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Abstract. In order to ease visual inspections of exterior aircraft fuselage, new technical approaches have been8

recently deployed. Automated UAVs are now acquiring high quality images of the aircraft in order to perform offline9

analysis. At first, some acquisitions are annotated by human operators in order to provide a large dataset required10

to train machine learning methods, especially for critical defects detection. An intrinsic problem of this dataset is11

its extreme imbalance (i.e there is an unequal distribution between classes). The rarest and most valuable samples12

represent few elements among thousands of annotated objects. Deep Learning-only based approaches have proven to13

be very effective when a sufficient amount of data is available for each desired class, whereas less complex systems14

such as Support Vector Machine theoretically need less data, and Few-Shot Learning dedicated methods (Matching15

Network, Prototypical Network, etc.) can learn from only few examples. Those approaches are compared on our16

applicative case. Preliminary results show the existence of empirical frontiers in term of training dataset volume that17

indicate which approach might be promoted. We propose a method to combine different approaches in order to achieve18

best performances on defect classification, that is an extension of previous work.119

Keywords: Deep Learning, Few-Shot Learning, Hybrid Model, Defect Detection, Support Vector Machine, Visual20

Inspection.21

*Julien Miranda: jmiranda@laas.fr22

1 Introduction23

Visual inspections are one of the most common operations for aircraft maintenance. A major24

inspection task, performed by maintenance operators, consists in detecting defects on an aircraft25

fuselage. To do this, they must use mobile elevating platforms to reach positions from where they26

can properly observe the aircraft skin, looking for those defects. To make those inspections faster,27

more effective and less painful for human experts, mobile platforms can be used,2, 3 especially28

automated UAV deployed by the French start-up Donecle, for which a localization with respect to29

the aircraft can be accurate to a few centimeters, using 3D models as shown in Figure 1.30
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Fig 1 Automated drone inspection from left to right: drone with a tablet running the analysis software application, 3D
model used for autonomous localization, drone inspecting aircraft.

Thus using automated drone to acquire images on the whole surface opens new perspectives for31

aircraft maintenance traceability and automation.1 Visual inspection from images can be organized32

in two main tasks: object detection (in our context, an ”object” corresponds to a salient image33

region on the fuselage), and object classification. In this paper we focus on the second task, using34

of state-of-the art object detection methods: automatic visual inspection relies on the use of a Deep35

Neural Network (DNN) as object detector4 that performs well enough for our application (some36

detections results are displayed in Figure 3). Figure 2 contains images acquired by the drone under37

various conditions representative of the variability of the inputs and the difficulties encountered:38

top views (top, left) show that images often contain several specular areas due to the external39

lightning of the hangar. This difficulty is minimized by the image overlapping (about 30%) which40

allows to see the areas under reflection on the next acquisitions. Bottom views (top, right) show41

images that are much less bright. These variations in lightness illumination are mitigated by the42

presence of an on-board lightning device (LED rings). In addition, as shown in 3 some scenes43

contain almost no objects (bottom, left), while others contain dozens of them (bottom, right).44
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Fig 2 Images acquired by drone. Fig 3 Detected objects.

Growing popularity of Deep Learning (DL) methods has led to great advances in Computer45

Vision during past years: more specifically, image classification has become a relatively simple46

problem provided there are enough available data to train deep models (they overpass human per-47

formances for this task since 2015). ImageNet5 and CIFAR6 challenges give to the research com-48

munity ways to compare and improve their algorithms on public datasets. However in real world,49

accessing those data is often an impassable barrier. For the target application, defects such as light-50

ning burns are not frequent enough to envision a classic DL approach, while a lot of other objects51

that have to be discriminated are very common. Thus, this paper concerns object classification,52

considering very high imbalance ratio (1:5000) between classes.53

We first establish that with extreme class imbalance ratio, state-of-the-art methods are not suf-54

ficient and that there is a need to take advantage from both the power of big data algorithms and55

from more specific methods dealing with few data for some classes. To do so, we demonstrate that56

with our industrial data, different machine learning approaches are relevant for different volumes57

of balanced training set. Then we evaluate those models on extremely imbalanced datasets and58

