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1 Introduction
The rapid increase in the number of IoT services mirrors the growth in IoT devices, neces-
sitating a shift in IoT systems’ Quality of Service (QoS) paradigm. This shift moves away
from a one-size-fits-all QoS approach to a tailored QoS model, where each IoT service is pro-
vided with precisely the QoS it requires. In 5G networks, Network Slicing (NS) enables this
customization by creating bespoke network slices. Coupled with trends such as Zero-Touch
Networks, autonomous IoT systems, and Self-Driving Networks, NS must dynamically create,
manage, and terminate slices on demand. In our study [1], we address this need by proposing
an autonomous DRL-based slice placement agent.

2 Network slicing concept
The concept of Network Slicing , introduced by the NGMN (Next Generation Mobile Network),
is closely associated with 5G networks. As illustrated in Figure 1, its operation relies on two
key components: a physical infrastructure and slice requests. Computing nodes have limited
resources such as CPU, RAM, and storage, which must be shared among the Virtual Network
Functions (VNFs) of all requests. Similarly, the limited bandwidth of physical links must
be efficiently utilized for virtual link chaining, as depicted in the figure. This work focuses on
optimizing network slicing in terms of the acceptance ratio, i.e., the number of slices successfully
deployed.

FIG. 1: Network Slicing illustrtion

3 Oneshot Deep Reinforcement Learning agent
Before our work, DRL-based Network Slicing (NS) approaches sequentially processed VNFs,
predicting placements one at a time. However, this method conflicts with ETSI OS MANO [3],



which requires all VNF placement decisions to be submitted simultaneously. Our algorithm
addresses this by using micro-agents to determine all placements in a single DRL iteration
(Oneshot). Each micro-agent trusts prior decisions, and if errors occur, the master agent learns
from them, updates the policy, and redistributes it for better future placements, aligning with
DRL’s long-term optimization approach.

4 Simulation results
Figure 2 presents some simulation results using ns3-gym simulator comparing slice placement
acceptance ratio under load balancing constraints on an infrastructure similar to the one in
Figure 1 (inspired from the infrastructure in [2]). Our Oneshot DRL agent is evaluated against
six alternatives: (1) Sequential DRL, placing VNFs one by one with rewards only for the
last, (2) Integer Linear Programming (ILP), achieving up to 100% placement but requiring all
requests in advance and exhibiting all-or-nothing behavior, (3) GAVA, a genetic algorithm, (4)
Random Performer, placing VNFs randomly, (5) Max Performer, placing VNFs on nodes with
the most resources, and (6) First-Fit, placing VNFs on the first available node. Results show
that Oneshot DRL performs comparably to ILP when resources are abundant and outperforms
it under resource constraints, successfully placing around 50% of slices compared to ILP’s 0%.

FIG. 2: Some simulation results from [1] comparing acceptance ratio under load balancing constraints

5 Conclusions et perspectives
In article [1], we proposed a DRL algorithm for autonomous network slicing, designed for seam-
less transition from simulation to real-world deployment. Future work will focus on deploying
the algorithm on Grid5000 and later on a 5G platform. Additionally, a distributed version will
be developed to address multi-domain scenarios.
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