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Abstract: In this paper, a neural network approach is applied for solving an electromagnetic inverse problem 

involving solid dielectric materials subjected to shock impacts and interrogated by a millimeter wave 

interferometer. Under mechanical impact, a shock wave is generated in the material and modifies the refractive 

index. It has been recently demonstrated that the shock wavefront velocity and the particle velocity as well as the 

modified index in a shocked material can be remotely derived from measuring two characteristic Doppler 

frequencies in the waveform delivered by a millimeter-wave interferometer. We show here that a more accurate 

estimation of the shock wavefront and particle velocities can be obtained from training an appropriate 

convolutional neural network, especially in the important case of short-duration waveforms of few micro-seconds.  

Keywords: convolutional neural network, shock properties, mm-wave interferometry, metrology, shock velocity, 

particle velocity, shock permittivity. 

 

1. Introduction 

The physical understanding and modelling of the shock wave propagation in solids has many 

applications in defense, aeronautics, space and civil areas. In order to simulate the behavior of solids 

subjected to an impact, it is mandatory to know the mechanical and thermodynamic properties of the 

pristine and shocked materials. According to the well-documented theory (see, e.g., [1]), the shock wave 

in a dielectric material acts as a moving dielectric interface (or boundary) that propagates faster than 

the sound in the shocked solid. In the region behind this interface, called the shocked medium, the wave 

modifies the refractive index of the solid at rest. Moreover, the mechanical impact gives motion to the 

material and consequently, it creates a discontinuity in the velocity profile. The velocity of the shocked 

medium is called the particle velocity, and the fundamental relationship between the shock wavefront 

velocity V1 and particle velocity V2 is called the shock polar of the material, which can be approximated 

as follows [2] : 

 

 

 

where C0 (m.s−1) denotes the speed of sound in the pristine medium at the reference state (i.e., in the 

solid at rest) and s is a dimensionless constant. The determination of C0 and s has been the subject of 

many studies (see, e.g., [2]) and is usually performed from the measurement of V1 and V2 [3, 4] by using 

research guns with light gas or powder [5], laser shock [6] or explosives set-ups [7]. Non-invasive 

techniques has reported to remotely and simultaneously derive the shock wave velocity V1, the particle 

velocity V2 and possibly the refractive index N2 of the shocked medium from the measurement of two 

Doppler frequencies in the waveform delivered by a radiofrequency interferometer [8-13]. The method 

in [8] consists of detecting the two Doppler frequencies in the waveform by a fitting process using the 

linear combination of two sine functions. The Figure 1 shows the teflon dielectric waveguide with a 

variable length (ranging from 2 m to 5 m according to the needs) used for guiding the millimeter waves 

to the dielectric sample under shock, and the 16 mm diameter and 80 mm long teflon cone glued at the 

back side of the target to ensure the transition between the dielectric waveguide and the dielectric 

V1 = C0 + s.V2 (1) 



sample surface. The dielectric cone transition allows delivering the millimeter wave generated by the 

interferometer into the sample during a mechanical impact and to collect the electromagnetic waves 

reflected by the shocked medium and the surface of the metallic impactor. The impactor is propelled by 

the Pyrene gas gun and creates a shock at the front surface of the sample, opposite to the dielectric cone 

interface. We have observed that, for waveforms of sufficiently long duration (> 5 µs), the detection and 

accurate estimation of two Doppler frequencies from this fitting technique are possible (see, e.g., [9] and 

[10] for the investigation of shocked PolyMethylMetAcrylate dielectrics and TriAminoTrinitroBenzene 

solids, respectively). However, as the waveform duration decreases and is only of few microseconds, 

even less than pulsation period, lower Doppler frequencies may not be accurately estimated and 

consequently, the wavefront and particle velocities V1 and V2 cannot be derived from the fitting 

technique reported in [8]. Short-duration waveforms occur in many circumstances. For instance when 

the waveform to be processed is only of 1/4 time period long due to dielectric losses. Therefore, it is 

crucial to extend significantly the applicability of millimeter-wave interferometry to the analysis of very 

short-duration waveforms of few microseconds. An Artificial Neural Network technique is proposed 

in this paper to derive V1, V2 and the refractive index N2 as output neurons of shocked media from time-

domain samples of waveforms as input neurons delivered by a millimeter-wave interferometer. 