3



propose a method to combine models into an hybrid classifier able to deal with common objects59

as well as very rare ones. Finally, this hybrid strategy is also validated and characterized on public60

datasets, modified to create different imbalance ratios.61

Section 2 describes our context: how data are acquired, what are the objects and the classes. In62

Section 3 we describe the machine learning approaches that could be evaluated for our application63

and justify the choice of Prototypical Network (see Table 2), before showing their limitations64

for high imbalance ratio between classes in Section 4. Finally we propose an hybrid method in65

Section 5 and compare results with others approaches on an imbalanced dataset. Those sections66

refer to our preliminary work published in QCAV conference proceedings.7 The next ones are67

new material and results: based on the previously justified notion of hybridization, we propose to68

deepen these methods through general heuristics in Section 6, then by considering multiple views69

of the same object in Section 6.1.3. Section 7 is dedicated to the experimentations and analysis70

of the results obtained by adding these new material. Finally, Section 8 will discuss possible71

improvements for the classification of rare defects and new possibilities offered by the proposed72

new system, which go beyond the classification framework.73

2 Acquisition and dataset74

During inspection, images are taken by an autonomous UAV in order to cover the entire aircraft75

surface. For a typical aircraft, about 1, 200 high definition (16 MP) images are required, with an76

overlap between two successive acquisitions ensuring that each zone is acquired at least twice.77

This reduces the negative impact of specular components and allows to fuse classification results78

on the same real object seen on several views. The matching of objects from different points of79

view is made possible by using the location data of the drone thus on the on-board camera, but will80
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not be covered in this paper.81

Acquisitions are sent to a separate laptop or tablet that can process automated analysis using82

GPUs. To create machine learning data sets, maintenance company experts annotate some batches83

of these acquisitions.84

All objects that can occur on the fuselage have to be registered for various applications com-85

posing a general visual inspection (paint state evaluation, markings analysis, etc.). However using86

such a network with high definition images do not allow very small objects classification (less than87

1mm2) in reasonable time whereas those objects are crucial as they can be critical defects (light-88

ning burns). Thus potential defects (small or ambiguous objects) are gathered for a supplementary89

classification step which is the object of this work.90

Addressing the defect recognition as an image classification problem allows the use of ad-91

vanced techniques that are much more complex to be introduce into a one-step object recognition92

algorithm in which detection and classification are inseparable,4, 8 that perform the best result in93

the state of the art on object recognition task (using mean average precision as metric).94

Lightning
burn

Paint
defect

Screw
Screw
rash

Rivet
rash

Rivet

0.03%0.25% 13% 12% 36% 38%

Fig 4 Unbalanced dataset description.

Class Lightning burn Paint defect Screw Screw rash Rivet rash Rivet Total
Samples 11 91 4,758 4,496 13,228 13,959 36,542

Table 1 Unbalanced dataset composition with number of samples by class.

The extremely unbalanced number of samples between classes is a specificity of our data distri-95

bution compared to reference datasets. In this paper, we will consider a dataset with classes given96
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in Table 2 illustrated in Figure 4.97

This database is not exhaustive and the image quality might not be representative of Donecle98

quality of acquisition but still gives an overview of the problem solved. In particular, several other99

types of objects are found on the fuselage of an aircraft and will not be mentioned here, for the100

sake of clarity and conciseness. Thus, while some classes are numerous enough to envision taking101

advantage of DL methods (screws or rivets), others are only represented by few samples (lightning102

burns) and may need dedicated Few-Shot Learning (FSL) methods. We splitted the original dataset103

into a train set (80%), a validation set (10%) used to tune hyper-parameters, and a test set (10%)104

used to obtain the presented results.105

2.1 Model complexity and required amount of training data106

How much data is needed for a given trainable model to perform well on real world data is a cru-107

cial question in Machine Learning. Finding an easy and accurate method to determine the required108

amount of data to reach a target generalization performance is the topic of many researches: sta-109

tistical learning theory has given some clues, introducing capacity measures for such algorithm,110

e.g. the Vapnik-Chervonenkis dimension,9 from which generalization bounds can be applied to111

learning algorithms like SVM. However those bounds are vacuous for complex models such as112

