27th IEEE Conference on Decision and Control,

Advanced Visual Predictive Control Scheme For The Navigation Problem 31

pages 464–465. IEEE, 1988.
20. S. S. Keerthi and E. G. Gilbert. Optimal infinite-horizon feedback laws for

a general class of constrained discrete-time systems: Stability and moving-
horizon approximations. Journal of optimization theory and applications,
57(2):265–293, 1988.

21. Hong Chen and Frank Allgöwer. A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability. Automatica, 34(10):1205–
1217, 1998.

22. Adrien Durand-Petiteville. Navigation référencée multi-capteurs d’un robot
mobile en environnement encombré. PhD thesis, Université Paul Sabatier-
Toulouse III, 2012.

23. A. Durand-Petiteville, M. Courdesses, and V. Cadenat. A new predic-
tor/corrector pair to estimate the visual features depth during a vision-based
navigation task in an unknown environment. In 7th International Conference
on Informatics in Control, Automation and Robotics, Funchal, Portugal, June
2010.

24. John Wang and Edwin Olson. Apriltag 2: Efficient and robust fiducial detec-
tion. In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4193–4198. IEEE, 2016.

25. D. Folio and V. Cadenat. Treating Image Loss by using the Vision/Motion
Link: A Generic Framework, chapter 4. IN-TECH, 2008.

26. Pierre OM Scokaert, David Q Mayne, and James B Rawlings. Suboptimal
model predictive control (feasibility implies stability). IEEE Transactions on
Automatic Control, 44(3):648–654, 1999.

27. B. Djeridane. Sur la commandabilité des systèmes non linéaires à temps dis-
cret. PhD thesis, Université Paul Sabatier, 2004.

28. Steven G. Johnson. The nlopt nonlinear-optimization package, 2020.
29. V. Cadenat, D. Folio, and A. Durand-Petiteville. A comparison of two se-

quencing techniques to perform a vision-based navigation task in a cluttered
environment. Advanced Robotics, 2012.

30. P. Souères, T. Hamel, and V. Cadenat. A path following controller for wheeled
robots wich allows to avoid obstacles during the transition phase. In IEEE,
Int. Conf. on Robotics and Automation, Leuven, Belgium, May 1998.

	Introduction
	Preliminaries
	Visual Predictive Control
	Refinement of the Sub-Optimal Solution
	Results
	Conclusion
	Statements

