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The Marginal Importance of Distortions and

Alignment in CASSI systems
Léo Paillet, Antoine Rouxel, Hervé Carfantan, Simon Lacroix and Antoine Monmayrant

Abstract—This paper introduces a differentiable ray-tracing-
based model that incorporates aberrations and distortions to
render realistic coded hyperspectral acquisitions using Coded-
Aperture Spectral Snapshot Imagers (CASSI). CASSI systems
can now be optimized in order to fulfill simultaneously several
optical design constraints as well as processing constraints. Four
comparable CASSI systems with varying degree of optical aber-
rations have been designed and modeled. The resulting rendered
hyperspectral acquisitions from each of these systems are com-
bined with five state-of-the-art hyperspectral cube reconstruction
processes. These reconstruction processes encompass a mapping
function created from each system’s propagation model to ac-
count for distortions and aberrations during the reconstruction
process. Our analyses show that if properly modeled, the effects
of geometric distortions of the system and misalignments of the
dispersive elements have a marginal impact on the overall quality
of the reconstructed hyperspectral data cubes. Therefore, relaxing
traditional constraints on measurement conformity and fidelity to
the scene enables the development of novel imaging instruments,
guided by performance metrics applied to the design or the
processing of acquisitions. By providing a complete framework
for design, simulation and evaluation, this work contributes to
the optimization and exploration of new CASSI systems, and
more generally to the computational imaging community.

Index Terms—Compressive Sensing, Coded-Aperture, Hyper-
spectral Imaging, CASSI, Optical Design, Ray-tracing

I. INTRODUCTION

T
RADITIONAL hyperspectral imagers render three-

dimensional data cubes by scanning the scenes along

a spectral or spatial dimension [1]. This leads to two main

drawbacks: the transmission and processing of a large quantity

of data, and a limitation to static scenes. Snapshot hyper-

spectral imaging systems [2]–[6] rely on compressed sensing

theory [7] to address these shortcomings. Specifically, CASSI

systems [3], [6] reduce the redundancy present in hyperspectral

scenes (HSSs) by performing a spatio-spectral encoding of the

contained information. These systems use a coded aperture (or

“mask”) and dispersive elements to spectrally and spatially

modulate the HSS. The coded aperture can be optimized for

specific applications [8], but can also be used as a random

sampler [9], [10].

A primary goal of coded hyperspectral imaging is the recon-

struction of the full hyperspectral cube (HSC), enabling further

processing of the three-dimensional data cube. Historically,

this reconstruction from coded acquisitions predominantly
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relied on model-based methods [10]–[14]. While these meth-

ods offer insight into the reconstruction process, they suffer

from long reconstruction times and suboptimal reconstruction

quality. Recently, deep learning approaches have provided

fast reconstruction times and high-quality results, albeit with

less interpretability [8], [15]–[17]. Transformers [18] have

also achieved superior results by leveraging non-local spatial

relationships between pixels [19], [20], resulting in better

exploitation of spatial and spectral interrelationships in HSSs.

However, state-of-the-art reconstruction algorithms [19],

[21]–[24], while primarily data-driven, also integrate a simpli-

fied representation of the propagation model. They assume that

CASSI systems produce spatially uniform dispersion, typically

linear, without any optical misalignment. This is well suited for

most CASSI systems that employ a double-Amici prism as the

dispersive element [9], [25]–[29]. Compared to single prisms,

the advantage of double-Amici prism assemblies is twofold:

they allow for a direct-view geometry and do not exhibit

anamorphic or optical distortions. Still, double-Amici prisms

require longer manufacturing times, are more expensive, and

misalignments must still be addressed when working with

prototypes. Alternatively, using a single prism as the dispersive

element results in a peculiar arrangement of information in

the captured images, which can be properly exploited for

reconstruction if the optical model is precise and accurate.

In this article, we evaluate the impact of distortions and

misalignments on the coded information, when the optical

model is properly considered. For this matter, we need a

CASSI simulator accounting for both distortions and point

spread function (PSF). Some image formation models [25]

include PSF but they depend on calibration data, necessitating

the assembly and calibration of a prototype. Recently, we

proposed an accurate chief-ray-based propagation model [30]

for dimensioning and optical distortions estimation, but it does

not account for optical aberrations and cannot be used for

Monte-Carlo rendering or PSF estimation. Recent works in

computational imaging utilize differentiable ray-tracing to en-

able end-to-end optical design [31]–[33], in particular dO [33].

However, to the best of our knowledge, this approach has not

yet been applied to coded aperture hyperspectral systems.

The most straightforward approach for us was to extent

the dO rendering framework for hyperspectral systems. We

propose implementing CASSI systems within dO, which

enables accurate modeling of optical behavior and precise

rendering of coded hyperspectral acquisitions. By leveraging

ray tracing, we create an accurate spectral and spatial mapping

between the object and image planes of CASSI systems. This

mapping is then introduced in the reconstruction algorithms.



