Honoré de Balzac

Il y a deux Histoires: l'Histoire officielle, menteuse qu'on enseigne, l'Histoire "ad usum delphini" ; puis l'Histoire secrète, où sont les véritables causes des évènements, une Histoire honteuse.

Les travaux de recherche dont ce manuscrit fait l'objet n'auraient pu voir le jour sans le concours de maintes personnes. Parce qu'il m'est plus facile de leur exprimer ma gratitude dans ma langue maternelle, je préfère employer dans cette page la langue de Molière à celle de Shakespeare.

La première personne que je tiens à remercier est Florent Lamiraux, mon directeur de thèse. Sa disponibilité associée à la confiance qu'il m'a accordé ont sans nul doute contribué à rendre notre travail commun intéressant et fructueux.

Je remercie Emmanuel Mazer et Frank Van Der Stappen de m'avoir fait l'honneur d'être les rapporteurs et membres de Jury de soutenance de cette thèse. Leurs nombreuses remarques et commentaires m'ont permis d'améliorer ce manuscrit d'une part et de prendre du recul quant à ses potentielles applications d'autre part. Merci à Jean-Paul Laumond et Micael Michelin d'avoir accepté de faire partie du Jury de soutenance.

Je souhaite remercier chaleureusement les anciens et actuels membres de l'équipe GEPETTO. De par les discussions que j'ai pu avoir avec chacun-e, l'équipe a été à tour de rôle un soutien, une source d'inspiration et de motivation ainsi qu'un environnement de travail amical et enrichissant.

Pour finir, un grand merci à toutes les personnes avec qui j'ai vécu durant ces années pour leur soutien, sous quelque forme qu'il fut exprimé. Je pense notamment à ma famille, mes colocataires et Isabelle.

Introduction

Robotic systems first reached the industry in 1962 in a General Motors automobile factory. Since then, their number has not ceased to increase. However, most of these robots are specifically designed for a small set of similar tasks and cannot achieve other tasks. Installing, programming and maintaining them is very costly and they are usually not suited to work with humans for safety reasons. This three facts make them inaccessible to small-sized factories. These factories need affordable robots that can be adapted or programmed for a different task when the production line changes.

Motion and manipulation planning are key areas to reduce these costs. As fields of research, they have raised interest since the last fifty years. Generally speaking, progress in both fields have mostly not yet reached robots in factories. A few recent start-up companies, such as Rethink Robotics, Mujin or Delft Robotics, work on robots with sufficient capabilities to achieve a wide range of tasks and to be reprogrammed to accomplish various tasks sequentially. Also, many robots have been made safer and share the environment with humans. However, their autonomy and robustness to errors is rather limited. Programming them to react to unlikely or unexpected events, to complex tasks still requires a lot of engineering skills when possible.

Problem statement

This thesis addresses the manipulation planning problem with an emphasis on three aspects.

The first aspect concerns the formulation of the manipulation problem. While motion and manipulation planning are rather easy tasks for human beings, the general manipulation planning problem is still out of reach in reasonable time for computers. This thesis explores the idea that, with guidance information provided by a human, the problem becomes accessible for computers. To be useful, it must be an easy task for a human to produce it and to translate it into data a planning algorithm can understand. For instance, human beings easily analyse geometrical information and understand how an object can be grasped or where to release it. To integrate this affordance information in the specification of the manipulation planning problem, the formulation of the problem must model it. In this context, it is a key aspect to understand the structure of the manipulation problem and formulate it as a model comprehensible both by computers and human beings.

The second aspect concerns the resolution of the problem formulated above. Manipulation planning is known to be hard because it combines the search of the sequence of tasks and the motions to accomplish each of these tasks. For instance, to move an object with a robot in a simple scenario, one has to discover a motion to go and pick up the object, a second motion to move it to its goal position while holding it and a third move the robot. However, the way the robot grasps the object is an internal variable of the problem and is to be decided by the planning algorithm itself. Even in this simple scenario, each task has an infinite number of ways of being achieved and potentially influences all other tasks.

The third and last aspect concerns the variety of robots considered. To be applicable in a wide variety of industrial scenarios, several types of robots ought to be considered. Manipulator arms are the most common. However, cable robots are promising for their large working space. Parallel robots can be both accurate and fast. Mobile manipulators extends the manipulator workspace. Finally, legged robots, such as humanoid robots, have high capabilities of motion. Each of these robots have their own constraint. It is necessary to abstract these constraints to handle these robots in a unified manner.

To summarize, this thesis goals are the following.

• Model the manipulation planning problem which takes into account guidance information. This information is provided as input by a human.

• Propose an algorithm to solve the above problem.

• Abstract the problem so that it handles in a unified manner robots with various capabilities.

Contributions

This thesis tackles the problem stated above both from a theoretical and a practical point of view. It contains four main theoretical contributions and four algorithmic contributions. Their relation with the problem is explained below. Another important outcome is the development of the Humanoid Path Planner (HPP) open-source library. First, the constrained motion planning problem is addressed. This is a necessary step to express the manipulation planning with constraints. Most state-of-the-art approaches to this problem fail to guarantee the continuity of the solution. [START_REF] Hauser | Fast interpolation and time-optimization on implicit contact submanifolds[END_REF] proposed an algorithm to check for discontinuities. I show that this solution is however not suited to constrained motion planning and I propose the Progressive path projection and Global path projection algorithms as efficient methods to generate continuous constrained paths. They emerge from a theoretical analyse of the Newton-Raphson algorithm. They rely on a per iteration continuity condition, easy to verify in practice. I propose an updated version of the Constrained-RRT [START_REF] Dalibard | Dynamic walking and whole-body motion planning for humanoid robots: an integrated approach[END_REF] which integrates these algorithms.

Next, the manipulation planning problem is addressed. I consider a problem with robots and objects. The objects can be free-floating, articulated or static. An analyse of the manipulation rules naturally leads to the definition of validation constraint and parametrization constraint. From these definitions, I model the interaction between robots and objects -static or movable -with the Graph of Constraint, whose vertices are called states and edges are called transitions. This model extends and formalizes notions presented by [START_REF] Dalibard | Manipulation of documented objects by a walking humanoid robot[END_REF][START_REF] Berenson | Task space regions: A framework for pose-constrained manipulation planning[END_REF], Jentzsch et al., 2015[START_REF] Hauser | Randomized multi-modal motion planning for a humanoid robot manipulation task[END_REF]. I propose the Manipulation-RRT (M-RRT) planning algorithm. The Graph of Constraint models the structure of the Cartesian product of the configuration spaces of robots and objects, which allows the M-RRT to plan manipulation paths.

Then, I extend the analyse of the foliated structure of configuration space by Siméon et al. [2004]. In their analyse, they introduced the reduction property which reduces the complexity of the problem of a robot manipulating one free-floating object. I generalize it as the generalized reduction property to take into account articulated objects and objects manipulated by two grippers. The generalization relies on the notion of manipulability. An analyse of the configuration space also leads me to identify the crossed foliation issue. Randomized manipulation planners that do not handle this issue are unable to solve manipulation problems when two foliations cross each other. This issue had never been identified before because the reduction property allows to bypass it in pick and place scenarios with one object. From a practical perspective, I introduce two new types of transition in the Graph of Constraint. The first is the crossed foliation transition. It models the crossed foliation transition and enable the M-RRT to address the above issue. The second is the way-point transition. It addresses narrow passage issues intrinsic to manipulation problems.

Finally, a simple documentation for robots, and objects is introduced. This documentation provides a geometrical description of possible interactions. Thanks to the documentation, I propose an algorithm to automatically build a Graph of Constraint. The graph automatically built is filled with crossed foliation transition and way-point transition where these are required. This means that the simple documentation allows to easily define a manipulation problem in a way that is understood by the M-RRT.

Chapter organization

The chapters of this thesis are organized as follows. Chapter 1 presents the state of the art in motion and manipulation planning. It also briefly presents task planning.

Chapter 2 recalls some mathematical concepts and introduces two algorithms to validate the continuity of constrained path. It proposes a variant of the Constrained-RRT and a method to achieve constrained motion planning in the set of quasi-static configurations.

Chapter 3 describes how the manipulation problem is modelled and defined. It introduces the Graph of Constraint as a way to represent the structure of the configuration space. Then it describes the M-RRT planning algorithm and shows how issues arising from the structure of the configuration space are solved.

Chapter 4 describes a documentation of robots, objects and environments. It introduces an algorithm to automatically generate a Graph of Constraint from this documentation.

Chapter 5 briefly presents the HPP library, as an outcome of this thesis. It also shows some simulations and benchmarks of the presented approach. It has been applied to a wide range of robots in various environments.

Finally, the last chapter points out the conclusions of this thesis and some possible future works. This chapter provides an overview of existing solutions to the problems related to manipulation planning. Section 1.1 focuses on motion planning and emphasizes the elements which are essential to manipulation planning. Section 1.2 briefly describes the task planning problem. Section 1.3 describes existing approaches to integrate task and motion planning.

Publications

Motion planning

Motion planning consists of finding a collision-free path from an initial robot configuration to a desired goal. It is a continuous geometrical problem. Among the first formulations, the piano's mover problem [START_REF] Schwartz | Motion planning and related geometric algorithms in robotics[END_REF], recalled in Definition 1.1, shows the case where the robot is a single unarticulated body. The problem has found industrial applications for disassembly problems [Laumond, 2006]. However, motion planning becomes both more interesting and more complex when considering articulated robots. Definition 1.1 (Piano's mover problem). Given a robot, a set of static obstacles and an initial and a goal configuration of the robot, find a collision-free path for the robot from the initial to the goal configuration.

The first main contribution to the problem is the definition of the Configuration Space, denoted by CS, introduced by Lozano-Perez [1983]. It is the Cartesian product of the interval of definition of each joint parameter. For a robot with n degrees of freedom (DoFs), CS is a n-dimensional manifold that contains all the configurations of the robot. It represents the pose of each body of the robot as a single point so a trajectory of the robot is a continuous path in CS. The problem is thus transformed into finding a trajectory for a point in CS instead of a trajectory of several bodies in the Euclidean space.

The two following subspaces of CS are commonly used:

• CS obs : the subset of CS for which at least one body of the robot collides with an obstacle or with another robot body.

• CS f ree : the subset of collision-free configurations, i.e. CS f ree = CS \ CS obs .

It is an open set 1 .

The motion planning problem can be stated as finding a continuous path p(t) from a start configuration p(0) = q init to a goal configuration p(1) = q goal such that ∀t ∈ [0, 1] , p(t) ∈ CS f ree .

Three classes of methods tackling this problem can be found in the literature: deterministic approaches, randomized approaches and optimization-based approaches. The reader may refer to the books of Latombe [1991], Choset [2005], LaValle [2006] for a broad overview of existing methods.

Deterministic methods Deterministic methods always compute the same valid solution. Methods such as cellular decomposition, Voronoi diagrams, visibility graphs and Canny's algorithm rely on the construction of an explicit and exact representation of CS obs to build a graph, or roadmap, that represents the connectivity of CS f ree [START_REF] Canny | The complexity of robot motion planning[END_REF][START_REF] Joseph | Handbook of discrete and computational geometry[END_REF], Indyk and Matousek, 2004]. Other approaches approximate CS by discretizing it. Motion planning is then reduced to a search in a graph. Although complete, these approaches quickly become intractable as the dimension of CS increases.

