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Abstract
A  lack  of  annotated  data  and  model  transfer  challenges  limits  accurate  structural
analysis of 3D orchards in field conditions. This study presents a scalable framework
that trains deep learning models on synthetic LiDAR data. It applies them to unlabelled
real-world point clouds acquired with an unmanned ground vehicle in an apple orchard.
By  integrating  supervised  classification,  contrastive  learning,  and  clustering,  the
framework segments trees, generates structural maps, and detects anomalies, all without
relying on field ground-truth annotations. These results contribute to flexible orchard
monitoring and structural analysis in precision agriculture.
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Introduction
Precision agriculture has increasingly integrated advanced technologies to improve crop
management and phenotyping. Light Detection and Ranging (LiDAR) has emerged as a
key  tool  for  acquiring  3D data,  providing  enhanced  precision  in  tree  mapping  and
structural analysis for orchard environments. Recent advances in LiDAR-based point
cloud  processing  have  shown  promising  results  for  agricultural  phenotyping.
Nevertheless, significant challenges remain in achieving accurate and robust models,
particularly for large-scale or heterogeneous vegetation scenarios. This study identifies
two  primary  obstacles:  firstly,  the  generation  of  real-world  databases  that  capture
sufficient variability, hindering the development of robust and generalizable models for
diverse orchard scenarios. Secondly, LiDAR-based analyses face a dependency on large
annotated datasets, the production of which is labor-intensive and restricts their practical
application in agricultural applications (Jin et al., 2021). This dependency underlines the
need to develop autonomous data tagging methods to overcome scalability limitations in
field phenotyping (Xu et al., 2022). 

In recent years, several innovative solutions have emerged  for  efficient tag learning,
such  as  active  learning,  semi-supervised  learning,  weakly  supervised  learning,  self-
supervised learning, and unsupervised clustering (Li et al., 2023). These methods aim to
reduce reliance on manual annotations and improve the adaptability to large datasets.
Despite  these advancements,  their  effectiveness is  often constrained by the need for
representative training data,  particularly in diverse and variable  field conditions.  For
example, while active and semi-supervised learning approaches reduce dependence on
labeled datasets, they still struggle with generalization in heterogeneous environments.
Similarly,  loosely  supervised  methods,  which  leverage  coarse  labels,  encounter
difficulties  in  resolving  fine-grained  phenotyping  tasks,  such  as  individual  tree
characterization in complex environmental scenarios (Singh et al., 2021).
To address the above challenges, this study presents a LiDAR-based framework that
combines  different  techniques  and  adapts  them  to  the  typical  needs  of  an  orchard



analysis.  These  include  the  identification  of  ground,  invasive  plants, and  trees;  the
separation of individual trees; and the generation of specific features to  analyze each
one individually. To overcome the difficulty of generating diverse real-world databases,
the proposed framework employs synthetic data to replicate varied and complex orchard
scenarios, facilitating model training and seamless transfer to real-world data without
requiring retraining.  The framework integrates multiple learning strategies to enhance
the analysis of 3D orchard environments. It leverages existing knowledge to identify
key elements such as trees and ground while organizing data into meaningful categories.
By  focusing  on  both  shared  and  unique  features  of  individual  trees,  the  approach
improves  its  ability  to  recognize  patterns  and  differences  within  the  orchard.   The
validity of these patterns can be assessed by clustering trees based on their similarities,
ensuring the extracted features accurately reflect meaningful patterns and distinctions
within  the  orchard.  Together,  these  techniques  take raw  orchard  data  in  a  three-
dimensional format and transform it into a detailed description of each tree, highlighting
its individual features. The proposed approach demonstrates three key properties: (1) a
self-driven  extraction  of  unique  features  by  comparing  trees,  (2)  the  capability  to
perform  flexible  multi-scale  orchard  analysis  based  on  3D  point  clouds,  and  (3)
successful knowledge transfer from simulated to real-world data.

Materials and methods
The proposed framework integrates both simulated and real LiDAR data for detailed
analysis of individual trees through a multi-stage process. As shown in  Figure 1, the
process starts with data generation, followed by 3D scene interpretation and isolation of
individual trees. This leads to a contrastive learning phase for anomaly detection and
tree clustering based on proximity. The framework concludes with the application of
trained models to real-world data to validate their performance.

