
HAL Id: tel-01504516
https://laas.hal.science/tel-01504516v1

Submitted on 10 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Time and QoS-Aware Selection for Service
Composition

Ikbel Guidara

To cite this version:
Ikbel Guidara. Efficient Time and QoS-Aware Selection for Service Composition. Networking
and Internet Architecture [cs.NI]. Université Toulouse 1 Capitole (UT1 Capitole); Ecole Nationale
d’Ingénieurs de Sfax, 2016. English. �NNT : �. �tel-01504516�

https://laas.hal.science/tel-01504516v1
https://hal.archives-ouvertes.fr

 THÈSE

En vue de l’obtention du

DOCTORAT DE L’UNIVERSITE DE TOULOUSE ET DE
L’UNIVERSITE DE SFAX

Délivré par:
Université Toulouse Capitole

et
 Ecole Nationale d'Ingénieurs de Sfax

 Écoles doctorales : Mathématiques, Informatique et Télécommunications de Toulouse
 Sciences et Technologies de Sfax

Présentée et soutenue par
 Ikbel GUIDARA

 le 04 Juillet 2016
Efficient Time and QoS-Aware Selection for Service Composition

Discipline : Informatique
Spécialité : Informatique

Unités de recherche: LAAS-CNRS (UPR8001 LAAS)
 ReDCAD-ENIS (LR13ES26)

Directeurs de thèse: Mme, Nawal GUERMOUCHE, Maitre de Conférences, INSA
 Mr, Said TAZI, Maitre de Conférences HDR, UT1 Capitole

 Mr, Mohamed JMAIEL, Professeur, Université de Sfax
 Mr, Tarak CHAARI, Maitre Assistant, Université de Sfax JURY

Rapporteurs Mr, Farouk TOUMANI, Professeur, Université Blaise Pascale

 Mme, Ikram AMMOUS, Maitre de Conférences HDR, Université de Sfax
 Membres Mr, Djamal BENSLIMANE, Professeur, Université Lyon 1
 Mr, Gene COOPERMAN, Professeur, Université Northeastern

Mr, Khalil DRIRA, Directeur de Recherche, LAAS-CNRS

i

To my parents.

ii

Abstract

Service-Oriented Computing (SOC) paradigm has emerged in last years to support co-

operation between loosely coupled services to build complex applications. It involves the

description, discovery, selection, and composition of services to support rapid develop-

ment of complex applications. Usually, theses applications can be specified as abstract

business processes and the goal is to select a service for implementing each abstract

task. In addition to the functional requirements that must be accomplished, the QoS

(Quality of Service) parameters are of paramount importance. Due to the large number

of candidate services with same functionalities but offering different QoS values, the

selection of the most suitable services for implementing abstract tasks while fulfilling

QoS in a timely manner is not trivial. Moreover, in real-world applications, services can

have different dependencies between them (i.e., structural and temporal). Considering

these dependencies, the selection problem becomes more complex. Additionally, services

usually operate in highly uncertain and dynamic environments, which can cause erro-

neous behaviors during the execution. In this context, it is crucial to tackle the selection

problem while considering functional requirements associated with QoS and temporal

constraints at design and run time.

In this thesis, we contribute towards addressing the aforementioned challenges. Specifi-

cally, the main contributions of this thesis are as follows: (1) We propose pre-processing

techniques to allow a scalable service selection without affecting the optimality of the

selected solution. (2) We develop an efficient QoS-aware service selection approach that

allows selecting the suitable service composition while fulfilling QoS and temporal con-

straints. The proposed approach can handle complex service selection problems while

considering the aforementioned dependencies between services. (3) We propose a heuris-

tic service selection approach to select a close-to-optimal solution based on clustering

and constraints decomposition techniques. (4) To deal with dynamic and uncertain

environments, we propose a proactive service selection approach for enforcing service

composition adaptation at run time. The aim is to take early re-selection actions in

order to reduce the possibility of execution interruption and increase the likelihood of

finding a feasible solution. This approach deals with QoS fluctuations and changes in

execution environments during execution (e.g., the availability of a new better service).

The different contributions of the proposed approach are implemented and their effi-

ciency is demonstrated and validated analytically and empirically through experimental

results.

Contents

Abstract ii

Contents iii

List of Figures vii

List of Tables ix

List of Algorithms x

1 Introduction 1

1.1 Introduction . 1

1.2 Service Selection: Research Scope and Challenges 2

1.2.1 Constraints and Dependencies between Services 3

1.2.2 Time-dependent QoS . 4

1.2.3 Scalability and Optimality . 4

1.2.4 Uncertainty and Dynamic Environments 4

1.3 Motivating Scenario . 5

1.4 Research Aims and Contributions . 8

1.5 Structure of the Thesis . 10

2 Background and Related Work 11

2.1 Introduction . 12

2.2 Service Oriented Computing . 12

2.2.1 Service Oriented Architecture . 12

2.2.2 Service Composition Methods . 13

2.2.2.1 AI Planning based Composition 13

2.2.2.2 Workflow based Composition 14

2.3 Service Selection Models . 14

2.3.1 Multi-dimension Multi-choice Knapsack Problem (MMKP) 15

2.3.2 Multi-constraint Optimal Path Problem (MCOP) 15

2.4 Service Selection Techniques . 16

2.4.1 Mathematical Programming . 16

2.4.2 Constraint Programming . 16

2.4.3 Meta-heuristics and Heuristics . 16

2.5 Static Service Selection . 17

2.5.1 Static Service Selection Strategies 17

2.5.1.1 Local Service Selection 17

iii

Contents iv

2.5.1.2 Global Service Selection 17

2.5.1.3 Hybrid Service Selection 18

2.5.2 Static Service Selection Approaches 18

2.5.2.1 Exact Service Selection 18

2.5.2.2 Approximate Service Selection 20

2.5.3 A Synthesis of Static Service Selection Approaches 22

2.6 Dynamic Service Selection . 24

2.6.1 Dynamic Service Selection Strategies 25

2.6.1.1 Reactive Service Selection 25

2.6.1.2 Proactive Service Selection 25

2.6.2 Dynamic Service Selection Approaches 26

2.6.2.1 Re-selection of Services 26

2.6.2.2 Backup Solutions . 28

2.6.3 A Synthesis of Dynamic Service Selection Approaches 30

2.7 Summary and Discussion . 30

2.8 Conclusion . 33

3 Specification of The Service Selection Model 35

3.1 Introduction . 35

3.2 Business Level Constraints . 36

3.2.1 Structural Constraints . 36

3.2.2 Global Constraints . 37

3.2.3 QoS Constraints . 39

3.2.4 Temporal Constraints . 39

3.3 Service Level Constraints . 40

3.3.1 Time-dependent QoS . 40

3.3.2 QoS Distributions and Patterns . 42

3.3.2.1 QoS Distributions . 42

3.3.2.2 Patterns of Time-dependent QoS 42

3.4 Composite Service Quality Model . 44

3.4.1 Aggregation Function . 44

3.4.1.1 Additive Attributes . 44

3.4.1.2 Average Attributes . 45

3.4.1.3 Multiplicative Attributes 45

3.4.1.4 Max-Operator Attributes 45

3.4.2 Utility Function . 46

3.4.3 Optimal Service Composition . 47

3.5 Conclusion . 48

4 Service Pruning Approach 49

4.1 Introduction . 49

4.2 Dominance-based Pruning Process . 50

4.3 Constraint-based Pruning Process . 53

4.3.1 Overview of the Constraint-based Pruning Process 53

4.3.2 QoS Constraint-based Pruning . 54

4.3.3 Temporal Constraint-based Pruning 57

4.3.3.1 Execution Duration . 57

Contents v

4.3.3.2 Time Intervals . 60

4.3.4 Constraint-based Pruning Algorithm 62

4.3.5 Iterative Pruning Process . 63

4.4 Overview of the Improvement Process . 65

4.4.1 Improving Global Constraints . 66

4.4.2 Improving Service Offers . 68

4.5 Conclusion . 70

5 Static Service Selection at Design Time 71

5.1 Introduction . 71

5.2 Exact Service Selection Approach . 72

5.3 Approximate Service Selection Approach 75

5.3.1 Service Clustering . 76

5.3.1.1 K-means Algorithm Overview 76

5.3.1.2 Classification of Services 77

5.3.2 Local QoS Constraints Specification 79

5.3.2.1 Centroid Utilities . 79

5.3.2.2 The Selection of the Best Centroids 79

5.3.3 Deadline Decomposition . 80

5.3.4 Local Selection . 82

5.4 Conclusion . 84

6 Dynamic Service Selection at Run-time 85

6.1 Introduction . 85

6.2 Motivating Scenario . 86

6.3 Proactive Service Selection . 87

6.3.1 Specification of Re-selection Thresholds 87

6.3.1.1 Computing Maximum Thresholds 88

6.3.1.2 Computing Intermediary Thresholds 89

6.3.2 Pertinent Services . 90

6.3.2.1 Identifying Pertinent Services 90

6.3.2.2 Ranking Pertinent Services 91

6.3.3 Event Classes and Recovery Actions 91

6.3.3.1 Categories of Changes . 92

6.3.3.2 Recovery Actions . 93

6.3.4 Local and Region based Service Selection 96

6.3.4.1 Dynamic Local Service Selection Approach 98

6.3.4.2 Region based Service Selection Approach 99

6.4 Conclusion . 101

7 Evaluation 103

7.1 Introduction . 103

7.2 The TQCoS Simulation Tool . 104

7.3 Evaluative Study . 106

7.3.1 Experiment Settings . 106

7.3.2 Evaluation of The Service Pruning Approach 107

7.3.3 Evaluation of The Exact Service Selection Approach 109

Contents vi

7.3.4 Evaluation of The Approximate Service Selection Approach 110

7.3.4.1 Complexity Evaluation 111

7.3.4.2 Experimental Results . 112

7.3.5 Evaluation of The Dynamic Service Selection Approach 115

7.3.5.1 Complexity Evaluation 115

7.3.5.2 Experimental Results . 116

7.4 Conclusion . 121

8 Conclusions and Future Work 123

8.1 Contributions and Research Summary . 124

8.1.1 Specification of a constraint-based service selection model 124

8.1.2 A dominance and constraint-based service pruning approach . . . 124

8.1.3 Exact and approximate service selection approaches at design time 125

8.1.4 A proactive dynamic service selection approach at run-time 126

8.2 Future Directions . 127

8.2.1 Short-term Perspectives . 127

8.2.2 Long-term Perspectives . 128

A Proofs of Theorems and Lemmas 131

A.1 Proof of Theorem 4.1 . 131

A.2 Proof of Lemma 4.1 . 132

A.3 Proof of Lemma 4.2 . 132

A.4 Proof of Lemma 5.1 . 133

B Description of The BPMN File 135

C Temporal-Aware Template and Offer using WS-Agreement* 141

Bibliography 143

List of Figures

1.1 The business process for the production of an electronic device 5

1.2 Candidate services of each abstract task 7

2.1 Roles and interactions involved in SOA . 13

3.1 Common structural patterns . 37

3.2 Candidate service instances of our motivating scenario 41

3.3 Different distributions of quality attributes 42

3.4 Different schemes for time-dependent QoS [1] 43

3.5 Examples of QoS patterns [2] . 43

4.1 Skyline services based on QoS attributes and temporal properties 52

4.2 Preselected candidate services based on our pruning approach 54

4.3 Preselected candidate services after the second iteration of the pruning
process . 64

4.4 Example of a selection problem where there is no feasible solution 66

5.1 Example of 3 clusters in two-dimensional space using K-means 77

5.2 Example of a set of clusters . 78

5.3 Example of deadline decomposition . 81

6.1 Re-selection regions after a violation or an unavailable service 99

7.1 Modeling the business process using TOPE tool 104

7.2 Setting the parameters of the selection problem 105

7.3 Setting the simulated changes and violations 105

7.4 Visualization of the business process execution 106

7.5 Evaluation of the computation time of the pruning process 108

7.6 Evaluation of the computation time of the exact selection approach with
respect to the number of candidate services per task 109

7.7 Evaluation of the computation time of the exact selection approach with
respect to the number of global constraints and business tasks 110

7.8 Evaluation of the computation time of the approximate selection approach112

7.9 Evaluation of the optimality of the approximate selection approach 113

7.10 Evaluation of the success rate of the approximate selection approach . . . 114

7.11 Evaluation of the computation time of the dynamic selection approach in
response to a service violation . 118

7.12 Evaluation of the optimality of the dynamic selection approach in response
to a service violation . 118

vii

List of Figures viii

7.13 Evaluation of the success rate of the dynamic selection approach in re-
sponse to a service violation . 119

7.14 Evaluation of the computation time of the dynamic selection approach in
response to environment changes . 120

7.15 Evaluation of the optimality and the success rate of the dynamic selection
approach in response to environment changes 121

C.1 Period Definitions in WS-Agreement* . 141

C.2 Temporal-Aware Agreement Template and Offer using WS-Agreement* . 142

List of Tables

1.1 Description of the business activities. 6

2.1 A synthesis of static service selection approaches. 23

2.2 A synthesis of dynamic service selection approaches. 31

3.1 Examples of aggregation functions. 44

4.1 Local thresholds after the second iteration of the pruning algorithm. . . . 64

6.1 Some notations. 93

6.2 Classification of changes and re-selection actions. 97

ix

List of Algorithms

1 Identifying Preselected Services for a Task Ai 62

2 Improvement of Global Constraints . 67

3 Improvement of Service Offers for a Task Ai 68

4 Local Service Selection for a Task Ai . 83

5 Identifying Pertinent Services for a Task Ai 90

6 Dynamic Local Service Selection Algorithm 98

7 Region Based Service Selection Algorithm 100

x

Chapter 1

Introduction

Contents

1.1 Introduction . 1

1.2 Service Selection: Research Scope and Challenges 2

1.2.1 Constraints and Dependencies between Services 3

1.2.2 Time-dependent QoS . 4

1.2.3 Scalability and Optimality . 4

1.2.4 Uncertainty and Dynamic Environments 4

1.3 Motivating Scenario . 5

1.4 Research Aims and Contributions 8

1.5 Structure of the Thesis . 10

1.1 Introduction

Service-Oriented Architecture (SOA) paradigm allows the integration of several service

components to develop complex business applications [3, 4]. SOA relies on the Service-

Oriented Computing (SOC) [5], which has emerged as a new computing paradigm that

enables the composition of multiple loosely coupled components usually encapsulated

as services. In such paradigm, providers expose their offerings as services, which can

be automatically discovered, invoked and composed to implement complex applications.

These applications are usually specified as abstract business processes, which can be

implemented via composite services. To do so, the selection of services for abstract

business tasks while fulfilling Quality of Service (QoS) user’s requirements is essential.

These requirements are usually considered as the global QoS constraints of the targeted

composite service. With the growing number of candidate services for each business task,

which offer the same functionality but differ in their QoS attributes (e.g., cost, response

1

Chapter 1. Introduction 2

time, availability), the selection of the best combination (composition) of services that

satisfies business process constraints and end-to-end user’s requirements is a challenging

task [6].

QoS-based service selection aims to select the best composition of services to implement

a specific business process in order to fulfill global user’s requirements. Despite active

research, most of the service selection approaches neglect a very important aspect: time.

In fact, in addition to QoS constraints, several temporal constraints can be required in

order to guarantee the successful execution of the business process. The main focus of

this thesis is to deal with service selection problem while considering QoS and temporal

constraints. The selection problem is processed at both design time and execution time

when several changes can occur in the environment.

The rest of the chapter is organized as follows. In Section 1.2, we detail the main scope

and challenges of our research work. A motivating scenario is described in Section 1.3 to

better illustrate the purposes of this thesis. The contributions of the thesis are detailed

in Section 1.4. Finally, a brief description of the structure of the thesis is presented in

Section 1.5.

1.2 Service Selection: Research Scope and Challenges

In SOC paradigm, several service components can be integrated into composite services

to execute abstract business processes whose execution requires the selection of a set of

elementary services to invoke abstract business tasks. QoS-based service selection aims

to select one service for each business task so that, the resulted service composition

satisfies all the functional requirements associated with QoS constraints. Usually, for

each abstract task, several services can be candidate. To differentiate between these

services, the selection process should be guided by not only functional properties but

also by non functional attributes (i.e., QoS attributes). Nevertheless, the selection of the

best combination of services that satisfies all constraints is a challenging task especially

in large scale problems where the number of services, tasks and constraints can be

very large. The selection of the best service composition for business processes has

been widely treated in the literature. Despite active research in the context of service

selection, some challenges still remain unsettled so far. These challenges are discussed

in the next sections.

Chapter 1. Introduction 3

1.2.1 Constraints and Dependencies between Services

QoS-based service selection usually aims to select the set of services such that global

end-to-end QoS constraints are fulfilled. However, besides global QoS constraints, in

real-world scenarios, several additional constraints have to be considered to cater for

not only users’ requirements and service provider offers but also constraints specified

at the business process level (e.g., structural, QoS and temporal constraints). Cur-

rent selection approaches consider only structural constraints and assume that temporal

properties can be viewed as a kind of QoS criteria. Moreover, temporal constraints and

dependencies between services are usually considered when modeling and verifying ser-

vice compositions [7–9] and neglected during the selection of the best combination of

services. These constraints and dependencies can be specified implicitly (e.g., imposed

by business rules and laws) or explicitly by process designers to increase the market

share and profitability and gain control over the execution time of the processes [10].

Given for example a partner of electronics manufacturing organization. He can require

in his business process that the manufacturing of peripheral parts must finish no later

than 20 time units after the start of the process and that his organization can receive

orders only at business hours. Moreover, some QoS constraints can also be specified in

the business process [11]. For example, the business designer may require that the cost

of the manufacturing task must be less than or equal to 10 cost units. Considering QoS

and temporal constraints when selecting the best service combination is a crucial task

since the violation of one or more constraints may affect the successful execution of the

business process. These constraints make the selection problem heavily constrained and

thus, more complex to resolve since the selection of each service may influence or be

influenced by the selection of other services.

To guarantee the successful execution of business processes, structural constraints have

to be also fulfilled by the set of selected elementary services. Several existing approaches

focus only on sequential flows between tasks. Business process models with other branch-

ing structures have to be transformed to sequential model using existing techniques [12].

However, merging several execution paths in one or multiple sequential flows may lead

to lose some important dependencies between business tasks and thus, global constraints

might be violated. Moreover, this transformation can be impossible to apply in complex

processes where several dependencies may exist between abstract tasks mainly struc-

tural and temporal dependencies. Thus, handling different structure branching is a

very important challenge that needs to be considered when selecting the best service

composition.

Chapter 1. Introduction 4

1.2.2 Time-dependent QoS

Most of the service selection approaches assume that QoS values offered by service

providers are static and overlooked a commonly important aspect in reality: QoS values

could change over time and might depend on the time of the execution. Indeed, within

different time periods, QoS attributes of candidate services can have different values

[1, 13–15]. For instance, the response time of a service during daytime can be longer

than night time due to access tendency. Another example is that the invocation of the

service during business hours can be more expensive than invoking it outside these peak

hours. Thus, assuming only static QoS values is very restrictive to effectively represent

services and reflect the impact of time on the QoS attributes. Moreover, as candidate

services can have different QoS with respect to time, each service can be considered

as offering more than one instance. Hence, the number of service combinations that

have to be compared becomes larger and thus, the selection process becomes more time

consuming.

1.2.3 Scalability and Optimality

A main feature that has to be considered in service selection problems is scalability. In

fact, since the selection process aims to select the best service composition, all combi-

nations of services have to be compared. Comparing all possible combinations is not

practical and may lead to scalability issues mainly in large service selection problems

where the number of possible combinations is huge and several constraints should be

considered. This issue is more critical in dynamic selection when a solution has to be

found in a reasonable time in order to guarantee end-to-end constraints during execu-

tion. A second important issue is the optimality of the selected solution. In fact, given

user requirements, service selection aims to select the optimal solution among a large

set of possible feasible solutions. However, achieving optimality may lead to scalability

issues since all possible combinations should be compared. Hence, there is a trade-off

between scalability and optimality.

1.2.4 Uncertainty and Dynamic Environments

Although static service selection at design time allows selecting a satisfactory solution,

it does not guarantee that the selected services offer the estimated values during exe-

cution. In fact, service-oriented systems often operate in highly uncertain and dynamic

environments. Due to uncertainties, current QoS delivered by services may not be the

one foreseen and may deviate from the original specification due to several factors such

Chapter 1. Introduction 5

as the high overhead and network delay. For example, due to a high overhead, the

response time of a selected service can be higher than estimated. Such deviations can

affect the successful execution of the service combination during execution and thus, the

satisfaction of end-to-end constraints. In addition to changes that can be observed on

the selected services, due to the dynamic nature of the execution environments, several

changes can appear on the system when executing services. Indeed, services can join or

leave the system or change their characteristics at any time. These changes may also

have several impacts on the selected solution. For instance, if a selected service is no

more available, it should be substituted. Another example is when a new service that

offers better values than the selected service, it should be considered to proactively en-

hance the selected solution in order to face, for instance, service deviations. To ensure

the successful execution of the different business tasks while guaranteeing the satisfaction

of end-to-end global user’s constraints, service selection process needs to continuously

react to environmental conditions variations during execution.

Despite active research to overcome these issues, most of existing approaches do not deal

with temporal properties. These latter make the aforementioned issues very challenging

because of the large number of constraints that should be considered comparing to

existing approaches.

1.3 Motivating Scenario

To better illustrate the application of our approach, in this section, we introduce the

electronic device production in a manufacture enterprise scenario. The corresponding

business process is depicted in Figure 1.1.

Figure 1.1: The business process for the production of an electronic device

The production process has six abstract tasks. This process starts by receiving and writing

technical reports (A1). Then, the adequate model of the device is designed (A2). After

that, the manufacturing of the electronic and peripheral parts is executed in parallel (A3

Chapter 1. Introduction 6

Table 1.1: Description of the business activities.

Activity Description

A1 Receive the order and write the technical reports
A2 Design the model of the device
A3 Manufacture the electronic parts of the device
A4 Manufacture the peripheral parts of the device
A5 Assemble all parts
A6 Test the final product

and A4). After manufacturing the various parts of the product, these parts are assembled

together (A5). Finally, the product has to be tested before delivering (A6).

In addition to structural constraints between the different tasks of the process, QoS

and temporal constraints can be specified by business designers and market laws. For

example, business designers can assign QoS constraints to one or more business tasks,

we call intra-task QoS constraints (QC). In our scenario, we consider the following

intra-task QoS constraints:

• QC3: The duration of the manufacturing of the electronic parts (i.e., the task A3)

must not exceed 5 time units.

• QC5: The cost of the parts assembly task (i.e., A5) must not exceed 14 units.

Moreover, given that some tasks can be released internally in the enterprise (i.e. ex-

pressed in its internal business view), this latter may have some temporal constraints,

related to the availabilities of their internal departments and laws. In our example, we

consider the following intra-task temporal constraint (TC) related to the task A2:

• TC2: The business designer requires that the design of the product model (i.e.,

A2) has to finish no later than 3 p.m. (i.e., 15 units of time in our example) since

it should be checked by the designer who is available every day from 8 a.m. to 4

p.m.

Additionally, in order to increase the market share and profitability and to gain control

over the production time, some temporal constraints between tasks can be imposed called

temporal dependencies (TD). In the example presented in Figure 1.1, three temporal

dependencies are specified:

• TD1,3: The manufacturing of electronic parts (i.e., A3) has to finish no earlier

than one time unit and no later than 12 time units after the receipt of the order

(i.e., A1).

Chapter 1. Introduction 7

• TD1,4: The manufacturing of peripheral parts (i.e., A4) starts no later than 3 time

units after the writing of the technical reports (i.e., A1).

• TD5,6: The test of the final product (i.e., A6) has to start no earlier than one

time unit and no later than 2 time units after the assembly of all parts (i.e.,

A5) considering the time required for the transportation of the product after the

assembly of its parts.

In addition, global constraints can be associated with the business process. In the ex-

ample we consider, three global constraints are required:

• The global cost must not exceed 68 units.

• Once the process started, the global execution duration must not exceed 13 units

of time.

• The deadline (i.e., the finish time) of the process must not exceed 10 p.m. (i.e., 22

in our example).

To be implemented, each abstract activity has a set of functionally similar concrete

candidate services. Some of these services offer different QoS values according to their

temporal properties (Figure 1.2). For example, when the service S13 is invoked from

9 to 13 units of time, it offers a duration of 3 time units and a cost of 23 cost units.

However, from 14 to 20 units of time, it offers an execution duration equal to 4 time

units with a cost equal to 19.

Figure 1.2: Candidate services of each abstract task

Let us now search the best service combination to implement the business process with-

out taking into account temporal constraints. First, we suppose that all QoS values are

static and do not depend on the time of the execution. Thus, the best combination of

Chapter 1. Introduction 8

services that satisfies the user requirements is C = (S12, S21, S31, S43, S51, S63). This

combination can be selected based on the notion of dominance [16, 17]. In other words,

each selected service chosen to implement an abstract activity offers the best QoS (i.e.,

it dominates all the other candidate services).

As stated previously, QoS parameters may change according to time. For example, the

cost of the service S13 is equal to 23 form 9 to 13 units of time and to 19 from 14 to

20 units of time. When considering time-dependent QoS, the combination C is no more

valid even if the selected services are the best. Indeed, although the task A2 should

be executed after the task A1, the service S21 is available in a time span before that

of the service S12 and thus, these two services can not be parts of the same solution.

The combination C
′

= (S11, S21, S31, S43, S53, S63) where the availability intervals are

respectively, [8,12], [12,13], [13,17], [13,17], [17,19] and [19,20] is a satisfactory solution.

Again, the combination C
′

can not be a satisfactory solution if we deal with further

constraints expressed in the business process. Consider, for instance, the temporal

dependency TD5,6 that states that the test of the final product has to start no earlier

than one time unit and no later than 2 time units before the assembly of all parts. This

constraint can not be satisfied by the combination C
′
. In fact, since the service S53

ends its execution at 19, according to the temporal dependency TD5,6, the service S63

can not start before 20, which is impossible. Thus, another service combination should

be selected such as C
′′

= (S11, S21, S31, S43, S53, S61) with the following availability

intervals [8,12], [12,13], [13,17], [13,17], [17,19] and [20,21], respectively.

To summarize, considering time-dependent QoS attributes associated with QoS and tem-

poral constraints is not a trivial task and makes the selection problem very complex. The

existing selection approaches can not be applied since most of them consider only static

QoS values and do not deal with temporal constraints. Moreover, they usually suppose

that the business process has a sequential structure. To overcome these limitations, we

propose a time-aware selection approach while dealing with heavily constrained selection

problems and considering several QoS and temporal constraints. In the next section, we

present the different contributions of our work.

1.4 Research Aims and Contributions

In this thesis, we focus on the problem of service selection to implement an abstract

business process. Particularly, the problem we are interested in can be described as

follows: given an abstract business process in which complex structural, QoS and tem-

poral constraints are specified, and a set of candidate services that offer time-dependent

Chapter 1. Introduction 9

QoS, our goal is to select the adequate services to build the best service combination

that implements the abstract business process while fulfilling user’s requirements. The

aim is to propose a novel service selection approach to handle the challenges presented

previously and deal with the limitations of existing approaches. The contributions of

the thesis can be summarized as follows:

• First, we propose a constraint model of the selection problem. It allows to capture

global user constraints as well as constraints at business and service levels. Par-

ticularly, it enables the specification of structural, QoS and temporal constraints

while considering time-dependent QoS values. Unlike existing approaches, the pro-

posed model allows handling complex composition structures including sequential,

parallel, choice and loop patterns.

• Second, in order to deal with scalability issues, we propose a service pruning process

based on dominance and constraint-based pruning techniques. Dominance prun-

ing allows identifying the set of non-dominated services for each class whereas,

constraints pruning is based on a set of computed local thresholds to narrow the

search space and eliminate non adequate services and thus, reduce the number of

service combinations to be considered prior to performing the selection algorithm.

Furthermore, in case of failure (i.e., no solution is possible), the pruning step allows

for identifying the cause of the failure at earlier stages (i.e., before performing the

selection process). Based on this, we propose strategies to improve the selection

problem. These contributions have been published in [18] and [19].

• Third, based on the results of the pruning phase, we propose a service selection

algorithm that takes into consideration both time-dependent QoS attributes and

business level constraints and ensures the selection of the best service composition

while handling complex business process. This work has been extended later to deal

with large scale problems where an optimal solution requires a high computation

time to be found. Hence, we propose a heuristic service selection approach to

select a close-to-optimal solution more efficiently. The proposed approach is based

on clustering and constraints decomposition techniques. These contributions have

been published in [20] and [21].

• Finally, to deal with uncertainties and environment changes, a novel dynamic

service selection approach is presented [22] and [23]. The goal is to try to prevent at

run-time the violation of the specified constraints. To do so, we propose a proactive

selection approach whose aim is to enhance the selected service composition so that

violations can be avoided. Moreover, reactions to changes and violations are made

as soon as they occur in order to avoid execution interruption and increase the

likelihood of finding a satisfactory solution.

Chapter 1. Introduction 10

1.5 Structure of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we review related literature

on service composition selection and adaptation. In Chapter 3, a constraint-based service

selection model is presented. In Chapter 4, we detail our pruning approach to eliminate

inadequate services based on dominance and constraints pruning strategies. The pruning

approach is followed by a description of an enhancement process to enable improving

the selection problem when there is no a feasible solution. In Chapter 5, we present our

service selection approaches. First, the optimal service selection algorithm is introduced

to select the optimal solution when dealing with small selection problems. Second, to

enhance the computation time when the selection problem is very large, we propose

a heuristic approach to select a close-to-optimal solution while guaranteeing that the

selected solution fulfills all constraints. A proactive service selection approach is outlined

in Chapter 6 to deal with environment changes and uncertainties during the execution

time. In Chapter 7, we evaluate our approach through experimental results. Finally,

Chapter 8 concludes the thesis and gives some future directions.

Chapter 2

Background and Related Work

Contents

2.1 Introduction . 12

2.2 Service Oriented Computing 12

2.2.1 Service Oriented Architecture 12

2.2.2 Service Composition Methods 13

2.3 Service Selection Models . 14

2.3.1 Multi-dimension Multi-choice Knapsack Problem (MMKP) . . 15

2.3.2 Multi-constraint Optimal Path Problem (MCOP) 15

2.4 Service Selection Techniques 16

2.4.1 Mathematical Programming 16

2.4.2 Constraint Programming . 16

2.4.3 Meta-heuristics and Heuristics 16

2.5 Static Service Selection . 17

2.5.1 Static Service Selection Strategies 17

2.5.2 Static Service Selection Approaches 18

2.5.3 A Synthesis of Static Service Selection Approaches 22

2.6 Dynamic Service Selection . 24

2.6.1 Dynamic Service Selection Strategies 25

2.6.2 Dynamic Service Selection Approaches 26

2.6.3 A Synthesis of Dynamic Service Selection Approaches 30

2.7 Summary and Discussion . 30

2.8 Conclusion . 33

11

Chapter 2. Background and Related Work 12

2.1 Introduction

After presenting the main research goals of this thesis in Chapter 1, in this chapter, we

present a review of the state of the art related to service selection. We pay particular

attention to the works that handle QoS and temporal constraints. In Section 2.2, we

provide a brief overview of the service oriented computing paradigm. We discuss QoS

based service selection models and techniques in Sections 2.3 and 2.4, respectively. We

propose a detailed review of static service selection approaches at design time in Section

2.5. This is followed by a review of dynamic service selection approaches at run-time in

Section 2.6. In Section 2.7, we discuss the limitations of existing approaches with respect

to the research challenges presented in Chapter 1. Finally, we conclude the chapter in

Section 2.8.

2.2 Service Oriented Computing

Service-Oriented Computing (SOC) paradigm enables the sharing of functionalities and

resources via the integration of loosely-coupled components, exposed as services in order

to build complex applications [5]. According to the definition proposed in [24], ”Services

are self-describing, platform-agnostic computational elements”. The functionalities of-

fered by services can vary from a simple request to complex business processes. In

SOC paradigm, interacting components are usually implemented in different languages,

developed by several independent providers and dispersed through different platforms.

2.2.1 Service Oriented Architecture

To build the service model, SOC paradigm relies on the service oriented architecture

(SOA). SOA enables the integration of applications and resources by (1) modeling each

application or resource as a service that has a specified interface, (2) allowing services

to exchange information (e.g., messages, business objects, documents) and (3) allowing

flexible coordination between services, so that they can be discovered, selected and

invoked to be used by users or by other services independently on the platforms or the

programming languages [25].

The basic SOA adopted in SOC is depicted in Figure 2.1. In this architecture, ser-

vices follow a specified protocol: publication, discovery and invocation. Mainly, three

actors are involved: service providers, service consumers and service registries. Service

providers generate descriptions of their services using accepted standard formats and

publish them in a service registry. Service consumers can then, discover and invoke the

Chapter 2. Background and Related Work 13

Figure 2.1: Roles and interactions involved in SOA

available services in the registries. For example, in the context of web services, the most

adopted technology in SOC, services are described by an XML-based standard format

(e.g., Web Service Description Language (WSDL) [26] and Web Ontology Language

(OWL-S) [27]). Service descriptions can be accessible to the clients by advertising them

in a Universal Description, Discovery and Integration (UDDI) service registry [28]. The

interactions between the service providers and consumers to invoke services are achieved

through Simple Object Access Protocol (SOAP) messages [29].

The main advantage of the above service technologies is to enable the automated com-

position of services which is discussed in the next section.

2.2.2 Service Composition Methods

Very often, user’s requirements can not be fulfilled by an elementary service and require

the aggregA fundamental step to satisfy complex user’s requirements and enable the

aggregation of multiple functionalities of services is the service composition. Due to the

huge amount of available services, the composition of several elementary services be-

comes a challenging task. Service composition aims to determine the way of combining

a set of services from a functional point of view in order to meet given requirements.

Several methods have been proposed to compose services. These methods can be catego-

rized into tow maim categories [30]: AI-planning-based and workflow-based approaches.

2.2.2.1 AI Planning based Composition

Artificial Intelligence (AI) planning composition methods assume that the service com-

position can be viewed as a plan and that a composition of services can be generated

automatically to achieve a feasible plan [31–33]. These methods suppose that each ser-

vice can be specified by a set of inputs and outputs. Based on these latter and on the

user’s requirements, the planner searches for a sequence of services that consumes and

Chapter 2. Background and Related Work 14

produces the considered inputs and outputs, respectively, while satisfying the user’s re-

quirements. Although these methods allow to automatically generate the process model,

they support simple sequential composition and do not take into account structural pat-

terns between services (sequence, parallel, choice, loop).

2.2.2.2 Workflow based Composition

The workflow-based approaches [34, 35] can be classified into static and dynamic ap-

proaches. Static workflow generation methods assume that an abstract process model

is given prior to the composition of services. The process model is composed of a set

of abstract tasks and dependencies between them using multiple composition patterns

[36, 37]. Based on the given abstract process, concrete services are then selected to imple-

ment each abstract task based on services availability and QoS requirements. Dynamic

workflow generation methods create the process model and select services automatically

based on user’s requirements. Several specification languages have been proposed to

specify the process model such as the graph-based languages [38] and Petri-net-based

languages [39, 40].

2.3 Service Selection Models

Service selection problem can be formulated as a multi-objective combinatorial optimiza-

tion problem (MOCOP) [41]. Combinatorial problems involves finding an assignment of

a finite set of objects that satisfies a set of conditions. The solutions of a combinatorial

problem are combinations of components that satisfy all conditions. Combinatorial opti-

mization problems relate to an objective function that has to be optimized (minimized or

maximized) while searching for the optimal combination. When several objectives must

be optimized, we get the multi-objective combinatorial optimization problem [42]. This

problem allows finding the optimal solution that balances multiple (often conflicting)

objectives simultaneously. Hence, the service selection problem can be formulated as an

MOCOP by mapping the values of candidate services for the different QoS parameters

to the values of the objects in the MOCOP [1, 43]. Moreover, global QoS constraints

can be mapped to the set of conditions of the optimization problem.

The most adopted methods to solve an MOCOP problem are the Simple Additive

Weighting (SAW) method [44] and the pareto ordering [45–50]. The SAW method in-

volves aggregating the values of all parameters into an overall utility value while giving

a weight for each parameter. In this case, the problem is considered as a single-objective

Chapter 2. Background and Related Work 15

optimization problem. Pareto ordering consists of finding the solution that is not domi-

nated by any other solution (i.e., the solution that has the best values for all parameters)

[51–54]. If there is no single solution that dominates all other combinations, a set of

several pareto solutions is identified.

Several sub-problems of the MOCOP have been proposed in the literature to formally

specify the service selection problem and facilitate its resolution [41]. The mot adopted

ones are the Multi-dimension Multi-choice Knapsack Problem (MMKP) and Multi-

constraint Optimal Path Problem (MCOP) which are defined in the following.

2.3.1 Multi-dimension Multi-choice Knapsack Problem (MMKP)

The knapsack problem can be presented as follows. Given a set of items with each item

having an associated profit and a number of required resources, the aim is to select a

sub-set of items to put into a knapsack while maximizing the overall profit and respecting

the maximum allowed capacity of the knapsack. If the items are combined into several

classes and only one item must be selected from each class, we obtain the multi-choice

knapsack problem. Moreover, if several constraints must be fulfilled (e.g., the maximum

allowed weight and volume of the knapsack), we get the multi-dimension multi-choice

knapsack problem. Given this definition, QoS-aware service selection problem can be

formulated as an MMKP [35] by mapping the candidate services of each abstract task to

the set of items in each class and the combination of services with global QoS constraints

to the knapsack with limited capacities.

2.3.2 Multi-constraint Optimal Path Problem (MCOP)

The multi-constrained optimal path (MCOP) problem involves finding the optimal path

between a couple of nodes in a graph such that constraints imposed on the attributes

of the different nodes are satisfied [55]. In such a problem, each node in the graph has

a profit value and a set of attributes. The selected path is the path with the highest

profit amongst all possible feasible paths between the two nodes such that all constraints

are fulfilled. Thus, by mapping candidate services and structural dependencies between

them to the set of nodes and edges between them, service selection problem can be

modeled as an MCOP problem that selects the best combinations of services (one service

for each node) with the highest overall utility while satisfying all global constraints [35].

Chapter 2. Background and Related Work 16

2.4 Service Selection Techniques

Several techniques are proposed to solve the service selection problem. These tech-

niques can be divided into four main categories: mathematical programming, constraint

programming and meta-heuristic and heuristics.

2.4.1 Mathematical Programming

Mathematical programming (MP) is the dominant standard technique used to find so-

lutions to optimization problems. It involves the use of mathematical models to assist

making optimal decisions. The most known MP technique is the Linear Programming

(LP). LP consists on optimizing an objective function subject to a set of linear con-

straints over a set of real variables. Integer Programming (IP) is an extension of LP

where all variables are constrained to be integer. If only some variables are required

to be integer, then the problem is called a Mixed Integer Programming (MIP) problem.

One important feature of MIP is the use of constraint relaxation techniques.

2.4.2 Constraint Programming

Recently, Constraint Programming (CP) has emerged to extend MP methods while

offering more flexibility on modeling optimization problems such as the possibility of

modeling logical constraints [56, 57]. In CP paradigm, relations between variables are

expressed in the form of constraints that can be non-linear. Indeed, CP formulates the

problem as a constraints satisfaction model composed of a set of variables that have

values ranging over specific finite domains and are linked by a set of constraints that

have to be satisfied. CP deals with Constraint Satisfaction Problems (CSP) in which a

set of constraints should be satisfied by the selected solution. Constraint Optimization

Problems (COP) are considered as a generalization of CSPs to deal with optimization

problems in which an objective function should be optimized. The key element of CP is

the use of constraint propagation, which makes it very suitable and efficient for solving

several optimization problems such as scheduling and sequencing problems.