 

 

Figure 1. Detail of the experimental setup to estimate the shock wavefront and particle velocities in dielectric 

materials using a 94 GHz interferometer [8]. 

Fully dense Neural Network (NN) models have been applied in [14 - 19] to extract frequencies of interest 

from some waveforms, but these models are not suitable here. As they require a fixed number of input 

neurons, these models cannot process waveforms with variable number of samples. An alternative NN 

technique consists of using Convolutional Neural Network (CNN) models (see, e.g., [18, 19]). We show 

in this paper that the accurate estimation of velocity V1 of the shock wavefront, the particle velocity V2 

and the refractive index N2 of the shocked medium can be estimated from a dedicated CNN, especially 

for waveforms less than a pulsation period.  

The manuscript is organized as follows. Section 2 describes briefly the previously reported method used 

to derive the shock wavefront and particle velocities from the estimation of two Doppler Frequencies, 

and discusses the limitations of this method. Section 3 describes the development of a new method 

based on Convolutional Neural Networks to overcome the limitations of the previously reported 

method. In Section 4, the performances of the two methods are compared for the derivation of the shock 

wavefront and particle velocities from the same set of measured waveforms. 

2. Shock Wavefront and Particle Velocities Derived from Doppler Frequencies  

The shock wavefront in a dielectric material is usually modeled by a moving interface (see, e.g., [20]), 

which separates the material in two dielectric regions: the region in front of the interface is called the 

pristine medium with a refractive index N1, while the region behind the interface is called the shocked 

medium with a refractive index N2. The incident electromagnetic field is then subjected to the reflection 

by and transmission through the dielectric interface with a Doppler frequency shift. In addition, the 

electromagnetic field encounters losses in the material. Two configurations are analyzed throughout the 

paper: the single and double interface configurations. 



In the so-called single interface configuration, the dielectric interface models the shock wavefront. It moves 

towards a millimeter-wave interferometer, and the velocity V1 of the interface is derived from the 

extraction of the Doppler frequency shift in the waveform delivered by the interferometer. The 

extraction requires the prior knowledge of pristine medium refractive index N1. The single interface 

configuration offers an exact solution for the waveform [8], which is used here to investigate the 

eventual benefits of the Neural Network approach for estimating the shock wavefront velocity V1. 

The double interface configuration takes into account the metallic impactor or the transfert plate. Therefore, 

in addition to the reflection by (ER) and transmission through the shockwave interface (ET), the 

electromagnetic field transmitted by the interferometer experiences the reflection by and transmission 

through the moving interface between the shocked medium and the metallic plate (see Figure 2). In this 

study, the metallic plate is assumed to be perfectly conductive, and consequently total electromagnetic 

reflection occurs at its surface, called ERc. Following [8], both the velocity V1 of the shock wavefront and 

the velocity V2 of the metallic interface between the impactor (metallic plate) and the shocked medium 

(second layer) may be derived from the measurement of two Doppler frequencies in the reflected electric 

field ER = ER1 + ER2 + ER3 + ... 

As illustrated in Figure 3, typical measured waveforms exhibit actually two oscillations, whose 

frequency and magnitude are used here to estimate the velocities V1 and V2 (it is assumed here that 

refractive index N1 of the studied pristine material is known). This estimation may be performed from 

a fitting process which approximates the waveform by the linear combination s(t) of two sine functions 

given by : 

 

 

 

where the fitting parameters are f1 and f2 (i.e., the unknown Doppler frequencies), A1, A2, φ1 and φ2. We 

have observed that, for waveforms of sufficiently long duration (> 5 µs), the fitting process allows 

detecting the two Doppler frequencies of interest but, as the waveform duration decreases, the accuracy 

of the lowest frequency estimation degrades gradually and as a result, velocities V1 and V2 cannot be 

estimated precisely. 

