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Introduction

Providing models representing physical systems is a common concern spread over all
scientific and engineering communities. Models are essential to predict the behaviour
of systems, or to control them [128]. In my research work, the final aim of modeling
concerns diagnosis of physical systems or model-based fault detection. It is known that
model-based diagnosis is divided into different axes as for example state or parameter
estimation, parity equations or observators. In my work, I consider fault detection and
diagnosis relying on state or parameter estimation.
Firstly, fault detection and identification via parameter estimation rely on the principle that
possible faults in the monitored system can be associated with specific parameters of the
mathematical model of the system given in the form of an input-output relation y(t) =
g(u(t), e(t), θ, x(t)), where y(t) represents the output vector, u(t) the input vector and
x(t) the state variables which are partially measurable. θ represents the non measurable
parameters which are likely to change on the occurrence of a fault and e(t) the modeling
error and/or noise term affecting the process. In this approach, parameters of the model
are estimated from the input and output measurements of the system. The consistency of
this estimation is then checked against parameters computed from a theoretical (possibly
faulty) model of the system.
Secondly, fault detection can be based on state estimation (observers or filters) or parity
equations. The first method consists in estimating the unknown state variables and the
second method consists in eliminating the unknown variables by processing the equations
of the model. My research along this line focuses on the second approach in the nonlinear
case and the proposed approach is based on the concepts of differential algebra to obtain
equations linking inputs, outputs, their derivatives, parameters and faults. These equations
are analytical redundancy relations (ARR) and can be used to generate residuals. There
are various schemes to formulate residual generation using parity relations. In general,
the residual generation filters should be designed to enhance fault isolation so that they
exhibit directional or structural properties in response to a particular fault and they also
need to maintain robustness to noise, disturbances, or model errors. In [36], the basic
concepts of residual generation for both additive and multiplicative faults are developed.
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12 INTRODUCTION

J. Gertler also reviewed the link between the parity relations method and the other two
major approaches, observer-based diagnosis and parameter estimation [36].

State and/or parameter estimation problems are usually solved by probabilistic
methods [3, 134, 133] when noises and perturbations can be reasonably assumed
to be random variables. However, in practice, it is often the case that an explicit
characterization of noise and perturbation variables is not available, making difficult to
assess proper stochastic hypotheses. An alternative approach consists in assuming that
uncertain variable values belong to sets, hence modeling bounded uncertainty. Thus,
state and/or parameter estimation problems are now placed into a bounded-error context.
Bounded-error approaches permit the characterization of the set of all values of the
state/parameter vector that are consistent with the measured data, the model structure and
the prior known error bounds. Available methods based on set-membership approaches
exist for linear and nonlinear models. Numerous approaches have been investigated for
the case of linear models. We can characterize the solution set by a convex polyhedron.
But in practice, this set is very difficult to obtain. Thus it may be preferable to compute
other geometric shapes, such as for example ellipsoids [33], [65] or zonotopes [40]
guaranteed to contain the exact solution set. When the model is nonlinear, the set of
values of the state vector to be characterized is usually non convex and may consist of
several disconnected components. The previous methods are no longer relevant and other
algorithms based on interval analysis have been developed [50].
Actual systems are often described by ordinary differential equations. Interval analysis
and an enclosure of the solution of the ordinary differential equation allow to compute
guaranteed solutions to the state estimation problem. Then, guaranteed numerical
methods for solving the ordinary differential equation are applied. These methods use
high-order interval Taylor models [91], [101] to compute intervals which are guaranteed
to contain the solution of the ordinary differential equation. More recently a hybrid
bounding method based on one of Muller’s theorems and a rule based on the signs
of some partial derivatives [104] has been developed to compute intervals which are
guaranteed to contain the solution of the ordinary differential equation.

Before performing a parameter estimation procedure, it is necessary to analyse iden-
tifiability of the model. Identifiability is the property that a mathematical model must
satisfy to guarantee an unambiguous mapping between its parameters and the output tra-
jectories. It is of prime importance when parameters are to be estimated from experimen-
tal data representing input-output behavior and clearly when parameter estimation is used
for fault detection and identification. Surprisingly, the interest for set-membership esti-
mation methods has not been underpinned by investigations about identifiability and only
two works can be mentioned. The pioneering paper by [13] outlines that interval based
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methods and interval constraint propagation can be used to test for a new definition of
global identifiability. In contrast to structural global identifiability [94], the new property
no longer allows for the existence of atypical regions in the domain of interest. This is
actually a byproduct of using interval methods for testing it. But in this work, what is
really an interpretation of identifiability in the set-membership context is only presented
as a practical condition. Indeed, instead of imposing parameters corresponding to a given
input-output trajectory to be strictly different, they are allowed to be distant by a given
ε, which provides a stopping condition to the numerical method. It is only recently that
me and co-workers: N. Verdière and L. Travé-Massuyès [46] formalized both the above
property and test by introducing two complementary definitions for identifiability of error-
bounded uncertain models, namely set-membership identifiability and µ-set-membership

identifiability. The first one is conceptual whereas an instance of the second, called ε-set-

membership identifiability, can be put in correspondence with interval based parameter
estimation methods and the specified stopping condition precision threshold ε.

One of the benefits of set-membership identifiability is that it bypasses standard
identifiability and allows one to give (set) estimates of parameters that are unidentifiable
in the classical sense. Set-membership identifiability indeed guarantees that there exists
a mapping of the parameter space into connected subsets so that every subset can be
associated with a distinguishable output behavior. Similarly, before performing a fault
diagnosis procedure, it is necessary to analyse diagnosability of the model. In the
proposed work, some new definitions of diagnosability are proposed.

Finally, experiment design is important to identify more precisely mathematical mod-
els of complex systems. The overall goal is to design an experiment that produces data
from which model parameters can be estimated accurately. The conventional approach
for experiment design assumes stochastic models for uncertain parameters and measure-
ment errors (see for example [116]). Several criteria for experiment design have been
proposed involving a scalar function of the Fisher information matrix. For example the
A-optimal experiment minimizes the trace of inverse of the Fisher information matrix,
which minimizes, in the linear case, the average variance of the estimates. Another cri-
terion widely used is the D-optimality. The D-optimal experiment minimizes the volume
of a confidence ellipsoid. However, some sources of uncertainty are better modeled as
bounded uncertainty. This is the case of parameter uncertainties that generally arise from
design tolerances and from aging (see for example [124]). Thus in the work I developped
with E. Chanthery [44], the optimal input design methodology takes into account some
bounded intervals for each parameter to be estimated but uses some statistic information
about measurement noise and then an extension of the Fisher matrix has been used.
In a bounded-error context, the experiment design is much less studied and consists in
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designing experiments which minimize the estimate parameter volume. In some works
such as [100] or [6] for models linear with respect to the input, the worst possible perfor-
mance of the experiment over the prior domain for the parameters is optimized. In [100],
the minimax approach to synthetize the optimal experiment is described, using the Gram
matrix of sensitivity functions and specific criteria are developed. These approaches take
into account the bounds of the prior domain for the parameters in the search of the opti-
mal experiment but do not take into account the set-membership estimation process which
leads to the estimation of a set.
Recently, I with L. Denis-Vidal and Z. Cherfi have shown that the search for an optimal
input in nonlinear dynamical systems can be made with the Gram matrix of sensitivity
functions in a context of bounded-errors. Prior to this work, we studied the optimization
of the initial conditions in the same context but with a different approach [73]. To obtain
an explicit expression of the set of parameters to be estimated, the authors in [56] used a
centered inclusion function for the model output and they have built an operator involv-
ing the parameters to be estimated based on sensitivity functions. Starting from this idea,
we build explicitly some criteria to find an optimal experiment in the bounded-error con-
text. In our work, we consider only the optimal input design. The proposed methodology
requires a parametrization of the input with a finite number of parameters.

Summarizing, this manuscript deals with identification of bounded error models in-
cluding the properties of identifiability and diagnosability for such models; fault detection
and diagnosis are applications of the presented tools through the manuscript. This docu-
ment is divided into two parts and it contains seven chapters. The first part is a description
of my academic lectures, teachings, supervised projects and contains a detailed curricu-
lum vitae. The second part of the manuscript is devoted to my main research works and
reviews some publications that I co-authored like [110, 45, 46, 109, 130, 47, 72]. This
part is divided into six chapters. The second chapter concerns the problem formulation
and models. In the third chapter, the concepts of identifiability and diagnosability in a set-
membership framework are presented. The fourth chapter deals with optimal input design
in the bounded error context. In the fifth chapter, some works in the case of mixed uncer-
tainties are proposed. We name "mixed uncertainties" combined stochastic and bounded
errors. The sixth chapter concerns the application of the previous tools to diagnosis and
fault detection. Finally, the seventh chapter presents perspectives and elaborates my re-
search project for the future.
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– Mr. Jean-Pierre Richard, Laboratoire d’Automatique, Génie Informatique et

Signal (LAGIS), Ecole Centrale de Lille (Referee)

• 1999-2001 Unregistered student in DEA in UTC: courses on optimization, identi-
fication and parameter estimation, decision theory, signal processing, partial differ-
ential equations.

17
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• 1999 DEA in Applied Mathematics, USTL. Dissertation on Implementation of GM-
RES via biorthogonal polynomials under the direction of Professor Claude Brezin-
ski.

• 1998 Master of Mathematics, Université de Rennes 1

• 1996-1997 Institut Universitaire de Formation des Maîtres de Rennes

• 1996 Licence in Mathematics, Université de Rennes 1

• 1994-1995 Gap year

• 1994 DEUG A (Mathematics, Physics, Computer Science), Université de Rennes 1

1.1.2 Post doctoral professionnal route

• 2005 — Associate Professor - Université de Toulouse III (Université Paul Sabatier

- UPS)

• 2004-2005 Postdoctoral position : Ecole Centrale de Lille.
Mathematics teacher : Ecole des Mines de Douai and Institut Supérieur de

l’Electronique et du Numérique de Lille.

• 2003-2004 Assistant Professor : Université des Sciences et Technologies of Lille.

• 2002-2003 Assistant Professor : Université de Technologie de Compiègne.

1.2 Educational activities

1.2.1 Teaching activities (nature and levels of education)

During my teaching years, I have assured more than 2500 teaching hours in first and sec-
ond graduate levels as well as in engineering schools (Ecole des Mines de Douai, Institut
Supérieur de l’Electronique et du Numérique de Lille, UTC).
I participated in the recruitment of engineering students at the Ecole des Mines de Douai.
Currently I participate in the recruitment of students at UPS (in Master 2 and Licence 3).
I began teaching in 1999 during my thesis as a teaching assistant at UTC and at USTL.
I taught Mathematics and Scientifical Calculus. The description of these teachings are
given below. My interventions concerned tutorials and practical works. During the two
years of assistant professor, I taught courses, tutorials and practical works in Computer
Science and Mathematics. I was firslty a assistant professor at UTC and my researchs
were conducted in the LMAC. Then I was a assistant professor at USTL, my researchs
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were conducted at Laboratoire d’Informatique Fondamentale de Lille in the team Calcul
Formel. In 2004, I taught Mathematics at Ecole des Mines de Douai. I lectured students
in continuing education and in second year.
Since 2005, I have been an Associate Professor at Université de Toulouse III. These last
years, my main teachings concern the domains of Applied Mathematics, Parameter esti-
mation, Probability and Statistical from Licence 3 to Master 2 of the sectors Electronic
Electrotechnic and Automatic (EEA) or Physics at UPS.

• From September 2005 at Paul Sabatier University:

– Courses and tutorials in Mathematics for the students of L3EEA-REL and
L3DIM (50 hours).
The abbreviation REL means Réorientation for long studies and DIM means
Diagnosis, Instrumentation and Measures.
The DIM formation depends on the Physics Department of UPS.
These teachings are devoted to:
-Upgrade,
-Mathematics tools.
This module deals with an upgrade in Mathematics (complex numbers, inte-
gration, series ... ) and introduces the Laplace Transform, Fourier Transform,
the expansion in Taylor serie, differential equations, Linear algebra, ...

– Courses, Tutorials and Practical works for Master 1 SIA students in Introduc-
tion to statistical exploitation of data (30 hours).
SIA means Signal, Image and Applications. This module deals with an intro-
duction to manipulations of data. The notions of randomly variables (discrete
and continuous), mean, variance, ... parameter estimation (moment method,
maximum likelihood, least-squares), properties of estimator (biais, quadratic
error, convergences), hypothesis tests (Chi 2 and Kolmogorov-Smirnov) are
recalled.

– Courses, Tutorials and Practical works for M1DIM students in Identification,
parameter estimation, hypothesis tests (26 hours). This module is close to the
previous one.

– Courses, Tutorials and Practical works for M2EEA-ASTR students in Detec-
tion and diagnosis (10 hours).
ASTR means Automatique, Sûreté de fonctionnement et Systèmes Temps-Réel.
In this module, I introduce the concepts of supervision, health monitoring, di-
agnosis and present methods to diagnose dynamical models based on either
parameter estimation or observators.
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– Courses, Tutorials and Practical works for M2DIM-ICM students in Tools and
Technics for Diagnosis (10 hours). This module is close to the previous one.

– Courses, Tutorials and Practical works for M2EEA-SIA students on Identifia-
bility and parameter estimation (20 hours).

– Courses and Tutorials for M2EEA-IRR students on Parameter estimation by
least squares method (10 hours). IRR means Intelligence artificielle, Recon-

naissance des formes, Robotique.

– Practical works for M1EEA-ISTR students entitled Discrete-time linear sys-
tems and identification, devoted to parameter estimation by least squares
method (12 hours).
ISTR means Ingénierie des Systèmes Temps-Réel.
These practical works consist in reconstructing an image using the least
squares, localising a mobile robot and analysing the periodicity in data where
the sampling time is not constant.

• Since September 2005, at Centre National d’Enseignement à distance (CNED),
in partnership with UPS, I have been grading papers in Mathematics for the first
and second years Licence Ingénierie à Distance as well as proposing the subjects of
Probability exams in the second year.

• Since September 2005 in partnership with UPS, I have been teaching Probability,
statictics for Signal processing at the Engineering School CESI (10 hours).

• From 2004 to 2005, I taught Mathematics (courses, tutorials and practical works)
at Ecole des Mines de Douai :

– Courses and tutorials on Mathematics for Signal processing for 2nd year stu-
dents (20 hours).

– Courses, tutorials and practical works for 2nd year students on the resolution
of numerical problems by using the software Scilab (40 hours).

– Courses for students in continuous formation on Mathematics (48 hours).

• From 2004 to 2005, I taught Modelization, processus Identification at Institut
Supérieur de l’Electronique et du Numérique de Lille: courses, tutorials and practi-
cal works (20 hours).

• From 2003 to 2004, I was an assistant professor at USTL and I taught:

– Courses, tutorials and practical works in Maple on Scientific calculus for first
year students (90 hours),
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– Tutorials and practical works in Maple on Modelization, optimisation and
graphs for Licence students (53 hours),

– Tutorials on information coding for first year students (36 hours).

• From 2002 to 2003, I assured tutorials in Mathematics at UTC for first year stu-
dents (192 hours).

• From 1999 to 2002, I taught :

– Tutorials and practical works at UTC in Numercial Analysis for third year
students (68 hours),

– Tutorials at UTC in Mathematics for first year students (34 hours),

– Tutorials and practical works at USTL in Modelization, Optimisation and
Graphs for Licence students (124 hours),

– Practical works in Maple on Scientific Calculus at USTL for first year students
(26 hours).

1.2.2 Teaching responsibilities

Since September 2007, I have been the head of the third year Licence entitled Diagnosis
Instrumentation and Measures (DIM)-UPS (of the Physics Department); 20 students are
registrated in this training.
I am also in charge of the following teaching modules: Mathematics in L3EEA-REL and
L3DIM, Introduction to statistical exploitation of data in M1SIA, Linear time-discrete
models and identification in M1ISTR, Detection and diagnosis in M2ASTR and Tools and
technics of diagnosis in M2DIM-speciality Instrumentation, Sensors, Measures (ICM).

1.3 Research activities

My research activities will be detailed in the following chapters. These activities con-
cern nonlinear dynamical uncertain models with bounded errors. A large part of my work
deals with set-membership identifiability of such models and their set-membership diag-
nosability. Another part concerns the optimal input design for such models to obtain a
"best" estimate of parameters in a sense which is described latter. My works also deal
with the application of these tools to diagnose the nonlinear dynamical uncertain models.

• Concerning set-membership identifiability and diagnosability, my research is in col-
laboration with L. Travé-Massuyès and N. Verdière. In [46], we introduced the
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concept of set-membership identifiability and we formalized two complementary
definitions for identifiability of uncertain models, namely set-membership identi-

fiability and µ-set-membership identifiability. We provided operational methods
to check the studied properties in set-membership framework. Two methods for
checking set-membership and µ-set-membership-identifiability are presented. They
take inspiration from well established methods for checking classical identifiability,
namely the Taylor Series approach in [95] for the first one, and the differential al-
gebra approach [31, 76, 74, 94] for the second one. The second method, based on
differential algebra, is shown to be easily extendable to nonlinear uncertain systems
with parameters varying according to polynomial laws. I and co-workers have de-
velopped in [109] a method for determining the partitioning of the parameter space
in terms of set-membership identifiable sets.
In the same way, we introduced some new definitions on diagnosability in the
set-membership framework; links between set-membership identifiability and set-
membership diagnosability are exhibited.

• Concerning the optimal input design, my research is in collaboration with L. Denis-
Vidal and Z. Cherfi. The aim is to design an experiment that produces data from
which model parameters can be estimated accurately in the bounded-error frame-
work.
In [44], I and E. Chanthery have considered the optimal input design for systems
with bounded parameters and some statistic information about measurement noise.
In the framework of the thesis of Q. Li and in collaboration with L. Denis-Vidal
and Z. Cherfi, we showed that the search for an optimal input in nonlinear dy-
namical systems can be made with the Gram matrix of sensitivity functions in the
bounded-error context. We have also studied the optimization of the initial condi-
tions in [73]. We explicitely exhibited some criteria to find an optimized input in the
bounded-error context. Our procedure has been applied on different examples (pro-
vided from pharmacokinetical domain, aeronautical domain) and it leads to good
results in terms of parameter estimation comparatively to results obtained with a
non-optimized input.

• A part of my works is devoted to the integration of mixed uncertainties which com-
bine stochastic and bounded errors. As said in introduction, some sources of un-
certainty are not well-suited to stochastic modeling and are better represented with
bounded uncertainties. Hence, combining stochastic and bounded uncertainties may
be an appropriate solution. In contrast to stochastic estimation approaches, set-
membership estimation advantageously provides a guaranteed solution. However, it
does not give any precision about the belief degree and it is often criticized for the
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overestimation of its results.
Motivated by the above observations, I consider the modeling and filtering in the
case of mixed uncertainties meaning that I consider some bounded uncertainties
on parameters and perturbations/noise are modeled through appropriate probabil-
ity distributions. The literature concerning the filtering problem in case of mixed
uncertainties is nowadays expanding: for example a combination of Kalman filter
and zonotopes is proposed in [22], a combination of particle filter and intervals is
proposed in [10] and my works [137, 138].
In 1997, Chen et al. have developped an extension of Kalman filter considering
bounded uncertainties on parameters and gaussian measurement noise by using in-
terval analysis; it is named IKF (Interval Kalman Filter) [19]. An improvement
of IKF, named iIKF (improved Interval Kalman Filter) has been developped by J.
Xiong during his PhD that I co-supervised with L. Travé-Massuyès [136]. In par-
ticular, the approach proposed in [19] does not provide guaranteed results because
of the simplification used to avoid interval matrix inversion. The main contribution
of J. Xiong’s thesis consists in proposing a method to solve the interval matrix in-
version problem without loss of solutions while controlling the inherent pessimism
of interval calculus.

• Another part of my works concerns fault detection and diagnosis relying on set-
membership identifiability, diagnosability, parameter and state estimation in a
bounded error context.
Fault detection via parameter estimation relies on the principle that possible faults
in the monitored system can be associated with specific parameters and states of the
mathematical model of the system given in the form of an input-output relation. This
approach supposes that there exists a relationship between the model parameters p
and the physical system parameters. Decision on whether a fault has occurred, is
based either on changes in model parameter values or on changes in physical system
parameters and tolerances limits. In collaboration with L. Travé-Massuyès and N.
Verdière, we have developped an efficient method to estimate faults. This method is
based on the polynomials linking inputs, outputs and their derivatives, parameters
and faults obtained through variables elimination relying on set-membership identi-
fiability.
With R. Pons and L. Travé-Massuyès, we have also developped a fault detection
method based on state estimation with bounded-errors. It is a simplified version of
the method based on Taylor serie expansion in which two parameters η and ζ are
introduced. The integer η deals with the number of successive empty intersections
between the prediction value of model output and the measure. The integer ζ is used
to set the number of iterations between two successive resettings of the prediction
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on the measured value. This method has been successfully used in a benchmark
proposed in the SIRASAS project developped in Section 1.5.3.

1.4 Supervision activities (PhD and post-PhD)

1.4.1 Theses Supervisor

I have co-supervised two theses (defended in 2013 and in 2015) and I have been co-
supervising one thesis since October 2014.

1.4.1.1 Thesis of Jun Xiong

I co-supervised the thesis of Jun Xiong from 1 October 2009 to 9 December 2013. The
title was "Set-membership state estimation and application on fault detection".
The commitee members were Patrick Danès (President), Luc Jaulin (referee), Tarek Raïssi
(referee), Vicenç Puig (Examinator), Carine Jauberthie (Thesis-Supervisor), Louise
Travé-Massuyès (Thesis-Supervisor) and Françoise Le Gall (invited). The co-supervision
has been made 50% with L. Travé-Massuyès.
This thesis dealt with the problem of integrating both statistical and bounded uncertainties
for discrete time linear systems. Building on the Interval Kalman Filter (IKF) developed
by C. Chen in 1997, we proposed significant improvements based on recent techniques of
constraint propagation and set inversion which, unlike the IKF algorithm, allow to obtain
guaranteed results while controlling the pessimism of interval analysis. The improved fil-
ter is named iIKF. The iIKF filter has the same recursive structure as the classical Kalman
filter and delivers an enclosure of all the possible optimal estimates and the covariance
matrices. Chen’s IKF algorithm avoids the interval matrix inversion problem and conse-
quently loses possible solutions. For the iIKF, we proposed an original guaranteed method
for the interval matrix inversion problem that couples the SIVIA (Set Inversion via Inter-
val Analysis) algorithm and a set of constraint propagation problems. In addition, several
mechanisms based on constraint propagation are implemented to limit the overestimation
effect of interval propagation within the filter recursive structure. A fault detection algo-
rithm based on the iIKF is proposed. It implements a semi-closed loop strategy which
stops feeding the filter with observation corrupted by the fault as soon as it is detected.
Through various examples, the advantages of the iIKF filter are presented and the effec-
tiveness of the fault detection algorithm is demonstrated.
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1.4.1.2 Thesis of Qiaochu Li

The second thesis that I have co-supervised is the thesis of Qiaochu Li from 1 October
2012 to 10 November 2015.
The title of this thesis was "Contribution to the experimental design and active diagnosis
for nonlinear dynamical systems, application in aerospace and automotive fields".
The committee members were Abdellatif El Badia (President), Luc Jaulin (referee),
Michel Kieffer (referee), Floriane Collin (Examinator), Nathalie Revol (Examinator),
Zohra Cherfi (Thesis-Supervisor), Lilianne Denis-Vidal (Thesis-Supervisor), Carine
Jauberthie (Thesis-Supervisor).
This thesis has been co-supervised (40%) with L. Denis-Vidal 35% and Z. Cherfi 25%.
In this work, we studied the optimal input design for parameter estimation for uncertain
dynamical systems. The problems of optimal sampling time and optimal initial states
were also considered.
Some set-membership criteria have been proposed to find an optimal input in the bounded-
error context. These criteria are based on the Gram matrix of sensitivity functions. They
have been used for the search of optimal input and optimal initial states. These criteria
allowed to obtain better parameter estimation results. The comparisons are made on dif-
ferent applications: pharmacokinetical domain and aeronautical domain. The obtained
results highlight the potential of our proposed methodology. The application to active
diagnosis have also be considered; active diagnosis means in this work, to refine diagno-
sis if this last one is ambiguous. We considered diagnosis by parameter estimation. The
obtained results by using our optimal input methodology were very satisfactory.

1.4.1.3 Thesis of Tuan Anh Tran

I have been co-supervising (50%) with F. Le Gall (50%) the thesis of Tuan Anh Tran,
since 1 October 2014.
The title of this work is "Unified framework for modeling the stochastic and bounded
errors - Application to the fault detection and isolation in uncertain dynamical systems".
In this thesis, several problems are investigated. The first one concerns the definition of
a unified theoretical framework for modeling stochastic and bounded uncertainties. The
second one deals with the design of filtering algorithms with mixed uncertainties (includ-
ing generalization of the extended Kalman filter and the particle filter) for nonlinear dy-
namical models and the last one concerns the study of theoretical properties such stability
and convergence.
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1.4.2 Post-Doctorate Supervision

I have co-supervised (50%) the post-doctoral position of Laleh Ravanbod-Hosseini from
September 2012 to August 2013 with N. Verdière 50% in the project funded by ANR
named MAGIC-SPS. This post-doctorate concerned the development of tools and algo-
rithms to analyse set-membership identifiability.

1.5 Participation and coordination of projects

1.5.1 MAGIC-SPS

I was the coordinator of the project MAGIC-SPS (Guaranteed Methods and Algo-
rithms for Integrity Control and Preventive Monitoring of Systems) from 01/10/2011
to 30/09/2015. It was a 3-years joint project funded by the French National Research
Agency (ANR) Digital Engineering and Security (INS) year 2011 program, contract num-
ber ANR-11-INSE-006,
link: http://projects.laas.fr/ANR-MAGIC-SPS/.
The financial support of the ANR was 380 297 euros and the involved laboratories were
LAAS CNRS (Toulouse), Lab ENSEA ECS (Cergy), IMS CNRS (Bordeaux), PRISME
(Orléans), LMAH (Le Havre).
MAGIC-SPS aimed at:

• The development of reliable algorithms for system monitoring and integrity control.
Current systems must show autonomous capabilities that allow them to remain op-
erational even in a degraded but safe mode when a fault, a failure or any other
disturbance occurs. To achieve such an objective, current modern systems often
embed software and hardware that allow them to detect in an automatic and au-
tonomous way the need of switching to the degraded mode, and either proceed with
the necessary corrective actions to resume normal operational mode or remain in a
degraded but safe one. One of the main challenges that must be addressed is how
to take into account the uncertainties that act on the embedded system and that may
be induced by measurement errors, loose conception, faults, or ageing, . . . The first
objective of MAGIC-SPS project was to investigate in a thorough manner compu-
tational techniques applicable to fault detection and isolation as a means to monitor
the systems subject to bounded error uncertainties. This kind of uncertainties remain
confined within a bounded set, with known bounds but no additionnal characteriza-
tion. Both time-continuous and hybrid continuous-discrete dynamical systems with
bounded uncertainties are addressed in the project. To do so, modelling approaches,
model identification and estimation techniques have been studied in the bounded
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error framework.

• The development of set-membership estimation techniques based on interval analy-
sis.
Set membership techniques, also known as guaranteed methods, for fault detection
and isolation have recently benefited from a large number of works and have shown
significant progress. Nevertheless, a significant shortcoming remains: the propaga-
tion of spurious uncertainty due to over-approximations in set computation, which
yields algorithms with exponential complexity hence prohibitive computation time
for on-line applications. The MAGIC-SPS project aimed to (1) extend the capabil-
ities of current guaranteed methods for nonlinear continuous reachability computa-
tion, hence coming out with scalable methods in presence of bounded uncertainty;
(2) develop guaranteed and efficient set membership techniques for hybrid reacha-
bility computation in presence of bounded uncertainty; (3) use the above to develop
methods for preventive monitoring of both error bounded continuous and hybrid dy-
namical systems. We also investigated the feasibility of fault prognosis by using set
membership state and parameter estimation techniques. Finally, the computational
techniques developed within the project are made freely available on the web as an
open source toolbox library, to make easier their diffusion and evaluation among the
international scientific community.

I was coordinator of the MAGIC-SPS project and I contributed in the workpackage 2
on set-membership identifiability/diagnosability with the analysis of these concepts for
uncertain dynamical models. Some methods and algorithms to test set-membership iden-
tifiability were developped. In the workpackage 2, we developped a method based on
Differential Algebra and a partial-injectivity test. An algorithm allowing to obtain set-
membership identifiable sets into the admissible parameter set was given. Some links be-
tween the classical definitions of identifiability and diagnosability (without uncertainties)
were exhibited. In the bounded-error framework, some new definitions of diagnosability
were established; links with set-membership identifiability were also demonstrated.