2

This approach facilitates seamless processing across different

CASSI systems, regardless of distortions or misalignments. We

evaluate four distinct CASSI configurations, constructed with

either a double-Amici prism assembly or a single prism. To as-

sess the impact of misalignments, two of these configurations

are deliberately misaligned. The reconstructions from these

four configurations are compared using five reconstruction

algorithms and standard evaluation metrics.

Our results demonstrate that distortions and misalignments

have a marginal impact on the information encoded in CASSI

acquisitions, and hence on the reconstruction quality, provided

the rendering is realistic and an accurate model is incorporated

into the reconstruction. This finding implies that the choice and

fine-tuning of the reconstruction algorithm are more critical

than the specific optical system.

The contributions of our work are:

• We implement coded aperture hyperspectral optical sys-

tems within a differentiable ray-tracing framework, en-

abling the rendering of distorted and aberrated images

and facilitating the end-to-end design of such systems.

• We devise an accurate spatio-spectral mapping based

on a realistic propagation model and introduce it, as a

spatio-spectral prior, in the state-of-the-art reconstruc-

tion algorithms. This approach leverages two-dimensional

measurements from the CASSI system and the associated

rendering model.

• We highlight the marginal importance of distortions and

misalignments in CASSI systems for acquisition pro-

cessing purposes, provided the reconstruction process

incorporates an accurate propagation model.

We first design a double-Amici prism assembly with the

same angular spectral spreading than an off-the-shelf single

prism, but none of its optical distortions. We then design

two comparable CASSI systems –one based on the single

prism, one on the double-Amici prism assembly–, and consider

two configurations for each : with perfectly aligned and

purposefully misaligned prisms. Those four configurations

are designed in the implemented differentiable ray-tracing

renderer outputting realistic CASSI acquisitions. Afterwards,

we process the coded acquisitions to reconstruct HSCs with

algorithms taking into account the propagation model. We

finally compare the reconstruction quality reached with all four

configurations, for five state-of-the-art algorithms.

All the source code about our modified version of dO, the

adapted networks, and how to generate the figures is available

at https://github.com/lpaillet-laas/DiffCassiSim.

II. OPTICAL DESIGN AND RENDERING

Given that CASSI systems performances cannot be fairly

assessed and compared using simple propagation models [10],

[34], [35], which overlook the geometric distortions caused

by dispersive elements as well as misalignment, we have

developed a differentiable ray-tracing-based renderer based

on dO, that takes into account distortions, misalignments and

aberrations.

We applied it to generate accurate rendering of the coded

acquisitions of two single disperser (SD) CASSI systems: one

Fig. 1: Top-view of the systems layout for the (SP) configu-

ration (a) and the (AP) configuration (b).

system using a single prism as the dispersive element, referred

as (SP), and one with a double-Amici prism assembly, referred

as (AP), shown in Figure 1. The two other configurations

are duplicates for which the dispersive element has been

purposefully misaligned by 5° around the x-axis with respect

to the reference frames of Figure 1, and respectively referred

as (mSP) and (mAP).

In this section, we delve into:

• The design process of a custom double-Amici prism to

minimize optical distortions and achieve direct-view.

• The implementation of the four optical configurations

within dO, highlighting how different configurations are

simulated.

• The methodology used for generating realistic coded

hyperspectral acquisitions.

A. Case Study: SD-CASSI

The (SP) system illustrated in Figure 1-(a) contains a first

lens to collimate the light onto the prism and a second one

to image the light onto the detector. For the (AP) system, as

for most recent Amici-based systems [9], [26], a single relay

lens is used in a 2f − 2f configuration, with the dispersive

element positioned between the lens and the detector, as shown

in Figure 1-(b).

To ensure a fair comparison between both systems, it is cru-

cial to dimension the dispersive elements so that they exhibit

comparable spectral dispersion. Our analysis is conducted on

systems with a detector comprising 512 × 512 pixels with a

10-µm pitch resulting in a ≃ 5×5mm2 field of view, a spectral

range of [450− 650] nm centered at 520 nm, and a numerical

aperture of 0.05. The systems utilize lenses with a focal length

of f = 50mm. The targeted angular spectral spreading for

these systems is ∆0 = 0.95°, resulting in a spatio-spectral

spreading S on the detector of S ≃ 830 µm (83 pixels) for

the central point of the field of view. These parameters are

selected based on the following criteria: the expected number

of resolved pixels across the field of view, the consistency with

the spectral range and resolution of the KAIST dataset [36],

and the compatibility with standard off-the-shelf components.

https://github.com/lpaillet-laas/DiffCassiSim
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Fig. 2: Optical designs of dispersive elements in our imag-

ing system. (a) A commercially available N-BK7 equilateral

prism, aligned in for minimum deviation D0. (b) A custom-

designed double-Amici prism optimized to minimize distor-

tions and achieve direct-view geometry. Both designs exhibit

comparable angular spectral spreading ∆ to ensure a fair

comparison of system performance.

B. Design of a Double-Amici Prism for Fair Comparison

Our first goal is to design a double-Amici prism that

replicates the angular spectral dispersion ∆0 = 0.95° of

a standard N-BK7 equilateral prism at minimum deviation

D0 illustrated in Figure 2-(a), while minimizing geometric

distortions and ensuring a direct-view configuration.