2.4.3 Meta-heuristics and Heuristics

Meta-heuristics are used in several combinatorial optimization problems and can be

applied to a broad range of applications [58]. They are problem-independent and thus,

they can be used as black boxes. They aim to search for good but not necessarily optimal

solutions in order to solve a hard optimization problem in an acceptable amount of

Chapter 2. Background and Related Work 17

time. Most of meta-heuristic algorithms are based on evolutionary algorithms [59] (e.g.,

Genetic Algorithms (GA)) or on nature-inspired algorithms (e.g., ant colonies, artificial

immune systems). Heuristics, on the other hand, are problem-dependent and they are

usually adapted to a specific problem to try to find accurate solutions in a reasonable

time while considering the particularities of this problem.

Recently, some works proposed to combine two or more techniques to solve the selection

problem. Next, we give a review on static service selection approaches.

2.5 Static Service Selection

QoS-aware service selection requires the selection of a combination of services that satis-

fies all constraints while optimizing several QoS values at the same time. In this section,

we provide a review of service selection strategies and approaches to resolve the selection

problem.

2.5.1 Static Service Selection Strategies

Based on the service selection models presented above, QoS-aware service selection ap-

proaches proceed to the selection of services using two broad strategies: local optimiza-

tion and global optimization strategies.

2.5.1.1 Local Service Selection

Local optimization strategy aims to select the best service from each class of candidate

services (i.e., candidate services of each task) independently from other classes. This

strategy is especially used in distributed environments where a global QoS management

is not required [60–65]. Even though the local optimization strategy is very efficient in

terms of computation time, it is not suitable for QoS-based service selection since it does

not guarantee that the global QoS constraints are satisfied.

2.5.1.2 Global Service Selection

Global optimization strategy relies on a bottom-up method, which is adopted at the com-

posite service level. This approach consists in searching candidate services that optimize

the QoS of the composite service and fulfill all global QoS constraints while considering

several combinations of services [35, 66–71]. Although global optimization approaches

Chapter 2. Background and Related Work 18

guarantee that the optimal solution will be found, they have a poor performance es-

pecially in terms of computation time. Consequently, these approaches can be applied

only when the number of candidate services is very limited.

2.5.1.3 Hybrid Service Selection

To deal with the limitations of these two strategies, some researchers proposed hybrid

selection strategy adopting a top-down method. These approaches assume that global

constraints can be considered as the aggregation of a set of local ones. Several tech-

niques have been proposed to decompose global constraints to local ones [16, 21, 72–74].

Based on these latter, local optimization algorithms are applied to select the best ser-

vice for each abstract task such that all local constraints are fulfilled. The aim of these

approaches is to reduce the complexity of the service selection problem while increasing

the performance of the proposed algorithm.

2.5.2 Static Service Selection Approaches

The selection of the best service combination to implement abstract business tasks has

been widely treated in the literature [11, 16, 17, 35, 43, 66, 67, 75]. To solve the service

selection problem, various approaches have been proposed to explore and select service

compositions. To enable the selection of the concrete service combinations, we identify

two main categories of service selection approaches: exact and Approximate approaches.

For each category, we distinguish between approaches that apply pre-processing tech-

niques to reduce the search space before the selection process and those that do not

apply any pre-processing techniques.

2.5.2.1 Exact Service Selection

Exact selection approaches usually adopt exhaustive methods to evaluate all possible

combinations of services in order to select the optimal solution (i.e., the combination

of services that offers the best quality values according to the specified requirements)

[66, 67, 76].

• Exact methods without pre-processing:

A popular way to solve the service selection problem is the use of constraint program-

ming methods. Constraint programming is widely adopted in the literature to solve

Chapter 2. Background and Related Work 19

combinatorial optimization problems in different applications. In [76], Ben Hassine et

al. discuss a web service composition approach using constraint programming. The au-

thors formalize the service selection problem based on a constraint optimization problem,

which is a generalization of the constraint satisfaction problem where the goal is to find

a solution that maximizes an objective function. A similar approach is proposed in

[77] to model the service selection problem as a COP while handling both hard and

soft QoS constraints to specify respectively, constraints that have to be satisfied and

optional constraints. Another way of solving the service selection problem is to model

it as a mixed integer programming problem. In [66], Zeng et al. use MIP techniques

to select the optimal combination of services and achieve global optimization of QoS

attributes. This work is extended in Ardagna et al. [67] to include local QoS constraints

and loop peeling to deal with composition structures with cycles. These techniques are

usually applied to tackle global service selection in order to select the optimal solution.

These approaches use the SAW method to evaluate the quality of the service composi-

tion. In contrast, Klopper et al. [14] identify pareto-optimal service compositions (i.e.,

all non-dominated service compositions) while taking into consideration time-dependent

QoS values. The authors formulate the service selection problem as a multi-objective

timed composition problem. In this work, authors assume that all QoS attributes are

monotonically decreasing. All the previous approaches are suitable for small problems,

as the complexity of the selection algorithm increases exponentially when the problem

size increases. This causes several scalability issues especially when dealing with a large

number of candidate services for each task.

• Exact methods with pre-processing:

Reducing the search space prior to the selection process allows to enhance the perfor-

mance of service selection algorithms. Some methods reduce the number of candidate

services based only on functional properties [78] and thus, they cannot be applied in

QoS-aware service selection problems. Barakat et al. [17] apply two space reduction

techniques to reduce the number of candidate services and the number of alternative ab-

stract plans. The authors use the notion of dominance to select representative services

for each task without affecting the optimal solution. The selection problem is modeled

as an MCOP problem. To solve the selection problem, the authors adopt an algorithm

that extends the Bellman-Ford algorithm [79] (called multi-constrained Bellman-Ford

algorithm). In [80] Huang et al. propose pruning techniques to reduce the number of

services to be considered. First, they remove services that cannot be executed (i.e., they

have no inputs). Then, they eliminate services that cannot offer optimal QoS values.

However, these approaches do not deal with the time dimension.

Chapter 2. Background and Related Work 20

In [52], a compositional decision making process is introduced to select the pareto-

optimal composition solutions. Pareto-optimal services are first selected at the ser-

vice level to discard all uninteresting service instances for each business task. Then,

the pareto-optimal approach is used at the composed level to select all non-dominated

combinations of services. In this work, authors propose two dominance-based pruning

strategies, which rely on both QoS objectives and constraints, where objectives are the

requirements that have to be optimized and constraints present the requirements that

have to be satisfied. A similar approach is proposed in [54] to select the set of the

optimal combinations of services based on constraints and objective dominance. These

approaches can be time consuming when the number of services is very high due to the

significant computational overhead caused by the pairwise comparisons.

2.5.2.2 Approximate Service Selection

To overcome the limitations of exact solutions, several work proposed approximate selec-

tion approaches. These approaches aim to reduce the computation time and deal with

scalability issues. They are used to find a near-to-optimal solution more efficiently than

exact solutions.

• Approximate methods without pre-processing:

Several works proposed approximate algorithms to reduce the computation time and

deal with scalability issues. These works propose heuristics that can be used to find

a near-to-optimal solution more efficiently than exact solutions. Some heuristic ap-

proaches are based on global search. Yu et al. [35] introduce two alternative models for

the QoS-based service composition problem: the combinatorial model to define the se-

lection problem as a multi-dimension multi-choice knapsack problem (MMKP) and the

graph model to define the selection problem as a multi-constraint optimal path (MCOP)

problem. Based on these models, authors propose heuristic algorithms to achieve effi-

cient selection process. Other approaches are based on evolutionary algorithms to select

a near-to-optimal solution. Such algorithms usually browse the combinations of services

in a random way to iteratively find near-to-optimal solutions. In [11, 81–83], authors

model and resolve the service selection problem based on genetic algorithms (GA). Can-

fora et al. [11] encode the selection problem as a genome and adopt a fitness function

to evaluate the quality of each service combination. Since GAs are unconstrained pro-

cedures, the authors propose a distance-based penalty approach to penalize individuals

that do not meet the global constraints and integrate constraint-handling during the

selection process. This is achieved by incorporating constraints in the fitness function

Chapter 2. Background and Related Work 21

in order to drive the evolution towards constraint satisfaction. A similar approach is

presented in [81] to enable service composition in cloud computing. In these approaches,

QoS values are normalized using the SAW method. Other approaches adopt other meta-

heuristic algorithms such as ant colony [84], immune [85, 86] and bees based methods

[87]. These approaches, however, are restrictive in heavily constrained problems espe-

cially in the presence of several temporal constraints and dependencies between services.

Moreover, these algorithms can run endlessly (if a stop criterion is not defined) without

any guarantee on the quality of the obtained solution.

Some approaches cater for the time dimension when composing and selecting services.

In [10], Liang et al. propose a penalty-based genetic algorithm to select services under

temporal constraints. In this work, authors assume that QoS values are static and do not

depend on the time of the execution and only upper bound temporal constraints between

activities are considered. Zhang et al. [88] model the selection problem as a multi-

domain scheduling problem that minimizes service resources under time constraints.

The proposed service selection algorithm allows identifying the start and the finish time

of each selected service while handling complex business structures. Wagner et al. [1]

propose a service selection approach with time-dependent QoS attributes. Apart from

that, inter-service dependencies are considered to describe general dependencies between

QoS values of interacting services (e.g., the cost of a compress movie service may depend

on the amount of data generated by the service retrieve file). The authors employ a

GA to solve the multi-objective optimization problem. The proposed algorithm selects

a set of feasible solutions while specifying the start and the finish time of each selected

service instance according to the values of QoS attributes at each time period. Both

approaches [88] and [1] do not consider temporal constraints at the business level.

• Approximate methods with pre-processing:

Recently, some approaches propose techniques to decompose global QoS constraints into

local ones. The idea consists in defining allowed local constraints for each business task

so that the global constraints are satisfied. Thus, for each business task, the candidate

services that do not satisfy the local constraints can be removed. Local optimization

is then applied to select the best service for each abstract task such that all local con-

straints are fulfilled. For instance, Alrifai et al. [16] use a mixed integer programming

model to compute local constraints of each task based on a set of QoS levels for each

QoS attribute. After that, a local selection strategy is applied to select the best service

for each task. As a step forward, Qi et al. [72] suggest a local optimization method

to further reduce the number of candidate services based on QoS levels. In [73], Sun

et al. introduce a QoS decomposition approach based on the mean and the standard

Chapter 2. Background and Related Work 22

deviation of each QoS attribute while considering several composition structures. An-

other approach is proposed in [74] to define local constraints using genetic algorithm.

Although the proposed solutions scale better when dealing with large problems, they

rely on greedy pruning methods when computing local constraints that can affect the

ability to find an optimal solution. Additionally, these works are not able to handle

time-dependent QoS attributes associated with temporal constraints and dependencies

between services.

The technology of the skyline has been also considered as an important concept in

QoS-based service selection for eliminating candidate services. Skyline analysis was first

treated in mathematical problems [89] and then it was investigated into the database

domains [90–92]. Recently, skyline computation has received significant consideration in

service selection problems. The skyline is a set of services that are not dominated by any

other service based on their QoS values. A service s1 is said to dominate another service

s2 if and only if it is better than or equal to s2 in all QoS parameters and it is strictly

better than s2 in at least one parameter. Yu et al. [51] identify service skylines from

uncertain QoS information to reduce the search space. The authors introduce a pruning

strategy to remove the p-dominated providers (i.e., the chance that these providers are

dominated by other providers is greater than or equal to a given probability threshold

p). In [53], Alrifai et al. propose hierarchical clustering method to cluster the skyline

services according to their utilities in order to prune all non-skyline services. The authors

build a tree structure of representative skyline services that will be used as inputs to a

MIP model. First, a small subset of services in inserted into the MIP. The search space

of the representative tree is then expanded iteratively by including more representative

services until a solution to the MIP is found. Benouaret et al. [93] introduce two skyline

variants, the σ-dominant skyline and the α-dominant skyline to deal with both size and

quality requirements. The first requirement allows reducing the size of skyline when it is

very large, whereas, the second requirement aims to enhance the quality of the skyline by

including interesting services and removing services with bad compromise between their

QoS parameters. This work is only suitable to select skyline services for an individual

abstract task and does not handle the selection of a service composition. Moreover, none

of the above approaches identifies skyline services while handling time-dependent QoS.

2.5.3 A Synthesis of Static Service Selection Approaches

In this Section, we present a synthesis of existing selection approaches considering the

following criteria (See Table 2.1):

Chapter 2. Background and Related Work 23

T
a
b
l
e
2
.1
:

A
sy

n
th

es
is

o
f

st
a
ti

c
se

rv
ic

e
se

le
ct

io
n

a
p

p
ro

a
ch

es
.

E
x
a
c
t/

G
lo

b
a
l/

P
re

-p
ro

c
e
ss

in
g

S
e
le

c
ti

o
n

C
o
n

st
ra

in
ts

T
im

e
-d

e
p

e
n

d
e
n
t

S
e
rv

ic
e

A
p

p
ro

x
im

a
te

H
y
b

ri
d

T
e
ch

n
iq

u
e

T
e
ch

n
iq

u
e

Q
o
S

D
e
p

e
n

d
e
n

c
ie

s

[6
6]

E
x
ac

t
G

lo
b

al
x

IP
G

lo
b

al
Q

oS
x

S
tr

u
ct

u
ra

l
(C

)

[6
7]

E
x
ac

t
G

lo
b

al
x

M
IP

L
o
ca

l
an

d
G

lo
b

al
x

S
tr

u
ct

u
ra

l
(C

)
Q

oS

[7
6]

E
x
ac

t
G

lo
b

al
x

C
O

P
G

lo
b

al
Q

oS
x

S
tr

u
ct

u
ra

l
(C

)

[1
7]

E
x
ac

t
G

lo
b

al
T

as
k

an
d

P
la

n
B

el
lm

an
-F

or
d

G
lo

b
al

Q
oS

x
S

tr
u

ct
u

ra
l

(S
)

b
as

ed
P

ru
n

in
g

al
go

ri
th

m

[1
4]

E
x
ac

t
G

lo
b

al
x

P
ar

et
o-

op
ti

m
al

G
lo

b
al

Q
oS

√
S

tr
u

ct
u

ra
l

(S
)

so
lu

ti
on

s
T

em
p

o
ra

l
(F

S
)

[5
2]

E
x
ac

t
G

lo
b

al
D

om
in

an
ce

b
as

ed
P

ar
et

o-
op

ti
m

al
G

lo
b

al
Q

oS
x

S
tr

u
ct

u
ra

l
(C

)
P

ru
n

in
g

so
lu

ti
on

s

[1
1]

A
p

p
ro

x
im

at
e

G
lo

b
al

x
G

A
G

lo
b

al
Q

oS
x

S
tr

u
ct

u
ra

l
(C

)

[1
]

A
p

p
ro

x
im

at
e

G
lo

b
al

x
G

A
G

lo
b

al
Q

oS
√

S
tr

u
ct

u
ra

l
(C

)
Q

o
S

T
em

p
o
ra

l
(F

S
)

[3
5]

A
p

p
ro

x
im

at
e

G
lo

b
al

x
H

eu
ri

st
ic

al
go

ri
th

m
G

lo
b

al
Q

oS
x

S
tr

u
ct

u
ra

l
(C

)

[1
0]

A
p

p
ro

x
im

at
e

G
lo

b
al

x
G

A
G

lo
b

al
Q

oS
x

S
tr

u
ct

u
ra

l
(C

)
T

em
p

o
ra

l
(F

S
)

[5
3]

A
p

p
ro

x
im

at
e

G
lo

b
al

D
om

in
an

ce
b

as
ed

M
IP

G
lo

b
al

Q
oS

x
S

tr
u

ct
u

ra
l

(S
)

P
ru

n
in

g

[1
6]

A
p

p
ro

x
im

at
e

H
y
b

ri
d

L
o
ca

l
C

on
st

ra
in

t
Q

oS
d

ec
om

p
os

it
io

n
(M

IP
)

G
lo

b
al

Q
oS

x
S

tr
u

ct
u

ra
l

(S
)

b
as

ed
P

ru
n

in
g

L
o
ca

l
se

le
ct

io
n

[7
2]

A
p

p
ro

x
im

at
e

H
y
b

ri
d

S
el

ec
ti

on
of

M
IP

G
lo

b
al

Q
oS

x
S

tr
u

ct
u

ra
l

(S
)

p
ro

m
is

in
g

se
rv

ic
es

[7
3]

A
p

p
ro

x
im

at
e

H
y
b

ri
d

L
o
ca

l
C

on
st

ra
in

t
Q

oS
d

ec
om

p
os

it
io

n
(M

ea
n

G
lo

b
al

Q
oS

x
S

tr
u

ct
u

ra
l

(C
)

b
as

ed
P

ru
n

in
g

an
d

st
an

d
ar

d
d

ev
ia

ti
on

)
L

o
ca

l
se

le
ct

io
n

[7
4]

A
p

p
ro

x
im

at
e

H
y
b

ri
d

L
o
ca

l
C

on
st

ra
in

t
Q

oS
d

ec
om

p
os

it
io

n
(G

A
)

G
lo

b
al

Q
oS

x
S

tr
u

ct
u

ra
l

(S
)

b
as

ed
P

ru
n

in
g

L
o
ca

l
se

le
ct

io
n

Chapter 2. Background and Related Work 24

• Exact/Approximate: to indicate if the selection approach investigates an exact or

an approximate selection approach

• Local/Global : to indicate if the selection approach adopts a global or a hybrid

selection strategy

• Pre-processing technique: to present the pre-processing technique if it is applied

before selection

• Selection technique: to define the different steps of the proposed selection approach

• Constraints: to present the different constraints taken into account including local

and global QoS and temporal constraints

• Time-dependent QoS : to indicate if the selection approach considers time-dependent

QoS

• Service dependencies: to specify the dependencies considered between services

including structural, QoS and temporal dependencies. The structure can be com-

plex (C) (i.e., various structural patterns are considered) or simple (S) (i.e., only

sequential patterns are considered).

2.6 Dynamic Service Selection

Service selection approaches discussed in the previous section are solely used to obtain

an ex-ante service combination. During execution, the QoS of the selected services

might deviate from their estimated values at design time. In fact, since service-oriented

systems are very likely to be executed in uncertain and dynamic environments, several

changes can affect the selected services and may lead to the violation of end-to-end

global constraints. Therefore, enabling service compositions to evolve in uncertain and

dynamic environments and adequately deal with violations and changes is imperative to

guarantee the fulfillment of the required needs. To do so, it is necessary to detect changes

in the environment as well as violations of the specified constraints during execution.

The detection of changes can be achieved through various monitoring techniques [94, 95].

These techniques can be reactive [96, 97] (i.e., violations are detected only after their

occurrence) or proactive [98] (i.e., potential deviations can be identified before their

occurrence).

To enable the adaptation of running service compositions in order to ensure fulfilling

QoS requirements, and/or to optimize the selected composition, various approaches

have been proposed. These approaches allow either the adaptation of the behavior of

Chapter 2. Background and Related Work 25

the composition or the services forming the composition. Behavioral adaptation aims to

execute the service composition with respect to an alternative behavior after a possible

change or a violation during execution [99]. Alternative behaviors can be obtained by

changing the structure of the service composition (i.e., by changing structural patterns

of the composition) and/or the granularity of services (e.g., by merging coarse-grained

services into fine-grained services or inversely). Adapting services forming the compo-

sition at run-time (also called dynamic service selection) aims to adjust the selected

service composition to face changes and violations during execution [67, 95, 100–103].

Dynamic service selection allows substituting involved failed services in the composition

with functionally equivalent ones while fulfilling end-to-end constraints. Dynamic ser-

vice selection approaches assume that an initial service combination is identified using a

static selection approach and aim to dynamically re-select services according to changes

that might occur during execution such that all constraints remain satisfied. In this

thesis, we particularly focus on dynamic service selection approaches.

2.6.1 Dynamic Service Selection Strategies

Dynamic service selection approaches at run-time adopt either a reactive or a proactive

selection strategy to adapt service compositions [104].

2.6.1.1 Reactive Service Selection

Reactive service selection approaches [67, 100, 101] react to changes and failures and

deal with erroneous behaviors after their occurrence. However, handling changes once

failures have occurred might lead to undesirable effects. For instance, a delayed reaction

to changes may lead to the inability to find a feasible solution that satisfies all constraints

or a selection of a new solution that has a lower quality compared to the solution that

could be found if the reaction to changes is triggered earlier. Moreover, the late reaction

to changes might cause a significant interruption time during the execution of services,

which is highly undesirable mainly in time-sensitive applications. Another limitation of

reactive approaches is that most of them do not take into account environment changes

which should be considered to enhance the selected solution (e.g., when a new better

service is added).

2.6.1.2 Proactive Service Selection

To deal with the limitations of reactive selection strategies, some approaches adopt

proactive selection strategy. Proactive approaches anticipate required adaptation actions

Chapter 2. Background and Related Work 26

prior to the occurrence of possible violations [95, 103, 105–107]. These approaches

perform adaptation actions before reaching an erroneous state. The main advantage of

this strategy is to increase the likelihood of finding a possible solution while enhancing

the overall quality and avoiding the interruption of service execution due to for instance

the invocation of a faulty service. These approaches can also be used to optimize the

selected solution by considering the environment changes at run-time such as the addition

of new better services.

2.6.2 Dynamic Service Selection Approaches

Dynamic service selection represents a broad research topic. In this section, we consider

two classes of dynamic service selection: re-selection of services and backup solutions.

2.6.2.1 Re-selection of Services

Re-selection through substituting services of non-executed tasks is a popular way to

ensure the fulfillment of global constraints during execution. The substitution of services

can be global (i.e., applied to all non-executed services in the composition), partial (i.e.,

applied to a subset of non-executed services) or local (i.e., applied to one service in

the composition). When a partial or a global substitution is required, some approaches

apply the same service selection algorithm used to select the initial combination of

services while considering the values of the already executed services (See Section 2.5.2).

• Global Re-selection

Canfora et al. [101] introduce a service re-planning approach to re-plan the service

process during execution. The re-planning algorithm is triggered as long as services are

executed. If a considerable deviation in QoS values is observed, the execution is stopped

and the re-planning is triggered for non-executed tasks using a genetic algorithm. In [67],

Ardagna et al. propose re-optimization plans when possible violations occur at run-time.

The re-optimization is based on global optimal approach that re-select services for all

non-executed tasks to search for the best solution by adopting integer programming. A

similar approach is proposed by Zeng et al. [66] to re-select services for the non-executed

part of the process each time a change occurs in an executed service. In these approaches,

all potential candidate services for abstract tasks are considered in the re-selection step

which can be time consuming. Moreover, temporal properties and time-dependent QoS

are not taken into account.

Chapter 2. Background and Related Work 27

To avoid considering all candidate services, which is not appropriate during the execution

of services, Ramacher et al. identify a set of alternative services for each abstract task

[108]. The approach proposed in [108] deals with uncertainties of the response time and

the temporal conditions during execution based on a time-sensitive selection approach.

A MIP model is defined to adjust the combination of services when a deviation or

a violation is observed. If a large deviation of the start time of one abstract task

is observed or the execution time constraint is expected to be violated, a re-selection

action is triggered for non-executed tasks using MIP while considering only the set

of pre-selected services. An interesting feature of this approach is that it takes into

account time-critical service compositions while considering the temporal conditions on

the execution time of the whole composition. However, this work considers only one

quality attribute that should be optimized. Du et al. [109] propose a penalty-based

genetic algorithm to dynamically select services for business processes under temporal

constraints. The authors propose to re-select services for all tasks that have not yet been

executed each time a violation of a temporal constraint occurs. Both approaches [108]

and [109] can not handle environment changes such as the availability of new better

services and they are only applied for corrective purposes. Moreover, while considering

violations at execution time, they do not take into consideration time-dependent QoS

values, which can make the re-selection problem more complex to resolve. In fact, when

considering time-dependent QoS values, a violation of the execution duration of one

service may lead to a change in QoS values of its successor service.

Although the previous approaches guarantee the satisfaction of global QoS constraints,

they suffer from a high computation cost and require the interruption of the execution.

• Partial Re-selection

The algorithm proposed in [107] tries to find a replacement to the failed task from the

set of its candidate services. If there is no suitable replacement, a re-selection region is

increased incrementally to include other non-executed tasks until a solution is found. In

[110], Lin et al. define selection regions to adapt the selected combination of services.

In this work, a selection region is identified for each faulty service. These regions are

enlarged using a distance measure until a satisfactory solution is found. The selection

algorithm is triggered for each region to search for the optimal alternative composition.

However, in these approaches, to re-select services, all candidate services are considered.

A similar work that adopt a partial re-selection strategy is presented in [111] while

considering only a small set of alternative candidate services for each task. Li et al.

[111] identify a set of alternative candidate services for each task to reduce the number

of services that have to be considered during the selection. Authors preselect two services

Chapter 2. Background and Related Work 28

for each business task based on a distance measure with respect to the primary selected

services. Considering only two services may lead to the inability to find a feasible solution

in some cases based on the already executed services. Moreover, the measures used to

select alternative services are applied locally for each abstract task and do not consider

dependencies between the services of the different tasks. All the previous approaches do

not consider specific characteristics related to the presence of temporal properties and

can not handle changes in temporal values (e.g., start and finish time of services and

temporal dependencies between services). Moreover, these approaches do not cater for

optimization purposes and can only be used to find a recovery solution. Additionally,

re-selection actions are taken only when a violation occurs without preventing possible

violations.

As a step forward, Ismail et al. [112] address the issue of handling the violation of Service

Level Agreements (SLA) while considering the time impact analysis. In other words,

when a violation is observed, an impact region is defined to include all the impacted

services based on the time impact conditions in order to reduce the amount of service

changes during execution. In this work, only time dimensions are considered and no

support to QoS values violations is proposed. Moreover, there is no indication on how

new services are selected for each impact region.

• Local Re-selection

Local re-selection at run-time aims to substitute one service in the selected solution by

another service from the set of candidate services [103]. To enhance the efficiency of

the re-selection process, some approaches identify a set of alternative candidate services

for each abstract task. Azmeh et al. [113] specify a set of alternative services prior to

the execution. These services are considered in case of failure in order to substitute a

failed service. However, in this work, only functional properties are considered. Given

a workflow, in [114], Wagner et al. identify backup services for each task during the

selection of services. First, functional clustering is applied on the set of services. If a

service fails during execution, it is replaced by one of the backup services in its sub-

cluster. The service with the shortest distance to the originally selected service is then

selected to be executed. In this approach, QoS values of backup services are taken into

account during the selection of services, which allows the estimation of the overall quality

of the compositions of services in case of failure.

2.6.2.2 Backup Solutions

To deal with the high overhead of the re-selection of services during execution, some

researches resort to the use of backup solutions. This mechanism is widely used to

Chapter 2. Background and Related Work 29

adapt service compositions at run-time. Backup solutions are identified prior to the

execution of the service composition so that, if a problem occurs, these solutions can be

used to maintain the successful execution of services.

In [115], Chafle et al. pre-specify several alternative plans at different levels that can

be selected at run-time. While this work allows for handling several changes, it may

be the case where no predefined plan is feasible even though a solution to the problem

does exist, which decreases the efficiency of the proposed approach. In [102], Yu et

al. propose an offline algorithm to react to service changes. The proposed algorithm

identifies a secondary path from each service so that if a service becomes faulty at run-

time, the secondary path from this service will be used to repair the combination of

services. However, only one failure can be handled, which is not appropriate in highly

uncertain and dynamic environments. In [116], Ben Mabrouk et al. classify the most

representative services of each abstract task according to their QoS values. A search tree

is then applied to select the best combination of services during execution by checking

services in an ordered way. Multiple service compositions that satisfy QoS constraints are

identified during selection, so that they can be used if a change occurs during execution.

Yang et al. and Dai et al. [105, 106] propose proactive selection approach based on

backup solutions. When a failure occurs, the execution is switched to a backup solution.

Despite the early reaction to changes, only services that succeed the failed service are

considered. However, in some cases including also non-executed services that precede

the affected service might lead to a better solution. Moreover, the proposed approach

caters only of repair purposes and ignore optimization issues that can prevent violations.

In these approaches, all backup solutions are determined prior to the execution without

considering environment changes. Considering static backup solutions at request time is

not a practical solution when dealing with highly uncertain and dynamic environment

and heavily constrained problems.

Barakat et al. [117] introduce a reactive service selection algorithm to deal with service

changes during the selection process while dealing with dynamic backup solutions. The

main idea is to react to service changes during selection so that the selected solution

can be executable, satisfactory and optimal prior to execution. Authors focus on service

failures and changes during the selection phase by adjusting the selected services when

new information becomes available. This approach, however, suffers from a high com-

putation cost since possible backup paths are recomputed each time a change occurs.

Moreover, the proposed approach is restricted to changes during the selection phase

while neglecting deviations that may occur during the execution phase.

Chapter 2. Background and Related Work 30

2.6.3 A Synthesis of Dynamic Service Selection Approaches

Table 2.2 provides a synthesis of the current dynamic service selection approaches based

on the following criteria.

• Reactive/Proactive: to indicate if the dynamic selection approach adopts a reactive

or a proactive service selection strategy

• Selection technique: to specify the technique used to adapt the service combination

during execution. If a re-selection is applied, (L), (P) and (G) indicate a local, a

partial or a global re-selection, respectively. If the selection approach is based on a

set of backup plans, (S) denotes static backups and (D) denotes dynamic backups

plans.

• Optimization purpose: to indicate if the dynamic selection approach allows opti-

mizing the selected solution or adaptation actions are only applied for corrective

purposes

• Solution optimality : to indicate if the new solution after a re-selection is optimal

• Environment changes: to indicate if the environment changes are taken into ac-

count

• Execution interruption: to indicate if the dynamic selection approach allows for

avoiding the interruption of execution

• Time-dependent QoS : to indicate if the selection approach considers time-dependent

QoS

• Service dependencies: to specify the dependencies considered between services

including structural, QoS and temporal dependencies.

2.7 Summary and Discussion

In recent years, QoS-aware service selection at both design time and run-time has re-

ceived great importance. Despite active research, several limitations can be identified

according to the research challenges presented in Chapter 1.

Chapter 2. Background and Related Work 31

T
a
b
l
e
2
.2
:

A
sy

n
th

es
is

o
f

d
y
n

a
m

ic
se

rv
ic

e
se

le
ct

io
n

a
p

p
ro

a
ch

es
.

R
e
a
c
ti

v
e
/

S
e
le

c
ti

o
n

O
p

ti
m

iz
a
ti

o
n

S
o
lu

ti
o
n

E
n
v
ir

o
n

m
e
n
t

E
x
e
c
u

ti
o
n

T
im

e
-

S
e
rv

ic
e

P
ro

a
c
ti

v
e

T
e
ch

n
iq

u
e

P
u

rp
o
se

O
p

ti
m

a
li
ty

C
h

a
n

g
e
s

In
te

rr
u

p
ti

o
n

d
e
p

e
n

d
e
n
t

D
e
p

e
n

d
e
n

c
ie

s
Q

o
S

[6
6]

R
ea

ct
iv

e
R

e-
se

le
ct

io
n

(G
)

√
√

√
x

x
S

tr
u

ct
u

ra
l

(C
)

IP

[1
01

]
R

ea
ct

iv
e

R
e-

se
le

ct
io

n
(G

)
x

x
√

x
x

S
tr

u
ct

u
ra

l
(C

)
G

A

[6
7]

R
ea

ct
iv

e
R

e-
se

le
ct

io
n

(G
)

√
√

√
x

x
S

tr
u

ct
u

ra
l

(C
)

M
IP

[1
10

]
R

ea
ct

iv
e

R
e-

se
le

ct
io

n
(P

)
x

√
x

x
x

S
tr

u
ct

u
ra

l
(C

)
IP

[1
12

]
R

ea
ct

iv
e

R
e-

se
le

ct
io

n
(P

)
x

-
x

√
x

S
tr

u
ct

u
ra

l
(C

)
T

em
p

o
ra

l
(F

S
)

[1
14

]
R

ea
ct

iv
e

R
e-

se
le

ct
io

n
(L

)
√

√
x

√
x

S
tr

u
ct

u
ra

l
(C

)
(B

ac
k
u

p
se

rv
ic

es
)

[1
08

]
R

ea
ct

iv
e

R
e-

se
le

ct
io

n
(G

)
x

x
x

x
x

S
tr

u
ct

u
ra

l
(C

)
M

IP
(B

ac
k
u
p

se
rv

ic
es

)
T

em
p

o
ra

l
(F

S
)

[1
11

]
R

ea
ct

iv
e

R
e-

se
le

ct
io

n
(P

)
x

x
x

x
x

S
tr

u
ct

u
ra

l
(C

)
L

P
(B

ac
k
u

p
se

rv
ic

es
)

[1
02

]
R

ea
ct

iv
e

B
ac

k
u

p
P

la
n

s
(S

)
x

x
x

√
x

S
tr

u
ct

u
ra

l
(C

)

[1
15

]
R

ea
ct

iv
e

B
ac

k
u

p
P

la
n

s
(S

)
x

x
x

√
x

S
tr

u
ct

u
ra

l
(C

)

[1
16

]
R

ea
ct

iv
e

B
ac

k
u

p
P

la
n

s
(S

)
x

√
x

√
x

S
tr

u
ct

u
ra

l
(C

)

[1
17

]
R

ea
ct

iv
e

B
ac

k
u

p
P

la
n

s
(D

)
√

√
√

√
x

S
tr

u
ct

u
ra

l
(S

)

[1
06

]
P

ro
ac

ti
ve

B
ac

k
u

p
P

la
n

s
(S

)
x

x
x

P
ar

ti
a
ll

y
x

S
tr

u
ct

u
ra

l
(C

)

[1
05

]
P

ro
ac

ti
ve

B
ac

k
u

p
P

la
n

s
(S

)
x

x
x

P
ar

ti
a
ll

y
x

S
tr

u
ct

u
ra

l
(C

)

[1
03

]
P

ro
ac

ti
ve

R
e-

se
le

ct
io

n
(L

)
x

x
x

P
ar

ti
a
ll

y
x

S
tr

u
ct

u
ra

l
(C

)

Chapter 2. Background and Related Work 32

• Constraints and Dependencies between Services

Structural constraints between services in a composition are specified by sequential

dependencies in several approaches. This is very restrictive to effectively present

structural dependencies between abstract tasks in a business process. Moreover,

existing attempts to service selection usually consider only structural dependencies

between services and neglect QoS and temporal constraints and dependencies that

might be specified at the business level (See Table 2.1). However, in various cases,

several constraints and dependencies may arise between services in order to gain

control over the successful execution of business tasks. Hence, several service

selection approaches can not be used in heavily constrained selection problems

and they are only suitable for simple problems where all tasks are supposed to be

executed in sequence without considering dependencies between them.

• Time-dependent QoS

According to the state-of-the art discussed in the previous sections, most of current

QoS-aware service selection approaches usually consider static QoS values. Unlike

static QoS values, which have been deeply studied in the existing service selection

approaches, time-dependent QoS are insufficiently taken into consideration. In

real-world applications, most of QoS attributes (e.g., response time, cost) are time-

dependent. As a result, in different time periods, QoS values may considerably

vary. Considering only static QoS values prevents from capturing the variations of

QoS values over time. In addition, this may result in inaccurate QoS representation

that might lead to service compositions that are not satisfactory at run-time.

• Scalability and Optimality

Different service selection approaches have been proposed to select optimal and

close-to-optimal solutions. These methods rather adopt exact or approximate se-

lection strategies that can be used to select the primary service selection or to

re-select services at run-time. On one hand, exact solutions usually suffer from

scalability issues and poor efficiency especially in large-scale selection problems.

This is highly undesirable notably when re-selecting services at run-time since it

may cause a long interruption of the service execution. On the other hand, approx-

imate approaches generally degrade the quality of the selected solution. Hence,

it is essential to find a trade-off between the computation time required to find a

feasible solution and the optimality of the selected solution. Several approaches

propose pre-processing techniques to reduce the search space prior to the selection

process. These techniques usually rely on greedy reduction space techniques that

can prune candidate services that can be part of the optimal solution.

• Uncertainty and Dynamic Environments

Chapter 2. Background and Related Work 33

Dealing with changes and violations during service execution is necessary to guar-

antee the successful execution of service compositions. Dynamic service selection

approaches can be reactive (i.e., they take adaptation actions after a violation

occurs) or proactive (i.e., they take adaptation actions at early stages without

delaying the reaction until the faulty service is executed) (See Table 2.2). Most of

current dynamic service selection approaches follow a reactive selection strategy

and do not allow proactive selection during service execution. Reactive approaches

suffer from significant interruption time. Some efforts have been proposed to re-

solve this issue by identifying backup solutions or by reducing the number of ser-

vices considered in the re-selection step. Current approaches suppose that the set

of backup services and solutions is static (i.e., does not change during execution),

which may deteriorate the efficiency of the selection algorithm especially in highly

dynamic and uncertain environments when various changes may be observed dur-

ing execution. In fact, identifying the set of backup services and solutions during

the initial selection might lead to undesirable effects (e.g., there is no backup ser-

vice that can participate in a satisfactory solution after a violation). While proac-

tive approaches handle erroneous behaviors at early stages, most state-of-the-art

approaches trigger re-selection only for repair purposes and neglect optimization

purposes.

2.8 Conclusion

In this chapter, we have analyzed and discussed related work on static and dynamic ser-

vice selection approaches while considering QoS and temporal constraints. This analysis

shows that although the service selection problem has been widely treated in literature

and has received the attention of several researchers, there are still some limitations that

have to be considered.

In this thesis, we aim to overcome these limitations. In particular, to allow adequate

evaluation of QoS variations over time, we consider time-dependent QoS. Moreover, in

order to effectively capture the dependencies between services, we provide a rich model

of the service selection problem. This model characterizes QoS, temporal and structural

constraints through handling complex business structures.

To deal with scalability and optimality issues, we develop pruning techniques to remove

inadequate services without any impact on the optimality. An exact and approximate

service selection algorithms are then presented to find an optimal and a near-to-optimal

solution, respectively, while reaching a reasonable computation time. Finally, we propose

a proactive dynamic service selection approach to handle changes and violations during

Chapter 2. Background and Related Work 34

execution. A key feature of the dynamic service selection approach is the early reactions

to changes to avoid possible violations at run-time and allow finding solutions with good

quality values. The different contributions of the proposed approach are discussed in

the next chapters.

Chapter 3

Specification of The Service

Selection Model

Contents

3.1 Introduction . 35

3.2 Business Level Constraints . 36

3.2.1 Structural Constraints . 36

3.2.2 Global Constraints . 37

3.2.3 QoS Constraints . 39

3.2.4 Temporal Constraints . 39

3.3 Service Level Constraints . 40

3.3.1 Time-dependent QoS . 40

3.3.2 QoS Distributions and Patterns 42

3.4 Composite Service Quality Model 44

3.4.1 Aggregation Function . 44

3.4.2 Utility Function . 46

3.4.3 Optimal Service Composition 47

3.5 Conclusion . 48

3.1 Introduction

Service selection problem we are interested in consists on finding the adequate services

so that constraints at the business and the service levels are satisfied. In this thesis, we

assume that an abstract process model is already given by a business designer prior to the

selection of service combinations. In this chapter, we introduce the specification of the

35

Chapter 3. Specification of The Service Selection Model 36

service selection problem as well as the notations used throughout the thesis. In Section

3.2, we give a detailed description of the different business constraints. This includes

structural, QoS and temporal constraints that may be specified by business designers

and global user constraints. In Section 3.3, we introduce service level constraints. In

Section 3.4, we define the quality model of the composite service followed by a definition

of the constraint optimization problem. Finally, in Section 3.5, we conclude the chapter.

3.2 Business Level Constraints

A business process is usually defined by a set of activities (or abstract tasks) hereafter,

denoted by A = {A1, ..., An}. Several constraints may be specified at the business level.

In the following, we present the constraints considered in our work (i.e., structural, QoS

and temporal constraints).