 

Figure 2. Scheme of the double interface configuration. The incident electric field Ei is normal to the shock 

wavefront, that is, the moving interface between the First Layer (pristine material) and Second Layer (shocked 

medium), with E1 first reflection, ER i following transmission / reflection / transmission, ET first transmission, ERc i 

reflections on the metallic plate. 

s(t) = A1.sin(2πf1.t + φ1) + A2.sin(2πf2.t + φ2) (2) 



 

Figure 3. Typical long-duration waveform delivered by a 94 GHz interferometer during impact experiment on a 

TriAminoTrinitroBenzene (TATB) material (refractive index N1 is of 1.78). The derivation of Doppler frequencies 

from the fitting process reported in [8] gives the following estimation: N2 = 2.37 (shocked medium refractive index), 

V1 = 3850 m.s−1 (shock wavefront velocity) and V2 = 385 m.s−1 (particle velocity). 

3. Shock Wavefront and Particle Velocities Derived from CNN Approach 

The proposed approach requires the careful selection of the triplets (V1, V2, N2) that are used in the 

simplified electromagnetic model of moving dielectric interface(s) reported in [8] for computing the 

waveforms and training the CNN. 

An Artificial Neural Network (NN) with Multi-Layer Perceptron (MLP) [14] is an assembly of layers, 

each composed of several neurons. As a biological one, each neuron combines linearly the outputs of 

the previous layer and applies an activation function to obtain the output. This function is often non-

linear. Once the architecture of the NN is chosen, the learning process is launched. This stage consists 

of adjusting the parameters of each node to fit on a combination of inputs and outputs of the network. 

Here, the input is N samples of the time-domain waveform delivered by the millimeter-wave 

interferometer during an impact experiment on dielectric materials, and the single output is the velocity 

V1 of the shock wavefront, or the particle velocity V2, or else the refractive index N2 of the shocked 

medium. The Figure 4 shows an example of such NN. It consists of 3 layers: the first one has five inputs 

and one bias, the second layer has three neurons and one bias and the third layer is composed of one 

output neuron which provides the estimation of the quantity of interest (that is, V1, V2 or N2). The bias 

is used to influence the output without interfering with the weights and the inputs. In the second layer, 

the output of each node is computed as follows using relation (3). 

 

 

 

where f is the scoring function, b denotes the bias, wb designates the weight of the bias, Inputi are the 

inputs i and wi is the weight of Inputi. 

 

 

Figure 4. Simple architecture of a Neural Network. 

Output = f(w1 × Input1 + w2 × Input2 + w3 × Input3 + w4 × Input4 + w5 × Input5 + wb × b) (3) 



In our investigation, the measurement data used in the input layer of the NN are annotated, i.e. they are 

known before they are processed in the NN. This case is also known as “supervised learning”, which is 

generally used to sort two types of problems:  

• Regression problems, where the problem is to estimate a quantity 

variable (V1, V2 or N2 in our study);  

• Classification problems, where the problem is to predict a qualitative 

variable (i.e. a state, a category, etc.).  

 

For any architecture, it would be possible here to process the waveform as a regression or classification 

problem because, either it would be possible to obtain the accurate value of a velocity as output after 

the waveform processing or to determine a range in which the velocity may be included. Anyway, for 

reasons of diagnostic accuracy, the analysis of waveforms will be considered here as a regression 

problem. 

 

In view of the state-of-the-art (see, e.g., [15, 16]), a fully connected dense model – i.e. each neuron in a 

layer receives an input from all the neurons of the previous layer – can accurately estimate the spectral 

content of some waveforms. The major drawback of this model is that the number of input neurons is 

fixed and consequently, the same NN cannot process variable number of waveform samples. Another 

limitation is that NN-based spectral analysis is not automated, so the signal processing is applicable to 

specific waveforms. Therefore, fully connected dense model is not suitable to solve our inverse problem, 

either from using regression or classification methods. Another approach, based on a Convolutional 