Algorithms based on potential field scale well to high-dimensional configuration space [Khatib, 1986]. However, they are in general not complete because the planner can be trapped in a local minima. Harmonic functions allow to formulate a potential with only one local minimum, which is the global minimum. However, in the general case, such functions are expressed only through a differential equation and the explicit solution is not known.

Sampling based methods

Sampling based methods randomly sample CS and build a graph of configurations connected by collision-free paths. This graph is usually called roadmap and approximates the connectivity of CS f ree . Sampling based algorithms are commonly classified in two groups: single query and multiple query algorithms.

Multiple query algorithms work in two steps. They first build a roadmap that represents as well as possible the connectivity of CS f ree . Then, motion planning queries are solved by connecting the initial and final configurations to the previously computed roadmap. If the connectivity of CS f ree is well captured during the first step, the queries in the second step are not time consuming. Most popular algorithms are Probabilistic RoadMaps (PRM) [Kavraki et al., 1996] and Visibility PRM (V-PRM) [START_REF] Thierry Siméon | Visibility-based probabilistic roadmaps for motion planning[END_REF]. Instead of PRM, V-PRM tries to identify configurations which add connectivity information to the roadmap. The resulting roadmap is smaller, which makes proximity queries faster.

Single query algorithms do not seek to fully represent the connectivity of CS f ree . Instead they represent part of CS f ree around the initial and, in some case, goal configuration(s). A tree of configurations is grown by iteratively extending the nearest neighbour of a randomly sampled configuration, towards this random configuration. Although it is hard to give a brief summary of the existing algorithms, the most famous family of algorithms is the variants of Rapidly exploring Random Tree (RRT) [Lavalle, 1998].

Randomized algorithms are very efficient in solving high-dimensional problems. However, they suffer the few following drawbacks.

• These algorithms are only probabilistically complete. It means that, if a solution exists, the probability of finding one solution converges to 1 as the number of iterations increases. However, if no solution exists, they will run forever without detecting it.

• The solution path contains a lot of erratic motion and is most likely far from optimal. Optimization is usually considered as a post-processing step. Nevertheless, variations that asymptotically converge towards the global minimum solution path have been proposed, like PRM* and RRT* by Karaman and Frazzoli [2011]. These solutions add a step to recompute the shortest path between pairs of configurations in the roadmap. This "rewiring" step is of constant time but nevertheless time-consuming.

• The time required to find a solution quickly increases with the presence of narrow passages. This is due to the fact that it is unlikely to randomly sample configurations in those passages. Some techniques prove to be efficient in some cases, such as dimensionality reduction using a Principal Component Analysis [START_REF] Dalibard | Linear dimensionality reduction in random motion planning[END_REF] or the bridge test [Hsu et al., 2003].

• Zero volume sub-manifolds cannot be sampled randomly. Random sampling is thus unable to solve problems where the set of feasible configurations is a zero volume sub-manifold of CS. This is for instance the case of closed-loop systems or humanoid robots. Constrained variant exists for most algorithms, such as Constrained-RRT detailed in Section 1.1.2.

Optimization-based methods

Optimization based methods formulate motion planning as a trajectory optimization problem. Given a naive initial trajectory, possibly in collision, they iteratively pull the trajectory out of collision while optimizing a cost. The optimization uses both a user-defined cost -path length, energy... -and collision detection. Collision avoidance is transformed into a constraint of positiveness of the signed distance function. This function is defined as follows. A positive distance corresponds to the shortest distance between non-colliding objects while a negative one corresponds to the penetration between colliding objects. The two main methods in the literature are Covariant Hamiltonian Optimization for Motion Planning (CHOMP) [START_REF] Ratliff | Chomp: Gradient optimization techniques for efficient motion planning[END_REF] and Stochastic Trajectory Optimization for Motion Planning (STOMP) [Kalakrishnan et al., 2011]. CHOMP reduces the overall cost based on covariant gradient information. STOMP generates noisy trajectories to explore the space around the current trajectory. They are then combined to produce an updated trajectory of lower cost. However, STOMP cannot be expected to solve typical motion planning problems like the alpha puzzle in a reasonable amount of time [Kalakrishnan et al., 2011].

Other problem formulations

The above defined motion planning problem does not cover all the situations where motion planning for a robotic system is needed. So some variants of the original motion planning problem have been studied in the literature. Some are briefly presented here.

Optimal motion planning Generally speaking, motion planning does not seek optimal solution but rather feasible solution. Optimization-based methods can only prove local optimality, at the cost of possibly being trapped in infeasible local optimum. However, some algorithms, like PRM* or RRT*, are guaranteed to converge to the globally optimal solution.

Non-holonomic robots Some robotic systems cannot move in all directions. For instance, the velocity of a car is always forward or backward. Its sidewise component is always zero. To handle such cases, one has to design specific local planner, called steering method. A steering method links two configurations without considering obstacles. For a car, the optimal steering method was found by [START_REF] Reeds | Optimal paths for a car that goes both forwards and backwards[END_REF].

Achieving a task It is often convenient to specify the goal as a set of robot configurations instead of a single configuration. This set is often called a task. For instance, the following is a useful goal set: robot hand must go to a specific position with respect to the door handle. This specification is convenient because many configurations can achieve the desired goal. Beyond convenience, reducing the whole set of configurations achieving a goal to a subset of it -one or several configurations -can make a feasible problem infeasible.

Constrained systems For many robotic systems, the set of feasible configurations is a sub-manifold of CS. This is the case for closed-loop system, under-actuated robots like humanoid robots, cable robots... It is also the case for robots subject to constraints, like equilibrium constraint. Motion planning for these robots falls into constrained motion planning. It is the focus of next section.

Constrained motion planning

For closed-loop systems, humanoid robots or under actuated robots, the feasible configuration space is of the form {q ∈ CS | f (q) = 0}, where f represents the constraint, such as a loop closure constraint, an equilibrium constraint, etc. The set of admissible configurations is defined only implicitly and it has measure zero in CS when f is non trivial.

Formally, for a constraint f from CS to R n such that a configuration q is feasible if and only if f (q) = 0, the motion planning problem becomes finding a continuous path p such that ∀t ∈ [0, 1] , p(t) ∈ CS f ree and f (p(t)) = 0.

Most approaches found in the literature tackle only a simpler version of this problem. [START_REF] Berenson | Manipulation planning on constraint manifolds[END_REF], [START_REF] Dalibard | Dynamic walking and whole-body motion planning for humanoid robots: an integrated approach[END_REF] have introduced constrained versions of randomized planners but their algorithms do not guarantee continuity of the solution path.

The following section explains how most methods, not considering continuity, generate admissible configurations and paths. Then, I describe a method proposed by [START_REF] Hauser | Fast interpolation and time-optimization on implicit contact submanifolds[END_REF] to generate continuous constrained paths. The last section describes the Constrained-RRT.

Point-wise constraint satisfaction

All constrained motion planning algorithms need a method to generate configurations that satisfy the constraint. In some rare case, the constraint satisfaction problem is explicit. However in most cases, this problem only has an implicit formulation, which is given below. Definition 1.2 (Constraint satisfaction problem). Given a constraint error function f : CS → R n and q 0 ∈ CS, find q ∈ CS such that f (q) = 0.

For practical reasons, the above problem is often relaxed by using a constraint violation tolerance ε > 0. A configuration q satisfies the constraints if and only if ||f (q)|| ≤ ε. [START_REF] Stilman | Global manipulation planning in robot joint space with task constraints[END_REF] proposes a comparison of several algorithms addressing this problem: Randomized Gradient Descent (RGD), Tangent Space Sampling (TS) and Newton-Raphson (NR) (called First Order Retraction in the paper).

RGD and NR iteratively update the input configuration in order to decrease the constraint violation ||f (q)|| 2 . At each step, RGD randomly samples configurations in the neighbourhood of the current configuration until it has found a configuration with a lower constraint violation. NR uses the Jacobian of the constraint to improve the configuration. TS projects the input configuration onto the tangent space of the constraint at another configuration and then applies RGD.

NR and TS require differentiable constraints. Fortunately, for robotic application, geometric constraints are differentiable and the Jacobian is explicit, as detailed in Appendix A. NR tends to be preferred because it has better a success ratio without being significantly slower [START_REF] Stilman | Global manipulation planning in robot joint space with task constraints[END_REF]. Moreover, it is a deterministic algorithm so the result is repeatable. It can be written as a projector, as defined below.

Definition 1.3 (Projector).

A projector on constraint f (q) = 0 is a mapping P from a subset D P of CS to CS such that ∀q ∈ D P , f (P (q)) = 0 This repeatability property of NR is essential. Indeed, non-deterministic algorithms cannot be written as a projector so they cannot be continuous with respect to the input configuration.

The continuity of a projector is a sufficient condition to ensure the continuity of a constrained path. However, a projector is often only defined on a subset of CS and is continuous on a subset of its interval of definition.

Constrained paths

Definition 1.4 (Continuous constrained path). A continuous constrained path p, under constraint f , is a continuous mapping from [0, T] to CS such that ∀s ∈ [0, T] , f (p(s)) = 0 Let (q 0 , q 1) ∈ CS 2 and straight(q 0 , q 1) : [0, 1] → CS be the linear interpolation from q 0 to q 1 . Most motion planning approaches build paths with basic interpolation method between configurations, e.g. straight(q 0 , q 1). However, in the constrained case, this is not sufficient. The basic interpolation will most likely not satisfy the constraint, even if the endpoints satisfy it.

A first naive solution to continuous constrained path is to discretize the path, project each sample and use a linear interpolation between the projected samples. The resulting path will be continuous but the point wise projection has two drawbacks. First, the resulting path does not satisfy the constraint between samples. Second, in some cases, it jumps between two solution sets that cannot be connected by continuous path satisfying the constraint. In these cases, it gives a wrong solution to a problem which may be infeasible. This last point is explained in full details in Section 2.2.

The Recursive Hermite Projection (RHP) proposed by [START_REF] Hauser | Fast interpolation and time-optimization on implicit contact submanifolds[END_REF] addresses the problem of generating C 1 paths that satisfy a set of non-linear constraints. The basic interpolation between samples is cubic Hermite curve so the velocity can be made continuous. RHP addresses constraints f (q) = 0 for which there exists a Lipschitz constant M such that ∀(p, q) ∈ CS2 , ||f (q 0) -f (q 1)|| ≤ M ||q 0 -q 1 ||. Note that the norm and the minus operator on CS will be defined rigorously later. For a constraint violation threshold ε > 0, the algorithm recursively splits consecutive interpolation points (IPs) in two until the distance between them is less than 2ε M . There are three drawbacks with this approach.

First, for an initial path of length L, it generates at least M 2ε L points. For the simulations which will be presented in this paper, ε is about 10 -3 and typically 2 1 ≤ M ≤ 10. Thus the number of points would be greater than 10 3 L for a single path. Motion planning extensively uses the steering method. An increase in the time to build a path can be dramatic to the overall performance.

Second, the algorithm assumes the IPs exactly satisfy the constraint, which is of course impossible in practice. One could work around this issue by using two thresholds: a small one to compute accurate IPs and a large one to check for path continuity. This would make the algorithm harder to implement. Because the continuity interval would decrease as the small threshold increases, one would have to make a trade-off between the time to compute accurate IPs and the distance between them.