3.2.1 Structural Constraints

Usually, abstract tasks of each business process have structural dependencies between

them. We assume that each business process is characterized by a single initial task and

a single end task. We denote by Pd(Ai) the set of immediate predecessors of the task

Ai ∈ A.

We consider the four commonly adopted structural patterns, which cover most of the

structures specified by composition languages such as BPEL (Business Process Execution

Language) [118]. A more detailed classification, including other structural patterns is

provided in [36].

• Sequence: in this pattern, activities are executed in sequence. For example, in

Figure 3.1(a), the task Aj is executed after the task Ai is completed. We denote

by S the set of activities that belong to a sequence structure.

• Parallel (AND): this pattern indicates that activities are executed in parallel (Fig-

ure 3.1(b)). It involves the AND-split and AND-join flow patterns, which divide

the control into parallel branches, and merge these branches, respectively. We

denote by P the set of activities that belong to a parallel structure and SP the

set of parallel structures. Pl ∈ SP indicates the parallel structure l.

• Exclusive Choice (XOR): exclusive choice pattern indicates that only one activity

can be executed in each choice structure (Figure 3.1 (c)). We denote by C the set

of activities that belong to a choice structure. In the following, SC indicates the

Chapter 3. Specification of The Service Selection Model 37

set of choice structures and Cl ∈ SC indicates the choice structure l. For each

choice structure Cl ∈ SC, pli is the probability to execute the branch of a task Ai,

∀Ai ∈ Cl. The probability of each choice branch is a value in [0,1] s.t.
∑nCl

i=1 pli = 1

and nCl is the number of disjoint branches in the choice structure Cl.

• Loop: loop pattern indicates that activities can be executed in an iterative man-

ner. In the following, we denote by L the set of activities that will be executed

iteratively. We suppose that their is an upper bound for the number of iterations

of each loop. The maximum number of iterations can be identified through a his-

tory based estimation and from previous task executions. The maximum number

of loops of each activity Ai ∈ L is denoted by αi (Figure 3.1 (d)).

Figure 3.1: Common structural patterns

3.2.2 Global Constraints

In order to select the best composite service CS (i.e., the best combination of services),

the user can specify in his request a set of attributes whose values must be satisfied

(i.e., constraint attributes) and a set of attributes whose values must be optimized (i.e.,

objective attributes). Constraint attributes are usually specified as global constraints

(e.g., the user requires that the cost of the composite service does not exceed 20 units).

These constraints are based on non-temporal QoS attributes (e.g., cost, reliability) and

on temporal attributes (e.g., execution time, deadline). For simplicity, in what follows all

attributes specified in the user requirements are considered as QoS attributes. Objective

Chapter 3. Specification of The Service Selection Model 38

attributes define the attributes that the user wants to maximize or minimize (e.g., the

user desires to minimize the cost of the composite service). In this thesis, constraint and

objective attributes are handled in the same way (i.e., all attributes have to be fulfilled

and optimized).

Let QS denoting the set of user’s QoS attributes. The yth QoS attribute is denoted by

qy s.t., qy ∈ QS with 1 ≤ y ≤ m where m is the number of global QoS constraints.

We consider four categories of QoS attributes that are widely used in the literature:

Additive, Average, Multiplicative and Max-Operator [37, 73, 124]. Further details about

these categories are presented in the next sections. Each QoS attribute qy ∈ QS has

either:

• an increasing better value direction (i.e., the quality is better when the attribute

value increases)

• a decreasing better value direction (i.e., the quality is better when the attribute

value decreases).

On the other hand, QoS attributes can be divided into two classes:

• quantitative attributes that can be measured using metrics (e.g., availability, re-

sponse time)

• qualitative attributes that can not be measured and they are generally evaluated

based on boolean values (e.g., privacy, security)

For the sake of simplicity, henceforth, we do not consider QoS attributes with increasing

value direction since they can be easily transformed to decreasing value direction based

attributes by multiplying their values by -1. In addition, we consider only quantitative

attributes. Qualitative attributes can be considered as quantitative attributes that can

be measured based on two boolean metrics (i.e., 0 and 1).

In the following, Q(qy) denotes the value of the global constraint of the QoS attribute

qy of the composite service (e.g., Q(cost) = 68 indicates that the value of the global

cost of the composite service is equal to 68 cost units). Note that since we consider

only quantitative attributes with decreasing value direction, only upper bound QoS

constraints are taken into account when dealing with global user constraints. Moreover,

all attributes have to be minimized. To represent his preferences, the user may specify

a weight for each QoS attribute qy denoted by Wy, s.t.,
∑

qy∈QSWy = 1. Otherwise, all

quality attributes are considered at the same level of preferences.

Chapter 3. Specification of The Service Selection Model 39

3.2.3 QoS Constraints

In addition to structural constraints, business designers may specify a set of intra-

task QoS constraints at the business level denoted by QC [67]. Intra-task QoS con-

straints define quality for a given task in the process. Each intra-task QoS constraint

qci(TP, V, qy) ∈ QC is characterized by:

– the activity Ai ∈ A concerned by the QoS constraint

– the type of the QoS constraint TP , which can be either MIN to denote a lower

bound constraint or MAX to denote an upper bound constraint (i.e., TP ∈ {MIN,

MAX})

– a value V that must not be exceeded

– a QoS parameter qy ∈ QS for which the constraint is applied

For instance, in the motivating scenario presented in Section 1.3, the constraint QC5

can be denoted by qc5(MAX, 14, cost) to indicate that the cost of the task A5 must be

less than 14.

Some approaches consider dependencies between QoS values of interacting services [1,

14, 119]. For instance, the QoS value of a service may depend on the QoS value of

another service. In this thesis, we suppose that there are no QoS dependencies between

the services of the different business tasks.

3.2.4 Temporal Constraints

Temporal constraints may also be associated with business processes. We distinguish

between intra- and inter-task temporal constraints [7, 120].

• Intra-task temporal constraints: relate to the start and the finish time of each task.

We denote by T C the set of intra-task temporal constraints. A temporal constraint

tci(TP, T) ∈ T C is characterized by:

– the activity concerned by the temporal constraint (i.e., Ai ∈ A)

– a type TP ∈ {must start on (MSO), must finish on (MFO), start no earlier

than (SNET), finish no earlier than (FNET), start no later than (SNLT),

finish no later than (FNLT)}

– a time point T

Chapter 3. Specification of The Service Selection Model 40

For example, the constraint TC2 in the scenario presented in Section 1.3 is denoted

by tc2(FNLT, 15) to indicate that the task A2 must finish no later than 3 p.m.

• Inter-task temporal constraints: specify temporal dependencies between tasks.

These dependencies define the time lags between two directly or indirectly succeed-

ing tasks to restrict the time span between them. The set of inter-task temporal

constraints is denoted by T D. Each temporal dependency tdi,v(TP,D
min
iv , Dmax

iv) ∈
T D is characterized by:

– a source and a destination tasks Ai ∈ A and Av ∈ A

– a type TP ∈ {start-to-start (SS), start-to-finish (SF), finish-to-start (FS),

finish-to-finish (FF)}

– a minimum and a maximum duration between the source and the destination

tasks (i.e., Ai and Av) denoted by Dmin
iv and Dmax

iv , respectively

For instance, the temporal dependency TD1,3 in Section 1.3 is denoted by td1,3(SF, 1, 12)

to indicate that the task A3 has to finish no earlier than 1 time unit and no later

than 12 time units after the start of the task A1.

Some work extends the BPMN language to handle temporal properties in business pro-

cesses [7, 120–122]. We argue that these approaches can be used to specify intra- and

inter-task constraints at the business level. In this thesis, we assume that business pro-

cesses are well-structured and that all constraints are verified (i.e., there are no conflicts

between them). The verification of the consistency of business processes while consider-

ing several constraints is widely treated in literature [7, 123]. This step it is out of the

scope of this thesis.

3.3 Service Level Constraints

Apart from constraints specified at the business level, other constraints may also be

defined at service level. Each activity Ai of a business process has a set Si of potential

candidate services. The candidate services of an activity Ai (i.e., a service class) are

functionally equivalent and can be distinguished by their QoS attributes.

3.3.1 Time-dependent QoS

As stated in Chapter 1, in this thesis, we assume that QoS values of candidate services

may change over the time. For instance, services may have temporal constraints related

Chapter 3. Specification of The Service Selection Model 41

to their availabilities (e.g., a service can be unavailable each day from 8 p.m to 11 p.m).

Moreover, a service may assign temporal constraints to QoS attributes, called time-

dependent QoS. For example, a service offers a smaller response time from 7 p.m to 10

p.m.

Each service Sij ∈ Si is characterized by a set Tij of disjoint time intervals during

which it offers different QoS values. To capture QoS variations related to these time-

dependent QoS, we introduce the notion of timed service instance of candidate services.

Each timed service instance (service instance for short) is associated with a time interval.

We denote by Sijk the kth timed instance of the service Sij corresponding to the time

interval TSijk
∈ Tij . Each time span TSijk

is characterized by absolute minimum start

and maximum finish time values denoted by tminSijk
and tmaxSijk

, respectively.

We denote by Q(Sijk, qy) the value of the QoS attribute qy ∈ QS offered by the service

Sij at the time span TSijk
. Given our motivating scenario presented in Section 1.3,

service instances of the different candidate services are presented in Figure 3.2. In this

example, for instance, Q(S132, cost)=19 denotes that the cost of the service instance

S132 of the service S13 is equal to 19 cost units. The QoS values of this service instance

are offered in the time span [14,20].

Figure 3.2: Candidate service instances of our motivating scenario

The set of QoS parameters as well as their corresponding intervals (i.e., the intervals

during which a service offers the announced QoS) each service instance si of a task Ai

establishes a (m+ 2)-dimensional parameter vector denoted by PV si〈psi1 , .., psiy , .., p
si
m+2〉

with psiy = Q(si, qy), ∀1 ≤ y ≤ m, psim+1 is the minimum start time of the service instance

si (i.e., tminsi) and psim+2 is the maximum finish time of si (i.e., tmaxsi).

Chapter 3. Specification of The Service Selection Model 42

3.3.2 QoS Distributions and Patterns

QoS values of each service class may follow different distributions that may affect the

performance of the selection problem. Moreover, when considering temporal properties,

we distinguish several patterns and schemes for QoS values according to the time spans

in which they are specified. In this section, we give examples of QoS distributions and

patterns.

3.3.2.1 QoS Distributions

Three types of distributions of quality attributes are defined in [53]. These distributions

are presented in Figure 3.3 while considering two-dimensional search space:

• Independent : the values of quality attributes are independent of each others

• Correlated : if the value of one quality attribute of a service is good, the values of

the other quality attributes of this service are also good

• Anti-correlated : if the value of one quality attribute of a service is good, the values

of the other quality attributes are bad

Figure 3.3: Different distributions of quality attributes

In the following chapters, we explain how these distributions may influence the perfor-

mance of the selection process.

3.3.2.2 Patterns of Time-dependent QoS

Time-dependent QoS was introduced in several approaches in multiple domains such as

[1, 2, 14, 125–128]. In these approaches, QoS attributes can have different schemes and

patterns.

In [1], two QoS schemes have been introduced: saturation and repeated. Figure 3.4

shows the different QoS schemes that can be used to present time-dependent QoS. In

Chapter 3. Specification of The Service Selection Model 43

this example, authors expose the variations of the values of the price of a compress movie

service. The repeated scheme is used when the variation of QoS values is repeated over

a time period (e.g., the price of the service is more expensive during weekdays then in

the weekends). The saturation scheme is used when QoS values follow a monotonous

variations (e.g., the price of the compress movie service is more expensive if the user

want to watch the film right after the release date of the film). In [14], authors assume

that if QoS values of a service instance do not change monotonically, this instance can

be split into several service instances.

Figure 3.4: Different schemes for time-dependent QoS [1]

QoS variations may also have irregular scheme or change over the days [2] (See Figure

3.5).

Figure 3.5: Examples of QoS patterns [2]

An extension to the WS-Agreement specification to cater for temporal properties in

service offers has been proposed in [125, 129]. This extension allows the specification

of time cycles and periods in service offers. An example of temporal-aware agreement

template and offer proposed in [129] is given in Appendix C. In this thesis, we do not

consider any special scheme or pattern for time-dependent QoS values and we suppose

that time-dependent QoS models are defined by service providers. The specification of

these models can be achieved based on the history of previous service invocations [51]

or using existing QoS prediction methods [13, 128]. Moreover, existing work such as

Chapter 3. Specification of The Service Selection Model 44

[125, 126] can be used to model service offers while considering time-dependent QoS

values.

3.4 Composite Service Quality Model

QoS-based service selection requires the evaluation of the QoS of service compositions

in order to select the best solution based on estimated QoS values of services.

3.4.1 Aggregation Function

The value of a QoS attribute qy for a composite service CS is denoted by Q(CS, qy). It

is computed by the aggregation of the corresponding quality values of its elementary ser-

vices. The aggregation function Agg depends on the distinguish characteristics of quality

attributes (i.e., Additive, Average, Multiplicative and Max-Operator) and the structure

of the business process (i.e., the structural patterns involved such as sequence, parallel,

choice and loop patterns). Table 3.1 shows examples of aggregation functions considered

in this thesis with n is the number of activities. Thus, Q(CS, qy) = AggAi∈A(Q(Ai, qy)),

where, Q(Ai, qy) denotes the value of the quality attribute qy for the component service

corresponding to the task Ai.

Table 3.1: Examples of aggregation functions.

Category Sequence Parallel Choice Loop

Additive
n∑
i=1

Q(Ai, qy)
n∑
i=1

Q(Ai, qy)
n∑
i=1

pliQ(Ai, qy) αiQ(Ai, qy)

Average 1
n

n∑
i=1

Q(Ai, qy)
1
n

n∑
i=1

Q(Ai, qy)
n∑
i=1

pliQ(Ai, qy) αiQ(Ai, qy)

Multiplicative
n∏
i=1

Q(Ai, qy)
n∏
i=1

Q(Ai, qy)
n∑
i=1

pliQ(Ai, qy) Q(Ai, qy)
αi

Max-operator
n∑
i=1

Q(Ai, qy) maxni=1{Q(Ai, qy)}
n∑
i=1

pliQ(Ai, qy) αiQ(Ai, qy)

In the following, we define the aggregation function of a whole composition according to

the different categories of quality parameters by exploring the structure of the compo-

sition. For simplicity, we denote by Agg the aggregation function AggAi∈A(Q(Ai, qy)).

3.4.1.1 Additive Attributes

The value of an additive attribute (e.g., the execution cost) for a composite service can

be determined through the sum of the values of this attribute for all the component

Chapter 3. Specification of The Service Selection Model 45

services. To measure the local thresholds for an additive attribute, the aggregation

function can be presented as follows:

Agg =
∑
Ai∈S

Q(Ai, qy)+
∑
Ai∈P

Q(Ai, qy)+
∑
Cl∈SC

∑
Ai∈Cl

pliQ(Ai, qy)+
∑
Ai∈L

αiQ(Ai, qy) (3.1)

3.4.1.2 Average Attributes

In this category, the value of the attribute of the composite service is measured by the

average of the values of the attribute of its atomic services (e.g., the availability). To

compute local thresholds of average attributes, we propose the following aggregation

function with ns is the number of component services.

Agg =
1

ns
(
∑
Ai∈S

Q(Ai, qy) +
∑
Ai∈P

Q(Ai, qy) +
∑
Cl∈SC

∑
Ai∈Cl

pliQ(Ai, qy) +
∑
Ai∈L

αiQ(Ai, qy))

(3.2)

3.4.1.3 Multiplicative Attributes

Multiplicative attributes of composite services (e.g., the reputation) can be computed

by multiplying the values of the attribute of the component services. Constraint (3.3)

presents the aggregation function of component services values.

Agg =
∏
Ai∈S

Q(Ai, qy)∗
∏
Ai∈P

Q(Ai, qy)∗
∏

Cl∈SC
(
∑
Ai∈Cl

pliQ(Ai, qy))∗
∏
Ai∈L

Q(Ai, qy)
αi (3.3)

3.4.1.4 Max-Operator Attributes

These attributes differ from other attribute categories in that different aggregation func-

tions are used in sequential and parallel structures (See Table 3.1). Max-operator at-

tributes for a composite service are measured by the sum of attribute values of its atomic

services in a sequential structures, and the highest branch value in each parallel structure

(e.g., the execution time). Thus, the aggregation function used to check the satisfaction

of the global QoS constraint is as follows:

Agg =
∑
Ai∈S

Q(Ai, qy)+
∑
Pl∈SP

maxAi∈Pl
{Q(Ai, qy)}+

∑
Cl∈SC

∑
Ai∈Cl

pliQ(Ai, qy)+
∑
Ai∈L

αiQ(Ai, qy)

(3.4)

Chapter 3. Specification of The Service Selection Model 46

3.4.2 Utility Function

To evaluate the quality of the composite service based on user preferences, we define

an utility function. This latter is a normalized function whose values range over [0,1].

It enables the aggregation of the service composition quality values into a single value

while considering user preferences in order to select the best services. Therefore, the

utility value of a composite service CS is computed as follows using the Simple Additive

Weighting method (SAW) [44]:

U(CS) =

m∑
y=1

Wy ∗
Q(qy)

max −Q(CS, qy)

Q(qy)max −Q(qy)min
(3.5)

Where Q(qy)
min and Q(qy)

max denote respectively, the minimum and maximum aggre-

gated values of the yth quality attribute of CS with Q(qy)
max−Q(qy)

min 6= 0,∀qy ∈ QS.

These values are computed as follows:

Q(qy)
min = AggAi∈A(Q(Ai, qy)

min)

and

Q(qy)
max = AggAi∈A(Q(Ai, qy)

max)

with

Q(Ai, qy)
min = min{Q(Sijk, qy) | Sij ∈ Si, TSijk

∈ Tij}

and

Q(Ai, qy)
max = max{Q(Sijk, qy) | Sij ∈ Si, TSijk

∈ Tij}

In what follows, we denote by tminAi
and tmaxAi

, the minimum possible start and maximum

finish time of the task Ai, respectively, ∀Ai ∈ A, with:

tminAi
= min{tminSijk

| Sij ∈ Si, TSijk
∈ Tij}

and

tmaxAi
= max{tmaxSijk

| Sij ∈ Si, TSijk
∈ Tij}

Note that since the minimum and maximum values of all domains are independent of

user requirements, they can be determined at the design time and then, they can be

continuously updated in response to the environment changes (e.g., the addition of a

new service, the change of quality values of one or more services).

Chapter 3. Specification of The Service Selection Model 47

3.4.3 Optimal Service Composition

Constraint programming is a competitive paradigm for solving single-objective con-

straint optimization problems (COP) (See Section 2.4.2). In this thesis, we propose

to use the COP formalism in the different steps of our approach. The choice of COP is

based on its simplicity to model several real-world constraint-based problems due to its

natural expressiveness and the efficiency of the existing underlying solvers. Hereafter,

we give definitions of both CSP and COP as well as feasible and optimal solutions.

Definition 3.1. (Constraint Satisfaction Problem (CSP)). A CSP is a triplet

P = (X,D,C) where:

• X is an n-tuple of variables that can take values in certain ranges with X =

{x1, x2, ..., xn}

• D is an n-tuple of domains, which represent the possible values that each variable

can take with D = D1 ×D2 × ...×Dn such that Di is the domain of the variable

xi ∀ i = 1, 2, ..., n

• C is a t-tuple of constraints, which state the relations between the different vari-

ables with C = {C1, C2, ..., Ct}

A CSP is said satisfied or feasible if it has at least one feasible solution.

Definition 3.2. (Feasible Solution). A feasible solution of a CSP is an n-tuple

d ∈ D that gives a proper assignment of domain values to all variables in X where

d = (d1, d2, ..., dn) and di ∈ Di ∀ i = 1, 2, ..., n such that all constraints in C are satisfied

simultaneously.

Definition 3.3. (Constraint Optimization Problem (COP)). A COP is a CSP

that aims to optimize (minimize or maximize) an objective function. It can be denoted

by a quadruple P ′ = (P, f) where:

• P = (X,D,C) is a CSP

• f : D → R is the objective function of P ′

Definition 3.4. (Optimal Solution). An optimal solution of a COP is a solution of

P that is optimal with respect to f .

A solution to the service selection problem is then, a combination of concrete services

(each service implements one abstract business task) that complies with business con-

straints and satisfies all global user constraints while optimizing the overall utility (i.e.,

Chapter 3. Specification of The Service Selection Model 48

the objective function). Further details about the service selection approach will be

given in Chapter 5.

In the following, we denote by CS∗ = {ss1, ..., ssi , ..., ssn} the selected solution where ssi

denotes the selected service for the task Ai. Thus, Q(CS∗, qy) = AggAi∈A(Q(ssi , qy)),

∀Ai ∈ A. Each selected service ssi has a set of quality values as well as two temporal

values, which are identified considering the set of all selected services: the estimated

start time and the estimated finish time denoted by sti and fti, respectively.

3.5 Conclusion

In this chapter, we have presented the different constraints we consider to tackle the

service selection problem. We first introduced the different constraints at business and

service level. The proposed model assumes that business processes are well defined and

well structured (i.e., there are no conflicts between the involved constraints). In this

thesis, we consider complex business structures while handling several categories of QoS

attributes and different types of temporal properties and dependencies between services.

QoS-based service selection should guarantee that all constraints are fulfilled. In this

context, we characterized the optimal service composition problem which can be modeled

as a COP which relies on the service composition quality model we introduced. In the

next chapter, we present our pruning techniques in order to reduce the search space and

enhance the efficiency of the service selection process.

Chapter 4

Service Pruning Approach

Contents

4.1 Introduction . 49

4.2 Dominance-based Pruning Process 50

4.3 Constraint-based Pruning Process 53

4.3.1 Overview of the Constraint-based Pruning Process 53

4.3.2 QoS Constraint-based Pruning 54

4.3.3 Temporal Constraint-based Pruning 57

4.3.4 Constraint-based Pruning Algorithm 62

4.3.5 Iterative Pruning Process . 63

4.4 Overview of the Improvement Process 65

4.4.1 Improving Global Constraints 66

4.4.2 Improving Service Offers . 68

4.5 Conclusion . 70

4.1 Introduction

Intuitively, to select the best combination of services, all candidate services are consid-

ered [66, 67, 76]. However, this is impractical when the number of services increases since

the time needed to solve the service selection problem becomes exponential. Moreover,

the presence of time-dependent QoS and temporal constraints increases the number of

possible solutions and decision variables. For instance, given a business process with 6

tasks, 500 candidate services for each task and two timed instances for each service, the

number of possible combinations of services is (2 ∗ 500)6. However, not all services are

potential candidates for the feasible solution.

49

Chapter 4. Service Pruning Approach 50

To handle this issue, we propose a service pruning approach, which aims to reduce the

number of candidate services for each business task. The goal is to reduce the number

of possible combinations of services that have to be considered while guaranteeing that

the optimal solution still be found. On the other side, we intend to avoid discarding

any candidate service that might be part of a feasible solution. To do so, we have pro-

posed two pruning strategies : dominance-based pruning and constraint-based pruning.

Furthermore, in case there is no feasible solution to the selection problem, the prun-

ing process allows for identifying the cause of the failure at earlier stages (i.e., before

performing the selection process). Based on this, we propose improvement strategies to

enhance the selection problem.

To summarize, the aim of the pruning process is two-fold: (1) it allows reducing the

search space and thus, enhancing the efficiency of the selection process; (2) it helps to

improve the selection problem by detecting at earlier stages possible causes of failures

even before performing the selection process.

This chapter is organized as follows. In Section 4.2, we present our dominance-based

pruning strategy. Section 4.3 details the constraint-based pruning techniques. Improve-

ment strategies are proposed in Section 4.4 to enhance the service selection problem

prior to the selection process. Finally, Section 4.5 concludes the chapter.

4.2 Dominance-based Pruning Process

In order to reduce the search space of each service class while considering time-dependent

QoS values, we propose to extend the notion of the dominance relationship introduced

in the literature [51, 53, 93]. The dominance-based pruning process depends on the

characteristics of candidate services without the need of using a specific ranking function.

However, when defining the set of non-dominated services for each service class (i.e.,

skyline services), the large number of services can introduce significant computational

overhead for the pairwise comparison. To deal with this, dominant services are identified

offline since they are independent of the user’s requirements.

Definition 4.1. (Skyline Services). Given a service class Si for a specific business

task Ai ∈ A and two service instances s1, s2 ∈ Si, s1 dominates s2 (denoted by s1 � s2)
iff s1 is better than or equal to s2 in all parameters and strictly better in at least one

parameter. In other words, ∀1 ≤ y ≤ m+2, ps1y � ps2y and ∃ 1 ≤ k ≤ m+2 s.t., ps1k � p
s2
k

with:

Chapter 4. Service Pruning Approach 51

ps1y � ps2y =⇒

Q(s1, qy) ≤ Q(s2, qy) if 1 ≤ y ≤ m

tmins1 ≤ tmins2 if y = m+ 1

tmaxs1 ≥ tmaxs2 if y = m+ 2

(4.1)

And

ps1y � ps2y =⇒

Q(s1, qy) < Q(s2, qy) if 1 ≤ y ≤ m

tmins1 < tmins2 if y = m+ 1

tmaxs1 > tmaxs2 if y = m+ 2

(4.2)

Hence, the set of skyline services of a service class Si (denoted by SSkyi) is constituted

of the candidate services in Si that are not dominated by any other service in the same

class. This can be achieved iff, for two service instances s1, s2 ∈ Si, one of the following

cases is true:

- ∀1 ≤ y ≤ m, Q(s1, qy) ≤ Q(s2, qy) and ∃ 1 ≤ y ≤ m s.t. Q(s1, qy) < Q(s2, qy) and

tmins1 ≤ tmins2 and tmaxs1 ≥ tmaxs2

- ∀1 ≤ y ≤ m, Q(s1, qy) ≤ Q(s2, qy) and tmins1 ≤ tmins2 and tmaxs1 > tmaxs2

- ∀1 ≤ y ≤ m, Q(s1, qy) ≤ Q(s2, qy) and tmins1 < tmins2 and tmaxs1 ≥ tmaxs2

Example 4.1. To better illustrate, let’s consider the example presented in Figure 4.1,

which shows the set of dominated and non-dominated candidate service instances for a

given business task. Service instances are represented as points in two-dimensional space

according to their QoS values. Each service instance is defined by two QoS parameters

(i.e., the execution duration and the cost) and a time interval that defines its start and

finish time. If we consider only static QoS, the set of skyline services is presented by red

rectangles in Figure 4.1, since they are not dominated by any other services based on

their QoS values. However, when dealing with time-dependent QoS, services presented

by green triangles will also be considered as skyline services, since none of the three

cases presented previously is fulfilled. Let’s consider, for instance, the two services a

and b. Although the service a offers better QoS values, its time span does not cover

that of the service b. Hence, this latter can be better than the service a according to

its time properties for a specific selection problem and thus, it should be preserved.

Another example is that the service c can be pruned since it is dominated by the service

a. Actually, this latter offers better QoS values and its time interval covers that of the

service c.

Back to the electronic device production example we have introduced above, according

to the service instances depicted in Figure 3.2, the service instance S631 dominates the

Chapter 4. Service Pruning Approach 52

service instances S621 and S622 since it offers better quality values and has a larger time

interval. Thus, these two latter instances can be removed from the search space.

Figure 4.1: Skyline services based on QoS attributes and temporal properties

In what follows, we argue that the dominance-based pruning step does not discard the

optimal solution if it exists. Before explaining the proposed Lemma, we give Theorem

4.1.

Theorem 4.1. If a combination of services CS satisfies all constraints, a combination of

services CS′ derived from CS by substituting at least one service in CS by another better

service (for at least one quality or temporal attribute and with the same or better values

for other attributes), while preserving all other services, satisfies all constraints and has

the same or better utility value under two conditions: (1) the QoS aggregation functions

are monotone (i.e., higher (lower) values produce a higher (lower) overall aggregated

value) and (2) all services are independent (i.e., the quality values of one service do not

depend on the quality values of another service).

We point out that in this work, there are no QoS dependencies between services (i.e.,

replacing one service in the composition by another service does not have influence on the

QoS values of the other services in the composition) (See Section 3.2.3). Moreover, all

aggregation functions are monotone. This latter condition has been proven in [54, 130]

for several QoS categories.

Lemma 4.1. The set of skyline services of all tasks allows computing the best solution

(if it exists) under the monotone and the independent conditions.

Theorem 4.1 and Lemma 4.1 are proven in Appendices A.1 and A.2, respectively.

Although selecting the skyline services for each business task is a promising solution

to reduce the number of uninteresting services, the set of the selected services can still

very large. For this, we propose to prune further inadequate services based on business

constraints (Section 3.2). The constraint-based pruning process is discussed below.

Chapter 4. Service Pruning Approach 53

4.3 Constraint-based Pruning Process

In this step, we propose to further eliminate inadequate services in order to reduce

the search space. The main idea is to eliminate all services that will certainly violate

the global constraints. Some methods are used to eliminate services that do not fulfill

global constraints [17, 52]. For example, if the user requires that the global cost of the

composite service should not exceed 10 cost units, any service instance with a cost greater

or equal to 10 cost units can be discarded. However, further uninteresting services can be

eliminated considering business constraints. In addition, temporal properties have to be

considered in the pruning process when dealing with time-dependent QoS values. This

is done by computing local thresholds for each business task while ensuring that these

thresholds are relaxed as much as possible. In our work, we propose two search space

reduction techniques: (1) QoS constraint-based pruning and (2) temporal constraint-

based pruning. In the following, we detail how we measure thresholds using these two

techniques.

4.3.1 Overview of the Constraint-based Pruning Process

The aim of the pruning process is to select the most adequate services (hereafter called

preselected services) while guaranteeing that the optimal solution can still be found.

This pruning process is based on a set of computed local thresholds so that if of one of

these thresholds is not satisfied by a candidate service, then, the global constraints are

not satisfied. In other words, if a service instance violates at least one local threshold,

all possible combinations of services that include it will violate global user constraints,

and thus, it can be pruned from the set of candidate services to narrow the search space.

Example 4.2. Let us consider a business process that has two sequential abstract

tasks A1 and A2 with two global QoS constraints Q(cost) = 5 and Q(dur) = 6. Fig-

ure 4.2 shows a set of candidate services for the tasks A1 and A2. To compute local

QoS thresholds, we first, identify minimum values of the QoS attributes for both tasks.

In this example: Q(A1, cost)
min = 2, Q(A2, cost)

min = 1, Q(A1, dur)
min = 1 and

Q(A2, dur)
min = 2. Based on these values and on the global QoS constraints, we com-

pute local QoS thresholds for each quality attribute for both tasks (presented by the

dashed lines in Figure 4.2). For instance, as the cost is an additive attribute and since

the minimum cost value of the task A2 is equal to 1 in the best case, all services with

a cost greater than 4 (Q(cost) − Q(A2, cost)
min) of the task A1 can not be part of a

feasible solution. In fact, if one of these services is selected, the global cost constraint

will be violated even if the service with the minimum cost value of the second task is

Chapter 4. Service Pruning Approach 54

selected. Thus, all services in the grey area will be eliminated. In the same way, we can

define the remaining thresholds.

Figure 4.2: Preselected candidate services based on our pruning approach

In addition to local QoS thresholds, local temporal thresholds are computed when con-

sidering time-dependent QoS. In the following sections, we explain how we compute both

QoS and temporal thresholds.

4.3.2 QoS Constraint-based Pruning

QoS-based pruning strategy aims to compute local QoS thresholds for individual tasks

for each QoS attribute qy ∈ QS that will serve as local upper bound constraints (since we

consider only QoS attributes with decreasing value direction) so that the non-satisfaction

of one of these constraints by a candidate service guarantees the non-satisfaction of the

global constraints. In other words, if a service has at least one QoS value that does not

satisfy a local threshold, all combinations of services that include it will violate global

user constraints, and thus it is not worth considering and it can be pruned from the set

of candidate services to narrow the search space.

Several existing approaches propose decomposition techniques to decompose global QoS

constraints into local ones to reduce the number of candidate services per task [16, 72–74].

Nevertheless, these approaches rely on greedy reduction space techniques that can prune

candidate services that are likely to be part of the optimal solution. In fact, it might

be the case where a service does not meet a local constraint for one QoS attribute but

offers good values for the other QoS attributes and thus, it can be selected in the optimal

solution. To deal with this issue, in this section, we introduce a novel pruning approach

based on QoS constraints. The proposed approach guarantees that only services that

violate the global QoS constraints will be removed from the search space. Our goal is to

define an approach that is generic enough to be applied for complex business processes

Chapter 4. Service Pruning Approach 55

with different structural patterns and with the presence or absence of intra-task QoS

constraints at the business level.

A local threshold QLT (Ai, qy) for the yth attribute of the task Ai depends on the value

of the required global global constraint Q(qy) and the minimum and maximum values of

this QoS attribute that can be offered by services (i.e., Q(Ai, qy)
min and Q(Ai, qy)

max).

The main idea is to compute for each task its maximum allowed value (i.e., the worst

case) considering the minimum quality values of all other tasks (i.e., their best cases)

such that the global and intra-task QoS constraints are satisfied. Computing these

thresholds needs to consider both the structure of the business process and the distinctive

characteristics for each QoS attribute. For this, we propose to compute local thresholds

for each business task based on a constraint optimization model. This model can be

applied for generic business process structures that can contain sequential, parallel,

choice and loop patterns with several categories of quality attributes (See Table 3.1).

For simplicity, the proposed model assumes that business processes contain only atomic

activities. If the structure of the business process contains sub-processes activities, we

propose to compute local thresholds in a recursive manner. The local thresholds of

each sub-process in the whole process will be considered as its global constraints. The

proposed model is as follows:

minimize
∑

Ai∈A,i 6=b
Q(Ai, qy)−Q(Ab, qy) (4.3)

AggAi∈A(Q(Ai, qy)) ≤ Q(qy),∀Ai ∈ A (4.4)∑
Ai∈Cl

pli = 1,∀Cl ∈ SC (4.5)

pli ∈ {0, 1},∀Ai ∈ C (4.6)

Ab ∈ C ⇒ plb = 1 (4.7)

Q(Ai, qy) ≤ V,∀qci(MAX,V, qy) ∈ QC (4.8)

V ≤ Q(Ai, qy),∀qci(MIN, V, qy) ∈ QC (4.9)

Q(Ai, qy) ∈ [Q(Ai, qy)
min, Q(Ai, qy)

max], ∀Ai ∈ A, i 6= b (4.10)

Q(Ab, qy) ∈ [0, Q(Ab, qy)
max] (4.11)

Constraint (4.3) presents the objective function of the proposed model. This func-

tion allows computing the maximum quality value of each activity Ab for the attribute

qy ∈ QS while minimizing the quality values of all the other tasks Ai, i 6= b. The max-

imum quality value of each activity Ab will be considered as its local threshold (i.e.,

Chapter 4. Service Pruning Approach 56

QLT (Ab, qy) = Q(Ab, qy), ∀Ab ∈ A). To guarantee that the global QoS constraints are

satisfied, we propose Constraint (4.4). The value of a QoS attribute of the composite

service is computed using the aggregation function presented in Section 3.4.1. Unlike

existing approaches, which consider only sequential flow, our approach allows computing

local thresholds considering several composition structures. To deal with choice struc-

tures, we add constraints (4.5) and (4.6). Usually, the value of a quality attribute in a

choice structure is measured by the sum of the different execution paths multiplied by

their probabilities. However, since we consider the best case of all tasks Ai and the worst

case of the task Ab, we need to consider only one path for each branch independently

on the probabilities of the different paths. For this reason, we suppose that pli can be

equal to 0 or 1 for each task in a choice structure and that only one path can be consid-

ered for each choice pattern. Constraint (4.7) indicates that if the activity for which we

compute the local threshold (i.e., Ab) is in a choice structure, it should be considered

as the path that will be executed and thus, its probability is equal to 1. Intra-task QoS

constraints have to be guaranteed also when computing thresholds. For this purpose,

we add Constraints (4.8) and (4.9). For instance, given the example in Section 1.3,

if we do not consider intra-task QoS constraints, the local threshold of the task A5 is

QLT (A5, cost) = 68− (8 + 10 + 12 + 12 + 6) = 20. However, if we consider the constraint

QC5, that states that the cost of the task A5 must not exceed 14 units, this threshold will

be equal to 14 rather than 20. Finally, Constraint (4.10) indicates that the quality value

of each task Ai with i 6= b belongs to the interval [Q(Ai, qy)
min, Q(Ai, qy)

max] and Con-

straint (4.11) defines the domain of the quality value of the task Ab. Here, we suppose

that the domain of the quality value of the task Ab is [0, Q(Ab, qy)
max] in order to com-

pute its minimum quality value. In the case where the computed local QoS thresholds for

the task Ab is less than the minimum quality value (i.e., QLT (Ab, qy) < Q(Ab, qy)
min, we

conclude that there is no solution to the selection problem and improvement techniques

have to be taken (Section 4.4).

For instance, given the motivating example we have introduced in Section 1.3, with

Q(cost) = 68 and by applying the proposed model, we obtain the following thresh-

olds for each task: QLT (A1, cost) = 20, QLT (A2, cost) = 17, QLT (A3, cost) = 23,

QLT (A4, cost) = 22, QLT (A5, cost) = 14 and QLT (A6, cost) = 10. After computing

the cost thresholds for each task, the number of services instances is restricted. For

example, all service instances that have a cost greater than 20 cost units for the first

task will be eliminated (e.g., the service instance S131 in Figure 3.2).

Chapter 4. Service Pruning Approach 57

4.3.3 Temporal Constraint-based Pruning

Although QoS constraint-based pruning keeps for each task only candidate services that

are likely to be a member of the optimal solution, some uninteresting services still need to

be removed when taking into consideration time-dependent QoS attributes and temporal

constraints. Considering temporal constraints is inevitable to satisfy business process

requirements. In the following, we detail how we consider all these constraints to further

reduce the number of candidate services. Particularly, two temporal properties have to

be considered: (1) the execution duration of each activity regarding the required global

duration of the business process, and (2) the time spans (i.e., start and finish time) of

each activity with respect to the required deadline.

4.3.3.1 Execution Duration

The execution duration of each task can be computed using the model specified in

Section 4.3.2 since the execution duration attribute can be considered as a Max-Operator

attribute. Nevertheless, this model is not sufficient to effectively measure local duration

thresholds in presence of temporal dependencies.

Example 4.3. To illustrate the underlying issue, let’s take the electronic device produc-

tion case study we have introduced in Section 1.3. If we apply the QoS model presented

above (Section 4.3.2) and the corresponding max-operator aggregation function (equa-

tion (3.4)), the local duration threshold of the task A2 is equal to 4. However, if the

task A2 is executed in 4 time units, the temporal dependency TD1,4, that states that

the manufacturing of peripheral parts (i.e., the activity A4) starts no later than 3 time

units after the writing of the technical reports (i.e., the activity A1), will be violated.

Thus, services that offer an execution duration equal or greater than 4 time units for

the task A2 should be discarded. Another example is that based on the proposed QoS

model, the local threshold of the task A6, that fulfills tests of the final product, is equal

to 5. Nevertheless, services that have an execution duration value equals to 5 time units

for the 6th task can not participate in the selection process if we consider the temporal

dependency TD5,6 that imposes that the test activity A6 has to start no earlier than one

time unit and no later that 2 time units after the assembly of all parts. In fact, even if

all tasks will be executed at their minimum allowed execution duration values and con-

sidering the minimum values of the temporal dependencies, the global constraint (i.e.,

the duration≤ 13 time units) will be violated. Hence, considering a local threshold that

is equal to 4 rather than 5 time units for the task A6 will lead to further elimination of

uninteresting candidate services. In addition, intra-task temporal constraints can also

affect the execution duration of the business process. Let’s consider for instance the

Chapter 4. Service Pruning Approach 58

temporal constraint TC2, that states that the design of the product model (A2) has to

finish no later than 3 p.m. Given this constraint, and considering the service instances

of the first and the second task, the duration of the task A2 can not be greater than 3

time units. In fact, in the best case, the execution of the first task will finish at 12 a.m.

given the candidate service instances presented in Figure 3.2. Thus, to guarantee that

the temporal constraint TC2 is fulfilled, the execution duration of the task A2 should

be less than 3 time units.