To design the prism, we employ the chief-ray-based dimen-

sioning tool SIMCA, described in [37], [38], which solves a

gradient-based optimization problem incorporating both op-

tical and system-related parameters. Although dO is more

powerful for differentiable optical design, we chose SIMCA as

it was specifically developed for CASSI systems, thus offering

more straightforward and faster optimization.

1) Prism Parametrization: We optimize the following five

parameters, illustrated in Figure 2-(b): αc the angle of inci-

dence on the double-Amici prism assembly, A1 and A2 the

apex angles of the first and second prisms, respectively, and

m1 and m2 the glass materials for the two prisms, selected

from the Schott catalog. Since the glass materials are discrete

and not differentiable by default, we model the dispersion

curve of each glass using two continuous sub-parameters:

the refractive index at the "d" Fraunhofer line and the Abbe

number, following the methodology described in [31], [39].

During optimization, we treat these sub-parameters as con-

tinuous variables. After optimization, we select the glass

materials from the catalog that are closest to the optimized

sub-parameter values.

2) Loss Functions: To optimize the prism design, we first

aim to match the angular spatio-spectral dispersion of the base

design ∆0. We then minimize the optical distortions across

the field of view and for the whole spectral range. We finally

enforce an easy-to-align and compact system by minimizing

the angular deviation D and the thickness of the prism.

The spectral dispersion loss L∆ is defined as the squared

difference between the base spectral dispersion ∆0 and the

dispersion ∆ calculated for the current prism design. We

compute ∆ as the absolute difference between the output

angles after the prism for the shortest and longest wavelengths

at the center of the field-of-view, respectively denoted as

∆λmin
and ∆λmax

:

L∆ = (∆0 − |∆λmax
−∆λmin

|)
2

(1)

The distortion loss Lε quantifies the geometric distortions

introduced by the prisms. We calculate a distance tensor ε

which measures how each imaged point of the scene is dis-

placed due to distortion. In practice, we measure the Euclidean

distance between the distorted coordinates (Xds, Yds) and the

ideal coordinates (Xid, Yid):

εi,j,k =

√

(

X
i,j,k
ds −X

i,j,k
id

)2

+
(

Y
i,j,k

ds − Y
i,j,k

id

)2

(2)

Here,
(

X
i,j,k
id , Y

i,j,k
id

)

are the coordinates of the ideal (undis-

torted) image grid points as described in [30]. We then define

the distortion loss as the square of the maximum value in this

distance tensor:

Lε =

(

max
i,j,k

εi,j,k

)2

(3)

The minimization of Lε reduces the maximum geometric

distortion across all points in the image grid.

The deviation loss LD accounts for the total angular de-

viation induced by the prism configuration. The deviation is

computed based on the chief-ray angles αc and αout
c (incidence

angle and output angle of the chief-ray at the central wave-

length) and the apex angles of the prisms. The deviation loss

is then given by the squared total deviation:

LD =
(

αc + αout
c + 2A1 −A2

)2
(4)

where Ai are the apex angles of the prisms.

The thickness loss Lt approximates the physical thickness

of the double-Amici prism. It is proportional to the sum of the

squared apex angles:

Lt = 2A2

1 +A2

2 (5)

This loss helps to minimize the overall size and weight of the

optical system.

The glass distance loss (Lg) measures the squared difference

between the refractive index (nd) and Abbe number (vd) of the

selected glass materials and the closest available materials in

the Schott catalog. This loss ensures that the materials chosen

during the optimization process are realistic and match closely

with available catalog materials. For a double-prism system,

the glass distance loss is defined as:

Lg = min
glass





(

nd − n
catalog

d

∆nd

)2

+

(

vd − v
catalog

d

∆vd

)2


 (6)

where ∆nd and ∆vd represent the ranges of refractive index

and Abbe number in the Schott catalog. This ensures that the

chosen materials are practical and manufacturable.

Finally, the total internal reflection loss (LR) penalizes

designs that approach the critical angle for total internal

reflection, preventing undesirable optical properties such as

significant losses or distortions due to reflection instead of the

expected transmission. It is computed as:

LR = Softplus(2 ·min(DTIR))
2 (7)

where DTIR is the distance from which total internal reflection

would occur. The Softplus function ensures that the loss only
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Fig. 3: Distortion maps of a regular grid of points traced

through the four considered optical systems, for the extrema

and center wavelengths (450 nm, 520 nm, and 650 nm). Note

the different colorscales between the configurations.

increases significantly when the angle approaches the critical

threshold, preventing abrupt changes in the optimization pro-

cess and ensuring smooth convergence.

3) Design Optimization: The goal is to find the set of

design parameters θ = {αc, A1, A2,m1,m2} that minimize

the total loss L(θ) defined as a linear combination of the 6

loss terms:

L = w∆L∆ +wεLε +wDLD +wtLt +wgLg +wRLR (8)

L encapsulates both optical and system-related objectives,

allowing for a comprehensive optimization of the prism de-

sign. The weights w in the loss expression 8 balance the

contributions of each loss term according to their importance

in the design objectives, they have been empirically chosen to

guide the optimization (the values used in the optimization are

(w∆, wε, wD, wt, wg, wR) = (1, 1, 2.5 × 106, 5 × 103, 1010 ×
iteration_number, 10)).