DNNs.10 Thus, empirical tests have been also performed to observe performances on classifica-113

tion tasks versus volume of training data: a logarithmic relationship seems to exist,11 but might be114

subject to a potential diminishing return on log-scale.12 Based on those empirical observations the115

required number of samples to reach good accuracy is below the number of parameters of a Deep116

Network, but it still needs a lot of images to be accurate. Transfer learning is a highly popular way117

to train models using representations learned from another task.13
118
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2.2 Learning from imbalanced data119

Several approaches can be used to cope with imbalanced datasets. Data-level method modifies the120

data by oversampling, under sampling, transforming or generating training samples. Algorithm-121

level approach tunes existing learning algorithms to adapt them to data with skewed distributions.122

Hybrid methods combine those two with the possible add of handcrafted rules or another algo-123

rithm.124

While existing works in class imbalance focus on imbalance ratios ranging from 1:4 up to125

1:100, classification with extreme imbalance ratio that we are facing, and that can be found as well126

in other applications (fraud detection, detection of dangerous behavior, etc.) remains a challenge.14
127

Precisely, the rarest data are often the most valuable ones, like in the present work.128

3 Existing Machine Learning approaches129

3.1 Deep Neural Network130

DNN are very efficient for the classification task on reference datasets, assuming a sufficient131

amount of data. Deep Convolutional Neural Networks (CNNs) have indeed reached high accuracy132

rate (exceeding 90%), among the most effective approaches: Wide Residual Network,15 Fractional133

Max Pooling,16 Dual Path Network17 or other advanced methods.18–20
134

We trained those models and fine-tuned some popular networks (ResNet, Inception, etc.) with135

available pre-trained weights. The best accuracy on our validation set was achieved by a fine-136

tuned ResNet50 architecture so we used this model, described by Figure 5, as CNN baseline for137

our problem. It is composed of residual blocks with skip connections that have proven to be very138

efficient.21
139
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convolution 1 7× 7, stride 2
max pooling 3× 3, stride 2

convolutions 2.X

 1× 1, 64
3× 3, 64
1× 1, 256

 ×3

convolutions 3.X

1× 1, 128
3× 3, 128
1× 1, 512

 ×4

convolutions 4.X

 1× 1, 256
3× 3, 256
1× 1, 1024

 ×6

convolutions 5.X

 1× 1, 512
3× 3, 512
1× 1, 2048

 ×3

average pooling
fine-tuned dense layer

softmax

256− d

1× 1 64

3× 3 64

3× 3 256

+

Fig 5 ResNet50 architecture (left) and residual block example (right).

All those DNNs are sensitive to data imbalance.22 Common methods to tackle this issue are140

data-based approaches, and consist in creating new samples using transformations on real images,141

or generating random realistic samples with Generative Adversarial Networks (GANs).23 Those142

methods have proven to be efficient, but they usually do not apply in case of extreme imbalanced143

dataset like ours.144

3.2 Support Vector Machine145

Another widely used learning approach, popular until the rise of DL hegemony in Computer Vision146

is Support Vector Machine (SVM). It is a statistical learning approach that needs image represen-147

tation as inputs. It was first used with hand-crafted descriptors, such as Histogram Of Gradient148

(HOG).149

We also tested SVM with representations learned from unsupervised learning, using a GAN150

trained to generate realistic images. Recent works have shown that replacing the softmax layer of151

a DNN by a SVM can give significant gain on classification datasets.24 Moreover, data imbalance152

can be integrated into the algorithm using class weights or cost-sensitive learning. SVMs are153

sensitive to lack of data and to imbalanced classes as well as CNNs and can benefit from the same154

8



data augmentation techniques.155

On our test set SVM with HOG performs poorly (maximum accuracy is 0.76 while using the156

full training dataset), and provides good results on medium datasets (100− 1000) when combined157

with learned representations (from pre-trained models and GAN). However it never outperformed158

our CNN baseline, so we did not include SVM on further comparisons.159

3.3 Few-shot learning: algorithm-level approaches to face the lack of data160

FSL algorithms are usually performing n shot, k−way learning, with n being the number of needed161

learning samples and k is the number of possible classes for a new sample during inference. Two162

main public datasets dedicated to FSL algorithm training and test have been created. Omniglot25
163

is a dataset composed of handwritten characters from different alphabets and MiniImageNet is a164

subset of ImageNet. Samples are shown in Figures 6 and 7. Next, we describe some of most165

popular FSL algorithms.166

Fig 6 Omniglot samples from 6 alphabets.