Third, I consider random exploration of the configuration space. As such, I only consider continuity and not differentiability. I prefer to explore the configuration space of the system and to address differentiability in a post-processing step. When applicable, this approach is known to be more efficient than kinodynamic motion planning that explores the state space of the system and returns differentiable solutions. As such, a slight modification of RHP is required to make it suited for motion planning in CS.

In Section 2.2, I propose a different approach and give a more detailed comparison between my method and the RHP.

Constrained-RRT

The Constrained-RRT is very similar to the original RRT so I present directly the constrained version. The unconstrained version can be obtained by considering the trivial constraint f : q → 0.

Algorithm 1.1 Constrained-RRT

1: function exploreTree(q 0) ⊲ Constrained-RRT from q 0 , s.t. constraint f .

2:

T .init(q 0) 3:

for i = 1 → K do 4:
q rand ← Rand(CS)

5:

q near ← Nearest(q rand ,T)

6:

q proj ← Project(q rand , f)

7:

Extend(q near ,q proj ,T)

The idea is to extend a tree of configurations toward randomly sampled points.

Pseudo-code is proposed in Algorithm 1.1. The algorithm initializes a tree of configurations T with the input configuration. It randomly samples CS and finds the nearest neighbour in T . Such a neighbour always exists since T is not empty. At Line 6-7, the random configuration is projected as explained in Section 1.1.2.1 and one of the standard RRT extension methods is called. Algorithm 1.2 gives one extension method. It adds to the tree the part of the straight interpolation which is collision-free.

Algorithm 1.2 Standard RRT extension

1: function Extend(q near ,q rand ,T)

2:
p 1 ← interpolate(q near , q rand) 3:

p 2 ← testCollision(p 1) 4:
q new ← finalConfiguration(p 2) 5:

T .insertConfAndPath(q new , p 2)

Motion planning for humanoid robot

Full body motion planning for humanoid robot is known to be hard and is almost never addressed directly. The approaches presented below reduce the complexity of the problem, each of them with a different approach. [START_REF] Dalibard | Dynamic walking and whole-body motion planning for humanoid robots: an integrated approach[END_REF] addresses the class of problem where the floor is always flat. They show that a collision-free path for a humanoid robot sliding on the ground can always be converted in a dynamically stable walking trajectory. The path of the sliding robot must satisfy the following constraints:

Decoupled planning

• position and orientation of the feet so that they are always in contact with the floor,

• horizontal position of the Center of Mass (CoM) with respect to the feet,

• constant vertical position of the CoM.

Thanks to this property, planning is divided in two steps. First plan a collision-free path for the humanoid robot subject to the above mentioned constraints. Then generate an admissible walking trajectory following this path. [START_REF] Tonneau | A reachability-based planner for sequences of acyclic contacts in cluttered environments[END_REF] addresses the problem of generating contact plans for multiped robot, such as standing up, climbing stairs using a handrail. . . They define a reachability condition which verifies that the root configuration of a robot is close enough to allow contact creation, but not too close to avoid collision. The reachability condition turns the high-dimensional computation of finding configuration in contact into a collision checking problem. With this approximation of the space of admissible root configurations, the contact planning problem is decomposed into two simpler sub-problems. First plan a guide path for the root without considering the whole-body configuration. Then generate a discrete sequence of whole-body configurations in static equilibrium along this path.

Multi-contact planning

Although not complete, the approach is extremely efficient to generate contact plan for a wide range of robots. The efficiency comes at the cost of exhaustiveness.

Task planning

The task planning problem is to find a sequence of elementary actions that accomplish a given task. This section recalls the problem statement and some general notions of task planning domain. Although task planning is not the focus of this thesis, these notions will be useful later. It is also worth while to make some analogies between the two fields, namely motion planning and task planning.

Result(S, o) = (S ∪ add(o)) \ del(o) if pre(o) ∈ S undef

ined otherwise

In the first case, where pre(o) ∈ S, the action is said to be applicable in S. The result of applying a sequence of more than one action to a state is recursively defined as

Result(S, o 1 , . . . , o n) = Result(Result(S, o 1 , . . . , o n-1), o n).
From a set of actions, the goal is to find a sequence of actions that transform, by their addition and deletion lists, an initial set of atoms in a final set of atoms. A rigorous definition is recalled below. Many approaches use relaxed task planning to guide the search. The relaxation of a task planning problem is the same problem with the exception that the delete list of actions is empty. [START_REF] Hoffmann | The ff planning system: Fast plan generation through heuristic search[END_REF] introduced the Fast Forward (FF) heuristic. It uses the relaxed problem to guide their search algorithm called enforced hill-climbing. It is a forward search engine, which means it never backtracks and always tries to append actions to the current task plan. Decisions are never revised. The only way to recover from the selection of a poor action is to invert the effects of this action. Thus, although it has been successful in many scenarios, the output can contain an arbitrarily large number of action and its inverse action, being very suboptimal. The approach is complete if the input problem contains no reachable dead-end states [START_REF] Hoffmann | The ff planning system: Fast plan generation through heuristic search[END_REF]. A state is a dead-end if and only if no sequence of actions achieves the goal from it. Some realistic criteria, like invertible planning task [Koehler and Hoffmann, 2000, Hoffmann and[START_REF] Hoffmann | The ff planning system: Fast plan generation through heuristic search[END_REF], make many problems dead-end free.

Limitations As a purely symbolic problem, task planning is of rather limited use in robotics. Actions are assumed to be always feasible while the underlying geometrical problem may be conditionally feasible or even infeasible. Indeed, an action such as Take object on the table is feasible only if the object is at a reachable position on the table. In the case of continuous grasps and/or placements, it is not possible to represent symbolically each grasp and each placement separately so the case is even harder.

To overcome this limitation, task planning has to be combined with a geometrical motion planner, as described in next section.

Manipulation planning

Manipulation planning is a combination of task and motion planning. Definition 1.9 (Manipulation planning problem). Given a set of robots, objects, static obstacles, an initial configuration I for all robots and objects and a set of goal configurations G, find a path, for all robots and all objects, from I to a final configuration in G . The path must be collision-free and must satisfy the manipulation rules.

As a computational geometry problem, it has raised a lot of interest for the past forty years. Pioneering works by [START_REF] Wilfong | Motion planning in the presence of movable obstacles[END_REF] and [START_REF] Alami | A geometrical approach to planning manipulation tasks. the case of discrete placements and grasps[END_REF] first considered low dimensional problems where robots and objects move in translation. Dacre-Wright et al. [1992], Alami et al. [1994] are the first works that apply random motion planning methods developed a few years earlier [Kavraki et al., 1996] to the manipulation planning problem. Recently, the domain has regained interest with various variants where papers propose approaches that tackle the inherent complexity of manipulation planning. The domain is traditionally divided into several categories. Navigation Among Movable Obstacles (NAMO) consists of planning a path for a robot that needs to move obstacles in order to reach the goal configuration [START_REF] Stilman | Planning among movable obstacles with artificial constraints[END_REF][START_REF] Nieuwenhuisen | An effective framework for path planning amidst movable obstacles[END_REF][START_REF] Dalibard | Manipulation of documented objects by a walking humanoid robot[END_REF].

Rearrangement planning consists of automatically finding a sequence of manipulation paths that move several objects from initial configurations to specified goal configurations [Krontiris and Bekris, 2015, Ota, 2004, Lertkultanon and[START_REF] Lertkultanon | A single-query manipulation planner[END_REF]. Multi-arm motion planning has also given rise to a lot of papers [Gharbi et al., 2009, Harada et Considering a set of robots and objects, the problem is to find both a sequence of elementary actions, as well as robots and objects paths for each action, in order to accomplish a set of goals. Compared to task planning, this intends to solve the limitations presented above, i.e. the output is guaranteed feasible. The added complexity resides in the fact that solving motion planning problems are timeconsuming and most algorithms are only probabilistically complete. They cannot state a problem infeasibility and it is very difficult, if possible at all, to have an estimation of search progress in the general case.

The following sections propose a classifications of manipulation planner in two categories: multi-layer planners and single layer planners. The latter use a unique data structure to organize the data gathered during the search, while the former use a hierarchy of data structure to represent them.

Multi-layer manipulation planners

These planners tackle the problem with two or three planning layers. A high level symbolic planner generates task plans. A low level geometric planner generates paths for elementary actions.

Unfortunately, symbolic and geometric planners do not share the same language. The former reasons on discrete variables while the latter reasons on continuous variables. For instance, a symbolic action, such as Take object on the table or Put object on the table, does not specify how the object must be grasped or where it must be released. However, the geometric planner needs to know it. Reducing these possibilities to one is not, in the general case, sufficient because the choice is case-dependant. Thus, the challenging issue is the communication between the two levels. [START_REF] Srivastava | Combined task and motion planning through an extensible planner-independent interface layer[END_REF] proposes an intermediate layer which refines task plans into motion plan. For each action of the task plan, this layer calls the motion planner for each possible values of the effects of the action, until it has found one which succeeds. When no motion planning request succeeds, the algorithm backtracks to the previous action. If the refinement fails, a partial plan, up to failure, is found and the algorithm seeks for a possible reason and update the task planner before starting again. For instance, action Put object on the table would lead to generate a subset of object pose on the table and try to plan only considering this subset of object pose. If the problem cannot be solved, then a new subset is generated. [START_REF] Cambon | A hybrid approach to intricate motion, manipulation and task planning[END_REF] proposes an multi-layer approach using similar tools as single layer planners. They make use of the reduction property, recalled below, which makes their approach suitable for continuous grasps and placements. [START_REF] Stilman | Navigation among movable obstacles: Realtime reasoning in complex environments[END_REF] addresses Navigation Among Movable Obstacles. The robot is permitted to reconfigure the environment by moving obstacles and clearing free space for a path. A heuristic finds a path without considering collisions with movable obstacles. This paths is used to determine what objects should be moved. Object are moved when they allow two distinct connected components of CS to merge. Their approach however would not move obstacles which do not block the robot, even if they prevent other movable objects from being moved.

A major issue of multi-layered approaches is that motion planning algorithm cannot prove infeasibility. Most assumes a problem infeasible when some threshold is reached, in terms of number of iterations or elapsed time. Although this is sufficient for many problem, it is a very weak strategy in general and it requires parameter tuning.

Another issue comes from the task planning techniques most approaches use: the FF heuristic or one variant of it. As stated above, the task plan returned by FF can contain an arbitrarily large number of actions and its inverse. In a pick and place scenario,it means the robot can pick up and put down the object several times in an awkward way3 . From a theoretical point of view, this aspect is not important. However, in practice, this generates awkward and useless motions which makes it not directly usable in practical situations.

Single layer planners

Instead of using layered planners, the problem is represented using the Cartesian product of the configuration space of robots and objects. As this is the framework which will be used in the following, I know recall important notions from the work of Siméon et al. [2004].

The reduction property Consider a problem with a robot and an object. The configuration space of the system is CS = CS robot × CS object . The domain in CS corresponding to valid placements of the object, i.e. stable placements where the object can rest when released by the robot, is denoted by CP. The domain in CS corresponding to valid grasps of the object by the robot, is denoted by CG. Both CG and CP are sub-manifolds of CS.