4) Results: Using the Adam optimizer [40] and starting

from the Amici parameters described in [9], we design a

double-Amici prism assembly that meets our spectral disper-

sion requirement ∆0 of 0.95° at the detector plane within

±1%. The final materials for the Amici prism are N-SK2

and SK10 for m1 and m2, respectively. The apex angles are

A1 = 29.2◦ and A2 = 47.9◦, with the incident chief-ray

arriving at the prism at αc = 5.1◦.

With respect to the (SP) setup, the maximum geometric

distortion is reduced from 214 µm to 6 µm and the mean

distortion from 75 µm to 1.8 µm over a 5 × 5mm field of

view. Figure 3 shows the distortion map for both systems (SP)

and (AP), and also for the misaligned configurations (mSP)

and (mAP). This distortion minimization is achieved while

maintaining a direct-view geometry with a total deviation D

of 0.1mrad.

Both the commercially available N-BK7 equilateral prism

and our custom-designed double-Amici prism assembly ex-

hibit comparable spectral dispersion while presenting different

geometric distortions, ensuring a fair comparison of systems

performances in section III-D.

C. Differentiable Simulation for SD-CASSI systems

Both single prism and double Amici prism assembly are

employed to implement SD-CASSI systems using the differ-

entiable optics design tool dO.

Figure 1 shows the two system’s configurations in dO. As

stated in section II-A, (AP) and (mAP) use a single relay lens

(see Figure 1-(b)). Typically, an achromatic objective lens is

utilized to ensure high spatial resolution across the field of

view and the entire spectral range. However, in our imple-

mentation (AP), the objective lens is modeled as an ideal thin

lens to provide a generalized analysis that focuses on prism-

related aberrations and geometric distortions, irrespective of

the objective lens used. Additionally, replacing an objective by

an ideal thin lens has no significant impact on the simulations

when considering our pixel sizes and field of view. In the

single-prism-based configurations (SP) and (mSP), two lenses

are on either side of the prism (see section II-A). As proposed

in [41], it is advantageous to minimize aberrations early in

the setup by employing an achromatic objective lens before

the prism and a simple doublet lens afterwards to reduce

costs. Similar to the approach used for the Amici system, we

model the achromatic objective lens as an ideal thin lens and

implement a Thorlabs AC254-050-A-ML doublet lens for the

second lens, as illustrated in Figure 1-(a).

The misaligned configurations (mSP) and (mAP) have been

simulated by rotating the dispersive element by 5° around the

x-axis as stated in Section II.

1) Differentiable Ray-Traced Simulations: dO supports

both forward and backward ray-tracing, enabling the optimi-

sation of the design of imaging systems and the rendering of

scenes through these systems. It was originally developed for

designing free-form optics RGB imaging systems with axial

symmetry: adapting it to CASSI systems required modifica-

tions due to the loss of axial symmetry caused by the prism.

These modifications included the addition of a prism optical

element, based on dO built-in surfaces, and the ability to

perform smooth rotations between optical elements, ensuring

accurate modeling and simulation of the CASSI architecture.

In our modified dO, each optical element is then treated

as an independent system, and rays are traced between these

systems. The optical elements are composed of surfaces sep-

arated by materials, as in Zemax. Each element can then be

rotated and shifted individually to closely match the design

specifications.

The implementation of SD-CASSI designs in dO enables the

acquisition of hyperspectral and coded hyperspectral images

that realistically reflect the given optical system, in contrast

to the simplified mathematical models used in [3], [11], [35].
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Such models often struggle to account for all distortions and

dispersions present in real optical systems. Our approach is

more aligned with the mathematical models of [25], [42].

In addition, it directly generates PSFs through accurate ray

tracing and can account for spectral dispersions along the

y (vertical) axis and for the spectral dispersions continuity

thanks to Monte-Carlo methods. This is particularly evident

in the case of misaligned optical configurations, as seen in

the (mAP) and (mSP) configurations (refer to Figure 3 and

Supplementary Figure 13) although the Amici-based system is

more tolerant to misalignment.

Additionally, dO supports the differentiable optimization

of these designs, allowing fine-tuning of rotations, shifts

between optical elements, and adjustments of surface distances

and configurations. This functionality allows both the design

and operational use of SD-CASSI systems within the same

application, facilitating seamless imaging co-design.

2) Validation of the Implementation in dO: To validate

our dO implementation, we compared the PSFs from dO and

Zemax of all four configurations across various wavelengths

and spatial positions. Figure 4 shows a selection of four PSFs

for various positions across the field of view for the (mSP)

configuration at a wavelength of λ = 650 nm (more PSFs

are presented in the supplementary material, Figures 8 to 11).