1.5.2 ADES

I was co-leader of the project ADES (Set Estimation and Detection Applications) with
Nacim Ramdani 50% in 2007. ADES was supported by the GDR MACS and brought
together four laboratories. It targeted the set-membership methods for the simulation of
nonlinear dynamical uncertain systems with bounded uncertainties. The potential appli-
cation of set-membership methods have been evaluated for the fault detection problem.
The project ADES allowed to construct and propose the project DROCSETA at ANR in
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2008, DROCSETA has not been funded but its rewritten into MAGIC-SPS was success-
full.
The four involved laboratories were ECS-ENSEA (Cergy), LAAS-CNRS, LAPS-CNRS
(Talence), LIRMM (Montpellier).

1.5.3 SIRASAS

From 2007 to 2010, I participated in the french collaborative project SIRASAS (Straté-
gies Innovantes et Robustes pour l’Autonomie des Systèmes Aéronautiques et Spatiaux),
supported by the Fondation de Recherche pour l’Aéronautique & Espace (FRAE) and
managed by IMS-Bordeaux.
The overall aim of SIRASAS was to increase significantly the spacecraft autonomy.
It addressed the model-based Fault Detection, Identification and Recovery (FDIR)
challenges for Guidance and Control. The picture was rather dark : there is a widening
gap between the advanced FDIR methods developed by the academic community and
those currently in use by the industrial end-users. In fact, the selection of any advanced
FDIR solution at a local or global level for space missions or aeronautical systems,
necessarily includes a trade-off between the best adequacy of the technique and its
implementation level for covering an expected fault profile, as well as its industrialization
process with support tools for its design/tuning and validation. Many attractive advanced
FDIR algorithmic solutions may not be accepted, and so cannot be adopted, without such
industrial framework. The actions undertaken within SIRASAS aimed at overcoming
the dead zone between the scientific advanced methods proposed by the academic
and research communities and the technological solutions demanded by the aerospace
industry, with stringent operational constraints.
Industrial and laboratories involved in this project were IMS, SATIE (ENS Cachan),
LAAS-CNRS, CRAN (Nancy), LRI (Université Paris-Sud, Orsay), ONERA Center of
Toulouse, CNES, Airbus and Thales Alenia Space France.
My contribution, in collaboration with L. Travé-Massuyès and R. Pons, in SIRASAS
project concerned the fault detection and diagnosis for the oscillatory failure cases based
on interval analysis with CRAN.

1.5.4 CORAC-EPICE

Through the CORAC-EPICE project (2011-2016) and MICPAC (2011-2015), I have been
interested in prognosis using an interval-based approach.
CORAC (Council for Civil Aeronautics Research) brings together all the French play-
ers in the airline industry. CORAC offers six demonstrators for the future of aviation.
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The group responded to the call for proposals SPICE P6 WP1 Health Monitoring of the
number 4 platform technology demonstration SPICE (Propellant Together with Integrated
Composites Environment). The project aims to develop a health monitoring application
of air sampling system (bleed).
My contribution in the CORAC-EPICE project concerns the monitoring and prognosis
based on interval analysis.
In collaboration with L. Travé-Massuyès, R. Pons, P. Ribot and Y. Pencolé, we proposed a
two-stages set-membership condition-based monitoring method. The first stage achieves
diagnosis and provides an estimation of the system’s health status. It takes the form of
set-membership parameter estimation using focused recursive partitioning. The second
stage concerns prognosis in the form of the estimation of the remaining system’s lifespan.
It is based on the use of a damaging table. The case study of a shock absorber was used
to illustrate the method [124].

1.5.5 MICPAC

The project MICPAC (Interval method for bonded joints characterization and prognosis)
was financed by the ANR (JCJC project) from October 2011 to September 2015.
Adhesives and sealants are widely used in many industrial applications, such as in
aerospace, automotive and electrical industries. The characterisation, evaluation of their
properties and diagnosis is a key-point for the use of these multi-materials: if the usual
characterisation techniques allow a good description of the adhesives in the bulk, or their
practical adhesion at model interfaces, reliable parameters of thick interphases between
the substrates and the adhesives are missing. Then, dielectric spectroscopy is an ex-
tremely effective method for characterising the molecular dynamics over a large range of
time scales, and a very promising method to study these complex multi-materials. Un-
fortunately, the resulting curves are very difficult to analyse as many phenomena take
place at the same time (or frequency): dipole relaxations, sample conductivity, electrodes
polarisation. Then, some modeling has to be done, and the real and imaginary parts of
the permittivity have to be simultaneously modelled, which is really rarely done now. As
classical tools for the dielectric spectroscopy data fitting are not satisfactory, some new
mathematical and simulation tools have been developped.

The interval analysis method takes into account the experimental error of each
data point in the measured dielectric spectrum in order to find the suitable number of
relaxations, and gives a confidence interval for every parameter of the dielectric function
implemented in the software (Set Inversion Via Interval Analysis applied to DiElectric
Spectroscopy). The obtained result is guaranteed which means that this algorithm is
able to validate or nullify a mathematical model. Then, the number of relaxations in the
characterised system, their position and intensity are determined and guaranteed.
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On the one hand, this new approach of the polymer and interphase study leads to a better
comprehension of the bonded systems, their ageing and to the determination of their
Remaining Useful Life. Of course, this fundamental research in molecular dynamic is
coupled with a strong experimental work in practical adhesion and interphases study.
On the other hand, the interval analysis and the developed software put into a general
use (all kind of fit and peak deconvolution): for example the fit of dynamical mechanical
analysis data, or deconvolution of X-Ray diffraction, infra-red spectroscopy, Raman
spectroscopy, X-ray photoelectron spectroscopy. Using interval analysis, it is possible to
guarantee the number of Gauss or Lorentz type peaks hidden under a common peak
The coordinator of the project MICPAC was M. Aufray (Institut National Polytechnique
de Toulouse) and the laboratories involved were CIRIMAT (Toulouse), LAAS-CNRS
and LAPLACE (Toulouse).

1.6 Implication in the international community

• Since July 2010, I have been member of the editorial board of the Journal Européen
des Systèmes Automatisés.

• In July 2011, I was invited to the Workshop on Experiments for Processes with
Time or Space Dynamics in Cambridge (UK). I presented my thesis works and my
presentation was entitled Methodology and implementation of optimal input design
for parameter estimation.
http://www.newton.ac.uk/programmes/DAE/daew01.html

• I participated to two selection committees for Assistant Professor:
- University of Bordeaux 1 in 2012.
- University of Toulon in 2013.

• I was:
-a Chair for IFAC European Control Conference 2007 on the Regular Session on
Nonlinear Systems,
-a Co-chair for IFAC Symposium on Nonlinear Control Systems 2013 on the Regu-
lar session on Vehicles Control and Mechatronics.

• I was a member of the program committe for JD-JN MACS in 2015 at Bourges,
France.

• I am a member of the national organizing committee of World IFAC Congress 2017,
technical visits.
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• I am a reviewer for international journals and conferences among Aeronautical Jour-
nal, AI Communications, American Control Conference, CIFA, European Control
Conference, IEEE Transactions on Control Systems Technology, IMA Journal of
Mathematical Control and Information, International Journal of Advanced Manu-
facturing Technology, International Journal of Applied Mathematics and Computer
Science, Journal Européen des Systèmes Automatisés, Mediterranean Conference
on Control and Automation, Nonlinear Control Systems, SAFEPROCESS, DX,
SYSID.

• I was a reviewer for the French National Research Agency in the program Villes et
Bâtiments Durables Edition 2012.

• I was a reviewer for doctoral contracts for the Doctoral School SICMA (Université

de Bretagne Occidentale) from 2008 to 2010.

1.7 Publications

1.7.1 Articles published in International journals

• C. Jauberthie, L. Travé-Massuyès, N. Verdière, Set-membership identifiability of
nonlinear models and related parameter estimation properties. To appear in 2016 in
the International Journal of Applied Mathematics and Computer Science (AMCS),
Vol. 26, No. 4.

• Q. Li, C. Jauberthie, L. Denis-Vidal, Z. Cherfi, M. Maïga. Entrée optimale pour
l’estimation de paramètre des systèmes dynamiques non linéaires avec application
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Chapter 2

Problem formulation and models

2.1 Motivations

As said in introduction, complex systems are often prone to uncertainties that complicate
the modeling task. In a stochastic framework, uncertainty is taken into account through
appropriate assumptions about noise and model error probability distributions [3, 134].
However, some sources of uncertainty are not well-suited to the stochastic uncertainty
assumption and are better modeled as bounded uncertainty. This is typically the case for
modeling tolerances on the parameter values, for which the manufacturer provides lower
and upper bounds corresponding to the inherent variability of technological processes.
Bounded uncertainty hence represents an interesting alternative to stochastic uncertainty
and can be advantageously handled with set-membership models whose parameter values
are defined by sets. Set-membership methods can be based on interval analysis and several
algorithms have been proposed (for example [50, 110, 57]). Other approaches dedicated
to linear models include ellipsoid shaped methods ([85, 65]), parallelotope and zonotope
based methods [2, 42]. As this work concerns essentially nonlinear dynamical models,
we use interval analysis which is very well adapted to the manipulation of these model
equations. Thus in this chapter, after having described the model equations, we recall
some basic tools of interval analysis and concepts of contractors. Contractors are tools of
constraint propagation [48].

2.2 The considered model

We consider the uncertain dynamical parameter models described by the following form:

Γ1

{

ẋ(t, p) = f(x(t, p), u(t), p),
y(t, p) = g(x(t, p), p),

(2.1)

39
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where :

• x(t, p) ∈ R
n and y(t, p) ∈ R

m denote respectively the state variables and the outputs
at time t respectively,

• the time t is supposed to be such that t0 ≤ t ≤ T where T is a finite or infinite time
bound,

• the initial conditions x(t0, p) = x0, if any, are supposed to belong to a bounded set
X0,

• u(t) ∈ Rr is the input vector at time t; in the case of uncontrolled models, u(t) is
equal to 0,

• the vector of parameters p belongs to a connected set P supposed to be included in
UP where UP ⊆ Rp is an a priori known set of admissible parameters,

• the functions f and g are real and analytic1 on M , where M is an open set of Rn

such that x(t, p) ∈ M for every t ∈ [t0, T ] and p ∈ P .

In chapter 2, Γp,x0

1 denotes a specific model of the family of models represented by (2.1),
where p ∈ P , x0 ∈ X0 and we assume that X0 does not contain equilibrium points of the
system. We will also introduce models Γ2 including a stochastic part. These models will
be described in the chapter two. Notice that P may be reduced to a single point.

We suppose that there exists a "true" value of parameters p∗ such that the N data z(ti)
are described by:

z(ti) = y(ti, p
∗) + v(ti), i = 1, ..., N. (2.2)

We assume that v(ti) belongs to the real interval vector [v(ti), v(ti)] where v(ti) and

v(ti) are known as lower and upper bounds for the acceptable output errors. Such bounds
may, for instance, correspond to a bounded measurement noise. The integer N is the total
number of sample times.

As said in the motivations of this chapter, the works presented through this manuscript
concern essentially the nonlinear uncertain dynamical systems described by the system
(2.1); the interval analsis is well adapted to the manipulation of these model equations.
Thus, in the following section, the main tools of interval analysis are briefly described.

1In particular, they are considered infinitely differentiable. This assumption is important in chapter 2 for the use of
differential algebra.
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2.3 Basic tools of interval analysis

Interval analysis introduced by R. E. Moore [86] provides tools for computing with sets
which are described using outer-approximations formed by union of non-overlapping
boxes. It is used for many tasks: for example in system robust control [62, 108, 27],
in estimation [96, 106] or in computer science [61, 84].

In this section, the basic concepts and definitions of interval analysis are presented.
The following results are mainly taken from [50].

2.3.1 Basic definitions

2.3.1.1 Interval

Definition 2.3.1 A real interval [u] = [u, u] is a closed and connected subset of R where

u (respectively u) represents the lower (respectively the upper) bound of [u].

The set of all real intervals of R is denoted IR.

Definition 2.3.2 The width w(.) of an interval [u] is defined by w([u]) = u− u.

Definition 2.3.3 The midpoint m(.) of an interval [u] is defined by m([u]) = (u+ u)/2.

Definition 2.3.4 The magnitude of an interval [u], noted | [u] | is given by the largest

absolute value of [u] that means the absolute value of the real with the largest value in

[u]. We have | [u] |= max(|u|, |u|).

Definition 2.3.5 The mignitude of an interval is mig([u]) = min(|u|, |u|) if 0 /∈ [u], else

mig([u]) = 0.

We note that two intervals [u] and [v] are equal if and only if u = v and u = v.

2.3.1.2 Interval vector

Definition 2.3.6 An interval vector (or box) [x] is a vector with interval components and

may equivalently be seen as a cartesian product of intervals:

[x] = [x1]× [x2]...× [xn].

The set of n−dimensional real interval vectors is denoted by IR
n.

Definition 2.3.7 The width w(.) of an interval vector is the maximum of the widths of its

interval components.
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Example 2.3.1 w([−2, 2]× [1, 3]) = 4.

Definition 2.3.8 The midpoint m(.) of an interval vector is a vector composed of the

midpoints of its interval components.

Definition 2.3.9 The magnitude | (.) | of an interval vector is a vector composed of the

magnitude of its interval components.

Definition 2.3.10 The mignitude mig(.) of an interval vector is a vector composed of the

mignitude of its interval components.

Moreover, for an interval vector [x] with components [xi], the real ‖ [x] ‖ is given by
‖ [x] ‖= maxi(| ([xi]) |) (used in Chapter 4).

2.3.1.3 Interval matrix

Definition 2.3.11 An interval matrix [A] is a matrix with interval components. It can be

written as:

[A] =





[a1,1] ... [a1,m]
... ... ...

[an,1] ... [an,m]



 , (2.3)

where the matrix [A] is composed of n lines and m columns.

The set of n×m real interval matrices is denoted by IR
n×m.

Definition 2.3.12 The width w(.) of an interval matrix is the maximum of the widths of

its interval components.

Definition 2.3.13 The midpoint m(.) of an interval matrix is a matrix composed of the

midpoints of its interval components.

Definition 2.3.14 A square interval matrix [A] is regular if 0 6∈ det([A]).

Remark 2.3.1 Let [A]−1 the inverse interval matrix of [A] which means the narrowest

interval matrix enclosing the set of inverse matrices {A−1/A ∈ [A]}. Considering the

matrix [Iǫ] whose entries are [1− ǫ, 1+ ǫ] on the main diagonal and [0− ǫ, 0+ ǫ] outside.

Then there exists ǫ ∈ R+∗ such that [A]−1[A] ⊂ [Iǫ].

Definition 2.3.15 An interval matrix [A] is said to be positive definite if each A ∈ [A] is

positive definite (in the classical sense).
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Positive definiteness of symmetric interval matrix is closely related to regularity. A sym-
metric interval matrix is positive definite if and only if it is regular and contains at least
one positive definite matrix [115].

Definition 2.3.16 The Frobenius norm for an interval matrix [A] is denoted by ‖ [A] ‖F
and ‖ [A] ‖F=

√

| tr([A]T[A]) | =
√

∑

i,j | [aij ] |2 where tr([B]) is the trace of the

interval matrix [B].

2.3.1.4 Paving and subpaving

Before describing the notions of paving and subpaving, we explain the principle of bisec-

tion.

Definition 2.3.17 The bisection of a box [x] is an operation that partitions this box into

two other boxes L[x] and R[x] which are:

L[x] = [x1, x1]× ...×
[

xj ,
xj + xj

2

]

× ...× [xn, xn], (2.4)

R[x] = [x1, x1]× ...×
[

xj + xj

2
, xj

]

× ...× [xn, xn], (2.5)

where the jth component of [x] is bisected.

Example 2.3.2 The bisection of the first component of [x] = [−2, 2]× [1, 3] leads to two

boxes:

L[x] = [−2, 0]× [1, 3] and R[x] = [0, 2]× [1, 3].

Definition 2.3.18 A subpaving X of a box [x] ⊂ R
n is a union of non-overlapping sub-

boxes of [x] with non-zero width.

Definition 2.3.19 A subpaving of [x] is regular if each of its boxes can be obtained from

[x] by a finite succession of bisections and selections.

A regular subpaving may be represented as a binary tree [50].

Definition 2.3.20 A regular subpaving of [x] is minimal if it has no sibling leaves.

Any non-minimal tree representative of a regular subpaving can be made minimal by
discarding all sibling leaves so that their parents become leaves.

Definition 2.3.21 When a subpaving X of a box [x] covers [x] then it is a paving of [x].

Example 2.3.3 In the previous example, L[x] and R[x] define a paving of [x].
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2.3.2 Interval arithmetic

The mathematical operations allowing to manipulate interval variables (intervals, boxes
or matrices) are presented in this subsection. More details can be found in [86, 55, 50].

The classical operations {+,−,×, /} on real numbers can be extended to intervals:

[x] ⋄ [y] = [{x ⋄ y | x ∈ [x], y ∈ [y]}], (2.6)

with ⋄ ∈ {+,−,×, /}.
Let [x] and [y] two intervals of IR, the result of [x] ⋄ [y] is given by:































[x] + [y] = [x+ y, x+ y],
[x]− [y] = [x− y, x− y],
[x]× [y] = [min(xy, xy, xy, x y), max(xy, xy, xy, xy)],

1 / [y] =

{

[−∞,∞] si 0 ∈ [y],
[1/y, 1/y] otherwise,

[x] / [y] = [x]× 1/[y].

Example 2.3.4 Consider the two intervals of IR, [x] = [1, 3] and [y] = [−1, 2]. We have:






[x]− [y] = [1, 3]− [−1, 2] = [−1, 4],
[x]× [y] = [1, 3]× [−1, 2] = [−3, 6],
[x] / [y] = [1, 3]× 1/[−1, 2] = [−∞,+∞] because 0 ∈ [y].

An elementary real function f can often be extended to interval context by the follow-
ing expression:

f([x]) = [ inf
x∈[x]

(f(x)), sup
x∈[x]

(f(x))]. (2.7)

It is then easy to write down the expressions of different monotonic functions, for
example:























































exp([x]) = [exp(x), exp(x)],

ln([x]) =







[−∞, ln(x)] if 0 ∈ [x],
∅ if x ≤ 0,
[ln(x), ln(x)] otherwise,

[x]2 =

{

[0,max(x2, x2)] if 0 ∈ [x],
[min(x2, x2),max(x2, x2)] otherwise,

√

[x] =







∅ if x ≤ 0,

[
√
x,

√
x] if x ≥ 0,

[0,
√
x] if 0 ∈ [x].

(2.8)
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Other non monotonic functions need specific analysis.

Example 2.3.5














































exp([0, 1]) = [1, e],
ln([−2,−1]) = ∅,

[−2, 2]2 = [0, 4],
[−2, 2]× [−2, 2] = [−4, 4],

√

[−2, 4] = [0, 2],
abs([−2, 1]) = [0, 2],
sin([0, 2π

3
]) = [0, 1],

cos([0, 2π
3
]) = [−1

2
, 1].

(2.9)

Let us notice that [−2, 2]2 and [−2, 2] × [−2, 2] provide different results, which is
discussed follows.

2.3.3 Inclusion function

2.3.3.1 Some definitions

Definition 2.3.22 The interval function [f ] from IR
n to IR

m is an inclusion function for

f if:

∀[x] ∈ IR
n, f([x]) ⊆ [f ]([x]). (2.10)

Providing, for a large class of functions, an inclusion function [f ] giving for a box [x]
an image [f ]([x]) not too large and computed reasonably quickly is one of the proposes
of interval analysis.

Definition 2.3.23 An inclusion function [f ] for f is thin if, for any punctual real interval

vector [x] = x, [f ](x) = f(x).

Definition 2.3.24 An inclusion function [f ] for f is convergent if for any sequence of

boxes [x](k), we have:

lim
k→∞

w([x](k)) = 0 ⇒ lim
k→∞

w([f ]([x](k))) = 0, (2.11)

which implies:

∀[x] ∈ IR
n, [f ]([x]) = f([x]). (2.12)

Definition 2.3.25 The inclusion function [f ] for f is minimal if for any [x], [f ]([x]) is the

smallest box containing f([x]). In this case, [f ] is noted [f ]∗ and we have:

∀[x] ∈ IR
n, [f ]∗([x]) = f([x]). (2.13)
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Definition 2.3.26 A function [f ] is inclusion monotonic if:

[x] ⊂ [y] ⇒ [f ]([x]) ⊂ [f ]([y]), (2.14)

with [x] and [y] two boxes of IRn.

2.3.3.2 Natural inclusion function

There exist various methods to find a convergent inclusion function for a given function
f , from Rn to R. The simplest and the most direct way consists in replacing every point-
wise number by an interval containing this number and the real elementary functions by
their interval extensions. This method provides the natural inclusion function.

Theorem 2.3.1 This theorem is taken from [50].

Let a function f from R
n to R such that f(x1, x2, ..., xn) = y expressed as a finite com-

position of the operators +,−,×, / and of elementary continuous functions such that

sin, cos, exp, .... A monotonic and thin inclusion [f ] for f is obtained by replacing each

real variable xi by an interval variable [xi] and each operator or function by its interval

counterpart. If f involves only continuous operators and continuous elementary functions

then [f ] is convergent. If moreover, each of the components of x occurs at most once in

the formal expression of f then [f ] is minimal.

Example 2.3.6 Consider the function f such that :

f(x) = x2 + 2x+ 1.

A natural inclusion function of f is:

[f ]([x]) = [x]2 + 2× [x] + 1.

The evaluation of this function for [x] = [−1, 1] is:

[f ]([−1, 1]) = [−1, 1]2 + 2× [−1, 1] + 1 = [0, 1] + [−1, 3] = [−1, 4].

Notice that the image of [x] by f is f([−1, 1]) = [0, 4], which verifies the inclusion relation

(2.10).

Many works ([51, 107]) have proven that natural inclusion functions are rarely mini-
mal. The pessimism is always introduced by the fact that each occurrence of an interval
variable is considered as an independent variable with respect to other occurrences of the
same variable. A given function has generally different formulations in natural interval
arithmetic.
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Example 2.3.7 Consider the function f : x → x2+2x+2. This function can be rewritten

under the following forms:















f1(x) = x(x+ 2) + 2,
f2(x) = x× x+ 2× x+ 2,
f3(x) = x2 + 2× x+ 2,
f4(x) = (x+ 1)2 + 1,

(2.15)

and for [x] = [−2, 1], we have:















[f1]([x]) = [x]([x] + 2) + 2 = [−4, 5],
[f2]([x]) = [x]× [x] + 2× [x] + 2 = [−4, 8],
[f3]([x]) = [x]2 + 2× [x] + 2 = [−2, 8],
[f4]([x]) = ([x] + 1)2 + 1 = [1, 5].

(2.16)

[f4] gives the smallest interval solution and it can be proven to be minimal.
The first observation on pessimism of interval arithmetic is that the evaluation of the

function f depends on the number of occurrences of each interval variable in the expres-
sion of function f .

To reduce the pessimism introduced by multi-occurrences, the number of occurrences
of each variable has to be reduced. If each variable appears just once in the function f ,
the natural inclusion function is minimal. Unfortunately there is no method which can be
used systematically to find the minimal inclusion function. The natural inclusion function
is still the simplest way to evaluate an interval function.

An approach to reduce pessimism consists in considering a centered inclusion func-

tion. This form is based on interval Taylor serie expansion [93, 103].

2.3.3.3 Centered inclusion function

Let f a function from Rn to R. Assume that f is differentiable over every box [x] in a
subset D ⊂ Rn, then:

∀[x] ⊂ D, f(x) ∈ [f ]m([x]) = [f ](m) +

[

df

dx

]T

([x]) ([x]−m), (2.17)

where m is the midpoint of [x] and

[

df

dx

]T

([x]) is an inclusion of the gradient of f com-

puted in [x]. [f ]m is called the centered inclusion function.
The centered inclusion function gives generally a less pessimistic result compared to

the natural inclusion function if w([x]) is not too large.
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2.3.3.4 Convergence of the inclusion function

The criterion of convergence of inclusion functions was studied by Moore [87]. In his
work, the convergence order of an inclusion function is defined as the largest integer α
which satisfies:

∃β ∈ R
+/w([f ]([x]))− w(f([x])) ≤ βw([x])α. (2.18)

The convergence order of a minimal inclusion function is infinite. It shows that the
centered inclusion function is more interesting than the natural inclusion function when
the width of intervals is small. But for larger size intervals, it is preferable to use the
natural inclusion function.

2.4 Implementation of set computation

To our knowledge, three approaches have been proposed during the last decades to solve
linear or nonlinear equation systems. The first one is known as the set inversion problem

[51], the second one is known as direct image [51] and the last one concerns the constraint

satisfaction [15].

2.4.1 Set inversion problem

Consider the problem of determining a solution set S for the unknown quantities u, be-
longing to an a priori search set U, defined by:

S = {u ∈ U|f(u) ∈ [y]} = f−1([y]) ∩ U, (2.19)

where [y] is a priori known and f a nonlinear function not necessarily invertible in the
classical sense. (2.19) involves computing the reciprocal image of f and is known as a
set inversion problem which can be solved using the algorithm Set Inverter Via Interval

Analysis (denoted SIVIA). The algorithm SIVIA proposed in [51] is a recursive algorithm
which explores all the search space without loosing any solution. This algorithm makes
it possible to derive a guaranteed enclosure of the solution set S as follows:

S ⊆ S ⊆ S. (2.20)

The inner enclosure S is composed of the boxes that have been proved feasible. To
prove that a box [u] is feasible, it is sufficient to prove that f([u]) ⊆ [y]. Reversely,
if it can be proved that f([u]) ∩ [y] = ∅, then the box [u] is unfeasible. Otherwise,
no conclusion can be reached and the box [u] is said undetermined. The latter is then
bisected and tested again until its size reaches a user-specified precision threshold ε > 0.
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Such a termination criterion ensures that SIVIA terminates after a finite number of
iterations.

Thus the algorithm SIVIA allows to obtain these two subpavings with a required pre-
cision ε, based on an inclusion test. The relation between the two subpavings can be
characterized as:

∆S = S\S, (2.21)

where ∆S is called the inclusion test uncertainty, in which no decision can be made during
the test. The properties of solutions are:

• if S = ∅ the problem (2.19) has no solution,

• if S 6= ∅, there exists at least one verified solution for (2.19).

2.4.1.1 Inclusion test

An inclusion test aims at verifying whether an interval, which is calculated with an in-
clusion function [f ], belongs to an a priori known set [y]. For any interval box [x], three
situations are evaluated:

• if [f ]([x]) ⊆ [y] then [x] ⊂ S and [x] is called feasible, or acceptable,

• if [f ]([x]) ∩ [y] = ∅ then [x] is called unfeasible, or rejectable,

• if [f ]([x]) ∩ [y] 6= ∅ then [x] is called uncertain.

One of the purposes of SIVIA is to deal with the last situation, using the bisection.

2.4.1.2 SIVIA algorithm

The SIVIA algorithm determines the subpaving S which contains the solutions and S

which contains the admissible boxes and undetermined boxes. This algorithm uses stacks:
a stack Pint keeps all the intervals to be analyzed (the intermediate boxes). An initial box
[x](0) ∈ X0 is supposed to contain all the solutions and it is placed in the stack Pint.

During the execution of the algorithm, the first element of the stack is retrieved as a
box [x]. This operation extracts the element on the top of the stack. Its image by the inclu-
sion function [f ] is then compared to the known set [y]. If the box [x] is undetermined and
its width is superior to ε (a user predefined size), it is then bisected; the two subpavings
[x]1 and [x]2 are put on the top of the stack Pint. If the box [x] is acceptable, [x] is added
to the stacks S and S, or it is undetermined but it can no longer be divided, [x] is added to
the stack S.
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Algorithm 1 Algorithm SIVIA([f ],[y],[x],ε, S, S)

Input: [f ],[x](0),[y],ε;
Output: S, S;

1: initialization: Pint := [x](0); S = [ ], S = [ ];
2: [x]:=getTop(Pint);
3: if [f ]([x]) ⊂ [y] then

4: S := S ∪ [x]; S := S ∪ [x];
5: else if [f ]([x]) ∩ [y] 6= ∅ and w([x]) < ε then

6: S := S ∪ [x];
7: else if [f ]([x]) ∩ [y] 6= ∅ and w([x]) ≥ ε then

8: bisectBox([x]) → {[x]1, [x]2 | [x]1 ∪ [x]2 = [x]};
9: Pint := Pint ∪ [x]1, Pint := Pint ∪ [x]2;

10: end if

11: if Pint 6= ∅ then

12: SIVIA([f ],[y],Pint,ε, S, S);
13: end if

The function getTop retrieves a box from the stack, and bisectBox divides a box
into two sub-boxes. The box stack ∆S = S\S, which represents the uncertainty of the
solution set, contains the undetermined boxes, the dimension of which is smaller than the
predefined threshold ε.