A solution to a manipulation planning problem corresponds to a constrained path in CS f ree . Such a solution path is an alternate sequence of two types of subpaths verifying the specific constraints of the manipulation problem, and separated by grasp/ungrasp operations.

• Transit paths where the robot moves alone while the object stays stationary in a valid placement. They lie in CP. However a path in CP is not generally a transit path since such path has to belong to the sub-manifold corresponding to a fixed placement of the object. They induce a foliation of CP.

• Transfer paths where the robot moves while holding the object with the same grasp. The position of the object with respect to the robot end-effector is constant. They lie in CG and induce a foliation of CG.

For completeness, I recall the notion of foliation [START_REF] Haefliger | Feuilletages sur les variétés ouvertes[END_REF].

Definition 1.10 (Foliation). A foliation of a n-dimensional manifold M is an indexed family L α of arc-wise connected m-dimensional sub-manifolds m < n, called leaves of M , such that:

-L α ∪ L α ′ = ∅ if α = α ′ -∪ α L α = M
every point in M has a local coordinate system such that nm coordinates are constant.

An example of discrete manipulation problem is navigation inside a building, made of floors and staircases. To move from one floor to another, you must navigate in a staircase. To move from one staircase to another, you must navigate in a floor. Allowed motions induce a foliation of the set of floors, in which each floor is a leaf, and a foliation of the set of staircases. Navigating in this space requires to find an alternate sequence of floors and staircases.

Two foliation structures are defined in CG ∩ CP, which implies the following property, shown by Dacre-Wright et al. [1992].

Theorem 1.1 (Reduction property). Any path lying in CG ∩ CP where the robot is not in collision with static obstacles can be transformed into a finite sequence of transit and transfer paths. This property reduces the manipulation problem to a problem of discovering the connectivity of the various components of CG ∩ CP by transit and transfer paths. They provide two multiple-query algorithms based on PRM.

This result is the main theoretical result in manipulation planning. To my best knowledge, there has been no significant theoretical breakthrough about the geometrical problem since.

Other approaches Another successful algorithm is FFrob, introduced by Garrett et al. [2015]. It is an extension of the Fast Forward heuristic that accounts for geometrical information. A set of useful object poses and robot configurations is sampled offline and stored in a conditional reachability graph. When the planner failed to solve a problem, new object poses and robot configurations are sampled and the graph is updated. Thanks to this offline computations, FFrob is able to solve challenging problems in a reasonable amount of time. However, many parameters are to be tuned. Most of them are very case specific such as the number of sampled object poses, the number of grasp configurations, the number of iterations of the RRT to solve a motion planning problem. . . The Diverse Action RRT (DA-RRT) algorithm, proposed by [START_REF] Barry | A hierarchical approach to manipulation with diverse actions[END_REF], tackles the Diverse Action Manipulation problem. The inputs to the problem are a mobile robot, a set of movable objects, and a set of diverse, possibly non-prehensile manipulation actions. This algorithm finds a high-level sequence of transfer manipulations by planning a path only for objects in the domain. It then attempts to achieve each transfer manipulation individually. A similar approach to this one is Sampling-based Motion and Symbolic Action Planner, introduced by Plaku and Hager [2010]. They grow a tree of configurations by sequentially applying actions. The action applied is selected using a measure of the utility of actions.

Chapter 2 This chapter addresses important issues raised by constrained planning and manipulation planning. Manipulation planning relies on constrained motion planning, with the additional difficulty that the constraints are not the same in the whole configuration space. Manipulation paths alternates between different constraints.

Constrained motion planning

The first section presents the formalism necessary to address problems addressed in this thesis. It includes basic operations on the configuration space and the velocity space, two types of constraints, naturally emerging from the analysis of manipulation rules, and continuous paths.

The second section presents two algorithms with continuity certificate and a proof of this certificate. As explained in the previous chapter, most approaches addressing constrained motion planning do not guarantee the continuity of the solution. I also propose continuous constrained motion planning algorithm. This two algorithms constitute a major contribution of this thesis.

In the last section, I formulate the problem of generating quasi-static motion for a humanoid robot as a manipulation problem. I express a friction-less multi-contact equilibrium criterion as a constraint, which enables to plan full-body motion in the sub-manifold of quasi-static configurations.

Notations and definitions

I consider a set of robots R, a set of movable objects M and a set of static obstacles. The configuration space CS always denotes the Cartesian product of the configurations space of each robot and object. This means I always consider that robots and objects are one single kinematic tree.

Configuration space

In general, CS is a manifold and not a vector space. The velocity is defined as the derivative of the joint parameters with respect to time or any other abscissa.

For one dimensional bounded rotations and for translations, the configuration space is a vector space and the velocity space is identical to the configuration space. In this context, unbounded rotations are represented by the circle group SO(2), i.e. q = (cos θ, sin θ), to overcome issues due to the multiplicity of angles representing the same rotation. The velocity space is R 1 and velocities are defined by

∂q ∂s = ∂θ ∂s
Three dimensional rotations are represented by with unit quaternions, described by the unit sphere in R 4 . This representation is non-singular, which is not the case of Euler angles, and more compact than matrices. In the following, I give some brief elements about the special orthogonal group SO(3) derived from formal Lie group theory which is not described here. The user may refer to Kirillov [2008]. The velocity space is R 3 and the velocity ω is defined by

[ω] × = dR dt R T
where R is the rotation matrix. Both unbounded rotations and three dimensional rotations have a velocity space whose dimension is lower than their configuration space.

Operations

In order to treat each joint configuration space uniformly, two operations are defined in SO(2) and SO(3): an addition between a joint configuration and a joint speed and a difference between two joint configurations. These operators extend the addition and difference on joint configuration spaces which are vector spaces.

Operations in SO(2) Let (p 1 , p 2) ∈ SO(2) 2 and θ i such that p i = (cos θ i , sin θ i). The difference (θ) = p 2 -p 1 ∈] -π, π] is such that θ ≡ θ 2 -θ 1 + 2kπ, k ∈ Z.
The addition of velocity (θ) to joint configuration p 1 is the rotation obtained by integrating velocity (θ) during unit time, i.e.

p 1 + (θ) ≡ (cos (θ 1 + θ) , sin (θ 1 + θ)).
Operations in SO(3) Let (q 1 , q 2) be two quaternions representing two elements of SO(3). Because of the double covering of quaternions, q i and -q i represents the same element of SO(3). As the joint configuration space is SO(3), there is no reason to abandon this duplicity. The two operations defined below consider this duplicity when necessary.

Figure 2.2: Schematic representation of the quaternion interpolation. It represents the unit sphere of R 3 . q 1 and q 2 are two elements of the sphere. -q 2 represents the same rotation as q 2 . When cos(θ) ≥ 0, path q 1 → q 2 is shorter than path q 1 → -q 2 . When cos(θ) < 0, path q 1 → -q 2 is shorter.

The difference ω = q 2q 1 ∈ R 3 is defined as the speed to go in unit time from q 1 to q 2 . It corresponds to a rotation of ||ω|| around ω/||ω||. A path from q 1 to q 2 and from q 1 to -q 2 is of different length in general. This is depicted on Figure 2.2. For instance, if q 1 = q 2 , the former is of angle 0 while the latter is of angle 2π. The difference operation chooses the one with smallest angle. Let ⊗ be the quaternion product and q 1 be the conjugate of quaternion q 1 . Finally, let q = q 2 ⊗ q1 = (w, v), where w ∈ R is the scalar part of q and v ∈ R 3 is the vector part of q. It can be defined as:

ω ≡ 2 v ||v|| × arccos (w) , if w ≥ 0 -arccos (-w) , otherwise
The addition of velocity ω to configuration q is the rotation obtained by inte-grating velocity ω during unit time, i.e.

q + ω = cos ||ω|| 2 , sin ||ω|| 2 ω ||ω|| ⊗ q
These operations are continuous on SO(3), although they are not on the unit sphere of R 4 . Moreover, the difference operation gives geodesics in SO(3). However, one has to be careful with the arithmetic. Indeed, q 2 -q 1 = q 2 -(-q 1) so q 1 -(-q 1) = 0 R 3 . The quaternion q 1 + (q 2q 1) is either q 2 or -q 2 depending whether their scalar product in R 4 , q 1 , q 2 , is positive or negative.

Operations in CS The above operations are extended to the robot configuration space. The difference in each joint configuration space defines a difference in the robot configuration space. Similarly, the addition operation between a robot configuration and a robot velocity is defined. I define the two following operations.

• distance dist D (q 0 , q 1) = ||q 1 -q 0 || D = (q 1 -q 0) T D(q 1 -q 0) is the weighted norm of the difference. The weight D is a square matrix of dimension n × n,
where n the size of the velocity space.

• straight interpolation from q 0 to q 1 , straight(q 0 , q 1) :

[0, 1] → CS s → q 0 + s (q 1 -q 0) (2.1)
The difference operation in SO(3) means the straight interpolation is the path of shortest length.

Jacobian

The Jacobian of the robot with n degrees of freedom (DoFs) is a 6 × n matrix. The matrix maps the velocity in configuration space to velocities in Euclidean space. The three top rows correspond to the linear part and the three bottom ones correspond to the angular part. The columns correspond to DoFs. For instance, unbounded rotations are represented by one column while three dimensional rotations span three columns. Appendix A gives the analytical expressions.

Constraints

This section defines two types of constraints useful in manipulation planning. To picture these types, consider an end-effector manipulating an object. There are two possible states for a configuration. Either the end-effector grasps the object in a stable way or the object is in a stable placement. They constitute one type of constraint, called validation constraint. They are immutable, i.e. they depends only on inputs of the planning problem.

There are two possible states for a path. Either the robot moves the object or the object does not move. In the first case, each configuration of the path is a valid grasp configuration and the object pose relatively to the end-effector is constant. The grasp is said constant. In the second case, the object remains still, in a valid placement. The placement is said constant. The two constraints grasp is constant and placement is constant constitute the other type of constraint, called parametrization constraint. The are mutable, i.e. they depend on problem inputs and on internal parameters. For instance, the internal parameter for placement is constant is the pose of the object.

The notion of constraint generalizes the notion of grasp and placement. They are related to atoms in Task Planning, at the exception that I define two different types of constraints.

Consider a continuous grasp, i.e. when the set of valid grasps is not countable. Let us assume the end-effector and the object involved in this grasp are such that two functions from CS can be defined. The first function f valid defines what is a grasp. The output set is R n . It evaluates to zero if and only if the configuration is a valid grasp, i.e.

f valid (q) = 0 R n ⇔ q ∈ CG.
The second function f param uniquely defines each grasp. For any two grasping configurations q 0 and q 1 , the relation f param (q 0) = f param (q 1) means q 0 and q 1 defines the same grasp. Thus, a path p ∈ C ([0, 1] , CS) is a valid transfer path if and only if for all t in [0, 1], p(t) ∈ CG and f param (p(t)) = f param (p(0)).

Functions with the similar meaning can be defined for continuous placements. Thus these two functions are an abstract representation of grasp and placement. This defines the framework of this thesis regarding what type of grasps, placements (and actions in general) are considered. There must exist two functions to define it: a validation function and a parametrization function.