Fig 7 MiniImageNet samples from 6 classes.

To learn from few data, algorithm-level solutions have been proposed. Some of them are con-167

sidering meta-learning processes26–28 while others focus on the ability to learn metric.29
168
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Siamese Networks. This approach combines multiple networks.30 To be called ’siamese’, two169

networks have to share the same architecture (same layers with the same parameters) and to share170

learning loss and weights of the junction layer. The choice of the loss function is of crucial impor-171

tance. Some known examples are:172

Usual cross-entropy: L = −y log(p) + (1− y) log(1− p)173

Triplet-loss:31 L = max(d(a, p)− d(a, n) +m, 0)174

With the triplet-loss formulation, d is the L2 loss (or another distance function), a is the input

sample from the dataset, p is a sample from the target class (randomly picked), n is a sample from

another class. m is an hyper-parameter (margin). With this method, it is possible to perform metric

learning, then to use a classical nearest-neighbor classification algorithm to separate classes. This

last operation is not part of an end-to-end training process and so cannot be called optimized for

the task.

Matching Networks32 introduced few-shot networks based on the idea of making nearest neigh-

bor algorithm learnable during training process by using it in a differentiable form. This allows

to perform end-to-end fully optimized learning and is achieved by embedding a sample into a

representation space and then performs a nearest-neighbor-like algorithm with the equation:

ŷ =
k∑

i=1

a(x̂, xi)yi

where ŷ is the model prediction, xi the support features, yi the support labels, x̂ the query sample175

features and a is a similarity function. This approach is the first end-to-end few-shot dedicated176

model, and outperforms Siamese network for this task, see Table 2.177

Prototypical Network29 are built within the assumption that a single prototype per class can be178
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used to compute distance in the representation space. If the used distance is the Euclidean distance,179

then the best prototype (in the sense that it minimizes the distance between a prototype and supports180

points) is the mean of the support set representations.181

Model Agnostic Meta Learning28 (MAML) is a very different approach for FSL that uses a clever182

initialization for deep models.18, 33 MAML is a way to learn how to initialize weights by optimizing183

the generalization of the model. We took Prototypical Networks as few-shot algorithm baseline,184

as they obtain the best performances on reference datasets and can dynamically perform k-way185

classification.186

5-way Accuracy 20-way Accuracy
Omniglot 1-shot 5-shot 1-shot 5-shot

Siamese 97.3% 98.4% 88.2% 97.0%
Matching 98.1% 98.9% 93.8% 98.5%
Prototypical 98.8% 99.7% 96.0% 98.9%
MAML 98.7% 99.9% 95.8% 98.6%

5-way Accuracy
MiniImageNet 1-shot 5-shot
Matching 44.2% 57.0%
Prototypical 49.4% 68.2%
MAML 48.07% 63.15%

Table 2 Recent methods on FSL task.

We took the results from28 and original papers, gathered them in Table 2.187

4 State of the art methods evaluation188

Based on the state of the art, we tested the described approaches on our datasets : original training189

dataset is sub-sampled to obtain training datasets of increasing size from 1 sample per class to190

6, 000 samples per class, first to evaluate which one performs the best for a given number of191

training samples when there is no extreme imbalance. Results displayed on Figure 8 show that192

these methods have good performances when the classes are limited (< 4). With a large number193

(> 4), we found DL methods trained with large dataset (6, 000 per classes) are more accurate. We194

have also implemented classifiers built on a SVM fed by HOG descriptor as well as on a SVM195

fed by ResNet features, that performed poorly on our test. We used prototypical networks, which196
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regarding the current state of the art metrics, see Table 2 appears to be the best alternative in terms197

of precision and recall for both the simple (Omniglot) and the hardest (minImageNet) datasets.198