Data generation — The 3D orchard reconstruction models were simulated using the
Discrete Anisotropic Radiative Transfer (DART) software (Gastellu-Etchegorry et al.,
2004). In these simulations, a virtual 3D LiDAR system was configured to replicate the
characteristics of the real device, including its resolution, field of view, sampling rate,
wavelength, and height above the ground. The process started by moving the Mobile
Laser Scanner (MLS) in an environment with a set of 22 simulated trees, labeled in 13
groups  based  on  a  predefined  user-defined  taxonomy.  Each  simulated  point  in  the
orchard  is  represented  as  pi

syn
=(x i , s i ),  wherex i=(xi , y i , zi ) ∈ R3 denotes  the  spatial

coordinates of the point in the world reference frame, and si∈S represents the semantic
class of the point. The simulated dataset is represented as a matrix Psyn∈Rnxd, where n
is the total number of simulated points and d  is the dimensionality of each data point
(including spatial coordinates and class label). If a point  pi

syn belongs to the category
S=tree,  an  additional  value  gi∈G syn is  assigned,  where  Gsyn={0,1... ,12 } represents
specific tree group attributes. To enhance the learning process, data augmentation was
performed via voxelization with a fixed voxel size  vs.  Voxel centers served as seed
points, and for each center, the nNN k-nearest neighbors were selected from the original
dataset.  Field data was collected using an Ouster OS0-128 LiDAR (2048x128 beams
@10 Hz) mounted at 1.65 m above ground on an Unmanned Ground Vehicle (UGV).
The UGV, remotely operated, navigated through three 50-m rows of an apple orchard
(approximately 12 trees per row) in Toulouse, France, over 8 minutes in August 2024.



Data fusion from GPS+RTK and an IMU  were used for position estimation. LiDAR
scans and pose data were recorded in ROS bag format, with the robot's pose represented
by geographic coordinates and quaternion orientation.

Figure 1. Multi-stage LiDAR framework for individual tree analysis with pre-trained
models.

An extended Kalman filter was employed to fuse the sensor data, providing an estimate
of the robot's pose T t at each timestamp t . This pose is represented as a transformation
matrix T t∈SE (3 ), which defines the relationship between the LiDAR sensor reference
frame  FLidar and the absolute reference frame  FWorld.  For precise alignment,  iterative
closest point and pose graph optimization refined the transformations. Post-processing
included down-sampling, orchard area delimitation, and noise filtering with a standard
deviation  multiplier  of  2  and  10  nearest  neighbors,  parameters  fine-tuned  through
multiple trials to  maximize noise reduction. The final output was a 3D reconstruction
matrix  Preal∈Rmxd, where  m is the number of points number of points collected from
the real-world LiDAR scans and d , is the dimensionality of each data point, similar to
the simulated dataset. 

3D  scene    analysis   — Supervised  classification  was  conducted  using  synthetic  data
subsets generated for training. The RandLA-Net model (Hu et al., 2021), a state-of-the-
art neural architecture designed for efficient semantic segmentation of large-scale point
clouds,  was  employed.  The  network  consists  of  five  layers,  each  applying  random
sampling and a novel local feature aggregation module to preserve geometric details
while reducing computational costs. Subsampling rates of 4 ,4 ,4 ,4 and 2 were applied,
progressively increasing output  dimensions to 16, 64, 128, 256 and 512. The Adam
optimizer  was  used  with  an  initial  learning  rate  of  0.001,  reduced  using  a  cosine
annealing  scheduler.  The training was executed  on a  GPU-enabled  machine,  with a
batch size of 8, containing nNN points per batch, during 50 epochs. 
Isolation  of individual  trees — Once the classification models were established,  the
orchard-scale model was applied to the point cloud obtained in real field conditions,
producing three spatial  maps: soil,  weeds, and trees.  The data labeled as trees were



extracted, and each tree was isolated using an algorithm based on Hierarchical Density-
Based Spatial Clustering of Applications with Noise (HDBSCAN). A voxelisation step
with  a  5  cm resolution  was  applied  to  reduce  the  computational  cost,  followed  by
clustering  with  a  minimum  cluster  size  of  200 voxels and  at  least  200  voxels per
neighborhood.  Sparse  clusters  were  discarded,  resulting  in  N trees clusters,  each
representing a potential individual tree. Original point data within the voxels were then
retrieved by finding the points occupied for each voxel.