It is clear that SIVIA is a recursive algorithm; its complexity is exponential, depending
on the size of the variable vector. The number of bisections is estimated as inferior to:

(

w([x](0))

ε
+ 1

)n

. (2.22)

[x](0) is the initial search box as mentioned above, n is the dimension of vector [x].
This number can be reduced using contraction or preconditioning methods, which are
discussed in section 2.4.3.

Remark 2.4.1 The strategy of bisection is an important issue, which can influence the

efficiency of an algorithm. An overview of different strategies is given in [136]. The

choice of strategy is based on the algorithm requirements, considering a tradeoff between

efficiency, convergence, implementation complexity and speed.

2.4.2 Direct image of a subpaving

Computing the direct image of a subpaving X by a function f from Rn to Rm is more
complicated than computing the reciprocal image because interval analysis does not di-
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rectly provide an inclusion test for the point test.
In the following, we assume that f is a continuous function and [f ] is a convergent inclu-
sion function of f .
An algorithm presented in [50], called ImageSP, generates a regular subpaving Y that
contains the image Y of the regular subpaving X by f :

Y = {y ∈ R
m | y ∈ f (X)}. (2.23)

This algorithm ImageSP allows to compute a regular subpaving Y which is guaranteed to
contain the set Y.

The set Y is included in the box [f ]([X]), that means in the image by the inclusion [f ]
of the smallest box containing X :

Y = f(X) ⊂ Y,
Y ⊂ [f ]([X]).

(2.24)

The algorithm ImageSP is divided into three steps : mincing, evaluation and regulariza-
tion. These steps are described below:

1. Mincing consists in generating a non-minimal regular subpaving Xε from succes-
sive bisections of X which contains only boxes whose length is less than a required
accuracy ε, with ε > 0 sufficiently small.

2. Evaluation computes the image by the function [f ] of the boxes [x] in Xε. The
resulting boxes are stored into a list U .

3. Regularization computes a regular subpaving Y that contains the union U of all
boxes of U . This step can be viewed as the call of SIVIA to invert U by the identity
function. In fact if f(X) ⊂ U, then f(X) ⊂ Id−1(U). Thus this problem can be
posed as a set-inversion problem.

The SIVIA algorithm used in ImageSP is a version based on an inclusion test [50].

2.4.3 Constraint satisfaction

To solve a problem described as an interval equation system, we can use constraint propa-
gation [48]. In fact, the inclusion relations and equations can be interpreted as constraints
and the resolution of such a system can then be taken into a Constraint Satisfaction Prob-
lem (CSP ). Let us recall the basic definitions:
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Algorithm 2 Algorithm ImageSP (f ,X,ε)

Input: [f ],X,ε;
Output: Y;

1: Xε := mince(X, ε);
2: U := ∅, U is a list and U is the set of boxes in U ;
3: for each [x] ∈ Xε, add [f ]([x]) to the list U ;
4: SIVIA

(

([y] ⊂ U), [f ](X), ε,Y,Y
)

.

Definition 2.4.1 A Constraint Network (CN) H = (X ,D, C) is defined by:

- a set of variables X = {x1, ..., xn},

- a set of value domains D = {D1, ..., Dn} where Di is the domain associated to the

variable xi,

- a set of constraints C = {C1, ..., Cm}, linking the variables X .

The resolution of a CN is a CSP .
For example, an interval linear system of the form (0 ∈ [A][X ]− [B]) can be represented
as a CN : [CN(A ∈ [A], B ∈ [B], X ∈ [X ], AX = B)] where the interval matrices [A],
[X ] and [B] are respectively in IR

m×n, IRn×1 and IR
m×1.

We can rewrite the CN row by row:

H =













X = {[x1], ..., [xn]},
D = {IR, ..., IR},
C =

{

Ci : 0 ∈∑n

k=1 [ai,k][xk]− [bi]

}

,

i = 1, ..., m.













. (2.25)

The solution S of the CSP : H = (X ,D, C) is the set of all the values affected to the
corresponding variables at the same time.

2.4.3.1 Contraction and consistency of a CSP

The resolution of a CSP starts from an infinite domain or a bounded domain. The reduc-
tion of the domain is known as a local consistency problem, which can take the form of
node consistency, arc consistency, or path consistency [16, 69]. The operation is called
constraint propagation or contraction, which is based on the equivalent relation below:

Definition 2.4.2 Two CSP H1 and H2 are equivalent if and only if they have the same set

of solutions.
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Remark 2.4.2 For the same set of variables X and the same set of constraints C, different

sets of variable domains Di define different CSP Hi.

Definition 2.4.3 A contractor R for a CSP H1 = (X ,D1, C) is an operator that can

shrink the domain D1 into a domain D2 without losing any solution, such that:

D2 ⊂ D1.

The new CSP H2 is equivalent to H1.

A CSP is solvable when it is equivalent to a CSP in which the infinite quantity
domain is replaced by a larger value in computation. The contractor aims to reduce the
initial domain into an as small as possible domain. The principle is to reject the parts of
the domain which are not consistent with the constraints.

Definition 2.4.4 A CSP : H = (X ,D, C) is globally consistent if and only if:

(∀xi ∈ Di, ∃(x1, ..., xi, ..., xn) ∈ D | ∀C(x1, ..., xi, ..., xn) ∈ C, C(x1, ..., xi, ..., xn) is verified, )

in which C(x1, ..., xi, ..., xn) is a single constraint with a set of variables.

Global consistency can be interpreted as the correspondance between the defined do-
main and the variation of the constraints for all the variables. In such a case, a globally
consistent CSP gives a minimal exterior estimation of the equivalent system equation of
the solution.

There is a large choice of contractors. Each has its own advantages and shortcomings,
system characteristics and available information. We use these criteria to classify different
contractors: constraint linearity, constraints, and size of [x], which is w([x]). The first
criterion to consider is the linearity of the constraints, which defines two categories, linear
CSP s and nonlinear CSP s. More information on CSP s can be found in [15] or in [136].

2.4.3.2 Convergence of contractors

The contraction is an operation that reduces the search space to a no longer compressible
domain. Its size depends on the initial uncertainty of the system. The result is yielded by
an iterative process:

Dk+1 = R(Dk).

The algorithm stops when:

Dk+1 = R(Dk) = Dk.

The solution S of CSP H = (X ,D, C) can be provided by the suitable contractor for
this CSP which verifies the properties:
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• contractible: [x] ⊂ D ⇒ R([x]) ∈ D,

• monotone: [x] ⊂ D, [x]′ ⊂ D; [x] ⊂ [x]′ ⇒ R([x]) ⊂ R([x]′),

• idempotent: [x] = S ⇒ R([S]) = [S].

Monotonicity is a property of the inclusion function. If the series Dk+1 = Dk∩R(Dk)
is an inclusion function, it should be monotonic which yields to a minimal function.
Among all the contractors, the fix point contractors are those that are idempotent.

For a convergent CSP , we have, from a certain k:

Ds = Dk+1 = R(Dk) = Dk,

where Ds represents the solution of the CSP .
In practice, the convergence is validated when the difference of the size of two do-

mains from two successive iterations is less than a predefined size.

2.5 Guaranteed state and parameter estimation

This section concerns the integration of Equations (2.1) and set inversion computation.
Thus, the objective of this section is firstly to obtain the state vector x at the sample times
{t1, t2, ..., tN} corresponding to the measurement times of the outputs. Secondly, follows
the SIVIA procedure to get the validated sets of feasible parameters.

2.5.1 Validated integration using Taylor expansions

Rigorous solution for dynamical nonlinear systems can be solved efficiently by consider-
ing methods based on Taylor expansions [86], [112], [9] or [92]. These methods consist
in two steps: the first one verifies the existence and uniqueness of the solution using the
fixed point theorem and the Picard-Lindelöf operator. At a time tj+1, an a priori box [x̃j ]
containing all solutions corresponding to all possible trajectories between tj and tj+1 is
computed. In the second step, the solution at tj+1 is computed using a Taylor expansion,
where the remainder term is [x̃j ].

To obtain the set [x̃j ], a classical technique consists in inflating this set until it verifies
the inclusion

[xj ]+ [0, hj ]f([x̃j ]) ⊆ [x̃j ] (see [75], [92] for details) where hj denotes the integration
step and [xj ] the first solution. In the proposed work, the package VNODE-LP ([90], [92])
has been used. In this package, the previous validated integration method is implemented.
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2.5.2 Parameter Estimation

In a bounded error context, measures and modeling errors are supposed to be unknown
but to stay within known and acceptable bounds. Errors between measured and predicted
outputs may rely on many factors, among them: limited sensors accuracy, interferences,
noise, structured uncertainties, etc. Some are quantifiable, some are not. We consider here
the quantifiable error ν given by (2.2), which is added to the model output y. To estimate
model parameters (2.1), we have to get the set P of all parameters p enclosed in an a priori
search set [UP ] such that the error between real data and model outputs belongs to E.

The characterization of the set P may be defined as a set inversion problem (2.19):

P = v−1(E) ∩ [UP ]. (2.26)

A guaranteed enclosure of P may be computed using the SIVIA algorithm presented
in the first chapter.

2.6 Conclusion

Through this chapter, the main tools on the bounded-error models, interval analysis (and
more specially interval matrices), guaranteed state and parameter estimation used in fol-
lowing chapers are presented. In the bounded-error context, the set of all parameters
consistent with the model structure, the measurements and the bounds on the perturba-
tions can be defined as the set estimate for the parameters. And, such as in the stochastic
framework, before performing a parameter estimation procedure (or before performing a
diagnosis procedure), it is necessary to analyse identifiability of the model (diagnosabil-
ity of the model). The following chapter concerns original definitions of set-membership
identifiability and set-membership diagnosability described by Equations given in Section
2.2. The links between these definitions are exhibited and two tests allowing to analyse
them are presented.
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Chapter 3

Identifiability and diagnosability for

uncertain dynamical models

3.1 Introduction

In this chapter, two properties for nonlinear dynamical uncertain models are considered:
identifiability and diagnosability.
Identifiability is a concept that decides to what extent it is possible to uniquely infer the
parameter values of a mathematical model, assuming that it has the same structure as
the system, from input-output measurements. In other words, if a model is identifiable,
it is theoretically possible to infer the true value of the parameters from rich enough
experimental data representing the system’s input-output behavior. Mathematically, this is
equivalent to say that there exists an unambiguous mapping between the model parameters
and the output trajectories. Identifiability is hence a pre-condition for safely running a
parameter estimation procedure and for obtaining trustable results.

In spite of abundant literature about set-membership identification and parameter es-
timation [101], the identifiability problem has only rarely been discussed in the case of
uncertain models.
Following some scarce works [13] which provide the intuition of identifiability applied to
bounded-error uncertain models, we propose in this work two complementary definitions,
named set-membership identifiability and µ-set-membership-identifiability, that we intro-
duced in [46, 47]. The first one is purely conceptual whereas the second one subsumes
classical identifiability while nicely bringing the notion of granularity at which identifia-
bility is considered. These two properties are carefully motivated and related to properties
found in the literature, in particular interval identifiability, ε-global identifiability and par-
tial injectivity.

57
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On the other hand, diagnosability [123] is the property that guarantees that the sen-
sored values delivered by the available instrumentation can be processed into an appro-
priate set of symptoms discriminating different faulty situations. Diagnosability can be
checked at design phase so that one knows beforehand which faults the diagnoser will be
able to discriminate with the specified instrumentation during operation. From another
perspective, this property provides the means to identify the set of additional sensors that
are required to achieve a given degree of diagnosability.

In this work, we suppose that a fault is an unpermitted deviation of at least one char-
acteristic property or parameter of the system from the acceptable standard condition.
Hence faults correspond to parameter variations and the problem of diagnosability has
been shown to be closely related to the problem of being able to infer univocally the value
of the parameters from the measurements. However, in most situations, it is not important
to distinguish faults by their precise values; one would like to distinguish classes of faults.
For example, assessing whether a hole in a pipe is of 11mm or 12mm diameter is of no
interest. Nevertheless, the order of magnitude is important and one would like to distin-
guish a hole of 10mm of diameter from a hole of 50mm. In addition, nominal conditions
are generally known with uncertainty i.e. the parameter values are given with some toler-
ances. We show that this problem can be solved by approaching diagnosability in a set-
membership framework, hence proposing the concept of set-membership-diagnosability.
This concept is closely linked to the properties of set-membership-identifiability and µ-

set-membership-identifiablity. These three properties are deeply analysed and the links
between them are established.

Set-membership-diagnosability is ultimately interpreted through a partition of the pa-
rameter space defined thanks to set-membership-identifiability and µ-set-membership-
identifiablity.

Another part of this chapter provides operational methods to check the properties stud-
ied in the set-membership framework. Two methods for checking set-membership and µ-
set-membership-identifiability are presented. They take inspiration from well established
methods for checking classical identifiability, namely the Taylor Series approach of [95]
for the first one, and the differential algebra approach [31, 76, 74, 94] for the second one.
The second method, based on differential algebra, is shown to be easily extendable to
nonlinear uncertain systems with parameters varying according to polynomial laws.
A method for determining the partitioning of the parameter space in terms of set-
membership identifiable sets is also proposed to assess set-membership-diagnosability.
Set-membership and µ-set-membership identifiability are shown to be essential to char-
acterize a partition of the parameter space into output trajectory distinguishable regions.
Thanks to this partition, we can analyze the mathematical model and derive its properties
with respect to the uncertainties that are represented.
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3.2 Concept of set-membership identifiability (SM-identifiability)

3.2.1 Problem formulation and motivations

The problem considered firstly in this chapter is identifiability of bounded uncertain pa-
rameter models (controlled or uncontrolled) presented in the first chapter (Equation 2.1).

We note YΓ1
(ti, P ) the set value of the outputs of the model (Equation 2.1) arising

from P at time ti. Notice that P may be reduced to a single point.
Set-membership parameter estimation assumes uncertain output data given by sets

{z(t1), ..., z(tN)}. These may be issued from several runs of the real system or by adding
a bounded error term to measured outputs. The set-membership parameter estimation
problem is formulated as finding the set of parameter vectors P = {p∗ ∈ Rp} such that
the arising trajectories hit all the output data sets, i.e.:

∀p∗ ∈ P, y(ti, p
∗) ∈ z(ti), i = 1, . . . , N.

P is called the feasible parameter set.
An interesting feature of set-membership parameter estimation is that it can be indif-

ferently applied to classically identifiable and non-identifiable dynamical systems.

Example 3.2.1 Consider for instance the following nonlinear continuous system in which

p is an unknown parameter:

{

ẋ(t, p) = x(t, p) + t cos(p),
x(0, p) = x0.

(3.1)

The solution of (3.1) is x(t, p) = x0e
t + (−1 − t + et) cos(p). An admissible set for

p is given by UP = [0, 2π] and it is clear that this system is not globally identifiable. It

is enough to notice, for example, that the pair (p1 = π/4, p2 = 7π/4) results in the same

trajectory, as shown on Figure (3.1).

In a set-membership framework, i.e. considering set values for p, the feasible param-
eter set would be made of the union of two disjoint connected sets [p1] ⊆ [π/2, 3π/2]
and [p2] ⊆ ]3π/2, 2π]. On the other hand, if the feasible parameter set is equal to
P ∗ = [π/2, 3π/2], it can be expected to be reduced to one single connected set be-
cause the trajectories arising from P ∗ are not shared by other regions of the parameter
space. Despite non identifiability, we can consider that P ∗ is set-membership-identifiable.
Nevertheless, this is not true for all the subsets of P ∗, which means that set-membership-

identifiability is lost in the parameter subspace defined by P ∗. We say that P ∗ is not
µ-set-membership-identifiable.
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Figure 3.1: Representation of a non-identifiability model

When considering the set-membership identification of the system Γ1 given by (2.1),
we would like to know beforehand whether the feasible parameter set P can be expected to
be reduced to one single connected set or not and in which regions of the parameter space.
Like for classical parameter estimation [58], this property indicates that the problem is
mathematically well-posed.

Definition 3.2.1 A set-membership parameter estimation problem is said to be sound if

the feasible parameter set P ⊆ UP is reduced to one single connected set. In this case, P
is also said to be sound.

In practice, the feasible parameter set P remains implicit and the solution returned by
set-member-
ship parameter estimation algorithms is a set that encloses all parameter values consistent
with the measurements and the assumed uncertainty. This solution is said to be guar-

anteed. On the other hand, the enclosure may be unfortunately quite conservative due
to set operations. In addition, a set-membership parameter estimation problem is always
formulated with a given stopping criterion that specifies the smallest size of the sets to be
considered, i.e. the set precision, which is at best equal to the numerical precision. The
size of a connected bounded set is given by its diameter as defined below.

Definition 3.2.2 Let us consider a connected bounded set Π of Rp and d a classical metric

on Rp. Let us define δ(Π) as the diameter of Π. δ(Π) is given by the least upper bound of

{d(π1, π2), π1, π2 ∈ Π}. If Π is not bounded, we define δ(Π) = +∞ ([12]).
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The following section concerns the definitions of set-membership identifiability.

3.2.2 Set-membership identifiability

This section proposes a formulation of the set-membership (SM)-identifiability prob-
lem for the class of systems formalized by (Equation 2.1). The framework for SM-
identifiability proposed in [47] is recalled. It provides a generalization of classical identi-
fiability for which specializations to the set-membership context can be derived. The links
with classical identifiability are exhibited and related definitions existing in the litterature
are analysed.
In the following, we note YΓ1

(P, u) (respectively YΓ1
(P )) the set of output trajectories,

solution of Γ1 with P and the input u (resp. when u = 0). It is also called the output
behavior of Γ1 arising from P .

3.2.2.1 Definitions

The proposed definitions are given in the case of controlled systems but they can be stated
similarly in the case of uncontrolled systems. In these definitions, P ∗ is a connected set
of Rp.

Definition 3.2.3 For the model Γ1 given by (2.1), P ∗ 6= ∅, P ∗ ⊆ UP , is globally
SM-identifiable if there exists an input u such that YΓ1

(P ∗, u) 6= ∅ and YΓ1
(P ∗, u) ∩

YΓ1
(P̃ , u) 6= ∅, P̃ ⊆ UP =⇒ P ∗ ∩ P̃ 6= ∅.

Definition (3.2.3) expresses that a connected set P ∗ is globally SM-identifiable if the
output behavior of Γ1 arising from P ∗, i.e. the output behavior of Γ1 for any p ∈ P ∗, is
distinguishable from the output behavior of Γ1 arising from its complementary set P̄ ∗, i.e.
YΓ1

(P ∗, u) and YΓ1
(P̄ ∗, u) do not share any output trajectory.

On the metric space (Π, d), let µ be a continuous map from Π to Π. µ is a contraction

if there is a nonnegative number λ < 1 such that for all π1, π2 in Π, d(µ(π1), µ(π2)) <
λd(π1, π2) [89].

The definition of µ-SM-identifiability is as follows.

Definition 3.2.4 The nonempty bounded connected set P ∗ ⊆ UP is globally µ-SM-

identifiable if, for all contraction µ from P ∗ to P ∗, µ(P ∗) is globally SM-identifiable.

Under the conditions of Definition 3.2.3 (resp. 3.2.4), we equivalently say that the
model Γ1 given by (2.1) is globally SM-identifiable (resp. µ-SM-identifiable) with respect
to P ∗.
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Definition 3.2.4 differs from Definition 3.2.3 in that the set P ∗ may be reduced as small
as desired by the contraction µ while still retaining the SM-identifiability property. This
is true by the Banach fixed-point theorem, which implies that the diameter of µ(P ∗) tends
to zero [89]. Hence µ-SM-identifiability meets classical identifiability and, interestingly,
it means that classical identifiability holds for any p ∈ P ∗. If the diameter δ(µ(P ∗))
of µ(P ∗) cannot be lower than ε without loosing SM-identifiability, we refer to ε-SM-

identifiability [47].

Definition 3.2.5 Consider a SM-identifiable nonempty bounded connected set P ∗ ⊆ UP ,

then P ∗ is globally ε-SM-identifiable if there exists a contraction µ from P ∗ to P ∗ such

that µ(P ∗) is not SM-identifiable and µ(P ∗) < ε.

To summarize, the definition of µ-SM-identifiability subsumes classical identifiabil-
ity, while leading to the concept of ε-SM-identifiability, which is specific to the set-
membership framework [47].

To take into account for possible singularities in UP , µ-SM-identifiability can be
generically extended to structural µ-SM-identifiability, which means that the model set
Γ1 is µ-SM-identifiable with respect to P ∗ ⊂ UP except for a subset of points of zero
measure in UP . Let us notice that defining the structural counterpart of SM-identifiability,
as given by Definition 3.2.3, is not relevant because in this definition, P ∗ cannot be of
zero measure. The same is true for ε-SM-identifiability as explained in [13].

Like for classical identifiability, local counterparts of SM-identifiability, ε-SM-
identifiability, and µ-SM-identifiability can be defined when these properties do not hold
in the whole parameter space UP but only in an open neighborhood W of P ∗ such that
the properties hold for Γ1 with UP restricted to W . In the following, SM-identifiability, ε-
SM-identifiability, and µ-SM-identifiability are understood as global when not indicated
otherwise.

The above concepts are illustrated with the model described by Equation (3.1) in
which p is now considered as an uncertain parameter for which the admissible set is
UP = [0, 2π]. The formal solution is x(t, p) = x0e

t + (−1 − t + et) cos(p). If we con-
sider P ∗

1 = [π/2, 3π/2], the model is globally SM-identifiable with respect to P ∗
1 . Global

SM-identifiability is easy to verify from the plot of the function cos on [0, 2π]. Indeed,
there is no trajectory arising from [π/2, 3π/2] that is identical to a trajectory arising from
its complementary set in UP . However, P ∗

1 is not µ-SM-identifiable. Indeed, it is enough
to find a contraction µ such that µ(P ∗

1 ) ⊆ [π/2, π], which is obviously possible.

3.2.2.2 Links with classical identifiability

In this subsection, Γp,x0

1 denotes a specific model of the family of models represented by
(2.1), with p ∈ P and x0 ∈ X0. Thus, for this model, YΓ1

(p, u) is reduced to a unique
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trajectory and will be denoted y(., p, u). x0 is assumed to be no equilibrium point of the
system.
The following definitions of identifiability are considered.

Definition 3.2.6 The parameter pi is globally identifiable if there exists u(t) ∈ Rr such

that for all (p̂, p∗) ∈ Up, p̂ 6= p∗:

(∀t ∈ [0, T ], y(t, p̂, u) = y(t, p∗, u)) ⇒ (p̂i = p∗i ),

and the parameter vector p is globally identifiable in Up if all its components pi are glob-

ally identifiable in Up.

The model Γp,x0

1 is said to be globally identifiable if all parameters pi are globally identi-

fiable.

The previous definitions have been generically extended to local and structural identi-
fiability.

The following proposition gives the link between Definitions 3.2.4 and 3.2.6.

Proposition 3.2.1 If for all x0 ∈ X0, Γ
p,x0

1 is (structurally) globally identifiable, then Γ1

is (structurally) globally µ-SM-identifiable and in particular ε-SM-identifiable.

Reciprocally, if P ∗ is (structurally) globally µ-SM-identifiable for Γ1 then for all x0 ∈ X0,

Γp,x0

1 is (structurally) globally identifiable on P ∗ 1.

Remark 3.2.1 Global SM-identifiability does not imply global identifiability with respect

to P ∗. Indeed, according to example 3.2.1, the model is globally SM-identifiable for P ∗
1

but not globally identifiable (in the classical sense) at p∗ with respect to P ∗
1 .

Ultimately, µ-SM-identifiability subsumes classical identifiability and SM-identifiability

as defined in Definition 3.2.3 as it provides the means to control the set P ∗. This is

possible thanks to the contraction µ(.).

3.2.2.3 Links with interval identifiability

The notion of interval identifiability has been introduced in [32] for compartmental mod-
els and has been generalized in [127]. These works concern the identifiability analysis of
unidentifiable linear models of the form ([131]):







ẋ(t, p) = Kx(t, p) +Bu(t),
y(t, p) = Cx(t, p),
x(0, p) = 0,

(3.2)

1Γp,x0

1 is not necessary globally identifiable on UP since two parameters in the complement of P ∗ can lead to the
same trajectory.
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where the hypothesis are same as (2.1). K = [kij], B = [bij ] and C = [cij] are constant
and p ∈ Rp is the unknown parameter vector.

The entries of K (fractional transfer rates when xi’s are masses) satisfy the following
compartmental constraint relations for i, j = 1, ..., n:

kij ≥ 0, i 6= j,
−k0i =

∑n

j=1 kji ≤ 0.

The model parameter vector p is defined as all the unknowns k0i and kij , i 6= j and all
unkowns bij and cij . The kij components of p are nonnegative, bij and cij are also usually
nonnegative. Thus the a priori parameter domain Rv

+ is defined by: R
p
+ = {p : pi ≥

0, i = 1, 2, ..., p}.
To consider the identifiability properties of p at any particular (nominal) parameter value
p∗ ∈ R

p
+, the dependance of the output y on p and the input u, denoted y(t, p, u) is

emphasized.
If the model is unidentifiable, then for almost any p∗ ∈ R

p
+ there exists an uncountable

subset Ω(p∗) ⊂ R
p
+ such that every p̄ ∈ Ω(p∗) generates the same input-output behaviour,

that is y(t, p̄, u) = y(t, p∗, u). The parameter interval strategy is based on the idea that in
most compartmental models, the set Ω(p∗) is bounded for almost every p∗ ∈ Rv

+ where:

Ω(p∗) = {p̄ ∈ Rv
+, y(t, p̄, u) = y(t, p∗, u) ∀t ∀u}. (3.3)

Moreover, the inequalities implied for all components of p localize unidentifiable param-
eters within finite intervals. The following definitions were proposed in [127] to take into
account the above concept2.

Definition 3.2.7 The model described by (3.2) is interval-identifiable at p∗ ∈ R
p
+ if it is

unidentifiable at p∗ and the set Ω(p∗) defined by (3.3) is bounded.

Definition 3.2.8 The model described by (3.2) is (structurally) interval-identifiable if it is

interval-identifiable for (almost) all p∗ ∈ Rv
+.

A bounded set Ω(p∗) yields lower and upper bounds p̄min
i and p̄max

i on each p̄i.
Local and global interval identifiability can be differentiated in the same way as local

and global identifiability. Two methods to analyze (local) interval-identifiability can be
found in [127] or [32]. They are based on a transfer function approach or on a similarity
transformation approach.

2Without changing the definitions, their names have been adapted to be consistent with the other definitions pre-
sented in this work.
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3.2.2.4 Links with ε-global identifiability

Most of the time, one gets structural identifiability which can be inconvenient for the
experimenter since there may exist atypical regions in Up for which identifiability’s con-
clusions are false. The authors in [13] have proposed to introduce the notion of global
identifiability in P ⊂ UP (g.i.i.P) which does not allow any more the existence of such
regions. The definition is the following:

Definition 3.2.9 Given (u, x0) ∈ Rr ×X0, the parameter pi is globally identifiable in P
(g.i.i.P ) if:

∀(p∗, p̂) ∈ P 2, y(., p̂, u) ≡ y(., p∗, u) ⇒ p̂i = p∗i ,

and the parameter vector p is g.i.i.P if all its components are g.i.i.P .

Another way to formulate this condition is:

y(., p̂, u) ≡ y(., p∗, u), ‖ p∗ − p̂ ‖∞> 0 (3.4)

has no solution for (p∗, p̂) ∈ P × P .
Indeed, this problem comes back to a constraint satisfaction problem described in chapter
2. It can be solved by an Interval constraint propagation (ICP) which guarantees outer ap-
proximations of the solutions of CSP’s. This definition is close to the µ-SM-identifiability
definition.

In practice, condition (3.4) is substituted by

y(., p̂, u) ≡ y(., p∗, u), ‖ p∗ − p̂ ‖∞> ε (3.5)

and we talk of ε-g.i.i.P which is close to the ε-SMI.
The difference between the definitions proposed in [13] and our definitions is of structural
order. First of all, in our definitions, the trajectories arising from P ∗ and its complement
are compared so that all the admissible parameters domain is viewed. It allows one to
know if the feasible parameters set has to be reduced to initiate an algorithm for estimating
the parameters. On the contrary, using the definitions proposed in [13], we verify that a
domain P ∗ does not contain atypical regions in order to use ICP with no ambiguity. In
that case, it is important to be insured that P ∗ contains the desired parameters value.