It is clear that identifying local thresholds is more complex when handling business pro-

cesses with several structural and temporal constraints. This is explained by the fact

that some temporal dependencies may overlap. Additionally, temporal constraints may

have different types and thus, they should be resolved differently. To deal with these

constraints, we rely on a constraint optimization model that allows computing local

maximum duration for each business task while handling complex structural dependen-

cies as well as intra and inter-task temporal constraints. This model is applied for each

task Ab ∈ A to search for its maximum duration while minimizing the duration of all

other tasks. Therefore, the proposed model can be expressed as follows:

minimize
∑

Ai∈A,i 6=b
Q(Ai, dur)−Q(Ab, dur) (4.12)

ftn − st1 ≤ Q(dur) (4.13)

ftn ≤ deadline (4.14)

fti = sti +Q(Ai, dur), ∀Ai /∈ L (4.15)

fti = sti + αi ∗Q(Ai, dur),∀Ai ∈ L (4.16)∑
Ai∈Cl

pli = 1, ∀Cl ∈ SC (4.17)

pli ∈ {0, 1},∀Ai ∈ C (4.18)

Ab ∈ C ⇒ plb = 1 (4.19)

fti ≤ stv,∀Av ∈ A, Ai ∈ Pd(Av), Ai /∈ C (4.20)∑
Ai∈Cl

pli ∗ fti ≤ stv,∀Av ∈ A, Ai ∈ Pd(Av), Ai ∈ Cl (4.21)

Q(Ai, dur) ≤ V,∀qci(MAX,V, dur) ∈ QC (4.22)

V ≤ Q(Ai, dur),∀qci(MIN, V, dur) ∈ QC (4.23)

sti ≤ T, ∀tci(SNLT, T) ∈ T C (4.24)

Chapter 4. Service Pruning Approach 59

fti ≤ T, ∀tci(FNLT, T) ∈ T C (4.25)

fti +Dmin
iv ≤ stv, ∀tdi,v(FS,Dmin

iv , Dmax
iv) ∈ T D (4.26)

stv ≤ fti +Dmax
iv , ∀tdi,v(FS,Dmin

iv , Dmax
iv) ∈ T D (4.27)

Q(Ai, dur) ∈ [Q(Ai, dur)
min, Q(Ai, dur)

max], ∀Ai ∈ A, i 6= b (4.28)

Q(Ab, dur) ∈ [0, Q(Ab, dur)
max] (4.29)

sti, fti ∈ [tminAi
, tmaxAi

], ∀Ai ∈ A (4.30)

The objective function of the proposed model (4.12) allows computing for each task

Ab ∈ A its maximum execution duration while minimizing the durations of all other

tasks. Then, the local threshold of the task Ab is QLT (Ab, dur) = Q(Ab, dur). The

computation of local thresholds must ensure that structural and temporal constraints

are satisfied. To guarantee that the global constraint of the duration attribute is satisfied,

we propose constraint (4.13). Constraint (4.14) guarantees that the deadline is respected.

Constraints (4.15) and (4.16) specify the relation between the start and the finish times

of each task considering both non-loop and loop tasks, respectively. To guarantee that all

loop structures are verified, here, we consider that all preselected services of loop tasks

must satisfy the maximum number of iterations. Similarly to the constraints from (4.5)

to (4.7) specified in the Section 4.3.2, Constraints from (4.17) to (4.19) handle choice

structures. To deal with structural constraints, we add Constraints (4.20) and (4.21).

Constraints (4.22) and (4.23) allow handling intra-task QoS constraints related to the

execution duration attribute. To deal with intra-task temporal constraints, we propose

constraints (4.24) and (4.25). For simplicity, we only consider the temporal constraints

(SNLT and FNLT). For example, the constraint (4.24) ensures that for each constraint

of the form Start No Earlier Than T, the earliest start time of the corresponding task

is less than or equal to the time point T. To deal with inter-task temporal constraints

(i.e., temporal dependencies), we propose Constraints (4.26) and (4.27). For simplicity,

only finish-to-start temporal dependencies are considered since other dependencies can

be defined in the same manner. For instance, the constraint (4.26) ensures that once the

finish time of an activity Ai arises, the activity Av can begin at the earliest time after

the minimum duration value Dmin
iv of the inter-task temporal constraint tdi,v. Finally,

Constraints from (4.28) to (4.30) indicate the domains of the duration and the start and

the finish time of each business task.

Based on this model, local thresholds for the execution duration attribute for each

business task can be defined while guaranteeing the satisfaction of all structural, QoS

and temporal constraints. For instance, given the example in Section 1.3, the maximum

execution duration values of all tasks are as follows: 4, 3, 5, 8, 3 and 4.

Chapter 4. Service Pruning Approach 60

4.3.3.2 Time Intervals

The selection of a solution when dealing with both time-dependent QoS and temporal

constraints of business tasks needs the specification of the start and finish time of each

service. Nevertheless, the start time of each service is affected by the start time of

its predecessors. Thus, selecting a wrong start time for one service may lead to several

wrong choices for the start time of its successor services, which decreases the performance

of the selection algorithm.

Example 4.4. Let’s take for instance our motivating scenario presented in Section 1.3

and the services instances in Figure 3.2 and suppose that the service instance S121 is

selected since it offers the best cost (2 cost units) and the minimum execution duration

(8 time units) within the time span [17,21]. Therefore, according to this time interval,

only the service instance S232 whose time span is [14,21] can be selected for the task A2.

This solution does not fulfill the required user constraints. In fact, in the best case, the

service S232 will finish the execution at 20 time units. Thus, even though the services

that have the minimum execution duration values are selected for the remaining tasks,

the overall deadline will be violated.

To avoid possible unnecessary combinations, we propose to compute the largest time

span for each task based on the deadline required by the user while satisfying structural

and temporal constraints. The boundaries of these time intervals (i.e., the earliest start

and the latest finish time) will be considered as local temporal thresholds for each task

such that all service instances whose time intervals do not belong to the computed

time spans will be pruned. To identify the largest time spans of each business task

when dealing with complex business processes, we propose a constraint optimization

model that computes the earliest start time (est) and the latest finish time (lft) for

each business task so that all structural and temporal constraints are fulfilled and the

deadline of the entire process is respected. The proposed model is executed for each

task Ab ∈ A to compute its largest time interval.

maximize lftb − estb (4.31)

lfti = esti +Q(Ai, dur), ∀Ai /∈ L (4.32)

lfti = esti + αi ∗Q(Ai, dur),∀Ai ∈ L (4.33)

lftn ≤ deadline (4.34)

esti +Q(Ai, dur)
min ≤ estv,∀Av ∈ A, Ai ∈ Pd(Av), Ai /∈ C (4.35)

lfti +Q(Av, dur)
min ≤ lftv, ∀Av ∈ A, Ai ∈ Pd(Av), Ai /∈ C (4.36)

Chapter 4. Service Pruning Approach 61

minAi∈Cl
{esti +Q(Ai, dur)

min} ≤ estv,∀Av ∈ A, Ai ∈ Pd(Av), Ai ∈ Cl (4.37)

minAi∈Cl
{lfti +Q(Av, dur)

min} ≤ lftv,∀Av ∈ A, Ai ∈ Pd(Av), Ai ∈ Cl (4.38)

esti ≤ T, ∀tci(SNLT, T) ∈ T C (4.39)

lfti ≤ T, ∀tci(FNLT, T) ∈ T C (4.40)

esti +Q(Ai, dur)
min +Dmin

iv ≤ estv,∀tdi,v(FS,Dmin
iv , Dmax

iv) ∈ T D (4.41)

estv ≤ esti +Q(Ai, dur)
min +Dmax

iv , ∀tdi,v(FS,Dmin
iv , Dmax

iv) ∈ T D (4.42)

lfti +Q(Av, dur)
min +Dmin

iv ≤ lftv, ∀tdi,v(FS,Dmin
iv , Dmax

iv) ∈ T D (4.43)

lftv ≤ lfti +Q(Av, dur)
min +Dmax

iv , ∀tdi,v(FS,Dmin
iv , Dmax

iv) ∈ T D (4.44)

Q(Ai, dur) ∈ [Q(Ai, dur)
min, deadline], ∀Ai ∈ A (4.45)

esti, lfti ∈ [tminAi
, tmaxAi

],∀Ai ∈ A (4.46)

Constraint (4.31) allows computing the largest time intervals for each business task Ab

(i.e., maximize the distance between the earliest start time est and the latest finish time

lft for each task). Constraints (4.32) and (4.33) indicate the relation between the start

and the finish time of each task. To guarantee that the deadline is not violated, we add

Constraint (4.34). To deal with structural dependencies, we propose Constraints (4.35)

and (4.36), which guarantee that the earliest start time of each task Av occurs after

the earliest start time and the minimum duration of each of its predecessor tasks. In

addition, the latest finish time of each task Av has to be greater than or equal to the

sum of its minimum execution duration and the latest finish time of all its predecessor

tasks. Since we consider the largest time interval for each task, we suppose that the

start and the finish time of each task should be greater than the minimum start and

finish time of its predecessors if these latter belong to a choice structure (4.37) and (4.38).

Furthermore, it is vital to check if temporal constraints are satisfied when computing the

largest time interval of each task. To deal with intra and inter-task temporal constraints,

we propose Constraints from (4.39) to (4.44), respectively. As previously, for simplicity,

we consider only a limited set of temporal constraints. The duration of each task Ai

should be within the interval [Q(Ai, dur)
min, deadline] since we search for the largest

time interval of each task (Constraint (4.45)). Finally, Constraint (4.46) shows the

domain of the start and the finish time of each task Ai ∈ A.

A solution of the optimization problem is then a set of the largest possible time intervals

of all tasks. For instance, given the example presented in Section 1.3, the largest time

slots of all tasks when considering all imposed constraints and with a deadline equal to

22 are, respectively, [8,14], [10,15], [11,19], [11,19], [15,20] and [17,22]. Considering these

Chapter 4. Service Pruning Approach 62

intervals, some service instances have to be pruned (e.g., S121, S132, S332 and S421) or

some restrictions have to be performed to their intervals (e.g., S431). This latter case is

detailed in the next section.

4.3.4 Constraint-based Pruning Algorithm

After explaining how to compute the local QoS and temporal thresholds of each task,

in this section, we present the constraint-based pruning algorithm. The different steps

of the constraint-based pruning process are given in Algorithm 1.

Algorithm 1 Identifying Preselected Services for a Task Ai

1: Input: The set of non-dominated services SSkyi
2: Output: The set of preselected services SPresi
3: SPresi = ∅, QLT = ∅, TLT = ∅
4: getMinMaxValues(Si)
5: for each qy ∈ QS do
6: QLT (Ai, qy)← computeLocalQoSThresholds (Ai, qy)
7: {esti, lfti} ← computeLocalTemporalThresholds (Ai)
8: for each Sijk ∈ SSkyi do
9: for each qy ∈ QS do

10: if Q(Sijk, qy) > QLT (Ai, qy) then
11: Si = Si \ {Sijk}
12: break
13: if [tminSijk

, tmaxSijk
] ∩ [esti, lfti] = ∅ then

14: Si = Si \ {Sijk}
15: break
16: else {[tminSijk

, tmaxSijk
] ∩ [esti, lfti] = [X,Y]}

17: if Y −X < Q(Sijk, dur) then
18: Si = Si \ {Sijk}
19: break
20: else
21: if tminSijk

< X then

22: tminSijk
= X

23: if tmaxSijk
> Y then

24: tmaxSijk
= Y

25: SPresi = SPresi ∪ {Sijk}
26: if Si = ∅ then
27: There is no solution

For each task Ai ∈ A, the pruning algorithm takes as input the set of non-dominated

candidate services SSkyi and returns the set of preselected services SPresi that are likely

to be candidate of the optimal solution (i.e., they do not violate any of the local thresh-

olds of their corresponding tasks). The algorithm begins by computing minimum and

maximum values of QoS attributes and time intervals after the dominance-based prun-

ing (line 4). Based on these values, local QoS and temporal thresholds are computed

Chapter 4. Service Pruning Approach 63

using constraint optimization models presented in Sections 4.3.2 and 4.3.3 (line 5 to 7).

The second step is to prune services based on QoS thresholds (line 8 to 12) and then

based on time spans (line 13 to 24). If a local threshold is violated, it is not worth to

check the fulfilment of other thresholds and the service should be removed from the set

of available services. If all QoS thresholds are verified, we compare the time span of

each timed service instance to the interval of its corresponding task. If the intersection

between these two intervals is empty or it does not cover the duration of the service

instance, this instance should be eliminated (line 13 to 19). Otherwise, the time span of

the service instance should be restricted to the span of its task (line 20 to 24) and the

service is considered as pertinent and it will be added to the set of preselected services

(line 25). Finally, if at least one task does not have any candidate service, the selection

problem has no feasible solutions (lines 26 and 27).

Lemma 4.2. Given the optimal combination of services CS∗ = {s1, ..., si, ..., sn} (i.e.,

the one that satisfies all the required constraints and optimizes the overall utility accord-

ing to equation (3.5)), each service si ∈ CS∗ belongs to the set of pre-selected services

after the constraint-based pruning process.

The proof of Lemma 4.2 is provided in Appendix A.3.

4.3.5 Iterative Pruning Process

After applying the pruning process based on local thresholds, minimum and maximum

values of the QoS attributes and time intervals of each service class may change. There-

fore, since our constraint-based pruning techniques are based on the minimum and max-

imum values for all attributes, local thresholds can be recomputed iteratively using the

new values for each service class in order to prune further uninteresting services.

Example 4.5. Let’s take the example shown previously in Figure 4.2 in Section 4.3.1.

For instance, after the first iteration of the pruning process, the minimum values of cost

and execution duration attributes of the task A1 change as follows: Q(A1, cost)
min = 2.5

and Q(A1, dur)
min = 2 (the red lines in the left side of Figure 4.3). Therefore, local

thresholds for the task A2, which are initially equal to 3 for the cost attribute and 5 for

the duration attribute, may change. Figure 4.3 shows the new values of local thresholds

after the second iteration of the constraint-based pruning algorithm (the red dashed lines

in the right side of Figure 4.3). Consequently, candidate services of the task A2 with a

cost greater than 2.5 cost units or an execution duration greater than 4 time units can

not participate in the selection process.

After applying our pruning process based on the aforementioned thresholds, further ser-

vices can be pruned and thus, the number of candidate services is reduced. The iterative

Chapter 4. Service Pruning Approach 64

Figure 4.3: Preselected candidate services after the second iteration of the pruning
process

pruning is more useful in anti-correlated distributions (See Section 3.3.2). As can be seen

in Figure 4.3, most of the services of the task A1 follow an anti-correlated distribution

in contrast to the services of the task A2, which follow a correlated distribution. Thus,

the first iteration of the pruning process has a tremendous impact on the minimum and

maximum values of the services of A1 and thus, on the local thresholds and the number

of preselected services of the task A2. The iterative pruning is then, more relevant when

the candidate service instances of at least one service class have an anti-correlated dis-

tribution. This is mainly due to the fact that in anti-correlated distributions, minimum

and maximum values have more chances to be modified after the pruning process and

thus, there is more chance that local thresholds will be changed. Consequently, we apply

the iterative pruning in independent and anti-correlated distributions until there is no

change in the local thresholds.

Table 4.1 presents local thresholds of the motivating example in Section 1.3 after the

second iteration of the pruning algorithm.

Table 4.1: Local thresholds after the second iteration of the pruning algorithm.

A1 A2 A3 A4 A5 A6

Cost 12 17 13 20 14 7
Execution Duration 6 3 6 6 3 3

Time Span [8,14] [12,15] [13,19] [13,19] [17,20] [19,22]

Based on these new thresholds, further service instances (Figure 3.2) can be pruned such

as the services S411 and S231.

Chapter 4. Service Pruning Approach 65

4.4 Overview of the Improvement Process

In case of failure (i.e., there is no feasible solution), negotiation and adaptation based

strategies can be used to find a solution to the selection problem [67, 111]. This is

usually done once the selection process is performed. Nevertheless, this is not efficient

and introduces a significant overhead. Moreover, in most cases, it is not obvious to

identify the source of failures so that negotiation and adaptation actions may require

several changes and improvements in order to find a solution.

In contrast to existing approaches, besides reducing the search space by discarding in-

adequate services, our constraint-based pruning approach enables identifying the source

of failure at earlier stages. In addition, it provides indications on the possible improve-

ments required to find a feasible combination of services that fulfills all constraints. Our

goal is to characterize the minimum required set of constraints and QoS values relax-

ations that is sufficient to enhance the possibility of finding a feasible solution. Service

providers and users can be guided to identify which quality values or constraints should

be relaxed. Moreover, they can be guided on how they can change the values in order to

address the problem. The owner of the business process can also be asked to modify the

structure of the business process or to relax some QoS and temporal constraints. Such

information can be very valuable in the negotiation and adaptation step as it enables

the specification of the most suitable improvements.

After applying our pruning algorithm, three cases can be distinguished to conclude that

the selection problem is infeasible:

• There is at least one local QoS threshold that is less than the minimum quality

value of its corresponding task. In this case, the local QoS constraint of the

corresponding attribute is not satisfied.

• Temporal thresholds can not be computed for at least one task (i.e., there is no

solution for the constraint optimization model from (4.31) to (4.46)).

• There is at least one task that has no preselected services. This indicates that

even though local thresholds can be computed, there is no candidate service that

satisfies all thresholds.

Example 4.6. Let’s take the example depicted in Figure 4.4. As in the previous ex-

amples, we consider candidate services for two business tasks in sequence A1 and A2.

In this example, the minimum cost values of the service classes of the tasks A1 and A2

are equal to 2 and 3 cost units, respectively. Suppose that the user requires that the

global cost should be less than 4 cost units (i.e., Q(cost) = 4). In this case, the local

Chapter 4. Service Pruning Approach 66

Figure 4.4: Example of a selection problem where there is no feasible solution

cost thresholds of the tasks A1 and A2 (presented by the dashed red lines in Figure 4.4)

are equal to 1 and 2, respectively and thus, they are less than the minimum cost values.

To this end, we can conclude that the global constraint of the cost attribute can not be

fulfilled by the candidate services and thus, improvement actions are required to adapt

information and enlarge the selection domain.

In this example, if constraint-pruning techniques are not used, a failure can be observed

only after applying the selection process. To try to find a solution to the selection prob-

lem, we propose a relaxation based strategy while guaranteeing that only a minimum

set of relaxations and improvements is required. This can include the notification of

constraints that are too strict, the values of QoS and temporal properties that have to

be modified and so on. Improvement actions can be handled by users to relax their con-

straints, by service providers to change their offers or by business process designers to

adapt constraints at the business level (i.e., structural, QoS and temporal constraints).

In this thesis, we only present possible improvements required by users and service

providers and we do not consider the adaptation of structural, QoS and temporal con-

straints at the business level.

4.4.1 Improving Global Constraints

If the selection problem in infeasible, changes in the global constraints can be suggested,

so that, a feasible solution can be found. We note that usually there is a tradeoff among

quality attributes. Indeed, in most cases, a positive modification of one constraint

implies a negative modification of another constraint (e.g., the user may agree to pay

more while requiring a better response time in turn). Thus, a successful improvement is

reached when (1) a minimal set of modifications is required and (2) the improvement of

the constraint of one attribute does not effect the satisfaction of the global constraints of

the other attributes. This can be ensured by specifying the minimum allowed values for

Chapter 4. Service Pruning Approach 67

all quality attributes even for those whose global constraints are satisfied. This allows

to get an idea on the minimum values that must not to be exceeded when updating the

global constraints.

Algorithm 2 Improvement of Global Constraints

1: Input: The set of initial global constraints
2: Output: A list IU of the possible improvements
3: for each qy ∈ QS do
4: Q(qy)

′ ← computeMinGlobalQoS()
5: IU [y]← Q(qy) ≥ Q′(qy)
6: deadline′ ← computeMinAllowedDeadline()
7: IU [y + 1]← deadline ≥ deadline′

To do so, we propose the Algorithm 2 to assist users in relaxing global QoS constraints

and the overall deadline so that local QoS and temporal thresholds can be computed.

The function computeMinGlobalQoS() (line 4) allows computing the minimum possible

global QoS value for each quality attribute (i.e., Q′(qy)) while considering candidate

services of each task.

If the quality attribute is not the execution duration, the function computeMinGlob-

alQoS() derives the model presented in Section 4.3.2 from (4.3) to (4.11) while replacing

(4.3) and (4.4) by the following two constraints, respectively:

minimize Q′(qy) (4.47)

AggAi∈A(Q(Ai, qy)) ≤ Q′(qy), ∀Ai ∈ A (4.48)

Moreover, Constraints (4.10) and (4.11) are replaced by the following constraint:

Q(Ai, qy) ∈ [Q(Ai, qy)
min, Q(Ai, qy)

max], ∀Ai ∈ A (4.49)

If the quality attribute is the execution duration, the model presented in Section 4.3.3.1

from (4.12) to (4.30) will be used while replacing constraints (4.12) and (4.13) by the

following constraints, respectively:

minimize Q′(dur) (4.50)

ftn − st1 ≤ Q′(dur) (4.51)

Constraints (4.28) and (4.29) are replaced by the following constraint:

Q(Ai, dur) ∈ [Q(Ai, dur)
min, Q(Ai, dur)

max], ∀Ai ∈ A (4.52)

Chapter 4. Service Pruning Approach 68

Hence, to improve the selection problem, the user is asked to propose a global QoS

value greater than or equal to the minimum global QoS value computed for each quality

attribute (line 5 in Algorithm 2).

The function computeMinAllowedDeadline() defines the minimum allowed deadline (i.e.,

deadline′) (line 6). This latter is computed using the constraint optimization model

proposed in Section 4.3.3.2 from (4.31) to (4.46) while replacing constraints (4.31) and

(4.34) by the following constraints, respectively:

minimize deadline′ (4.53)

lftn ≤ deadline′ (4.54)

Again, to enhance the selection problem, the deadline required by the user must be

greater than or equal to the computed minimum required deadline (line 7).

4.4.2 Improving Service Offers

Providers can also be asked to change the values of their offers in order to find an

agreement with the user. Based on the computed local thresholds, we can specify the

minimum values of quality attributes (since we only consider quality attributes with

decreasing value direction as stated previously) that can be negotiated with service

providers so that global user constraints can be fulfilled. Given the example shown

in Figure 4.4, the local cost thresholds of the tasks A1 and A2 are equal to 1 and 2,

respectively. Thus, if at least one candidate service for the first task has a cost equal to

or less than 1 cost unit, there is a chance to find a solution to the selection problem. The

probability of finding a solution increases as well as the number of services that offer

the required quality value increases. Algorithm 3 enables to identify the improvements

that can be done by service providers. As explained previously, in order to guide the

providers, we specify the required thresholds for all quality attributes (lines 3 to 5) to

guarantee that the improvement of one or more attributes does not affect the satisfaction

of the global constraints of the other attributes.

Algorithm 3 Improvement of Service Offers for a Task Ai

1: Input: The set of service instances and constraints
2: Output: A list IP of the possible improvements
3: for each Sijk ∈ Si do
4: for each qy ∈ QS do
5: IP [y]← Q(Sijk, qy) ≤ QLT (Ai, qy)
6: sortServicesBy(score)

Chapter 4. Service Pruning Approach 69

In addition, the chance to find a solution increases when the quality values of candidate

services are closer to the required local thresholds of the unsatisfied constraints and

farther to the local thresholds of the satisfied ones. For instance, in our example, it is

more likely to find an agreement with those service providers that have the nearest values

to the cost threshold values and the farthest values from the local threshold values for the

execution duration (e.g., services a, b and c in Figure 4.4). In this way, providers of the

identified services could have more flexibility to change their values without affecting the

satisfaction of the global constrains. This is due to the fact that improving one attribute

will usually lead to deteriorating other attributes. Hence, we rank services according

to computed scores regarding local thresholds (line 6 in Algorithm 3). The providers

with the maximum score values will be considered first in the negotiation process. In

this step, all candidate services will be considered. The score of each service Sijk ∈ Si
is computed using the equation (4.55):

score(Sijk) = wt(Sijk) ∗ (dS(Sijk)− dNS(Sijk)) (4.55)

with wt(Sijk) denotes the weight of the satisfaction of local temporal thresholds by the

service (Sijk). It is computed as follows:

wt(Sijk) =

1 if Y −X ≥ Q(Sijk, dur)

0.75 if Y −X < Q(Sijk, dur)

0.5 if [X,Y] = ∅
(4.56)

with [X,Y] = [tminSijk
, tmaxSijk

] ∩ [esti, lfti]. We note that in the case where local temporal

thresholds can not be computed (i.e., esti and lfti in the model from (4.31) to (4.46)),

the weight of the satisfaction of local temporal thresholds for each service Sijk is equal

to 1 (i.e., wt(Sijk)=1).

The values of dS(Sijk) and dNS(Sijk) denote the distance of the quality values for the

service Sijk with respect to the QoS thresholds for the satisfied and unsatisfied con-

straints, respectively. Here, we denote by SQ and NSQ the set of QoS attributes of the

satisfied and unsatisfied constraints, respectively, with QS = SQ ∪ NSQ. We use the

Euclidean distance to measure the distance between the values of a candidate service

and the values of local thresholds. To do so, we propose the following two equations.

dS(Sijk) =

√ ∑
qy∈SQ

(Q(Sijk, qy)′ −QLT (Ai, qy)′)2 (4.57)

dNS(Sijk) =

√ ∑
qy∈NSQ

(Q(Sijk, qy)′ −QLT (Ai, qy)′)2 (4.58)

Chapter 4. Service Pruning Approach 70

Where Q(Sijk, qy)
′ and QLT (Ai, qy)

′ denote the normalized quality value of the service

Sijk and the normalized local threshold of the task Ai for the attribute qy, respectively.

Indeed, since the domains of the values of the different quality attributes and local

thresholds can be different, QoS values of candidate services and thresholds are normal-

ized by transforming them into values between 0 and 1. The new value of each candidate

service Sijk ∈ Si for each quality attribute qy with 1 ≤ y ≤ m is computed as follows:

Q(Sijk, qy)
′ =

{
Q(Ai,qy)

max−Q(Sijk,qy)
Q(Ai,qy)max−M if Q(Ai, qy)

max −M 6= 0

1 otherwise
(4.59)

With M = min(Q(Ai, qy)
min, QLT (Ai, qy)). By the same manner, the scaling is applied

also to the values of local QoS thresholds.

At this stage, several negotiation strategies can be adopted to find an agreement with

users and providers. Here, we do not provide any details for the negotiation and adap-

tation techniques. Approaches proposed in the literature [67, 131] can be used. The

negotiation terminates when a sufficient number of improvements is reached. The prun-

ing process can still be applied along with the improvement phase until all local thresh-

olds can be measured and a sufficient number of preselected services is ensured for each

business task.

4.5 Conclusion

In this chapter, we have presented a dominance and constraints based pruning process.

The proposed approach aims to reduce the number of candidate services that have to be

considered in the selection process while guaranteeing that the optimal solution still be

found. The pruning strategies allow for eliminating inadequate services, based on QoS

and temporal constraints. To deal with this, a set of constraint optimization models

have been proposed. These models can be applied in parallel in order to reduce the

computation time of the pruning process. In addition, through the pruning mechanism,

failures can be detected at earlier stages before performing the selection process. In

case of failures, we provide pruning guided improvement techniques, which aim to try

to find a solution so that successful collaboration can be carried out. The result of the

pruning step is a set of preselected services for each abstract business task, which will

be considered in the selection phase presented in the next chapter.

Chapter 5

Static Service Selection at Design

Time

Contents

5.1 Introduction . 71

5.2 Exact Service Selection Approach 72

5.3 Approximate Service Selection Approach 75

5.3.1 Service Clustering . 76

5.3.2 Local QoS Constraints Specification 79

5.3.3 Deadline Decomposition . 80

5.3.4 Local Selection . 82

5.4 Conclusion . 84

5.1 Introduction

QoS-based service selection is one of the important requirements in Service Oriented

Computing (SOC). A challenging task towards this purpose is the selection of the best

combination of services to implement abstract business tasks while meeting quality of

service (QoS) constraints required by the user. During the selection process, candidate

services are evaluated in terms of both functional and QoS properties. As a large number

of services can have similar functionality to realize the awaited abstract tasks, a specific

issue that emerges is which services should be selected to form the optimal solution

meeting end-user’s global QoS constraints.

Several approaches have been proposed in the literature to tackle the problem of service

selection. Most of current work considers only static QoS values and do not deal with

71

Chapter 5. Static Service Selection at Design Time 72

temporal properties [16, 17, 66, 67, 72]. Considering time-dependent QoS values and

temporal properties makes the selection problem more complex. Indeed, during the

selection, mutual dependencies between the different temporal constraints may arise so

that the selection of each service may influence or be influenced by the selection of other

services. On other side, to find the best solution, all potential combinations of services

must be compared. However, the number of these combinations may be very high, which

can present a barrier for enabling effective service selection.

In this chapter, we present our service selection approach applied on the set of preselected

services (i.e., SPresi, ∀Ai ∈ A) discussed in the previous chapter. Based on the results

of the pruning process, we propose two selection algorithms: exact and approximate

algorithms. The exact approach is adequate in small selection problems, where the

optimal solution is required. This approach is presented in Section 5.2. The approximate

approach is efficient in large selection problems, where a near-to-optimal solution can

be found. It is discussed in Section 5.3. Finally, we conclude the chapter in Section 5.4.

5.2 Exact Service Selection Approach

In this section, we present our approach to select the optimal solution that satisfies all

constraints while considering temporal properties. In this approach, all combinations

of services are considered. We note that only preselected services after applying our

pruning techniques (See Chapter 4) are considered. In our approach, we model the

selection problem as a constraint optimization problem (COP). Modeling the selection

problem in this way ensures a relevant representation for the dependencies between

services as well as the constraints that have to be fulfilled.

When dealing with time-dependent QoS values, determining the start and the finish

time of each selected service ssi is crucial, since by delaying the execution of a service,

QoS values of some attributes may be modified. Thus, in the optimization phase, two

types of decision variables are taken into account. The first one is to select a concrete

service for each atomic task and the second one is to determine a valid starting time

for each selected service in order to match the global constraints. The proposed model

selects exactly one atomic service for each abstract task with the corresponding start

and finish time while optimizing the overall utility and satisfying all constraints. Hence,

in addition to QoS values, two temporal values are specified for each selected service ssi :

the estimated start time sti and the estimated finish time fti.

Usually, there is no single combination of services that dominates all other solutions in

terms of QoS values. To select the best solution, we use the Simple Additive Weighting

Chapter 5. Static Service Selection at Design Time 73

method to aggregate QoS values into a single utility value (See Section 3.4). Thus, the

selection of the best combination of services can be achieved by optimizing the utility

of the composite service. Therefore, the objective function of our optimization model is

as follows:

maximize
m∑
y=1

Wy ∗
Q(qy)

max −Q(CS, q)

Q(qy)max −Q(qy)min
(5.1)

Such that for each qy ∈ QS:

Q(CS, qy) = AggAi∈A(
∑

Sij∈SPresi

∑
TSijk

∈Tij

aijk ∗Q(Sijk, qy)) (5.2)

Since the aggregation function depends on the quality attribute and the structure of the

business process, we use equations from (3.1) to (3.4) presented in Section 3.4.1.

To guarantee that only one service will be selected for each task, we use a binary decision

variable aijk for each service instance Sijk such that aijk = 1 if the service Sijk is selected

for the abstract task Ai and aijk = 0 otherwise, which is presented in the following

constraint:

∑
Sij∈SPresi

∑
TSijk

∈Tij

aijk = 1, ∀Ai ∈ A (5.3)

We note that in this step, only preselected services after the pruning step are considered.

Thus, the minimum and maximum values of each quality attribute for each business task

have to be recomputed to consider only preselected services for each abstract business

task (i.e., Q(Ai, qy)
min and Q(Ai, qy)

max,∀ qy ∈ QS with 1 ≤ y ≤ m and ∀Ai ∈ A).

Constraint (5.4) presents the domain of the quality value of each component service in

the combination.

Q(Ai, qy) ∈ [Q(Ai, qy)
min, Q(Ai, qy)

max], ∀Ai ∈ A (5.4)

Since all global QoS constraints have to be satisfied when selecting the optimal solution,

we add Constraint (5.5):

Q(CS, qy) ≤ Q(qy), ∀qy ∈ QS (5.5)

Chapter 5. Static Service Selection at Design Time 74

Constraint (5.6) allows selecting only one service for each choice structure:

∑
Ai∈Cl

pli = 1, ∀Cl ∈ SC (5.6)

with,

pli ∈ {0, 1},∀Ai ∈ C (5.7)

Moreover, we should ensure that the start and finish time of each task belong to the time

span of the same selected service instance. For this, we propose the following constraints:

∑
Sij∈SPresi

∑
TSijk

∈Tij

aijk ∗ tminSijk
≤ sti, ∀Ai ∈ A (5.8)

sti ≤
∑

Sij∈SPresi

∑
TSijk

∈Tij

aijk ∗ (tmaxSijk
−Q(Sijk, dur)),∀Ai ∈ A (5.9)

To specify the relation between the start and finish time of each task Ai, we add Con-

straints (5.10) and (5.11):

fti = sti +
∑

Sij∈SPresi

∑
TSijk

∈Tij

aijk ∗Q(Sijk, dur), ∀Ai /∈ L (5.10)

fti = sti + αi ∗
∑

Sij∈SPresi

∑
TSijk

∈Tij

aijk ∗Q(Sijk, dur),∀Ai ∈ L (5.11)

with,

sti, fti ∈ [tminAi
, tmaxAi

], ∀Ai ∈ A (5.12)

To check the satisfaction of structural dependencies, we use constraints (4.20) and (4.21).

Finally, to check the satisfaction of intra and inter-task temporal constraints, we use

constraints from (4.24) to (4.27). Note that it is not worth to check the satisfaction of

intra-task QoS constraints as well as the deadline constraint since we consider only pre-

selected services. The selected services for all business tasks form the best combination

of services.

Chapter 5. Static Service Selection at Design Time 75

Although the optimal service selection guarantees the selection of the best combination

of services to the user’s requirements, it is not practical in large selection problems since

the number of feasible solutions can be very big. In fact, this approach enumerates and

compares all the possible solutions, which is proven to be NP-hard [66, 67]. This is

not practical in real-world applications where a solution has to be selected in a reason-

able time. To reduce the computation time and deal with scalability issues, a possible

alternative is to select a near-to-optimal solution.

As discussed in Section 2.5.2, several approaches propose heuristics to find a near-to-

optimal solution more efficiently than exact solutions. Some methods are based on evo-

lutionary algorithms [11, 84–87]. These algorithms can not be easily applied in heavily

constrained problems. Others alternatives propose decomposition strategies to decom-

pose global constraints into local ones [16, 72–74]. However, they are not appropriate

when handling time-dependent QoS values. In fact, selecting the best service for each

abstract task based on local QoS constraints can not guarantee that the temporal con-

straints will be satisfied. To overcome the limitations of existing approaches, in the next

section, we present a heuristic service selection approach while taking into account both

QoS and temporal constraints.

5.3 Approximate Service Selection Approach

In order to deal with large service selection problems where the number of preselected

services after the pruning phase is very large, in this section, we present our heuristic

based service selection approach to select a close-to-optimal solution. The proposed

approach is based on clustering and decomposition techniques to select the best local

QoS and temporal constraints for each task. Based on these latter, a local service

selection is applied to select the best service for each task. The heuristic approach

proceeds through four phases:

• A. Service clustering: This phase allows to identify a set of classes, called centroids,

for each abstract business task. The aim is to identify QoS levels of candidate

services of each task and then, associate each service to the adequate centroid.

• B. Selection of the best centroids: This step allows to select the best centroids

based on their utilities such that all constraints are satisfied. The quality values

of the selected centroids will be further considered as local QoS constraints that

have to be respected in the selection phase.

• C. Deadline decomposition: The goal is to define the largest time intervals for

each abstract task based on the local duration constraints such that all temporal

Chapter 5. Static Service Selection at Design Time 76

constraints are fulfilled. The obtained intervals will be considered as local temporal

constraints to guide the selection of a near-to-optimal solution.

• D. Local selection: Finally, this step enables the selection of a near-to-optimal

combination of services based on local selection of the best service for each abstract

task.

Hereafter, we detail each step.

5.3.1 Service Clustering

Existing constraints decomposition approaches [16, 73, 74] usually deal with QoS param-

eters of each candidate service independently and do not consider potential correlations

among them. This may lead to a greedy decomposition method with local QoS con-

straints that cannot be fulfilled by any candidate service even though a solution does

exist. To cope with this limitation, we propose a clustering based approach to iden-

tify local QoS constraints while dealing with correlations among QoS values of each

candidate service.

The clustering phase is performed locally for each abstract task in the business process.

It aims to classify candidate services of each abstract business task into a set of clusters

(i.e., QoS levels) according to their QoS values. Each cluster contains services that have

approximately similar QoS values. The purpose of this classification is to define the most

important cluster for each task with respect to the number of its candidate services and

their QoS values. These levels will be considered to identify the adequate local QoS

constraints for each abstract task. To do so, we use clustering techniques in particular,

the K-means algorithm [132].

5.3.1.1 K-means Algorithm Overview

The K-means algorithm is commonly used to automatically partition a data set into a

fixed number of groups (i.e., clusters). The main idea of this algorithm is to define a

centroid for each group and then, associate each data point to the appropriate centroid

(i.e., the centroid that has the shortest distance with the data point according to mul-

tiple parameters). For instance, suppose a data point xi, which is characterized by a

set of values defined by the vector 〈Q(xi, q1), Q(xi, q2), ..., Q(xi, qm)〉 and a centroid c

characterized by the vector 〈Q(c, q1), Q(c, q2), ..., Q(c, qm)〉, thus, the Euclidean distance

between xi and c can be defined as follows:

Chapter 5. Static Service Selection at Design Time 77

D(xi, c) =

√√√√ m∑
y=1

(Q(c, qy)−Q(xi, qy))2 (5.13)

The values of the centroids are then updated by computing the average of the values

of all their associated data points for each parameter. The clustering and the updating

steps can be repeated until there is no changes in the values of the centroids or until a

stop criteria is reached (e.g., convergence threshold, maximum number of iterations).

5.3.1.2 Classification of Services

In our approach, we use K-means clustering to associate services into a set of QoS levels.

Each candidate service is considered as a data point, which is characterized by its QoS

values denoted by Sijk = 〈Q(Sijk, q1), Q(Sijk, q2), ..., Q(Sijk, qm)〉. Furthermore, each

vector of QoS levels is considered as a centroid. In this step, the range of each quality

attribute qy ∈ QS is partitioned into a set of K discrete quality levels for each abstract

task where K is a constant number strictly greater than 1. We suppose that the number

of levels (i.e., K) is fixed by domain experts and can be different from one task to

another according to the values of candidate services. This number can be determined

using several techniques (e.g., [133, 134]). In the following, we denote by QLziy the QoS

value of the attribute qy for the zth level of the task Ai with 1 ≤ z ≤ K and 1 ≤ y ≤ m.

To speed up the classification algorithm, we compute the initial values of QoS levels as

follows:

QLziy = Q(Ai, qy)
min +

z − 1

K − 1
∗ (Q(Ai, qy)

max −Q(Ai, qy)
min), ∀Ai ∈ A (5.14)

Figure 5.1 shows an example of 3 clusters of candidate services of an abstract task using

K-means algorithm.

Figure 5.1: Example of 3 clusters in two-dimensional space using K-means

Chapter 5. Static Service Selection at Design Time 78

Hence, based on the values of QoS levels, the initial set of centroids can be defined.