Although this configuration exhibits the strongest distortions

and is thus the most challenging of the four considered

configurations, the PSFs modelled with dO are similar to

their Zemax counterparts. The spot diagrams from both im-

plementations (dO and Zemax) are highly consistent, with

Root-Mean-Square (RMS) spot size differences below 1.5 µm,

well below the considered 10-µm pixel size, thereby ensuring

adequate rendering resolution.

Differences observed in spot diagrams primarily arise from

aperture handling which impacts ray distribution: dO assumes

a telecentric system without an aperture stop, whereas Zemax

includes an aperture object. Adding an aperture function to dO

would require ray-direction calculations for aperture filling,

but the benefits would be minimal given the minor dis-

crepancies between both systems. Additionally, ray sampling

methods differ: with dO we employ hexapolar sampling, while

Zemax uses grid sampling for PSF determination.

Further validation was conducted by comparing distortions

at various wavelengths and positions obtained with both dO

and Zemax. Figure 5 shows the difference between Zemax

and dO distortions across the field of view for extrema

and central wavelengths. Results show that distortions are

accurately modeled, with mean differences of only 1 µm across

the three wavelengths, a tenth of the actual pixel size. Minor

discrepancies in distortion maps between dO and Zemax also

stem from their differing aperture treatments.

D. Coded acquisition rendering

1) Rendering process: Our model of the four optical config-

urations enables HSS rendering through backward ray-tracing.

Each spectral plane is rendered individually, and acquisition

is performed by summing along the spectral dimension. We

render scenes with 28 spectral bands evenly distributed from

Fig. 4: PSFs obtained with the misaligned single prism config-

uration (mSP) at four positions in the field of view (positions

denoted by the red points on the bottom left of each figure).

Top: PSFs obtained with dO, bottom: PSFs obtained with

Zemax. The dotted black circle corresponds to the RMS radius

centered on the centroid of the PSFs.

Fig. 5: Maps of the difference between distortions computed

with dO and Zemax, for the extrema and central wavelengths

(450 nm, 520 nm, and 650 nm). Note the same colorscales

across the 4 configurations.

450 nm to 650 nm from the hyperspectral datasets CAVE [43]

and KAIST [36]. Due to the systems’ 830 µm nonlinear

spectral spread on the detector and 10 µm spatial sampling,

the data is oversampled to ensure accurate rendering over

the 83 illuminated pixels (otherwise some pixels would not

receive any signal, giving a spatially non-continuous rendered

acquisition). The smallest integer oversampling factor n so

that 28 × n ≥ 83 is n = 3: we oversample with n = 4 to

alleviate missing signal errors that could occur due to Monte-

Carlo sampling with a small amount of rays.

Considered HSSs therefore contain 4 × 28 = 112 spectral
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bands. For a fast rendering of the 512×512×112 hyperspectral

scenes, we limit ray tracing to 20 rays per pixel per wave-

length. Following the modifications done to dO, rendering is

performed sequentially, progressing backwards through each

optical element and independently for each wavelength.

To further mitigate quantization errors from Monte-Carlo

sampling arising from tracing a small amount of rays, the

rendered planes are convolved with a smoothing kernel. We

convolve each spectral plane with an Airy disk, varying

according to λ, whose diameter equals 2.5 pixels (= 25 µm)

at 520 nm, adequately smoothing the rendering through con-

volution.

To simulate a HSS acquisition H with a given 2D binary

mask M through a SD-CASSI system, we compute the coded

scene H
c as follows:

H
c(:, :, nλ) = H(:, :, nλ)⊙M, ∀nλ ∈ J0, 112K

H
c is then input into our rendering process, representing

information at the entry of the optical system.

2) Validation of the Rendering Method: We validate our

rendering method with a single-slit mask, for which the SD-

CASSI systems emulate an imaging prism spectrometer. With

a single 1-pixel-wide slit opened on the mask M, both aligned

configurations (AP) and (SP) disperse the spectrum of the

imaged slit along the x axis. Since distortions mainly appear

in the (SP) configuration, we will only consider this harder

case.

The test scene selected from the CAVE dataset is shown

in Figure 6-(a), together with the chosen slit position (dashed

line). The slit is located at the center of the field of view, and 3

regions with a constant spectrum are acquired (green, orange

and gray squares in Figure 6-(a)). These spectra are spatially

dispersed based on the system’s spectral spread, and convolved

with the corresponding spatio-spectral PSFs and Airy disks.

To account for the y-axis spread of the PSFs, we average 40

rows of the acquisition in each region and compare this result

to the corresponding ground truth spectrum under the same

experimental conditions specified earlier (see section II-D1):

20 rays per pixel per wavelength across 112 wavelengths.

We upsample the ground truth spectra to 280 wavelengths to

account for their continuity and to reduce the quantization

errors that would otherwise appear in the comparison, with no

physical meaning.

Results presented in Figure 6-(c) show a close match be-

tween the acquisitions (solid lines) and the ground truth spectra

(dashed lines). Thus, our model effectively simulates a SD-

CASSI system, enabling realistic acquisition simulations that

align with those from a physical system.

We created a fork of dO including all our modifications that

can be accessed at https://github.com/lpaillet-laas/DiffOptics.