Example 3.2.2 Consider the following model ([13]) η(p) = p(p − 1)(p + 1) with p ∈
[−2, 2]. If P ∗ = [−a, a], a = 2/

√
3 then the model is g.i.i.P ∗ but not µ-SMI with respect

to P ∗ 3. Obviously, if Up is restricted to P ∗, P ∗ is µ-SMI.

3In plotting the function η, it is clear that η is injective on P ∗ but some p∗ in P ∗ and p̂ in the complement of P ∗

will give the same value of η.
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Furthermore, our definitions are naturally adapted to set-membership-identification.
Indeed, if the µ-SM-identifiability for example is verified, we know that in decomposing
P ∗ into two boxes, the trajectories arising from these two sub-boxes will be distinct and a
criteria on the trajectories will allow one to reject one of the sub-box.

3.2.2.5 Links with partial injectivity

The definition of partial injectivity of a function has been introduced in [63]. This notion
perfectly characterizes µ-SM-identifiability. A second definition named restricted-partial
injectivity is proposed in this work in order to characterize global SM-identifiability.

Definition 3.2.10 Consider a function f : A → B and any set A1 ⊆ A. The function f is

said to be a partial injection of A1 over A, noted (A1,A)-injective, if ∀a1 ∈ A1, ∀a ∈ A,

a1 6= a ⇒ f(a1) 6= f(a).

f is said to be A-injective if it is (A,A)-injective.

In [63], an algorithm based on interval analysis for testing the injectivity of a given dif-
ferentiable function is presented and a solver called ITVIA (Injectivity Test Via Interval
Analysis) implemented in C++ is mentioned4. From a given function, the solver partitions
a given box into two domains: a domain on which the function is partially injective and
an indeterminate domain on which the function may be injective or not. When the latter
is empty, the function is injective over the initial box. In [63], the authors give an example
for testing structural identifiability of a model.

In order to characterize global SM-identifiability, the notion of restricted-partial injec-
tivity is introduced. The algorithm proposed in [63] can be easily adapted for testing this
new definition.

Definition 3.2.11 Consider a function f : A → B and any set A1 ⊆ A. The function f
is said to be a restricted-partial injection of A1 over A or a (A1,A)-restricted-injection

if ∀a1 ∈ A1, ∀a ∈ Ac
1,

a1 6= a ⇒ f(a1) 6= f(a),

where Ac
1 is the complement of A1 in A.

In the following proposition, (restricted-)partial injectivity is given in terms of tra-
jectories and this formulation makes the direct link with the definition of identifiability
possible.
Consider the set of outputs Su arising from UP for a given input u.

4Let us notice that the solver ITVIA has been implemented only for particular functions f : R → R
2 and f : R2

→

R
2.
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Property 3.2.1 Given the model Γ1, P
∗ is SM-identifiable (resp. µ-SM-identifiable) for

an input u if and only if the function φ : UP → Su : p → y(., p) is a restricted-partial

injection of P ∗ over UP (resp. partial injection of P ∗ over UP ), i.e. if for all p∗ ∈ P ∗

and p̄ ∈ P̄ ∗, p∗ 6= p̄ ⇒ y(., p∗, u) 6≡ y(., p̄, u) (resp. for all p∗ ∈ P ∗ and p̄ ∈ UP ,

p∗ 6= p̄ ⇒ y(., p∗, u) 6≡ y(., p̄, u)).

Proof – Sufficiency Suppose that y(., p∗, u) ≡ y(., p̄, u) for p∗ ∈ P ∗, p̄ ∈ P̄ ∗. It leads
to YΓ1

(P ∗, u) ∩ YΓ1
(P̄ , u) 6= ∅ with P ∗ ∩ P̄ ∗ = ∅ and P ∗ is not globally SM-identifiable.

Proving that SM-identifiability of P ∗ implies the partial injection of φ comes back to
define a contraction µ such that µ(P ∗) ∩ P̄ = ∅ where P̄ is in the complement of µ(P ∗).
Necessity Suppose that YΓ1

(P ∗, u) ∩ YΓ1
(P̄ ∗, u) 6= ∅. There exist p∗ ∈ P ∗ and p̄ ∈ P̄ ∗

such that y(., p∗, u) ≡ y(., p̄, u). If φ is a restricted partial injection of P ∗ over Up, one
gets p∗ = p̄, that is P ∗ ∩ P̄ 6= ∅. Thus, P ∗ is µ-SMI. �

3.3 Set-membership diagnosability (SM-diagnosability)

3.3.1 Problem formulation and motivations

Diagnosability is the property that guarantees that the sensored values delivered by the
available instrumentation can be processed into an appropriate set of symptoms discrim-
inating different faulty situations. Importantly, diagnosability can be checked at design
phase so that one knows beforehand which faults the diagnoser will be able to discrimi-
nate with the specified instrumentation during operation. From another perspective, this
property provides the means to identify the set of -additional- sensors that are required to
achieve a given degree of diagnosability.

A fault is an unpermitted deviation of at least one characteristic property or parameter
of the system from the acceptable standard condition. Faults hence correspond to param-
eter variations and the problem of diagnosability has been shown to be closely related to
the problem of being able to infer univocally the value of the parameters from the mea-
surements. In this work, links between identifiability and diagnosability are established
through the new concept of functional diagnosability.

However, as said in introduction, in most situations, it is not important to distinguish
faults by their precise values but one would like to distinguish classes of faults.
We introduce the concept of SM-diagnosability.



68 CHAPTER 3. IDENTIFIABILITY AND DIAGNOSABILITY

3.3.1.1 Introduction

Two definitions of SM-diagnosability are provided: strong or weak SM-diagnosability.
We consider the diagnosability analysis of set-membership (controlled or uncontrolled)
models of the form (2.1) in which faults and disturbances have been explicitely intro-
duced:

Γ2























ẋ(t, θ) = g(x(t, θ), u(t), v(t), f, ε, p),
y(t, p) = h(x(t, p), u(t), v(t), f, ε, p),
x(t0, p) = x0 ∈ X0,
p ∈ P ⊂ UP ,
t0 ≤ t ≤ T,

(3.6)

where the hypothesis are same as (2.1).
The function g is real and analytic on M , where M is an open set of Rn such that
x(t, p) ∈ M for every t ∈ [t0, T ] and p ∈ P . The vector of faults f belongs to a
connected set of faults F wich belongs to FSYS , where FSYS is an exhaustive set of
known faults, f ∈ Re. v(t) is some unknown input vector and ε is some stochastic vector
(v = 0 means no perturbation, f = 0 means no fault and ε = 0 means no noise). p
denotes the parameters vector.

Y (P, F, u) (resp. Y (P, F )) denotes the set of outputs, solution of Γ2 with the input u
(resp. when u = 0), the vector of P and the vector of faults F . In this work, a fault fi is
defined as a variation of one parameter.

In the following definitions, F1 and F2 are two connected sets describing two fault
situations in FSYS . These situations correspond to the two following cases:

-the occurence of the fault F1 or F2 introduces perturbations on the system that are
assumed to be bounded,

-the magnitude of the fault is assumed to vary within a bounded set. For example
think about a clogged pipe section for which the clog increases with time (because
a dirt accumulation).

F1 and F2 are called “bounded faults”.
In this work, set-membership diagnosability is shown through the notion of functional

signature which is established firstly in classical context. The functional signature can be
linked to differential algebra concepts and more specially variable eliminations.

From elimination theory, some differential polynomials or analytical redundancy re-
lations (ARR) linking system inputs, outputs and their derivatives can be obtained. In the
last decade, algorithms for obtaining such ARRs have been developed and implemented
in softwares as Maple [11]. They are based on differential algebra [60] and consist in
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eliminating unobservable state variables in order to obtain relations linking outputs,
inputs and parameters. The use of ARRs permit to detect [47], isolate and estimate the
severity of a fault which, in this work, is an unpermitted deviation of parameter of the
system from the standard deviations.

Several definitions of diagnosability have been formed around the use of ARRs. The
classical diagnosability definition consists in comparing fault signatures [23]. The fault
signature is a function which associates to a fault the set containing indicators obtained
from measured variables. Typically, the fault signature of fj is the m-vector formed of
zeros and ones: when the fault fj acts on the residual ρi formed from an ARR, the num-
ber 1 is put in the ith component of the fj signature otherwise it is 0. The authors in
[26] consider that a system is diagnosable if each fault component can be written as a
solution of a polynomial equation in fj and finitely many time derivatives of inputs and
outputs. This definition is close to the one of identifiability proposed by [74]. However,
the definition of diagnosability proposed in [26] is based on the obtention of particular
differential polynomials which may require lots of manipulations of the model equations.
In case of complex models, it is often impossible to obtain such relations even in using
dedicated symbolic softwares. Furthermore, the order of derivatives is so high that the
obtained relations can not be exploited for fault detection.
Thus, in our work, we propose to use the works proposed in [29] to study identifiability
and consequently diagnosability. In [29], according to a particular elimination order, the
authors propose to study identifiability of models’ parameters from differential polyno-
mials containing one or fewer parameters. The advantages of these polynomials are that
they are easier to obtain and they contain derivatives of lower orders.
We propose the definition of functional diagnosability; this definition is based on ARRs.
This definition allows to know if the generated trajectories can be distinguished and at the
same time, if single faults can be detected.

In the following subsections, the expression and obtention through variable elimina-
tion of ARRs are presented in a stochastic framework.

3.3.1.2 Diagnosability and detectability from ARRs in the stochastic framework

In [119], the authors propose to use ARRs for fault detection and isolation in algebraic
dynamic systems. An ARR links the system inputs and outputs and their derivatives. The
following notations are used. If ϑ is a vector, ϑ̄(k) is the vector whose components are
ϑ and its time derivatives up to order k > 0, ϑ̄ stands for ϑ and its time derivatives up
to some (unspecified) order. Consider the set of ARRs: w(ȳ, ū, v̄, f, ε̄, p) = 0. It can be
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decomposed as:

w(ȳ, ū, v̄, f, ε̄, p) = wd(ȳ, ū, v̄, f, p)− ws(ȳ, ū, v̄, f, ε̄, p) = 0,

where wd(ȳ, ū, v̄, f, p) = w0(ȳ, ū, p)−w1(ȳ, ū, f, p)−w2(ȳ, ū, v̄, f, p) is the deterministic
part (a polynome of degree zero in the components of ε̄): w0(ȳ, ū, p) the perturbation and
fault-free part, w1(ȳ, ū, f, p) is the part without unknown input vector, w2(ȳ, ū, v̄, f, p) is
the part of the polynomial depending on the unknown input vector. ws(ȳ, ū, v̄, f, ε̄, p) is
the stochastic part (a polynomial of degree at least one in some components of ε̄).
To simplify the problem, the authors supposed that there are no unknown inputs, that is
v = 0 which implies w2(ȳ, ū, 0, f, p) = 0. Afterwards, v is no longer considerated in the
ARRs and w can be rewritten:

w(ȳ, ū, f, ε̄, p) = w0(ȳ, ū, p)− w1(ȳ, ū, f, p)− ws(ȳ, ū, f, ε̄, p) = 0. (3.7)

Thus, the following relation is always true:

w0(ȳ, ū, p) = w1(ȳ, ū, f, p) + ws(ȳ, ū, f, ε̄, p).

The residual defined by ρ = w0(ȳ, ū, p) which involves only known variables is used for
detecting faults. In absence of noise and faults, ρ is identically zero for any triple (ȳ, ū, p)
which satisfies (2.1) since w1(ȳ, ū, 0, p) = ws(ȳ, ū, 0, 0, p) = 0.
In most cases, there is no simple characterization of the residual’s stochastic behavior,
in particular for established fault detection procedures. That is why, the authors in
[119] propose to detect fault from the deterministic part of the residual. A fault is also
detectable if w1(ȳ, ū, f, p) 6= 0.

Afterwards, if several ARRs are obtained, they will be denoted wi(ȳ, ū, f, ε, p) and
their corresponding deterministic part, w0,i(ȳ, ū, p)− w1,i(ȳ, ū, f, p).

In the following section, a method for obtaining ARRs from existing softwares is
presented. The advantage of this method is to give ARRs of a particular form from which
a functionally diagnosability method has been deduced.

3.3.1.3 Obtaining ARRS through variable elimination in the stochastic framework

A way to obtain ARRs is to use the Rosenfeld-Groebner algorithm implemented in Maple
[11]. The original version of this method does not consider initial conditions and some
interesting results have been obtained on the number of ARRs and their form ([31], [76]
and [74], [29]). The following results are inspired from [29] in which faults are not
considered. Their results are adapted to the fault case.
The system Γ2 can be rewritten as a differential polynomial system completed with ṗi = 0,
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i = 1, . . . , p, ḟj = 0, j = 1, . . . , e thus the following system composed of polynomial
equations and inequalities is obtained:















p(x̄, ū, f, p) = 0,
q(x̄, ȳ, f, p) = 0,
r(x̄, ȳ, f, p) 6= 0,

ṗi = 0, i = 1, . . . , p, ḟj = 0, j = 1, . . . , e

(3.8)

Let I the radical of the differential ideal generated by (3.8): I is endowed with the fol-
lowing ranking which eliminates the state variables:

[p, f ] ≺ [y, u] ≺ [x]. (3.9)

It admits a characteristic presentation C (i.e. a canonical representant of the ideal) which
has the following form [11]:

{

ṗ1, . . . ṗp, ḟ1, . . . ḟe, w1(ȳ, ū, f, p), . . . , wm(ȳ, ū, f, p),

Q1(ȳ, ū, f, p, x), . . . , Qn(ȳ, ū, f, p, x)}
(3.10)

where the leader of the polynomial wi is yi for i = 1, . . . , m.
C(f, p), the particular characteristic presentation C evaluated in (f, p) is proved to contain
the differential polynomials w1(ȳ, ū, f, p), . . . , wm(ȳ, ū, f, p) which can be expressed as:

wi(ȳ, ū, f, p) = m0,i(ȳ, ū) +
∑ni

k=1 γ
i
k(p)mk,i(ȳ, ū)−

∑si
k=1 γ̃

i
k(f, p)m̃k,i(ȳ, ū) (3.11)

where (γi
k(p))1≤k≤ni

(resp. γ̃i
k(f, p)) are rational in p (resp. f , p), γi

u 6≡ γi
v (u 6= v)

and γ̃i
u 6≡ γ̃i

v (u 6= v), (mk,i(ȳ, ū))1≤k≤ni
(resp. (m̃k,i(ȳ, ū))1≤k≤si) are differential

polynomials with respect to y and u and m0,i(ȳ, ū) 6≡ 0.
According to the previous notations, wi = w0,i − w1,i with ρi = w0,i =

m0,i(ȳ, ū) +

ni
∑

k=1

γi
k(p)mk,i(ȳ, ū) and w1,i =

si
∑

k=1

γ̃i
k(f, p)m̃k,i(ȳ, ū) where the index

i corresponds to the ith polynomial.

In the following section, the functional diagnosability definition is proposed.
We can notice that in the classical sense of diagnosability, if two faults act on the same
residuals, their classical signatures, noted Sig in the following, are the same. Thus theo-
retically it is not possible to distinguish them. With the proposed definition, the residuals
can have different behaviors depending on the fault that acts. The proposed work has been
published in [130].
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3.3.1.4 Functional diagnosability in the stochastic framework

The following definition of functional fault signature is proposed.

Definition 3.3.1 The functional fault signature is a function Sigfunct which associates to

a fault fj the vector (w1,i(ȳ, ū, fj, p))i=1,...,m.

We note Sig
(i)
funct(fj) = w1,i(ȳ, ū, fj, p), the ith component of Sigfunct(fj).

Example 3.3.1 Consider the following Bernoulli equation in which, to simplify the ex-

pression, we omit p in y(t, p) where p = (β1, β2)
T . This omission is made in the whole

chapter 3:

ẏ(t) = β1y(t) + β2y(t)
2, for t ∈ [0, 5], y(0) = 1. (3.12)

The solution is y(t) = β1e
β1t

β1+β2−β2e
β1t

.

We have directly w0(ȳ, p) = ẏ(t)− β1y(t)− β2y(t)
2.

Suppose that some positive single faults f1 and f2 impact respectively on the two param-

eters β1 and β2, hence w1(ȳ, f, p) = −f1y(t)− f2y(t) and f = (f1, f2). One can deduce

that Sig(f1) = Sig(f2) = 1 and Sigfunct(f1) = f1y(., f1), Sigfunct(f2) = f2y(., f2)
2

where y(., fi) denotes the output depending only on the fault fi for i = 1, 2. As it will be

seen in the following section, the behavior of residuals can be distinguished.

Sigfunct(fj) is also a vector of functions, each component of which constitutes a trajec-
tory. The following definitions propose to link the functional signature and the notions of
discriminality and diagnosability. The first one is true for all inputs, whereas the second
one is verified only for one input.

Definition 3.3.2 Two faults fj and fl are input-strongly functionally discriminable if

Sigfunct(fj) 6= Sigfunct(fl) in the sense that for all input u, there exists at least one

index i∗, a finite time t1 > t0 such that for all t ∈ [t0, t1], Sig
(i∗)
funct(fj) 6= Sig

(i∗)
funct(fl).

When all the faults are input-strongly functionally discriminable, the model is said input-

strongly functionally diagnosable.

Definition 3.3.3 Two faults fj and fl are input-weakly functionally discriminable if

Sigfunct(fj) 6= Sigfunct(fl) in the sense that there exits an input u, there exists at least

one index i∗, a finite time t1 > t0 such that for all t ∈ [t0, t1], Sig
(i∗)
funct(fj) 6= Sig

(i∗)
funct(fl).

When all the faults are input-weakly functionally discriminable, the model is said input-

weakly functionally diagnosable.

When the model is uncontrolled, we have the following definition:
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Definition 3.3.4 Two faults fj and fl are functionally discriminable if Sigfunct(fj) 6=
Sigfunct(fl) in the sense that there exists at least one index i∗, a finite time t1 > t0 such

that for all t ∈ [t0, t1], Sig
(i∗)
funct(fj) 6= Sig

(i∗)
funct(fl).

When all the faults are functionally discriminable, the model is said functionally diagnos-

able.

Remark– Signatures of faults can be collected in a tabular whose ith line and jth column
component contains the ith residual with the fault fj , that is w1,i(ȳ, ū, fj, p). For example,
consider the following model:

Example 3.3.2 We consider the following model:














ẋ1(t) = (p1 + f1)(p2 + f2)x1(t)
2 + x1(t)x2(t),

ẋ2(t) = (p2 + f2)(p3 + f3)x2(t)
2 + x2(t)x3(t),

ẋ3(t) = (p1 + f1)(p3 + f3)x3(t)
2 + x1(t)x3(t),

y1(t) = x1(t), y2(t) = x2(t), y3(t) = x3(t).

(3.13)

It is easy to verify that:

w0,1(ȳ, ū, p) = ẏ1 − y1y2 − p1p2y
2
1,

w0,2(ȳ, ū, p) = ẏ2 − y2y3 − p2p3y
2
2,

w0,3(ȳ, ū, p) = ẏ3 − y1y3 − p1p3y
2
2.

(3.14)

and
w1,1(ȳ, ū, f, p) = (p1f2 + p2f1 + f1f2)y

2
1,

w1,2(ȳ, ū, f, p) = (p2f3 + p3f2 + f2f3)y
2
2,

w1,3(ȳ, ū, f, p) = (p1f3 + p3f1 + f1f3)y
2
3.

(3.15)

The following functional signatures are also Sigfunct(f1) = (p2f1y
2
1, 0, p3f1y

2
3)

T ,

Sigfunct(f2) = (p1f2y
2
1, p3f2y

2
2, 0)

T , Sigfunct(f3) = (0, p2f3y
2
2, p1f3y

2
3)

T .

Diagnosability can be seen according to the following table:

Sigfunct(f) / f f1 f2 f3
Sig

(1)
funct(f) p2f1y

2
1 p1f2y

2
1 0

Sig
(2)
funct(f) 0 p3f2y

2
2 p2f3y

2
2

Sig
(3)
funct(f) p3f1y

2
3 0 p1f3y

2
3

Clearly, for j, l = 1, 2, 3, j 6= l, Sigfunct(fj) 6= Sigfunct(fl) and the model is functionally

diagnosable.

Afterwards, the considered ARRs are those obtained at section 3.3.1.3. Thus, the
functional signature will is:

Sigfunc(fi) =

(

si
∑

k=1

γ̃i
k(f, p)m̃k,i(ȳ, ū)

)

i=1,...,m

.
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3.3.2 Extension to the set-membership framework

In this subsection, we consider the model Γ2 with ε = 0.

Definition 3.3.5 The set-membership functional signature is a function SigSM which as-

sociates to the connected set Fj the interval vector (w1,i(Y (P, u), u, Fj, P ))i=1,...,m.

Sig
(i)
SM(Fj) designates the ith component of SigSM(Fj) and corresponds to an interval

functional vector.

Definition 3.3.6 Two bounded faults F1 and F2 are weakly SM-discriminable if

SigSM(F1) and SigSM(F2) are distinct in the sense that there exists at least one index

i∗ and [t1, t2] such that ∀t ∈ [t1, t2], (Sig
(i∗)
SM(F1) 6⊆ Sig

(i∗)
SM(F2) or Sig

(i∗)
SM(F2) 6⊆

Sig
(i∗)
SM(F1)) and Sig

(i∗)
SM(F1) ∩ Sig

(i∗)
SM(F2) 6= ∅.

Definition 3.3.7 Two bounded faults F1 and F2 are strongly SM-discriminable if there

exists i∗ ∈ {1, ..., m} and [t1, t2] such that ∀t ∈ [t1, t2], Sig
(i∗)
SM(F1) ∩ Sig

(i∗)
SM(F2) = ∅.

Definition 3.3.8 The model Γ2 given by (3.6) is weakly SM-diagnosable for FSYS if for

any two bounded faults, these two faults are weakly SM-discriminable.

Definition 3.3.9 The model Γ2 given by (3.6) is strongly SM-diagnosable for FSYS if for

all

F1, F2 ⊂ FSYS , these two faults are strongly SM-discriminable. 5

3.3.3 Links between SM-diagnosability and SM-identifiability

F corresponds to a vector of connected sets-valued components. When single faults are
considered, only one of the components of F is not equal to zero. Without loss of gener-
ality, only uncontrolled systems are considered.

Property 3.3.1 In the case of single faults, if the model Γ2 is strongly SM-diagnosable

then it is globally SM-identifiable "according to the faults". Under the hypothesis that

∆w1,i(ȳ, ū) is not identically equal to zero, the reciprocal is true.

Proof – Sufficiency by contrapositive. Suppose, there exists F̄ ∈ FSYS such that
Y (P, F ∗) ∩ Y (P, F̄ ) 6= ∅ and F ∗ ∩ F̄ = ∅. Thus, there exist f ∗ ∈ F ∗, f̄ ∈ F̄ , p ∈ P
such that y∗ = y(p, f ∗) = y(p, f̄). Considering again the ARR (3.11), one gets for all
i = 1, . . . , m, wi(ȳ, f

∗, p) = wi(ȳ, f̄ , p) which implies w1,i(ȳ
∗, f ∗) = w1,i(ȳ

∗, f̄). Finally,

5If the input u is not equal to zero then the previous definitions are available in input-weak and input-strong.
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Sig
(i)
SM(F ∗) ∩ Sig

(i)
SM(F̄ ) 6= ∅ and the model is not SM-diagnosable.

Necessity by contrapositive. Suppose that the model is not strongly SM-diagnosable, that
is there exist two distinct simple bounded faults F ∗ and F̄ and at least one index i such that
Sig

(i)
SM(F ∗)∩SigSM(F̄ ) 6= ∅. Consequently, there exist f ∗ ∈ F ∗, f̄ ∈ F̄ , f ∗ 6= f̄ such that

w1,i(ȳ
∗, f ∗, p) = w1,i(ȳ, f̄ , p), in particular

ni
∑

k=1

(γ̃i
k(f

∗, p)m̃k,i(ȳ
∗)− γ̃i

k(f̄ , p)m̃k,i(ȳ)) = 0.

If y∗ and ȳ are identically equal, the hypothesis, det(m̃k,i(ȳ), k = 1, . . . , ni) 6= 0 implies
that γi

k(f
∗, p) = γ̃i

k(f̄ , p), in particular the function φ defined in Proposition 1.2.1 verifies
φ(f ∗) = φ(f̄) with f ∗ 6= f̄ and the model is not SM-identifiable. �

3.4 Methods to analyze SM-identifiability

In the literature, different approaches have been proposed to study global identifiability
of nonlinear systems: for example, the revisited Taylor Series approach of [52], those
based on the local state isomorphism theorem [132], [18], [17], [28] or those based on
differential algebra [74], [4], [118]. In this work, two methods are proposed: the first one
is based on the power series expansion of the solution and the second one on differential
algebra. For these two methods, the notion of (weak-)partial injectivity using interval
analysis is needed.

3.4.1 Power Series Expansion Method (PSE Method)

The PSE method is inspired of [95], which studied identifiability according to the Taylor
series expansion of the solution. In this approach, the outputs are expanded in a Taylor
series around t = 0 and the successive terms of the expansion are expressed as functions
of the model unknowns. Then, an equivalence is given between identifiability of the initial
system and the existence of a unique solution of an algebraic system that is specified. In
our approach, for having global SM-identifiability of P ∗, the solutions of the algebraic
system must be in P ∗. Otherwise, there would exist common trajectories arising from P ∗

and its complementary set. For having µ-SM-identifiability, an injectivity assumption on
P ∗ is needed.

Consider the set of model outputs Y m
Γ1

and ak(.) ∈ Y m
Γ1

: the kth derivative of a0(.)
which is a particular output. Then, consider the following assumptions which are refered
as H in the following:

• S is the set of feasible states,
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• u(.) and x(0) are such that x(t) ∈ S for all t ∈ [0, T ],

• for all possible trajectories x(.), the function f(x(.), u(.), p) admits a Taylor series
expansion on [0, T ] or the function f(x, u(.), p) is Lipschitz continuous on [0, T ] for
all states x ∈ S.

P ∗ is supposed to be a given connected set and a0(.) ∈ YΓ1
(P ∗, u) ⊂ Y m

Γ1
.

The following theorem gives a necessary condition for having global (µ-)SM-
identifiability. It allows one to insure that no trajectory arising from the complement
of P ∗ is the same as one among those arising from P ∗. It can be used for proving non
(µ/ε) SM-identifiability.

Theorem 3.4.1 Under the assumptions H , if for an input u∗, P ∗ 6= ∅ is globally SM-

identifiable (resp. µ-SM-identifiable), the system:

dk

dtk
[g(x(0, p), p)] = ak(0), k = 0, 1, . . . ,+∞, (3.16)

where g is the observation function of system Γ1, admits at least one solution in the con-

nected set P ∗ (resp. a unique solution).

Proof – By assumption, g is analytic and (3.16) admits solutions in P ∗. If P ∗ is µ-SM-
identifiable, there is a one-to-one correspondence between a trajectory and a parameter
vector and hence the unicity of the solution.�

The following theorem gives a sufficient condition for proving that P ∗ is globally
SM-identifiable.

Theorem 3.4.2 If there exists u∗ such that YΓ1
(P ∗, u∗) 6= ∅ and all the solutions of (3.16)

are in P ∗ 6= ∅ then P ∗ is globally SM-identifiable.

Proof – Suppose that YΓ1
(P ∗, u∗) ∩ YΓ1

(P̄ , u∗) 6= ∅ for P̄ ⊂ UP . There exists a
trajectory y∗ ∈ YΓ1

(P ∗, u∗) ∩ YΓ1
(P̄ , u∗). In particular, there exist p∗ ∈ P ∗, p̄ ∈ P̄

solutions of (3.16) for which the right member ak(.) corresponds to y∗(k)(.). Hence,
p̄ ∈ P ∗ and P ∗ ∩ P̄ 6= ∅.�

An additional condition is required for P ∗ to be globally µ-SM-identifiable. Indeed,
since the global SM-identifiability must be verified for any µ(P ∗) where µ : P ∗ → P ∗ is
a contraction, the parameter p̄ may not be included in µ(P ∗). A supplementary injectivity
hypothesis allows one to obtain µ-SM-identifiability as it is seen in the following theorem.

Theorem 3.4.3 Suppose there exists u∗ such that YΓ1
(P ∗, u∗) 6= ∅ and the solutions of

(3.16) for a finite number d of equations are in the connected set P ∗ 6= ∅. If the function
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φ : p ∈ Up 7→ (g(x(0, p), p), . . . ,
dd−1

dtd−1
[g(x(0, p), p)]) ∈ (Rm)d is (P ∗,UP)-injective,

then P ∗ is µ-SM-identifiable.