From the above remark, it becomes natural to define the following constraints, where C 1 (CS, R n) denotes the space of continuously differentiable function from

CS to R n . Definition 2.1 (Parametrization constraint). A parametrization constraint is a constraint of the form f (q) = b where f ∈ C 1 (CS, R n), q ∈ CS and b ∈ R n . b is the parameter and n is the dimension.
Configuration q ∈ CS satisfies the parametrization constraints with parameter b if and only if f (q) = b.

As a stack of parametrization constraints is also a parametrization constraint, I always consider only one parametrization constraint. For instance, a stack of two parametrization constraints with parameters b 0 and b 1 , f 0 (q) = b 0 and f 1 (q) = b 1 , is the following parametrization constraint.

f 0 f 1 (q) = b 0 b 1 Definition 2.

(Validation constraint).

A validation constraint is a parametrization constraint whose parameter b is zero, i.e. of the form f (q) = 0 where f ∈ C 1 (CS, R n) and q ∈ CS.

Similarly to parametrization constraint, a stack of validation constraints is a validation constraint. I always consider only one validation constraint. C V denotes the space of all validation constraints, C P the space of all parametrization constraints and C the union of both.

As mentioned in Section 1.1.2.1, the preferred method for constraint resolution is a Newton-Raphson (NR) algorithm. This choice implies that the constraint must be differentiable. The Jacobian of a constraint is the Jacobian of f . It is denoted by J f .

Path

A path p ∈ C ([0, 1] , CS) is a continuous mapping from [0, 1] to CS.
When solving a path planning problem where the robot is subject to a constraint, an operator called steering method is used. This operator takes as input two configurations satisfying the constraint. It returns (in case of success) a path satisfying the constraint and linking the end configurations.

SM : CS × CS × C → C ([0, 1] , CS) (q 0 , q e , c) → p such that ∀t ∈ [0, 1], SM(q 0 , q e , c)(t) satisfies constraint c.
From an implementation point of view, it is possible to discretize the linear interpolation between q 0 and q e into N steps, project each sample configuration on the constraint and make the steering method return linear interpolations between projected sample configurations. However, the point wise projection has several drawbacks.

First, a discretization step needs to be chosen for each application. This adds a parameter to be set.

Second, the resulting path may not satisfy the constraint between samples. Some algorithms that assume that constraints are satisfied everywhere may fail because the assumption is not satisfied. And third, the projector is, in general, not continuous and the path obtained after projection may not be continuous.

The second issue is addressed by applying the constraints at evaluation. SM(q 0 , q e , c)(t) = proj(interpolate(q 0 , q e)(t), c)

where proj(., c) is a projector on c and interpolate is the interpolation used internally by the steering method. The naive interpolation function is the straight line interpolation straight defined in (2.1).

The third issue is addressed by constructing a suitable function interpolate for each (q 0 , q e). This is detailed in next section.

Continuous path on manifolds

In this section, I address the problem of guaranteeing the continuity of constrained path. As explained in Section 1.1.2.1, the NR algorithm is best suited to constraint resolution. However, the algorithm is not continuous with respect to the input configuration. Figure 2.3 gives an elementary example where a continuous input path yields a discontinuous projected path. Figure 2.1 gives a realistic example where point-wise projection fails. This example is detailed in the end of this section.

Figure 2.3: This 2D example, where (x, y) are the configuration parameters, shows the graph of f ((x, y)) = y 2 -1. The 2 dotted horizontal line are the solutions of f ((x, y)) = 0. The 2 red circles are two configurations satisfying f (q) = 0. On the left, the blue line is straight [q 0 , q e] and on the right, the black solid line is its pointwise projection. The discontinuity is highlighted by the black circles and the red dashed line.

In this section, I derive a sufficient condition of continuity of one iteration of the NR algorithm. This condition is easy to check in practice. Then, I introduce two algorithms to check for path continuity.

Newton-Raphson algorithm

The NR algorithm iteratively updates the robot configuration so as to decrease the norm of the constraint value f (q). Let α > 0 and P α ∈ F (CS, CS) be the NR iteration function:

P α (q) = q -α J(q) † f (q) (2.2)
where A † is the Moore-Penrose pseudo-inverse of A and J(q) is the Jacobian matrix of f in q. P α (q) is the configuration obtained after one iteration of the NR algorithm, starting at q. For a given sequence (α n) ∈]0, 1] N and a given numerical tolerance ε > 0, let

P N (q) = P α N (• • • (P α 0 (q))
). The projection of a configuration q is P N (q) where N is such that:

• ∀i ∈ 0, N -1 , P α i (• • • (P α 0 (q))) ≥ ε, • P N (q) < ε.
Note that the projection is not always defined as N might not exist.

Continuity of the Newton-Raphson iteration function

Let B (q, r) = {q ∈ CS, ||q -q|| 2 < r} be the open ball of center q and of radius r.

The continuity of P α is expressed as follows.

Lemma 2.1 (Continuity of the NR iteration function). Let f ∈ C 1 (CS, R m). Let J(q) be its Jacobian and σ(q) be the smallest non-zero singular value of J(q). Finally, let r = max q∈CS (rank(J(q))).

If J is a Lipschitz function, of constant K, then, ∀q ∈ CS rank(J(q)) = r ⇒ P α is continuous on B q, σ(q) K Proof.
Let f be continuously differentiable function, K be a Lipschitz constant of its Jacobian, and r = max q (rank(J(q))) be known.

As f is continuously differentiable, P α is continuous where the pseudo-inverse application is continuous. The first part of the proof reminds some continuity condition of the pseudo-inverse. The second part proves that the latter condition is satisfied on the interval of Lemma 2.1.

Condition of continuity of the pseudo-inverse

Let q be a regular point, i.e. rank(J(q)) = r. As the set of regular points is open [START_REF] Andrew | Semicontinuity of rank and nullity and some consequences[END_REF] and J is continuous, there exists a neighbourhood U of q where the rank of J is constant. The continuity of the Moore-Penrose pseudo inverse can be expressed as follows [START_REF] Rakočević | On continuity of the moore-penrose and drazin inverses[END_REF]].

Theorem 2.1 (Continuity of the pseudo inverse). If

(A n) ∈ (R m×d) N , A ∈ R m×d and A n → A, then A † n → A † ⇔ ∃n 0 , ∀n ≥ n 0 , rank(A n) = rank(A)
Theorem 2.1 proves that J † is a continuous function of q on U. In the following section, I prove that U = B q, σ K is a suitable neighborhood.

Interval of continuity of the pseudo-inverse

The norm on R m×n I consider is the Frobenius norm (L2-norm), denoted |||.||| F . Mirsky's theorem [Mirsky, 1960, Theorem 5], restricted to the Frobenius norm, is:

Theorem 2.2 (Mirsky). If σ 1 ≥ σ 2 ≥ • • • ≥ σ n and σ1 ≥ σ2 ≥ • • • ≥ σn
|||diag(σ i -σ i)||| F ≤ ||| B -B||| F Lemma 2.2. Let (J, dJ) ∈ (R m×d) 2
and σ be the smallest non-zero singular value of J. Then,

|||dJ||| F < σ ⇒ rank(J) ≤ rank(J + dJ) Proof. Let p, resp. q, be rank(J), resp. rank(J + dJ). Let σ 1 ≥ σ 2 ≥ • • • ≥ σ p > 0, resp. σ1 ≥ σ2 ≥ • • • ≥ σq > 0,
be the non-zero singular values of J, resp. J + dJ. I apply Theorem 2.2 with B = J and B = J + dJ.

|||dJ||| F < σ p ⇒ |||diag(σ i -σ i)||| F < σ p ⇒ ∀i ≤ p, σi > σ i -σ p ⇒ ∀i ≤ p, σi > 0 ⇒ p ≤ q
Note that the ball has to be open. At this point, I have an interval for the Jacobian in which the rank does not decrease. I use the Lipschitz constant K to have an interval in the configuration space. ∀(q, q) ∈ CS 2 , |||J(q) -J(q)||| F ≤ K||q -q|| 2 Let q ∈ CS and σ be the smallest non-zero singular value of J(q). Then,

q ∈ B q, σ K ⇒ |||J(q) -J(q)||| F ≤ K||q -q|| 2 < σ p ⇒ rank(J(q)) ≥ rank(J(q))
If q is a regular point, rank(J(q)) has rank r = max q (rank (J(q))). Thus J(q) has a constant rank r on B q, σ K . By Theorem 2.1, J(q) † is continuous. P α is the composition of continuous functions so it is continuous on B q, σ K . This proves Lemma 2.1.

Two path projection algorithms

This section presents two path projection algorithms with continuity certificate. From an initial constrained path SM(q 0 , q e , f), the algorithms generate a set of interpolation points (IPs) (q 0 , • • • , q n) where f (q i) = 0 and n is decided by the algorithm. The sequence is such that the continuity interval of consecutive IPs overlay so the NR iteration function is continuous on the straight line joining consecutive IPs. The resulting path is the concatenation of SM(q i , q i+1 , f), ∀i ∈ [0, n[. When the algorithms succeed, q n = q e . When they fail to project a path, they return the longest part along the path, starting at q 0 , that has been validated.

To benefit from the continuity interval of P α , a Lipschitz constant must be computed for the Jacobian of the constraint. Appendix A proposes a method to bound from above the norm of the Hessian for constraints involving joint placements. This upper bound is a Lipschitz constant of the Jacobian. This method also extends to constraint involving the Center of Mass (CoM) of the robot as the CoM is a weighed sum of joint positions.

The maximum number of IPs on unit length paths N max is set to 20 and the minimum interpolation distance λ m is set to 0.001. These parameters ensure the algorithms terminate. When a limit is reached, the algorithms return the left part of a path that has been successfully projected, as stated above. Progressive projection is presented in Alg 2.1 and depicted in Figure 2.4. The sequence of IPs is generated recursively, starting from q 0 . Each IP is computed from the previous IP and the final configuration q e . From q 0 , it builds a configuration satisfying the constraint, within the continuity interval of q 0 . The configuration is chosen towards q e (Line 7). When q e is within Algorithm 2.1 Progressive continuous projection 1: function project(q 0 , q e , depth) ⊲ Continuously project the direct path (q 0 , q e) onto the submanifold f (q) = 0 2:

if K × ||q 0 -q e || 2 < σ r (q 0) then return (q 0 , q e) 3:

if depth > N max × ||q 0 -q e || 2 then return (q 0) 4: λ ← σ r (q 0)/K 5: repeat 6:
if λ < λ m then return (q 0) 7:

q ← SM(q 0 , q e , f)(

λ ||q 0 -qe|| 2) 8: λ ← λ 2 9:
until K||q -q 0 || 2 < σ r (q 0) 10:

return {q 0 } ∪ project(q, q e , depth + 1) the continuity interval of q 0 (Line 2), the algorithm succeeds.

From 2.4(a) to 2.4(b), the path is cut in two at parameter λ from the start configuration. λ is gradually reduced so that the projected configuration is within the continuity ball of q 0 (Lines 4-9). When λ < λ m (Line 6), the projection locally increases the distances more than σ r (q k)/(λ m K). The path is considered discontinuous and the algorithm fails. If q is found in B q 0 , σ(q 0) K , the left part satisfies the condition of Lemma 2.1. The right part is then projected using the same procedure.