Triplet-based  contrastive  learning — The  proposed  contrastive  learning  framework
follows a  supervised approach to  learn  128-dimensional  feature  descriptors  f∈ R128

from simulated point cloud data pi
real

=(x i , si ). This model builds upon the foundational
PointNet architecture (Qi et al., 2017), but introduces key enhancements to process both
spatial and additional point descriptors. It leverages permutation invariance, local and
global feature aggregation, and a Spatial Transformer Network (STN) to robustly align
the  spatial  (XYZ)  coordinates.  Furthermore,  additional  descriptors  are  concatenated
after  the  STN transformation,  and a  sequence  of  convolutional  and fully  connected
layers with increased capacity and regularization via dropout is used to extract robust
and  discriminative  global  features.  To  standardize  input  dimensions  and  to
compatibilise  the  use  of  the  GPU,  each  synthetic  tree  point  cloud  was  randomly
subsampled to [n❑×3], ensuring consistency across instances. The model was trained
using synthetic  tree data,  with labels  si.  During training,  a triplet  loss  function was
employed,  designed  to  maximize  inter-class  separation  while  minimizing  intra-class
distances in the feature space, ensuring discriminative descriptors (Wu et al., 2017). The
triplet loss is defined as: 

L=
1

N triplet
∑
i=1

N triplet

max (0 , λP . dE (wi
A ,wi

P
)−λN . dE (wi

A , wi
N

)+α )

Where:

- N triplet is total number of triplets in the batch
- w i

A ,wi
P ,wi

N are the embeddings of the anchor, positive, and negative samples, 

respectively.
- d E (. ,. ) denotes the Euclidean distance between embeddings
- α   is the margin that enforces a minimum difference between positive and 

negative distances

In this framework, triplets (A,P,N) are selected based on tree groups  G, ensuring that
the anchor and positive samples belong to the same group, while the negative sample
comes from a different group. This encourages the formation of compact clusters in the
latent  space  that  are  separable  for  clustering  tasks.  Furthermore,  weighted  losses
λ={λP , λN } are  applied  to  the  positive  and  negative  distances  to  balance  their
contributions according to class distributions.

Outlier Analysis and Tree Grouping — Starting from the pre-trained PointNet encoder,
a  distance  matrix  D∈RN trees×N trees was  computed  to  represent  the  pairwise  Euclidean
distances between point clouds corresponding to individual trees. The diagonal elements



of D were set to zero to ensure self-similarity does not contribute to the analysis. For
each tree, the mean distance to all other trees was calculated, resulting in a vector of
average distances μ∈RN trees× 1, where the i-th element is defined as:

μi=
1

N trees−1
∑

i=1, j ≠ i

N trees

Dij 

To identify outliers, an Isolation Forest algorithm was applied to μ, detecting trees with
unusually  high  average  distances.  After  outlier  removal,  agglomerative  clustering
grouped the data, with the optimal cluster count identified via the graph Laplacian’s
eigenvalues and the elbow method for silhouette scoring

Results
The synthetic point cloud Psyn [n×5 ], comprising 22.2 million points over 700 m², was
voxelised with a vs of 0.25 m to enhance learning. For each voxel, 30,000 nearest points
were selected, resulting in 18,936 training subsets, and 6,313 each for validation and
testing. Real data Preal [m×4 ] comprised approximately 28 million points covering 728
m². The testing process was carried out independently for each stage. A reserved 20%
subset of the synthetic dataset was utilised for a priori classification evaluation.  The
total testing time was 3.35 hours. As summarised in  Table 1, the classification stage
demonstrated high performance, achieving over 99% accuracy across the Ground, Tree,
and Grass|Weed classes. Specifically, it attained an overall accuracy (OA) of 99.99%, a
mean  Intersection  over  Union (mIoU)  of  99.93%,  and  a  mean  accuracy  (mAcc)  of
99.97%.  These  results  underscore  the  robustness  and  reliability  of  the  proposed
classification framework.