Remark 3.4.1 The exponent d−1 is the number of times that y(t, p) = g(x(t, p), p) must

be derived so that the resulting system taken at t = 0 admits solutions.

Proof – The injectivity hypothesis ensures that the trajectories evaluated with param-
eters in P ∗ are all distinct.�

For obtaining the system (3.16), complex mathematical developments are generally
required. However, some classes of systems have nice properties and are easily solved,
for example linear systems ([95]).

Example 3.4.1 Consider the following uncertain system taken from [126]:














ẋ1(t) = −(k21 + k31)x1(t) + u(t), x1(0) = x10,
ẋ2(t) = k21x1(t)− x2(t), x2(0) = 0,
ẋ3(t) = k31x1(t)− c13x3(t), x3(0) = x30,
y(t) = x2(t) + c13x3(t),

(3.17)

where the unknown parameters are k21, c13, Up = R2. Assume that xi0 ∈ [xi0, xi0],
i = 1, 3 and a0(.) ∈ Y m

Γ1
. Assume also that 0 6∈ [x30, x30].

In this example, the set of parameters P ∗ containing (k21, c13) is searched so that

P ∗ is globally µ-SM-identifiable. For doing this, the PSE Method relies on studying the

solutions of the following system:
{

c13x30 = a0(0),
(k21 + c13k31)x10 − c213x30 = a1(0),

(3.18)

According to Theorem 3.4.3, it is sufficient to find the solutions of (3.18). From the first

equation, one gets c13 = a0(0)/x30. Then, if 0 ∈ [x10, x10], the model is not globally SM-

identifiable since the particular case x10 = 0 induces the following equations ak(0) =
(−1)kck+1

13 x30 for all k ≥ 0. Otherwise, if 0 6∈ [x10, x10], the second equation gives:

k21 =
a1(0)− c13k31x10 + c213x30

x10
. (3.19)

Denote by γ the right member of (3.19). Solutions of (3.18) are in P ∗ = [γ, γ] ×
[a0(0), a0(0)]/[x30, x30] and according to Theorem 3.4.2, the system (3.17) is globally

SM-identifiable for P ∗.

Furthermore, the function φ : (k21, c13) 7→ (c13x30, (k21+c13k31)x10−c213x30) is (P ∗,R2)-
injective. Thus, the system (3.17) is µ-set membership identifiable with respect to P ∗.
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3.4.2 Differential Algebra Method (DA method)

The differential algebra method [60] consists in eliminating unmeasurable state vari-
ables in order to obtain relations linking outputs, inputs and parameters. For this, an
appropriate elimination order has to be chosen. In this work, the elimination order is
{p} < {y, u} < {x}. The latter is chosen so that formal calculus, made by Maple for
example, can be successful in most of the cases. Besides, the particular form of the ob-
tained relations leads to an easy criteria for verifying the notions of identifiability. Indeed,
the identifiability study is reduced to verify the (partial) injectivity, or not, of a function
and fewer tests based on the tools of interval analysis and interval constraint propagation
are available in the literature. According to the previous elimination order, the Rosenfeld-
Groebner algorithm implemented in the package DifferentialAlgebra of Maple can be
used for obtaining the desired relations. This algorithm gives an union of subsets each
of them corresponding to a solution of the system. One of them called the characteris-
tic presentation corresponds to the general case, the others to particular solutions. The
characteristic presentation contains differential polynomials linking outputs, inputs and
parameters which can be expressed as (see [30] for more details)

Ri(ȳ, ū, p) = mi
0(ȳ, ū) +

∑ni

k=1 θ
i
k(p)m

i
k(ȳ, ū), i = 1, . . . , m, (3.20)

where (θik(p))1≤k≤ni
are rational in p, θiu 6= θiv (u 6= v), (mi

k(ȳ, ū))0≤k≤ni
are differential

polynomials with respect to y, u and mi
0(ȳ, ū) 6= 0.

{θik(p)}1≤k≤ni
is called the exhaustive summary of Ri.

The size of the system is the number of outputs. For the time being, we suppose that
i = 1, that is there is one output and n1 = n, R1 = R, m1

k(ȳ, ū) = mk(ȳ, ū).
Consider t+0 the right limit of t0 6 and l the higher order derivative of y in (3.20). Here-

after, ∆R(y, u) will design the functional determinant formed from the {mk(ȳ, ū)}1≤k≤n.
The following theorem permits to obtain necessary and sufficient conditions for having
global SM-identifiability or µ-SM-identifiability.

Theorem 3.4.4 Assume that the functional determinant ∆R(y, u) is not identically equal

to zero. Consider P ∗ a connected subset of UP .

If the function φ : p = (p1, . . . , pp) 7→ (θ1(p), . . . , θn(p), y(t
+
0 , p), . . . , y

(l−1)(t+0 , p))
is (P ∗,UP)-restricted injective (resp. (P ∗,UP)-injective) then P ∗ is globally SM-

identifiable (resp. µ-SM-identifiable). Furthermore, if P ∗ has a diameter equal to ε and

φ is (P ∗,UP)-restricted injective but not (P ∗,UP) injective then P ∗ is ε-SM-identifiable.

6t+0 is considered to ensure the existence of derivatives.
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In the two cases, if the coefficient of y(l) in (3.20) is not equal to 0 at t0, then the reciprocal

is valid 7.

Proof – Sufficiency Let P ∗ verify the hypothesis of the theorem. Suppose there exists
an input u∗ such that YΓ1

(P ∗, u∗) 6= ∅ and y∗ ∈ YΓ1
(P ∗, u∗)∩YΓ1

(P̃ , u∗). Thus, there ex-
ists p∗ ∈ P ∗, p̃ ∈ P̃ such that y∗(.) = y(., p∗) = y(., p̃) and R(y∗, u∗, p∗) = R(y∗, u∗, p̃).
Denote Q(y∗, u∗) = R(y∗, u∗, p∗)− R(y∗, u∗, p̃).
Since det(Q)(y∗, u∗) = det(mk(y

∗, u∗), k = 0, . . . , n) = △(R)(y∗, u∗) is not equal to
zero, θk(p∗) = θk(p̃) for k = 1, . . . , n. Besides, we have y(., p∗) = y(., p̃) in particular
y(k)(t0, p

∗) = y(k)(t0, p̃) for 0 ≤ k ≤ l − 1. Since the function φ is a weak-injection of
P ∗ over UP , one gets p̃ ∈ P ∗ and P ∗ ∩ P̃ 6= ∅.
For any contraction µ : P ∗ → P ∗ such that p∗ ∈ µ(P ∗), φ is (µ(P ∗),UP)-injective and
p∗ = p̃ is always verified which implies that P ∗ ∩ P̃ 6= ∅.
Necessity Let’s prove the contrapositive. Suppose there exists P̃ 6= ∅, such that P ∗∩P̃ = ∅
and φ(p∗) = φ(p̃) for a certain p∗ ∈ P ∗ and a p̃ ∈ P̃ . Since the coefficient of y(l) in (3.20)
is not equal to 0 at t0 and the differential polynomials (mk(y, u))k=1,...,n have a degree 1 in
y(l) (see [30] for more details), any time derivative y(r)(t+0 , p

∗), r ≥ l can be rewritten in
function of y(l−1)(t+0 , p

∗), . . . , y(t+0 , p
∗), θ1(p

∗), . . . , θn(p
∗). According to the hypothesis

on φ, the (l− 1) first coefficients of y(t, p∗) in the Taylor expansion are the same as those
of y(t, p̃), thus y∗ := y(t, p∗) = y(t, p̃) and y∗ ∈ YΓ1

(P ∗, u)∩YΓ1
(P̃ , u). Thus, the model

is not globally-SM-identifiable for P ∗. �

Remark 3.4.2 In the case of m outputs, the procedure is the following. For each of the

m differential polynomials Ri(ȳ, ū, p), the functional determinant is evaluated. If it is not

identically equal to zero, the associated exhaustive summary is added to the image of the

function φ whose (partial) injectivity has to be studied.

The two methods consist in reducing the study of (µ-)SM-identifiability of the initial
model set to the study of algebraic systems and to use interval analysis tools. Indeed,
the main advantage of interval analysis is that it can guarantee that numerical solutions
provided as sets, are guaranteed to contain all actual solutions. The PSE method is easy to
implement but can lead to complex systems essentially in the case of nonlinear systems.
And, even if it can be used for the construction of P ∗, better estimate can be obtained using
indirect methods and the whole measurement trajectory. The DA method is probably
more difficult to master but in the case of nonlinear models, it enables to obtain more
easily the identifiability’s results. Moreover, some recent developments in SM estimation
as the solver ITVIA enable the user to determine quickly the area on which the model is
µ-SM-identifiable.

7When initial conditions are not considered, the function φ becomes φ : p = (p1, . . . , pp) 7→ (θ1(p), . . . , θn(p))
and the reciprocal of the theorem is not yet valid.
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3.4.3 Testing SM-identifiability

The steps for proving SM-identifiability are summed up below.

1. Find the differential polynomials Ri using, for example, the package DifferentialAl-
gebra of Maple.

2. Evaluate the functional determinants and construct the function φ.

3. Verify the (restricted)-partial injectivity.

• If the function φ is injective on UP , P ∗ is µ-SM-identifiable. This test can be
done using an interval Newton solver to enclose all the zeros in an union of
interval vectors. If φ is not injective or the resolution is too hard, the following
numerical procedure can be used.

• Use ICP algorithms (Interval constraint propagation implemented in realpaver
for example) to verify the (P ∗,UP)-injectivity. For example, to verify global
SM-identifiability of P ∗, the following numerical test can be used:
find p ∈ UP such that

∀p∗ ∈ P ∗, φ(p)− φ(p∗) = 0.

If there is no solution outside P ∗, P ∗ is globally SM-identifiability.

Example 3.4.2 Consider the model:






ẋ1(t) = p1x1(t)
2 + sin(p2)x1(t)x2(t), x1(0) = 1

ẋ2(t) = p3x1(t)
2 + x1(t)x2(t), x2(0) = b

y(t) = x1(t).
(3.21)

where (p1, p2, p3) ∈ UP = R × [0, 2π[×R+ are the unknown parameters. Let p4 =
sin(p2). In using the Rosenfeld-Groebner algorithm in Maple with the elimination order

{p1, p3, p4} < {y} < {x1, x2}, there are three cases: the impossible one y = 0 since

y(0) = 1, the particular case p4 = 0 (thus p2 = 0 or π) and the general characteristic

presentation C = {R(ȳ)} with R(ȳ) = ẏ2 − yÿ + ẏy2 + p1(ẏy
2 − y4) + p4p3y

4. The

functional determinant 2y5ẏ2 − y6ÿ of R(y) = det(ẏy2 − y4, y4) is not identically equal

to 0.

Thus, we have to study the following function

φ : (p1, p2, p3) → (p1, sin(p2)p3, p1 + sin(p2)b). The first two components correspond

to the exhaustive summary of R and the third one to the first derivative of y taken at the

initial time 8.

8It is sufficient to compute only the first derivative since the higher order derivative of R is equal to 2.
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The model set is globally SM-identifiable for P ∗
1 = R×]0, π[×R+ and P ∗

2 =
R×]π, 2π[×R+. Indeed, it is sufficient to remark that: ∀p∗2 ∈]0, π[, ∀p̄2 ∈
]π, 2π[, sin(p∗2) > 0 and sin(p̄2) < 0. However, the model set is clearly not µ-SM-

identifiable with respect to P ∗
1 and P ∗

2 since the function sin is not injective on these

two subsets.

Example 3.4.3 Consider the model:







ẋ1(t) = (p1 + 2(1− p2) cos(p1))x1(t)
2 + (1− p2)x2(t),

ẋ2(t) = sin(p1)x1(t),
y(t) = x1(t).

(3.22)

where (p1, p2) ∈ P ∗ = [−1, 4]× [0, 1/10].
We want to know if P ∗ is globally (µ-)SM-identifiable. By setting c1 = sin(p1), with the

elimination order {c1, p2} < {y} < {x1, x2}, the Rosenfeld-Groebner algorithm gives

the following differential polynomial:

R(ȳ) = ÿ − 2(p1 + 2(1− p2) cos(p1))ẏy − (1− p2) sin(p1)y. (3.23)

In that case, the functional determinant is reduced to △R(ȳ) = det(ẏy, y) = −y2ÿ and

is not identically equal to 0.

In order to consider the initial condition, the function φ : (p1, p2) → ((p1 + 2(1 −
p2) cos(p1)), (1−p2) sin(p1)) has to be studied. Using the solver ITVIA (see [63]), Figure

3.2 is obtained. The box P ∗ has been partitioned in two domains: a domain on which the

function is partially injective and an indeterminate domain. Thus, φ is not injective over

P ∗ and P ∗ is not µ-SM-identifiable.
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Figure 3.2: Partition of the box P ∗ for the function φ.

3.5 Partitionning the parameter space into SM-identifiable sets and

not SM-identifiable sets

The proposed work has been achieved within the framework of the MAGIC-SPS project
and has been published in [109].

The aim of this section is to determine numerically the set-membership identifiable
connected sets that correspond to different output behaviors for the considered system.
For doing this, a method based on differential algebra is proposed. This method consists
in linking µ-set-membership-identifiability and set-membership-identifiability definitions
to the partial injectivity and restricted-partial injectivity of a real rational function. An
algorithm based on interval analysis is presented for determinig the µ-SM-identifiable
sets.

In order to determine numerically the SM-identifiable sets, we have implemented an
algorithm composed of three steps based on ImageSP algorithm [50]. Indeed, the method
consists in calculating the image of the real rational function obtained by the theoretical
part. Using ImageSP, the obtained boxes, supposed to correspond to SM-identifiable sets,
are composed of non desired parts, which are parts of non SM-identifiable sets. That is
why, we propose other algorithms to find a regular internal subpaving.
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3.6 Determination of the (µ)-SM-identifiable sets

The proposed algorithms find the connected sets in the range of a continuous differen-
tiable function such that their image is distinct to the one obtained with their complement.
Afterwards, they are named SM-identifiable sets to be put in correspondence with the
SM-identifiable sets defined from the model Γ1. They take back the algorithm ITVIA
([63] [64]) which partitions the domain of a differentiable function into two domains: an
undetermined domain not proved partially injective and a partial injective domain. The
latter corresponds to a list of µ-SM-identifiable sets. To complete the partition, we have
to find the SM-identifiable sets in the undetermined domain.

Denote f : Rn → Rm (f ∈ C1) a differentiable vector function defined over a
given n-dimensional box [x] ∈ IRn, where IR is the set of all intervals. Regarding to
[15], a subpaving of [x] is a set of non-overlapping boxes included in [x]. A subpaving
can be considered either as a collection (list) of boxes K =

{

[x](1), [x](2), ...
}

or as a
union K = [x](1)

⋃

[x](2)
⋃

.... Hence, a subpaving can either be viewed as a discrete
subset of IRn or as a convex subset of IRn. Subpavings permit to approximate convex
sets with arbitrary precision. A regular subpaving is a subpaving generated by successive
bisections and it can be easily represented by a binary tree.

After obtaining a paving of µ-SM-identifiable sets by the algorithm ITVIA, we de-
termine its complement and, to complete the work, we proceed as in Image evaluation

[50]. Firstly, we consider a subpaving with boxes of width smaller than ε (mince step).
Secondly, we find SM-identifiable sets as a list of non-overlapped boxes (evaluate step).
Finally, we transform this list to a regular subpaving (regularize step).
We begin by the case of m = 1 and then we generalize our algorithm to the multidimen-
sional case.

3.6.1 The case of unidimensional functions

Let P a list of non overlapped boxes included in [x], we introduce the following nota-
tions. Q corresponds to the length of the list P . max[f ],{P} (resp. min[f ],{P}) denotes the
sequence of the maximal values (resp. the minimal values) of [f ] on each box of P and the
two following, Max[f ],{P}

+ and Min[f ],{P}
+ (resp. Max[f ],{P}

− and Min[f ],{P}
−), the

maximal and minimal values of the sequence max[f ],{P} (resp. min[f ],{P}). Then, iMax

and iMin are the minimal corresponding indexes. Finally, ε is the maximal diameter of
the boxes considered in the list P . Mathematically, these definitions can be rewritten in
the form:

• length(P) = Q,
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• max[f ],{P} = {max([f ](Pi)), 1 ≤ i ≤ Q} ∈ RQ,

• min[f ],{P} = {min([f ](Pi)), 1 ≤ i ≤ Q} ∈ RQ,

• Max[f ],{P}
+ = max(max[f ],{P}) ∈ R,

• Max[f ],{P}
− = max(min[f ],{P}) ∈ R,

• Min[f ],{P}
− = min(min[f ],{P}) ∈ R,

• Min[f ],{P}
+ = min(max[f ],{P}) ∈ R,

• ε = max((w({P})i=1,...,Q)).

Example 3.6.1 To illustrate these notations, consider the following function f defined

by:

f(x) = sin(10(x− 0.1)2)/x, where [x] ∈ [0.1, 2]. (3.24)

It is represented in Figure 3.3. P consists of equal boxes of width ε = 0.05 in [0.1, 2].
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Figure 3.3: Illustration of the notations (to simplify, the subscript {[f ],P} is omitted).
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3.6.1.1 Second maximum and second minimum

The aim of the two following sections is to isolate the domain around the maximum (resp.
minimum) of f which constitutes a SM-identifiable set as the interval [0.2; 0.6] in Figure
3.3. For doing this, the second maximum of f (resp. minimum) has to be determined first,
in particular the lower and the upper values of the box containing this second maximum
(resp. minimum). The lower value will be denoted SMax[f ],{P}

− and the upper value,
SMax[f ],{P}

+ (see Figure 3.3).
While Max[f ],{P}

+ and Max[f ],{P}
− can be directly evaluated from max([f ](P)), Algo-

rithm 3 is used for evaluating SMax[f ],{P}
+ or SMax[f ],{P}

−. There, SMax[f ],{P}
+ and

SMax[f ],{P}
− are computed in replacing M ∈ RN by max([f ](P)) and min([f ](P)),

respectively. For example, consider that M = max([f ](P)).
In this algorithm, we find Max[f ],{P}

+, that is the maximum value of the list max([f ](P))
and we initialize a list named {L} by the corresponding box of Max[f ],{P}

+ in P . Then,
we find the next maximum value of max([f ](P)). If its corresponding box [x]temp in P
is connected to one of the component of {L}, that is, it intersects one of the box of {L}
(see [50] for the definition of connected box), we add it to {L} and we continue. If there
exists a box [x]temp not connected with one of the box of {L}, one gets the box containing
the second maximum of the function f . The second maximum is named disconnected
afterwards; an example is shown in Figure 3.3. If all the boxes [x]temp are connected with
one of the box of {L} then the second maximum is found at the boundary, i.e. at P1 or
PN .
The same work can be done for finding SMin[f ],{P}

+ and Min[f ],{P}
−.

3.6.1.2 Relation between partitioning and second maximum or minimum

For the final step, we construct the SM-identifiable set defined around the maximum or
minimum value of f . Indeed, when we search the second maximum or minimum, we
obtain the list of boxes {L} which are the image of the function f and are not connected
with its complement. However, we are not insured to obtain a connected set. For being
convinced, see for example the second figure of Figure 3.4. Owing to the third box, we
do not obtained a connected set. First, let us define the list of boxes {L}+[f ],P,a (resp.

{L}−[f ],P,a) such that their image by the inclusion function has their minimum larger (resp.
maximum smaller) than a.

Definition 3.6.1 The list of boxes {L}+[f ],P,a is defined by:

{L}+[f ],P,a = {Pi, min([f ](Pi)) ≥ a} (3.25)
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Algorithm 3 SMax =SecondMax(P, M )

Input: P, M ;
Output: SMax;

1: initialization: {L} = ∅;
2: Max = max(M);
3: iMax = mini (M(i) = Max);
4: {L} = {PiMax

};
5: M(iMax) = −∞;
6: for i = 1 :length(P) − 1 do

7: Maxtemp = max(M);
8: itemp = mini (M(i) = Maxtemp);
9: [x]temp = Pitemp ;

10: if [x]temp connected to {L} then

11: {L} = {L, [x]temp};
12: M(itemp) = −∞;
13: else if SMax = Maxtemp then

14: it is disconnected, return
15: end if

16: end for

17: SMax = Maxtemp ;
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Definition 3.6.2 The list of boxes {L}−[f ],P,a is defined by:

{L}−[f ],P,a = {Pi, max([f ](Pi)) ≤ a} . (3.26)

The notion of connected lists formed of intervals is introduced before giving a sufficient
condition for having a connected SM-identifiable set in [x].

Definition 3.6.3 A list {L} formed of intervals is said connected if the union of its com-

ponents is an interval of IR.

Proposition 3.6.1

In (3.25), for a = SMax[f ],{P}
+, if the list {L} is a connected set, then it is a SM-

identifiable set. We denote it by {L}+SMI,[f ],P .

Proof – The list {L} corresponds, by construction, to the list of boxes not having a com-
mon intersection with its complement. Concretely, the image {L} of f is distinct with
its complementary image. Since {L} is supposed to be connected, it constitutes a SM-
identifiable set.
Similarly, we get the following proposition.

Proposition 3.6.2

In (3.26), for a = SMin[f ],{P}
−, if the list {L} is a connected set, then it is a SM-

identifiable set. We denote it by {L}−SMI,[f ],P .

Figure 3.4 illustrates the importance of the connected property verification.
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Figure 3.4: Connected and non connected sets.
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In the first Figure, we get a = SMax[f ],{P}
+ = max([f ](P7)), {L}+[f ],P,a =

{P2,P3,P4,P5} and it can be easily seen that {L}+[f ],P,a is the list {L}+SMI,[f ],P since it is
connected.
However, in the second Figure, {L}+[f ],P,a = {P2,P4,P5} is no more connected and can
not be a SM- identifiable set.

Algorithm 4 is used to find the connected sets verifying Proposition 3.6.1. In this
algorithm, two lists {L1} and {L2} verify {L1} = {L2}, if they are composed of the same
elements even in different order. Moreover, the notation [xa] designates the component
{P}i of the list {P} for which min([f ]({P}i)) = a.

Algorithm 4 {L}+SMI,[f ],P = ConnectedSet+(P, max[f ],{P}, min[f ],{P})

Input: P, max[f ],{P}, min[f ],{P};
Output: {L}+SMI,[f ],P ;

1: Initialization: a = SMax[f ],{P}
+, {L1} = ∅, {L2} = {L}+[f ],P,a;

2: while {L2} 6= {L1} do

3: {L1} = {L2};
4: a = SMax−[f ],{L1}

;

5: {L2} = {L}+[f ],{L1},a
;

6: if a is a disconnected maximum then

7: {L2} = {L2} − [xa];
8: end if

9: end while

10: {L}+SMI,[f ],P = {L2};

Another algorithm can be deduced from Algorithm 3 in substituting + and max by −
and min.

3.6.1.3 Algorithms

The following algorithms 5 and 6 are the final algorithms to determine the SM-identifiable
sets in the definition domain of a function. They take again the previous algorithms.
{U}SMI,[f ],P corresponds to the set of the two lists {L}+SMI,[f ],P and {L}−SMI,[f ],P.

As it can be seen, these algorithms are different only in the order of treating the parti-
tions {U+} and {U−}.
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Algorithm 5 {U}SMI,[f ],P =SMISet1([f ], P)

Input: [f ], P;
Output: {U}SMI,[f ],P ;

1: Initialization: {U+} = ∅, {U−} = ∅, {L1} = P;
2: {U+} = {L}+SMI,[f ],{L1}

;

3: {L2} = {L1} − {U+};
4: {U−} = {L}−SMI,[f ],{L2}

;

5: {U}SMI,[f ],P = {{U+} , {U−}};

Algorithm 6 {U}SMI,[f ],P =SMISet2([f ], P)

Input: [f ], P;
Output: {U}SMI,[f ],P ;

1: Initialization: {U+} = ∅, {U−} = ∅, {L2} = P;
2: {U−} = {L}−SMI,[f ],{L2}

;

3: {L1} = {L2} − {U−};
4: {U+} = {L}+SMI,[f ],{L1}

;

5: {U}SMI,[f ],P = {{U+} , {U−}};

3.6.2 The case of multidimensional functions

In this section, we consider the case of m > 1. We suppose that an interval function
vector [f ] = [ [f1], ..., [fm] ] and a subpaving P of [x] are available.
Based on previous algorithms, Algorithm 7 has been implemented.
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Algorithm 7 {U}SMI,[f ],P =SMISetN1([f ], P)

Input: [f ], P;
Output: {U}SMI,[f ],P ;

1: Initialization: {U+} = ∅, {U−} = ∅, {L1} = P;
2: for i=1:m do

3: {U+}i = {L}+SMI,[fi],{L1}
;

4: {L2} = {L1} − {U+}i;
5: {U−}i = {L}−SMI,[fi],{L2}

;

6: {L1} = {L2} − {U−}i;
7: end for

8: {U}SMI,[f ],P = {{U+} , {U−}};

However, as in the case of m = 1, other algorithms can be considered, for example
the following algorithm:

Algorithm 8 {U}SMI,[f ],P =SMISetN2([f ], P)

Input: [f ], P;
Output: {U}SMI,[f ],P ;

1: Initialization: {U+} = ∅, {U−} = ∅, {L2} = P;
2: for i=1:m do

3: {U−}i = {L}−SMI,[fi],{L2}
;

4: {L1} = {L2} − {U−}i;
5: {U+}i = {L}+SMI,[fi],{L1}

;

6: {L2} = {L1} − {U+}i;
7: end for

8: {U}SMI,[f ],P = {{U+} , {U−}};

Changing the order of the interval functions, [fi], i = 1, ..., m and also the order
of computing partitions {U−}i and {U+}i; altogether, there are (2m)! algorithms like
Algorithms 5 and 6.

3.6.3 Regularization

In [50], in order to evaluate the image of a function at a domain set, three main sequential
steps, mince, evaluate and regularize are introduced. In the previous sections, the two
first steps, the mince and the evaluate ones have been explained. In this section, the last
step, i.e. the regularization is realized.
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Figure 3.5 illustrates an example for the regularization step where the algorithm presented
in [50] is used.
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Figure 3.5: (a): list of overlapped boxes , (b): external regular subpaving

This algorithm can be also applied to a list composed of overlapped or non overlapped
boxes. However, as it can be seen in Figure 3.5, the initial list, here consisting of
overlapped boxes in Figure 3.5 (a), is inside the regular subpaving of the Figure 3.5
(b), or, in other words, the subpaving is an external regular subpaving. If we apply this
algorithm to a list of SM-identifiable sets, some parts of the initial domain which are not
SM-identifiable are included in the obtained regular subpaving.
To cope with this problem, the following algorithm is proposed to find a regular sub-
paving inside a list. However, the list must only consist of non overlapping boxes which
is fortunately the case of a list of SM-identifiable sets found by the method presented in
the last sections.

In Algorithm 9, the function volume of the interval box [x] ∈ IR
n is defined as

volume([x]) = (x12 − x11)(x22 − x21)...(xn2 − xn1).
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Algorithm 9 PR =InternalRegularization(P , ε)

Input: P, ε;
Output: PR;

1: Initialization: PR = ∅, {L} = ∅, STOP=0;
2: [a] =

⋃

i Pi;
3: {L} = {[a]};
4: while STOP 6= 1 do

5: [x] = {L}1;
6: vx=volume([x]);
7: vt =

∑

i volume(Pi

⋂

[x]);
8: if vt 6= 0 then

9: if |vt − vx| vt < 0.01vx then

10: PR = {PR, [x]};
11: else if w([x]) > ε then

12: [x1,x2] = bisect([x]);
13: {L} = {L, [x1], [x2]};
14: end if

15: end if

16: if length({L}) > 1 then

17: {L} = {L}2:end;
18: else if then

19: STOP = 1;
20: end if

21: end while
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Figure 3.6 shows the difference between internal and external regular subpavings
found for a list. As it can be seen, the list consists of non overlapped boxes (Figure 8
(a)), the internal regular subpaving is inside the list (Figure 8 (b)), and the external regu-
lar subpaving is outside the list (Figure 8 (c)).
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Figure 3.6: (a) non overlapped boxes; internal (b) and (c) external regular subpavings

3.7 Examples

Example 3.7.1 Consider the Bernoulli equation ẏ(t) = −p21y(t) + p22y(t)
2 and let us

applied the steps proposed previously.

1. We have directly

w(ȳ, p) = ẏ(t) + p21y(t)− p22y(t)
2. (3.27)
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2. Its functional determinant is equal to ẏy2 which is not identically equal to zero.

