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Abstract
The leaf area index (LAI) is vital for assessing plant photosynthetic activity, crucial for
optimising  orchard management.  This study presents a method to estimate leaf  area
density  (LAD)  variations  and  tree  LAI  using  LiDAR data  from unmanned  ground
vehicles (UGVs). Combining 3D tree reconstruction with neural network-based analysis
of  LiDAR  penetration  descriptors,  the  approach  effectively  estimates  canopy
parameters.  The method was validated  through simulation  using diverse  3D canopy
models,  achieving  performance  metrics:  RMSE:  0.2  m²/m³,  R²:  0.95  for  LAD  and
RMSE: 0.17 m²/m², R²: 0.84  for LAI. Results confirm the potential of LiDAR-based
systems for precise orchard canopy monitoring. 

Keywords: Tree phenotyping, leaf area index, deep learning, proximal sensing robots,
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Introduction
The LAI,  which quantifies  leaf  area per  unit  ground surface,  is  a  critical  metric  in
agriculture,  underpinning processes such as photosynthesis, transpiration,  and carbon
fixation (Asner et al., 2003). In agricultural systems like orchards, LAI guides targeted
interventions like pruning, irrigation, and pesticide application (Anthony et al., 2020;
Stagno et al., 2024), enhancing yield and resource efficiency (Sun et al., 2024). Among
the indirect methods, LiDAR stands out for its high spatial resolution and resistance to
light and weather conditions, generating superior 3D point clouds for LAI estimation,
outperforming  traditional  techniques  such  as  LAI-2200  and  digital  hemispheric
photography.  (Wei  et  al.  2020)  highlight  its  effectiveness  in  handling  canopy
complexity,  providing  reliable  estimates  even  in  heterogeneous  systems,  while
addressing  challenges  like  foliage  clumping  and  occlusions.  Beyond  LAI,  leaf  area
(LA), representing the total  leaf surface, and LAD, defined as the leaf area per unit
canopy volume, provide valuable insights into canopy structure. Although metrics like
tree area index (TAI), which represents the total projected area of trees per unit ground
area, and effective LAI (eLAI), a corrected estimate of leaf area accounting for foliage
clumping  and  non-photosynthetic  surfaces,  offer  additional  perspectives,  this  study
focuses on LAD, LA, and LAI due to their direct relevance to orchard management and
their  emphasis  on  foliage  rather  than  structural  elements  like  branches  or  trunks.

Current  methodologies  for  LiDAR-based  LAI  estimation  employ  a  variety  of
approaches, each with distinct strengths and limitations (Wang and Fang, 2020). Gap-
based  models,  rooted  in  the  Beer-Lambert  law,  estimate  LAI  by  correlating  gap
fractions with LAD, whereas contact-based methods rely on the frequency of laser beam
interception,  using  voxelised  models  to  partition  the  canopy  into  horizontal  layers
(Weiss et al, 2004). Despite their simplicity and grounding in well-established physical
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principles,  gap-based and contact  frequency models  often struggle  with inaccuracies
caused by saturation effects, assumptions of canopy homogeneity and dependence on
specific calibration of leaf projection function “G” (Yan et al,.  2019), which plays a
critical role in these models, as it represents the average projection of leaf area in a
given direction, relative to the total leaf area. Biophysical regression models establish
empirical  relationships  between LiDAR-derived metrics—such as canopy height  and
density—and  field-measured  LAI.  However,  although  allometric  equations  offer
flexibility, adapting to specific vegetation types, yet their applicability is limited to the
contexts  for  which they  are calibrated.  Machine  learning methods,  in  turn,  excel  in
capturing  complex,  non-linear  relationships,  providing  both  high  accuracy  and
scalability (Zhang et al, 2019; Neuville et al, 2021). Nevertheless, their effectiveness
hinges  on  the  availability  of  extensive,  high-quality  datasets  and  significant
computational  resources.  Bridging  these  approaches,  integrating  machine  learning
algorithms with modern data acquisition platforms presents a key area of focus. This
synergy  has  the  potential  to  significantly  enhance  the  accuracy,  scalability,  and
applicability  of  LAI  estimation  methods,  particularly  in  diverse  and  complex
ecosystems (Fang et al, 2019). The rapid development of agricultural robotics and the
increasing use of unmanned ground vehicles (UGVs) are transforming the process of
gathering  detailed  information  about  crops.  UGVs  equipped  with  LiDAR  sensors
represent a specific type of mobile laser scanner (MLS), also commonly referred to as
mobile terrestrial laser scanner (MTLS), offering significant advantages, including the
ability  to  autonomously  navigate  complex  terrains  and  perform  high-resolution,
repeatable scans of crop canopies and structures. Unlike fixed platforms, UGVs are not
constrained by spatial  limitations, enabling large-scale, efficient data collection.  This
capability  not  only  facilitates  precise  characterisation  of  canopy  structures  but  also
addresses key challenges such as data consistency, objectivity, and accessibility within
crop  canopies,  which  are  often  inaccessible  to  remote  sensing  methods  (Rui  et  al.,
2024).