Global projection method is presented in Alg 2.2 and depicted in Figure 2.5. The algorithm starts by computing IPs along the straight path such that the continuity interval of consecutive IPs overlay. However, they do not satisfy the constraints. The constraint violation of each IPs is then iteratively decreased while keeping overlaying continuity intervals.

The algorithm works in two steps. First, the IPs are improved in order to decrease the constraint violation, by applying the NR iteration function (Line 8). Second, it checks whether the distance between each pair of consecutive IPs (q k , q k+1) is within the union of the two continuity balls (Line 14). If this check fails, a new IP q is added at the border of the continuity ball of q k . Next iteration will consider the two consecutive points (q, q k+1).

For clarity of the pseudo-code, a limit on the number of iterations of constraint violation reduction loops has been omitted (Line 6). Such a limit avoids infinite loops due to local minima. This limit is set to 40 in my implementation and the counter is reset whenever an IP is added.

Continuous planning algorithm

The above algorithms can be integrated into motion planning to achieve continuous constrained motion planning. I propose here an algorithm based on Constrained-Rapidly exploring Random Tree (RRT) [START_REF] Dalibard | Dynamic walking and whole-body motion planning for humanoid robots: an integrated approach[END_REF] but similar changes could be made to other algorithms. The projection algorithm are then tested on various problems.

Continuous Constrained-RRT

Algorithm 2.3 provides function constrainedExtend. This function builds a straight interpolation p 1 between q near and a configuration q proj , which satisfies constraint. Continuous path projection is applied to p 1 and generates a path p 2 satisfying p 2 (0) = q near . In case of failure, the left part that has successfully been projected is returned. In case of success, we have p 2 (1) = q proj . Then p 2 is tested for collision. Again, in case of failure, a left collision-free part of the path is returned. p 3 is then a continuous collision-free path satisfying the constraint. Many variants Algorithm 2.2 Global continuous projection 1: function project(q 0 , q e , f) ⊲ Continuously project the direct path (q 0 , q e) onto the submanifold f (q) = 0

2: Q ← (q 0 , q e) 3:
repeat ← T rue 4:

while repeat do 5:

repeat ← F alse

6:
for all q k ∈ Q do

7: if ||f (q k)|| 2 > ε then 8: q k ← P α (q k) 9:
repeat ← T rue 10:

for all Consecutive q k , q k+1 ∈ Q do

11: if σ r (q k) < Kλ m then 12: Q ← (q 0 , • • • , q k) and break 13: d ← σ r (q k) + σ r (q k+1) 14: if d < K × ||q k -q k+1 || 2 then 15:
q ← interpolate(q k , q k+1 , σr(q k) K)

16:

Q ← (q 0 , • • • , q k , q, q k+1 , • • •) 17: repeat ← T rue 18: if Length(Q) > N max × ||q 0 -q e || 2 then 19: Q.RemoveLastElement 20:
return Q of the RRT could be used here, such as using fixed progression step or using only a ratio of the valid path. This function replaces function Extend, Line 7 of Algorithm 1.1.

Simulations

I compared both continuous path projection algorithms and the Recursive Hermite Projection (RHP) [START_REF] Hauser | Fast interpolation and time-optimization on implicit contact submanifolds[END_REF] to each other in two settings, each described in the two following paragraphs. The benchmarks are run using the Humanoid Path Planner (HPP) software framework, in which the 3 algorithms have been implemented.

Quadratic problems I first compare the Progressive and Global path projection algorithms and the RHP for various parameters in the following problems.

• Circle: the configuration space is [-1, 1] 2 , subject to constraint f (x, y) = x 2 + y 2 -1 = 0. A Lipschitz constant of f is M = 2 √
2 and a Lipschitz constant of its Jacobian is K = 2 √ 2. I project line segments between (1, 0) and (cos θ, sin θ) for θ ∈ [π/2, π]. None of the algorithms were able to find a continuous path for the singular case θ = π. The Global projection method did not need any IPs to return an answer.

Algorithm 2.3 Continuous Constrained RRT extension

1: function constrainedExtend(q near ,q proj ,T ,constraint)

2: p 1 ← interpolate(q near , q proj) 3: pathProj ← projector(constraint) 4:
p 2 ← pathProj.apply(p 1) 5:

p 3 ← testCollision(p 2) 6:
q new ← finalConfiguration(p 3) 7:

T .insertConfAndPath(q new , p 3)

• Parabola: the configuration space is [-1, 1] × [0, 2], subject to constraint f (x, y) = y 2 -1 = 0.
This constraint has two disjoint sets of solution: y = -1 and y = 1. Figure 2.3 illustrates this case. A Lipschitz constant of f is M = 2 and a Lipschitz constant of its Jacobian is K = 2. I project line segments between (0, 1) and (τ, -1) for τ ∈ [0, 2]. No continuous path can both connect any pair of these points and satisfy the constraints at all time. All the algorithms were able to detect the discontinuity.

Results are presented in Table 2.1. Be aware that the units for the RHP are not the same as for the two other algorithms. The global projection method outperforms the progressive method on these quadratic problems. UR5 Consider a welding problem with UR5 robot. The end-effector of the robot must move along a line with a fixed orientation, as shown in Figure 2.1. I compare the behaviour of each algorithm on motions that switch between two inverse kinematic solutions while satisfying the problem constraint.

Using Appendix A, a Lipschitz constant of the constraint is M = 6 and a Lipschitz constant of its Jacobian is K = 7.14. Table 2.2 and Figure 2.6 summarize the results obtained for various line segment. Note that, without motion planning, the three algorithms are able to project paths between two different inverse kinematic solutions. For instance, from Figure 2.6(c) to Figure 2.6(d), the robot must find a configuration in which its arm and forearm are aligned, while still being on the line. An inverse kinematic solver would have to detect this and handle it as a specific case by finding the intermediate configuration with aligned arm and forearm.

When the projection method returns a false negative, the longest validated part of the input path is returned. In the context of randomized motion planning, the high rate of false negatives of global projection method does not block the search. The expected effect is an increase of the size of final roadmap. Integration in a manipulation planner The Continuous Constrained RRT has been tested to plan a manipulation path where the HRP2 robot opens a door. As proposed by [START_REF] Dalibard | Dynamic walking and whole-body motion planning for humanoid robots: an integrated approach[END_REF], the planning is split in two phases. A quasistatic full-body motion for the sliding robot is first computed. Additionally to the manipulation rules, quasi-static constraints are taken into account. Then, the motion is post-processed to obtain a dynamically-feasible walking trajectory.

Figure 2.7 shows the result of the first phase. No optimization were run. The motion without continuous path projection contains several discontinuities. This demonstrates both the necessity to check for continuity and that these algorithms perform as expected.

Discussion

The two continuous path projection algorithms have the following guarantees. They provide a path with IPs satisfying the constraints. Moreover, they ensure that the NR iteration function is continuous along the lines connecting consecutive IPs. The piecewise straight interpolation is closer to constraint satisfaction than the input path and one iteration of NR is continuous. This leads to good chances to have the resulting path continuous. In practice, no discontinuity have been encountered.

Compared to the presented method, the RHP gives continuity, at the cost of being first, computationally less efficient, second, unable to return the continuously projected part of the path and third requires to introduce velocities. The efficiency of the presented method, compared to RHP, comes from the expected distances between IPs. Indeed, RHP generates a lot more IPs than the two proposed algo-rithms. The reason is the following. The distance between IPs is less than ε/K f where ε is the constraint satisfaction tolerance and K f is a Lipschitz constant of the constraint. In the presented case, this distance is around σ/K J , where σ is the smallest singular value of the Jacobian and K J is a Lipschitz constant of the Jacobian of the constraint. In part of the configuration space far from singularities, σ is orders of magnitude bigger than ε, set to 10 -4 in the experiments. The comparison with RHP in previous section emphasizes this theoretical approach.

Static stability

Motion planning for humanoid robots is challenging for two reasons. First CS is a high dimensional space. Second equilibrium must be taken into account. As I am only considering geometrical problems, without taking time into account. It is thus a static stability criterion.

Ignoring time is of course a questionable choice. Many problems require dynamical motions and cannot be solved while keeping static stability at all time. For instance, static stability cannot plan jumps. However, taking dynamics into account in a full-body motion planner is still an open problem.

In this section, I propose a formulation of a subclass of static stability problem as a differentiable constraint.

Static stability constraint

Consider a robot in contact with the environment. I make the simplifying assumption of punctual contacts. For a humanoid robot, the foot can be modelled as four contact points. I do not consider friction, although the method I present could easily be extended to consider them. Non-coplanar friction-less multi-contact criterion. The circle represents the robot joints. The dashed arrows represent forces applied to the robot. P i is a contact point and f i n i is the force applied in P i .

Let (C i) i∈ 1,n be n contacts. G denotes the center of gravity of the robot and m its mass. Each contact C i is defined by a point P i and a normal n i . It defines an effort f i n i in P i . P i and n i are defined respectively to a robot joint frame. f = (f 1 , . . . , f n) denotes the vector of forces. Figure 2.8 summarizes the notations. The laws of classical mechanics give the following frictionless static stability criterion:

∃f ∈ [0, +∞[n , φf + mG = 0 R 6 (2.3)
where G = (0, 0, -9.81, 0, 0, 0) T ∈ R 6 is the gravity vector extended with 3 zeros and

φ = . . . n i P i G × n i . . . ∈ R 6×n (2.4)
It is easy to see that φ is a continuously differentiable function of the robot configuration.

Problem formulation I now formulate the problem of finding f in (2.3) as a quadratic problem. Let H ∈ R n×n and g ∈ R n be H = φ T φ and g = mφ T G. Thus,

1 2 ||φf + mG|| 2 2 = 1 2 f T Hf + f T g + 1 2 m 2 G T G (2.5)
Then, the frictionless static stability criterion (2.3) can be written as the following optimisation problem.

min 1 2 f T Hf + f T g s.t. f ≥ 0 (2.6)
Let C(f) = 1 2 f T Hf + f T g be the cost, f * be the optimal solution to the above problem, y ∈ [0, +∞[n be the dual variable and y * be the dual variable at optimum. C(f *), which depends on q, is the output of the static stability criterion.

At the optimum, the Karush-Kuhn-Tucker conditions gives

Hf * + g -y * = 0 (2.7) y * T f * = 0 (2.8)
Derivative of the optimal cost I denote partial derivatives of a function a with respect to the robot configuration by ∂a ∂q . When a is a matrix valued function, ∂a ∂q is a tensor.

The derivative of the cost function is

∂C(f) ∂q = 1 2 f T ∂H ∂q f + f T ∂g ∂q + ∂f ∂q T (Hf + g)
At the optimum, using (2.7), it becomes

∂C(f *) ∂q = 1 2 f * T ∂H ∂q f * + f * T ∂g ∂q + ∂f ∂q * T y *
In case the strict complementary slackness (2.8) holds, either of the following is true:

• y * i = 0 and f * i > 0, so ∂f * i ∂q y * i = 0,
• y * i > 0 and f * i = 0, so1 ∂f * i ∂q = 0. Finally the derivative of the optimal cost when strict complementary slackness holds is:

∂C(f *) ∂q = 1 2 f * T ∂H ∂q f * + f * T ∂g ∂q (2.9)
The tensor ∂H ∂q and the matrix ∂g ∂q only depends on forward kinematics so they are easy to compute. It is thus possible to define a piecewise differentiable function as follows. Given a set of contacts, the static stability function returns a one dimensional vector whose value is the optimal cost C(f *). The derivative in Equation (2.9) holds when strict complementarity holds. I make the simplifying assumption that strict complementarity always holds.