In that case, the function φ is defined by φ : R2 → R2,

φ(p) =

[

p21
−p22

]

3. Algorithm 5 is used with a regular paving such that its resolution is ε = 0.05.

The results are illustrated in Figure 3.7 after regularization. Light gray, dark gray

and black color boxes correspond to SM-identifiable sets but which are not µ SM-

identifiable. The red color boxes represent the µ-SM-identifiable sets.

With Algorithm 6, we do not obtain such SM-identifiable sets.
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Figure 3.7: Red: µ-SM-identifiable sets, Grays and Black: SM-identifiable sets.

Example 3.7.2 Consider the following example:






ẋ1(t) = x1(t) + x2(t) + u(t), x1(0) = p1(1 + sin(p1)− p2 sin(p1)) + p2 cos(p1),
ẋ2(t) = −x2

1(t)− ((1− p2)p1 cos(p1)− p2 sin(p1)− 2p2)x1x2, x2(0) = 0,
y = x1.

(3.28)

1. By setting c1 = cos(p1) and c2 = sin(p1), the Rosenfeld-Groebner algorithm, imple-

mented in the package DifferentialAlgebra of Maple gives the following differential

polynomial:

w(ȳ, ū, p) = −u̇− ẏ+ ÿ+y2+((1−p2)p1 cos(p1)−p2 sin(p1)−2p2)(ẏy−uy−y2).
(3.29)

2. Clearly the associated functional determinant is not identically equal to zero. Sup-

pose also that u(0) = 0, then the following function φ : R2 → R
2 can be consid-

ered:

φ(p) =

[

(1− p2)p1 cos(p1)− p2 sin(p1)− 2p2
p1(1 + sin(p1)− p2 sin(p1)) + p2 cos(p1)

]

.
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3. Choosing ε = 0.01 and Algorithm 5, the results illustrated in Figure 3.8 are ob-

tained.
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Figure 3.8: Red: µ-SM-identifiable sets, Black: SM-identifiable sets.

3.8 Conclusion

In this chapter, the definitions of (µ-) SM-identifiability and SM-diagnosability are intro-
duced and the links between these three properties established.

Two methods are proposed to test set-membership identifiability. These two methods
consist in reducing the study of (µ-)SM-identifiability of the initial model set into the
study of algebraic systems and to use interval analysis tools. Interval analysis guarantees
that numerical solutions provide sets guaranteed to contain all solutions. The PSE method
is easy to implement but can lead to complex systems essentially in the case of nonlinear
systems. And, even if it can be used for the construction of P ∗, better estimate can be
obtained using indirect methods and the whole measurement trajectory. The DA method
is probably more difficult to master but in the case of nonlinear models, it can permit to
obtain more easily the identifiability results. Moreover, some recent developments in SM
estimation as the solver ITVIA allow the user to determine quickly the area on which the
model is µ-SM-identifiable.

To finish this chapter, we proposed a guaranteed method for determining, in the
parameter space of a model, the SM-identifiable sets, each of them corresponding to
different output behaviors from their complement. For doing this, differential algebra
tools have been used to obtain differential polynomials. From them, a real function
depending only on the parameters has been constructed. We show that the domains on
which this function is partially injective correspond to µ-SM-identifiable sets, otherwise
if the function verifies only restricted-partial injectivity, the corresponding domain
determines SM-identifiable sets. An algorithm based on interval analysis tools has been
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proposed to determine the SM-identifiable sets in the function’s range.

In the bounded-error framework, the set of all parameters consistent with the model
structure, the measurements and the bounds on the perturbations can be defined as the
set estimate for the parameters. The following chapter concerns optimal input design to
improve this parameter estimation.



Chapter 4

Optimal input design for parameter

estimation of dynamical uncertain

models

4.1 Introduction

As said in the general introduction, experiment design is important to identify more pre-
cisely mathematical models of complex systems.

The conventional approach for experiment design assumes stochastic models for un-
certain parameters and measurement errors. Several criteria for experiment design have
been proposed involving a scalar function of the Fisher information matrix. When the
model is nonlinear with respect to the parameters to be estimated, the local methods lead
often to bad results in terms of estimation. Moreover, some sources of uncertainty are
not well-suited to the stochastic approach and are better modeled as bounded uncertain-
ties. Thus, in the presented work, the context of bounded-error estimation is considered
where the experiment design consists in designing experiments which minimize the esti-
mate parameter domain. The obtained optimal experiment is optimal for the a priori box
of parameters.

Thus, to minimize the volume of the estimate parameter set, I and co-workers (L.
Denis-Vidal and Z. Cherfi) exhibit an explicit expression linking this set of parameters
with the Gram matrix of sensitivities which is presented in this chapter. This work follows
a study on the optimization of the initial conditions in the same context but with a different
approach [73]. To obtain an explicit expression of the set of parameters to be estimated,
the authors in [56] used a centered inclusion function for the model output involving the
sensitivity functions. Starting from this idea, we explicitly build some criteria to find

97
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an optimal experiment in the bounded-error context. In our work, we consider only the
optimal input design. The proposed methodology requires a parametrization of the input
with a finite number of parameters.

This chapter is organized as follows. In Section 4.2, the problem statement is pre-
sented. Section 4.3 concerns the acquisition of the proposed criteria for optimal input. An
aerospace application is given in Section 4.4.

4.2 Problem formulation

In this chapter, we consider nonlinear dynamical systems described by the form presented
in Section 2.2, chapter 2:

{

ẋ(t, p) = f(x(t, p), u(t), p),
y(t, p) = g(x(t, p), p),

(4.1)

where the hypotheses are relatively similar to those given in the second chapter. p ∈ P0 is
an a priori initial domain for the parameters to be estimated included in UP .
u(t) represents the input. We suppose that u(t) belongs to a class of admissible inputs U .
The time t is assumed to belong to [t0, T ] and to simplify, we get t0 = 0.

Interval arithmetic is used to compute guaranteed bounds for the considered problem
at the sample times {t1, t2, ..., tN}.
y(tk, p) is a vector with components yki (p) = yi(tk, p) for i = 1, ..., m, k = 1, . . . , N and
we note yk(p) = y(tk, p).

Let z(tk) be the measurements vector at sample time tk and zk = z(tk). Suppose that
there exists a "true" value of parameters p∗ such that we have zk = yk(p∗) + v(tk) for k
from 1 to N .

Finally [yk(p)] = [zk − v(tk), z
k − v(tk)].

In a bounded-error estimation context, one is interested in estimating the set P ⊂ [P0]
of all parameters p consistent with the model structure and the bounds on the measurement
noise.

In order to obtain the most accurate estimates, we choose to minimize a cost function,
for example the volume, of the set P (or of an enclosure of P). It may generally depend
on the values of the input, the initial time, the sample times, among others. In this work,
only the input is considered.

Our aim is to design an input that minimizes the cost function. More formally, one
has to find an input u∗ such that:

u∗ = argmin
u∈U

Φ(P). (4.2)
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ObtainingP is difficult in practice. Nevertheless there are efficient algorithms to obtain
an outer-approximation [p] of P. The Problem (4.2) is thus relaxed as follows:

u∗ = argmin
u∈U

Φ([p]),

This point is explained in the following section.

4.3 Criteria for optimal input

In this section, we exhibit criteria involving the input u to be used to minimize the volume
of [p] for an appropriate choice for u. In [56], the authors have used a centered inclusion
function at m ∈ R

p for the model output. The use of sensitivity functions leads to reduce
more quickly the size of outer approximations of the sets of interest. Thus we start from
this idea which leads to obtain an explicit expression of [p]−m.
Considering [p] such that P ⊂ [p] ⊂ [P0], m ∈ [p] and a mean value form for yk([p]), [p]
has to satisfy:

yk(m) +

p
∑

j=1

([pj]−mj)

[

∂yk

∂pj

]

([p]) ⊆ [zk]. (4.3)

Then:
p
∑

j=1

([pj ]−mj)

[

∂yk

∂pj

]

([p]) ⊆ [zk]− yk(m). (4.4)

Let us denote [Sk
i ] the row vector whose entries are:

[Sk
ij ] =

[

∂yki
∂pj

]

([p]), [Sk
i ] ∈ IR

1×p, i = 1, ..., m.

The interval matrix [Sk] ∈ IR
m×p is built with the m rows [Sk

i ].
In the following, the interval matrix [Sk]

T
[Sk] is assumed to be positive definite and to

simplify the notation, we take ([Sk]
T
[Sk])−1[Sk]

T
[Sk] = [Ik].

One has to find u such that ‖ [p]−m ‖ is as small as possible.
Thus (4.4) becomes:

[Sk]([p]−m) ⊆ [vk], (4.5)

where [vk] = [zk]− yk(m).

From (4.5), we obtain: [Sk]
T
[Sk]([p]−m) ⊆ [Sk]

T
[vk], then using ([Sk]

T
[Sk])−1 the

following inclusion is obtained:
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[Ik]([p]−m) ⊆ ([Sk]
T
[Sk])−1[Sk]

T
[vk]. (4.6)

The following proposition gives two upper bounds for [Ik]([p]−m).

Proposition 4.3.1 For all k ∈ {1, ..., N}, the two following inequalities hold:

‖ [Ik]([p]−m) ‖2≤‖ ([Sk]
T
[Sk])−1[Sk]

T ‖2F‖ ṽk ‖22, and

‖ [Ik]([p]−m) ‖2≤| tr([Ik]([Sk]T [Sk])−1) | ‖ ṽk ‖22

with ṽk =| [vk] |.
Proof:
Let [A] = ([Sk]

T
[Sk])−1[Sk]

T
and [aij ] be the entries of [A]:

[Ik]([p]−m) ⊆ [A][vk], (4.7)

and:

‖ [Ik]([p]−m) ‖2≤‖ [A][vk] ‖2≤
(

max
i

p
∑

j=1

| [aij ] || [vkj ] |
)2

. (4.8)

Since
(

∑p

j=1 | [aij ] || [vkj ] |
)2

≤∑p

j=1 | [aij ] |2
∑p

j=1 | [vkj ] |2,
one obtains:

max
i

(

p
∑

j=1

| [aij ] || [vkj ] |
)2

≤ max
i

p
∑

j=1

| [aij ] |2‖ ṽk ‖2

≤‖ [A] ‖2F‖ ṽk ‖2 .
(4.9)

Then ‖ [A] ‖2F=| tr([Ik]([Sk]
T
[Sk])−1) | because tr([A][A]T ) = tr([A]T [A]) and:

[A][A]T = ([Sk]
T
[Sk])−1[Sk]

T
[Sk]([Sk]

T
[Sk])−1

= [Ik]([Sk]
T
[Sk])−1

This leads to Proposition (4.3.1).�

An upper bound of | tr([Ik]([Sk]
T
[Sk])−1) | depending on | tr(([Sk]

T
[Sk])−1) | is

given in Proposition 4.3.2.

Proposition 4.3.2 For all k ∈ {1, ..., N}:

| tr([Ik]([Sk]
T
[Sk])−1) |≤ λmax(| [Iǫ] |) | tr(([Sk]

T
[Sk])−1) |

where λmax(| [Iǫ] |) = 1 + npǫ is the maximum eigenvalue of | [Iǫ] |.
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Proof:
For each k ∈ 1, ..., N there exists ǫk such that [Ik] ⊂ [Iǫk ]

[Ik]([Sk]
T
[Sk])−1 ⊆ [Iǫk ]([S

k]
T
[Sk])−1,

Let ǫ = maxk∈{1,...,N} ǫk then [Iǫk ] ⊂ [Iǫ].

Let [C] = ([Sk]
T
[Sk])−1, the following inequalities are obtained:

| tr([Ik] [C]) | ≤| tr([Iǫ] [C]) |,
≤ tr(| [Iǫ] | | [C] |),
≤ λmax(| [Iǫ] |)tr(| [C] |),

because the matrices | [Iǫ] | and | [C] | are symmetric [83]. �

Then ‖ [Ik]([p]−m) ‖ depends on | tr(([Sk]T [Sk])−1) |. Propositions 4.3.1 and 4.3.2
lead, for all k ∈ {1, ..., N}, to:

‖ [Ik]([p]−m) ‖2≤ λmax(| [Iǫ] |) | tr(([Sk]T [Sk])−1) | ‖ ṽk ‖22
which gives a criterion J1 for optimal input design. It may be defined as follows:

J1(u) =
∑

k

| tr(([Sk]T [Sk])−1) |.

This criterion is similar to the A-optimality in the stochastic framework. Then this leads
to the following definitions.

Definition 4.3.1 The criterion J1 is called the set-membership-A-optimality criterion.

This criterion consists in considering the largest absolue value of tr
(

([Sk]
T
[Sk])−1

)

.

Definition 4.3.2 An input u∗ is said to be set-membership-A-optimal when:

u∗ = min
u∈U

J1(u).

In order to avoid the inverse matrix computation ([Sk]
T
[Sk])−1, the following criterion is

proposed:
J2(u) =

∑

k

mig
(

tr
(

[Sk]
T
[Sk]

))

. (4.10)

This criterion consists in considering the smallest absolue value of tr
(

[Sk]
T
[Sk]
)

.

Definition 4.3.3 The criterion J2 is called the set-membership-T-optimality criterion.
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Definition 4.3.4 An input u∗ is said to be set-membership-T-optimal when:

u∗ = max
u∈U

J2(u).

This criterion is similar to the criterion based on the trace of the Fisher matrix in the
stochastic case.
In this case it is necessary to verify the invertibility of the matrix [Sk]

T
[Sk] that is

0 /∈ det([Sk]
T
[Sk]).

The following section is devoted to the obtention of optimal input for a case study
described below.

4.4 Application to a model from aerospace

4.4.1 Model equations

Consider the model describing the longitudinal motion of a glider developped in [24].
The projection of the general equations of motion onto the aerodynamic reference frame
of the aircraft and the linearization of aerodynamic coefficients give the pfollowing
system:














































































V̇ = −g sin(θ − α)− 1

2m
ρSV 2(C0

x + Cxα(α− α0) + Cxδm(δm − δm0
)),

α̇ =
2

2mV + ρSlV Czα̇

{

mV q +mg cos(θ − α)− 1

2
ρSV 2(C0

z + Czα(α− α0)

+Czq

ql

V
+ Czδm(δm − δm0

))
}

,

q̇ =
1

2B
ρSlV 2

{

C0
m + Cmα(α− α0) + Cmq

ql

V
+ Cmα̇

2l

2mV 2 + ρSlV 2Czα̇

[

mV q

+mg cos(θ − α)− 1

2
ρSV 2(C0

z + Czα(α− α0) + Czq

ql

V
+Czδm(δm − δm0

))
]

+ Cmδm(δm − δm0
)
}

,

θ̇ = q.

(4.11)
In these equations, the state vector x is given by (V, α, q, θ)⊤, the whole state is observed
(i.e., y = x), the input u is δm given in degree (δm0

represents the initial condition).
The variable V (m/s) denotes the speed of the aircraft, α (deg) the angle of attack, α0

the trim value of α, θ (deg) the pitch angle, q (deg/s) the pitch rate. The other constants
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represent δm0
the elevator deflection angle, ρ the air density, g the acceleration of gravity, l

a reference length and S the area of a reference surface. B represents a moment of inertia.
The parameters to be estimated are p = (Czα̇, Czq, Cmα̇, Cmq), which are assumed to be
uncertain. The other coefficients correspond to the dynamic stability derivatives and are
supposed to be known.
The initial conditions are supposed to belong to:

[X0] =









28.48, 28.52
6.27, 6.73
−0.23, 0.23
2.20, 2.66









. (4.12)

The parameters are supposed to be included in:

[P0] =









1.71, 1.89
4.75, 5.25
−5.25, −4.75
−23.1, −20.9









. (4.13)

The output error (2.2) is supposed to be bounded by:

[v] =









−0.05, 0.05
−0.25, 0.25
−0.25, 0.25
−0.25, 0.25









. (4.14)

The measurements have been simulated using the parameters equal to p∗ =
(1.8, 5,−5,−22)T . The test duration is fixed at one second. The stop criterion for the
SIVIA algorithm is ǫ = (0.01, 0.05, 0.05, 0.1) that means that the stop threshold for the
first parameter is 0.01, the second and third are 0.05 and the last one is 0.1.

4.4.2 Optimal input

4.4.2.1 Procedure description

In this application, the admissible input has been limited to full amplitude square waves.
In fact, analytic works for similar problems demonstrate that inputs similar to square
waves were superior to sinusoidal inputs for parameter estimation [20]. In this work, the
test time is divided into discrete steps called stages.

The inputs tested by our procedure are given by:

u(t) = u0 +
r
∑

i=1

(aiεi − ai−1εi−1)H(t− τi−1), ε0 = 0 , (4.15)
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where u0 is an input trim value, H is the Heaviside function. The variable r represents
the total number of stages. The variables τi are the switching times with τ0 the initial
test time. Indeed, the variables ai are chosen to be equal to the square wave full positive
amplitude [88]. The given variables τi satisfy τ0 < τ1 < ... < τr and εi is equal to 0, 1 or
−1 (for i = 1, ..., r).

Thus, we obtain the optimal number of square waves (with fixed time and fixed am-
plitude) to be realized; the corresponding signal is noted u∗. In order to obtain an optimal

input, criterium (4.10) is used. Sensitivities
∂y(ti, p)

∂p
are solutions of the following equa-

tions:
d

dt

(

∂x

∂pj

)

=

n
∑

k=1

[

∂f

∂xk

∂xk

∂pj

]

+
∂f

∂pj
(4.16)

∂y

∂pj
=

n
∑

k=1

[

∂g

∂xk

∂xk

∂pj

]

+
∂g

∂pj
, j = 1, ..., p. (4.17)

The Algorithm for obtaining the optimal input is described in following subsection.

4.4.2.2 Optimal input: Algorithm

In this algorithm, the variables r and tr describe the number of stages and the number of
sample times by stages respectively. The functions eval −ODE and eval − sensitivity
allow to compute respectively the guaranteed solutions of ordinary differential equations
and to compute the sensitivities respectively. The function eval− cout allows to evaluate
the value of the criterion.
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Algorithm 10 Search for optimal input (u∗)

Input: f , [x](0), r ;
Output: u∗;

initialization: L := [x](0);
for i=1:r do

u(i) = input− signal(i);
[x](i) := Pop(L);
for j=1:tr-1 do

[x](j) = eval −ODE([x](j − 1), u(i));
L := L ∪ [x](j);
sensibility:=eval − sensibility([x](j),u(i));
cout-intermediaire:=eval − criterion(sensibility);
cout:=cout ∪ (cout-intermediaire, u(i));
j := j + 1;

end for

i := i+ 1;
parcours-cout(cout);
return(u∗)

end for

Numerical results are given in following subsection.

4.4.2.3 Numerical results

The criterion J2 has been maximized for different total numbers of stages r. The values
are given in Tables 4.1 and 4.2. The variable T represents the computing time (in seconds).
The fourth column of thse Tablee represents the optimal value of u(t) on each stage, for
the value of r given in the first column. The time length of each stage is linked to the
number of stages, the test time being fixed at one second. For example, if the test time is
divided in four stages, each stage duration is fixed at 0.25 seconds. The total number of
sample times is N = 120 in Table 4.1 and N = 10 in Table 4.2.
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Number of stages J2(u
∗) T u∗(t)

2 3266 223 [-4.2 -4.2]
3 3522 646 [-4.2 -1 -4.2]
4 3440 1935 [-4.2 -4.2 -1 -4.2]
5 3542 6031 [-4.2 -4.2 -1 -4.2 -4.2]
6 3509 16416 [-4.2 -4.2 -1 -1 -4.2 -4.2]

Table 4.1: Values of the optimal input u∗ / J2(u
∗) = max

u∈U
J2(u) and N = 120.

For N = 120, the optimal value for the input is obtained with 5 stages.
In Table 2, we use N = 10:

Number of stages J2(u
∗) T u∗(t)

2 249 49 [-4.2 -4.2]
3 264 151 [-4.2 -1 -4.2]
4 252 442 [-4.2 -4.2 -1 -4.2]
5 272 1340 [-4.2 -4.2 -1 -4.2 -4.2]
6 263 4036 [-4.2 -4.2 -1 -1 -4.2 -4.2]

Table 4.2: Values of the optimal input u∗ / J2(u
∗) = max

u∈U
J2(u) and N = 10.

Through this second Table, we show that the optimal input is obtained with five stages
and this optimal input is the same as the one with 120 sample times. The computing time
is divided by approximatively 4.5 using N = 10.

As previously explained, the state and parameter estimation process is combined with
a set inversion mechanism, which consists of many branch and bound operations slowing
down the whole procedure. Using less measurements for the state and parameter estima-
tion procedure, it is possible to reduce significantly the computation time. Therefore, in
the next section, we use N = 10 points to estimate the parameters of interest.

4.4.3 Parameter estimation

To highlight the efficiency of the proposed optimal input design, we compare the esti-
mation results obtained using three different inputs: the first one is a constant input and
the second one is an optimized input proposed in [44] which is optimal for the same case
study with Gaussian noise and parameters in an a priori known box; the last one is the
optimal input obtained above (with five stages):

u∗(t) = δm0
+ a

∑5
i=1(ǫi − ǫi−1)H(t− τi−1), (4.18)
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Figure 4.1: Optimal input obtained via the set-membership-T-optimality criterion

with a = 1.6 degree and τ0 = 0 s, τ1 = 0.2 s, τ2 = 0.4 s, τ3 = 0.6 s, τ4 = 0.8 s.
The order of the Taylor expansion is chosen automatically by VNODE-LP. As said

previously, we use N = 10 measurement times.
The parameter estimation results are compared only for admissible parameters, which are
given in Figures 4.2 and 4.3. The red boxes represent the acceptable sets for parameters.
The black border cube represents the box [P0].

Figure 4.2: Admissible Czα̇, Czq, Cmα̇ with constant (left) and optimal (right) inputs
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Figure 4.3: Admissible Czq, Cmα̇, Cmq with constant (left) and optimal (right) inputs

In the following Table, the eliminated part in [P0] for each estimated parameter is
given (in percentage). It is given by:

%pi = w([P0i])− w([pacceptedi]), (4.19)

with i from 1 to 4 and [pacceptedi ] means the solution interval for the ith parameter of
interest enhanced for a constant input, the input in [44] and the optimal input.

Parameter with constant input with optimized input (Gaussian noise) with optimal input
Czα̇ 0 0 81.50
Czq 0 75.00 93.75
Cmα̇ 25.00 80.00 93.75
Cmq 62.62 65.62 96.87

Table 4.3: Eliminated percentage of initial intervals

Through this table, we see that the estimations of parameters Czα̇ and Czq are well
improved with an optimal input.

4.5 Conclusion

In this chapter, two set-membership optimal input criteria have been proposed to improve
parameter estimation for a class of nonlinear dynamical models requiring a parametriza-
tion of the input with a finite number of parameters: the set-membership-T-(and
A)-optimality criteria. The set-membership-T-optimality criterion has been successfully
used to improve parameter estimation of a case study taken from the aeronautical
domain. Moreover, with the set-membership-T-optimal input, the computational time for
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parameter estimation process is reduced compared to the computational time obtained
with a non-optimal input.

After the presentation of my works in the set-membership framework, the following
chapter concerns the filtering of linear dynamical systems in the case of mixed uncertain-
ties.
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Chapter 5

Accounting for mixed uncertainties in

dynamical models: the iIKF

In this chapter, I consider the filtering problem in the case of mixed uncertainties meaning
that I consider some bounded uncertainties on parameters whereas perturbations/noise are
modeled through appropriate probability distributions. This chapter details the contribu-
tion in the filtering of such models when L. Travé-Massuyès and I were supervisors of the
thesis of J. Xiong (defended in 2013).

5.1 Interval Kalman filtering: problem formulation

5.1.1 Introduction

In [19], the classical Kalman filter [54] has been extended to interval linear models. Two
filterings are proposed: the first one is called Interval Kalman filtering (IKF) which is a
direct extension of the classical Kalman filtering to intervals. The filtering result produced
by the IKF is generally conservative and expanding rapidly. The second proposed filter-
ing is a sub-optimal version in which the authors consider the upper bound of the interval
matrix to be inverted. We note this algorithm sIKF (sub-optimal interval Kalman filter-
ing). Starting from this work, we propose several operations that improve the filtering. In
particular, the sub-optimal approach proposed in [19] does not provide guaranteed results
because it avoids interval matrix inversion. Our main contribution consists in proposing
a method to solve the interval matrix inversion problem without loss of solutions while
controlling the inherent pessimism of interval calculus.

In particular the gain of the filter is obtained by a calculus based on the set inversion
algorithm SIVIA combined with constraint propagation techniques.

111
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We consider linear dynamical systems described by a set of state differences and ob-
servation equations (Kalman model [54]):

{

xk+1 = Axk +Buk + wk,
yk = Cxk +Duk + vk, k ∈ N,

(5.1)

where xk ∈ R
n, yk ∈ R

m and uk ∈ R
p denote state, observation and input vectors,

respectively. The matrices A,B,C and D are constant matrices such that A ∈ Rn×n, B ∈
Rn×p, C ∈ Rm×n and D ∈ Rm×p. {wk} and {vk} are independent centered Gaussian
white noise sequences, with covariance matrices Q and R definite positive by definition,
respectively:

E{wk, wl} = Qδkl, E{vk, vl} = Rδkl,
E{wk, vl} = E{wk, x0} = E{vk, x0} = 0,
∀(k, l) ∈ N2,

where δkl represents the Kronecker symbol.
Given the system (5.1), the conventional Kalman filter provides the minimum variance

estimate x̂k of xk and the associated covariance matrix Pk. The estimation problem can
be written under the form:

(x̂k, Pk) = K(A,B,C,D, x0, P0, ul, yl)l<k,

where K means the estimation procedure developped by R.E. Kalman which is briefly
described below.
When matricesA, B, C, and D are only known to belong respectively to interval matrices
[A], [B], [C] and [D], respectively, both x̂k and Pk are tainted by bounded uncertainty.
The interval Kalman filter aims at computing (an enclosure of) the set of all possible
(x̂k, Pk), i.e.:

X = ([x̂k], [Pk]) = {(x̂k, Pk) | ∃A ∈ [A], B ∈ [B], C ∈ [C], D ∈ [D],

(x̂k, Pk) = K(A,B,C,D, x0, P0, ul, yl)l<k}.

5.1.2 Conventional Kalman filtering

There are several ways to deduce Kalman equations [54]. We can use mathematical curve-
fitting function of data points from a least-squares approximation [135] or also use proba-
bilist methods such as the Likelihood function to maximize the conditional probability of
the state estimate from measurement incomes [82]. We consider the following notations:

1) x̂k+1|k ∈ Rn the a priori state estimate vector at time k + 1 given state estimate
at time k,
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2) x̂k|k ∈ Rn the a posteriori state estimate vector at time k given observations at
time k,

3) Pk+1|k ∈ Rn×n the a priori error covariance matrix,

4) Pk|k ∈ Rn×n the a posteriori error covariance matrix.

P.|. is a key indicator that defines the accuracy of the state estimate :

Pl|k = E
(

(xl − x̂l|k)(xl − x̂l|k)
T
)

, l = k or k + 1. (5.2)

It is known that the Kalman filtering algorithm contains two steps for each iteration: a
prediction step and a correction step [54]. Thus the filtering algorithm is the following in
which N denotes the total number of sample times:

Algorithm 11 Algorithm Kalman Filter (x̂,P̂.|.)

Input: A,B,C , D, ;
Output: k = 0;

1: P0|0 = Cov{x0}, m0 = E(x0);
2: x0 ∼ N(m0, P0|0);
3: for k = 1 : N do

4: Prediction:

5: x̂k+1|k = Ax̂k|k +Buk,;

6: P̂k+1|k = AP̂k|kA
T +Q;

7: Correction:

8: Kk+1 = P̂k+1|kC
T
(

CP̂k+1|kC
T +R

)−1
;

9: P̂k+1|k+1 = (In −Kk+1C)P̂k+1|k;
10: x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1|k);
11: k = k + 1;
12: end for

The algorithm proposed by [19] is based on interval conditional expectation for inter-
val linear systems and has the same structure as the conventional Kalman filter algorithm.
Its drawback is that it does not guaranty to provide an enclosure of X . In other words,
some solutions are lost and the results are not guaranteed. This occurs because singu-
larity problems in interval matrix inversion are avoided by taking the upper bound of the
interval matrix to be inverted. We note this algorithm sIKF (sub-optimal interval Kalman
filtering).
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5.2 Interval Kalman filtering and its improvement

In addition to considering parameter bounded uncertainties through the interval matrices
[A], [B],
[C] and [D], notice that x0|0, P0|0, uk, yk could be boxes due to deterministic measurement
errors and instrument precision. In the following, we evaluate the changes impacted by
these assumptions on the different steps of the Kalman filtering algorithm.