Despite the advancements, current methods often overlook valuable information related
to data acquisition processes, such as multi-perspective scanning of the canopy or the
natural radiometric properties captured by sensors. This highlights the need for methods
that effectively leverage LiDAR data while maintaining adaptability to diverse environ-
mental and operational conditions. To address these challenges, this study presents a
novel framework for LAD estimation, based on the integration of an UGV-based MLS,
3D LiDAR data, and neural networks. The proposed integration offers several advant-
ages: (1) enabling multi-perspective scanning of canopy regions, capturing data from
various distances and angles of incidence, (2) incorporating radiometric data and penet-
ration descriptors, complementing the absolute coordinate space; and (3) using neural
networks trained on balanced datasets to interpret non-linear relationships, adapting to
variations in canopy structure and foliage density. This study aims to improve the LAD
estimation by focusing on the following specific objectives:

i. To develop a pipeline for LAD estimation that integrates both absolute and local
frame information derived from LiDAR data. 

ii. To identify and evaluate key features for LAD estimation by evaluating the pre-
dictive performance of different feature groups extracted from the LiDAR data. 

iii. To validate the proposed framework through simulations, assessing its accuracy
and robustness across varying canopy structures and densities.



Materials and methods                                                                                                      
This  study  employs  a  structured  workflow  to  estimate  LAD  variations  within  the
canopy  and  the  overall  tree  LAI  using  simulated  data.  The  overall  workflow,  as
illustrated in Figure 1, comprises three key stages: data generation, extraction of local
features, 3D reconstruction in absolute frame and model training and validation.

Figure  1.  Methodological  workflow for  data  generation  and model  development  for
LAD estimation

Data generation — A synthetic dataset was generated using simulated 3D tree canopy
models  and  LiDAR  responses.  The  discrete  anisotropic  radiative  transfer  (DART)
model was employed to simulate LiDAR scans of 100 tree canopies with ellipsoidal
shapes  (Gastellu-Etchegorry  et  al.,  2004).  The  LiDAR  parameters  in  the  DART
software were configured as follows: a forward light propagation model, multiple pulse
mode with discrete return, and output intensity values using Gaussian decomposition
integral.  The simulation was conducted using 24 species, comprising 12 distinct leaf
angle  distribution  models:  DeWit,  bounded uniform,  uniform,  spherical,  erectophile,
planophile, extremophile, plagiophile, horizontal, vertical, ellipsoidal with average leaf
angle  of  55°,  and  elliptical  (θm=50°,  ε=0.6).  Each  model  was  simulated  with  two
parameter  sets  {a ,b ,Ωmin ,Ωmax},  resulting  in  24  unique  species  variants.  The  first
parameter  set  used  values  of  [1,1,0,0 ],  while  the  second  set  used  [0.3,0 .8,0.5,30 ],
resulting in 24 unique species variants. The projection function is defined as follows,
representing leaf angle distribution relative to incoming radiation:

G=
Ωmax

1+exp [−a . (θn−b ) ]
+Ωmin (1)

where,  Ωmax and  Ωmin are  maximum and minimum values  of  the  function;  a is  the
controls the slope of the function, i.e., how quickly it changes with respect to θn, which
is the zenith angle of incoming radiation or observation.b is the angle around which the
main transition occurs.



Figure 2 presents histograms for the 100 generated tree canopies. The first plot shows
the  distributions  of  canopy  width,  canopy  length  [m],  and  canopy  height  [m]  as
overlapping histograms, while the second displays the total leaf area [m²]. The third plot
highlights the distribution of species IDs, with selected labels omitted for clarity. These
visualizations illustrate the variability and balance across key canopy traits and species
identifiers.