Neural Network (CNN), is implemented here for the two configurations described in Section 2. This is 

a well-known technique in raw signal processing [18, 19]: the convolutional layers are filters that extract 

patterns from the signal, then these patterns are processed by the dense layers to fit the output. The 

CNN is implemented here using Python 3.7.6 with the module Keras [21] and the backend TensorFlow 

[22]. The number of convolutional and dense layers is computed by fitting various architectures on 

validation waveform data. The architecture of the network is identical for the two configurations: 

• In the single layer configuration, two networks are studied: the first having the shock wavefront 

velocity V1 as single output, the second having only the refractive index N2 of the shocked 

medium as output; 

• For the double layer configuration, three networks are studied: the first network has the shock 

wavefront velocity V1 as output, the second one having the particle velocity V2, the third one 

having the refractive index N2 of the shocked medium. 

 

The waveform samples are normalized from a Glorot normal initialization [23]. This approach was 

found to be more efficient than a single CNN with two or three outputs. The inputs for the networks 

are the refractive index N1 of the pristine material, the operating frequency (94 GHz) of the millimeter-

wave interferometer, the time step used for the sampling of waveforms and the samples of waveforms 

delivered by the interferometer. The final network has four convolutional layers and seven dense layers 

(see Table 1). Convolutional layers perform the filtering operation, while dense layers create linear 

combinations with bias. The maximum pooling layer selects the maximum value in a range of neurons. 

Batch normalization is a well-known technique in neural networks to overcome overfitting which may 

occur when the algorithm performs well on training data, but performs badly on any other data. This 

regularization technique allows the algorithm to keep its generalization ability [24]. The global average 

pooling layer makes the average in the selected range and flattens the filters from the previous 

convolutional layer to decrease the data size for the next layer and consequently, to reduce the 

calculation time without interfering with the training process. The Figure 5 sketches the action of every 

layer. 



 

Figure 5. Scheme of the CNN used for determining the shock wavefront V1, the particle velocitie V2 or the refractive 

index N2 of the shocked medium from waveforms delivered by the 94 GHz millimeter-wave interferometer. 

Table 1. Final CNN for each parameter V1, V2 and N2 as output. 

Index of layer Type of layer Keras name Activation function Properties 

1 Convolution Conv1D Rectified Linear Unit (ReLU) 72 filters, length 10 

2 Normalization BatchNormalization   

3 Convolution Conv1D ReLU 144 filters, length 10 

4 Normalization BatchNormalization   

5 Pooling MaxPooling1D   

6 Convolution Conv1D ReLU 288 filters, length 10 

7 Normalization BatchNormalization   

8 Pooling MaxPooling1D   

9 Convolution Conv1D ReLU 576 filters, length 10 

10 Normalization BatchNormalization   

11 Pooling GlobalAveragePooling1D   

12 Dense Dense ReLU 50 neurons 

13 Dense Dense tanh 60 neurons 

14 Dense Dense tanh 40 neurons 

15 Dense Dense tanh 30 neurons 

16 Dense Dense ReLU 20 neurons 

17 Dense Dense tanh 10 neurons 

18 Dense Dense hard sigmoid 1 neuron 

 

The learning process is performed from the simulated waveforms provided by the electromagnetic 

model developed in [8]. The model is applied to create waveforms with multiple initial parameters. It 

allows using larger networks and prevents overfitting, which may occur when a limited number of 

experimental data is available. Moreover, the main advantage of using simulated inputs for the CNN 

training is that we can generate large data set which makes possible the derivation of the accurate 

estimation of velocities or refractive index. The main idea is that the waveform is composed of two main 

contributions. The first is the electric field directly reflected by the shock wavefront. The second 

contribution combines multiple reflections of the electric field inside the dielectric sample. For each of 

contributions, the reflection and transmission coefficients are computed. The adequate number of 

reflections in the second layer (see Figure 2) is derived from the numerical convergence of the total 

reflected electric field. Table 2 reports the mean difference between the computed waveforms. The 

chosen number of reflections in the second layer is set to 4, as the difference with the waveform with 5 

internal reflections does not exceed 0.004%. The learning process is performed with Adam optimizer 

with coefficients given in [25] and with a mean squared error loss. The maximum number of full training 

cycles or epochs is set to 200. However, the learning rate decreases if the loss is constant over five epochs. 