Let’s denote by QLi = 〈QL1
i , QL

2
i , ..., QL

K
i 〉 the set of centroids of the task Ai with

QLzi = 〈QLzi1, QLzi2, ..., QLzim〉 denotes the zth centroid of Ai for each 1 ≤ z ≤ K.

Once all centroids are defined, we assign each candidate service to the closest centroid

using the Euclidean distance (as defined in Section 5.13). Since the domains of the values

of the different quality attributes can be different, QoS values of candidate services and

centroids are normalized. The new value of each candidate service Sijk ∈ SPresi for each

quality attribute qy with 1 ≤ y ≤ m is computed based on the equation below:

Q(Sijk, qy)
′ =

{
Q(Ai,qy)

max−Q(Sijk,qy)

Q(Ai,qy)max−Q(Ai,qy)min if Q(Ai, qy)
max −Q(Ai, qy)

min 6= 0

1 otherwise

(5.15)

By the same manner, the scaling is applied also to the values of centroids (i.e., QLz
′
iy,∀1 ≤

y ≤ m,∀Ai ∈ A, ∀1 ≤ z ≤ K). Hence, the Euclidean distance between a centroid QLzi

and a service Sijk is as follows:

D(Sijk, QL
z
i) =

√√√√ m∑
y=1

(QLz
′
iy −Q(Sijk, qy)′)2 (5.16)

With QLz
′
iy denotes the new value of the centroid QLz

′
iy after the scaling phase ∀1 ≤ y ≤

m,∀Ai ∈ A, ∀1 ≤ z ≤ K.

An example of a set of clusters for abstract business tasks is depicted in Figure 5.2.

Figure 5.2: Example of a set of clusters

Chapter 5. Static Service Selection at Design Time 79

5.3.2 Local QoS Constraints Specification

This phase aims to compute local QoS constraints for each business task based on the

set of centroids. It proceeds through two main steps: centroid utilities and the selection

of the best centroids.

5.3.2.1 Centroid Utilities

To identify local QoS constraints, first, we assign each centroid QLzi an utility value

(i.e., U(QLzi)) between 0 and 1, which estimates the benefit of using the QoS values of

this centroid as local QoS constraints. The utility value of each centroid is computed as

follows:

U(QLzi) = Uq(QL
z
i) ∗

r(QLzi)

ci
,∀Ai ∈ A,∀1 ≤ z ≤ K (5.17)

Where:

Uq(QL
z
i) =

m∑
y=1

Wy ∗
Q(Ai, qy)

max −QLziy
Q(Ai, qy)max −Q(Ai, qy)min

(5.18)

The first part (i.e., Uq(QL
z
i)) specifies the utility of the centroid based on its QoS values.

The second part (i.e.,
r(QLzi)

ci
) allows giving better utility value to the centroid that has

more candidate services where r(QLzi) is the number of candidate services of the centroid

QLzi and ci is the total number of services of the task Ai.

5.3.2.2 The Selection of the Best Centroids

The second step allows to identify the best centroid of each business task. QoS values

of the selected centroids will be considered as local QoS constraints in the selection

process. We propose a constraint optimization model to find the best centroids such

that all global QoS constraints are satisfied. To select only one centroid for each task,

we use a binary decision variable xzi for each centroid such that xzi = 1 if the centroid

QLzi is selected for the abstract task Ai and xzi = 0 otherwise, which is expressed in

Constraint (5.19).

K∑
z=1

xzi = 1, ∀Ai ∈ A, xzi ∈ {0, 1} (5.19)

Chapter 5. Static Service Selection at Design Time 80

The goal of the objective function (5.20) is to maximize the utility value of the set of

the selected centroids in order to reduce the number of discarded services.

maximize
∑
Ai∈A

K∑
z=1

U(QLzi) ∗ xzi (5.20)

To guarantee that the QoS values of the selected centroids ensure that the global QoS

constraints will be satisfied, we add Constraint (5.21).

AggAi∈A (
∑
Ai∈A

K∑
z=1

QLziy ∗ xzi) ≤ Q(qy), ∀1 ≤ y ≤ m (5.21)

To select only one centroid for each choice structure, we add constraints (5.6) and (5.7).

Additionally, the selected centroids must ensure that the overall deadline is fulfilled. To

do so, we add Constraint (5.22), which guarantees that the sum of the minimum start

time of the first task and the aggregated duration value of the selected centroids satisfies

the required deadline. In this constraint, tminA1
indicates the minimum possible start time

of the first business task A1 (See Section 3.4.2) and y refers to the execution duration

attribute.

tminA1
+AggAi∈A (

∑
Ai∈A

K∑
z=1

QLziy ∗ xzi) ≤ deadline (5.22)

5.3.3 Deadline Decomposition

Unlike existing approaches, which handle static QoS values [16, 74], specifying local

QoS constraints does not guarantee that all services that satisfy these constraints can

collaborate when considering time-dependent QoS values. For instance, suppose that the

business process has two abstract tasks A1 and A2, which will be executed in sequence

with A1 precedes A2. Let’s denote by s∗1 and s∗2 the best services that satisfy all local

QoS constraints of the two tasks A1 and A2, respectively. Suppose now that the service

s∗2 is available in a time span before that of the service s∗1. In this case, the two services

can not be part of a feasible solution even though they satisfy all local QoS constraints.

To this end, temporal properties have to be considered also to identify local temporal

constraints that have to be satisfied by the selected services to guarantee that all selected

services can collaborate together. To do so, we identify four variables for each task:

earliest start time estm, earliest finish time eftm, latest start time lstM and latest finish

time lftM . The values of these variables are defined based on the minimum and the

Chapter 5. Static Service Selection at Design Time 81

maximum duration values of each task and should guarantee that all intra and inter-task

temporal constraints are satisfied and the overall deadline is respected.

Example 5.1. Let’s take the example presented in Figure 5.3. In this example, we

consider two abstract business tasks A1 and A2. For each task, we compute the largest

time interval based on both minimum and maximum duration values as well as the

minimum start time and maximum finish time of its candidate services. In this example,

we suppose that the deadline is equal to 38 time units. The local temporal values of

each task are depicted in Figure 5.3.

Figure 5.3: Example of deadline decomposition

The specification of the local temporal constraints of each activity is not a trivial task

when handling several temporal constraints and complex business structures. To deal

with this, time intervals are identified based on constraint optimization model. This

model can be applied in parallel for each task Ai ∈ A.

The objective function (5.23) allows for maximizing the value of lftMi while minimizing

the value of estmi .

maximize lftMi − estmi (5.23)

To specify the dependencies between the start and the finish time of each task, we add

Constraints from (5.24) to (5.27). Here, we consider that the difference between estmi

and eftmi is equal to the minimum duration value for the task Ai (i.e., Q(Ai, dur)
min)

whereas the difference between lstMi and lftMi is equal to the duration of the selected

centroid for the task Ai (i.e., QLziy), which is considered as the maximum duration value

of Ai, with z refers to the selected centroid of the task Ai and y refers to the duration

attribute.

eftmi = estmi +Q(Ai, dur)
min, ∀Ai /∈ L (5.24)

lftMi = lstMi +QLziy, ∀Ai /∈ L (5.25)

Chapter 5. Static Service Selection at Design Time 82

eftmi = estmi + αi ∗Q(Ai, dur)
min,∀Ai ∈ L (5.26)

lftMi = lstMi + αi ∗QLziy,∀Ai ∈ L (5.27)

To satisfy precedence dependencies, we add Constraints (5.28) and (5.29).

eftmi ≤ estmv , ∀Av ∈ A, Ai ∈ Pd(Av) (5.28)

lftMi ≤ lstMv ,∀Av ∈ A, Ai ∈ Pd(Av) (5.29)

Besides, to guarantee that local temporal constraints are fulfilled, we add Constraints (5.30)

and (5.31) while considering only the temporal constraints (SNLT and FNLT).

lstMi ≤ T, ∀tci(SNLT, T) ∈ T C (5.30)

lftMi ≤ T, ∀tci(FNLT, T) ∈ T C (5.31)

Finally, Constraints (5.32) and (5.33) deal with temporal constraints. For simplicity, in

this model, we only consider finish-to-start inter-task temporal constraints. Thus, the

following constraints have to be satisfied:

eftmi +Dmin
iv ≤ estmv ≤ eftmi +Dmax

iv , ∀ tdi,v(FS,Dmin
iv , Dmax

iv) ∈ T D (5.32)

lftMi +Dmin
iv ≤ lstMv ≤ lftMi +Dmax

iv , ∀ tdi,v(FS,Dmin
iv , Dmax

iv) ∈ T D (5.33)

with,

estmi , eft
m
i , lst

M
i , lft

M
i ∈ [tminAi

, tmaxAi
], ∀Ai ∈ A (5.34)

The start and finish time of each task will be considered as local temporal constraints

and thus, used in the next step to find a candidate service for each abstract task.

5.3.4 Local Selection

After defining local QoS and temporal constraints, the last step of our approach is to

select a close-to-optimal solution. The local selection aims to find the best service for

each business task such that all local QoS and temporal constraints are fulfilled. The

best service is the service that has the best utility value amongst all the candidate

Chapter 5. Static Service Selection at Design Time 83

services of the corresponding service class. The local selection can be applied in parallel

for each task. The selection process is presented in Algorithm 4.

Algorithm 4 Local Service Selection for a Task Ai

1: for each Sijk ∈ SPresi do
2: ComputeUtility(Sijk)
3: RankServices(Ai)
4: for each Sijk ∈ SPresi do
5: for each qy ∈ QS do
6: if Q(Sijk, qy) ≥ QL(Ai, qy) then
7: break
8: if tminSijk

≤ estmi and tmaxSijk
≥ lftMi then

9: SelectService(Sijk)
10: DefineStartTimeInterval(Sijk)
11: break

First, we rank candidate services of each business task according to their utilities (lines

1 to 3). The utility of each service is quantified by the utility function declared in

(5.35). To avoid local optimums, we compare the distance between the quality value of

the service and the minimum quality value of its corresponding task with the distance

between the minimum and maximum aggregated values for each quality attribute.

U(Sijk) =
m∑
y=1

Wy ∗
Q(Ai, qy)

max −Q(Sijk, qy)

Q(qy)max −Q(qy)min
(5.35)

For each task, we select the candidate service with the best utility value and that meets

all local QoS (lines 4 to 7) and temporal (lines 8 to 9) constraints of its corresponding

task. Local QoS constraints are considered as upper bounds for QoS values of the

different candidate services where QL(Ai, qy) denotes the local QoS constraint of the

attribute qy for the task Ai. To deal with temporal constraints, a candidate service

is selected if its time span is larger than the interval [estm, lftM]. Here, we note that

the time span of each service instance covers its execution duration (i.e., tmaxSijk
− tminSijk

≥
Q(Sijk, dur)). For each selected service, we identify the time span in which it can start

execution so that it can collaborate with other selected services (line 10). To do so, we

add the following constraint:

max(tminSijk
, estmi) ≤ sti ≤ lftMi −Q(Sijk, dur) (5.36)

With sti and fti are the start and the finish time of the selected service of the task

Ai. Hence, if this constraint is satisfied, we can guarantee that the selected services

can form a feasible solution. The start time of each service is then defined at run time

Chapter 5. Static Service Selection at Design Time 84

with respect to the Constraint (5.36) and the start and the finish time of its precedent

services. In the following, we demonstrate that the selected services after a local selection

can collaborate with each other while satisfying all constraints.

Lemma 5.1. If all the selected services satisfy local QoS constraints and time spans

(identified by the deadline decomposition step) and guarantee Constraint (5.36), they

can collaborate with each other and all local and global constraints are fulfilled.

The proof of Lemma 5.1 is given in Appendix A.4.

5.4 Conclusion

In this chapter, we have presented exact and approximate approaches to solve the ser-

vice selection problem. The proposed approaches allow handling both small and large

selection problems. The exact approach is based on constraint optimization model to

select the best solution. Although this approach allows selecting the best combination

of services, it can not be applied in large service selection problems where the number of

services, tasks and constraints may be very high. For this reason, we have proposed an

approximate service selection approach. This approach is based on clustering and con-

straints decomposition techniques to identify local QoS and temporal constraints from

the global ones.

The proposed approaches can only be applied on request time before executing the se-

lected services. Service selection at request time does not guarantee that the selected

services offer the estimated values during execution. Hence, a dynamic service selec-

tion approach at run-time is required to guarantee that the selected solution is still

satisfactory during execution. This approach is discussed in the next chapter.

Chapter 6

Dynamic Service Selection at

Run-time

Contents

6.1 Introduction . 85

6.2 Motivating Scenario . 86

6.3 Proactive Service Selection . 87

6.3.1 Specification of Re-selection Thresholds 87

6.3.2 Pertinent Services . 90

6.3.3 Event Classes and Recovery Actions 91

6.3.4 Local and Region based Service Selection 96

6.4 Conclusion . 101

6.1 Introduction

The successful execution of business processes according to user needs requires that the

values of all selected services are compliant with their corresponding constraints. Static

service selection approaches are based on estimated values to obtain an ex-ante service

composition. Service oriented systems often operate in highly uncertain and dynamic

environments. Thus, during execution, actual values of candidate services may deviate

from the estimated ones, which may cause the violation of business constraints. For

example, due to a high overhead, the response time of a selected service may be higher

than estimated. Such deviations might affect the successful execution of the service

combinations during execution and thus, the satisfaction of end-to-end constraints. In

addition, during the execution of services, several changes may occur due to the dynamic

85

Chapter 6. Dynamic Service Selection at Run-time 86

nature of service systems. Indeed, services can join the system, become unavailable, or

their offerings can change.

To ensure a reliable execution of service compositions, the selected combination of ser-

vices is monitored during execution so that re-selection actions can be triggered each

time new events that may affect the process execution, arise. The aim of the dynamic

selection is to adjust the selected service combination so that all constraints can be

guaranteed and the optimality of the selected solution remains reasonable. This is a

complex task especially when handling several constraints and dependencies between

services mainly the temporal constraints. Existing approaches that deal with service

failures, constraints violations and environment changes do not consider specific charac-

teristics related to the presence of temporal properties. Moreover, they usually delay the

adaptation until a violation of a global constraint occurs, which may lead to undesired

effects such as the inability to find a feasible solution.

In this chapter, we propose a proactive dynamic service selection approach to handle

several changes and violations that can be observed at different stages of the execution

while ensuring that the new services still meet the original end-to-end global constraints.

We assume that a primary service combination is already identified using static selection

approaches presented in Chapter 5. The proposed approach reacts to changes and

violations as soon as they occur to guarantee the successful execution of the service

combination and reduce the occurrence of violations during execution. In contrast to

existing approaches, in addition to QoS offerings, we consider temporal constraints and

their dependencies. The remainder of this chapter is organized as follows. In Section

6.2, we describe a motivating scenario. In Section 6.3, we detail our service selection

approach to deal with both service violations and environment changes during service

execution. Finally, we conclude the chapter in Section 6.4.

6.2 Motivating Scenario

To better illustrate the usefulness of the proactive service selection, let’s consider the

example presented in Section 1.3. Candidate service instances of each task are presented

in Figure 3.2. Suppose that the initial selected combination of services is CS∗ = (S111,

S211, S311, S431, S531, S611). In the following, we give some examples of violations and

changes that might occur during the execution of the selected solution.

• Scenario 1 : Suppose that while the service S111 is executing, S311 changes its

quality values to 7 units for the execution duration and 10 units for the cost

attribute. In this case, the solution is no more feasible since the global execution

Chapter 6. Dynamic Service Selection at Run-time 87

duration constraint is violated. Delaying the substitution of services until the

service S311 starts the execution will lead to the inability to find a feasible solution

since all service combinations including the services S111, S211 and S311 violate

global constraints. Hence, the service S311 should be substituted by S331 during

the execution of S111 to obtain a satisfactory solution.

• Scenario 2 : Suppose that during its execution, the service S211 takes 2 time units

rather than 1. In this case, the global execution duration is not exceeded and

the deadline is respected. Suppose now that another violation occurs when the

service S611 is executing. This service takes 2 time units rather than 1. In this

case, the service can not offer the expected cost and the overall deadline will

be violated. Here, replacing the service S531 by S512 after the violation of the

service S211 will result in a satisfactory solution even if the violation occurs on the

service S611. Thus, reacting to changes as soon as they occur allows for minimizing

the interruption time while increasing the chance to find a feasible solution after

violation.

• Scenario 3 : Suppose that while executing the service S211, the service S512 per-

forms better with a cost equal to 10 rather than 14. In this case, replacing the

service S531 by the service S512 will lead to a better optimality for the selected

combination of services.

6.3 Proactive Service Selection

In this section, we detail our time-aware proactive service selection approach. This

approach relies on computed maximum and intermediary thresholds, which are used at

run time to trigger corresponding re-selection actions (Section 6.3.1). Based on these

thresholds, a set of the most relevant candidate services is selected for each business task

to enhance the efficiency of the re-selection approach (Section 6.3.2). Finally, according

to classes of changes that may arise at run time, re-selection actions are performed

(Section 6.3.3). The re-selection process relies on a local and a region approaches (Section

6.3.4). We propose an iterative method to define re-selection regions to include a small

set of tasks to be considered rather than considering all non-executed tasks.

6.3.1 Specification of Re-selection Thresholds

To get control over the execution of the process, for each task we define maximum and

intermediary thresholds for each task. If at least one maximum threshold of one task is

Chapter 6. Dynamic Service Selection at Run-time 88

violated, the selected solution is no more feasible and thus, it should be modified. More-

over, intermediary thresholds are specified for each abstract task so that if the values

of a service exceed at least one of these thresholds, re-selection actions are triggered in

order to minimize the likelihood of possible violations.

6.3.1.1 Computing Maximum Thresholds

The maximum thresholds are computed considering the values of the selected services

(i.e., services of the selected combination of services CS∗) and the global constraints.

For instance, if we consider the example presented in Section 1.3, maximum thresholds

for the cost attribute of the tasks A1, A2, A3, A4, A5 and A6 are equal to 15, 13, 15, 15,

15 and 10, respectively, considering the selected combination of services CS∗ = (S111,

S211, S311, S431, S531, S611). Consequently, if for instance the service S111 of the first

task changes its cost value to 16 rather than 12, the global execution duration will be

violated and the selected solution should be modified.

The set of the maximum execution thresholds of each business task Ai ∈ A is denoted

by TMi 〈TMi1 , .., TMiy , .., TMim+2〉 with 1 ≤ y ≤ m+ 2. The maximum threshold for a quality

attribute qy except the duration attribute for a task Ab (i.e., TMby) is computed using the

following constraint optimization model.

maximize Q(Ab, qy) (6.1)

Q(Ai, qy) = Q(ssi , qy), ∀Ai ∈ A, i 6= b (6.2)

AggAi∈A(Q(Ai, qy)) ≤ Q(qy),∀Ai ∈ A (6.3)

Q(Ab, qy) ∈ [Q(ssb, qy), Q(qy)] (6.4)

Maximum QoS threshold of the task Ab is equal to its maximum allowed quality value

(i.e., Q(Ab, qy)) while considering the quality values of the selected services of all other

tasks (i.e., Q(ssi , qy) ∀Ai ∈ A | i 6= b) (Constraints (6.1) and (6.2)). Constraint (6.3)

guarantees the satisfaction of the global QoS constraint. To guarantee that the maximum

threshold fulfills the intra-task QoS constraints, Constraints (4.8) and (4.9) can be used.

Here, we note that intra-task constraints are applied only for the task for which we

compute the maximum threshold (i.e., Ab) since the values of the quality attribute for

all other tasks are fixed to the values of their corresponding selected services. Finally,

Constraint (6.4) indicates the domain of the maximum quality value of the task Ab. We

note that for choice structure, we suppose that paths that will be executed are identified

in the selection phase.

Chapter 6. Dynamic Service Selection at Run-time 89

To compute maximum thresholds for the duration attribute as well as maximum tem-

poral threshold, we propose the model from (6.5) to (6.10).

maximize Q(Ab, dur) (6.5)

AggAi∈A(Q(Ai, dur)) ≤ Q(dur),∀Ai ∈ A (6.6)

fti ≤ stv,∀Av ∈ A, Ai ∈ Pd(Av), Ai /∈ A (6.7)

Q(Ai, dur) = Q(ssi , dur), ∀Ai ∈ A, i 6= b (6.8)

Q(Ab, dur) ∈ [Q(ssb, dur), Q(dur)] (6.9)

sti, fti ∈ [tminssi
, tmaxssi

], ∀Ai ∈ A (6.10)

Maximum threshold of each task Ab for the duration attribute is equal to its maximum

allowed quality value (i.e., Q(Ab, dur)). The objective function (6.5) allows for maximiz-

ing the duration value of the task Ab. Constraint (6.6) accounts for the global duration

constraint that has to be fulfilled. Constraint (6.7) deals with dependencies between

tasks. The duration of each task Ai ∈ A, i 6= b is equal to the duration of its selected

service (Constraint (6.8)). The domain of the maximum threshold is presented in Con-

straint (6.9). Finally, the start and the finish time of each task should be in the time

interval of the selected service (Constraint (6.10)). To guarantee the satisfaction of the

deadline, we use Constraint (4.14). To deal with dependencies between the start and

the finish time of the different tasks, we use Constraints form (4.15) to (4.16). To deal

with intra and inter-task constraints, we use Constraints from (4.22) to (4.27). Again,

intra-task constraints are applied only for the task Ab. Maximum temporal thresholds

for a task Ab (i.e., TMbm+1 and TMbm+2) represent its latest start time and its latest finish

time, respectively. These thresholds should not be exceeded during execution for each

task. The latest finish time of the task Ab is equal to its finish time after applying

the constraint optimization model (i.e., ftb). Whereas its latest start time is equal to

ftb −Q(ssb, dur).

6.3.1.2 Computing Intermediary Thresholds

The intermediary thresholds are used to trigger a proactive re-selection actions prior

to a global constraint violation. The aim is to avoid delaying the re-selection until a

violation of a global constraint occurs on the one hand, and, on the other hand avoid

triggering re-selection actions each time a violation is observed, which can decrease the

efficiency of the proposed approach. The set of intermediary thresholds for each task

Chapter 6. Dynamic Service Selection at Run-time 90

Ai ∈ A is denoted by T Ii 〈T Ii1, .., T Iiy, .., T Iim+2〉 with 1 ≤ y ≤ m+ 2. These thresholds are

computed as follows:

T Iiy =

TM
iy +p

ssi
y

2 if 1 ≤ y ≤ m
TM
iy +sti

2 if y = m+ 1
TM
iy +fti

2 if y = m+ 2

(6.11)

6.3.2 Pertinent Services

Pertinent services are used as backup during the re-selection. The aim is to avoid taking

into consideration all candidate services of each task, which can negatively influence the

performance of the re-selection step. The set of pertinent services for each task Ai ∈ A
is denoted by SPeri. In the following, we explain how these services are identified and

ranked to be used at run-time. For simplicity, in the rest of this chapter, we use si to

indicate a service instance of the task Ai.

6.3.2.1 Identifying Pertinent Services

The first step is to prune all services that do not violate the maximum thresholds.

Algorithm 5 summarizes the process of selecting pertinent services for each abstract

task Ai ∈ A.

Algorithm 5 Identifying Pertinent Services for a Task Ai

1: Input: The set of candidate services Si \ {ssi} of each task Ai
2: Output: The set of pertinent services SPeri
3: SPeri = ∅
4: for each si ∈ Si \ {ssi} do
5: if isPertinentService(si, T

M
i) then

6: SPeri = SPeri ∪ {si}

The proposed algorithm takes as input the set of all candidate services Si \ {ssi} of

each task Ai and returns the set of pertinent services SPeri. A service si is considered

pertinent if ∀ 1 ≤ y ≤ m+ 2, psiy respects TMiy , hereafter denoted by (psiy res TMiy), with:

psiy res TMiy iff

{
psiy ≤ TMiy if 1 ≤ y ≤ m

[X,Y] ≥ Q(si, dur) otherwise
(6.12)

With [X,Y] = [tminsi , tmaxsi] ∩ [sti, fti] and sti and fti are the time values computed

using the model from (6.5) to (6.10). In other words, the maximum quality threshold

Chapter 6. Dynamic Service Selection at Run-time 91

is respected if the quality value of the service is less than or equal to the threshold

∀1 ≤ y ≤ m since we consider only quality attributes with decreasing value direction.

The maximum temporal thresholds (i.e., TMim+1 and TMim+2) are respected by a service si

if the intersection between its time span and the interval [sti, T
M
im+2] covers its execution

duration value (i.e., Q(si, dur)).

6.3.2.2 Ranking Pertinent Services

Once the pertinent services are identified for each task, we rank them according to their

scores. Consequently, in case of re-selection, the best pertinent service (i.e., the first

service) will be selected. This allows to reduce the delay of the substitution of failed

services since these latter can be substituted by the first pertinent service in most cases

without the need to re-select services for all non-executed tasks and waiting for the result

of the re-selection.

The main idea is to give a better score to the service that has the largest distance

compared to the set of its corresponding thresholds so that if a violation is observed

at run-time, the best service has more chance to be selected giving its quality values

without violating the required constraints. To do so, we compute the distance between

each service and the maximum thresholds of its corresponding task based on its quality

values for all quality parameters. The score of each service si ∈ SPeri, denoted by sr(si),

is computed as follows:

sr(si) =

m∑
l=1

Wl ∗Dl(si) (6.13)

With,

Dl(si) =

TM
il −Q(si,ql)

TM
il −Q(Ai,ql)min if TMil 6= Q(Ai, ql)

min

1 otherwise
(6.14)

The service that has the utmost score will be best ranked. Here, we point out that the

set of pertinent services is updated during execution to deal with potential changes (e.g.,

new services can be added, existing services can be removed).

6.3.3 Event Classes and Recovery Actions

Usually, adaptation approaches handle possible changes only after a violation of global

constraints is observed or when the service that has to be executed is no more available.

Chapter 6. Dynamic Service Selection at Run-time 92

In other words, even when changes, that do not affect end-to-end constraints occur at

an early stage, they will be considered only if the selected solution is no more feasible,

which leads to undesired effects such as the inability to find a satisfactory solution or

a significant interruption time due to for instance the unavailability of the service that

has to be invoked. Moreover, most of the current approaches propose to re-select all

non-executed services from scratch, which causes a significant delay on the execution of

the selected services.

To deal with these limitations, we propose a proactive service re-selection approach that

deals with possible changes during execution at early stages in order to prevent possible

violations. The main idea is to react to changes as soon as they occur during the process

execution in order to prevent the interruption time of the execution when searching for

a feasible solution. To avoid possible violations, we propose to proactively update the

selected services during execution based on the information of the already executed

parts of the process while minimizing the number of re-selected services. In addition,

the proposed approach allows enhancing the selected solution in response to not only

changes in the values of the selected services but also changes in the environment (e.g.,

a new better service is added) so that the optimality of the selected solution during

execution is maintained.

6.3.3.1 Categories of Changes

During execution, each abstract task Ai ∈ A has an execution state denoted by esi,

which can be assigned to one of the following states: ae to denote that the task is

already executed and its execution is completed, ce to denote a partial execution (i.e.,

the task is currently executed and its execution is not yet completed) and ne to denote a

task that is not yet executed. In Table 6.1, we give some notations used in this chapter.

Changes occurring during execution can be classified into two main categories: changes

in the service that is currently in execution (i.e., ssi ∈ CS∗ | esi = ce) and changes in the

environments (i.e., changes in the selected and not executed services and changes in the

set of pertinent services). These latter can be an addition of a new service, a deletion

of a service or a modification in the values of a service. Each of these categories can be

further classified into two sub-categories: ignored changes, which are without effects and

changes with potential effects and that have to be considered.

- Changes without effects: these changes affect neither the set of pertinent services

SPer nor the selected solution CS∗ (i.e., SnPeri = SoPeri,∀Ai ∈ A and CS∗n = CS∗o).

- Changes with potential effects: these changes affect the set of pertinent services

SPer and can be further divided into changes that do not affect the selected solution CS∗

Chapter 6. Dynamic Service Selection at Run-time 93

(i.e., the selected services are the same identified by the static selection approach) and

changes that affect the selected solution. Here we note that if a selected service changes

its values but it is preserved in the selected solution, these changes are considered as not

affecting changes. A change is considered as affecting if at least one selected service has

to be substituted by another candidate service.

In the next section, we give a detailed presentation of the different cases when each

of the aforementioned categories is identified as well as their corresponding re-selection

actions.

Table 6.1: Some notations.

sni The new added service for the task Ai
sdi The deleted service of the task Ai
soi The old service of the task Ai before modification
smi The new service of the task Ai after modification
s1i The first ranked service in SPeri

sr′(si) The new score of si considering the new values of thresholds of Ai
SoPeri The old set of supplementary services of the task Ai
SnPeri The new set of supplementary services of the task Ai
CS∗o The old selected combination of services
CS∗n The new selected combination of services

¬(psiy sat Tiy) The value of the attribute py does not satisfy the threshold Tiy

6.3.3.2 Recovery Actions

Changes occurring during run time can either affect the set of the pertinent services or

both pertinent services and the selected solution. Depending on the type of the changes,

several actions can be triggered (See Table 6.2). For this reason, we define four main

actions that have to be applied in the different cases we consider.

Action1: Update pertinent services of a concerned non-executed task Ai (i.e., SPeri)

This action takes place when for a given task Ai : (i) a new service is added to the

set of pertinent services or (ii) an existing service changes its values but still satisfies

maximum thresholds. In these two cases, the score of the concerned service has to be

computed based on Constraint (6.13) and the service will be ranked according to the

value of its score.

Action2: Update maximum and intermediary thresholds and pertinent services of all

non-executed tasks (i.e., T Ii , TMi and SPeri ∀Ai ∈ A | esi = ne)

Each time a change occurs on the selected solution, our approach proceeds on two main

steps: (1) As the values of thresholds are computed based on the values of the selected

Chapter 6. Dynamic Service Selection at Run-time 94

services, they should be updated for all non-executed tasks (i.e., Ai ∈ A | esi = ne)

taking into account the values of the already executed services (Equations from (6.1) to

(6.11)). We note that when updating temporal thresholds, the start and the finish time

of the already executed services are considered in the model from (6.5) to (6.10). (2)

Considering the new values of thresholds, the set of pertinent services of all non-executed

tasks will be updated according to Constraint (6.12). Services that no longer meet the

new values of thresholds are removed. In the case where a better change occurs, some

services may be added to the set of pertinent services if they satisfy the new thresholds.

After that, the scores of pertinent services of all non-executed tasks will be recomputed

based on Constraint (6.13) and the ranking of services is updated.

Action3: Update the optimal solution and thresholds and pertinent services of all non-

executed tasks (i.e., CS∗, T Ii , TMi and SPeri ∀Ai ∈ A | esi = ne)

When global constraints are guaranteed to be violated (i.e., at least one maximum

threshold is exceeded) or the service currently in execution is no more available, the

optimal solution is no more feasible and should be changed. In such cases, the execution

might be interrupted until the re-selection is completed. To speed up the re-selection

process, we propose to select services locally for each non-executed task. The aim of the

dynamic local selection is to avoid comparing several combinations of services, which

decreases the efficiency of the selection process. Given the already executed services

and the occurred violation, the main idea is to search for a service for at least one non-

executed task such that all constraints are fulfilled. If a solution is found, Action2 is

applied, otherwise, we proceed to the region based selection approach. If a solution is

found, Action2 will be applied, otherwise, there is no solution to the selection problem.

Both the dynamic local selection and region based selection approaches are detailed in

Section 6.3.4.

Action4: Update thresholds and pertinent services of an interrupted task

If a service of a task Ai currently in execution, is no more available, it should be sub-

stituted. In contrast to existing approaches that change the values of global constraints

according to already executed services, we do not change the global constraints. In fact,

this can not be easily applied when handling complex business structures and several

QoS and temporal constraints. On the other side, changing global constraints is not

always allowed. To deal with this, first, we add a temporally virtual abstract task A′i in

sequence with the task Ai with esi = ce. This virtual task has the same characteristics

as Ai (i.e., it has the same set of pertinent services and the same temporal constraints)

and it will be used only to search for a new solution while considering the time spent by

the unavailable service of the task Ai. The best ranked service in SPeri will be considered

as the selected service for the task A′i.

Chapter 6. Dynamic Service Selection at Run-time 95

- Changes in Services Currently in Execution: When a deviation occurs in a

service during its execution, it should be considered. Here, we note that we assume

that once a service starts execution, it can not be interrupted even if it violates the

thresholds.

To maintain the efficiency of the proposed algorithm and avoid unnecessary re-selection

actions, we consider that if the violation is smaller than the intermediary thresholds, it

will not affect the selected solution (Case (1).a. in Table 6.2). If there is a high deviation

between the estimated and the actual values (i.e., the violation exceeds the intermediary

threshold), the likelihood to violate global constraints will be high. If the violated value is

between the intermediary and the maximum thresholds, Action2 is applied considering

the new values of the service currently executed. Then, we compare the new scores

of all non-executed services in CS∗ (i.e., sr′(ssv) ∀ esv = ne) with those of the best

selected services (i.e., sr′(s1v) ∀ esv = ne) according to the new values of thresholds

when considering the violation in the executed service. If all selected services have the

best scores, the violation is considered as non affecting and the selected solution will not

change (Case (1).b.). Otherwise, selected services with lower scores will be substituted

by the best ranked services of their corresponding tasks (Case (1).c.). In such a case,

Action2 will be applied another time to take into account the values of the new services.

If the violation of the service currently in execution exceeds at least one maximum

threshold (i.e., ∃1 ≤ y ≤ m + 2,¬(p
smi
y res TMiy)), we apply Action3 to update the

optimal solution and search for a new feasible solution (Case (1).d.). If the service

currently in execution is no more available, we apply Action4 and then, we apply the

same steps of Action3 (Case (1).e.).

- Changes in the Environment: These changes are related to the cases when a

new service is added or when a service that is not currently in execution is deleted or

changes its values. In all cases, if a change occurs in candidate services of an already

executed task (i.e., esi = ae), it will not be considered (Cases (2).a., (3).a. and (4).a.).

Hereafter, we summarize changes that should be considered as well as actions that should

be triggered in each case:

• Addition: if a new added service does not satisfy thresholds, it will not be con-

sidered (Case (2).b.). Otherwise, if its score is less than the score of the selected

service (Case (2).c.) or it is better but the selected service is currently in execution

(Case (2).d.), the service will be added to the set of pertinent services and Action1

is applied. Otherwise, the selected service will be substituted by the new service

and then Action2 is applied (Case (2).e.).

Chapter 6. Dynamic Service Selection at Run-time 96

• Deletion: if the deleted service does not belong neither to the set of pertinent

services nor to CS∗, it will not be considered (Case (3).b.). If it belongs to SPer it

will be removed (Case (3).c.), otherwise, it will be substituted by the first ranked

service (Case (3).d.) and Action2 is applied.

• Modification: if the modified service does not belong to SPer and CS∗ and does not

satisfy at least one maximum threshold, it will not be considered (Case (4).b.).

If the modified service belongs to SPer and does not satisfy at least one maxi-

mum threshold, it will be removed from the set of pertinent services (Case (4).c.).

Otherwise, we distinguish between two cases: (1) If the modified service does not

belong to CS∗, thus, it will be considered as a new added service (Cases (4).d.,

(4).e. and (4).h.). (2) If the modified service belongs to CS∗, then, if it satisfies

all intermediary thresholds (Case (4).f.) or it satisfies all maximum thresholds and

its score is better than that of the best service (i.e., s1i) (Case (4).g.), it will be

preserved in CS∗. Otherwise, if it satisfies maximum thresholds but its score is

less than that of the best service (Case (4).i.) or if it does not satisfy at least

one maximum threshold (Case (4).j.), then it will be substituted by the service

s1i in CS∗. In all these cases, Action2 should be applied. The aim of this step is

to enhance the selected solution according to the occurred modification in order

to reduce the number of possible violations in the remaining tasks of the process.

We note that if soi ∈ CS∗, then, the change is in a task that is not yet executed

(i.e., esi = ne) since if esi = ce, the change is considered as a change in a service

currently in execution, which is treated previously.

6.3.4 Local and Region based Service Selection

As discussed in Section 6.3.3, when global constraints are violated or the service currently

in execution is no more available, we proceed to the local service selection approach. In

case their is no solution, a region based service selection approach is applied. These two

approaches take as input the first non-executed task Ai and return the new solution if it

exists. We point out, that in case of global constraint violation, the first non-executed

task is the one that succeeds the task that violates the maximum threshold. In the case

where the executed service is no more available, the first non-executed task is the added

virtual task (i.e., A′i). In the following, we detail each of these approaches.

Chapter 6. Dynamic Service Selection at Run-time 97

T
a
b
l
e
6
.2
:

C
la

ss
ifi

ca
ti

o
n

o
f

ch
a
n

g
es

a
n

d
re

-s
el

ec
ti

o
n

a
ct

io
n

s.

