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Understanding the mechanisms underlying cell-surface interaction is of fundamental importance for the rational de-

sign of scaffolds aiming at tissue engineering, tissue repair and neural regeneration applications. Here, we examined 

patterns of neuroblastoma cells cultured in three-dimensional polymeric scaffolds obtained by two-photon lithogra-

phy. Because of the intrinsic resolution of the technique, the micrometric cylinders composing the scaffold have a 

lateral step size of        , a surface roughness of around      , and large values of fractal dimension approach-

ing    . We found that cells in the scaffold assemble into separate groups with many elements per group. After cell 

wiring, we found that resulting networks exhibit high clustering, small path lengths, and small world characteristics. 

These values of the topological characteristics of the network can potentially enhance the quality, quantity and den-

sity of information transported in the network compared to equivalent random graphs of the same size. This is one of 

the first direct observations of cells developing into    small world networks in an artificial matrix. 

 

Keywords: small world networks, 3D networks, neuro regeneration, tissue engineering, two 

photon lithography, biomaterials 



 

1. Background 

In tissues and organs, and especially the brain, the interaction between a large number of cells 

determines the emergence of functions that are not explicable in terms of individual cells taken 

individually 
1-9

. In similar systems, organization, communication, and cooperation between ele-

ments are decisive for the correct functioning and optimal performance of the systems them-

selves. Network theory is a practical way to examine biological systems on a quantitative basis 

10-14
. Networks are groups of nodes (or vertices) and edges (or links) that connect those nodes – 

in which the nodes represent the elements of the systems and the edges the interactions between 

them 
15-18

. Networks can be described through three sole parameters. The degree of a network   

is the average number of links per node. The local clustering coefficient     of a node is the pro-

portion of active established links to the number of possible connections in the neighborhood of 

that node (the global clustering coefficient    is determined by averaging     over the nodes of 

the network). The characteristic path length     is the average number of steps that separate two 

nodes randomly chosen in the grid 
15-18

. Among the great variety of network categories with dif-

ferent features, small world networks have recently attracted attention because it is believed that 

networks with small world attributes can transmit signals (or instructions) more efficiently than 

periodic or unstructured graphs of the same size 
19-23

. For the same reason, a system with a small 

world architecture can divide tasks between its components, coordinate activities, and optimize 

processes more efficiently than ordinary systems without structure. In a small world network, the 

distance (i.e.    ) between the elements of the network raises less rapidly than its size ( ), such 

that           : this indirectly implies that – typically – nodes of the network form few, highly 

connected clusters, with short paths between them 
19-23

. In such context, materials science com-

bined with nanofabrication methods provide ways to drive the organization of living cells into 

artificial structures engineered according to a desired design. In previous works, some of the au-

thors of this paper have shown that cells, cultured on nano-patterned surfaces, evolve to form 

networks with small world characteristics, where the nano-scale roughness of the substrate repre-

sents the external factor that forces the cells to collapse into energetically favorable configura-

tions
7
. A similar behavior has been observed for neuroblastoma cells on mesoporous silicon sub-

strates 
24

, as wells as for neuronal cells on rough silicon substrates 
7
 and arrays of zinc oxide 

nanowires 
25

. Nonetheless, these results are limited to bi-dimensional geometries. 



Here, we examined the topology of    networks of neuroblastoma cells cultured in polymeric 

scaffolds fabricated by two-photon lithography, focusing on the data reported in reference 
26

. 

Due to the fabrication process characteristics, the scaffold presents topography details over mul-

tiple scales: the micrometer-scaled cylinders of the scaffold have been patterned with a lateral 

step size of         that, in turn, results in a surface roughness of       . Upon networks 

analysis, we found that cells form small world networks, with higher clustering and smaller paths 

than in equivalent random graphs with the same size: the hierarchical structure of the scaffold 

being the possible cause of cell response. This is one of the first direct observations of cells de-

veloping into    small world networks in an artificial matrix. 