In practice, the maximum number was never reached, as the loss converged rapidly. To ensure that the 



loss is not on a plateau, ten more epochs are computed after reaching numerical convergence. To avoid 

overfitting, new validation data are computed at each epoch. 

Table 2. Mean difference of the total reflection between signals for different number of internal reflections in the 

shocked dielectric sample. 

Number of considered reflections in the second layer 
Total reflection mean 

difference (%) 

1 and 2 5.7 

2 and 3 0.5 

3 and 4 0.05 

4 and 5 0.004 

5 and 6 0.0004 

 

The refractive index of both the pristine material and the shocked material, denoted respectively by N1 

and N2, and the velocity V1 of the shock wavefront and the particle velocities V2 are randomly generated 

for each waveform. The time duration of waveforms is also randomly modified to account for various 

experimental conditions. The quantities of interest are normalized before the validation step during the 

learning phase. The boundaries for each parameter are listed in Table 3. These bounds are chosen to be 

representative of experimental values. Following [26], the refractive index of the dielectric material 

increases when submitted to a shock wave. Therefore, during the learning stage, N2 is computed as the 

summation of N1 with a random number ranging from 0 to 1. 

Table 3. Parameters boundaries for the learning step of the CNN. 

Parameter Minimum value Maximum value 

Material at rest refractive index N1 1 2 

Shocked material refractive index N2 1 3 

Particle velocity V2 (m s−1) 300 500 

Shock wavefront velocity V1 (m s−1) 3000 5000 

Measurement duration (µs) 2 3.5 

 

4. Results and Discussions 

4.1. Single layer configuration 

To compare the performances of the two methods reported in Sections 2 and 3, that is, the technique 

based on the extraction Doppler frequencies [8] (DFA, which stands for Doppler Frequency Approach) 

and the proposed Neural Network Approach (NNA), many random waveforms are computed and 

processed. With the chosen CNN, the output values are obtained from the predict method from the 

Keras module [21]. As the fitting process is direct, the value is simply calculated by the Fast Fourier 

Transform and directly compared with the outputs of the CNN. The procedure is sketched in Figure 6. 

No difference is obtained between the DFA and NNA for the single layer configuration, as it can be 

observed from the Figure 7. For the shock wavefront velocity V1 and the refractive index N2 of the 

shocked medium, the two methods give similar results and accuracy. Following this encouraging 

results, the neural network is applied in section 4.2 to the double layer configuration, which consists of 

a much more realistic model for the practical situation. 



 

Figure 6. Sketch for the comparison of the Neural Network Approach (see section 3) and the Doppler Frequency 

Approach (see section 2) applied to the single layer configuration. 

  

(a) (b) 

Figure 7. (a) Relative prediction error distribution on V1 derived from NNA and DF, and (b) Relative prediction 

error distribution on N2 determined from NNA and DF (single layer configuration). 

4.2. Double layer configuration  

For the double layer configuration, many random waveforms are computed from the electromagnetic 

model reported in [8] and are used for training the CNN. As in Section 4.1, the output values are 

obtained by using the predict method from the Keras module. For deriving the velocity V1 or V2 from 

the DFA, the resolution is not straightforward: as the number of comparison points increases, the fitting 

process using two sine functions (see section 2) must be performed automatically by using an initial 

guess vector for the parameters. The fitted waveform is computed and correlated with the input 

waveform. Let the correlation coefficient 𝜌𝑋,𝑌 of two investigated waveforms X and Y be defined as 

follows:  

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

 (4) 

 

where cov denotes the co-variance operator, while 𝜎𝑋 and 𝜎𝑌 designate the standard deviation of X and 

Y. If 𝜌𝑋,𝑌 is smaller than a prescribed threshold, the input waveform is discarded because the fitting 

process is considered as unsuccessful. This method is repeated until 1000 waveform samples have been 

obtained. Two examples of computed waveforms are plotted in Figure 8, as well as the result of the 