N
o
t

to
b

e
C

o
n

si
d

e
re

d
T

o
b

e
C

o
n

si
d

e
re

d
N

o
t

A
ff

e
c
ti

n
g

A
ff

e
c
ti

n
g

ChangesinServices

s
s
i∈CS∗|esi=ce

-
(1

).
a
.
∀1
≤
y
≤
m

+
2
,p

s
m i

y
sa

t
T

I iy
-

(1
).

c
.
∀1
≤
y
≤
m

+
2
,p

s
m i

y
sa

t
T

M iy
a
n

d
∃1
≤
y
≤
m

+
2
|

-
(1

).
b

.
∀1
≤
y
≤
m

+
2
,p

s
m i

y
sa

t
T

M iy
a
n

d
∃1
≤
y
≤
m

+
2
¬(
p
s
m i

y
sa

t
T

I iy
)

a
n

d
∃s

s v
∈
C
S
∗
|s
r′

(s
s v
)
<
sr
′ (
s1 v

)
a
n

d

|¬
(p

s
m i

y
sa

t
T

I iy
)

an
d
sr
′ (
ss v

)
≥
sr
′ (
s1 v

),
∀e
s v

=
n
e

es
v

=
n
e

⇒
C
S
∗n

=
C
S
∗o
\
{s

s i
}
∪
{s

m i
}

a
n

d
A

c
ti

o
n
2

⇒
C
S
∗n

=
C
S
∗o
\
{s

s i
,s

s v
|e
s v

=
n
e

a
n

d
sr
′ (
ss v

)
<
sr
′ (
s1 v

)}
∪{
sm i
,s

1 v
|e
s v

=
n
e

a
n

d
sr
′ (
ss v

)
<
sr
′ (
s1 v

)}
a
n

d
A

c
ti

o
n
2

-
(1

).
d

.
∃1
≤
y
≤
m

+
2
,¬

(p
s
m i

y
sa

t
T

M iy
)
⇒

A
c
ti

o
n
3

-
(1

).
e
.
ss i

is
n

o
m

o
re

av
a
il

a
b

le
⇒

A
c
ti

o
n
4

a
n

d
A

c
ti

o
n
3

ChangesinEnvironment

Addition

-
(2

).
a
.
es

i
=
a
e

-
(2

).
c
.
∀1
≤
y
≤
m

+
2
,p

s
n i

y
sa

t
T

M iy
a
n

d
sr

(s
n i
)
≤
sr

(s
s i
)

-
(2

).
e
.
∀1
≤
y
≤
m

+
2
,p

s
n i

y
sa

t
T

M iy
a
n

d
sr

(s
n i
)
>
sr

(s
s i
)

-
(2

).
b

.
∃1
≤
y
≤
m

+
2

-
(2

).
d

.
∀1
≤
y
≤
m

+
2
,p

s
n i

y
sa

t
T

M iy
a
n

d
sr

(s
n i
)
>
sr

(s
i)

a
n

d
es

i
=
n
e

|¬
(p

s
n i

y
sa

t
T

M iy
)

an
d
es

i
=
ce

⇒
C
S
∗n

=
C
S
∗o
\
{s

s i
}
∪
{s

n i
}

a
n

d
A

c
ti

o
n
2

⇒
Sn P

e
r
i

=
So P

e
r
i
∪
{s

n i
}

a
n

d
A

c
ti

o
n
1

Deletion

-
(3

).
a
.
es

i
=
a
e

-
(3

).
c
.
sd i
∈
S P

e
r
i

-
(3

).
d

.
sd i
∈
C
S
∗

-
(3

).
b

.
sd i

/∈
S P

e
r
i

an
d

⇒
Sn P

e
r
i

=
So P

e
r
i
\
{s

d i
}

⇒
C
S
∗n

=
C
S
∗o
\
{s

s i
}
∪
{s

1 i
}

a
n

d
A

c
ti

o
n
2

sd i
/∈
C
S
∗

Modification

-
(4

).
a
.
es

i
=
a
e

-
(4

).
c
.
so i
∈
S P

e
r
i

a
n

d
∃1
≤
y
≤
m

+
2
|¬

(p
s
m i

y
sa

t
T

M iy
)

-
(4

).
h

.
so i
/∈
C
S
∗

a
n

d
∀1
≤
y
≤
m

+
2
,p

s
m i

y
sa

t
T

M iy
a
n

d
-

(4
).

b
.
so i
/∈
S P

e
r
i

an
d

⇒
Sn P

e
r
i

=
So P

e
r
i
\
{s

o i
}

sr
(s

m i
)
>
sr

(s
s i
)

a
n

d
es

i
=
n
e

so i
/∈
C
S
∗

an
d

⇒
C
S
∗n

=
C
S
∗o
\
{s

s i
}
∪
{s

m i
}

a
n

d
A

c
ti

o
n
2

∃1
≤
y
≤
m

+
2
|

-
(4

).
d

.
so i
/∈
C
S
∗

a
n

d
∀1
≤
y
≤
m

+
2
,p

s
m i

y
sa

t
T

M iy
a
n

d

¬(
p
s
m i

y
sa

t
T

M iy
)

sr
(s

m i
)
≤
sr

(s
s i
)

-
(4

).
e
.
so i
/∈
C
S
∗

a
n

d
∀1
≤
y
≤
m

+
2
,p

s
m i

y
sa

t
T

M iy
a
n

d
-

(4
).

i.
so i
∈
C
S
∗

a
n

d
∀1
≤
y
≤
m

+
2
,p

s
m i

y
sa

t
T

M iy
a
n

d

sr
(s

m i
)
>
sr

(s
s i
)

an
d
es

i
=
ce

∃1
≤
y
≤
m

+
2
|¬

(p
s
m i

y
sa

t
T

I iy
)

a
n

d
sr

(s
m i

)
<
sr

(s
1 i
)

⇒
Sn P

e
r
i

=
So P

e
r
i
∪
{s

m i
}

a
n

d
A

c
ti

o
n
1

if
so i
/∈
S P

e
r
i

⇒
C
S
∗n

=
C
S
∗o
\
{s

o i
}
∪
{s

1 i
}

a
n

d
A

c
ti

o
n
2

⇒
Sn P

e
r
i

=
So P

e
r
i
\
{s

o i
}
∪
{s

m i
}

a
n

d
A

c
ti

o
n
1

if
so i
∈
S P

e
r
i

-
(4

).
f.
so i
∈
C
S
∗

a
n

d
∀1
≤
y
≤
m

+
2
,p

s
m i

y
sa

t
T

I iy
-

(4
).

j.
so i
∈
C
S
∗

a
n

d
∃1
≤
y
≤
m

+
2
|¬

(p
s
m i

y
sa

t
T

M iy
)

-
(4

).
g
.
so i
∈
C
S
∗

a
n

d
∀1
≤
y
≤
m

+
2
,p

s
m i

y
sa

t
T

M iy
a
n

d
⇒
C
S
∗n

=
C
S
∗o
\
{s

o i
}
∪
{s

1 i
}

a
n

d
A

c
ti

o
n
2

∃1
≤
y
≤
m

+
2
|¬

(p
s
m i

y
sa

t
T

I iy
)

a
n

d
sr

(s
m i

)
≥
sr

(s
1 i
)

⇒
C
S
∗n

=
C
S
∗o
\
{s

o i
}
∪
{s

m i
}

a
n

d
A

c
ti

o
n
2

Chapter 6. Dynamic Service Selection at Run-time 98

6.3.4.1 Dynamic Local Service Selection Approach

When a deviation exceeds the maximum threshold or a service currently in execution is

no more available, we proceed to the dynamic local service selection approach presented

in Algorithm 6. First, we compute thresholds for non-executed tasks (i.e., ∀Av ∈ Ane |
Ane = {Av ∈ A, esv = ne}) based on models presented in Section 6.3.1 while taking into

account the violation occurred on the service currently in execution (lines from 4 to 5).

We note that the computation of the new thresholds can be done in parallel for all tasks

since it is independent form one task to another. In this step, if the service violates the

estimated values, only thresholds for the violated attributes will be recomputed. If the

executed service is no more available, thresholds will be recomputed for all QoS and

temporal attributes. The set of pertinent services of each non-executed task is then

updated by removing all services that do not meet the new thresholds and recomputing

the score of each service based on the new values of thresholds (line 6). If there is at

least one service in the set of pertinent services of an non-executed task Ai considering

the new values of thresholds, the selected service of this task (i.e., ssi) will be substituted

by the best ranked service (i.e., s1i) in the optimal solution CS∗n (lines from 7 to 12).

In fact, since the best service satisfies maximum thresholds, its integration with the

already selected services in CS∗o maintains the satisfaction of all global constraints. If

all non-executed tasks have empty sets of pertinent services (i.e. SnPerv = ∅, ∀Av ∈ Ane),
we apply the region based service selection approach described in the next subsection

(lines 13 and 14).

Algorithm 6 Dynamic Local Service Selection Algorithm

1: Input: The first non-executed task Ai
2: Output: The new solution of the selection problem Sol
3: Sol = ∅
4: for each Av ∈ Ane do
5: computeThresholds(Av)
6: SnPerv ← updatePertinentServices(Av,SoPerv)
7: while Sol = ∅ and i ≤ n do
8: if SnPeri 6= ∅ then
9: CS∗n = CS∗o \ {ssi} ∪ {s1i }

10: Sol = CS∗n

11: else
12: i = i+ 1
13: if Sol = ∅ then
14: Sol← regionBasedServiceSelection()

Chapter 6. Dynamic Service Selection at Run-time 99

6.3.4.2 Region based Service Selection Approach

When there is no solution using the dynamic local selection, we propose to re-select

services for a specified set of tasks. To do this, we propose an algorithm that iteratively

identifies a re-selection region R that has to be considered. The aim is to avoid including

all the set of non-executed tasks in the selection process and include only a minimum

number of services that have to be replaced in the re-selection region. The main idea

of this step is to increment the number of tasks included in the region until a feasible

solution can be found. Figure 6.1 shows an example of re-selection regions.

Figure 6.1: Re-selection regions after a violation or an unavailable service

The region based service selection approach is presented in Algorithm 7. First, we assign

the first non-executed task Ai to the region set R (line 3). While there is no solution

and the number of tasks included in R is less than the number of non-executed tasks, we

expand the re-selection region R by adding the next task (i.e., Ai+1) (lines 4 and 5). We

suppose that the tasks are ordered according to their ids, which represent the occurrence

of the task in the business process. Moreover, in the case where the failed service is the

last service (i.e., Ai = An), if there is no solution using the local selection approach,

we conclude that there is no solution to the problem and it is not worth to apply the

region based selection approach. Then, we apply the selection algorithm to the set of

tasks in the specified region (line 6). The selection problem is presented as a constraint

optimization problem defined in the model from (6.15) to (6.26)). In this step, only a set

of pertinent services is considered for each task in order to deal with scalability issues.

In case there is a solution to the constraint optimization model, all selected services for

tasks in the selection region will substitute the already selected services in CS∗ (i.e.,

CS∗n = CS∗o \ {ssi ,∀Ai ∈ R} ∪ {si,∀Ai ∈ R} with si denotes the new selected service

for Ai using the proposed model) and Sol = CS∗n (lines from 7 to 9). In case there is no

solution (i.e., Sol = ∅), we increment the counter i and repeat the same steps (lines 10

and 11). The algorithm ends if a solution to the problem is found or if all non-executed

tasks are included in the region and there is no solution. In this latter case, we conclude

that the problem has no feasible solution (lines from 12 to 13).

Chapter 6. Dynamic Service Selection at Run-time 100

Algorithm 7 Region Based Service Selection Algorithm

1: Input: The first non-executed task Ai
2: Output: The new solution of the selection problem Sol
3: R = {Ai}, Sol = ∅
4: while Sol = ∅ and | R |<| Ane | do
5: Add task Ai+1 to R
6: Sol← Re-selectServices(R)
7: if Sol 6= ∅ then
8: CS∗n = CS∗o \ {ssi ,∀Ai ∈ R} ∪ {si,∀Ai ∈ R}
9: Sol = CS∗n

10: else
11: i = i+ 1
12: if Sol = ∅ then
13: There is no solution to the selection problem

The proposed selection model is as presented in the following (Constraints from (6.15)

to (6.26)). The objective function (6.15) allows selecting the best solution. To avoid

considering all candidate services for the tasks in R, only the set of pertinent services

of each task before the violation will be considered (i.e., SPer). To guarantee that only

one service will be selected for each task we define Constraint (6.17) where aijk = 1

if the service Sijk is selected and 0 otherwise. In addition, to avoid searching for the

corresponding global constraints for each region, which can be time consuming and can

not give the best values in some cases, we apply the selection algorithm for all tasks while

assigning to each task that does not belong to R, the originally selected service before

the violation. Constraints (6.18) and (6.19) allow maintaining the selected services

for all tasks that do not belong to the selection region. Since all global constraints

have to be satisfied when selecting the optimal solution, we add Constraint (6.20). In

addition, we should ensure that the start and finish time of each non-executed task (i.e.,

∀Ai ∈ A | esi = ne) belong to the time span of its selected service instance, which

is presented in Constraints from (6.21) to (6.23). The start and the finish times of

each executed task are equal to the times of its already executed service. Constraint

(6.24) identifies the domains of the start and the finish time of each task in R. The

start and the finish time of an non-executed task that does not belong to the selection

region should belong to the time span of its already selected service before the violation

(Constraint (6.25)). Finally, Constraint (6.26) guarantees that the overall deadline is

satisfied. For simplicity, in this model, we do not detail intra and inter task temporal

constraints as well as structural constraints. Constraints presented in Section 5.2 can

be used.

maximize

m∑
y=1

Wy ∗
Q(qy)

max −Q(CS, qy)

Q(qy)max −Q(qy)min
(6.15)

Chapter 6. Dynamic Service Selection at Run-time 101

Q(CS, qy) = AggAi∈A(
∑

Sij∈SPeri

∑
TSijk

∈Tij

aijk ∗Q(Sijk, qy)), ∀qy ∈ QS (6.16)

∑
Sij∈SPeri

∑
TSijk

∈Tij

aijk = 1, ∀Ai ∈ A, aijk ∈ {0, 1} (6.17)

aijk = 1,∀Ai /∈ R, Sijk = ssi (6.18)

aijk = 0,∀Ai /∈ R, Sijk 6= ssi (6.19)

Q(CS, qy) ≤ Q(qy),∀qy ∈ QS (6.20)∑
Sij∈SPeri

∑
TSijk

∈Tij

aijk ∗ tminSijk
≤ sti, ∀Ai ∈ A | esi = ne (6.21)

sti ≤
∑

Sij∈SPeri

∑
TSijk

∈Tij

aijk ∗ (tmaxSijk
−Q(Sijk, dur)),∀Ai ∈ A | esi = ne (6.22)

fti = sti +
∑

Sij∈SPeri

∑
TSijk

∈Tij

aijk ∗Q(Sijk, dur),∀Ai ∈ A | esi = ne (6.23)

sti, fti ∈ [tminAi
, tmaxAi

], ∀Ai ∈ R (6.24)

sti, fti ∈ [tminssi
, tmaxssi

],∀Ai /∈ R | esi = ne (6.25)

ftn ≤ deadline (6.26)

6.4 Conclusion

In this chapter, we have proposed a dynamic service selection approach that reacts to

changes as soon as these changes occur in order to repair the selected solution during

execution. First, to avoid unnecessary adaptations, we compute a set of thresholds for

each business task. Second, the most pertinent services for each task are identified to

speed up the re-selection of services at run-time. Finally, we categorize the different

changes and specify actions that have to be taken in each case. To allow the substi-

tution of a minimal number of services without interrupting the execution of services,

unless necessary, and reduce the computation time, we propose a dynamic local selec-

tion algorithm. In case, there is no solution, we apply a region based service selection to

avoid the need to perform re-selection from scratch. Our approach differs from existing

ones by the fact that thresholds and alternative services are updated during execution

based on the values of the already executed services. Moreover, reactions to changes are

made as soon as they occur in order to avoid execution interruption and increase the

likelihood of finding a satisfactory solution. In addition, unlike existing work, our ap-

proach allows not only dealing with run-time deviations, but also it enables to enhance

Chapter 6. Dynamic Service Selection at Run-time 102

the selected service composition while considering time-dependent QoS associated with

temporal constraints. In the next chapter, we evaluate the different contributions of our

thesis.

Chapter 7

Evaluation

Contents

7.1 Introduction . 103

7.2 The TQCoS Simulation Tool 104

7.3 Evaluative Study . 106

7.3.1 Experiment Settings . 106

7.3.2 Evaluation of The Service Pruning Approach 107

7.3.3 Evaluation of The Exact Service Selection Approach 109

7.3.4 Evaluation of The Approximate Service Selection Approach . . 110

7.3.5 Evaluation of The Dynamic Service Selection Approach 115

7.4 Conclusion . 121

7.1 Introduction

This chapter studies the performance of the different contributions of this thesis and

presents the prototype we have developed. The different algorithms are implemented

and evaluated analytically and empirically. In Section 7.2, we present our simulation

tool (TQCoS) to generate the different test cases. The evaluation of the performance

of the different contributions is detailed in Section 7.3. The time complexity has been

studied and experiments based evaluations have been conducted. Finally, Section 7.4

concludes the chapter.

103

Chapter 7. Evaluation 104

7.2 The TQCoS Simulation Tool

To model the business process as well as the different constraints between tasks, we

adopted the work of [120]. In this work, authors propose an extension of the Business

Process Modeling Notation (BPMN) standard [135] to support the specification of tem-

poral constraints. BPMN offers a standard notation for modeling and specifying business

processes. It provides a graphical notation that allows a better understanding of busi-

ness models. Figure 7.1 shows a screenshot of the modeling of the business process of

our motivating example (Section 1.3) using the TOPE (Time-aware inter-Organisational

business Process vErification) tool [120, 136]. A description of the BPMN file of our

motivating scenario is provided in Appendix B.

Figure 7.1: Modeling the business process using TOPE tool

To evaluate the different contributions of our approach and perform the different test

cases, we have designed and developed a simulation tool. The graphical user interface is

implemented with Java AWT and Java Swing. Hereafter, we present some screenshots

that show the main steps of our approach.

Figure 7.2 depicts the first graphical interface of our tool. It enables the specification

of the set of QoS attributes, the service selection approach (i.e., exact or approximate

selection with or without pruning), the distribution of QoS values presented in Section

3.3.2.1 (i.e., correlated, independent or anti-correlated) and the number of services per

abstract business task. The user should also specify the business process model. To

Chapter 7. Evaluation 105

extract constraints at the business level (i.e., structural, QoS and temporal constraints)

and parse the BPMN documents, we use the DOM1 Java API for XML.

Figure 7.2: Setting the parameters of the selection problem

If the user wants to evaluate the dynamic selection process, the number of changes has to

be stated. Our tool simulates and manages several faults and changes during execution

according to specified parameters. Indeed, the user may specify the category of the

change to simulate (i.e., addition, modification or deletion of services) (the right side of

Figure 7.3).

Figure 7.3: Setting the simulated changes and violations

In case of a modification or a deletion of a service, the user should indicate if the

change occurs in a service already selected in the optimal solution or in a candidate

service. When a fluctuation in a selected (under execution or not) or a candidate service

1https://www.w3.org/DOM/

Chapter 7. Evaluation 106

is checked to be simulated, the user can indicate the category of the fluctuation (the

top left side of Figure 7.3). This latter can be less than the intermediary threshold

(i.e., not affecting modification), between the intermediary and the maximum threshold

(i.e., modification without global violation) or a violation that exceeds the maximum

threshold (i.e., modification with global violation). If the violation occurs on the selected

service, the user may also specify if the service is currently in execution or it is not yet

executed as well as the position of the violation (the bottom left side of Figure 7.3).

The final step is the visualization of the execution of tasks as well as the different changes

that might occur at run-time. Figure 7.4 shows a screenshot where the execution of the

process presented in Section 1.3 is depicted. This figure indicates that a change occurs

in task A3 (task in red) during the execution of the task A1 (task in green). At the end

of the execution, the optimality of the obtained solution and the re-selection time will

be displayed.

Figure 7.4: Visualization of the business process execution

7.3 Evaluative Study

In this section, we evaluate the performance of the different contributions of this thesis

presented in the previous chapters.

7.3.1 Experiment Settings

Experiments have been performed on a laptop with a 32 bit Intel Core 2.20 GHz CPU

and 4GB RAM and ubuntu 14.04 as operating system. To implement the proposed

Chapter 7. Evaluation 107

constraint optimization models, we used the open source constraint solver Choco 2.1.52

and Java 1.7. Candidate services for each abstract task were generated randomly based

on given minimum and maximum values for QoS attributes and time availabilities (i.e.,

start and finish time of each service instance). The minimum and the maximum values

of QoS attributes are inspired from the QWS dataset3. This dataset consists of 365

Web services, each with a set of 9 quality attributes measured using commercial bench-

mark tools [137, 138]. Further, in this study, all constraints were randomly chosen.

Time-dependent QoS attributes for each service instance were generated with a uniform

distribution for a time horizon with 150 time points and distributed in the range between

1 and 150. The number of QoS and temporal constraints at the business level is fixed

to 2 and 3, respectively. The structure of the business process as well as constraints at

the business level (i.e., QoS and temporal constraints) are generated randomly for each

test case. Different test cases have been studied and solved several times and results

are averaged over several runs. In these experiments, all QoS attributes are assumed to

follow an independent distribution (See Figure 3.3 in Section 3.3.2.1).

7.3.2 Evaluation of The Service Pruning Approach

We first evaluate the performance of the service pruning approach presented in Chapter

4 in terms of the computation time. In these experiments, we study only the perfor-

mance of the constraint-based pruning approach. The computation time includes the

time required to compute local QoS and temporal thresholds and to eliminate uninter-

esting services before selecting the best combination of services (See Section 4.3). It

is worth noting that the computation time required to eliminate inadequate services is

approximately negligible compared to the computation time of the thresholds computa-

tion process and thus, it is ignored in these experiments. Hereafter, we only present the

time required to compute local thresholds.

Since local QoS and temporal thresholds (i.e., the minimum start and the maximum

finish time) of each task can be computed independently from each other, all thresholds

can be computed in parallel in order to reduce the computation time. This latter can

be measured by the maximum time value to compute all thresholds. We note that the

computation time does not change when the number of services changes. This is an

obvious result since the computation of the local thresholds does not depend on the

number of candidate services per task. In fact, it only depends on the domains of their

QoS and temporal values (i.e., minimum and maximum values of each attribute), which

can be identified at design time. Furthermore, the computation time does not depend

2http://www.emn.fr/z-info/choco-solver/
3http://www.uoguelph.ca/∼qmahmoud/qws/

Chapter 7. Evaluation 108

on the number of global constraints. This is due to the fact that local thresholds are

computed in parallel for all QoS attributes. Hence, the pruning time depends only on

the values of global constraints and the number of abstract tasks.

• Performance vs the values of global constraints and the number of abstract tasks

In Figure 7.5, we present the computation time of the pruning process in response to

the values of global constraints and the number of abstract tasks. For each case, we

present the average time required to compute QoS and temporal thresholds and the

computation time of the pruning process (i.e., the maximum time required to measure

all thresholds).

Figure 7.5: Evaluation of the computation time of the pruning process

First, in Figure 7.5(a), the values of global constraints vary from 60 to 100 and the

number of abstract tasks is fixed to 5. The computation time increases when the values

of global constraints increase. This is explained by the fact that the number of possible

values of local thresholds becomes higher. Second, Figure 7.5(b) presents the computa-

tion time when the number of business tasks varies from 5 to 10. The number of global

constraints is equal to 5 and their values vary from 80 to 120. Results indicate that the

computation time increases very slowly when the number of tasks increases because the

number of decision variables increases as well in this case.

• Discussion

Results displayed in Figure 7.5 show that in all cases the time required to compute local

thresholds is dominated by the computation of local temporal thresholds. This is due

to the fact that the number of decision variables is larger than that used to compute

QoS thresholds. Experiments show that in both cases, the time required to compute

local thresholds is very small (28 ms in the worst case) while dealing with large domains

for all variables. This allows our approach to be used in large problems where QoS and

Chapter 7. Evaluation 109

temporal values may be set in very large intervals with a negligible overhead that does

not affect the efficiency of the selection process.

7.3.3 Evaluation of The Exact Service Selection Approach

In what follows, we evaluate the computation time of the optimal service selection ap-

proach presented in Section 5.2 with respect to the number of services, global constraints

and abstract business tasks in two cases: with pruning and without pruning. We note

that in the first case (i.e., with pruning), the considered computation time is equal to

the sum of the computation time of both the pruning and the selection steps.

• Performance vs the number of services

Figure 7.6: Evaluation of the computation time of the exact selection approach with
respect to the number of candidate services per task

First, experiments were conducted in relation to the number of candidate service in-

stances per task that varies from 200 to 800 with 5 business tasks and 5 global con-

straints. The results provided in Figure 7.6 indicate that applying the pruning process

significantly outperforms the basic algorithm. Although the computation time of the

basic algorithm is close to the time of our approach when the number of services is small

(around 200 service instances), the computation time of our approach increases very

slowly as compared to the basic one by increasing the number of candidate services per

task.

• Performance vs the number of global constraints

Figure 7.7(a) shows the computation time of the selection algorithms when the number

of global constraints varies between 5 and 10 and the number of tasks is fixed to 5 with

200 candidate service instances for each task. As before, while the computation time

of the basic algorithm significantly increases due to the fact of the growing number of

Chapter 7. Evaluation 110

Figure 7.7: Evaluation of the computation time of the exact selection approach with
respect to the number of global constraints and business tasks

optimal instances that should be compared, the time of our algorithm increases very

slowly and leads to better performance even when the number of constraints increases.

This is an expected behavior since by considering several global constraints, the number

of feasible solutions decreases. Hence, more services are likely to violate one or more

constraints and thus, they can be pruned prior to the selection process.

• Performance vs the number of abstract tasks

To further evaluate the performance of our pruning approach, Figure 7.7(b) depicts

experimental results based on the computation time with respect to the number of

business tasks. The number of candidate service instances for each task is fixed to 200

and the number of global constraints is fixed to 5. Business tasks depend on each other

with several complex structures including different composition patterns. Again, results

are the same as previously and the optimal solution can be found rather fast when

applying our pruning approach.

• Discussion

In all the test cases, the results show a considerable gain in performance of the selection

process when applying the pruning approach, which scales better than the traditionally

selection algorithm where all candidate services are considered. The performance of our

approach is significant particularly in the context of complex selection problems where

the number of candidate services, tasks and constraints can be large.

7.3.4 Evaluation of The Approximate Service Selection Approach

In this section, we evaluate the performance of the heuristic based service selection

approach, presented in Section 5.3, by studying its time complexity and analyzing ex-

perimental results based on simulation studies.

Chapter 7. Evaluation 111

7.3.4.1 Complexity Evaluation

The size of the selection problem is defined by three main factors: the number of abstract

business tasks n, the number of candidate service instances per task c and the number

of global constraints m. The performance of the heuristic service selection approach is

affected by the time complexity of the different steps.

- Service clustering : This phase includes the specification of the centroids and the clas-

sification of services. First, for each task, the number of QoS levels for each quality

attribute is K. Hence, the complexity of the first step is O(n ∗ K ∗m) with K is the

number of centroids. Since the classification of services can be done in parallel for all

tasks, the complexity of this step is O(c ∗ K ∗ m ∗ it) with it is the number of itera-

tions of the clustering step. Hence, the complexity of the service clustering phase is

O(n ∗K ∗m+ c ∗K ∗m ∗ it).

- Local QoS constraints specification: The number of decision variables of the constraint

optimization model to find the best local QoS constraints (i.e., the best centroids) is

n ∗K. Consequently, the complexity of this phase is O(2n∗K).

- Deadline decomposition: This step relies on the use of four variables (earliest start,

earliest finish, latest start, and latest finish time) and it can be applied in parallel for

all tasks. The complexity of this step is O(4 ∗ no) with no is the operation number of

the equation resolution.

- Local selection: The best service for each task can be selected locally with a complexity

of O(c).

Based on the above analysis, the overall complexity of our approach is: O(n ∗K ∗m+

c ∗ K ∗m ∗ it + 2n∗K + 4 ∗ no + c) = O(2n∗K). Therefore, the time complexity of the

proposed approach is dominated by the local QoS constraints specification phase whose

complexity does not depend on the number of candidate services, which enhances its

scalability. Let us now compare our approach with existing approaches [16, 66, 67, 72]. If

K < h with h is the number of promising services per task in [72], our approach achieves

better performance than the existing work, which does not deal with time-dependent

QoS and temporal constraints. Furthermore, if K << m∗d with d is the number of QoS

levels in [16] and K << c, we can ensure that the size of our model is much smaller than

those of the models proposed in [16], [67], [66] even though these approaches consider

only static QoS values.

Chapter 7. Evaluation 112

7.3.4.2 Experimental Results

To evaluate the effectiveness of the heuristic selection approach, we study its performance

in terms of the computation time, the optimality and the success rate with respect to

the number of centroids. We compare the results of the different tests in two cases:

heuristic approach without pruning (HWO) and heuristic approach with pruning (HW).

• Performance in terms of the computation time

First, we analyze the computation time of the different test cases with respect to the

number of candidate services per task and the number of abstract business tasks (Figure

7.8).

Figure 7.8: Evaluation of the computation time of the approximate selection approach

Figure 7.8(a) shows the computation time of the different approaches. The number of

business tasks and global constraints is fixed to 5 and 4, respectively. The number of

centroids varies between 3 and 7. The number of clustering iterations is fixed to 3.

The results indicate that the computation time of the heuristic approach is very small

comparing to the optimal approach with and without pruning presented in Figure 7.6(a).

In addition, the computation time is smaller when applying our pruning techniques

before the selection process in most cases. This is explained by the fact that the number

of services is reduced when applying our pruning approach. Moreover, the domains

of the QoS values of the centroids are more smaller due to the consideration of local

thresholds. Hence, a near-to-optimal solution can be found more quickly. As depicted

in Figure 7.8(a), we can observe also that the computation time of the heuristic approach

without pruning is a little bit better than the time of the heuristic approach with pruning

when the number of centroids increases. This is due to the fact that in this latter, the

combinations of centroids that should be compared are more relevant and thus, more

computation time is required to compare all possible combinations. Experiments also

show that although the computation time increases exponentially when the number of

services rises in the exact approaches, it is relatively stable in our heuristic approach.

Chapter 7. Evaluation 113

However, the computation time increases slowly when the number of centroids increases.

This is obvious since the time of the local QoS constraints specification phase does

not depend on the number of services per task but mainly depends on the number of

centroids.

Figure 7.8(b) shows the computation time of the selection approaches when the number

of tasks varies between 5 and 10 and the number of global constraints is fixed to 4 with

200 candidate services for each task. Again, experiments show that our heuristic ap-

proach outperforms the exact approaches. In fact, the computation time of our approach

increases slowly along with the number of tasks especially when the number of centroids

is very small.

• Performance in terms of the optimality

In addition to the computation time, we evaluate the efficiency of the heuristic selection

approach in terms of its optimality with respect to the number of services and abstract

tasks (Figure 7.9). The optimality evaluates the quality of the solution obtained by the

different selection approaches. It is computed by comparing the overall utility value of

the solution found by each selection approach (Usel) (See equation 3.5) to the utility

value of the optimal solution obtained by the optimal selection approach (Uopt) i.e.,:

optimality = Usel/Uopt

Figure 7.9: Evaluation of the optimality of the approximate selection approach

Figure 7.9(a) shows that by increasing the number of centroids, the optimality of the se-

lected solution increases as well. However, if the number of centroids increases more than

necessary, the optimality does not change in most cases and can decrease in some cases.

This is due to the fact that when the number of centroids is higher than necessary, the

classification of services is no more efficient since candidate services will be distributed

in a very large set of QoS levels, which may affect the utility values of the selected

Chapter 7. Evaluation 114

centroids. Moreover, the optimality of the heuristic approach with pruning is better

than that of the approach without pruning. This is due to the fact that the computed

centroids are more accurate after the pruning process. Additionally, Figure 7.9(b) also

shows that our approach can produce a satisfactory optimality (i.e., more than 96 %) in

most cases. Again, applying our pruning techniques before the selection process allows

reaching better results since the selection algorithm is applied on the set of the most

significant services. Moreover, in contrast to the selection approach without pruning,

which can reach a reasonable optimality when increasing the number of centroids, the

heuristic approach with pruning can obtain better optimality even when the number of

centroids is very small. This is because when considering all candidate services, several

inadequate instances can affect the values and the utilities of the centroids.

• Performance in terms of the success rate

Figure 7.10: Evaluation of the success rate of the approximate selection approach

The success rate presents the percentage of scenarios where a feasible solution is found

compared to the total number of scenarios where a solution exists:

success = Nbsucc−scen/Nbtotal−scen

The results displayed in Figure 7.10 indicate that the success rate of the heuristic ap-

proach increases along with the number of candidate services per task. Figure 7.10 also

shows that the heuristic approach after the pruning phase achieves better success rate

than the heuristic approach that does not consider preselected candidate services. The

reason of this behavior is that the pruning process allows eliminating uninteresting ser-

vices and consider only the most important ones. Hence, selected centroids are more

relevant and thus, it is more likely to find a feasible solution.

• Discussion

Chapter 7. Evaluation 115

We can conclude that in all test cases, our heuristic approach can achieve a satisfactory

optimality with a very small computation time. However, there is a significant trade-off

between the number of the centroids and the computation time, the optimality and the

success rate of the proposed approach. In fact, when the number of centroids increases,

the computation time of the selection process increases and the optimality and the

success rate increase as well and inversely. Hence, the choice of the number of centroids

is of great importance. It should not be very high to reduce the computation time

and find an efficient classification of services. Additionally, it should not be very small

so that we can find the most adequate centroids and thus, a close-to-optimal solution.

Results also show the advantage of the pruning process before the selection phase. In

fact, although the pruning step can increase the computation time, this latter is still

very negligible as compared to the time of the selection approach without pruning. This

is mainly due to the fact that local thresholds of the pruning process can be computed in

parallel for all tasks and for each QoS attribute in contrast to the local QoS constraints

that can not be computed in parallel and that requires more computation time when

no pruning techniques are applied. Thus, the pruning process allows: (i) reducing the

computation time of the selection process and (ii) achieving more accurate results with

a very small number of centroids.

7.3.5 Evaluation of The Dynamic Service Selection Approach

In this section, we report the evaluation results of our dynamic service selection approach

presented in Chapter 6. First, we analyze the time complexity of the selection algorithms.

Then, we present the analysis of experimental results focusing on the efficiency in terms

of the computation time, the optimality and the success rate.

7.3.5.1 Complexity Evaluation

The size of the dynamic selection problem is defined by two main factors: the number of

abstract tasks considered in the dynamic selection phase and the number of candidate

services considered for each abstract task. When a change or a violation occurs without

affecting the satisfaction of global constraints (i.e., when the actions Action1 and Action2

are applied (See Section 6.3.3.2)), the enhancement process is usually performed in

parallel to the execution of the services and thus, it does not affect the complexity of

the proposed approach. In addition, the complexity of the action Action4 is equal to

O(s) with s is the number of pertinent services per task. Hence, in this subsection, we

analyze the complexity of the local and the region based service selection approaches

presented in Section 6.3.4 (i.e., Action3).

Chapter 7. Evaluation 116

- Local service selection: the time complexity of the local selection phase depends on the

complexity of the following three steps: (i) computing local thresholds, (ii) updating the

set of pertinent services and (iii) locally selecting new services. The computation of local

thresholds is independent of the number of services per tasks and the number of business

tasks since QoS and temporal thresholds for all tasks can be computed in parallel. Thus,

the complexity of this step is O(no) with no denotes the operation number of equation

resolution of the proposed models (from (6.1) to (6.10)). (ii) The updating of the set

of pertinent services can be done in parallel for all non-executed tasks. It consists on

browsing the set of pertinent services of each task, selecting and computing the scores of

those that satisfy the new thresholds, which has a complexity of O(s) and the ranking of

the new set of pertinent services, which has a complexity of O(np) in the best case and

O(np ∗ log(np)) in the worst case with np is the number of the new pertinent services.

(iii) The local selection of the best services has a complexity of O(1) in the best case (i.e.,

the first non-executed task has a non empty set of services) and a complexity of O(e)

in the worst case (i.e., only the last non-executed task has a non empty set of services)

with e denotes the number of non-executed tasks (i.e., e =| Ane |). Thus, the complexity

of the local selection phase is equal to O(no+ s+np ∗ log(np) + e) = O(np ∗ log(np)) in

the worst case.

- Region based service selection: the complexity of this step is equal to O(2r∗s) with r is

the number of tasks in the selection region R. More specifically, it is equal to O(22∗s) in

the best case (i.e., in the case where a solution to the selection problem is found when

only two non-executed tasks are included in R) and is equal to O(2e∗s) in the worst case

(i.e., all non-executed tasks are included in R).

In conclusion, the complexity of our approach is equal to O(np∗log(np)) in the worst case

when a solution is found based on local selection and is equal to O(2e∗s) in the worst case

when a solution is found using the region based selection approach. Consequently, our

approach achieves better performance than existing dynamic service selection approaches

[67, 101] that re-select services from scratch each time a violation is observed and thus,

they have a complexity of O(2e∗c) in all cases with c denotes the number of all candidate

services per task.

7.3.5.2 Experimental Results

To evaluate the effectiveness of our approach, we study its performance in terms of the

computation time, the optimality and the success rate. We compare our approach that

enhances the selected solution progressively during execution with the global dynamic

selection approach (global approach for short) in which changes are considered only when

Chapter 7. Evaluation 117

global constraints are violated and a selection from scratch for all non-executed tasks is

applied [67]. Here, we suppose that the time required to identify the category of change

is very negligible compared to the selection time and thus, it is ignored. Experiments

were conducted using a complex business process composed of 10 abstract tasks. The

structure of the process is generated randomly. The number of candidate services and

QoS constraints is fixed to 500 and 5, respectively.

• Performance of the dynamic selection process in response to a violation in a se-

lected service

First, we compare the computation time (i.e., the time required to find a solution) of

the two approaches in response to a deletion or a violation of a selected but not yet

executed service (Figure 7.11(a)) and a deletion or a violation of a service currently in

execution (Figure 7.11(b)). In these two cases, we suppose that the violation exceeds the

maximum thresholds and thus, a re-selection is mandatory to guarantee the satisfaction

of global constraints.

In Figure 7.11(a), we assume that the violation or the deletion of the selected service

occurs after two tasks from the one being executed (e.g., while executing the first task,

the violation occurs on the third task). Experiments reveal that our approach outper-

forms the basic approach in all cases. In fact, the computation time of our approach is

negligible compared to that of the global approach. This is mainly due to the fact that in

our approach, a solution can be found by simply replacing the failed service by the first

pertinent service. However, the global approach delays the reaction to changes until the

execution of the failed service. Experiments also show that the global approach takes

more time when the change is observed at an early stage of the execution due to fact

that there are several non-executed services and thus, more possible combinations have

to be compared. We note that whereas, the interruption time (i.e., the time in which

the execution is stopped to find a feasible solution) is equal to the computation time

for the global approach (since this latter takes selection actions only after executing the

failed service), our approach does not cause the interruption of the execution since the

selection actions are taken as soon as the change occurs in parallel to the execution.

In Figure 7.11(b), the change can not be observed before the execution of the erroneous

service and thus, the interruption of execution is required. In such a case, the compu-

tation time is equal to the interruption time for both approaches. Again, our approach

has a very small interruption time even when the change occurs at earlier stages. In

fact, in some cases, our approach can find a solution based on local selection. Moreover,

selecting services only for a specific region while considering a set of pertinent services

for each task allows enhancing the performance of our approach since it decreases the

Chapter 7. Evaluation 118

number of possible combinations that have to be compared. The computation time of

both approaches decreases when the position of the executed task get closer to the end

of the process. This is due to the fact that the number of tasks that are considered in

the selection process becomes smaller and the number of possible solutions decreases.

Figure 7.11: Evaluation of the computation time of the dynamic selection approach
in response to a service violation

To evaluate the gain of utility of our approach, we compare its optimality with that of

the global approach (Figures 7.12(a) and 7.12(b)) considering both cases as previously

(i.e., a deletion or a violation of a selected but not yet executed service and a deletion

or a violation of a service currently in execution). The optimality of each approach is

computed by dividing the utility value of the obtained solution after changes by the

utility value of the primary combination of services. As can be seen in Figure 7.12(a),

our approach reaches better optimality in all cases since it relies on early reaction to

changes. Results also show that although the optimality of the global approach decreases

by increasing the change position, the optimality of our approach is almost stable. Figure

7.12(b) indicates that in the case where the erroneous behavior is observed in the service

currently in execution, our approach can produce a satisfactory optimality. Here, the

global approach has better optimality since it considers all possible combinations of

services in contrast to our approach that can find a solution by local selection.

Figure 7.12: Evaluation of the optimality of the dynamic selection approach in re-
sponse to a service violation

Chapter 7. Evaluation 119

Figure 7.13: Evaluation of the success rate of the dynamic selection approach in
response to a service violation

To further illustrate the performance of our approach, we compare the success rate

achieved by the different test cases (Figure 7.13).

Figure 7.13 indicates that our approach has better success rate since it reacts to changes

as soon as they occur, which increases the likelihood to find a solution. Whereas, when

using the global approach, it might be the case where no solution is found after a global

violation. This is due to the fact of delaying the reaction to changes after the execution

of the failed service. We note that if the erroneous behavior occurs in the executed

service, the two approaches have the same success rate since our approach acts as the

global approach in the worst case.

• Performance of the enhancement process in response to a random change

To further evaluate the efficiency of our approach, we study its performance in response

to the number of changes, which are added randomly at run-time for tasks that are

currently in execution or not yet executed. These changes include the addition, the

modification and the deletion of non-selected candidate services as well as violations in

the selected services. All violations in selected services are assumed to be less than the

maximum thresholds. The positions of changes and violations are generated randomly

in all cases.

First, Figure 7.14 depicts the performance of our approach in terms of the computation

time required to consider the different violations and changes and in terms of the inter-

ruption time. The computation time includes the time required to deal with all changes.

Figure 7.14(a) shows that although the computation time of the global approach is al-

most negligible when the number of changes is very small, it increases by increasing the

number of changes. In contrast, the computation time of our approach (i.e., the time

required to enhance the solution) is very small in most cases. This is explained by the

fact that the global approach usually does not react to changes if the global constraints

Chapter 7. Evaluation 120

are not violated. If a global violation occurs, the execution is interrupted until a solution

is found and usually a re-selection for all the non-executed portion of the business pro-

cess is required, which can be time consuming. However, our approach takes adaptation

actions and enhances the selected solution during execution as soon as a change occurs

even before the occurrence of a global violation. Figure 7.14(b) indicates that the inter-

ruption time is basically equal to 0 using our approach since the enhancement process is

done in parallel to the execution of services without the need to interrupt the execution.