Table 1: Confusion matrix for classification at the orchard scales with simulated data

True/Predicted Class Ground Tree Grass|Weed

Ground 99.999% 0.032% 0.022%

Tree 0.267% 99.976% 0.020%

Grass|Weed 0.085% 0.053% 99.945%

The reconstructed point cloud shown in Figure 2a, subdivided into segments of 30,000
points  like  the  simulation  point  clouds,  was  input  to  the  pre-trained  model  for  the
classification stage, producing labeled spatial coordinate data. Field data showed some
differences from the simulation environment, such as the presence of larger weeds and
poles aligned with the trees,  which in the case of the real experiments can be large
bushes or actual poles. Despite these variations, the color-coded results in  Figure 2b
visually  indicate  effective  classification,  distinguishing  key  elements  like  ground,
vegetation,  and  tree  structures.  In  this  way,  three  spatial  maps  of  the  orchard  are
generated:  soil  model,  weed  or  low  grass, and  potential  trees.   Continuing  the
framework, the points for which a tree class prediction was obtained were used to feed
the tree isolation stage. As illustrated in Figure 2c, 49 clusters with between 38,000 and
55,000 points were detected. 



(a)

(b)

(c)
Figure 2. Bird's-eye views of the reconstructed point cloud: (a)  colored by height; (b)
predicted classes at orchard scale (brown represents the ground, grey indicates grass or
weeds,  and  green denotes  trees);  and  (c)  49  filtered  clusters  with  their  respective
histogram.

To  reduce  computational  cost  and  standardize  the  number  of  points  per  tree,  a
subsampling  process  was  applied.  After  training,  the  model's  performance  was
evaluated on the original labeled synthetic data using the Adjusted Rand Index (ARI)
and Normalized Mutual Information (NMI). Once validated, the model was applied to
real-world tree data. On synthetic data, the model achieved an ARI of 0.78 and NMI of
0.95, confirming the accurate clustering of the tree groups. The similarity matrix (Figure
3a),  derived from the  pre-trained PointNet  encoder,  reveals  clear  clustering  patterns
among  tree  point  clouds,  reflecting  structural  and  spatial  relationships  within  the
orchard.  The  Isolation  Forest  algorithm,  applied  to  the  average  distance  vector  μ,
identified clusters 6, 20, 31, and 41 as outliers (Figure 3b). These clusters deviate from
typical  patterns,  potentially  representing  malformed  trees,  prediction  errors  in  dense
vegetation, or misclassified non-tree objects.



(a) (b)
Figure 3.  Analysis  of tree clusters based on: (a) Similarity  matrix  showing pairwise
distances  between  tree  clusters;  (b)  Outlier  detection  using  Isolation  forest.

Figure 4 presents the clustering results of individual tree point clouds, visualized in 2D
projections of the X and Z axes. Each plot represents a tree, color-coded by its assigned
cluster label. This visualization highlights the structural and morphological similarities
within clusters, as well as the variability across clusters. The clustering was optimized
using a Silhouette Score, which evaluates the cohesion and separation of clusters. The
optimal number of clusters, determined to be 9 based on the Silhouette Score, reflects
moderate cluster separation. This indicates a moderate level of cluster compactness and
separation,  reflecting  the  complex  and  variable  nature  of  tree  structures  in  orchard
environments.
 

Figure  4.   Clustered  3D  point  clouds  of  individual  trees,  color-coded  by  cluster
assignment.



Conclusions
This study introduces a scalable framework for 3D orchard monitoring, training models
on synthetic data for application to real-world scenarios. The framework successfully
integrates supervised and contrastive learning, along with clustering methods, to enable
precise  tree  segmentation,  anomaly  detection,  and  individual  tree  characterization.
Validation  through  morphology-based  clustering  demonstrates  its  ability  to  extract
meaningful features without the need for annotated field data. The proposed pipeline
addresses limitations in precision agriculture by transferring pre-trained models from
simulation  to  field  conditions,  producing  terrain,  vegetation,  and  tree  maps,  and
supporting  large-scale  structural  monitoring  and  anomaly  detection  in  orchard
environments.                                      

Future work will focus on incorporating additional LiDAR-derived information, such as
multiple echoes and intensity data, to enhance the framework's accuracy, understanding,
and comprehensive evaluation.
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