DFA and corresponding correlation coefficients. The procedure is sketched in Figure 9. For comparison 

purpose, we determine the difference between V1, V2 and N2 estimated from DFA and NNA, with the 

exact values selected for the waveform computation. The mean value M of the difference and the 

standard deviation for each method are reported in Table 4. A systematic error (i.e., the mean is not 



zero) is present for both methods but, it is smaller for the NNA than for the DFA. The NNA yields also 

a smaller standard deviation than the DFA. As expected, the higher the correlation coefficient 𝜌𝑋,𝑌 (or 

equivalently, more accurate the derivation of Doppler frequencies and magnitudes), the more accurate 

the estimation of V1, V2 and N2 provided by DFA. However, as the correlation coefficient increases, the 

systematic error on the estimation of V1, V2 and N2 provided by the NNA is constant, even for short-

duration waveforms. In Figure 10, the distribution of the difference between the predicted and true 

values of V1, V2 and N2 are displayed for three different correlation coefficients. On one hand, the 

estimations given by the DFA are found to be either accurate (near the origin) or false (elsewhere). On 

the other hand, the NNA estimations are quite accurate (the prediction error remains actually between 

-25% and 25%). As typical experimental values for the correlation coefficient are between 0.9 and 0.99 

[10], the NNA should then be preferred when processing short-duration waveforms, especially for 

estimating the particle velocity V2 and refractive index N2 of the shocked medium. 

 

  

(a) (b) 

Figure 8. Dimensionless waveforms computed from [8] with V1 = 4000 m s−1, V2 = 400 m s−1 and    N2 = 2 (dashed 

line) and the waveforms derived from the DFA fitting process (in red line) for various correlation coefficients: (a) 

𝜌𝑋,𝑌 = 0.997 and (b) 𝜌𝑋,𝑌 = 0.9998. 

Table 4. Mean and standard deviation of the difference between V1, V2 and N2 estimated from DFA and NNA, with 

the exact values selected for the waveform computation. 

Method Name V1 V2 N2 𝜌𝑋,𝑌 
 Ϻ (%) σ (%) Ϻ (%) σ (%) Ϻ (%) σ (%)  

Neural Network Approach -0.1 9.8 0.6 9.4 -0.1 -0.1 
0.9 

Doppler Frequency Approach -5.9 38.1 37.9 115.2 1.4 1.4 

Neural Network Approach -1.1 10.0 0.1 9.2 -0.1 -0.1 
0.99 

Doppler Frequency Approach -9.6 29.8 32.2 100.7 7.0 7.0 

Neural Network Approach -1.0 11.4 -1.6 9.3 0.0 0.0 
0.999 

Doppler Frequency Approach -7.6 33.3 -6.5 35.9 2.6 2.6 

 

 



 

Figure 9. Sketch for the comparison of the Neural Network Approach (see section 3) and the Doppler Frequency 

Approach (see section 2) applied to the double layer configuration. 

 

(a) (b) (c) 

Figure 10. Relative prediction error distribution given by NNA and DFA with thresholds 𝜌𝑋,𝑌 = 0.9 (up), 0.99 

(middle) and 0.999 (down) for determination of: (a) the shock wavefront velocity V1, (b) particle velocity V2 and (c) 

the refraction index N2 of the shocked medium. 

 



5. Conclusions 

In this paper, a convolutional neural network is proposed for solving an electromagnetic inverse 

problem involving solid dielectric materials subjected to mechanical impacts. From the computed 

waveforms delivered by a millimeter-wave interferometer, the convolutional network provides more 

accurate estimations of the shock wavefront velocity in the shocked materials, the particle velocity, as 

well as the refractive index of shocked medium, for short-duration waveforms of few microseconds less 

than a time period long, compared to the Doppler frequency analysis, based on the fitting parameters 

of the sum of two sine functions. These results extend significantly the application of millimeter-wave 

interferometry to the investigation of dielectric materials subjected to steady shocks. Work is ongoing 

to improve the network architecture in order to reduce the standard error prediction for each parameter. 
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