Integration to a motion planner

Constraint solver

The above function has two drawbacks. First, compared to geometrical functions, it is time-consuming because one has to solve a quadratic program and compute the derivative of matrix φ. Second, the function is built with a set of contacts. Evaluation of the function for robot configurations not satisfying these contacts does not make sense. The function is only defined on the sub-manifold of CS where the contacts are satisfied.

Fortunately, there is no compromise between the two. It is possible to evaluate the constraint only where defined and to reduce the number of optimization problem solved at the same time. The solution is to use a hierarchical method similar to the Stack Of Tasks [START_REF] Mansard | Task sequencing for high-level sensorbased control[END_REF]. This method uses several layers of constraints (called tasks). The constraints are solved using a layered NR method. Each layer refines the descent step in the null space of the previous layers. It stops whenever the null space has dimension zero.

The method I propose uses the same algorithm at one exception. Instead of only stopping when the null space has dimension zero, the algorithm also stops if the constraint of the current layer is not satisfied. So a layer is reached only if the constraints of all the previous layers are satisfied.

The hierarchy of constraint I propose contains two layers although more could be added. The highest priority layer contains kinematic constraints of the contacts.

The lowest priority layer contains the static stability constraint. So the static stability constraint is only evaluated for configurations in contact.

Figure 2.9 shows a motion that was generated using this criterion and the manipulation planner detailed in next chapter. The example set-up is detailed in Section 5.3.1. The quadratic program in Equation (2.6) is solved using the qpOASES library [START_REF] Hans | qpOASES: A parametric active-set algorithm for quadratic programming[END_REF]. Table 2.3 shows benchmarks between two other criteria and this one. It seems prioritizing the constraint slightly decreases the performances. The method is about three times slower and has a lower success ratio. The deterioration of the success ratio might be due to the assumption that strict complementary slackness always holds. However, the method is able to move the position of the feet on the stairs to achieve equilibrium.

Comparison with existing methods

This method has mainly two advantages. First, it does not reduce the space of statically stable configurations to a sub-space of it, as [START_REF] Dalibard | Dynamic walking and whole-body motion planning for humanoid robots: an integrated approach[END_REF]. This method can be used for as many contact as desired and for non coplanar contacts. Second, while most methods require fully specified contacts, they can be specified only partially with this method. As with grasps and placements, a contact has a validation constraint and a parametrization function. For instance, one can specify that one foot should be on one step, the other on another and the hand on the handrail. The position on each step and on the handrail can be let free. The constraint solver moves the feet and arm while keeping them in contact with the environment. It uses those DoFs to generate statically stable configurations. However, this approach has drawbacks. First, the derivative is only fully known where the complementary slackness is strict. Second, ignoring both friction and dynamics is very limiting. A wide range of motions uses at least one of them. The approach could integrate friction, at the cost of a larger2 optimization problem to be solved. Third, evaluating the constraint and its derivative is extremely costly compared to other geometrical constraints. As a constrained motion planner evaluates both very often, motion planning becomes slow. This justifies why most methods use simpler stability criteria. The efficiency of this method could be improved using a different formulation of the optimization problem. Prete et al. [2016] proposes a lot more efficient stability criterion which uses optimization. However, they do not provide a derivative of the criterion. [START_REF] Brossette | Humanoid posture generation on non-euclidean manifolds[END_REF] formulates the problems as a Sequential Quadratic Program and proposes a solution which takes friction into account. This chapter describes a theoretical framework to model admissible motions of robots and objects. From the manipulation rules, this model provides the structure of CS. This structure is represented as a graph. It expresses admissible motions and proposes a generic way of dealing with the foliations they induce. The first section formally introduces the graph and the Manipulation-RRT (M-RRT) algorithm. The vertices of the graph represent a combination of facts, like Robot gripper holds object or Object is on the table. The edges represent transitions, like Grasp object or Put down object. Thanks to this graph, the M-RRT solves manipulation problems. It uses the graph to generate admissible motions. A tree of configurations is grown by choosing randomly edges in the graph at each iteration.

The second section describes the crossed foliation transitions. The necessity of this type of transition arises from the crossed foliation issue. It is encountered in cases of continuous grasps and continuous placements. In those cases, randomly choosing new grasps and new placements has a probability zero to solve a manipulation problem.

The third section addresses the topology induced by the manipulation rules. I emphasize a limitation of the reduction property. I extend the property to articulated object, under-actuated end-effector and to the case of simultaneous grasps.

The last section describes the way-point transitions. This type of transition tackles the issue raised by narrow passages of CS. These passages are known to drastically increase resolution time. Manipulation planning is intrinsically subject to narrow passages as objects must be close to either supporting objects or grippers.

Constraint Graph

States and transitions

I represent manipulation rules in the form of a graph called Graph of Constraint. The vertices of the graph are called states and the edges transitions. A state defines a subset of CS, defined by a constraint1 .

Definition 3.1 (State). A state S contains a validation constraint S.constraint and a set of outgoing transitions S.transitions.

A robot configuration q is in S, denoted q ∈ S, if and only if q satisfies S.constraint.

A transition defines the set of admissible motions from a state.

Definition 3.2 (Transition). A transition T contains a parametrization function T.f , an origin state T.origState, a destination state T.dstState and a state T.state.

In the definition above, a transition T has three states. T.origState and T.dstState correspond to the states which are connected by the transition. The last state, T.state, corresponds to the state in which admissible paths lie. This state can be any state although, most of the time, it is T.origState or T.dstState.

The parametrization function T.f is used to build parametrization constraints. Consider the foliation of the set T.state. This foliation is parametrized by T.f . Given a configuration q 0 , the parametrization constraint T.f (q) = b with b = T.f (q 0) is satisfied for configurations on the same leaf as q 0 .

Definition 3.3 (Admissible motion). A path p ∈ C ([0, 1] , CS) is admissible for transition T , or T -admissible, if and only if the following conditions are all satisfied:

p(0) ∈ T.origState,

-∀t ∈ [0, 1], p(t) ∈ T.state, -∀t ∈ [0, 1], T.f (p(t)) = T.f (p(0)).
A path is admissible if there exists a transition such that it is admissible for this transition.

It is important to understand that the set of admissible motions from T.origState is larger than the set of admissible motions from T.origState to T.dstState. Another important point is that when T.origState ∩ T.state is empty, T admits no admissible paths and when T.dstState∩T.state is empty, T admits no admissible paths reaching the destination. Admissible motions do not take collisions into account. By design, I want the restriction of a path p to an interval of the form [0, t] ⊂ [0, 1] to still be admissible. This restriction happens in most motion planning algorithms, when a collision is detected at a time T ∈]t, 1[. Formally, the following property is satisfied2 : Definition 3.4 (Admissibility inheritance property).

∀p ∈ C ([0, 1] , CS) , p is admissible ⇒ ∀t ∈ [0, 1], p| [0,t] is admissible
From the notion of admissible motions, I define the reachability set as the set of reachable configurations from configuration q 0 with transition T . To be reachable, a configuration must be on the same leaf as q 0 of the foliation of T.state induced by T.f . In other words, it must satisfy the parametrization constraint T.f (q) = T.f (q 0). Again, collisions are not taken into account. The reachability set is:

R(q, T) = {q′ ∈ T.state | T.f (q′) = T.f (q)} (3.1)

Example of Graph of Constraint

Let us consider the problem of manipulation defined by a cylindrical vertical object like a bottle, a table and a simple 6 degrees of freedom (DoFs) manipulator arm with a gripper. The configuration space of the system is CS ≡ [-π, π] 6 × SE(3). Figure 3.2 shows this set-up. Figure 3.1 shows the Graph of Constraint of this simple example. This graph has two states

• placement: the subspace of configurations of the system where the object is standing on the table.

• grasp: the subspace of configurations where the object is grasped by the robot. Placement constraints Let (x p , y p , z p , θ p , φ p , ψ p) ∈ R 6 be the position and orientation of the object. A configuration q can be written as q = (q 0 , . . . , q 5 , x p , y p , z p , θ p , φ p , ψ p). The object is standing on the table when its height, roll and pitch are equal3 to 0. The validation constraint of placement is defined by P(q) = P(q 0 , . . . , q 5 , x p , y p , z p , θ p , φ p , ψ p) = [x p , φ p , ψ p] = 0. Along transit paths, the position of the object on the table remains constant. This constraint defines a foliation of placement. Leaves of the foliation are parameterized by the 3 remaining DoFs of the object on placement: horizontal translation and yaw angle of the object. The parametrization function of placements is defined by P(q) = P(q 0 , . . . , q 5 , x p , y p , z p , θ p , φ p , ψ p) = [y p , z p , θ p].

Grasp constraints

In the discrete case, where grasp is defined by a fixed relative transformation of the gripper with respect to the object, grasp is not foliated (or composed of only one leaf). The validation constraint is a fixed relative transformation of the gripper with respect to the object. There is no parametrization function.

The case of continuous grasps is a more interesting. The validation constraint sets the value of the 3 translations and 2 of the 3 rotations of the relative transformation of the gripper with respect to the cylindrical object. The parametrization function returns the relative angle around the cylinder axis, θ g on Figure 3.2, left free by the validation constraint.

Graph of Constraint

State grasp contains the grasp validation constraint and placement contains the placement validation constraint. Transitions transit and grasp object contain the placement parametrization function. Their state is placement because admissible motions for these transition must lie in placement.

Transitions transfer and release object contain no function in the fixed grasp case and the grasp parametrization function in the continuous grasp case. Their state is grasp because admissible motions for these transitions must lie in grasp.

Figure 3.3 shows the configuration space for a pick-and-place problem. The two foliations of CG and CP are crossing. Moving in CS requires to find motions in A f i and B g i alternatively.

Figure 3.3: Example of manipulation path and reachability sets with two foliations. Each A f i is a leaf of CP. Each B g i is a leaf of CG. f i and g i are continuous and only some values are shown. Solid lines are transit paths, along the A f i and dashed lines are transfer paths, along the B g i .

State of a configuration

It is very often useful to obtain a state from a configuration q ∈ CS. This is however ill-defined for the two following reasons.

q may satisfy the constraint of several states. For instance, a configuration in the intersection of grasp and placement satisfies both constraint of placement and grasp. I chose to overcome the issue by prioritizing the states. If q satisfies the constraint of two states, it belongs to the state of highest priority. If a state is included in another state, the former must have a higher priority than the latter. When there is no inclusion relation, the order is ill-defined and the algorithm relies on user input. For placement and grasp, it is usually better to consider placement with lower priority than grasp. Articulated object, like a door, is always in a valid placement so CP = CS and CG ⊂ CP and CG must have higher priority. q may also violate the constraint of all states. Then, q does not belongs to any states. Except before projecting random configurations, this does not happen. This is one of the motivation for the state attribute of transition. Configurations along a motion generated using the graph lie in state.

Relation with task planning notions

In task planning, the manipulation rules are encoded in the action preconditions and effects. The notion of action does not exist in this formalism. States encode preconditions and effects. Transitions encode admissible motions.