Additionally, another repository accessible at https://github.

com/lpaillet-laas/DiffCassiSim, contains this fork of dO to-

gether with all the code for the processing done in Section III.

III. HYPERSPECTRAL CUBE RECONSTRUCTIONS

A. Overview

We demonstrate here that for the four considered con-

figurations, a comparable amount of information is encoded

Fig. 6: Spectra extracted from rendered single-slit acquisition

with the (SP) configuration compared to ground truth spectra

retrieved from the HSS. The ground truth spectra correspond to

the HSS data spatially dispersed and convoluted by the PSFs

and Airy disks of the system. (a) RGB image of the scene

and location of the slit (dashed line). (b) Rendered acquisition

with the (SP) configuration. (c) Acquired spectra (solid lines)

in the 3 regions with constant color (green, orange and gray)

compared to their ground truth counterparts (dashed lines).

in the acquisitions and that it can be retrieved by state-of-

the-art approaches when the system model is known and

considered, hence exhibiting the marginal impact of distortions

and misalignments.

For this purpose, the hyperspectral cube reconstruction from

coded acquisition is an ideal test case. Deep learning meth-

ods [8], [36], [44] being now the best solution for HSC recon-

struction, we apply five recent state-of-the-art algorithms, and

assess the reconstruction quality with a series of usual metrics.

The considered reconstruction algorithms are Deep Gaussian

Scale Mixture Prior (DGSMP) [21], Mask-guided Spectral-

wise Transformer (MST) [19], Degradation-Aware Unfolding

Half-Shuffle Transformer (DAUHST) [22], Residual Degrada-

tion Learning Unfolding Framework (RDLUF) [23], and Pixel

Adaptive Deep Unfolding Transformer (PADUT) [24].

Our evaluation uses the two public HSS datasets CAVE [43]

and KAIST [36]. The CAVE dataset includes 32 HSSs of size

512×512×31, while the KAIST dataset includes 30 HSSs of

size 2704×3376×31. HSSs have been spectrally interpolated

following [43] in order to be consistent with the wavelengths

of the system used to acquire these HSSs. They thus contain 28

spectral bands ranging from 450 nm to 650 nm. To fit the field

of view (≃ 5×5mm2) with a pixel size of 10 µm, each HSS in

the datasets was cropped to reach a final size of 512×512×28.

Following the setups of the referenced networks, models were

trained on the CAVE dataset and tested on 10 scenes taken

from the KAIST dataset.

B. Spatio-Spectral Mapping and Reconstruction Initialization

Most networks leverage a priori information from the

acquisition to reconstruct the hyperspectral cube. For perfectly

https://github.com/lpaillet-laas/DiffOptics
https://github.com/lpaillet-laas/DiffCassiSim
https://github.com/lpaillet-laas/DiffCassiSim
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aligned systems without distortions, a scene H with dimen-

sions H ×W ×Nλ is rendered onto an acquisition A of size

H× (W +S), where S denotes the spectral spread (in pixels)

of the optical system. Defining the spectral spread at a specific

wavelength nλ as s(nλ), the typical network initialization I is

given by:

I(:, :, nλ) = A(:, s(nλ) : W + s(nλ)), ∀nλ ∈ J0, NλK (9)

resulting in an initialized cube of dimensions H ×W ×Nλ.

With negligible distortions, all information from the scene

at wavelength nλ is indeed captured in a rectangular area of

size H × W starting at the position x = s(nλ). However,

as shown in Figure 3 and in Figure 13 of the supplementary

material, some of our configurations exhibit spatial distortions,

so information from each wavelength is not represented in a

rectangular area. In the misaligned configurations (mAP) and

(mSP), the acquisition A also displays dispersion along the

y axis, resulting in an acquisition of dimensions (H + Sx)×
(W + Sy), where Sx denotes the spectral spread (in pixels)

along the x axis, and Sy the spectral spread along the y axis.

Knowing both the configurations and our model, we can

define a mapping f for each configuration such that:

f(xs, ys, nλ) = (xd, yd) (10)

where (xs, ys, nλ) denotes a position in the scene and (xd, yd)
is the corresponding position on the detector. This mapping f

is generated by identifying the pixel locations of rays traced

from a grid of points of dimensions H ×W for each of the

Nλ wavelengths.

Using the mapping f , for each wavelength nλ, we can

accurately fit parts of the distorted acquisition into a rectangle

of shape H ×W , thus initializing I as:

I = A ◦ f (11)

This initialization ensures accurate computation, aligning

with the model and the specific optical system in use.

The considered reconstruction algorithms contain a sim-

plified propagation model to achieve better results than if

they were purely data-driven. Therefore, these algorithms have

been modified to incorporate the mapping function f in the

reconstruction process, as it allows the computation of both the

direct and adjoint operators used in the unfolded iterative steps.

This allows an accurate propagation model to be integrated in

the reconstruction algorithm, faithful to how acquisitions are

generated.