4.1 Experiment199

To evaluate model relevancy regions in term of real training dataset size, we used object classes200

that we have in sufficient number to train deep models, then create decreasing subsets from the201

original dataset to observe the effect on top-1, top-2 and top-3 accuracies, with top-k accuracy202

being the proportion of samples for which the ground truth label is one of the k most probable203

predicted classes. We used common data augmentation techniques (horizontal and vertical flip,204

rotation, crop) to obtain presented results. For more general application of our work we also205

tested our method on public available datasets that where truncated in order to artificially create206

extremely imbalance datasets that are subsets of well known sets. For those dataset, we observe207

the performances on the randomly under-sampled class, which were randomly chosen.208

4.2 Results209

Considering ResNet model, we found that the assertion made in Sun et al.11 that ”performance210

increases logarithmically based onvolume of training data” fits our results in accuracy for top-k211

accuracy score in classification (k ∈ N, k < Nc) with Nc the number of classes, however we did212

not test this assumption for datasets larger than 6, 000 elements per class. In Figure 8, dotted-lines213

represent log-regression on the obtained results.214

We also observed the same relationship for FSL baseline for 2-way to Nc-way task. As ex-215

pected it appears than under a certain amount of available data, DL methods are less accurate than216

prototypical network: top-1 accuracy of ResNet is lower than 7-way prototypical classifier: for217
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those classes it would be preferable to use a FSL dedicated approach. Results are illustrated in218

Figure 8: a frontier between two approaches is empirically set around 100 samples per class. The219

problem that stands next is simple: we cannot know in advance which model will be the most220

relevant for a given sample.221

1 10 100 1,000 10,000 100,000

0.6

0.8

1

Lightning burns Paint defects Screws Rivets

real (not augmented) training dataset size (samples per class)

ca
te

go
ri

ca
la

cc
ur

ac
y

Prototypical (6-way)
Prototypical (3-way)
Prototypical (2-way)

top 1 - Resnet50
top 2 - Resnet50
top 3 - Resnet50

Fig 8 Different approaches performances regarding training dataset size.

5 Hybridization with Random Support Sampling (HRSS)222

5.1 Description223

Since CNN baseline top-3 accuracy giving good results, and 3-way Prototypical Network perform-224

ing significantly better than 6-way (see Figure 8), we propose to combine classic DL model and225

FSL approaches in an hybrid system to combine their advantages.226

The idea of our approach is to first estimate which classes are the most likely ones for a given227

input image, using a DL model with data augmentation. Then, in case one of the possible classes228

is known to be highly under-represented, few-shot dedicated model is applied, and a combination229

of the results from those two model gives the final output. If all the possible classes are known to230

be well represented, the output is the CNN baseline output. We tested our approach and compared231
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it with other methods on our test dataset. To do so, we took a defect class with 10 training sam-232

ples while other classes are trained with 3, 000 samples before any augmentation.We compared233

ResNet50 with data augmentation, Prototypical Network with (10-shot, 6-way), and our hybrid234

method with top-3-way linking and two hybridization rules (few-shot wins and averaging outputs235

of deep model and few-shot model).236

5.2 Results237

We observed global categorical accuracy, the precision, recall and average precision on the imbal-238

anced defect class (varying the algorithm defect output probability), results are shown in Table 3.239

We can see that hybrid method improves precision, recall and average precision (AP) for rare240

defect class. The best performances were obtained using average output hybridization method.

Rare defect classification performances
Truncated dataset Categorical accuracy Precision Recall AP
Hybrid Method (combined) 0.877 0.97 0.77 0.79
Hybrid Method (FS) 0.867 0.94 0.71 0.71
Prototypical network 0.821 0.84 0.75 0.75
ResNet50 0.863 0.90 0.75 0.77

Table 3 Classification results on imbalanced dataset.
241

The biggest gain is visible on precision score, which is very important for the addressed indus-242

trial application with big and imbalanced dataset, because operators can only handle a reasonable243

amount of false positive alerts. Nevertheless, the recall score is not high enough to constitute a244

truly reliable aid to the operator. Nevertheless, the recall score is not high enough to constitute a245

truly reliable aid to the operator. This is why, despite these encouraging initial results with regard246

to the hybridization of methods, this naı̈ve approach seems to have considerable room for improve-247

ment. Indeed, the choice of the support element vectors of the highly represented classes was not248

questioned, and the interfacing of the two models is naive.249
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6 Heuristics for class subsampling250