5.2.1 IKF algorithm presentation

In the interval context, the estimation error covariance matrix is an interval matrix which
can be rewritten as:

[P̂l|k] , E
(

([xl]− [x̂l|k])([xl]− [x̂l|k])
T
)

, (5.3)

where l = k or k+1. [P̂k|k] is the estimation error covariance and [P̂k+1|k] is the prediction
error covariance.

All elements on the diagonal of P.|. are positive as they represent the variance of each
state, thus the trace of P.|. is positive. In the case of an interval matrix [P.|.], this constraint
must also hold. If interval calculus pessimistically generates intervals containing non pos-
itive values, these are spurious and can be removed. Thus a first constraint is introduced
:

[P.|.](i,i) ≥ 0, i = 1, 2..., n. (5.4)

The calculus of the a priori state estimate vector is directly inherited from the deter-
minate model, while real variables are replaced by boxes :

[x̂k+1|k] = [A][x̂k|k] + [B][uk]. (5.5)

At the previous time k, the estimation error is characterized by [Pk|k]. The prediction
model does not include noise so the estimation error should also be updated:

[P̂k+1|k] = [A][P̂k|k][A]
T +Q. (5.6)

This equation can be interpreted as providing all possible a priori estimation error covari-
ances between the real state and the a priori state estimate at time k + 1. Accounting for
(5.4), this leads to the following CSP :

{

[P̂k+1|k] = [A][P̂k|k][A]
T +Q,

C : [P̂k+1|k](i,i) > 0, i = 1, 2..., n.
(5.7)
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From [19], the correction equation holds in the interval context:

[x̂k+1|k+1] = [x̂k+1|k] + [Kk+1]
(

[yk+1]− [ŷk+1|k]
)

. (5.8)

Intuitively, [Kk+1] aims to bring back the estimate enclosure around the real state while
still retaining all the possible values corresponding to uncertainty. Equations (5.3) and
(5.8) give the estimation error covariance expression. This manipulation is only valid
when E{vk} = 0:

[P̂k+1|k+1] = [P̂k+1|k]− [Kk+1][C][P̂k+1|k]− [P̂k+1|k][C
T ][Kk+1]

T

+[Kk+1]
(

[C][P̂k+1|k][C
T ] +R

)

[Kk+1]
T .

(5.9)

We want to find the box gain [Kk+1] minimizing trace([P̂k+1|k+1]). Indeed, state variance,
given by the diagonal elements of this matrix, is the value that indicates the estimation
error:

∂trace([P̂k+1|k+1])

∂[Kk+1]
= −2[P̂k+1|k][C]T + 2[Kk+1]

(

[C][P̂k+1|k][C]T +R
)

,

∂2trace([P̂k+1|k+1])

∂[Kk+1]∂[Kk+1]T
= 2

(

[C][P̂k+1|k][C]T +R
)

.

The second derivative is always positive in the conventional Kalman filter, which guaran-
tees the existence of a solution to the minimization problem. In the interval context, this
condition must be forced by a constraint of the same type as (5.4). From the annulation
of the first order derivative, we have:

[Kk+1] = [P̂k+1|k][C]T
(

[C][P̂k+1|k][C]T +R
)−1

. (5.10)

(5.11)

Thus equations (5.9) and (5.10) give the estimation error covariance expression:

[P̂k+1|k+1] = (In − [Kk+1][C])[P̂k+1|k]. (5.12)

Equations (5.5), (5.6), (5.10), (5.12) and (5.8) constitute a discrete interval Kalman
filter algorithm:

5.2.2 Interval matrix inversion and overestimation control: the iIKF

A major issue is the pessimism introduced by interval arithmetic. Uncertainty is cumu-
lated at each iteration and the interval matrix inversion involved in equation (5.10) is time
consuming, sometimes divergent.



116CHAPTER 5. ACCOUNTING FOR MIXED UNCERTAINTIES IN DYNAMICAL MODELS

Algorithm 12 Algorithm Interval Kalman Filter ([x̂],[P̂.|.])

Input: A,B,C , D, ;
Output: k = 0;

1: P0|0 = Cov{x0}, m0 = E(x0);
2: [x0] ∼ N(m0, P0|0);
3: for k = 1 : N do

4: Prediction:

5: [x̂k+1|k] = [A][x̂k|k] + [B][uk];

6: [P̂k+1|k] = [A][P̂k|k][A]
T +Q;

7: Correction:

8: [Kk+1] = [P̂k+1|k][C]T
(

[C][P̂k+1|k][C]T +R
)−1

;

9: [P̂k+1|k+1] = (In − [Kk+1][C])[P̂k+1|k];
10: [x̂k+1|k+1] = [x̂k+1|k] + [Kk+1]

(

[yk+1]− [ŷk+1|k]
)

;
11: k = k + 1;
12: end for

Equation (5.10) involves the inversion of the interval matrix ([C][P̂k+1|k][C]T + R).
The first problem refers to singularities, which means that the following condition should
be fulfilled:

0 /∈ det
(

[C][P̂k+1|k][C]T +R
)

.

Besides, the interval matrix inverse is obtained by approximation algorithms, like in [114],
and is generally over estimated.

We propose an approach using the algorithm SIVIA.
The idea is to solve the interval matrix inversion problem by a set of constraint propaga-
tion problems. Equation (5.10) is rewritten as:

[Kk+1]
(

[C][P̂k+1|k][C]T +R
)

= [P̂k+1|k][C]T .

Each component in matrix [Kk+1] is considered separately and the search space is the
following cartesian product :

[Kk+1]1,1 × [Kk+1]1,2 × ...× [Kk+1]n,m.

This search space is bisected and tested under SIVIA properly adapted to matrix oper-
ation. The result is a set of small boxes that satisfy the above Equation, each box providing
a "small acceptable gain". The set of boxes is then injected at the correction step to up-
date the covariance matrix and the state estimate vector. The final result is the hull of all
covariance matrices and state estimate vectors corrected by each small gain.
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5.2.2.1 Constraint Propagation

Constraint propagation is very useful to reduce the width of the boxes involved in a set of
constraints [15]. In this work, we use the well-known forward-backward algorithm. The
principle is to decompose the constraint equation f([x1], ..., [xn]) = 0 in a sequence of
elementary operations of primitive functions like {+,−, ∗, /} and obtain a list of primitive
constraints [70]. For example, consider the following equation:

[x̂k+1|k+1] = [x̂k+1|k] + [Kk+1]([yk+1]− [C][x̂k+1|k]).

This equation can be decomposed, following the computation tree, into the following set
of primitive constraints:



















[a1] = [C][x̂k+1|k],

[a2] = [yk+1]− [a1],

[a3] = [Kk+1][a2],

[x̂k+1|k+1] = [x̂k+1|k] + [a3].

In our problem, we want to contract {[x̂k+1|k+1], [x̂k+1|k], [Kk+1]} without changing
{[C], [yk+1]}, which are considered as inputs.

5.2.2.2 Interval intersection rule

As the associative law is no longer valid in interval arithmetic, we must redefine the
product of three and four interval matrices [71]. This is the principle of the interval
intersection rule.

n
∏

i=1

[Mi] ,

[

(

n−1
∏

i=1

[Mi]) · [Mn]

]

∩
[

[M1] · (
n−1
∏

i=1

[Mi+1])

]

. (5.13)

where [M1], ..., [Mn] are interval matrices.

5.2.2.3 Adaptative calibration

When the interval matrix to be inverted is not regular, we must find a way to cut down
the uncertainty accumulated by interval arithmetic. In this case, a calibration can be
implemented to reset the iteration for limiting divergence [71]. We propose the following
calibration mechanism:

[x̂k] , x̂k + [ζk], [Pk] = [P0]. (5.14)

where x̂k is the conventional Kalman state estimate from the nominal system and [ζk] is
set from the state variances.
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5.3 Numerical results

In this section, we apply previously presented filters on an example proposed in [19] given
by the following form:

{

xk+1 = [A]xk + wk,

yk = [C]xk + vk, k = 0, 1, 2, ...

where wk and vk are Gaussian noises, with zero mean and covariance matrices [Q] and
[R] given by:

[Q] =

[

[−8, 8] 0
0 [−8, 8]

]

, [R] = [0.1, 2.1].

Moreover, the matrices [A] and [C] are given by:

[A] =

[

[0.3, 0.5] [−0.05, 0.25]
−0.1 [−0.05, 0.45]

]

, [C] =
[

0 [0.9, 1.1]
]

.

The initial conditions are:

E{x0} =

[

1
1

]

, Cov{x0} =

[

0.5 0.0
0.0 0.5

]

.

In the following, we want to compare the results provided by three filters: the origi-
nal interval Kalman filter (noted IKF), its sub-optimal version (sIKF), and our improved
approach (iIKF). The variables N , O and D are introduced where N is the number of
calibration times, O is the number of times for which the interval state estimate does not
contain the real state, and D is the norm describing the distance between interval estimate
bounds and the true value. D is obtained by:



















D =

√

∑K

k=1 d([x̂k], xk)Td([x̂k], xk)
√

∑K

k=1 x
T
k xk

,

d([x̂k], xk) = |[x̂k]− xk|+ |[x̂k]− xk|,

(5.15)

where K represents the maximal iteration number. D and O indicate the efficiency of
algorithm. Besides, the algorithm SIVIA requires an user-specified precision threshold ε.
This adjustable parameter is also analysed. ǫ = 1 means that no gain value propagation
takes place. t is the execution time. By using the toolbox Intlab of Matlab ([117]), the
results are given in Table 5.1:
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Filter ε N O D t

IKF - 20 14 575.38 0.83s
sIKF - 0 56 0.85 0.75s
iIKF 1 0 0 3.07 0.91s

0.2 0 0 2.60 46s
0.05 0 0 2.56 784s

Table 5.1: Results for N, O, D and t using IKF and iIKF with different bisection factors ε.

The results in Table 5.1 are consistent with those shown in Figures 5.1 and 5.2. We
can see that the original IKF has the largest D while sub-optimal IKF has the minimum
D value, which is explained by the narrow bounds for the interval estimates. But since it
replaces the uncertainty matrix to be inverted by its upper bound, some solutions are lost,
which leads to the largest value of O: the real state is outside the estimated interval state
half of the time.

D is larger when using iIkF than when using sIKF, because it retains all solutions. We
notice that the real state and the optimal estimate provided by the conventional Kalman
filter are both always contained in boundaries of the iIKF state estimate. The gain value
propagated from SIVIA actually refines the interval estimation value, but it is more time
consuming as the predefined precision increases. Compared to the original IKF, the iIKF
prevents unnecessary recalibration due to the divergent interval operations; compared to
sIKF, iIKF retains all the solutions consistent with the bounded error uncertainty. The
iIKF hence represents a good compromise.
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Figure 5.1: Simulation results from original sub-optimal IKF
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Figure 5.2: Simulation results from improved IKF with ǫ = 0.05
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5.4 Conclusion

The improved interval Kalman filter iIKF proposed in this chapter provides all the optimal
estimates consistent with bounded-errors and achieves good control of the pessimism
inherent to interval analysis. Through a set of simulations, the advantages of the iIKF
with respect to previous versions are exhibited. This work shows that the integration
of statistical and bounded uncertainties in the same model can be successfully achieved,
which opens wide perspectives from a practical point of view. On the theoretical ground,
this work calls for a unifying well-posed integrative theory.

The following chapter deals with fault detection and diagnosis by using concepts de-
scribed previously in this manuscript. A fault detection algorithm based on iIKF is also
developped.
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Chapter 6

Application to fault detection and

diagnosis

In this chapter, I am interested in fault detection and diagnosis relying on previously
presented concepts such as set-membership identifiability, diagnosability, parameter and
state estimation in a bounded error context.

6.1 Fault detection relying on set-membership identifiability

The results presented in this section are collaborative works with L. Travé-Massuyès and
N. Verdière.
Fault detection via parameter estimation relies on the principle that possible faults in the
monitored system can be associated with specific parameters and states of the mathemat-
ical model of the system given in the form of an input-output relation. This approach
supposes that there exists a relationship between the model parameters p and the physi-
cal system parameters. Decision on whether a fault has occurred, is based either on the
changes of model parameter values or on the changes of physical system parameters and
tolerances limits.

Example 6.1.1 Case of a macrophage mannose receptor

The following example taken from [129] is considered. The proposed work has

been published in [47]. This example allows to explore the capacity of the macrophage

mannose receptor to endocytose soluble macromolecule and to quantify the different

aspects of such a process. The model is the following:

123
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ẋ1(t) = α1(x2(t)− x1(t))−
Vmx1(t)

1 + x1(t)
,

ẋ2(t) = α2(x1(t)− x2(t)),
x1(0) ∈ [0.62, 0.63], x2(0) = 0,
y(t) = x1(t),

(6.1)

where x1 (resp. x2) is the enzyme concentration outside (resp. inside) the macrophage

and p = (α1, Vm, α2) are the unknown parameters which have to be identified. The

parameter α1 is the rate of the transfer from Compartment 1 (or the central compartment),

practically plasma, to Compartment 2 (or the peripheral compartment), which represents,

in the model, the part of the extravascular extracellular fluid accessible. Furthermore,

α2 is the rate of the transfer from Compartment 2 to Compartment 1. In this work, we

consider a fault as an unpermitted deviation of at least one parameter of the system from

the acceptable standard condition.

This model has been proved to be globally SM identifiable in chapter 3. The numerical

study has been conducted in simulation in Matlab using Intlab [117]. The simulated

outputs are disturbed by a truncated Gaussian noise ν such that ν(t) ∈ [−0.001, 0.001].
Thus, z(t) = ȳ(t) + ν(t) where ȳ is the exact output corresponding to the exact value of

parameters: α1 = 0.011, α2 = 0.02 and Vm = 0.1. The measures are supposed to be

done at discrete times (tj)j=1,...,N on the interval [0, 60] with a sample period equal to 1s.

As seen in chapter 3, to test SM-identifiability, we obtain a differential polynomial in y, u
and the derivatives using the Rosenfeld-Groebner algorithm in Maple.

We use this polynomial to estimate parameters and consequently detect the occurence of

a fault.

The polynom R(ȳ, ū) is given by:

R(ȳ, ū) = ÿ(1 + y)2 + γ1ẏ(1 + y)2 + γ2y(1 + y) + γ3ẏ,

with γ1 = α1 + α2, γ2 = α2Vm and γ3 = Vm.

If we denote y
(1)
p (tj) (resp. y

(2)
p (tj)) the estimate of ẏ(tj) (resp. ÿ(tj)), the system

which has to be solved is [A][x] = [b] where [A]j = ([y
(1)
p (tj)(1 + y(tj))

2], [y(tj)(1 +

y(tj))], [y
(1)
p (tj)]) and [b]j = [−y

(2)
p (tj)(1 + y(tj))

2].

y
(1)
p (tj) and y

(2)
p (tj) are obtained using Higher-order sliding modes (HOSM) differentia-

tors [66, 68, 67]. The parameters of the HOSM differentiators are given by λ0 = 3,

λ1 = 0.2 and λ2 = 0.1.

Solving this system can be cast into the set inversion framework for which we use

the SIVIA algorithm. To use SIVIA, it is necessary to give initial intervals for γ1, γ2
and γ3. The problem solved here is to find [x] such that 0 ∈ [A][x] − [b]. We use the
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forward-backward propagation to contract the initial parameter box.

Some prior knowledge of the model can provide initial boxes γ1, γ2 and γ3.

Case of nominal behaviour: using initial intervals given by γ1 = [0, 0.04], γ2 =
[0, 0.003], γ3 = [0, 0.2] and the bisection precision ε = 0.001, we obtain in 14.18

seconds : α1 = [0, 0.0401], α2 = [0, 0.0437] and Vm = [0.06875, 0.13203], Using the

equations: Vm = γ3, α2 = γ2/Vm, α1 = γ1 − α2. All these intervals contain the normal

values, confirming normal behavior.

Then, using γ1 = [0, 0.04], γ2 = [0, 0.003], γ3 = [0, 0.2] and the bisection precision

ε = 0.0001, we obtain in 177.55 seconds : α1 = [0, 0.0329], α2 = [0.0071, 0.0317] and

Vm = [0.094824, 0.10527].
All these intervals contain the normal values.

Case of a fault on parameter α2: In this simulation, we assume a fault on α2 = 2,

which means that the rate of the transfer from Compartment 2 to Compartment 1 is high.

After 25.15 minutes, using γ1 = [0, 3], γ2 = [0, 1], γ3 = [0, 0.2], we obtain:

α1 = [0.0000, 0.5050], α2 = [1.1200, 2.4950] and Vm = [0.0242, 0.1790]. The real

faulty value of α2 is contained in the estimated interval for α2 which allows to detect and

localize the fault. Moreover, there is no intersection between the estimated interval for

α2 and the one obtained in normal behaviour.

Case of a fault on parameter α2 at t = 15s: Consider now the case of an abrupt

change in the value of α2 during the test and let us assume a fault α2 = 1 at time t = 15s.

This fault is detected in t = 0.05s after its occurence.

After the detection of this fault, using γ1 = [0, 1.05], γ2 = [0, 0.12], γ3 = [0, 0.12], we

obtain in 22.6 seconds α1 = [0, 0.0238], α2 = [0.0738, 1.0500] and Vm = [0, 0.1200].
These intervals on α1 and Vm contain the normal values whereas the one obtained for α2

contains the faulty value.

Case of a fault on parameter Vm: In this simulation, we assume a fault

on Vm = 0.2 at t = 27s. This fault is detected in t = 0.02s after its oc-

curence. Once the fault is detected, the estimation algorithm is initialized with

γ1 = [0, 0.04], γ2 = [0, 0.007], γ3 = [0, 0.3], and we obtain in 33.43s the intervals

α1 = [0, 0.0150], α2 = [0, 0.0248] and Vm = [0.0242, 0.3].
The intervals on α1 and α2 contain the normal values whereas the one for Vm contains

the faulty value, hence confirming the fault.

Thus, through this example, different normal and faulty scenarios have been consid-



126 CHAPTER 6. APPLICATION TO FAULT DETECTION AND DIAGNOSIS

ered. For every scenario, the parameters have been estimated correctly with reasonable

precision.

The proposed method consists of a fault detection and identification method for bounded

uncertainty nonlinear models relying on an original parameter identifiability scheme. It

takes benefit of a differential algebra based method for checking SM-identifiability and

its operational counterpart µ-SM-identifiability. These notions provide a way to study

different aspects of identifiability for uncertain bounded-error systems, in particular sys-

tems that represent an infinite family of nonlinear systems. By building the parameter

estimation scheme on the analysis of identifiability, we guarantee that the solution set

reduces to one connected set, avoiding this way the pessimism of SM methods. Identifi-

ability is closely related to diagnosability as it provides the guaranty that two situations

corresponding to different parameterized settings are distinguishable.

The following example concerns a benchmark used during the SIRASAS project.
This work has been made in collaboration with R. Pons and L. Travé-Massuyès. It has
been published in [99, 98].

6.2 Fault detection relying on fault model identification

6.2.1 Benchmark description

Our case study concerns the aerospace domain, and deals more specifically with the elec-

trical flight control systems (EFCS) of a civil aircraft. Due to component malfunctions,
an erroneous oscillating signal may propagate through the EFCS to the control surfaces
(as shown in Figure 6.1), leading to an unwanted control surface oscillation [39]. This
oscillatory failure case (OFC) must be detected because when it acts within the actuator
bandwidth, it may consequently:

• generate load factors on the aircraft structure due to resonance phenomenon and
aeroelasticity;

• stress actuators and reduce their lifetime;

• lower passengers comfort.

The OFC is assumed to be a sinus or triangle-shaped signal whose frequency, phase
and range obey an uniform law. When this polluted signal adds up to the normal signal,
it is called a liquid failure; when it replaces the original signal, it is then said to be a solid

failure [39]. Figure 6.2 shows the real position of the control surface, its estimated posi-
tion and the residual resulting from the difference between real and estimated positions,
in the case of liquid and solid sinus shaped OFC.
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Figure 6.1: OFC source location in the control loop.
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Figure 6.2: Residuals in the case of liquid (left) and solid (right) failure.

The goal of this work is to detect the OFC beyond a given amplitude in a given number
of periods, whatever the frequency.

We should refer to [39] to get further details about the detection of OFCs in EFCS as
well as its current implementation in A380 flight control computers.

In this case study, we run tests introducing oscillatory failures in the control loop. Two
fault models, triangle shaped and sinus shaped, are used. Parameters are estimated over
one period of the signal.
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6.2.2 Sinus-shaped fault

A high noisy sinus-shaped liquid fault signal with a range A = 1 degree and a frequency
of f = 0.5Hz is introduced in the control surface model. The initial parameter box is
given by A× f = [0, 3]× [0, 10].

Figure 6.3 shows the results provided by the algorithm SIVIA when the fault model
is supposed to be sinus shaped. Range parameter A is shown on the horizontal axis while
frequency f is on the vertical one. Red boxes have been rejected, yellow ones have a
length inferior to the stop condition set in the algorithm. The green boxes represent the
solution.

Figure 6.3: Sinus-shaped fault.

When the fault model is triangle-shaped, the algorithm stops after a few iterations and
its conclusion is the non-existence of a solution.

6.2.3 Triangle-shaped fault

In this example, the fault is triangle-shaped with a range 2 degrees and a frequency f =
0.5Hz which gives a period T = 2s, with a still highly noisy signal. The inital parameter
box is now A× T = [0, 3]× [0, 5].

Figure 6.4 exhibits the obtained results with a triangle-shaped fault model. The pa-
rameter A is on the horizontal axis and the period T on the vertical axis. One can notice
that the estimation results are fully in accordance with the injected fault.

With a sinus-shaped fault model, the algorithm concludes again to the non-existence
of a solution.
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Figure 6.4: Triangle-shaped fault.

The tests show good results for confirming a fault. Now, the real advantage of the
method with respect to others is that it is very efficient to prove the non-existence of
the solution, that is to discard specific kinds of failures in the real system. In the two
case study scenarios, the invalidation of the triangle-shaped (sinus-shaped) fault model is
obtained within a few iterations. We notice that a stochastic method would not invalidate
the non relevant fault model but it would conclude to the existence of a solution with a
wide confidence range, which is much more difficult to interpret.

6.3 Fault detection relying on state estimation

The benchmark considered in this example is the same as the previous one. This work
has been developped in collaboration with R. Pons and L. Travé-Massuyès [97].

In this subsection we propose a simplified version of the method based on Taylor serie
expansion. This has been successfully used in a benchmark proposed in the SIRASAS
project.

6.3.1 Control Surface Position Model

A simple model of the system is represented in Figure 6.5. The control surface is moved
by an hydraulic actuator which has a moving rod linked to the control surface. The rod
position is expressed in millimeters and can be converted into a control surface deflection
in degrees.
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Figure 6.5: Control surface position estimation model.

In this model, o(tj) is the position control signal at time tj . The control error ε is given
by:

ε(tj+1) = o(tj+1)− ŝ(tj). (6.2)

Thus ε(tj+1) is the difference between the position control o at time tj+1 and the estimated
position ŝ at time tj . The estimated current î(tj) is proportional to the error:

î(tj) = Kε(tj), (6.3)

where K is a constant control gain. A saturation is then applied to the current hence
limiting its value within predefined bounds. It is then converted to speed v̂(tj) by in-
terpolation with data stored in a look-up table. Finally, the estimated control surface
position ŝ(tj) at time tj is computed by integration of the speed. This model can be
given under the state space form where x(tj) = ŝ(tj) and u(tj) = o(tj) by the equation
ẋ(t) = Kg1 (u(t)− x(t)) where the nonlinear function g1(.) describes the saturation and
conversion blocks [39].

6.3.2 Scheme for detection by state estimation

The presented approach uses a classical prediction-correction two steps approach (pre-
sented in Figure 6.6). The difference between the classical prediction step concerns the
use of the mean value and intermediate value theorems.

6.3.2.1 Prediction Step

The proposed prediction step is based on the mean value and intermediate value theorems.
To apply this method, some local monotonicity conditions are required. It is shown that
this approach is successful in controlling the well-known and undesirable wrapping effect.

6.3.2.1.1 Mean value theorem Let l1 : I = [tj, tj+1] → R be a function of class C1 on
the interval [tj, tj+1]. Then there exists some ζ in ]tj , tj+1[ such that:

l1(tj+1) = l1(tj) + h
dl1
dt

(ζ), (6.4)
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where h = tj+1 − tj .

6.3.2.1.2 Intermediate value theorem Let l2 : I = [tj , tj+1] → R be a continuous func-
tion on an interval I . Then the image set l2(I) is also an interval, and either it con-
tains [l2(tj), l2(tj+1)], or it contains [l2(tj+1), l2(tj)] depending on the values of l2(tj) and
l2(tj+1); that is:

l2(I) ⊇ [l2(tj), l2(tj+1)] or l2(I) ⊇ [l2(tj+1), l2(tj)]. (6.5)

If the function l2 is monotonic on I then:

l2(I) = [l2(tj), l2(tj+1)] or l2(I) = [l2(tj+1), l2(tj)]. (6.6)

These two theorems can be extended to a function from [tj , tj+1] to Rn.
In the proposed approach, we also extend these two theorems to interval analysis. In

the mean value theorem, we replace the function l1 by the state function x(.) given in
Equation (2.1), and then we apply the intermediate value theorem to the function ẋ(.).

To estimate the state at tj+1, knowing x(tj), the following equation is used:

x(tj+1) = x(tj) + hẋ(ζ), (6.7)

where ζ belongs to ]tj , tj+1[. This equation extended to interval analysis leads to:

[x(tj+1)] ⊆ [x(tj)] + h[ẋ(ζ)], (6.8)

Under the assumption of local monotonicity of the function ẋ(.) on [tj , tj+1], we obtain
from the intermediate value theorem an enclosure of [ẋ(ζ)], given by:

[

min(ẋ(tj), ẋ(tj+1)),max(ẋ(tj), ẋ(tj+1))
]

. (6.9)

Note that local monotonicity is justified if h is small compared to the dynamics of the
system, which is generally the case and which is especially true in this application.

An over estimate [x+(tj+1)] of the state vector [x(tj+1)] is then computed, given by:

[x+(tj+1)] = [x(tj)] + h
[

min(ẋ(tj), ẋ(tj+1)),max(ẋ(tj), ẋ(tj+1))
]

. (6.10)

6.3.2.2 Correction Step

This step is classical and can be explained with Figure 6.6. At tj+1, an output vector
[y(tj+1, .)] is obtained, corresponding to:

[y(tj+1, .)] = [z(tj+1)− v(tj+1), z(tj+1)− v(tj+1)], (6.11)
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where v(tj+1) and v(tj+1) are given in Equation (2.2). The noise is generally symmetric
and centered around zero. Equation (2.2) is then rewritten as follows:

[z(tj+1)] = [y(tj+1, .)− V, y(tj+1, .) + V ], (6.12)

where V > 0 is the maximum noise range.

[x(tj)]

ẋ = f(x, u)

[x+(tj+1)]

[

g−1([y(tj+1)])
]

[x(tj+1)]

[y(tj+1)]

Prediction

Correction

Figure 6.6: Prediction-correction step at time tj .

Then, we compute the set [g−1([y(tj+1)])] by the algorithm SIVIA. The solution set at
the sample time tj+1 is finally given by:

[x(tj+1)] = [x+(tj+1)]
⋂

[g−1([y(tj+1)])]. (6.13)

Note that in this case study, a sensor measures the position of the rod moving the con-
trol surface from which the value of the control surface position is derived. The function
g in Equations (2.1) and (6.13) being the identity function, the correction step described
before is not necessary, thus saving significant computer time.

Thus, to conclude the presentation of the proposed approach, the behaviour of the
OFC detection method can be tuned by setting two parameters noted η and ζ .

6.3.2.3 Introduction of η and ζ Parameters

η Parameter

With the integration method described above, a fault is detected when there is a discrep-
ancy between the predicted value of a variable and its real value measured by a sensor.
A discrepancy is characterized by an empty intersection between the envelope of the pre-
dicted value and measurement plus the sensor noise.
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We stated earlier that we want to define a prediction [x(tj)] of the state vector x(tj) at
time tj . The predicted value yp(tj) of the system output vector given by the observation
equation of (2.1) is a box [yp(tj)] such that:

[yp(tj)] = g([x(tj)]). (6.14)

If we raise an alarm at the first occurrence of an empty intersection, the consequence
is to be very sensitive to high noisy measurements and/or error sensor reading. This is
why we only generate an alarm when there are η successive empty intersections.