This study was not focused on optimizing performance nor examining in detail all the possible 

combinations of geometrical characteristics of the scaffold, mechanical properties, surface func-

tionalization, cell lines characteristics, that may affect cell behavior. The main objective of this 

preliminary study was to demonstrate the feasibility of using network analysis and the small-

world-network model to describe the spatial organization of mammalian cells in 3D architec-

tures. Data presented in the paper and analysis thereof represent a preliminary reference for fu-

ture studies. More sophisticated test campaigns that will be performed over time will verify the 

combined effect of geometry, nano-topography, mechanical properties of the scaffold on the col-

lective behavior and self-assembly of primary hippocampal neurons, that are more representative 

of the central nervous systems. 

 

2. Results 

2.1 Three-dimensional polymeric scaffolds. The scaffolds where cells were seeded is an or-

dered network of polymeric cylinders (Figure 1a), with a diameter        , and a spacing 

between structures of          and          in the vertical and horizontal direction, re-

spectively (Figure 1b). The entire scaffold is embedded within a cube with edge length of 

        . While the overall volume of the scaffold is such to contain a sufficiently high num-

ber of cells, the openings within the scaffold enable cells to develop without geometrical con-

straints. SEM inspection of the scaffold reveals that, due to the fabrication process resolution 

(methods), the final structures are discretized into smaller blocks with a lateral step size of 

         (Figure 1c). 2D photo polymerization of structures with similar values of lateral step 

size results, generally, in a surface roughness that is not zero. The surface roughness    can be 



estimated by previous works
27

, where    has determined as a function of the lateral step size of 

three dimensional polymerized structures. For the present configuration    is estimated as 

        27
. Structures in the scaffold have therefore a multiscale roughness and details orga-

nized in a hierarchical architecture, from the micro scale level (cylinder size) to the high (lateral 

step size) and low (surface roughness) nano meter range. We have generated in Figure 1d the 

surface state of a cylinder with a similar structure and, by Fourier analysis of the surface topog-

raphy
28

, we have derived the Power Spectrum (PS) density function of the scaffold (Figure 1e). 

The PS describes how the information content of an image ( ) varies as a function of its spatial 

frequency ( ) – it reports a change of density (of information) as a change of scale. Therefore, 

the slope   of a PS can be correlated to the fractal dimension    of a structure as
28

    

       . For the present configuration, it results       . Moderate values of surface rough-

ness (        ) and high values of fractal dimension (      ) are agents that may force cells 

to cluster into few groups, with many elements per group, as previously reported for 2D geome-

tries
7,24,25

. 

As regarding the mechanical features of the scaffold: the hierarchical structure was fabricated 

from liquid polymer, i.e. the negative photoresist IP-Dip. Nanomechanical characterization of IP-

Dip
29

 yielded for this material the following values of average Young’s modulus          

         and an average yield strength under compressive loads                    . Nev-

ertheless, experimental measurements of the effective Young modulus   eff of periodic lattices 

governed by bending effects was found to scale as          
 , where    is the bulk Young 

modulus of the constitutive material (IP-Dip),   the relative density of the scaffold
30

. Our scaf-

fold exhibits a relative density close to    . This gives an effective young modulus of the pro-

duced scaffold          . N2A cells thus contact a stiff material (IP-Dip) of young modulus 

in the GPa range, but they are embedded inside a deformable scaffold of effective stiffness 

around       . Remarkably, the stiffness found for IP-Dip is, even considering the reduction in 

the strength of   due to the lattice geometry,     times larger than the average Young’s modu-

lus of PDMS (               ), that has been used in previously reported experiments
31

 to 

determine the average traction forces exerted by differentiated Madin-Darby canine kidney 

(MDCK) epithelial cells on a substrate, being approximately           . This, in turn, implies 

that the deformation of the scaffold caused by N2A cells is – for this configuration – negligible, 



and the behavior of cells and the characteristics of the networks that they form can be ascribed to 

geometry solely. 

2.2 Cell distribution. Neuroblastoma N2A cells were seeded in the scaffolds using the protocols 

described in the Methods. Then, cells were imaged   days after seeding using light sheet micros-

copy and two photon confocal microscopy as described in reference 
26

. N2A cells were not dif-

ferentiated – i.e. no differentiation medium or methods were employed at any point of study. 