In order to overcome the imbalance of classes in the context of a classification problem by ma-251

chine learning, some methods have been proposed in the literature34 for oversampling as well as252

undersampling operations. The oversampling corresponds to the data augmentation process al-253

ready mentioned in the previous sections. We describe here some undersampling heuristics that254

can be applied to the most well represented class sets.255

6.0.1 Tomek’s links256

A sub-sampling approach is to try to remove unrepresentative or too noisy samples. The notion257

of Tomek’s link35 can be used for this purpose. Given a metric space, two examples Ei and Ej of258

two different are a Tomek link if there is not an example Ek, such that d(Ei, Ej) > d(Ei, Ek) or259

d(Ei, Ej) > d(Ej, Ek). This concept can be used via two purposes:260

• Undersampling: the elements of the majority classes that belong to a Tomek link are deleted.261

• Cleaning: all elements that belong to a Tomek link are deleted.262

The use of this technique is possible in our case by considering the representation space learned263

by the prototypical network provided with the Euclidean distance. Thus we can use this method to264

sub-sample over-represented classes.265
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Fig 9 Undersampling iteration using Tomek’s link: Two classes (left), sample of biggest class belonging to Tomek’s
link (center) and resulting datasets (right).

An iteration of sub-sampling over represented classes dataset using Tomek’s link is illustrated266

in Figure 9: The elements of over-represented classes are highlighted (in black) and then deleted.267

6.0.2 Condensed Nearest Neighbour Rule268

Another iterative approach is based on the progressive construction of sets, selecting only those269

examples that cannot be explained by a simple classification based on elements already known.270

The idea is that the information provided by the elements that are correctly classified by this sim-271

ple approach is already largely contained in the previously selected examples. Condensed Nearest272

Neighbour Rule proposed by Hart36 and described in 1 is an algorithm reflecting this reasoning us-273

ing neighbour algorithm as the naive classifier. It does not guarantee to find the smallest consistent274

subset.275

6.0.3 One-sided selection (OSS)276

It is possible to combine the two previous approaches by first applying the Tomek rule (under277

sampling) to eliminate noise and edges, then use the Condensed Nearest Neighbour algorithm.37
278
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Algorithm 1 CNN rule.
Require: Let E be the whole considered set Ec1 be the under-represented class and Ec2 be the

over-represented class .
Ê ← Ec1

Randomly select x ∈ E
Ê ← Ê ∪ {x}
Classify each remaining examples in E using 1-k-NN. All misclassified elements are noted Xf .

for all xf ∈ Xf do
Ê ← Ê ∪ {xf}

end for

As it was proven to be more efficient than only one of these heuristics,34 we will consider this279

approach.280

6.1 Proposed methods281

The described above methods allow to under-sample the data under consistency consideration.282

However, two major pitfalls remain. First, they are likely to delete ambiguous examples, that283

might be noisy samples or outliers, but can also be interesting samples in crucial feature space284

zones. Second, there is still a significant amount of randomness in these algorithms. We propose285

a method to select the best samples that tackle those issues. The idea is to clusterize the potential286

support samples in the feature space provided by the prototypical neural network, then to keep287

only the closest elements to the prototype of each cluster. Using the prototype could be an option,288

but as it does not correspond to a real sample, this will increase the dependency on the encoding289

function (which is learnt), and the operation will not be under-sampling any more.290

6.1.1 Meta-Data Filters on support dataset (MDF)291

Since Deep Learning methods require thousands of data to be accurate, it is necessary to gather292

learning examples from a variety of sources (different airline companies, different aircraft models,293
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indoor and outdoor acquisitions, etc.). On the contrary, FSL is based on a handful of examples294

and it is therefore possible to avoid these mixtures to automatically consider problem-specific295

databases. We introduce meta data filters to create those adapted subsets for all categories. To296

improve the synergy between the deep model and the FSL method, we can also select examples to297

use as supports between two classes among those that could not be separated by the deep model298

during the learning phase. This is done using the learning confusion matrix. This makes it possible299

to obtain a matrix of the support examples to be selected as a priority for the separation of two300

given classes.301

6.1.2 Cluster-based Medoid Prototypes (CMP)302

To prepare N-shot learning task, we need to create prototypes from support samples. As we ob-303

served that classification accuracy growth with N , we set N to be equal to Nc1 the cardinal of the304

under-represented class. We want to select the N best samples among Nc2, with Nc2 >> Nc1.305