Proposition 6.3.1 An alarm is raised at time tk if and only if there exists an integer k
∈ [η,+∞[ such that ∀j ∈ [k − η + 1, k], [yp(tj)]

⋂

[z(tj+1)− V, z(tj+1) + V ] = ∅.

Since g is the identity function in our application, we obtain:

∃ k ∈ [η,+∞[ ∀j ∈ [k − η + 1, k], [x(tj)]
⋂

[z(tj+1)− V, z(tj+1) + V ] = ∅. (6.15)

The drawback of this method is to delay the detection of a fault. The value of the
parameter η has then to be chosen carefully, depending on the noise level, the quality of
sensors and the length of step size with respect to the dynamics of the system.

At time t = 402.23s, we inject a triangle-shaped solid OFC with a frequency of
0.98Hz, a range of 14.37mm, a shift of 0.53mm and a phase of -0.16rad. Figure 6.7
displays the result of the simulation (left side) with a zoom on the beginning of the OFC
(right side).

Figure 6.7: Occurrence of an OFC.
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At the first time step, the algorithm detects an empty intersection between the measure
and the prediction, it sends a warning signal represented by a circle on the measurement
plot. There are three consecutive warnings. Since the OFC is periodic, its range decreases
and then intersects the prediction again. The warning signal then stops. But the OFC
still decreases and goes out of the predicted envelope again, thus generating the warning
signal again. The warning signal is turned into an alarm signal (represented by crosses
on the measure plots) when there are η consecutive empty intersections. On Figure 6.7 as
we have η = 5, the alarm is emitted in this example at the 5th empty intersection between
measure and prediction.

A point to notice is that, because of the periodic nature of an OFC, the alarm signal
appears and disappears depending on the range of the OFC. This does not affect the ro-
bustness of the method since reconfiguration actions are taken at the first occurrence of
the alarm signal.

With η = 5 the alarm signal is emitted only at the 10th iteration after the OFC oc-
curred; taking a value of η = 1 would reduce this detection delay. In fact, taking high
values for η allows us to avoid false alarms. As a matter of fact, the considered control
loop system acts like a first order system. Hence there is a delay between a change in the
command and its consequence on the system output value.

This delay has no consequence when the system is in steady state but it generates
false alarms in transient state when η is chosen small. Figure 6.8 shows a test without any
occurrence of OFC. When the slope of the transient is high, there are empty intersections
between measure and prediction that occur during very few consecutive iterations. When
the η parameter is chosen small, this generates false alarms (left side of Figure 6.8). Using
a higher η value, these false alarms are no longer emitted; only warning messages are
raised (right side of Figure 6.8). This eventually delays the generation of the alarm, but
only for a few iterations. This delay, because of the small step size, corresponds to a very
small time delay with respect to the dynamics of the system.

ζ Parameter

This parameter is used to set the number of iterations between two successive resettings of
the prediction on the measured value. At a given time step ti, the prediction is computed
using the measured value of the position. During the next ζ − 1 steps, from time step ti+1

to ti+ζ−1, the prediction is computed using the prediction computed on the previous step.
At step ti+ζ , the computation of the prediction uses again the measurement. Since g in
(6.14) is the identity function, the second equation of the system (6.14) can be rewritten
in discrete time:

y(ti, .) = x(ti, .). (6.16)
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Figure 6.8: Simulation without OFC with η = 1 (left side) and η = 5 (right side).

The first equation of the system (2.1) becomes:

x(ti+1) =

{

f (z(ti), u(ti)) if mod(i, ζ) = 0,
f (y(ti), u(ti)) if mod(i, ζ) 6= 0,

(6.17)

where z(ti) is the measured value of the control surface position.
Examples of different settings of these parameters and their consequences on the re-

sults of the simulation are shown in the next subsection.
As seen previously, ζ is used to control how often the computation of the predicted

control surface position is reset to the measure of this position.
Figure 6.9 shows an example of such a reset of the predicted value to the measured

value every ζ = 6 iterations. The two plots show the same data labeled by time on the left
side and by the number of iterations on the right side. This figure shows also that when
there is no reset, the width of the predicted envelope grows at each iteration step, which
is a well known effect due to the use of interval calculus.

Figure 6.10 shows two results of the same test with a value of ζ = 2 on the left side
and ζ = 8 on the right side (Figure 6.10).

We can see that the width of the predicted envelope grows with ζ . A large value
generates a larger predicted envelope thus reducing warning and alarm signals. ζ can
hence be seen as a way to filter out the measure especially when the measurement noise
is important or when erratic measures happen. A contrario, a large envelope reduces the
available information. Indeed, if we let the envelope width grow, it becomes so large that
it does not contain any more information: the predicted envelope contains any possible
value for the control surface position, and it is then impossible to detect any kind of fault.
Figure 6.11 shows the same test as the one in Figure 6.10 but with ζ = 18.
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Figure 6.9: Reset of the prediction on the measure every ζ = 6 iterations.

Figure 6.10: Same test with ζ = 2 (left side) and ζ = 8 (right side).

6.3.2.4 Test results

The tests have been performed using the MATLAB numerical computing environment
and programming language [120] developed by The MathWorks, Inc. Interval calculus
uses the INTerval LABoratory MATLAB toolbox version 5.5 [43] which is provided and
developed by the Institute for Reliable Computing at the Hamburg University of Technol-
ogy (TUHH), Germany.

The data used to perform simulation and to test the detection method was provided by
Airbus France. It consists of two files with data recorded during flight tests. The recorded
variables are the command for the position of the rod governing the control surface in
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Figure 6.11: Test results with ζ = 18 with different vertical scales on left and right sides.

mm and the measurement of the angular position of this control surface in degrees. This
measure has been converted to the corresponding rod position in mm.

1) First test round

The recorded data starts at time t = 0s and ends at time t = 4062.5s i.e. for a duration
of 1h 7min 42.5s representing 260,001 iterations with a 0.015625s step size. In this test,
we randomly injected 51 faults in the data provided by Airbus. Characteristics of faults
are given by a frequency belonging to [0.25, 9.93] Hz, a range in [1.42, 50.69] mm, shift
and phase respectively in [−26.69, 74.79] mm and [−2.56, 3.05] rad. Figure 6.12 shows
the command of the system. The bottom plot is a square wave that shows whether the
simulation runs in normal mode (low value) or if a fault is present (high value).

We ran simulations on the whole data set with faults injected for values of η and ζ
going from 1 to 20.
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Figure 6.12: Command and injected faults - test no.1

No Detection Rate:
Figure 6.13 illustrates the no detection rate.

Figure 6.13: Fault no detection rate (test no.1)

The no detection is determined by considering only the iterations when an OFC is
present. We then compute the ratio of the number of iterations in which an alarm is not
emitted divided by the total number of iterations in which an alarm should have been
emitted.

We can see that the parameter η does not affect the no detection rate. Oppositely, the
rate relies strongly on ζ : the greater ζ is, the higher the non detections rate is. As it has
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been stated previously, the width of the predicted position envelope grows with ζ , hence
lowering the detection sensitivity of the algorithm.

If we choose ζ ≤ 8, whatever the value of η, we have a rate that stands below 10%,
which is a good result if we consider the detection delay as seen previously.

False Alarm Rate:
Figure 6.14 illustrates the false alarm rate. The false alarm rate is the ratio of the number

Figure 6.14: False alarm rate - test no.1

of iterations without occurrence of an OFC during which an alarm is emitted divided by
the total number of iterations without OFC.

The first noteworthy result is that the worst rate (measured for η = 2 and ζ = 1) is
about 0.82% which is very low. When ζ ≥ 4, the rate falls to less than 0.1%. Here again,
since ζ is chosen greater or equal to 4, the η parameter does not affect consequently the
false alarm rate.
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False Alarm Average Length:
Figure 6.15 shows the false alarm average length.

Figure 6.15: False alarm average length (test no.1)

False alarms exist for η ≤ 9 and ζ ≤ 5. When such false alarm occurs, its duration is
less than 47ms, i.e. less than 3 iteration steps.

Detection Delay

Figure 6.16 shows the false alarm average length.

Figure 6.16: Detection delay - test no.1
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We can see that whatever the value of η, we achieve good results for ζ ≤ 5. With this
setting, the detection delay remains lower than 0.5s which corresponds to a maximum of
5 periods for OFC whose frequency is lower than 10Hz. This meets the requirements.

2) Second test round

The purpose of the second test round is to test the detection method against more con-
straining scenarios, i.e. OFC with higher frequency and smaller range. Each test has been
performed in the following way: a random starting time is chosen within the data file. We
run the simulation from this time point for a few iterations to initialize the algorithm and
simulation data. Then we introduce an OFC in the data and we wait for an alarm. If the
alarm is raised before the OFC starts, the simulation is stopped and we conclude to a false
alarm. If the alarm is not raised after a time corresponding to ten periods of the OFC, we
stop the simulation and the conclusion is a non detection. Otherwise, the detection delay,
i.e. the difference between the time when the OFC started and the time it is detected, is
recorded.

The data used to run this test are the same as the one used in the first test round (see
Figure 6.12).

The difference with the first test round procedure is first that we did not run the
simulation for the whole data file. Secondly we did not perform any test in normal
situation, i.e. without any occurrence of an OFC, but kept normal data for a few iterations
at the beginning of the simulation, in order to initialize data. Thirdly, we stopped the
simulation as soon as an alarm is raised. If no alarm is raised, the simulation stops after
ten OFC’s periods. This scheme allowed us to drastically reduce the duration of a test
and then run many more tests.

Fault characteristics:
1582 different OFCs were tested whose parameters follow a uniformly distributed random
law. The OFC frequency is randomly chosen in the interval [0.1, 10]Hz, its range within
[0, 10]mm, its shift within [−10, 10]mm and its phase within [−π, π]rad. Figure 6.17
shows the OFC parameter histograms. We can see that each OFC parameter is uniformly
distributed on the interval given by its lower and upper bound.

Each OFC has been tested as a solid sinus-shaped fault, liquid sinus-shaped, solid
triangle-shaped and liquid triangle-shaped. Parameters η and ζ have been tested for every
value going from 1 to 20. The total number of performed tests is consequently 2,531,200.
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Figure 6.17: OFCs frequency, range, shift and phase histograms - test no.2

Results:
Figure 6.18 presents the non detection rate, the false alarms rate, and the detection delay
given in seconds and in number of periods of the injected OFC.

The results are very similar to those obtained in the first test. For values of η and ζ
around 5 to 7, the non detection rate and false alarms rate are low and the detection delay
is below two periods of the injected OFC period. The non detection rate grows with η and
ζ . False alarms occur only for small values of these parameters.

Figure 6.19 shows the characteristics of the non detected OFCs. This figure shows
that no conclusion can be drawn about the influence of the OFCs parameters on the results
since they are uniformly distributed.

Figure 6.20 confirms this conclusion. We can see that the detection delay grows slowly
with the OFC frequency. It seems not to depend on the OFC range, shift and phase. It
does not depend on the OFC delta, i.e. the difference between the last value before OFC
is injected and the first value after injection. The delta value depends on the range, shift
and phase of the OFC. Although we could have thought that the bigger this delta would
be, the easier it would be detected, i.e. with a short delay, figure shows that it is not the
case.

Last figure 6.21 shows the minimal range of the detected OFC for every values of η
and ζ . For values of η and ζ around 5, the smallest detected OFC had a range of 0.022mm.
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Figure 6.18: Results of test no.2

Figure 6.19: Non detections histograms - test no.2
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Figure 6.20: Detection delay vs. OFCs parameters - test no.2

Figure 6.21: Smallest range of detected OFC - test no.2



6.4. FAULT DETECTION RELYING ON THE IIKF 145

6.3.2.5 Conclusion

The first noticeable point that can be drawn from the examination of these results is that
the two test rounds exhibit the same achievement. These tests were performed differently
and observing the same trends from one test to the other shows that the detection algorithm
we used is correct and has been correctly implemented, since the results are reproducible.

The first test showed excellent results, especially for the false alarms rate, but the
other test results proved that it was too optimistic. This overestimation is due to the
way we computed the results. In fact, the rates were the results of the division of the
iterations during which an event occurred (false alarms, detections, non detections) by the
total number of iterations of the whole simulation. For example, if a false alarm occurs
for n iterations and then disappears in a simulation that runs for m iterations, the false
alarm rate is said to be n/m. In a real system, the occurrence of a false alarm generates
an appropriate answer from the system (e.g. transferring the control from the master
computer to the slave one). In order to better reflect the reality, we changed the way to
compute the results. If a false alarm occurs during a simulation, we stop it and mark it as
failed. The false alarm rate is then the ratio of the number of failed simulations divided by
the total number of simulations. The same way of counting was applied to non detection
rate and detection rate. This explains the difference between the first test round results
and the other.

The simulation duration was not recorded but the observations made during the tests
showed that the length of the simulation was mostly often lower than the time length of
the data. There were some cases where the simulation time was greater, sometimes with
a ratio up to 3, but these cases were minority. This is why we can assume that the method
is compatible with real-time requirement. This is especially true if we consider running
this method on a dedicated hardware rather than in an interpreted language environment
such as Matlab.

The requirements were met for the non detection rate, the detection delay and the false
alarm rate with values of the parameters around five and seven.

6.4 Fault detection relying on the iIKF

The example presented in this section is the same as in the previous chapter. This work
has been developped during the thesis of J. Xiong.
We consider that system (5.1) can suffer additive faults on sensors and we adopt the single
fault assumption. With the conventional Kalman filter, the principe of fault detection is to
detect an abnormal change in the residual vector :

rk+1 = yk+1 − ŷk+1|k, (6.18)
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where yk+1 represents the measured output at time k + 1. When yk+1 is not faulty and
without measurement noise, the residual is statistically reduced to zero. When a fault oc-
curs, the residual vector is expected to become non null and at least one of its components
indicates the fault.

Like for the conventional Kalman filter, we can define a confidence interval I i[ŷk+1|k]

at 99.7% for each component [ŷik+1|k], i = 1, ..., m, of [ŷk+1|k] used for fault detection
thresholding:

[

(

[ŷk+1|k]
i − 3 ∗ [σk+1]

i
)

,
(

[ŷk+1|k]i + 3 ∗ [σk+1]i
)

]

, (6.19)

where [σk+1]
i represents the standard deviation of [ŷk+1|k]

i. The confidence interval
I i[ŷk+1|k]

is guaranteed in the sense that it includes all the confidence intervals of the candi-
date values belonging to the interval output estimate. In this respect, it is quite conserva-
tive.

Fault detection is achieved, at time k + 1, by checking for consistency the confidence
interval (at 99,7%) I iyk+1

of yik+1 against the confidence interval I i[ŷk+1|k]
of [ŷk+1|k], for

i = 1, . . . , m [1]. Thus, we consider a binary variable τk indexed by the time instant
which infers:

τk =

{

1 if ∃i s.t., I iyk+1
∩ I i[ŷk+1|k]

= ∅
0 otherwise.

(6.20)

When a fault occurs, it corrupts the output measures, which is reinjected in the iIKF at
the correction step. Hence, the output estimate is not reliable for representing the healthy
system. Thus as soon as the fault is detected, the innovation step in the interval Kalman
filter is halted until the system is restored healthy. A similar approach can be found in
[7, 122], known as the Semi-Closed Loop (SCL) strategy.

Example 6.4.1 To test the efficiency of the proposed iIKF based fault detection approach,

a sensor fault affecting the system is introduced at time k = 50. This fault is persistent

until time k = 80. The fault value is set to approximatively 4 standard deviations. We use

confidence intervals at 99, 7%.

Figure 6.22 provides the output prediction and the real measured output together with

the fault indicator τk. τk rightly concludes to the occurrence of a fault at time k = 50 and

this fault is persistant until k = 80.
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Figure 6.22: Fault detection using the iIKF and the SCL strategy

Figure 6.23 clearly shows that the iIKF output estimate produced without the SCL

strategy "follows" the faulty measured output, preventing efficient fault detection. This

is due to the correction in the innovation step of iIKF. The a posteriori state estimate is

indeed compensated according to the measurement, independently on whether it is faulty

or not.

Figure 6.23: iIKF output estimate in the faulty situation without the SCL strategy

We should point out that in our scenario, no calibration takes place. But in more

complex systems, it is likely to have singular interval matrices triggering the calibration.
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The improved interval Kalman filter iIKF provides all the optimal estimates consis-

tent with bounded-errors and achieves good control of the pessimism inherent to interval

analysis. Through a set of simulations, the efficiency of the iIKF based Semi-Closed Loop

fault detection algorithm that we propose is clearly demonstrated.

6.5 Conclusion

The first section of this chapter dealt with fault detection relying on SM-identifiability
closely related to SM-diagnosability. SM-identifiability provides the guaranty that two
situations corresponding to different parameterized settings are distinguishable which has
potential in diagnosis. By building the parameter estimation scheme on the analysis of
identifiability, we guarantee that the solution set reduces to one connected set, avoiding
this way the pessimism of SM methods.

The second section dealt with fault detection by fault model identification. The tests
showed good results for confirming a fault and this method is very efficient to prove the
non-existence of the solution, that is to discard specific kinds of failures in the real system.

The third section concerned a fault detection scheme based on state estimation. The
developped algorithm consists in a prediction-correction two steps approach in which the
prediction step uses the mean value and intermediate value theorems. The correction
step takes into account the parameter ζ ; a wise choice of ζ combined with a wise choice
of parameter η leads to good results in terms of false alarm rate, no detection rate and
detection delay as seen on the benchmark.

To finish this chapter, a fault detection algorithm based on the iIKF has been devel-
opped. This algorithm has been applied to a system with additive faults on sensors; the
obtained results showed the efficiency of this approach.

Thus, troughout this chapter, the potential of the concepts developped in this
manuscript for fault detection and diagnosis are highlighted. These concepts can be ap-
plied to a large class of models with bounded-errors or mixed errors.



Chapter 7

Perspectives and research project

My perspectives in the short term focus on managing mixed uncertainties affecting
dynamic systems and on the different paradigms presented in the fifth chapter. The first
direction concerns the theoretical aspects and proofs related to the modeling with mixed
uncertainties which is part of the thesis of Tuan Anh Tran (October 2014 to September
2017). An application of this work will be diagnosing such models.
Another perspective concerns the reduction of the complexity of the algorithms de-
velopped in the third chapter. In fact, it is known that the numerical complexity of
the approaches proposed in the third chapter severely limits the applicability of these
approaches. Thus a big effort must be devoted to this issue.
The last direction consists in extending to hybrid systems the main concepts developped
in this manuscript such as SM-identifiability, SM-diagnosability, optimal input design
and the case of mixed uncertainties. These directions are developped below.

7.1 Mixed uncertainties

As seen in previous chapters, models including the representation of bounded uncertain-
ties are an interesting alternative to the stochastic approach. Indeed, the probability dis-
tributions of noises and disturbances of a dynamic system may be difficult to identify and
some types of uncertainties are better represented by bounded errors. Many methods have
been developed within a bounded-error framework. In the last decade, set-membership
methods have significantly improved from a fundamental point of view, particularly re-
garding the integration of differential models (Taylor serie expansion, Müller Theorems),
[59] and reachability computations [105]. They have been used for many problems like
stability analysis, synthesis of control laws, validation, dependability, estimation, diag-
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nosis, etc. These methods have been proposed as substitutes for stochastic approaches
as all uncertainties (noise, disturbances, model errors, etc.) are assumed to be bounded.
However, some types of uncertainties are well fitted to a statistical context. Furthermore,
the advantages of both approaches show that they are complementary rather than oppo-
site. Regarding the estimation in a set-membership framework, the advantage is that the
results are guaranteed. However, they do not provide any detail related to the probability
density values inside the sets and can lead to very conservative results when they are ap-
plied to real systems. For all these reasons, we have proposed to include the two types of
uncertainties in the modeling of real systems. Considering uncertain stochastic systems,
we have described an improvement of the interval Kalman Filtering [136] and in [44] an
optimal input design procedure is proposed for such systems.
This line of research devoted to mixed uncertainties has been little explored in previous
works and requires theoretical developments to define a unified formalism which should
allow to deal with uncertain random variables and uncertain distribution laws. This is the
first line for future works. I would like to properly develop the theoretical tools in order to
combine these two types of uncertainties. This work will lead to a thorough investigation
to propose a theoretical framework for the definition and manipulation of uncertain prob-
ability distributions. This unified framework should allow to provide relevant models for
the estimation of dynamical systems and diagnosis applications.

To tackle this problem, I could take inspiration from some works, such as those on
interval probabilities or p-boxes [14], [125], those on belief networks [25], or also from
[111] where an uncertain expectation operator is proposed. This framework should allow
to tackle correctly the problem of state or parameter estimation in the context of mixed
uncertainties present in nonlinear uncertain stochastic systems. State and parameter esti-
mation are two of the possible approaches to address fault detection and diagnosis, either
in a stochastic framework (for example [35]) or in a set-membership framework [102].

In the thesis of Tuan Anh Tran, the following problems are investigated:

• Definition of a unified theoretical framework for modeling stochastic and bounded
uncertainties,

• Design of filtering algorithms with mixed uncertainties (including generalization of
the Kalman filter and the particle filter) for nonlinear dynamical models,

• Study of the properties of these filters (stability, convergence),

• Application to fault detection and isolation.

A comparative study between stochastic filters (Kalman filter, particle filter) and set-
membership filter based on interval analysis in terms of convergence of state estimation,
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quality of outer approximation (e.g. containing the real state) and computational com-
plexity has been proposed in collaboration with Tuan Anh Tran, Françoise Le Gall and
Louise Travé-Massuyès [121].

7.2 Analysis of algorithms

This line of research concerns the reduction of the complexity of the algorithms devel-
opped in the SM-identifiability framework. These algorithms are based on the elimination
of non-measured states (in Differential Algebra) and it is known that the complexity of
the involved algebraic manipulations often makes formal calculus too expensive, espe-
cially when the functions are not polynomial. They are also based on bisections. A severe
restriction of the use of these algorithms is thus their computational complexity which is
exponential. For example, concerning SIVIA, it is well-known that the need for an effi-
cient implementation of this algorithm is driven by its high computational complexity due
to its branch-and-bound nature, which in the worst case is exponential in the number of
variables [51]. However, in [41], interval constraint propagation is used within the SIVIA
algorithm to reduce its computational complexity by reducing the number of boxes to be
bisected [49] and potentially reduces its computation time. Thus this work, based on a
novel vector implementation, represents a first tentative to reduce the computational time
of SIVIA.
Concerning the Differential Algebra approach, giving the complexity of the Rosenfeld-
Gröebner algorithm is an open problem. In spite of this point, a first natural step towards
estimating the complexity is obtaining a bound on the orders of derivatives in the poly-
nomials computed by the Rosenfeld-Gröbner algorithm. In the particular cases of linear
systems and systems with two differential polynomials in two differential indeterminates,
relevant bounds are proposed in [113], [21]. More recently in [37], a bound holding for
a set of ordinary differential polynomials F in n differential indeterminates is proposed
and is given by M(F ) ≤ (n − 1)! ×M(F0) where M(F ) is the sum of maximal orders
of differential indeterminates occurring in F and F0 is the initial set of generators of the
radical ideal. Since regular ideals can be decomposed into characterizable components
algebraically, the bound also holds for the orders of derivatives occurring in a character-
istic decomposition of a radical differential ideal [38].
Based on these works, I propose to analyse and to reduce the complexity of the whole
framework of SM-identifiability algorithms by:

• Evaluating the complexity of the algorithms used in the SM-identifiability frame-
work, and if not possible, to give an upper bound of the complexity,

• Using [41] to reduce the computational complexity of bisection algorithms,
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• Using the recent advances in Differential Algebra approach. Some algebraic al-
gorithms have been proposed by O. Golubitsky [38] and it will be interesting to
include these new algorithms in our approach. Maybe, it will be necessary to relax
the whole problem of SM-identifiability analysis. Another idea is to exhibit some
theorems linking SM-identifiability of linearized uncertain models (around an equi-
librium point) and SM-identifiability of nonlinear dynamical uncertain models as it
exists in the classical sense.

• Describing precisely the class of models for which this new work holds.

To finish this line of research, I plan to implement the tools to test SM-identifiability
in a software presently developped in the DISCO Team of LAAS-CNRS that achieves
estimation (state and/or parameter), prediction, simulation and reachability analysis for
SM-dynamical continuous or hybrid models. This software results from the integration of
the software Prognospice developped in the CORAC-EPICE project [124], the software
developped within the MAGIC-SPS project ([78, 80]) and the software PSADE devel-
opped within the MICPAC project.

7.3 Extension to hybrid systems

Another perspective is to extend the concepts of SM-identifiability and optimal input de-
sign to hybrid systems with bounded errors (SM-hybrid models) without discrete control.
A potential application of this extension is fault detection and diagnosis for such models
by state or parameter estimation.
Hybrid systems include both discrete and continuous dynamics. The state of a hybrid
system is defined by the values of the continuous variables and a discrete mode.

The state estimation of a hybrid system is generally divided into two parts: the es-
timation of the current mode and knowing the mode, the estimation of continuous state
[5], [53]. Many contributions are only interested in the second part, for example [34].
From 2011 to 2015, the MAGIC-SPS project addressed the problem of health-monitoring
for uncertain hybrid systems which are hybrid systems with bounded uncertainties. In
this project, detection and fault localization for uncertain hybrid models are based on an
estimate of the state including a set-estimation of the continuous component. It has been
shown that it is possible to estimate the discrete configurations of a hybrid automaton
through set-membership methods: [8, 81, 79, 78, 80]. In the recent thesis of M. Maïga
[77], an effective method is proposed to cross the set-membership guard (SM-guard). This
method consists in carrying out bisection in the time direction only and then several con-
tractors are applied simultaneously to reduce the domain of state vectors located on the
guard during the studied time slot. After this, a method for merging trajectories based on
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zonotopic enclosures is proposed. To extend my works to SM-hybrid models, I propose
the following ideas:

• my first idea is to design input (for the continuous part of the SM-hybrid model)
allowing to cross a specific SM-guard and thus to put the model in a specific mode.

• Another idea relying on optimal input design is to obtain the input that produces
data from which model parameters can be estimated accurately.

• Concerning SM-estimation, it is well-known that the set-membership guaranteed
integration schemes are computationally stable only for some very small sizes of pa-
rameter boxes. The SIVIA algorithm like parameter estimation algorithms is hence
particularly inefficient as it enumerates candidate parameter subspaces starting with
the whole parameter space. This is why [124] proposes the Focused Recursive Parti-
tioning (FRP) which consists in partitionning the parameter search space into small
boxes and applying the SM-integration scheme on each candidate box. We then
keep track of the parameters vectors for which the model outputs are consistent
with the measurements for all sample times i.e. the unfeasible ones are discarded.
Computing the convex hull then provides a minimal and maximal value for the ad-
missible parameter vectors. Thus I think that the parameter SM-estimation scheme
could be enhanced in the following way:

– Analyse SM-identifiability of the parameter space and assume that the initial
parameter search box is globally SM-identifiable which means that the solution
set is a unique connected set,

– Partition the initial parameter search space,

– Choose randomly a box into the partition and launch the SM-integration
scheme. Test the consistency of the model output with the measurements. Thus
three cases are possible: the box is admissible, the box is uncertain or the box
must be rejected. If the box is admissible, because the parameter search space
is globally SM-identifiable, we know that it is enough to test the neighboring
boxes. If the box is uncertain we can bisect it and test it again. If the box is
rejected, we can randomly test another box.

• Another problem concerns crossing a guard when the guard is based on an uncertain
parameter value. Then, in the set-membership framework, it is known that if the
guard condition between two modes is based on a parameter value. For example if
the guard condition is given by "the state x(.) is such that x(.) ≥ p", where p is a
parameter, thus part of the futur state, after crossing the guard, can be in a specific
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mode and the other part in another mode. If the value of p is unknown, testing SM-
identifiability of p seems to be the first step. If p is globally SM-identifiable and
not µ-SM-identifiable, there exist some situations in the set of all admissible values
of p for which the futur mode will be the same. Thus using an FRP of the initial
parameter search space for the guard condition to exhibit the box of parameters
consistent with the measurements should allow to limit the parameter values of the
guard. To my knowledge, this problem has never been studied.

To finish my research project proposal, my perspective on the long term is to consider
uncertain stochastic hybrid systems. To achieve this perspective, the first aim will be
to describe a theoretical framework based on the framework developped in the first line
of perspectives. After this, it will be interesting to develop methods and algorithms to
identify these models. Thus, based on the previously described results and the previous
lines of perspectives, the development of uncertain stochastic hybrid systems will be an
interesting extension with a lot of potential applications in engineering.
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