In contrast, since the global approach delays the treatment of the different changes and

violations until a global violation occurs, it requires to interrupt the execution until a

solution is found.

Figure 7.14: Evaluation of the computation time of the dynamic selection approach
in response to environment changes

Second, we study the optimality and the success rate of our approach compared to

those of the global approach according to the number of changes. The optimality of

each approach is computed by dividing the utility value of the obtained solution after

changes by the utility value of the primary combination of services. Figure 7.15(a)

shows that although the optimality of the global approach decreases by increasing the

number of changes and violations, the optimality of our approach is almost stable in most

cases. This is mainly due to the fact that our approach allows enhancing the selected

solution and taking re-selection actions during execution before executing the failed

service. Moreover, in contrast to the global approach, our approach considers not only

the non-executed successors of the failed service but also its non-executed predecessors,

which allows obtaining better solutions. Figure 7.15(b) indicates that our approach has

better success rate since it proactively reacts to changes, which increases the likelihood

to find a solution. Whereas, when using the global approach, it might be the case where

no solution is found after a global violation.

Chapter 7. Evaluation 121

Figure 7.15: Evaluation of the optimality and the success rate of the dynamic selection
approach in response to environment changes

• Discussion

The results show that our approach achieves quick and efficient selection in response to

environment changes and service failures and violations. In fact, it can find a close-to-

optimal solution in dynamic and uncertain environments with a small overhead. Our

approach has better performance than the global approach since it allows enhancing the

selected solution and taking preventive actions before a violation of global constraints

may occur. In addition, when global constraints are violated or a service currently in

execution is no more available, our local and region based service selection approaches

have better performance than that of the global selection approach. Moreover, our

approach can find a solution in most cases with a very small computation time and

a satisfactory optimality. This is due to the fact that the local selection approach

involves only the re-selection of one service as opposed to the global selection approach

that requires the re-selection of all non-executed services in order to select the optimal

solution. Moreover, the global approach can not find a feasible solution in some cases,

which is mainly due to the accumulation of several violations.

7.4 Conclusion

In this chapter, we have demonstrated the usefulness of the proposed approach through

experimental results. We have studied the performance of all contributions from ana-

lytical and empirical points of view. Experiments are performed based on several test

cases to evaluate the proposed contributions in response to the number of business tasks,

constraints and candidate services per task. The performance of our algorithms are eval-

uated based on the required computation time, the optimality and the success rate. The

evaluation results demonstrate the effectiveness of the proposed approach compared to

Chapter 7. Evaluation 122

existing approaches while still dealing with both small and large selection problems and

considering QoS and temporal properties.

Chapter 8

Conclusions and Future Work

Contents

8.1 Contributions and Research Summary 124

8.1.1 Specification of a constraint-based service selection model . . . 124

8.1.2 A dominance and constraint-based service pruning approach . 124

8.1.3 Exact and approximate service selection approaches at design

time . 125

8.1.4 A proactive dynamic service selection approach at run-time . . 126

8.2 Future Directions . 127

8.2.1 Short-term Perspectives . 127

8.2.2 Long-term Perspectives . 128

In service oriented systems, the development of complex applications relies on the compo-

sition of elementary services. Usually, besides functional requirements, the composition

must fulfill also non functional requirements, namely QoS and temporal constraints. In

real-world scenarios, QoS offers may not be static and can change over time. Moreover,

several dependencies may exist between involved services namely structural and tempo-

ral dependencies. On the other side, services can evolve in highly dynamic environments,

which might cause QoS values fluctuations during the execution.

Selecting the adequate combination (composition) of services and ensuring that the se-

lected solution remains satisfactory during execution in response to QoS fluctuations and

environment changes while considering temporal properties represents a major challenge

in service oriented systems and, despite several researches, still not adequately treated.

Towards addressing these challenges, this thesis has provided several novel contributions.

These contributions are summarized in Section 8.1, followed by a list of possible short

and long term future extensions of our research work in Section 8.2.

123

Chapter 8. Conclusions and Future Work 124

8.1 Contributions and Research Summary

In this section, we summarize the different contributions of our research work. Our

thesis has four main contributions:

- Specification of a constraint-based service selection model

- A dominance and constraint-based service pruning approach

- Exact and approximate service selection approaches at design time

- A proactive dynamic service selection approach at run-time

8.1.1 Specification of a constraint-based service selection model

In this thesis, we have proposed a rich constraint model which caters for several con-

straints and dependencies that may be defined at the business level namely structural,

QoS and temporal constraints. Four main structural patterns have been considered:

sequence, parallel, choice and loop. Based on these patterns, we have proposed a de-

tailed presentation of the aggregation function while handling several categories of QoS

attributes.

In contrast to existing work, our model allows for specifying not only global QoS con-

straints but also intra and inter-task QoS and temporal constraints at the business level

to get control over the execution of the process and to cater for temporal dependencies

between services. Moreover, despite their impact on the quality of the delivered services,

time-dependent QoS have been ignored by most of the service selection approaches. To

deal with this limitation, we have provided a presentation of timed service instances,

which may deliver different QoS values with respect to time. These instances have been

considered in the different steps of our approach.

8.1.2 A dominance and constraint-based service pruning approach

Selecting the adequate solution while achieving time efficiency and guaranteeing a satis-

factory optimality is of great importance especially in heavily constrained service selec-

tion problems. To ensure the time efficiency of the selection process, we have presented

dominance and constraint-based service pruning techniques. The proposed techniques

aim to reduce the number of candidate services prior to the selection process based

on both QoS and temporal properties while maintaining the optimal solution. A set

of constraint optimization models have been proposed to compute the different local

Chapter 8. Conclusions and Future Work 125

QoS and temporal thresholds required to remove inadequate services. The proposed

models are generalized to accommodate challenging problems where several constraints

and dependencies are identified between services. The computation of local thresholds

is independent from one task to another and can be applied in parallel for all QoS at-

tributes to increase the efficiency of the pruning phase. Through the pruning process,

improvement techniques have been provided to enhance the service selection problem in

case there is no feasible solution.

The proposed service pruning approach differs from existing ones by the fact that it does

not pre-select relevant services based on only QoS values but also based on temporal

properties while considering several dependencies between services and this, without

removing the optimal solution. Moreover, our pruning strategies enable identifying the

source of failure in case there is no solution to the selection problem so that improvement

strategies can be carried out to find a feasible solution. Additionally, the pruning process

allows enhancing the performance of the service selection process with a very small

overhead since the set of local thresholds can be computed in parallel and only a set of

the most accurate services is considered during the selection phase.

8.1.3 Exact and approximate service selection approaches at design

time

In this thesis, we have proposed exact and approximate service selection approaches. The

exact approach is adequate in small selection problems to select the optimal solution

(i.e., the best combination of services). The approximate approach is suitable for large

selection problems to select a close-to-optimal solution.

To avoid greedy decomposition of global constraints and consider correlations between

the values of each candidate service, we have adopted clustering techniques to identify

a set of clusters for each abstract task. The most relevant centroids are then selected

(one centroid for each task) such that all constraints are satisfied. The quality values

of the selected centroids will be further considered as local QoS constraints. Moreover,

in contrast to existing approaches that handle static QoS values, in addition to the

global QoS decomposition, we have proposed a decomposition technique to identify

local temporal constraints that have to be fulfilled during local selection. The proposed

heuristic approach allows for reaching a satisfactory optimality in most cases with a very

small computation time.

Chapter 8. Conclusions and Future Work 126

8.1.4 A proactive dynamic service selection approach at run-time

To deal with uncertainties and dynamism of service oriented systems, appropriate adap-

tation actions have to be taken in response to possible violations and environment

changes. Most of existing approaches consider only violations in the selected services

and do not cater for changes that might occur on the environment during service exe-

cution. In this thesis, we have proposed a dynamic service selection approach to adapt

the selected combination of services at run-time in order to support the development of

reliable business processes.

Different from existing approaches that take recovery actions only for corrective pur-

poses, our dynamic selection approach allows handling several changes and enhancing

the selected solution during execution in response to the values of the already executed

services and the current state of the environment while handling QoS and temporal

properties. The main advantages of our approach can be summarized as follows:

• Classification of changes and re-selection thresholds

To avoid unnecessary re-selection, we have identified intermediary thresholds for

each abstract task. Moreover, a set of maximum thresholds that must not be ex-

ceeded during execution has been identified so that if at least one of these thresh-

olds is exceeded, re-selection actions have to be taken. To define the importance

of each change during execution, we have provided a classification of the different

changes. Thus, according to the type of the change, actions are triggered either in

parallel to the execution or an interruption of the execution of services is required.

• Limited set of candidate services

A set of pertinent services is identified for each task to speed up the re-selection

of services during execution. Pertinent services selected for each abstract task are

identified such that all constraints are verified and they are ranked according to

their distance to the maximum execution thresholds. This allows a reliable ser-

vice re-selection during execution that guarantees the fulfillment of all constraints.

Unlike existing approaches that consider static set of backup solutions, in our

approach, we have proposed to update the set of pertinent services according to

the new information in the selected solution without interrupting the execution of

services.

• Limited set of abstract tasks

To enhance the efficiency of the proposed approach, first, a local selection is applied

to substitute the failed service by simply selecting the first ranked pertinent service.

Chapter 8. Conclusions and Future Work 127

If no solution is found, we identify a re-selection region to avoid re-selecting services

for all non-executed tasks.

• Re-selection in parallel to execution

In our approach, adaptation actions are triggered as soon as a change occurs in

order to minimize the execution interruption and prevent possible violations due

to the accumulation of several violations. Moreover, if the adaptation actions

triggered in response to the different changes and violations are not completed

before the complete execution of the service currently in execution, they will be

continued in parallel to the execution of the next service. This allows maximizing

the likelihood of finding a feasible solution while guaranteeing a good optimality

of the selected solution since re-selection actions are triggered before reaching the

erroneous service where no solution can be found or the solution would be of lower

quality.

8.2 Future Directions

Besides the aforementioned contributions, several perspectives are still to be investigated

towards improving and extending our work. In what follows, we list short and long-

term perspectives to present potential enhancements of our work and future research

directions in service composition selection.

8.2.1 Short-term Perspectives

In order to improve the proposed approach, five short-term perspectives can be investi-

gated:

• Implementing the dominance-based pruning

In this thesis, the dominance-based pruning phase presented in Section 4.2 was not

implemented. As a first step towards enhancing the proposed work, we plan to

implement this phase to further enhance the performance of the pruning process.

To do so, multi-objective optimization algorithms can be applied to identify all

non-dominated candidate service instances for each abstract task (e.g., SPEA [45],

NSGA [47], PAES [49]).

• Considering different distributions and patterns of QoS values

In this thesis, all experiments were conducted assuming an independent distri-

bution of quality values for the different candidate service instances. The third

Chapter 8. Conclusions and Future Work 128

perspective consists in studying the performance of the different contributions of

our work through experimental studies while taking into account different distri-

butions and patterns of QoS values (See Section 3.3.2).

• Considering real-data

In this thesis, all experiments were conducted on simulation studies and randomly-

generated data. Although these experiments have demonstrated the effectiveness

of the different proposed contributions and algorithms, it is important to support

the obtained results by demonstrating the usefulness of the different contributions

in practical scenarios through real-data.

• Developing the improvement process

In section 4.4, we have presented pruning-based improvement process to try to find

a solution when the selection process cannot be fulfilled. The second short-term

perspective is the development and the validation of this improvement process.

This can be achieved by adopting appropriate negotiation strategies guided by our

improvement techniques.

• Prioritizing changes and violations

Finally, we are interested in extending our dynamic service selection approach to

handle the case where multiple changes might occur at the same time and multiple

solutions, which can be conflicting, can be found. In this case, we shall propose to

classify the different changes and violations according to their importance during

execution.

8.2.2 Long-term Perspectives

In what follows, we list a number of possible long-term perspectives that we believe are

interesting to our work.

• Inter-service correlations

In our work, we have concentrated on structural and inter-task temporal dependen-

cies between services and we suppose that services are independent with respect

to quality attributes. However, further correlations can also be considered in the

selection problem. In fact, services may behave differently in different composition

scenarios with respect to quality attributes [119, 139–141]. This can be due to

for example business correlations among competitive enterprises. For example, a

service provider might offer discount policies if a service of another provider is se-

lected to implement one task in the same service composition. Thus, quality values

Chapter 8. Conclusions and Future Work 129

of a service may depend on the other services selected in the composition. Inter-

service QoS dependencies is a very interesting feature that have to be considered

in service selection problems.

Another category of correlations among services is the compatibility correlation,

which indicates whether two or more services can be selected in the same compo-

sition [139, 142]. QoS and compatibility dependencies awareness raises additional

challenges to the service selection problems. Tackling with such dependencies in

the different steps of our approach combined with structural and temporal depen-

dencies is a very interesting future direction of our research work.

• Granularity heterogeneity

In our work, we assume that the composite service is modeled using a business

process with elementary activities. That means, for each activity, we try to select

a concrete service. This assumption may prevent the discovery and the selection of

pertinent services that do not meet abstract tasks identified in the business process.

For example, a provider that offers manufacturing and assembling facilities as one

service (i.e., it must perform the two functionalities together and not only one)

can not be selected if these two tasks are modeled separately in the composition.

Similarly, if these two services are modeled as one abstract task in the composition,

individual manufacturing and assembling services will be neglected.

Thus, a coarse-grained service can better implement two abstract tasks by combin-

ing their functionalities rather than two individual finer-grained candidate services

and inversely [17, 70, 143]. Addressing services available at different granularity

levels when pruning and selecting services is a target area for future work.

• Behavioral adaptation

The improvement techniques proposed in this thesis, in case no solution can be

found after the pruning process (See Section 4.2) are mainly concentrated in the

improvements required by users and service providers. However, in some cases, to

further relax the selection problem, improvements and adaptations can be made

at the business level (e.g., by modifying some intra or inter-task constraints or

by adapting the structure of the business process). Moreover, in our work, we

assume that the structure of the service composition is fixed at design time and

that during execution, only dynamic service selection is considered in case of vio-

lations or environment changes. Behavioral adaptation can be another alternative

to face deviations at run-time. In case of failure, the execution of the composition

of services according to another alternative behavior can be considered [99, 104].

Chapter 8. Conclusions and Future Work 130

Alternative behaviors can be obtained by changing the structure of the composi-

tion. Thus, an adaptive system that is capable to modify the process structures

on the fly is another important future direction of our work.

Appendix A

Proofs of Theorems and Lemmas

A.1 Proof of Theorem 4.1

Proof. Consider a service combination CS′ that is derived from a service combination

CS = {s1, ..., si, ..., sn} that satisfies all constraints by substituting si by sj with sj

is better than si for at least one attribute and it is better or equal to si for all other

attributes.

• Suppose that sj is better than si in one QoS attribute and it is better or equal in

other parameters. Thus, since QoS aggregation functions are monotone, a better

value in one QoS produces a better aggregated value (and thus, a better utility

value) and maintains the satisfaction of all structural and QoS constraints. In

addition, since sj is better or equal to si in its temporal properties, all temporal

constraints are fulfilled. In fact, a constraint that is satisfied by a time interval T1,
will be satisfied by a larger time interval T2.

• Suppose now that sj is better than si in its time interval and has the same or

better QoS values than si. In this case, a combination CS′ that has the same

services than CS while substituting si by sj , has the same or a better utility value

and satisfies all temporal constraints since a combination derived from a larger

time interval fulfills all constraints as a combination derived from a smaller time

interval.

131

Appendix A. Proofs of Theorems and Lemmas 132

A.2 Proof of Lemma 4.1

Proof. Suppose that after the dominance pruning process there is a service si in a service

class Si that belongs to the optimal solution CS∗ but it does not belong to the set of

skyline services. Thus, according to the dominance definition presented previously, there

is another service sj ∈ Si that dominates si (i.e., sj is better than or equal to si in all

QoS and temporal parameters and is strictly better in at least one parameter). Suppose

that sj is better than si in one QoS or temporal parameter and it is better or equal to si

in other attributes, thus, if we consider a service combination CS′ that is derived from

CS∗ by substituting si by sj , this combination also satisfies business constraints and

has a better or the same utility value according to Theorem 4.1. Consequently, CS′ is

better than CS∗ and thus, it should be selected as the optimal solution, which implies

a contradiction.

A.3 Proof of Lemma 4.2

Proof. We prove Lemma 4.2 by reduction to absurdity. Assume that there exists an

optimal solution CS∗ = {s1, ..., si, ..., sn} that has the best utility value and satisfies all

the constraints but has not been selected. Thus, CS∗ has at least one service si ∈ Si
that is eliminated after the constraint-based pruning process. Hence, the service si is

pruned either because of its QoS attributes or its time interval.

• First, suppose that the service si is pruned due to its QoS attributes, i.e., there is

at least one QoS parameter qy ∈ QS s.t., Q(si, qy) > QLT (Ai, qy). Since si ∈ CS∗,
(1) the aggregation of the quality value of this service for the attribute qy (i.e.,

Q(si, qy)) with the quality values of the other services in CS∗ satisfies the global

QoS constraint Q(qy) and (2) all intra and inter-task constraints are satisfied.

These two conditions are respected if we consider the combination of services

composed of the service si and the services that have the minimum quality values

for the attribute qy of all the remaining tasks according to Theorem 4.1. Hence,

si has a better quality value than the local QoS threshold QLT (Ai, qy) and the

aggregation of its QoS value with all the minimum QoS values of the other tasks

satisfies the global constraint Q(qy) such that all business constraints are fulfilled.

Consequently, Q(si, qy) has to be selected as the local threshold of the task Ai

for the quality attribute qy so, Q(si, qy) ≤ QLT (Ai, qy), which is a contradictory

result.

• Suppose now that the service si is pruned based on its time interval so either of

the following two cases is satisfied:

Appendix A. Proofs of Theorems and Lemmas 133

– [tminSijk
, tmaxSijk

] ∩ [esti, lfti] = ∅. Let’s start by the first case (i.e., tminSijk
> lfti).

Given that si is a candidate service in the optimal solution, (1) the aggregation

of its values with the values of the remaining services of the combination

satisfies the global execution duration constraint and (2) all intra and inter-

task temporal constraints are fulfilled. From Theorem 4.1., we can conclude

that these two conditions are also fulfilled if we select the service si with

other services that offer the minimum execution duration values. Hence, the

largest time interval of the task Ai should be [esti, fti] with fti ∈ [tminSijk
, tmaxSijk

].

Thus, the latest finish time has to be greater than fti (i.e., lfti ≥ fti) and

so, lfti ≥ tminSijk
, which leads to a contradiction. In the same way, we can

demonstrate the second case (i.e., tmaxSijk
< esti).

– [tminSijk
, tmaxSijk

] ∩ [esti, lfti] = [X,Y] and Y −X < Q(si, dur). Here, three cases

arise: (a) tminSijk
≥ esti and tmaxSijk

≤ lfti. In this case, tmaxSijk
− tminSijk

< Q(si, dur),

which is impossible. (b) esti ≤ tminSijk
≤ lfti and tmaxSijk

≥ lfti. As previously,

we can demonstrate that in this case the largest time interval of the task Ai

should be [esti, fti] with fti ≥ tminSijk
+Q(si, dur). Hence, fti ≥ lfti and thus,

it should be considered as the latest finish time for the task Ai, which is not

the case. In the same way, we can demonstrate the latest case (c) tminSijk
≤ esti

and esti ≤ tmaxSijk
≤ lfti.

We conclude that a service that can be part of the optimal solution can not be pruned

by our constraint-based pruning techniques.

A.4 Proof of Lemma 5.1

Proof. First, since all selected services fulfill local QoS constraints, global QoS con-

straints will be satisfied according to (5.21). In other hand, suppose that the selected

service of the first task (i.e., Ai ∈ A) meets Constraint (5.36). Consequently, in the

best case (i.e., its start time is equal to estmi and it has the minimum duration value),

its finish time is equal to eftmi . In the worst case, its finish time is equal to lftMi ac-

cording to Constraint (5.36). Therefore, the service that will implement the successor

task (i.e., Av with Ai ∈ Pd(Av)) can verify estmv ≤ stv ≤ lstMv according to (5.28) and

(5.29). Hence, in the worst case (i.e., the duration of the selected service is equal to the

duration of the selected centroid for the task Av), this service can start in its allowed

time span and it also satisfies local temporal constraints. We note that in all cases, in-

tra and inter-task temporal constraints and the overall deadline are satisfied since they

are considered in the deadline decomposition phase (Constraints from (5.30) to (5.33)).

Appendix A. Proofs of Theorems and Lemmas 134

Moreover, the maximum duration values of the selected services guarantee the overall

deadline according to (5.22).

Appendix B

Description of The BPMN File

The structure of the BPMN file is as following.

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
<bpmn2 :de f in i t i on s xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”

xmlns:bpmn2=” ht tp : //www. omg . org / spec /BPMN/20100524/MODEL” xmlns:bpmndi=” ht tp :

//www. omg . org / spec /BPMN/20100524/DI” xmlns:dc=” ht tp : //www. omg . org / spec /DD

/20100524/DC” xmlns :d i=” ht tp : //www. omg . org / spec /DD/20100524/DI” xmlns : tc=”

ht tp : // org . e c l i p s e . bpmn2 . modeler . examples . t s ” id=” De f i n i t i o n s 1 ”

targetNamespace=” ht tp : // org . e c l i p s e . bpmn2 . modeler . examples . t s ”>

<bpmn2:process id=”Product ion Proces s ” name=”Production Process ”>

<bpmn2:startEvent id=”StartEvent 1 ”>

<bpmn2:outgoing>tc :SequenceFlow 2</bpmn2:outgoing>

</bpmn2:startEvent>

<bpmn2:sequenceFlow id=”SequenceFlow 2” sourceRef=” StartEvent 1 ” ta rge tRe f=”

Task 1”/>

<bpmn2:task id=”Task 2” name=”Task 2”>

<bpmn2:incoming>tc :SequenceFlow 3</bpmn2:incoming>

<bpmn2:outgoing>tc :SequenceFlow 4</bpmn2:outgoing>

</bpmn2:task>

<bpmn2:sequenceFlow id=”SequenceFlow 4” sourceRef=”Task 2” ta rge tRe f=”

Para l l e lGateway 1 ”/>

<bpmn2:paral le lGateway id=”Para l l e lGateway 1 ”>

<bpmn2:incoming>tc :SequenceFlow 4</bpmn2:incoming>

<bpmn2:outgoing>tc :SequenceFlow 5</bpmn2:outgoing>

<bpmn2:outgoing>tc :SequenceFlow 6</bpmn2:outgoing>

</bpmn2:paral le lGateway>

<bpmn2:sequenceFlow id=”SequenceFlow 5” sourceRef=”Para l l e lGateway 1 ”

ta rge tRe f=”Task 3”/>

<bpmn2:sequenceFlow id=”SequenceFlow 6” sourceRef=”Para l l e lGateway 1 ”

ta rge tRe f=”Task 4”/>

<bpmn2:task id=”Task 3” name=”Task 3”>

<bpmn2:incoming>tc :SequenceFlow 5</bpmn2:incoming>

<bpmn2:outgoing>tc :SequenceFlow 7</bpmn2:outgoing>

</bpmn2:task>

<bpmn2:sequenceFlow id=”SequenceFlow 7” sourceRef=”Task 3” ta rge tRe f=”

Para l l e lGateway 2 ”/>

<bpmn2:task id=”Task 4” name=”Task 4”>

135

Appendix B. Description of The BPMN File 136

<bpmn2:incoming>tc :SequenceFlow 6</bpmn2:incoming>

<bpmn2:outgoing>tc :SequenceFlow 8</bpmn2:outgoing>

</bpmn2:task>

<bpmn2:sequenceFlow id=”SequenceFlow 8” sourceRef=”Task 4” ta rge tRe f=”

Para l l e lGateway 2 ”/>

<bpmn2:paral le lGateway id=”Para l l e lGateway 2 ”>

<bpmn2:incoming>tc :SequenceFlow 7</bpmn2:incoming>

<bpmn2:incoming>tc :SequenceFlow 8</bpmn2:incoming>

<bpmn2:outgoing>tc :SequenceFlow 9</bpmn2:outgoing>

</bpmn2:paral le lGateway>

<bpmn2:sequenceFlow id=”SequenceFlow 9” sourceRef=”Para l l e lGateway 2 ”

ta rge tRe f=”Task 5”/>

<bpmn2:task id=”Task 5” name=”Task 5”>

<bpmn2:incoming>tc :SequenceFlow 9</bpmn2:incoming>

<bpmn2:outgoing>tc :SequenceFlow 10</bpmn2:outgoing>

</bpmn2:task>

<bpmn2:sequenceFlow id=”SequenceFlow 10” sourceRef=”Task 5” ta rge tRe f=”Task 6

”/>

<bpmn2:task id=”Task 6” name=”Task 6”>

<bpmn2:incoming>tc :SequenceFlow 10</bpmn2:incoming>

<bpmn2:outgoing>tc :SequenceFlow 11</bpmn2:outgoing>

</bpmn2:task>

<bpmn2:sequenceFlow id=”SequenceFlow 11” sourceRef=”Task 6” ta rge tRe f=”

EndEvent 2”/>

<bpmn2:task id=”Task 1” name=”Task 1”>

<bpmn2:incoming>tc :SequenceFlow 2</bpmn2:incoming>

<bpmn2:outgoing>tc :SequenceFlow 3</bpmn2:outgoing>

</bpmn2:task>

<bpmn2:sequenceFlow id=”SequenceFlow 3” sourceRef=”Task 1” ta rge tRe f=”Task 2”

/>

<bpmn2:endEvent id=”EndEvent 2”>

<bpmn2:incoming>tc :SequenceFlow 11</bpmn2:incoming>

</bpmn2:endEvent>

<bpmn2:boundaryEvent id=”BoundaryEvent 3” name=”” attachedToRef=” tc :Task 1 ”>

<bpmn2:eventDef in i t ion x s i : t y p e=”tc:SNLT” id=”SNLT 1” t c : t yp e=”SNLT” value=

”0”/>

<bpmn2:eventDef in i t ion x s i : t y p e=”tc:FNLT” id=”FNLT 5” t c : t yp e=”FNLT” value=

”0”/>

</bpmn2:boundaryEvent>

<bpmn2:boundaryEvent id=”BoundaryEvent 4” name=”” attachedToRef=” tc :Task 3 ”>

<bpmn2:eventDef in i t ion x s i : t y p e=”tc:FNLT” id=”FNLT 3” t c : t yp e=”FNLT” value=

”0”/>

</bpmn2:boundaryEvent>

<bpmn2:flowElement x s i : t y p e=”tc:TemporalDependency” id=”TemporalDependency 3”

name=”SF” fromValue=”1” toValue=”12” sourceRef=”BoundaryEvent 3” ta rge tRe f=”

BoundaryEvent 4”/>

<bpmn2:boundaryEvent id=”BoundaryEvent 5” name=”” attachedToRef=” tc :Task 4 ”>

<bpmn2:eventDef in i t ion x s i : t y p e=”tc:SNLT” id=”SNLT 2” t c : t yp e=”SNLT” value=

”0”/>

</bpmn2:boundaryEvent>

<bpmn2:flowElement x s i : t y p e=”tc:TemporalDependency” id=”TemporalDependency 4”

name=”FS” fromValue=”0” toValue=”3” sourceRef=”BoundaryEvent 3” ta rge tRe f=”

BoundaryEvent 5”/>

<bpmn2:boundaryEvent id=”BoundaryEvent 6” name=”” attachedToRef=” tc :Task 5 ”>

Appendix B. Description of The BPMN File 137

<bpmn2:eventDef in i t ion x s i : t y p e=”tc:FNLT” id=”FNLT 6” t c : t yp e=”FNLT” value=

”0”/>

</bpmn2:boundaryEvent>

<bpmn2:boundaryEvent id=”BoundaryEvent 7” name=”” attachedToRef=” tc :Task 6 ”>

<bpmn2:eventDef in i t ion x s i : t y p e=”tc:SNLT” id=”SNLT 3” t c : t yp e=”SNLT” value=

”0”/>

</bpmn2:boundaryEvent>

<bpmn2:flowElement x s i : t y p e=”tc:TemporalDependency” id=”TemporalDependency 5”

name=”FS” fromValue=”1” toValue=”2” sourceRef=”BoundaryEvent 6” ta rge tRe f=”

BoundaryEvent 7”/>

<bpmn2:boundaryEvent id=”BoundaryEvent 9” name=”FNLT” attachedToRef=”

tc :Task 2 ”>

<bpmn2:eventDef in i t ion x s i : t y p e=”tc:FNLT” id=”FNLT 7” t c : t yp e=”FNLT” value=

”15”/>

</bpmn2:boundaryEvent>

</bpmn2:process>

<bpmndi:BPMNDiagram id=”BPMNDiagram 1” name=”Production Process ”>

<bpmndi:BPMNPlane id=”BPMNPlane 1” bpmnElement=” pro c e s s 4 ”>

<bpmndi:BPMNShape id=”BPMNShape 1” bpmnElement=”StartEvent 1 ”>

<dc:Bounds he ight=” 36 .0 ” width=” 36 .0 ” x=” 30 .0 ” y=” 117 .0 ”/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape id=”BPMNShape ParallelGateway 1” bpmnElement=”

Para l l e lGateway 1 ”>

<dc:Bounds he ight=” 50 .0 ” width=” 50 .0 ” x=” 330 .0 ” y=” 110 .0 ”/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape id=”BPMNShape ParallelGateway 2” bpmnElement=”

Para l l e lGateway 2 ”>

<dc:Bounds he ight=” 50 .0 ” width=” 50 .0 ” x=” 530 .0 ” y=” 103 .0 ”/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape id=”BPMNShape Task 2” bpmnElement=”Task 2”>

<dc:Bounds he ight=” 50 .0 ” width=” 72 .0 ” x=” 210 .0 ” y=” 110 .0 ”/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape id=”BPMNShape Task 3” bpmnElement=”Task 3”>

<dc:Bounds he ight=” 50 .0 ” width=” 66 .0 ” x=” 425 .0 ” y=” 37 .0 ”/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape id=”BPMNShape Task 4” bpmnElement=”Task 4”>

<dc:Bounds he ight=” 50 .0 ” width=” 66 .0 ” x=” 425 .0 ” y=” 176 .0 ”/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape id=”BPMNShape Task 5” bpmnElement=”Task 5”>

<dc:Bounds he ight=” 50 .0 ” width=” 59 .0 ” x=” 632 .0 ” y=” 104 .0 ”/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape id=”BPMNShape Task 6” bpmnElement=”Task 6”>

<dc:Bounds he ight=” 50 .0 ” width=” 61 .0 ” x=” 740 .0 ” y=” 103 .0 ”/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape id=”BPMNShape EndEvent 1” bpmnElement=”EndEvent 2”>

<dc:Bounds he ight=” 36 .0 ” width=” 36 .0 ” x=” 851 .0 ” y=” 110 .0 ”/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape id=”BPMNShape Task 1” bpmnElement=”Task 1”>

<dc:Bounds he ight=” 50 .0 ” width=” 61 .0 ” x=” 100 .0 ” y=” 110 .0 ”/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape id=”BPMNShape BoundaryEvent 3” bpmnElement=”

BoundaryEvent 3”>

<dc:Bounds he ight=” 36 .0 ” width=” 36 .0 ” x=” 102 .0 ” y=” 92 .0 ”/>

</bpmndi:BPMNShape>

Appendix B. Description of The BPMN File 138

<bpmndi:BPMNShape id=”BPMNShape BoundaryEvent 5” bpmnElement=”

BoundaryEvent 5”>

<dc:Bounds he ight=” 36 .0 ” width=” 36 .0 ” x=” 440 .0 ” y=” 208 .0 ”/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape id=”BPMNShape BoundaryEvent 4” bpmnElement=”

BoundaryEvent 4”>

<dc:Bounds he ight=” 36 .0 ” width=” 36 .0 ” x=” 441 .0 ” y=” 19 .0 ”/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape id=”BPMNShape BoundaryEvent 6” bpmnElement=”

BoundaryEvent 6”>

<dc:Bounds he ight=” 36 .0 ” width=” 36 .0 ” x=” 654 .0 ” y=” 136 .0 ”/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape id=”BPMNShape BoundaryEvent 7” bpmnElement=”

BoundaryEvent 7”>

<dc:Bounds he ight=” 36 .0 ” width=” 36 .0 ” x=” 722 .0 ” y=” 135 .0 ”/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape id=”BPMNShape BoundaryEvent 9” bpmnElement=”

BoundaryEvent 9”>

<dc:Bounds he ight=” 36 .0 ” width=” 36 .0 ” x=” 242 .0 ” y=” 142 .0 ”/>

</bpmndi:BPMNShape>

<bpmndi:BPMNEdge id=”BPMNEdge SequenceFlow 2” bpmnElement=”SequenceFlow 2”

sourceElement=”BPMNShape 1” targetElement=”BPMNShape Task 1”>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 66 .0 ” y=” 135 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 84 .0 ” y=” 135 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 84 .0 ” y=” 135 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 100 .0 ” y=” 135 .0 ”/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge id=”BPMNEdge SequenceFlow 3” bpmnElement=”SequenceFlow 3”

sourceElement=”BPMNShape Task 1” targetElement=”BPMNShape Task 2”>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 161 .0 ” y=” 135 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 190 .0 ” y=” 135 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 190 .0 ” y=” 135 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 210 .0 ” y=” 135 .0 ”/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge id=”BPMNEdge SequenceFlow 4” bpmnElement=”SequenceFlow 4”

sourceElement=”BPMNShape Task 2” targetElement=”BPMNShape ParallelGateway 1”>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 282 .0 ” y=” 135 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 326 .0 ” y=” 135 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 326 .0 ” y=” 135 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 330 .0 ” y=” 135 .0 ”/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge id=”BPMNEdge SequenceFlow 5” bpmnElement=”SequenceFlow 5”

sourceElement=”BPMNShape ParallelGateway 1” targetElement=”BPMNShape Task 3”>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 355 .0 ” y=” 110 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 355 .0 ” y=” 62 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 425 .0 ” y=” 62 .0 ”/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge id=”BPMNEdge SequenceFlow 6” bpmnElement=”SequenceFlow 6”

sourceElement=”BPMNShape ParallelGateway 1” targetElement=”BPMNShape Task 4”>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 355 .0 ” y=” 161 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 355 .0 ” y=” 201 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 425 .0 ” y=” 201 .0 ”/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge id=”BPMNEdge SequenceFlow 7” bpmnElement=”SequenceFlow 7”

sourceElement=”BPMNShape Task 3” targetElement=”BPMNShape ParallelGateway 2”>

Appendix B. Description of The BPMN File 139

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 491 .0 ” y=” 62 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 555 .0 ” y=” 62 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 555 .0 ” y=” 103 .0 ”/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge id=”BPMNEdge SequenceFlow 8” bpmnElement=”SequenceFlow 8”

sourceElement=”BPMNShape Task 4” targetElement=”BPMNShape ParallelGateway 2”>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 491 .0 ” y=” 201 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 555 .0 ” y=” 201 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 555 .0 ” y=” 154 .0 ”/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge id=”BPMNEdge SequenceFlow 9” bpmnElement=”SequenceFlow 9”

sourceElement=”BPMNShape ParallelGateway 2” targetElement=”BPMNShape Task 5”>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 581 .0 ” y=” 128 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 630 .0 ” y=” 128 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 630 .0 ” y=” 129 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 632 .0 ” y=” 129 .0 ”/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge id=”BPMNEdge SequenceFlow 10” bpmnElement=”SequenceFlow 10

” sourceElement=”BPMNShape Task 5” targetElement=”BPMNShape Task 6”>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 691 .0 ” y=” 129 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 740 .0 ” y=” 129 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 740 .0 ” y=” 128 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 740 .0 ” y=” 128 .0 ”/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge id=”BPMNEdge SequenceFlow 11” bpmnElement=”SequenceFlow 11

” sourceElement=”BPMNShape Task 6” targetElement=”BPMNShape EndEvent 1”>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 801 .0 ” y=” 128 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 839 .0 ” y=” 128 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 839 .0 ” y=” 128 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 851 .0 ” y=” 128 .0 ”/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge id=”BPMNEdge TemporalDependency 3” bpmnElement=”

TemporalDependency 3” sourceElement=”BPMNShape BoundaryEvent 3” targetElement

=”BPMNShape BoundaryEvent 4”>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 120 .0 ” y=” 92 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 120 .0 ” y=” 0 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 459 .0 ” y=” 0 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 459 .0 ” y=” 20 .0 ”/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge id=”BPMNEdge TemporalDependency 4” bpmnElement=”

TemporalDependency 4” sourceElement=”BPMNShape BoundaryEvent 3” targetElement

=”BPMNShape BoundaryEvent 5”>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 120 .0 ” y=” 92 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 120 .0 ” y=” 72 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 181 .0 ” y=” 72 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 181 .0 ” y=” 180 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 123 .0 ” y=” 179 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 123 .0 ” y=” 265 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 440 .0 ” y=” 265 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 440 .0 ” y=” 245 .0 ”/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge id=”BPMNEdge TemporalDependency 5” bpmnElement=”

TemporalDependency 5” sourceElement=”BPMNShape BoundaryEvent 6” targetElement

=”BPMNShape BoundaryEvent 7”>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 672 .0 ” y=” 172 .0 ”/>

Appendix B. Description of The BPMN File 140

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 672 .0 ” y=” 199 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 741 .0 ” y=” 199 .0 ”/>

<di :waypo int x s i : t y p e=” dc :Po int ” x=” 741 .0 ” y=” 172 .0 ”/>

</bpmndi:BPMNEdge>

</bpmndi:BPMNPlane>

</bpmndi:BPMNDiagram>

</ bpmn2 :de f in i t i on s>

Listing B.1: Example of a BPMN File Description

Appendix C

Temporal-Aware Template and

Offer using WS-Agreement*

Figure C.2 shows an example of temporal-aware agreement and offer using WS-Agreement*

proposed in [129]. WS-Agreement* allows describing local and global validity time pe-

riods. It also allows describing periodical disjoint and non-disjoint intervals. Period

definitions are presented in Figure C.1.

Figure C.1: Period Definitions in WS-Agreement*

141

Appendix C. Temporal-Aware Template and Offer using WS-Agreement* 142

Figure C.2: Temporal-Aware Agreement Template and Offer using WS-Agreement*

Bibliography

[1] Florian Wagner, Adrian Klein, Benjamin Klöpper, Fuyuki Ishikawa, and Shinichi

Honiden. Multi-objective service composition with time- and input-dependent qos.

In 2012 IEEE 19th International Conference on Web Services, Honolulu, HI, USA,

June 24-29, 2012, pages 234–241, 2012.

[2] Adrian Klein, Florian Wagner, Fuyuki Ishikawa, and Shinichi Honiden. A prob-

abilistic approach for long-term B2B service compositions. In 2012 IEEE 19th

International Conference on Web Services, Honolulu, HI, USA, June 24-29, 2012,

pages 259–266, 2012.

[3] Boualem Benatallah and Hamid R. Motahari Nezhad. Service oriented architec-

ture: Overview and directions. In Advances in Software Engineering, Lipari Sum-

mer School 2007, Lipari Island, Italy, July 8-21, 2007, Revised Tutorial Lectures,

pages 116–130, 2007.

[4] Mike P. Papazoglou and Willem-Jan van den Heuvel. Service oriented architec-

tures: approaches, technologies and research issues. VLDB J., 16(3):389–415,

2007.

[5] Mike P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann.

Service-oriented computing: State of the art and research challenges. IEEE Com-

puter, 40(11):38–45, 2007.

[6] Surya Nepal and Athman Bouguettaya. Issues and challenges in web service man-

agement systems. IJNGC, 3(2), 2012.

[7] Andreas Lanz, Jens Kolb, and Manfred Reichert. Enabling personalized process

schedules with time-aware process views. In Advanced Information Systems Engi-

neering Workshops - CAiSE 2013 International Workshops, Valencia, Spain, June

17-21, 2013. Proceedings, pages 205–216, 2013.