Light sheet microscopy enables qualitative analysis of the cells (Figure 2a), that appear uneven-

ly distributed within the entire volume of the scaffold (here represented as a cube with an edge of 

        ). SEM analysis reveals that cells preferentially align along the nanometric grooves of 

the scaffold (Figure 2b), that therefore exert significant influence over the cell behavior. Surface 

roughness of the scaffold, organized over different dimensional scales, seem to cause cells to 

precipitate into aggregates (Figure 2c). Two photon confocal microscopy was employed to ob-

tain quantitative localization of individual cells within the scaffold. The total number of cells in 

the volume of interest is      . Using a    scatter plot representation of the cells (Figure 

3a), with the   axis aligned along the vertical edge of the scaffold, one can observe that cells are 

preferentially distributed around the upper (high    ) and lower (small    ) parts of the scaffold 

(Figure 3 b-c), and generally along its perimeter (Figure 3d). This is also evidenced by rotating 

clockwise the scatter plot of cells through successive angles   around the   axis, with   

      (Supporting Information Figure 1.1), that provides complete vision of the cell distri-

bution within the three-dimensional volume. We then projected the positions of the center of the 

cells, initially distributed over the entire volume of the scaffold, on the three orthogonal planes 

  ,   ,   . This enabled to derive the quantitative profile of cell distribution in the plane that 

were in turn projected along the edges of the cube to obtain the frequency distributions   along 

the  ,   and   directions (Figure 4). From the distributions, one can notice that   is non uniform 

over the planes of projection and along the principal directions of the scaffold, with the number 

of cells per line micrometer varying between a minimum of                 and a maximum of 

               , with a more than six times increase. Notice that the integral of the     over the 

edge of the cube is    , i.e. the number of cells contained in the scaffold. 

2.3 Cluster analysis of cells. We performed unsupervised cluster analysis of cells to examine 

whether a non-uniform cell distribution results in the emergence of separate groups in the scaf-

fold. We used a density based clustering algorithm, originally developed by Rodriguez and Laio 



in     32
, to determine cluster centers as those cells in the set with higher density than their 

neighbors and by a relatively large distance from cells with higher densities (methods). From the 

analysis (Figure 5a) it results that there are at least   separate cluster centers in the original set, 

as reported in Figure 5b. The remaining cells are then assigned to specific clusters on the basis 

of their Euclidian distance to the clusters. In Figure 5c cells are colored according to the cluster 

to which they are assigned. The discovery of a finite number of sub-groups in the cell distribu-

tion suggests that cells can form networks with high clustering and short paths. 

2.4 Network analysis of cells. The two-photon confocal imaging technique used in reference 
26

 

enabled to determine the position of the cells in the scaffold but not their connections. We used 

the Waxman algorithm
33

 to create, artificially, the topological networks associated to the coordi-

nates of neuroblastoma cells in the space. The Waxman algorithm makes a decision on whether 

couples of cells are connected or not, based on their distance. It states that the probability   of 

two nodes (   ) of being connected is: 

                    (1) 

where        is the Euclidean distance between   and  ,   is the maximum distance between 

pairs of nodes, and   and   are parameters of the model that are here set as    ,   0.1 

(Supporting Information 2). Thus, the larger the distance between two cells, the smaller  . By 

comparing   to an arbitrary threshold probability      , one can decide if nodes establish a 

connection (   ) or not (   ). We used different values of   and   (             

        ) to construct the topological graphs associated to the real biological prototype (Fig-

ure 6). The larger   (the smaller  ) the denser the graphs, in the limiting case     nodes of the 

graph establish all possible connections between them, producing a complete graph (at the oppo-

site extreme,    , the graph is null, with no connections between nodes). 

We then computed the graphs parameters using the algorithms reported in reference 
7
 and the 

methods. For specific values of   (Figure 7a) we determined the degree of the graph  , the clus-

tering coefficient   , the characteristic path length    , the small world coefficient    (Figure 

7b-e). The graph parameters exhibit a very high sensitivity to  . The degree of the network   

varies between     for       and      for        (Figure 7b). The degree of a network 

represents the average number of connections per node, i.e. the number of synapses per neuron in 

a biological interpretation of the results. 