C. Networks Implementation

The networks were adapted to accommodate our rendered

acquisitions. Originally designed to reconstruct 256×256×28
HSCs, the networks were modified to reconstruct 512×512×
28 HSCs required by our configurations. Additionally, most

networks were previously hardcoded for simplified optical

setups assuming linear spectral dispersion with a slope of

2 pixels (20 µm in our case) across 560 µm. However, our

configurations exhibit unique non-linear spectral spread across

Fig. 7: Workflow to reconstruct HSCs with a given optical

system and a given reconstruction algorithm. The scene H

is acquired with the optical system thanks to our rendering

with dO. The acquisition is then mapped to an initialization

using the model through f . This serves as an input to a

reconstruction algorithm yielding Ĥ. The mapping function

is also used in the algorithm.

830 µm. The networks were therefore adapted with the map-

ping function f to process the acquisitions, as illustrated in

Figure 7.

For all HSSs, a unique binary mask with a random opening

ratio of 0.5 was used. Consistent with original methods, we

use the Adam optimizer and both learning rates and scheduler

schemes were maintained. Each network and configuration

was trained for 400 epochs, utilizing random cropping, flip-

ping, and rotation for data augmentation. For the (mAP)

configuration, DGSMP was trained with a learning rate of

0.8 × 10−4 and 500 epochs since the training process was

not steady with a larger learning rate of 10−4. The batch size

was set to 1, with gradient accumulation every 4 batches, and

training conducted on NVIDIA RTX A100 and A6000 GPUs.

Training loss was calculated as the Root Mean Square Error

(RMSE) between the ground truth HSSs and reconstructed
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HSCs. Evaluation metrics include RMSE, Peak Signal-to-

Noise Ratio (PSNR), Structural Similarity Index Measure

(SSIM), and Spectral Angle Mapper (SAM) [45]. The SAM

metric allows to evaluate the spectral accuracy of the recon-

structions.

D. Results

(AP) (SP) (mAP) (mSP)

RMSE ↓

(×10−3)

DGSMP 36.7 39.1 35.4 40.7
MST 27.4 26.6 26.6 28.5
DAUHST 22.1 20.0 20.3 20.7
RDLUF 23.0 25.3 24.4 25.4
PADUT 21.8 19.8 22.6 22.1

PSNR ↑

DGSMP 27.1 26.6 27.4 26.3
MST 29.6 29.9 29.9 29.3
DAUHST 31.4 32.3 32.2 32.1
RDLUF 31.1 30.2 30.6 30.3
PADUT 31.6 32.4 31.2 31.5

SSIM ↑

[0− 1]

DGSMP 0.855 0.826 0.829 0.843
MST 0.909 0.913 0.910 0.900
DAUHST 0.933 0.943 0.939 0.937
RDLUF 0.928 0.918 0.921 0.917
PADUT 0.934 0.942 0.931 0.933

SAM ↓

[0− 1]

DGSMP 0.074 0.092 0.082 0.083
MST 0.057 0.053 0.057 0.058
DAUHST 0.054 0.051 0.051 0.056
RDLUF 0.054 0.056 0.057 0.055
PADUT 0.051 0.049 0.053 0.052

TABLE I: Average RMSE, PSNR (in dB), SSIM and SAM

on all test scenes, for each optical system and reconstruction

algorithm.

As stated earlier, the networks were trained with our four

configurations on the CAVE dataset and were then tested

on the KAIST dataset. The quantitative results are presented

in Table I. SAM has been normalized between 0 and 1 to

be in the same range as SSIM. We compare the evaluation

metrics across all four configurations for each state-of-the-art

reconstruction algorithm. For some networks, the evaluation

metrics are slightly lower than those reported in corresponding

papers. This occurs because we adapted the networks to

process 512× 512× 28 HSCs, although they were originally

designed to reconstruct 256×256×28 HSCs. Thus, achieving

the same performance might require either more training

epochs or a deeper architecture to better capture small spatial

variations.

As seen in Table I, for a given reconstruction algorithm,

all four evaluation metrics show no significant difference

across all four configurations. The largest difference between

configurations is observed with DGSMP, where (AP) yields

a SSIM of 0.855 and (SP) yields a SSIM of 0.826, rep-

resenting a 0.029 SSIM difference. For other reconstruction

algorithms, the SSIM difference does not exceed 0.013. For

further details, the metrics for each scene can be seen in

the supplementary materials (see Supplementary Tables IV

to VIII). These non-significant differences indicate that the

encoded information quality remains consistent across all four

configurations, despite distortions and misalignments in some

System Training Test PSNR ↑ SSIM ↑

(SP)
Simple Simple 31.1 0.928
Simple Real 19.9 0.736

Real Real 32.4 0.942

(mSP)
Simple Simple 31.9 0.934

Simple Real 15.1 0.571
Real Real 31.5 0.933

TABLE II: Rendering ablation result, with PADUT algorithm.

System Mapping PSNR ↑ SSIM ↑

(SP)
Without 31.1 0.932

With 32.4 0.942

(mSP)
Without 29.8 0.914

With 31.5 0.933

TABLE III: Mapping ablation result, with PADUT algorithm.

configurations. Moreover, the configuration yielding the best

evaluation metrics varies with the algorithm used. This further

validates that processing results mainly depend on the quality

of the processing algorithm, rather than the optical system,

provided the system is accurately modeled. Thus, we can relax

certain constraints on optical design while achieving the same

processing performance.