Figure 2. Distributions of canopy dimensions, total leaf area per tree, and species

The synthetic data was generated using a 128-layer mobile LiDAR sensor,  frequently
employed in UGVs, configured to replicate the characteristics of a real Ouster OS0-128
sensor. The sensor setup included a 90° vertical aperture, 2048 horizontal beams over
360°, and a sampling frequency of 2 Hz. The simulated laser had a central wavelength
of 0.865 μm, a laser beam diameter of 9.5 mm, and a LiDAR sensor area of 78.82 mm².
The footprint of the laser was 1.5 mrad, with a field of view of 3 mrad. Only the first
echoes of each laser response were considered. The sensor was virtually mounted at an
average height of 1.6 m on a mobile frame with position Xugv ( x , y , z ) travelling at 1 m/s,
generating 770 scans and approximately 30 million beams across a 0.15 ha simulated
navigation environment. The system operates within three reference frames: the sensor
frame F s, the UGV frame Fugv, and the world frame Fw. Knowing the transformation T o

from the sensor frame to the UGV frame, and the UGV's position  Xugv in the world
frame, the transformations T 1 (UGV to world) and T 1

−1 (world to UGV) enable seamless
coordinate  transformations  between  all  frames.  This  allows  precise  alignment  and
efficient data manipulation across the sensor, UGV, and world coordinate systems.

Local  features –  Each  LiDAR  scan  St,  where  t represents  time,  consists  of  two
components:  Po∈ℝn× 3,  representing  the  spatial  coordinates  ( x , y , z ) and  Pe∈ℝn×3

with additional attributes: I raw (raw intensity), I ρ=I raw / ρ
2 (distance corrected intensity)

and  N e (number of echoes  per  beam).  A novel  approach to  descriptor  analysis  was
applied in the sensor frame F s, focusing on integrating the beam’s origin into the point
cloud  data.  The  local  analysis  aims  to  extract  features  that  capture  the  origin  and
incidence angles of each beam in its natural frame. This contrasts with conventional
point  clouds,  which  only  encode  absolute  ( x , y , z ) coordinates,  neglecting  local
geometric  and  angular  context.  Each  LiDAR  scan  was  processed  to  extract  local
features, starting with the conversion of Cartesian coordinates into spherical coordinates
(ρ , θ ,ϕ ),  enabling precise analysis  of angular deviations and geometric  relationships.
For each point within the scan,  a curved voxel with a radius of 0.3 m was defined
around the central point. Within this defined space, key local descriptors, including the
local  gap  fraction  (G f ),  were calculated.  (G f ) was  determined  as  the  ratio  of  beams

passing completely through the voxel (N p ) to the total number of beams (N t ) interacting
with  the  voxel,  either  by  passing  through  or  colliding  inside  its  volume  (N i ) .

Additionally, incidence properties, such as the number of echoes per beam  (N e ) were
determined. These attributes captured detailed structural characteristics of the canopy by
quantifying light penetration and beam interactions. Once all scans had been processed,
the data were accumulated into a final matrix that combined absolute coordinates with
derived local descriptors,  thereby expanding the information channels for each point
from the point cloud. This dataset was subsequently partitioned into subsets for training



(60%), validation (20%), and testing (20%), ensuring an adequate balance for model
training and evaluation.  Figure 3 shows an example of the calculation of light beam
counts passing through and contained within a curved voxel for a single 3D LiDAR
scan point. In blue, the origin of F s; in green, beams within the curved voxel; and in red,
beams passing through it.  Target LAD values were derived by voxelising the DART-
generated reference data into 0.05-meter cells, calculating LAD based on the occupied
volume,  and scaling  them according  to  voxel  volumes.  This  comprehensive  dataset
served as the basis for training and evaluating the neural network model.                       

Figure 3. Determination of local gap fraction information within the curved voxel for
beam -i, defined as a section of space in spherical coordinates with sensor frame origin.