Even if N2A cells cannot differentiate into fully functional neurons, still they can develop multi-

ple neuritic connections per single cell, although rarely more than  , and each connection can 

develop sub-branches which may or may not link with other cells. In previous experimental re-

ports, it has been observed that the number of neuritic extensions per N2A cell varies from ap-

proximately     for un-patterned     
34

, to around   for free-standing PEGDA hydrogel archi-

tectures
35

, to     for surfaces patterned with arrays of carbon nanotubes
34

. Numbers of neuritic 

extension/cell greater than   are observed with lower probability values. 

On modulating   between the considered interval, resulting values of   oscillate around the char-

acteristic value    , stretching below and above it. This choice of     is thus founded on a bio-

logical basis. The maximum theoretical value of     , while significantly larger than the max-

imum determined number of neuritic extension per cell,   , still is sufficiently large to cover 

possible cases in which, owing to specific conditions and geometries, the number of neuritic ex-

tensions that cells develop rises above the limits heretofore registered. 

Best fit of data and graphical representation of      indicate that   is a cubic function of  : 

                             , perhaps indicating the fact that the network is im-

mersed in a    space and, for a variation in   (i.e. the probability of connectivity), the nodes of 

the systems tend to create new connections along 3 independent directions. We calculate a r-

squared statistic    to test whether the data in several different bands are consistent with the 

matching template. Values of    near unity and of estimated variance    near zero indicate that 

the signal is consistent with the model (        ,        ). 

Differently from  , and with the exception of the first (     ) and last (      ) values of  , 

the clustering coefficient shows a low sensitivity to  , with values of    oscillating around the 

average (       ), and in any case greater than         (Figure 7c). Recalling that the cluster-

ing coefficient varies between   and  , in the considered range of    , the cells of the network 

exhibit a very high inclination to cluster together. Vice versa, in the same domain of variation for 

 , the characteristic path length     of the network is generally low, the number of steps separat-

ing two nodes of the graph being smaller than     for each considered configuration (Figure 7d). 

Combined together, the clustering coefficient    and the characteristic path length     enable to 

determine the small-world coefficient of a graph. We used the topological measure small-world-

ness   , defined in reference 
36

 and the methods to examine whether cultured cell graphs exhibit 

small world attributes. Calculated values of    range between      and        for   



    , while         for        (Figure 7e). For the large majority of the considered possi-

ble values of   the graphs surpass the small-worldness test (   values are greater than one) and, 

analyzing their degree distribution, for large   the probability of finding a highly connected ver-

tex decreases exponentially with   (power-lawness test was negative – Supporting Information 

3), therefore we are confident to claim that these networks obey a small-world configuration
37

. 

 

3. Discussion 

The central and peripheral nervous system could be seen as a very large array of computational 

units linked together in a structure with some degree of order. The organization of the brain af-

fects, in turn its efficiency, and its ability to performing tasks – such as image and speech recog-

nition, object classification, unstructured problem-solving – that are inherently difficult in con-

ventional Von Neumann architectures, on which much of modern computers are based. In Von 

Neumann architectures, a core logic operates sequentially on data fetched from memory. In con-

trast, biological computing distributes both computation and memory among an enormous num-

ber of relatively simple neurons, each communicating with hundreds or thousands of other neu-

rons through synapses. The spatial distribution of neurons over hierarchal scales is the factor that 

may possibly explain the enhanced computational power, increased versatility, and reduced low 

energy consumption of neuromorphic systems compared to the von Neumann chips. Many scien-

tists are skeptical about the idea of the brain as a computer, representing an oversimplification of 

an intrinsically irreducible problem. The cognitive processes underpinning human language and 

consciousness, intuition and creativity, are perhaps excessively complex to be decomposed into a 

sequence of more fundamental instructions, or a list of causes and effects. Nevertheless, this 

view is of some utility if one wants to analyze the nervous system mathematically, and translate 

problems of the neuroscience into tractable mathematical formulations, which may provide in-

sight into the originating application. In representing the brain as a network of logic gates (the 

neurons), one can study the nervous systems, or some of its parts, using the methods and the var-

iables typical of topological theories and the theory of information, including the clustering coef-

ficient, the characteristic path length, the small world coefficient, and the Shannon information 

entropy
21,38,39

. 