Prototypical Neural Network provides a feature space where euclidean distance can be used. We306

propose to create clusters in this space with Density-Based Spatial Clustering of Applications with307

Noise (DBSCAN) that is a very popular method,11.38 Once the clusters are created, we simply take308

the acquired sample that is the closest to the each cluster centroid (the medoid) as support sample309

for the class. The Figure 10 illustrates the difference between 9 randomly selected supports for310

the ’screw’ class (left) where some screw models (numbered 1 and 2) can be represented more311

than once in the support set and medoids selection after clustering (right) where each support is a312

different type of screw.313
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Fig 10 9 random screw supports (left) and 9 screw medoids selected after clustering (right).

The previously described heuristic can be used in many cases of extreme imbalance dataset.314

Another aspect, taking advantage of the specificity of our acquisitions, which consists of multiple315

shots of each fuselage area, is the linking of images corresponding to the same part of the aircraft.316

The following section discusses this approach.317

6.1.3 Sequence-Wise Prototypical Network (SWPN)318

In this section we discuss the possibility to use several views of the same object to create a proto-319

type in the prototypical feature space for further classification. It should be remembered that the320

images acquired and all defects detected are geolocated relative to a 3D model of the aircraft: an321

example of such a model is given in Figure 2. In addition, a controlled overlay allows each of322

them to be visible on several of those. We propose to match these elements based on the position323

in space and the type of object predicted by the Deep Neural Network (referred to is previous sec-324

tions). We can thus form sequence of images of the same object. From this point we embed all325

the elements of the sequence into the prototypical feature space, then create a query prototype to326

be classified by dedicated FSL classifier. Two views of the same objects are shown in Figure 11:327

here the objects are lightning strikes: in itself measures only a few square millimetres, but as it328
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was previously detected during a manual inspection, a black circular pad (much more visible in the329

image) with an identification number was added to the fuselage. The sequence embedding process330

is illustrated in Figure 12 with two extracted images of the same detected lighting strike.331

Fig 11 Lightning strike from two points of view.

Fig 12 Sequential embedding for classification using prototypical neural network.
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7 Experiment and analysis332

In this section, we compare the results obtained by new materials combinations under one consis-333

tent dataset: Hybridization with Random Support Sampling (HRSS), Cluster-based Medoid Pro-334

totypes (CMP), One-Sided pre-processing for Support dataset cleaning (OSS), Meta-Data Filters335

(MDF) on support dataset and Sequence-Wise Prototypical Network (SWPN).336

We sequentially apply the described algorithms to combine them, taking care of the order337

of operations. For example, the combination MDF + SWPN + OSS + CMP is obtained by the338

following steps:339

1. Filter the elements using the available meta data: here we use the airline and aircraft model340

that correspond to the acquisitions after noticing that many elements are specific to them.341

2. Associate views of the same objects using the SWPN.342

3. Use OSS to reduce the size of over-represented class sets.343

4. Select support prototypes using CMP.344

This allows to evaluate performance gain of each of the proposed hybridization scheme. We345

compare the Deep Learning and FSL baselines with several hybrid models on both CIFAR-10346

truncated dataset (we truncated each class then consider the mean average precision over those347

classes) and industrial dataset.348
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Fig 13 Precision and Recall for different methods.