E. Ablation Study

An ablation study was conducted to evaluate the impact of

rendering accuracy and mapping on HSC reconstruction. The

study was performed on two distortion-inducing configura-

tions: (SP) and (mSP), and exclusively employed the PADUT

algorithm, as it provided the highest reconstruction quality.

In the first experiment, we assessed the effect of incorrect

rendering during the training phase. PADUT was trained

using a simplified rendering, and reconstruction quality metrics

were evaluated with our realistic rendering. The simplified

model renders spectral planes using the (AP) system, which

introduces negligible distortions and serves as the baseline for

standard simplified frameworks [9], [11], [35]. To avoid bias

in reconstruction, the spatio-spectral spreading S curve was set

to match that of the realistic propagation model, minimizing

minor differences between the systems (see Supplementary

Figure 12). Spatial shifts were thus applied to the rendered

spectral planes to account for spatio-spectral spreading mis-

matches before summing them to form the acquisitions.

In the second experiment, the mapping function f was

entirely removed from the workflow, meaning a simplified

propagation model is used. Indeed, only the horizontal spatio-

spectral spreading characteristics of the configurations were

used for initial reconstruction and during the algorithm’s

processing, to account for the correct dispersion and to prevent

bias. This experiment isolates the influence of the mapping

function on reconstruction quality. Both (SP) and (mSP)

configurations were considered to account for distortions and

misalignments, with the mapping excluded during training and

testing.

Results for the first experiment are presented in Table II.

They demonstrate that using different rendering models be-
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tween the training and test phase significantly degrades recon-

struction quality. However, using the same rendering method

for both phases gives similar performances for all config-

urations, as seen in section III-D. This highlights the fact

that reconstruction algorithms cannot be effectively trained

on acquisitions rendered using simplified models with the

expectation of robust performance when tested on systems

employing realistic, non-simplified rendering processes, or on

real acquisitions from CASSI prototypes.

In the second experiment (see Table III), the removal of

the mapping function f from the reconstruction process only

caused a slight deterioration in reconstruction quality. We

hypothesize that the limited impact is due to the narrow spatio-

spectral spread difference between consecutive wavelengths,

which allows missing spatial information to be interpolated

from neighboring wavelengths during training. Still, exclud-

ing a correct mapping during the training phase notably

reduces the achievable quality metrics, thereby amplifying the

performance gap relative to systems without distortions or

misalignments.

Ultimately, rendering accuracy during both training and test

has a much larger influence on reconstruction quality than the

inclusion of a correct mapping function. However, a proper

mapping still contributes to improved algorithm performance,

providing a non-negligible enhancement in reconstruction ac-

curacy. Both steps are therefore important to reach the best

reconstruction quality with a given algorithm.

IV. CONCLUSION

We focused on the design and performance evaluation of

Coded Aperture Snapshot Spectral Imaging (CASSI) systems.

Our work aimed to bridge the gap between optical hardware

and computational processing by providing realistic simula-

tions and analyses that consider the complexities of actual

optical setups.

Our first contribution was the implementation of coded

aperture hyperspectral optical systems within a differentiable

ray-tracing framework. This enables to render synthetic coded

hyperspectral images that accurately incorporate optical distor-

tions and aberrations. By leveraging this framework, we could

simulate four optical designs more precisely than with sim-

plified mathematical models. Secondly, a realistic propagation

model was utilized to map 2D coded measurements to estima-

tions of hyperspectral cubes, serving both as the initialization

and throughout the reconstruction process. This approach

allowed for improved reconstruction by accounting for the

exact optical characteristics of the configuration, including

geometric distortions and spectral dispersion. This workflow

can be generalized to a great variety of systems with our

framework, given the propagation model is known. Thirdly,

we demonstrated that geometric distortions and misalignments

in CASSI systems have a marginal impact on reconstruction

performance. Our evaluations showed that the choice of the

reconstruction algorithm plays a more critical role in deter-

mining the quality of the reconstructed hyperspectral cubes

than the specific optical system used, provided the system

is accurately modeled, incorporated into the reconstruction

process and used to render realistic acquisitions. We conclude

that the same amount of information is transmitted regardless

of the system used.

Looking forward, this work yields the comparison of dif-

ferent CASSI system performances using information theory

measures, facilitating more informed design choices [46]–

[48], with no need for a processing algorithm to evaluate

the design. It additionally opens several avenues for future

research. The differentiability of the ray-tracing simulator

can be exploited for optimizing coded apertures, potentially

leading to designs that maximize information capture or

minimize reconstruction error. Dynamic mask designs could

also be achieved, accurately adapting to a scene in order to

process several coded acquisitions and reach better information

acquisition. Finally, this work paves the way for end-to-end

optimization of CASSI systems, integrating both optical design

and computational algorithms to achieve optimal performance

in co-design computational imaging.
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