Results of the paper indicate that N2A nerve cells in 3D geometries evolve to form networks 

with small world characteristics. In other words, in a cascade of biological processes, including 

adhesion and migration, cells transit from an initial, random, configuration to a structure with a 

strong correlation between its internal parts. The high values (    ) of the small world coef-

ficient being indicative of such a correlation. Thus, evolution shapes an ensemble of relatively 

simple elements into a structure that (because of specific topologies) can more efficiently and 

more rapidly elaborate and transmit information: that is the own function of the brain. While 

nerve cells are genetically programmed to form similar information-efficient structures, still they 

may be restricted to do this, unless they are not fueled by a proper external force. In artificial 

scaffolds that support cell growth and proliferation, this force is generated by the surface rough-

ness, organized on hierarchical levels, that at the single cell level is in the order of some tens of 

nanometers – similarly to what precedently observed for bi-dimensional geometries 
7,24,25

. Multi 

scale nano-topography is the endogenous factor that sets off cell condensation. Understanding 

how surface topography, cell network topology and information are interconnected, is of funda-

mental importance in the design of scaffolds for neuronal tissue engineering and neuro-

regenerative medicine, where the ultimate goal is replacing, engineering or regenerating nerve 

cells to restore the normal functions of the cells themselves, i.e. elaborate information. 

The networks that we analyzed are the results of a numerical rewiring of the positions of cells 

tracked with two photon confocal microscopy techniques. They are not a representation of a real 

neuronal network, but are partly based on an estimate on how N2A cells may form connections if 

placed on specific points of the scaffold determined by experiments. The Waxman algorithm that 

we used to model cell connections is based on the assumption that the strength of a connection 

decays exponentially with cell-cell distance, that is a reasonable hypothesis validated by inde-

pendent observations
38,40

, and on three model parameters, i.e.  ,  ,  . The choice that we made 

on  ,  ,   was not arbitrary:   and   were chosen to maximize the sensitivity of the probability 

of connection to the cell-cell distance, while   was tuned to modulate the average number of 

connections per node in the resulting networks. In the array of different configurations that we 

obtained by changing  , the number of connections per node varies from     to     . Calcu-

lated values of    are greater than one for each of the configurations in this interval, indicating 

that results presented in the paper are general in nature and robust to a change in the model pa-

rameters. Values of   outside this interval were not considered (i) either because resulting net-



works are excessively sparse (   ) or (ii) because   would is excessively higher the number of 

connections-per-cell normally found in N2A systems, that is around     (    ). The 

neuroblastoma N2A cells model that we used in this study is a simplified version of primary neu-

ronal cultures. Compared to these, N2A cells do not form as many neuritic extensions and cannot 

generate mature neurites. Nevertheless, among the characteristics found in N2A there are: the 

expression of neuro-filaments, the synthesis of neurotransmitter biosynthetic enzymes, differen-

tiation, the elaboration of neuritic processes that are ultra-structurally and electro-physiologically 

similar to normal neurons
41

. The evolution and development of N2A cells in a conditioned sys-

tem can therefore approximate and reflect some of the most salient features and biologically rel-

evant aspects of primary neurons in the same system. Results of this simplified experimental 

model, while they represent a preliminary reference for the study of the organization of neuronal 

cells in three dimensional architectures, have to be investigated even further with additional ex-

periments with primary neuronal cells and tissues in even more complex geometries. Some of 

these experiments may involve the reconstruction of the real connections formed in groups of 

neurons with techniques as those described, for example, in references
42,43

, to achieve maximum 

adherence of the model to the real physical prototype. 

In more sophisticated experiments that will be performed over time, we will assess cell connec-

tivity in networks of primary neuronal cells, and will verify to which extent the small-world-

network analogy is relevant in systems of neurons developing multiple, free standing neuritic 

connections, in rigid as well as in soft materials, where the contribution of scaffold deformations 

cannot be neglected
35

. 