In this figure we can see the significant improvements made by the different additive modules.349

In particular, the recall score is increased. It should be noted that the methods most specific to our350

application, namely the use of meta-data or sequencing of requests for the prototypical network,351

provide the most significant benefits. Nevertheless heuristics methods of sub-sampling which are352

model-agnostic are also effective. We have therefore presented general and effective methods as353

well as methods that are more specific to the application in question and even more effective.354

8 Conclusion and prospect355

In this paper, we analysed different machine learning approaches that give incomplete answer to356

a practical use-case of FSL due to extreme data imbalanced. As in many applications,39, 40 the357

rarest data are the most critical, so there is a need to be specifically accurate on those classes. We358

compared those methods with different training dataset sizes with balanced classes, then with a359
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training dataset that contains one few-sampled defect class. We proposed an hybrid method that360

performs better on our dataset for the under represented defect classification.361

Some drawbacks of our approach might lead to future works on the following aspects:362

Required data for training hybrid method. By now we needed to train multiple models with363

sub-sampled training sets to define boundaries (in term of training samples) that delimits which364

model is appropriate for which class. Using the observed logarithmic relationship between train-365

ing set size and accuracy an analytical estimation of those boundaries might help reducing the366

number of needed training phases.367

Few shot dataset representativeness. For FSL methods, the representativeness of the support368

set is not granted. Performances expectations are conditioned by the likelihood of not having an369

unrepresentative support set and the quality of these tiny data sets can be easily altered by the sim-370

plest noisy or outlier example.371

Hybrid learning by confusion transfer. We introduced some methods to improve classification372

performance of an hybrid algorithm, however those methods are focusing on the choice of the sup-373

port vector for prototypical network regardless of the existing confusion of tit could be possible to374

use samples not correctly learnt by the DL model as support vector for the FSL method, using the375

learning confusion matrix.376

377

Overall, we discussed several machine approaches and proposed a data-aware hybridization378

method that applies to rare defects detection on aircraft fuselage and could be extended to many379

other fields with extreme imbalanced classes as it relies on the well-known effectiveness of DL380

approaches using transfer learning and simplicity of Prototypical Networks.The chosen method381

not only allows a significant improvement in the measured empirical risk, but also provides a real382
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mean of adapting the classification model through comprehensible actions in a semantic space.383

Opens the way to new prospects.384

Online-adaptive classification model In the same vein, the presented work paves the way for385

online learning to complement the offline learning of the core model. Indeed, corrections made386

by a human operator can be considered as excellent candidates to support a prototype class with387

regard to the knowledge of effective confusions.388

Using zero-shot learning for non-exclusive classification389

Up to now we have discussed the case of classification of mutually exclusive classes. However,390

this assumption is not generally valid. Indeed, two distinct classes can be present in the same area391

of interest, in particular defects that tend to appear on protruding objects such as lightning strikes392

on screws. Various methods to tackle this issue can be found in the Machine Learning literature:393

it is possible to learn exclusive classes with a classic neural network classifier and modify the394

output interpretation function taking not only the class with the maximum probability but applying395

a threshold on the probabilities of all classes instead. We propose to use zero-shot learning to396

avoid those modifications: the idea is to create artificial prototypes that are the combination of397

N-shot embedding of real classes. By this we can produce all the class combinations automatically398

and classify them. This technique can be applied for refining classification results. In particular,399

defects that may occur preferentially on structural elements (such as lightning strikes on screws400

or rivets) can be categorized in this way. Figure 14 illustrates the creation of such a prototype:401

black filled circle and diamond are the medoids for respectively screws and lightning strikes and402

the black filled pentagon is the mean of those medoid and represent the theoretical prototype for403

screws struck by lightning.404
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Fig 14 Zero-shot learning for class combination.
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39 B. Krawczyk, M. Galar, Ł. Jeleń, and F. Herrera, “Evolutionary undersampling boosting for502

imbalanced classification of breast cancer malignancy,” Applied Soft Computing 38, pp. 714–503

726, 2016.504

40 M. J. Siers and M. Z. Islam, “Software defect prediction using a cost sensitive decision forest505

and voting, and a potential solution to the class imbalance problem,” Information Systems 51,506

pp. 62–71, 2015.507

Julien Miranda is a Ph.D student at LAAS -CNRS laboratory. He is working in partnership with508

the start-up Donecle on the subject of defect recognition on aircraft fuselages based on images ac-509

quired by a drone. He is interested in machine learning theory and in particular the expressiveness510

of models, decisional robustness and generalization theory.511

Stanislas Larnier obtained a PhD degree in Applied Mathematics from Université Paul Sabatier,512
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