Neural network regression framework – This study employs a regression model inspired
by PointNet  (Qi et  al.,  2017),  designed for  processing 3D point  clouds. The model
utilizes  spatial  transformer  networks  (STN)  for  input  alignment  and  feature
transformation,  followed  by  convolutional  layers  for  feature  extraction  and  fully
connected  layers  for  regression.  The  input  comprises  Cartesian  spatial  coordinates
( x , y , z ) and  allows  the  incorporation  of  additional  features  such  as  radiometric
descriptors  derived  from LiDAR  { I raw , I ρ ,N e },  local  sensor  frame  data  in  spherical
coordinates {ρ ,θ , ϕ } and attributes determined from curved voxels {N p , N i ,N t ,G f }.

LAI determination – Tree LAI is computed by integrating the predicted LAD across all
the involved voxels N vox. The LAI is consequently related to the projected area of each
individual tree, without considering the planting frame, i.e., the number of plants per
unit area:

LAI=
1
A p

∑
i=1

N vox

LAD i⋅Voxelvol (2)

where,  LAD i is prediction for voxel -i and  Voxelvol is the curved voxel volume. This
implies the necessity of a 3D tree segmentation process to isolate individual trees. Ap  is
the  ground-projected  tree  area,  derived  from  voxel  x-y  information,  and  does  not
account for the number of trees per unit ground area.



Results
The framework was tested to estimate LAD and LAI, with R² and RMSE quantifying
accuracy and feature contributions  supporting its  validity.  Figure 4 presents the test
results for feature addition analysis, evaluating the impact of progressively combining
the base spatial  features  with individual  descriptors:  radiometric-aided,  local  spatial-
aided, local gap fraction-aided, and the full feature set.                                                

(a) (b)
Figure 4. Performance evaluation of LAD estimation based on features: (a) evaluation 
of individual feature impact, and (b) evaluation of groups. Where X={X ,Y ,Z }

Using the selected feature space X∪ {Iraw , ρ , θ , N t ,Gf }, Figure 5a presents the model's
performance in LAD estimation, showcasing a strong correlation between predicted and
reference values. Subsequently, the framework was applied to estimate LAI across 100
trees  on  a  second  experiment,  with  the  results  summarized  in  Figure  5b.

Discussion
The  proposed  framework  demonstrated  potential  for  enhancing  LAD  and  LAI
estimation in orchard systems by integrating LiDAR data, UGVs, and neural network-
based  regression  models.  The  results,  validated  through  simulations,  achieved  high
accuracy metrics (R²=0.95 and RMSE = 0.2 m²/m³ for LAD; R²=0.84 and RMSE = 0.17
m²/m²  for  LAI),  indicating  the  framework’s  ability  to  capture  canopy  structural
properties  effectively.                             



(a) (b)
Figure 5. Testing performance: (a) LAD estimation with full features space and (b) Tree
LAI estimation with 24 foliage distributions shown by shapes and colour.

These findings align with previous studies while addressing  limitations, such as the
lack of multi-perspective data acquisition. Unlike traditional machine learning methods
in the literature,  which rely on tree-level metrics such as height,  crown diameter,  or
volume to estimate leaf area properties, the proposed regression approach analyses data
at the voxel scale. The method can generate estimations of tree-level metrics, providing
both, a detailed spatial representation on LAD and total LAI. However, it is important to
note that the accumulation of error in the LAD estimation also contributes to an error in
the  overall  LAI  metric.  Furthermore,  in  regions  with  higher  foliage  density,  the
reduction in available data due to occlusions and the increased likelihood of saturation
from limited laser penetration may also contribute to estimation errors.

Conclusions
This  study  explored  the  potential  of  integrating  LiDAR data,  UGV  platforms,  and
neural networks for estimating LAD and subsequently LAI in orchards. The proposed
framework,  validated  on  simulated  data,  achieved  high  accuracy,  showcasing  its
capacity to capture canopy structural information. By making LAD predictions at the
voxel  level  derived  from  multiple  platform  perspective,  the  method  enhances  the
precision  of  canopy  characterization.  The  findings  demonstrates  that  incorporating
supplementary  information  at  point  scale,  such  as  penetration  descriptors  (e.g.,  gap
fraction at the local frame of reference), distance to the voxel, angle of incidence, or
radiometric sensor data, can significantly enhance the performance of the  prediction
model. 
    Future efforts should focus on testing the framework using real-world datasets to
evaluate its practical utility in orchard systems.
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