Similarly, we will design an experimental campaign to verify the effects of drugs (chemothera-

peutic agents or other therapeutic agents) on the 3D/spatial organization of N2A cells, neuronal 

cells, or other cell lines. We will verify whether and to which extent the delivery of therapeutics 

and the nano-topography on the scaffold surface combine to facilitate or prevent cell adhesion, 

proliferation, and networking. More importantly than this: we will examine whether the physio-

logical/pathological conditions of cell and of a system of cells may be reflected by the topologi-

cal parameters of that system. May the clustering coefficient, the characteristic path length, and a 

combination of these, quantitatively reflect the health status of systems of cells, i.e. organs, tis-

sues, organoids? 



Lastly, since the role of the glial cells cannot be neglected (using recently validated isotropic 

fractionator, it has been observed that in the brain the glia:neuron ratio is about    , with a total 

number of less than     billion glial cells in the human brain
44

), we will design experiments to 

examine whether co-cultures of neurons/glial cells may affect cell networking. 

 

4. Conclusions 

Results of the paper indicate that cells in 3D scaffolds form non-homogeneous, non-uniform sys-

tems, with cells forming few groups with a great many of elements per group. Cells used in this 

study are neuroblastoma N2A cells. While they share most of the characteristics of primary neu-

ronal cells (cfr. the Discussion of the paper) and give a preliminary indication of the evolution of 

a system of nerve cells under the influence of surface nano-topography, nonetheless additional 

experiments with primary neurons are needed to examine the phenomenon on a more rigorous 

basis. The small-world-network model implemented in the paper describes convincingly the to-

pology of the clusters of cells in the scaffold. Since small-world networks are theoretically be-

lieved to receive, elaborate, and transmit information (i.e. signals) more efficiently than equiva-

lent random or periodic networks of the same size, this also suggests that the main drivers for 

nerve cell condensation are energy minimization and information maximization, these two crite-

ria being perhaps equivalent. That is to say – biological systems of cells are shaped by evolution 

to keep the energy of the system at a minimum and, simultaneously, the information exchanged 

in the system at a maximum. Optimization of these cost functions would, to cite a few, explain 

the low energy consumption of the brain and the formation in the cerebral cortex of structures 

with a finite size like the cortical mini-columns, that are the basic computational units of the 

brain. The nano-topographical details that decorate the surface are the factors that trigger cell 

condensation in artificial scaffolds. Understanding the role of cell topology and surface nano-

topography on the organization of nerve cells into complex structure may help to design strate-

gies for tissue engineering, nerve repair, neuronal regeneration, faster and more efficiently. 

 

5. Methods 



5.1 Fabrication of the polymeric scaffolds. Briefly, the 3D scaffolds were fabricated by ex-

ploiting a two-photon direct laser writing approach where the slicing (minimal distance between 

two adjacent planes) and hatching (lateral distance of two adjacent lines within a layer) distances 

were set at     and       , respectively. Further details of the fabrication configuration can be 

found elsewhere
26

. 

5.2 SEM imaging images of the samples. SEM imaging was performed on the samples (metal-

coated with       of sputtered gold) by using a Hitachi S-4800 microscope with an acceleration 

voltage ranging from     to      . 

5.3 Culturing mouse neuroblastoma N2A cells in the scaffold. Prior to cell culture, the 3D 

scaffold was first sterilized for     under UV (      ), then coated with       poly-l-lysine 

(Sigma-Aldrich), to favor the electrostatic interactions between the negatively charged ions of 

the cellular membrane and the employed polymer, washed twice with sterile water and dried for 

   . Then, laminin (a protein of the extracellular matrix, involved as well in the mechanisms of 

cell adhesion) solution (        , Invitrogen) was applied for    . The fast-growing mouse 

neuroblastoma cell line, N2A, was obtained from the American type culture collection. Dulbec-

co’s modified Eagle’s medium (DMEM) containing glutamax, pyruvate (Dubco, Invitrogen) and 

    fetal bovine serum was used for the N2A cells.         cells/    were inoculated onto 

the scaffold and left in culture for   days in vitro. Cells were incubated in an atmosphere contain-

ing        at      . 