[8] Nawal Guermouche and Claude Godart. Composition of web services based on

timed mediation. IJNGC, 5(1), 2014.

143

Bibliography 144

[9] Johann Eder, Euthimios Panagos, and Michael Rabinovich. Time constraints in

workflow systems. In Seminal Contributions to Information Systems Engineering,

25 Years of CAiSE, pages 191–205, 2013.

[10] Helan Liang, Yanhua Du, and Sujian Li. An improved genetic algorithm for service

selection under temporal constraints in cloud computing. In Web Information Sys-

tems Engineering - WISE 2013 - 14th International Conference, Nanjing, China,

October 13-15, 2013, Proceedings, Part II, pages 309–318, 2013.

[11] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Vil-

lani. An approach for qos-aware service composition based on genetic algorithms.

In Genetic and Evolutionary Computation Conference, GECCO 2005, Proceed-

ings, Washington DC, USA, June 25-29, 2005, pages 1069–1075, 2005.

[12] J. Cardoso, A.P. Sheth, J.A. Miller, J. Arnold, and K. Kochut. Quality of Service

for Workflows and Web Service Processes. Journal of Web Semantics, 1(3):281–

308, 2004.

[13] Leilei Chen, Jian Yang, and Liang Zhang. Time based qos modeling and prediction

for web services. In Service-Oriented Computing - 9th International Conference,

ICSOC 2011, Paphos, Cyprus, December 5-8, 2011 Proceedings, pages 532–540,

2011.

[14] Benjamin Klöpper, Fuyuki Ishikawa, and Shinichi Honiden. Service composition

with pareto-optimality of time-dependent qos attributes. In Service-Oriented Com-

puting - 8th International Conference, ICSOC 2010, San Francisco, CA, USA,

December 7-10, 2010. Proceedings, pages 635–640, 2010.

[15] Octavio Mart́ın-Dı́az, Antonio Ruiz Cortés, Amador Durán, and Carlos Müller.

An approach to temporal-aware procurement of web services. In Service-Oriented

Computing - ICSOC 2005, Third International Conference, Amsterdam, The

Netherlands, December 12-15, 2005, Proceedings, pages 170–184, 2005.

[16] Mohammad Alrifai and Thomas Risse. Combining global optimization with local

selection for efficient qos-aware service composition. In Proceedings of the 18th

International Conference on World Wide Web, WWW 2009, Madrid, Spain, April

20-24, 2009, pages 881–890, 2009.

[17] Lina Barakat, Simon Miles, Iman Poernomo, and Michael Luck. Efficient multi-

granularity service composition. In 2011 IEEE International Conference on Web

Services, ICWS 2011, Washington, DC, USA, July 4-9, 2011, pages 227–234,

2011.

Bibliography 145

[18] Ikbel Guidara, Tarak Chaari, and Mohamed Jmaiel. An efficient service selection

approach with time-dependent qos. In 2014 IEEE 23rd International WETICE

Conference, WETICE 2014, Parma, Italy, 23-25 June, 2014, pages 320–325, 2014.

[19] Ikbel Guidara, Nawal Guermouche, Tarak Chaari, Säıd Tazi, and Mohamed

Jmaiel. Pruning based service selection approach under qos and temporal con-

straints. In 2014 IEEE International Conference on Web Services, ICWS 2014,

Anchorage, AK, USA, June 27 - July 2, 2014, pages 9–16, 2014.

[20] Ikbel Guidara, Nawal Guermouche, Tarak Chaari, Mohamed Jmaiel, and Säıd

Tazi. Time-dependent qos aware best service combination selection. Int. J. Web

Service Res., 12(2):1–25, 2015.

[21] Ikbel Guidara, Nawal Guermouche, Tarak Chaari, Säıd Tazi, and Mohamed

Jmaiel. Heuristic based time-aware service selection approach. In 2015 IEEE

International Conference on Web Services, ICWS 2015, New York, NY, USA,

June 27 - July 2, 2015, pages 65–72, 2015.

[22] Ikbel Guidara, Imane Al Jaouhari, and Nawal Guermouche. Dynamic selection

for service composition based on temporal and qos constraints. In 2016 IEEE

International Conference on Services Computing, SCC 2016, San Francisco, SF,

USA, June 27 - July 2, 2016, 2016.

[23] Ikbel Guidara, Nawal Guermouche, Tarak Chaari, Mohamed Jmaiel, and Säıd

Tazi. Proactive service selection in dynamic service oriented systems (submitted

to an international journal). 2016.

[24] Mike P. Papazoglou. Service-oriented computing: Concepts, characteristics and

directions. In 4th International Conference on Web Information Systems Engi-

neering, WISE 2003, Rome, Italy, December 10-12, 2003, pages 3–12, 2003.

[25] Mahesh H. Dodani. From objects to services: A journey in search of component

reuse nirvana. Journal of Object Technology, 3(8):49–54, 2004.

[26] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services

description language (WSDL) 1.1. W3c note, March 2001.

[27] Kyriakos Kritikos and Dimitris Plexousakis. Semantic qos metric matching. In

Fourth IEEE European Conference on Web Services (ECOWS 2006), 4-6 Decem-

ber 2006, Zürich, Switzerland, pages 265–274, 2006.

[28] Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers. Uddi version

3.0.2, October 2004.

Bibliography 146

[29] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Hen-

rik Frystyk Nielsen. Soap version 1.2 part 1: Messaging framework, June 2003.

[30] Jinghai Rao and Xiaomeng Su. A survey of automated web service composition

methods. In Semantic Web Services and Web Process Composition, First Inter-

national Workshop, SWSWPC 2004, San Diego, CA, USA, July 6, 2004, Revised

Selected Papers, pages 43–54, 2004.

[31] Evren Sirin, Bijan Parsia, Dan Wu, James A. Hendler, and Dana S. Nau. HTN

planning for web service composition using SHOP2. J. Web Sem., 1(4):377–396,

2004.

[32] Paolo Traverso and Marco Pistore. Automated composition of semantic web ser-

vices into executable processes. In The Semantic Web - ISWC 2004: Third In-

ternational Semantic Web Conference,Hiroshima, Japan, November 7-11, 2004.

Proceedings, pages 380–394, 2004.

[33] Girish Chafle, Koustuv Dasgupta, Arun Kumar, Sumit Mittal, and Biplav Sri-

vastava. Adaptation inweb service composition and execution. In 2006 IEEE

International Conference on Web Services (ICWS 2006), 18-22 September 2006,

Chicago, Illinois, USA, pages 549–557, 2006.

[34] Danilo Ardagna, Marco Comuzzi, Enrico Mussi, Barbara Pernici, and Pierluigi

Plebani. PAWS: A framework for executing adaptive web-service processes. IEEE

Software, 24(6):39–46, 2007.

[35] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web services

selection with end-to-end qos constraints. TWEB, 1(1), 2007.

[36] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and

Alistair P. Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):

5–51, 2003.

[37] Michael C. Jaeger, Gregor Rojec-Goldmann, and Gero Mühl. Qos aggregation for

web service composition using workflow patterns. In 8th International Enterprise

Distributed Object Computing Conference (EDOC 2004), 20-24 September 2004,

Monterey, California, USA, Proceedings, pages 149–159, 2004.

[38] Fabio Casati, Ski Ilnicki, Li-jie Jin, Vasudev Krishnamoorthy, and Ming-Chien

Shan. Adaptive and dynamic service composition in eFlow. In Advanced Informa-

tion Systems Engineering, 12th International Conference CAiSE 2000, Stockholm,

Sweden, June 5-9, 2000, Proceedings, pages 13–31, 2000.

Bibliography 147

[39] Wil M. P. van der Aalst. The application of petri nets to workflow management.

Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[40] Martin Alt, Andreas Hoheisel, Hans Werner Pohl, and Sergei Gorlatch. A grid

workflow language using high-level petri nets. In Parallel Processing and Ap-

plied Mathematics, 6th International Conference, PPAM 2005, Poznan, Poland,

September 11-14, 2005, Revised Selected Papers, pages 715–722, 2005.

[41] Michael C. Jaeger, Gero Mühl, and Sebastian Golze. Qos-aware composition of web

services: A look at selection algorithms. In 2005 IEEE International Conference on

Web Services (ICWS 2005), 11-15 July 2005, Orlando, FL, USA, pages 807–808,

2005.

[42] Carlos A. Coello Coello, Clarisse Dhaenens, and Laetitia Jourdan. Multi-objective

combinatorial optimization: Problematic and context. In Advances in Multi-

Objective Nature Inspired Computing, pages 1–21. 2010.

[43] Immanuel Trummer, Boi Faltings, and Walter Binder. Multi-objective quality-

driven service selection - A fully polynomial time approximation scheme. IEEE

Trans. Software Eng., 40(2):167–191, 2014.

[44] Kwangsun Yoon Paul K. Yoon, Ching-Lai Hwang. Multiple Attribute Decision

Making: An Introduction (Quantitative Applications in the Social Sciences). Sage

Publications, 1995.

[45] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a com-

parative case study and the strength pareto approach. IEEE Trans. Evolutionary

Computation, 3(4):257–271, 1999.

[46] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength pareto

evolutionary algorithm for multiobjective optimization. In K. C. Giannakoglou,

D. T. Tsahalis, J. Périaux, K. D. Papailiou, and T. Fogarty, editors, Evolution-

ary Methods for Design Optimization and Control with Applications to Industrial

Problems, pages 95–100, Athens, Greece, 2001. International Center for Numerical

Methods in Engineering.

[47] N. Srinivas and Kalyanmoy Deb. Multiobjective optimization using nondominated

sorting in genetic algorithms. Evolutionary Computation, 2(3):221–248, 1994.

[48] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast and eli-

tist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Com-

putation, 6(2):182–197, 2002.

Bibliography 148

[49] J. Knowles and D. Corne. The Pareto archived evolution strategy: a new baseline

algorithm for Pareto multiobjective optimisation. In Evolutionary Computation,

1999. CEC 99. Proceedings of the 1999 Congress on, volume 1, 1999.

[50] D.W. Corne, J.D. Knowles, and M.J. Oates. The Pareto envelope-based selection

algorithm for multiobjective optimization. In Proceedings of the Parallel Problem

Solving from Nature VI Conference, 2000.

[51] Qi Yu and Athman Bouguettaya. Computing service skyline from uncertain qows.

IEEE Trans. Services Computing, 3(1):16–29, 2010.

[52] Hui Ma, Favyen Bastani, I-Ling Yen, and Hong Mei. Qos-driven service com-

position with reconfigurable services. IEEE T. Services Computing, 6(1):20–34,

2013.

[53] Mohammad Alrifai, Dimitrios Skoutas, and Thomas Risse. Selecting skyline ser-

vices for qos-based web service composition. In Proceedings of the 19th Interna-

tional Conference on World Wide Web, WWW 2010, Raleigh, North Carolina,

USA, April 26-30, 2010, pages 11–20, 2010.

[54] Ying Chen, Jiwei Huang, and Chuang Lin. Partial selection: An efficient approach

for qos-aware web service composition. In 2014 IEEE International Conference on

Web Services, ICWS, 2014, Anchorage, AK, USA, June 27 - July 2, 2014, pages

1–8, 2014.

[55] Rosario Giuseppe Garroppo, Stefano Giordano, and Luca Tavanti. A survey on

multi-constrained optimal path computation: Exact and approximate algorithms.

Computer Networks, 54(17):3081–3107, 2010.

[56] Krzysztof R. Apt. Principles of constraint programming. Cambridge University

Press, 2003. ISBN 978-0-521-82583-2.

[57] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint

Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

[58] Ilhem Boussäıd, Julien Lepagnot, and Patrick Siarry. A survey on optimization

metaheuristics. Inf. Sci., 237:82–117, 2013.

[59] Bart G. W. Craenen, A. E. Eiben, and Jano I. van Hemert. Comparing evo-

lutionary algorithms on binary constraint satisfaction problems. IEEE Trans.

Evolutionary Computation, 7(5):424–444, 2003.

Bibliography 149

[60] Boualem Benatallah, Quan Z. Sheng, Anne H. H. Ngu, and Marlon Dumas. Declar-

ative composition and peer-to-peer provisioning of dynamic web services. In Pro-

ceedings of the 18th International Conference on Data Engineering, San Jose, CA,

USA, February 26 - March 1, 2002, pages 297–308, 2002.

[61] Fei Li, Fangchun Yang, Kai Shuang, and Sen Su. Q-peer: A decentralized qos

registry architecture for web services. In Service-Oriented Computing - ICSOC

2007, Fifth International Conference, Vienna, Austria, September 17-20, 2007,

Proceedings, pages 145–156, 2007.

[62] Xia Wang, Tomas Vitvar, Mick Kerrigan, and Ioan Toma. A qos-aware selection

model for semantic web services. In Service-Oriented Computing - ICSOC 2006,

4th International Conference, Chicago, IL, USA, December 4-7, 2006, Proceedings,

pages 390–401, 2006.

[63] Daniel A. Menascé. Qos issues in web services. IEEE Internet Computing, 6(6):

72–75, 2002.

[64] Yutu Liu, Anne H. H. Ngu, and Liangzhao Zeng. Qos computation and policing in

dynamic web service selection. In Proceedings of the 13th international conference

on World Wide Web - Alternate Track Papers & Posters, WWW 2004, New York,

NY, USA, May 17-20, 2004, pages 66–73, 2004.

[65] Kun Yang, Alex Galis, and Hsiao-Hwa Chen. Qos-aware service selection algo-

rithms for pervasive service composition in mobile wireless environments. MONET,

15(4):488–501, 2010.

[66] Liangzhao Zeng, Boualem Benatallah, Anne H. H. Ngu, Marlon Dumas, Jayant

Kalagnanam, and Henry Chang. Qos-aware middleware for web services compo-

sition. IEEE Trans. Software Eng., 30(5):311–327, 2004.

[67] Danilo Ardagna and Barbara Pernici. Adaptive service composition in flexible

processes. IEEE Trans. Software Eng., 33(6):369–384, 2007.

[68] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and

Quan Z. Sheng. Quality driven web services composition. In Proceedings of the

Twelfth International World Wide Web Conference, WWW 2003, Budapest, Hun-

gary, May 20-24, 2003, pages 411–421, 2003.

[69] Danilo Ardagna and Barbara Pernici. Global and local qos constraints guarantee

in web service selection. In 2005 IEEE International Conference on Web Services

(ICWS 2005), 11-15 July 2005, Orlando, FL, USA, pages 805–806, 2005.

Bibliography 150

[70] Lina Barakat. Efficient Adaptive Multi-Granularity Service Composition. PhD

thesis, School of Natural & Mathematical Sciences, 2013.

[71] Nebil Ben Mabrouk. QoS-aware Service-Oriented Middleware for Pervasive Envi-

ronments. PhD thesis, University of Paris 6, 2012.

[72] Lianyong Qi, Ying Tang, Wanchun Dou, and Jinjun Chen. Combining local op-

timization and enumeration for qos-aware web service composition. In IEEE In-

ternational Conference on Web Services, ICWS 2010, Miami, Florida, USA, July

5-10, 2010, pages 34–41, 2010.

[73] Sherry X. Sun and Jing Zhao. A decomposition-based approach for service com-

position with global qos guarantees. Inf. Sci., 199:138–153, 2012.

[74] Farhad Mardukhi, Naser Nematbakhsh, Kamran Zamanifar, and Asghar Barati.

Qos decomposition for service composition using genetic algorithm. Appl. Soft

Comput., 13:3409–3421, 2013.

[75] Qiang He, Jun Yan, Hai Jin, and Yun Yang. Quality-aware service selection for

service-based systems based on iterative multi-attribute combinatorial auction.

IEEE Trans. Software Eng., 40(2):192–215, 2014.

[76] Ahlem Ben Hassine, Shigeo Matsubara, and Toru Ishida. A constraint-based ap-

proach to horizontal web service composition. In The Semantic Web - ISWC

2006, 5th International Semantic Web Conference, ISWC 2006, Athens, GA,

USA, November 5-9, 2006, Proceedings, pages 130–143, 2006.

[77] Florian Rosenberg, Predrag Celikovic, Anton Michlmayr, Philipp Leitner, and

Schahram Dustdar. An end-to-end approach for qos-aware service composition. In

Proceedings of the 13th IEEE International Enterprise Distributed Object Comput-

ing Conference, EDOC 2009, 1-4 September 2009, Auckland, New Zealand, pages

151–160, 2009.

[78] Zachary J. Oster, Ganesh Ram Santhanam, and Samik Basu. Identifying optimal

composite services by decomposing the service composition problem. In IEEE

International Conference on Web Services, ICWS 2011, Washington, DC, USA,

July 4-9, 2011, pages 267–274, 2011.

[79] Xin Yuan. Heuristic algorithms for multiconstrained quality-of-service routing.

IEEE/ACM Trans. Netw., 10(2):244–256, 2002.

[80] Zhenqiu Huang, Wei Jiang, Songlin Hu, and Zhiyong Liu. Effective pruning algo-

rithm for qos-aware service composition. In 2009 IEEE Conference on Commerce

Bibliography 151

and Enterprise Computing, CEC 2009, Vienna, Austria, July 20-23, 2009, pages

519–522, 2009.

[81] Zhen Ye, Xiaofang Zhou, and Athman Bouguettaya. Genetic algorithm based qos-

aware service compositions in cloud computing. In Database Systems for Advanced

Applications - 16th International Conference, DASFAA 2011, Hong Kong, China,

April 22-25, 2011, Proceedings, Part II, pages 321–334, 2011.

[82] Lei Cao, Minglu Li, and Jian Cao. Using genetic algorithm to implement cost-

driven web service selection. Multiagent and Grid Systems, 3(1):9–17, 2007.

[83] Yuan-hong Shen and Xiao-hu Yang. A self-optimizing qos-aware service composi-

tion approach in a context sensitive environment. Journal of Zhejiang University

- Science C, 12(3):221–238, 2011.

[84] Cristina Bianca Pop, Viorica R. Chifu, Ioan Salomie, Mihaela Dinsoreanu, Tudor

David, and Vlad Acretoaie. Ant-inspired technique for automatic web service com-

position and selection. In 12th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, SYNASC 2010, Timisoara, Romania, 23-26

September 2010, pages 449–455, 2010.

[85] Jiuyun Xu and Stephan Reiff-Marganiec. Towards heuristic web services compo-

sition using immune algorithm. In 2008 IEEE International Conference on Web

Services (ICWS 2008), September 23-26, 2008, Beijing, China, pages 238–245,

2008.

[86] Ioan Salomie, Monica Vlad, Viorica R. Chifu, and Cristina Bianca Pop. Hybrid

immune-inspired method for selecting the optimal or a near-optimal service com-

position. In Federated Conference on Computer Science and Information Systems

- FedCSIS 2011, Szczecin, Poland, 18-21 September 2011, Proceedings, pages 997–

1003, 2011.

[87] Viorica R. Chifu, Cristina Bianca Pop, Ioan Salomie, Mihaela Dinsoreanu, Alexan-

dru Nicolae Niculici, and Dumitru Samuel Suia. Selecting the optimal web service

composition based on a multi-criteria bee-inspired method. In iiWAS’2010 - The

12th International Conference on Information Integration and Web-based Appli-

cations and Services, 8-10 November 2010, Paris, France, pages 40–47, 2010.

[88] Tao Zhang, Jianfeng Ma, Cong Sun, Qi Li, and Ning Xi. Service composition in

multi-domain environment under time constraint. In 2013 IEEE 20th International

Conference on Web Services, Santa Clara, CA, USA, June 28 - July 3, 2013, pages

227–234, 2013.

Bibliography 152

[89] H. T. Kung. On the computational complexity of finding the maxima of a set

of vectors. In 15th Annual Symposium on Switching and Automata Theory, New

Orleans, Louisiana, USA, October 14-16, 1974, pages 117–121, 1974.

[90] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline operator.

In Proceedings of the 17th International Conference on Data Engineering, April

2-6, 2001, Heidelberg, Germany, pages 421–430, 2001.

[91] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal and

progressive algorithm for skyline queries. In Proceedings of the 2003 ACM SIG-

MOD International Conference on Management of Data, San Diego, California,

USA, June 9-12, 2003, pages 467–478, 2003.

[92] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. Efficient progressive skyline

computation. In VLDB 2001, Proceedings of 27th International Conference on

Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages 301–310, 2001.

[93] Karim Benouaret, Djamal Benslimane, and Allel HadjAli. Ws-sky: An efficient

and flexible framework for qos-aware web service selection. In 2012 IEEE Ninth

International Conference on Services Computing, Honolulu, HI, USA, June 24-29,

2012, pages 146–153, 2012.

[94] Osama Sammodi, Andreas Metzger, Xavier Franch, Marc Oriol, Jordi Marco, and

Klaus Pohl. Usage-based online testing for proactive adaptation of service-based

applications. In Proceedings of the 35th Annual IEEE International Computer

Software and Applications Conference, COMPSAC 2011, Munich, Germany, 18-

22 July 2011, pages 582–587, 2011.

[95] Andreas Metzger, Osama Sammodi, Klaus Pohl, and Mark Rzepka. Towards

pro-active adaptation with confidence: augmenting service monitoring with online

testing. In 2010 ICSE Workshop on Software Engineering for Adaptive and Self-

Managing Systems, SEAMS 2010, Cape Town, South Africa, May 3-4, 2010, pages

20–28, 2010.

[96] Nelly Delgado, Ann Q. Gates, and Steve Roach. A taxonomy and catalog of

runtime software-fault monitoring tools. IEEE Trans. Software Eng., 30(12):859–

872, 2004.

[97] Marcos Palacios, José Garćıa-Fanjul, and Javier Tuya. Testing in service oriented

architectures with dynamic binding: A mapping study. Information & Software

Technology, 53(3):171–189, 2011.

[98] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure predic-

tion methods. ACM Comput. Surv., 42(3), 2010.

Bibliography 153

[99] Girish Chafle, Koustuv Dasgupta, Arun Kumar, Sumit Mittal, and Biplav Sri-

vastava. Adaptation inweb service composition and execution. In 2006 IEEE

International Conference on Web Services (ICWS 2006), 18-22 September 2006,

Chicago, Illinois, USA, pages 549–557, 2006.

[100] Swaroop Kalasapur, Mohan Kumar, and Behrooz Shirazi. Dynamic service compo-

sition in pervasive computing. IEEE Trans. Parallel Distrib. Syst., 18(7):907–918,

2007.

[101] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Vil-

lani. Qos-aware replanning of composite web services. In 2005 IEEE International

Conference on Web Services (ICWS 2005), 11-15 July 2005, Orlando, FL, USA,

pages 121–129, 2005.

[102] Tao Yu and Kwei-Jay Lin. Adaptive algorithms for finding replacement services

in autonomic distributed business processes. In 2005 International Symposium

on Autonomous Decentralized Systems, ISADS 2005, Chengdu, China, April 4-8,

2005, Proceedings, pages 427–434, 2005.

[103] Rafael Aschoff and Andrea Zisman. Qos-driven proactive adaptation of service

composition. In Service-Oriented Computing - 9th International Conference, IC-

SOC 2011, Paphos, Cyprus, December 5-8, 2011 Proceedings, pages 421–435, 2011.

[104] Raman Kazhamiakin, Salima Benbernou, Luciano Baresi, Pierluigi Plebani, Maike

Uhlig, and Olivier Barais. Adaptation of service-based systems. In Service Re-

search Challenges and Solutions for the Future Internet - S-Cube - Towards Engi-

neering, Managing and Adapting Service-Based Systems, pages 117–156, 2010.

[105] Lei Yang, Yu Dai, and Bin Zhang. Performance prediction based ex-qos driven

approach for adaptive service composition. J. Inf. Sci. Eng., 25(2):345–362, 2009.

[106] Yu Dai, Lei Yang, and Bin Zhang. Qos-driven self-healing web service composition

based on performance prediction. J. Comput. Sci. Technol., 24(2):250–261, 2009.

[107] Rafael Aschoff and Andrea Zisman. Proactive adaptation of service composition.

In 7th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems, SEAMS 2012, Zurich, Switzerland, June 4-5, 2012, pages

1–10, 2012.

[108] René Ramacher and Lars Mönch. Reliable service reconfiguration for time-critical

service compositions. In 2013 IEEE International Conference on Services Com-

puting, Santa Clara, CA, USA, June 28 - July 3, 2013, pages 184–191, 2013.

Bibliography 154

[109] Yanhua Du, Xiaofei Wang, Lifeng Ai, and Xitong Li. Dynamic selection of services

under temporal constraints in cloud computing. In IEEE International Conference

on e-Business Engineering ICEBE, pages 252–259, 2012.

[110] Kwei-Jay Lin, Jing Zhang, and Yanlong Zhai. An efficient approach for service

process reconfiguration in SOA with end-to-end qos constraints. In 2009 IEEE

Conference on Commerce and Enterprise Computing, CEC 2009, Vienna, Austria,

July 20-23, 2009, pages 146–153, 2009.

[111] Jing Li, Dianfu Ma, Xiupei Mei, Hailong Sun, and Zibin Zheng. Adaptive qos-

aware service process reconfiguration. In IEEE International Conference on Ser-

vices Computing, SCC 2011, Washington, DC, USA, 4-9 July, 2011, pages 282–

289, 2011.

[112] Azlan Ismail, Jun Yan, and Jun Shen. Incremental service level agreements viola-

tion handling with time impact analysis. Journal of Systems and Software, 86(6):

1530–1544, 2013.

[113] Zeina Azmeh, Marianne Huchard, Chouki Tibermacine, Christelle Urtado, and

Sylvain Vauttier. Using Concept Lattices to Support Web Service Compositions

with Backup Services. In ICIW 2010: International Conference on Internet and

Web Applications and Services, pages 363–368, Barcelona, Spain, 2010. IEEE

Computer Society.

[114] Florian Wagner, Benjamin Klöpper, Fuyuki Ishikawa, and Shinichi Honiden. To-

wards robust service compositions in the context of functionally diverse services.

In Proceedings of the 21st World Wide Web Conference 2012, WWW 2012, Lyon,

France, April 16-20, 2012, pages 969–978, 2012.

[115] Girish Chafle, Prashant Doshi, John Harney, Sumit Mittal, and Biplav Srivastava.

Improved adaptation of web service compositions using value of changed informa-

tion. In 2007 IEEE International Conference on Web Services (ICWS 2007), July

9-13, 2007, Salt Lake City, Utah, USA, pages 784–791, 2007.

[116] Nebil Ben Mabrouk, Sandrine Beauche, Elena Kuznetsova, Nikolaos Georgantas,

and Valérie Issarny. Qos-aware service composition in dynamic service oriented

environments. In Middleware 2009, ACM/IFIP/USENIX, 10th International Mid-

dleware Conference, Urbana, IL, USA, November 30 - December 4, 2009. Proceed-

ings, pages 123–142, 2009.

[117] Lina Barakat, Simon Miles, and Michael Luck. Reactive service selection in dy-

namic service environments. In Service-Oriented and Cloud Computing - First

Bibliography 155

European Conference, ESOCC 2012, Bertinoro, Italy, September 19-21, 2012.

Proceedings, pages 17–31, 2012.

[118] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,

Y. Goland, A. Guzar, N. Kartha, C.K. Liu, R. Khalaf, Dieter Koenig, M. Marin,

V. Mehta, S. Thatte, D. Rijn, P. Yendluri, and A. Yiu. Web Services Business

Process Execution Language Version 2.0 (OASIS Standard), 2007.

[119] Lina Barakat, Simon Miles, and Michael Luck. Efficient correlation-aware service

selection. In 2012 IEEE 19th International Conference on Web Services, Honolulu,

HI, USA, June 24-29, 2012, pages 1–8, 2012.

[120] Saoussen Cheikhrouhou, Slim Kallel, Nawal Guermouche, and Mohamed Jmaiel.

Toward a time-centric modeling of business processes in BPMN 2.0. In The 15th

International Conference on Information Integration and Web-based Applications

& Services, IIWAS ’13, Vienna, Austria, December 2-4, 2013, page 154, 2013.

[121] Camilo Flores and Marcos Sepúlveda. Temporal specification of business processes

through project planning tools. In Business Process Management Workshops -

BPM 2010 International Workshops and Education Track, Hoboken, NJ, USA,

September 13-15, 2010, Revised Selected Papers, pages 85–96, 2010.

[122] Denis Gagné and André Trudel. Time-bpmn. In 2009 IEEE Conference on Com-

merce and Enterprise Computing, CEC 2009, Vienna, Austria, July 20-23, 2009,

pages 361–367, 2009.

[123] Saoussen Cheikhrouhou, Slim Kallel, Nawal Guermouche, and Mohamed Jmaiel.

Enhancing formal specification and verification of temporal constraints in business

processes. In IEEE International Conference on Services Computing, SCC 2014,

Anchorage, AK, USA, June 27 - July 2, 2014, pages 701–708, 2014.

[124] Wenjun Li, Xi Li, Xiao-jun Liang, and Xiaocong Zhou. Qos-driven service composi-

tion with multiple flow structures. In IEEE International Conference on Services

Computing, SCC 2011, Washington, DC, USA, 4-9 July, 2011, pages 362–369,

2011.

[125] Carlos Müller, Manuel Resinas, and Antonio Ruiz Cortés. Using automated analy-

sis of temporal-aware slas in logistics. In Service-Oriented Computing. ICSOC/Ser-

viceWave 2009 Workshops - International Workshops, ICSOC/ServiceWave 2009,

Stockholm, Sweden, November 23-27, 2009, Revised Selected Papers, pages 156–

164, 2009.

Bibliography 156

[126] Carlos Müller, Manuel Resinas, and Antonio Ruiz Cortés. Explaining the non-

compliance between templates and agreement offers in ws-agreement. In Service-

Oriented Computing, 7th International Joint Conference, ICSOC-ServiceWave

2009, Stockholm, Sweden, November 24-27, 2009. Proceedings, pages 237–252,

2009.

[127] Abdessalam Elhabbash, Rami Bahsoon, Peter Tiño, and Peter R. Lewis. Self-

adaptive volunteered services composition through stimulus- and time-awareness.

In 2015 IEEE International Conference on Web Services, ICWS 2015, New York,

NY, USA, June 27 - July 2, 2015, pages 57–64, 2015.

[128] Sajib Mistry, Athman Bouguettaya, Hai Dong, and A. Kai Qin. Predicting dy-

namic requests behavior in long-term iaas service composition. In 2015 IEEE

International Conference on Web Services, ICWS 2015, New York, NY, USA,

June 27 - July 2, 2015, pages 49–56, 2015.

[129] Carlos Müller, Octavio Mart́ın-Dı́az, Antonio Ruiz Cortés, Manuel Resinas, and

Pablo Fernandez. Improving temporal-awareness of ws-agreement. In Service-

Oriented Computing - ICSOC 2007, Fifth International Conference, Vienna, Aus-

tria, September 17-20, 2007, Proceedings, pages 193–206, 2007.

[130] Ying Chen, Jiwei Huang, Chuang Lin, and Jie Hu. A partial selection methodology

for efficient qos-aware service composition. IEEE Trans. Services Computing, 8

(3):384–397, 2015.

[131] Marco Comuzzi and Barbara Pernici. An architecture for flexible web service qos

negotiation. In Ninth IEEE International Enterprise Distributed Object Computing

Conference (EDOC 2005), 19-23 September 2005, Enschede, The Netherlands,

pages 70–82, 2005.

[132] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on

Information Theory, 28(2):129–136, 1982.

[133] Glenn Milligan and Martha Cooper. An examination of procedures for determining

the number of clusters in a data set. Psychometrika, 50(2):159–179, 1985.

[134] James C. Bezdek and Nikhil R. Pal. Some new indexes of cluster validity. IEEE

Transactions on Systems, Man, and Cybernetics, Part B, 28(3):301–315, 1998.

[135] Business Process Modeling Notation (BPMN). Object Management Group

(OMG), version 1.1 edition, 2008 .

[136] Saoussen Cheikhrouhou. Specification and Verification of Temporal Constraints in

Inter-Organisational Business Processes. PhD thesis, University of Sfax, 2015.

Bibliography 157

[137] Eyhab Al-Masri and Qusay H. Mahmoud. Qos-based discovery and ranking of

web services. In Proceedings of the 16th International Conference on Computer

Communications and Networks, IEEE ICCCN 2007, Turtle Bay Resort, Honolulu,

Hawaii, USA, August 13-16, 2007, pages 529–534, 2007.

[138] Eyhab Al-Masri and Qusay H. Mahmoud. Discovering the best web service. In

Proceedings of the 16th International Conference on World Wide Web, WWW

2007, Banff, Alberta, Canada, May 8-12, 2007, pages 1257–1258, 2007.

[139] Hua Guo, Fei Tao, Lin Zhang, Suiyi Su, and Nan Si. Correlation-aware web services

composition and qos computation model in virtual enterprise. The International

Journal of Advanced Manufacturing Technology, 51(5):817–827, 2010.

[140] Shuiguang Deng, Hongyue Wu, Daning Hu, and J. Leon Zhao. Service selection

for composition with qos correlations. IEEE Transactions on Services Computing.

[141] Yuzhang Feng, Le Duy Ngan, and Rajaraman Kanagasabai. Dynamic service com-

position with service-dependent qos attributes. In 2013 IEEE 20th International

Conference on Web Services, Santa Clara, CA, USA, June 28 - July 3, 2013,

pages 10–17, 2013.

[142] Quanwang Wu, Qingsheng Zhu, and Mingqiang Zhou. A correlation-driven opti-

mal service selection approach for virtual enterprise establishment. J. Intelligent

Manufacturing, 25(6):1441–1453, 2014.

[143] Raf Haesen, Monique Snoeck, Wilfried Lemahieu, and Stephan Poelmans. On

the definition of service granularity and its architectural impact. In Advanced

Information Systems Engineering, 20th International Conference, CAiSE 2008,

Montpellier, France, June 16-20, 2008, Proceedings, pages 375–389, 2008.

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Introduction
	1.2 Service Selection: Research Scope and Challenges
	1.2.1 Constraints and Dependencies between Services
	1.2.2 Time-dependent QoS
	1.2.3 Scalability and Optimality
	1.2.4 Uncertainty and Dynamic Environments

	1.3 Motivating Scenario
	1.4 Research Aims and Contributions
	1.5 Structure of the Thesis

	2 Background and Related Work
	2.1 Introduction
	2.2 Service Oriented Computing
	2.2.1 Service Oriented Architecture
	2.2.2 Service Composition Methods
	2.2.2.1 AI Planning based Composition
	2.2.2.2 Workflow based Composition

	2.3 Service Selection Models
	2.3.1 Multi-dimension Multi-choice Knapsack Problem (MMKP)
	2.3.2 Multi-constraint Optimal Path Problem (MCOP)

	2.4 Service Selection Techniques
	2.4.1 Mathematical Programming
	2.4.2 Constraint Programming
	2.4.3 Meta-heuristics and Heuristics

	2.5 Static Service Selection
	2.5.1 Static Service Selection Strategies
	2.5.1.1 Local Service Selection
	2.5.1.2 Global Service Selection
	2.5.1.3 Hybrid Service Selection

	2.5.2 Static Service Selection Approaches
	2.5.2.1 Exact Service Selection
	2.5.2.2 Approximate Service Selection

	2.5.3 A Synthesis of Static Service Selection Approaches

	2.6 Dynamic Service Selection
	2.6.1 Dynamic Service Selection Strategies
	2.6.1.1 Reactive Service Selection
	2.6.1.2 Proactive Service Selection

	2.6.2 Dynamic Service Selection Approaches
	2.6.2.1 Re-selection of Services
	2.6.2.2 Backup Solutions

	2.6.3 A Synthesis of Dynamic Service Selection Approaches

	2.7 Summary and Discussion
	2.8 Conclusion

	3 Specification of The Service Selection Model
	3.1 Introduction
	3.2 Business Level Constraints
	3.2.1 Structural Constraints
	3.2.2 Global Constraints
	3.2.3 QoS Constraints
	3.2.4 Temporal Constraints

	3.3 Service Level Constraints
	3.3.1 Time-dependent QoS
	3.3.2 QoS Distributions and Patterns
	3.3.2.1 QoS Distributions
	3.3.2.2 Patterns of Time-dependent QoS

	3.4 Composite Service Quality Model
	3.4.1 Aggregation Function
	3.4.1.1 Additive Attributes
	3.4.1.2 Average Attributes
	3.4.1.3 Multiplicative Attributes
	3.4.1.4 Max-Operator Attributes

	3.4.2 Utility Function
	3.4.3 Optimal Service Composition

	3.5 Conclusion

	4 Service Pruning Approach
	4.1 Introduction
	4.2 Dominance-based Pruning Process
	4.3 Constraint-based Pruning Process
	4.3.1 Overview of the Constraint-based Pruning Process
	4.3.2 QoS Constraint-based Pruning
	4.3.3 Temporal Constraint-based Pruning
	4.3.3.1 Execution Duration
	4.3.3.2 Time Intervals

	4.3.4 Constraint-based Pruning Algorithm
	4.3.5 Iterative Pruning Process

	4.4 Overview of the Improvement Process
	4.4.1 Improving Global Constraints
	4.4.2 Improving Service Offers

	4.5 Conclusion

	5 Static Service Selection at Design Time
	5.1 Introduction
	5.2 Exact Service Selection Approach
	5.3 Approximate Service Selection Approach
	5.3.1 Service Clustering
	5.3.1.1 K-means Algorithm Overview
	5.3.1.2 Classification of Services

	5.3.2 Local QoS Constraints Specification
	5.3.2.1 Centroid Utilities
	5.3.2.2 The Selection of the Best Centroids

	5.3.3 Deadline Decomposition
	5.3.4 Local Selection

	5.4 Conclusion

	6 Dynamic Service Selection at Run-time
	6.1 Introduction
	6.2 Motivating Scenario
	6.3 Proactive Service Selection
	6.3.1 Specification of Re-selection Thresholds
	6.3.1.1 Computing Maximum Thresholds
	6.3.1.2 Computing Intermediary Thresholds

	6.3.2 Pertinent Services
	6.3.2.1 Identifying Pertinent Services
	6.3.2.2 Ranking Pertinent Services

	6.3.3 Event Classes and Recovery Actions
	6.3.3.1 Categories of Changes
	6.3.3.2 Recovery Actions

	6.3.4 Local and Region based Service Selection
	6.3.4.1 Dynamic Local Service Selection Approach
	6.3.4.2 Region based Service Selection Approach

	6.4 Conclusion

	7 Evaluation
	7.1 Introduction
	7.2 The TQCoS Simulation Tool
	7.3 Evaluative Study
	7.3.1 Experiment Settings
	7.3.2 Evaluation of The Service Pruning Approach
	7.3.3 Evaluation of The Exact Service Selection Approach
	7.3.4 Evaluation of The Approximate Service Selection Approach
	7.3.4.1 Complexity Evaluation
	7.3.4.2 Experimental Results

	7.3.5 Evaluation of The Dynamic Service Selection Approach
	7.3.5.1 Complexity Evaluation
	7.3.5.2 Experimental Results

	7.4 Conclusion

	8 Conclusions and Future Work
	8.1 Contributions and Research Summary
	8.1.1 Specification of a constraint-based service selection model
	8.1.2 A dominance and constraint-based service pruning approach
	8.1.3 Exact and approximate service selection approaches at design time
	8.1.4 A proactive dynamic service selection approach at run-time

	8.2 Future Directions
	8.2.1 Short-term Perspectives
	8.2.2 Long-term Perspectives

	A Proofs of Theorems and Lemmas
	A.1 Proof of Theorem 4.1
	A.2 Proof of Lemma 4.1
	A.3 Proof of Lemma 4.2
	A.4 Proof of Lemma 5.1

	B Description of The BPMN File
	C Temporal-Aware Template and Offer using WS-Agreement*
	Bibliography
	Page vierge
	Page vierge
	Page vierge