5.4 Two-photon confocal imaging of cells in the scaffolds. The two-photon confocal imaging 

experiments were performed using an AxioImager upright microscope LSM 7MP (Carl Zeiss). 

Z-stack acquisitions were performed with a     W-Plan Apochromat water immersion objec-

tive with     N.A., with the laser excitation wavelength tuned to       , giving a resolution on 

the x/y-axis of        and on the z-axis of       . Further details of the imaging configuration 

can be found elsewhere
26

. 

5.5 Cluster analysis. Cluster centers were determined using a density based clustering algorithm 

reported in reference
32

. The algorithm determines the number of groups into which the elements 

of the set are partitioned, and assigns each element to a group. The algorithm classifies elements 

into categories on the basis of their similarity. Cluster centers are determined as those points in 



the set with higher density than their neighbors and by a relatively large distance from points 

with higher densities. For each cell   in the original distribution, the algorithm: 

(i) Determines the density of  ,     , as the number of points that falls within a cut off dis-

tance     from  , divided by the total number of points in the set. 

(ii) Finds the subset       of points in the dataset with densities          . 

(iii) Finds the point       with minimum distance to  , this distance is          : the minimum 

distance of   from points with higher densities than  . 

(iv) Derives a diagram where the density   is reported against        per each element in the 

data set. Points in the set with higher density than their neighbors and by a relatively large 

distance from points with higher densities emerge as singularities in the diagram, an exam-

ple of which is reported in Figure 4. These points are the cluster centers. 

(v) Assigns each point in the set to different clusters on the basis a minimum distance criteri-

on: a point   is assigned to a cluster    if the minimum distance of   to    is the smaller 

among all the minimum distances calculated with the remaining clusters. Thus clusters are 

constructed per accumulation. The cluster centers represent the seeds of the clusters. In 

Figure 4, points are colored according to the cluster of group to which they are assigned. 

5.6 Wiring cells to form networks: the Waxman algorithm adapted to    spaces. In order to 

establish the nodes connections, we first need to derive the distance between the nodes. Being 

each node in the network described by three coordinates        , the distance matrix d is ob-

tained calculating the Euclidean distance between each node pair in the 3D space. If there are   

elements in the network, the distance matrix is a symmetric two-dimensional array having size 

   . No matter how many dimensions we have in a Euclidean space, once derived the distance 

matrix, the calculation of the nodes connections is the same of the case of the 2D spaces. The 

Waxman model
33

 is used to establish the connections between the nodes, whereby the probability 

of being a link between two nodes exponentially decreases with the Euclidean distance d be-

tween those nodes. For a given set of two nodes u and v, the link probability,        is defined 

as: 

                    (2) 



where   is the largest possible Euclidean distance between two nodes of the grid. In the equation, 

  and   are the Waxman model parameters and, upon tuning these, the graph may be more or 

less dense.   and   should be chosen between   and  . Selecting smaller values of these parame-

ters results in a smaller number of links. For the present configuration, these parameters were set 

to     and      . The probability P varies between   for a pair of nodes with an ideally in-

finite distance, and   for a pair of nodes with an ideally zero distance. The information about the 

connections among the nodes in a graph is contained in the adjacency matrix      , where the 

indices   and   run through the number of nodes   in the graph;      , if there exists a connec-

tion between   and  ,       otherwise. In the analysis, reciprocity between nodes is assumed, 

and thus if information can flow from   to  , it can reversely flow from   to    In the framework of 

graph theory, we call a similar network an undirected graph. Notice that this property translates 

into symmetry of   being         . We showed above how to derive the distances between 

nodes     in the networks. On the basis of  , we may decide whether a pair of nodes is connect-

ed, we use at this end the formula: 

               (3) 

in which   is a constant that we have chosen being between         that the probability of be-

ing a connection is              . 

5.7 Network analysis of    graphs. We quantified some network parameters including the 

clustering coefficient,the characteristic path length and the small-world-ness. In graph theory, 

the clustering coefficient (  ) is a measure of the degree to which nodes in a graph tend to cluster 

together.    ranges from   (none of the possible connections among the nodes are realized) to   

(all possible connections are realized and nodes group together to form a single aggregate). The 

clustering coefficient is defined as 

   
   

      
 (4) 

where   is the number of neighbors of a generic node  ,    is the number of existing connections 

between those,           being the maximum number of connections, or combinations, that 

can exist among k nodes. Notice that the clustering coefficient    is defined locally, and a global 

value,   , is derived upon averaging     over all the nodes that compose the graph. The character-



istic path length       is defined as the average number of steps along the shortest paths for all 

possible pairs of network nodes. We shall call the minimum distance between a generic couple of 

nodes the shortest path length        which is expressed as an integer number of steps. With the-

se premises, we show now how to calculate the     for a couple of nodes    and   . In  ,      

and      account for all the pairs of nodes which are connected to    and    respectively. The 

sum of      and      over all the nodes in  , is stored in a new matrix              for all the   

and   and    has the same dimension of A. Now multiplicate    and   repeatedly        , 

until all the terms of    are non-zero and those terms in position    will be the     between node 

  and node  . Finally, the characteristic path length     is calculated like the average of     over 

  . Once obtained the    and     values, we defined a precise measure of ‘small-world-ness’, 

the ‘small-world-ness’ coefficient (  ), based on the trade off between high local clustering and 

short path length. A network   with   nodes and   edges is a small-world network if it has a 

similar path length but greater clustering of nodes than an equivalent Erdos-Rényi (E–R) random 

graph with the same   and   (an E–R graph is constructed by uniquely assigning each edge to a 

node pair with uniform probability)
13,22

. Let      and     be the mean shortest path length and 

the mean clustering coefficient for the E–R random graphs, obtained meaning the     and the    

of    uniform distributions, and          and         the corresponding quantities for the 

graphs derived using the methods described above. We can calculate: 

  
       

   
 

(5) 

  
        

    
 

Thus, the 'small-worl-dness’ coefficient is 

   
 

 
 

(6) 

The categorical definition of small-world network above implies    ,     which, in turn, 

gives     . 
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Figure Captions 

Figure 1. The scaffold for cell culture growth and organization is a    network of regularly 

spaced polymeric cylinders (a), where the size and spacing of the cylinders is in the micro-meter 

range (b). Due to the fabrication process characteristics, the final structures are discretized into 

blocks with a lateral step size of        (c). The surface roughness resulting from a similar step 

size is approximately       – we have recreated the surface topography of the scaffold cylinder 

with a similar value of surface roughness (d). The power spectrum associated to the structures 

can be used the derive the fractal dimension of the scaffold -       . High value of    reveals 

that the final prototype has details over multiple scales (e). 

Figure 2. Light sheet microscopy enables to derive qualitative representation of cell distribution 

in the scaffold (a). Scanning electron microscopy of the cells suggest that their behavior and or-

ganization is guided by the nanometric details on the surface of the scaffolds (b, c). 

Figure 3. Two photon microscopy was employed for precise, quantitative localization of cells 

within the volume of the scaffold (a). Front (a), side (b) and top (c) views of the scatter plot of 

the cells reveal that cells are unevenly distributed in the scaffold. 

Figure 4. From the position of the cells within the volume of the scaffold (i.e. a cube), we de-

rived the density distribution of cells projected onto either the lateral surfaces and the edges of 

the cube. Variations of the values of frequency are indicative of the non-uniformity of cells with-

in the scaffold. Values of local density vary up to three times within the considered volume. 

Figure 5. Unsupervised cluster analysis of cells (a) enabled to estimate the cluster centers in the 

originating distribution of cells (b) and attribute cells to specific clusters (c). Cluster centers are 

highlighted in the original distribution of cells. 

Figure 6. To determine the topological parameters of cell distributions, cells were wired using 

the Waxman algorithm, using different probabilities of wiring. 

Figure 7. After cell wiring (a) we determined the topological parameters of the networks as a 

function of the connectivity  . The degree of the network increases with the cubic power of   

(b). Values of the clustering coefficient,   , (c) and the characteristic path length,    , (d) are 

above 0.7 (  ) and below 3.5 (   ) for large intervals of  . The small world coefficient is greater 

than one for any      , indicating that cell networks exhibit small world characteristics (e). 
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