Problem statement

A manipulation planning problem can be defined as follows.

Definition 3.5 (Manipulation planning problem). Given a set of robots, objects, static obstacles and a Graph of Constraint, an initial configuration for all robots and objects and a set of goal configurations, then a manipulation planning problem

is to find a path, for all robots and all objects, from the initial to a final position in the set of goal configurations. The path must be collision-free and must satisfy the manipulation rules.

In the above definition, the goal specification is the most abstract. A set of configuration can be specified by a validation constraint. Though this work could be extended in order to handle a set of goal configurations, I only focus on a discrete countable set of goal configurations. This restriction affects only the proposed algorithm, which would have to be slightly modified. In the literature, this problem is known as Rearrangement planning. All that follows focuses on the following problem: Definition 3.6 (Rearrangement planning problem). Given a set of robots, objects, static obstacles and a Graph of Constraint, an initial and one or several goal configuration(s) for all robots and objects then a manipulation planning problem is to find a path, for all robots and all objects, from the initial to a final position in the set of goal configurations. The path must be collision-free and must satisfy the manipulation rules.

Manipulation RRT

In this section, I explain how to use the Graph of Constraint to plan manipulation paths. The RRT-like planning algorithm developed to solve manipulation problems is called the Manipulation-RRT algorithm.

For each state of the Graph of Constraint, I define a probability distribution over all transitions starting from this state. By default the uniform distribution is a reasonable option.

Algorithm 3.1 Manipulation-RRT

⊲ Rapidly exploring Random Tree (RRT) from q I to one goal q G i using the constraint graph

1: function findPath(q I , q G 1 , . . . , q G n) 2:
T .insert(q I , q G 1 , . . . , q G n)

3:

for i = 1 → K do 4: Q ← EmptySet 5:
q rand ← Random(CS)

6:
for all connected component cc of T do 7:

q near ← Nearest(q rand ,cc)

T ← chooseTransition(q near) 9:

q new , path ← constrainedExtend(q near ,q rand ,T) 10:

if last step succeeded then 11:

Q.append(q new) 12:

T .insert(q new , path)

13:

for all (q 1 , q 2) ∈ Q 2 | q 1 = q 2 do 14:

Connect(q 1 , q 2) 15:

for all q G ∈ q G 1 , . . . , q G n do 16:

if SameConnectedComponent(q I , q G) then return path found Algorithm 3.1 shows a pseudo code for the M-RRT algorithm. Figure 3.4 pictures some of the steps, with the example of Figure 3.3. The algorithm consists in exploring the transitions of the Graph of Constraint as follows.

• Figure 3.4(a), Line 5: shoot a random configuration q rand .

• Figure 3.4(b), Line 7: in each connected component of the current roadmap, find the closest node q near .

• Line 8: choose an outgoing transition of the state of node q near in the Graph of Constraint. In all the simulations of this work, this choice is random and follows the uniform probability distribution over all outgoing transitions of each state.

• Figure 3.4(d), Line 9: extend q near along the transition up to q new , further detailed in Algorithm 3.2.

• Line 14: try to connect the new nodes together, using Algorithm 3.3.

• Figure 3.4(f), Line 16: the algorithm succeeds when q I and one q G i are in the same connected component. shows the steps of one iteration of the algorithm. q rand is a random configuration. q near is its nearest neighbour. q proj is the projection of q rand onto the reachability set. q new is the configuration obtained after extension. (f) shows the roadmap when a solution was found, after more iterations.

Constrained extension Algorithm 3.2 describes the constrained extension step above (Line 9 of Algorithm 3.1). It extends the functionalities of Algorithm 2.3. C t denotes the parametrization constraint that defines R(q near , T), the reachability set from q near with transition T (Line 3). C s denotes the concatenation of the validation constraint of target state T.dstState and transition state T.state (Line 2). q proj is obtained by projecting q rand onto C t ∩ C s . This corresponds to Line 5 and Figure 3.4(c). One of the path projection method of Section 2.2 is used to Algorithm 3.2 Continuous constrained RRT extension using the Constraint Graph 1: function constrainedExtend(q near ,q rand ,T)

2:

C s ← T.dstState.constraint ∩ T.state.constraint 3:

C t ← ParametrizationConstraint(f = T.f , b = T.f (q near)) 4: proj ← projector(C s , C t) 5:
q proj ← proj.apply(q rand) 6:

p 1 ← interpolate(q near , q proj)

q new ← finalConfiguration(p 3) 11:
return q new , p 3 project the path onto the transition constraint (Line 8). Then, a collision checking procedure validates the path and the algorithm returns.

In case of collision or projection failure, p 3 is the left part of the path that is successfully projected and collision-free. In this case, configuration q new is likely not to be in T.dstState. Thanks to the admissibility inheritance property 3.4, p 3 is still an admissible path.

Algorithm 3.3 Connect two configurations with the Graph of Constraint

1: function Connect(q 1 , q 2) 2:

S 1 ←State(q 1) 3:

S 2 ←State(q 2) 4: T ←Transition(S 1 , S 2) 5:
if T is None then return failure 6: if T.f (q 2) = T.f (q 1) then return failure 7:

C t ← ParametrizationConstraint(f = T.f , b = T.f (q 1)) 8: proj ← projector(C t) 9:
p 1 ← interpolate(q near , q proj) 10:

p 2 ← projectPath(p 1 , proj) 11: p 3 ← testCollision(p 2) 12:
if no collision and projection success then return p 3 13: else return failure Termination condition Algorithm 3.3 tries to connects the new nodes of the roadmap created by Algorithm 3.2 to other connected components of the roadmap, as in any classical implementation of RRTConnect algorithm. First the function looks for a transition between the configurations. If a transition exists, the function checks that q 1 and q 2 are on the same leaf of the transition foliation. If not, the function returns failure.

In Figure 3.4(f), the leaf B g 1 and B g 2 were selected randomly at Line 5 of Algorithm 3.2. This leads to the crossed foliation issue, explained in the following section.

Crossed foliation issue

This section introduces the crossed foliation issue first by an example, then by a formal approach. Finally, I explain the solution I used to handle it.

Example

Consider the example given in Section 3.1.3: a cylindrical vertical object, a table and a simple 6 DoFs manipulator arm. Consider continuous placements of the object on the table. In the fixed grasp case, grasp is not foliated (or composed of only one leaf). Extending a RRT-tree from the initial configuration and from the goal configuration will solve the problem of moving the object at another configuration. The trees will connect in grasp space. In the general case, objects can be grasped in a continuous way. In the above example, the relative orientation of the object with respect to the gripper is free around the vertical axis of the object. In this case, grasp is also foliated. The foliation is parametrized by the relative angle of the object with respect to the gripper along the object axis. In this case, RRT-trees rooted in placement will never meet, since the probability that both trees start exploring grasp with the same grasp is equal to zero. I call this issue the crossed foliation issue. [START_REF] Lertkultanon | A single-query manipulation planner[END_REF] overcome the issue by using the reduction property. However, the issue also arises manipulating two objects with discrete grasps and continuous placement. In the case, the reduction property does not apply.

Conditions

The crossed foliation issue, pictured in the above section, arises when two transitions connecting two nodes back and forth are both foliated. It happens at Line 6 of Algorithm 3.3, if states S 1 and S 2 are foliated. As explained in Figure 3.6, it will always return failure and will never succeed in connecting configurations from different trees. The main result of this section, Corollary 3.1, gives the conditions raising the issue.

To formalize the issue, I first define the leaf parameter set and one useful property for projectors.

Definition 3.7 (Leaf parameter set). For a transition T and a graph T , the set of leaf parameters, of foliation induced by T , reached by T is defined by

L(T, T) = {T.f (q)|q ∈ T ∩ T.state}
For instance, Figure 3.4 shows two foliations parametrized by function f for the A f i and g for the B g i . On Figure 3.4(a), the two leaf parameter sets are L(T f , T) = {f 1 , f 3 } and L(T g , T) = ∅, while on Figure 3.4(f), they are

L(T f , T) = {f 1 , f 2 , f 3 } and L(T g , T) = {g 1 , g 2 }.
Property 3.1 (Unbiased projector). Let M be a sub-manifold of CS of positive dimension and C be a constraint satisfied only on M , i.e. M = {q ∈ CS | q satisfies C}. Finally, let proj be a projector onto constraint C.

Then, proj is an unbiased projector if the pre-image of any subset of M of measure zero by proj is a subset of CS of a measure zero. Property 3.1 can be interpreted as follows. An unbiased projector does not prefer any subset of the output manifold M of measure zero. Let q R be a uniformly distributed random configuration of CS and q R proj be its projection. Indeed, q R proj has a probability zero of reaching any subset of M of measure zero:

∀S ⊂ M | |S| = 0, p(q R proj ∈ S) = 0
Note that an unbiased projector may -and will in the general case -prefer some subset of M of strictly positive measure. Two subsets of M of same non-zero measure have not, in general, the same probability of being reached by q R proj . In the context of constrained motion planning, this is a desirable property. It is a necessary -but not sufficient -condition to have a uniform distribution for variable q proj in M from a uniform distribution for variable q rand in CS. In this framework, most constraints are infinitely differentiable. As projection uses a Newton-Raphson (NR) method, it is reasonable that the property is true4 . The preimage of a configuration is the set of configurations obtained by following forward and backward the gradient of the constraint. The property can be violated by the placement constraint that I introduce later. This constraint is only piecewise infinitely differentiable. Figure 3.7 gives an example of biased projector because of a placement constraint.

The following theorem formalizes this issue.

Theorem 3.1 (Probability to generate reachable configuration). Let S 1 and S 2 be two states. For 1 ≤ i, j ≤ 2, i = j, T i,j be transitions from S i to S j such that T i,j induces a foliation of T i,j .state = S i parametrized by T i,j .f . Let (q 1 , q 2) ∈ S 1 2 . For k ∈ N , let T 1 k and T 2 k be two sequences of trees such that T i 0 = {q i } and T i k+1 is the tree obtained from T i k after one iteration of Algorithm 3.1, using only transition T 1,2 . Let q i k+1 be the configuration added to

T i k to obtain T i k+1 . Finally, let E k and F k be the events "L(T 2,2 , T 1 k) ∩ L(T 2,2 , T 2 k) = ∅" and "q 1 k / ∈ L(T 2,2 , T 2 k) and q 2 k / ∈ L(T 2,2 , T 1 k)" respectively. Then, the probability of E k , k ≥ 1 is: p(E k) = p(E 0) k-1 i=0 p(F i+1 | E i)
Before providing, I explain what are each term in the above theorem. The two trees T i k are the tree normally grown by the M-RRT. Event E k means that, at the begining of iteration k + 1, no configuration from T 1 k are reachable from Figure 3.7: This simple example shows a biased projector. The space represents the position of an object in a two dimensional plane. The square at the center represents the set of stable placement (like a table). Assume the projection returns the stable placement closest to the input, as shown by the two arrows. An object in the hatched regions is unstable and its projection would be at the closest corner of the table. Thus, one corner has a non-zero probability of being sampled after projection. If the table had round corners, the projector would be unbiased.

a configuration in T 2 k and vice-versa. Event F k+1 means that configuration q 1 k+1 generated by the k + 1-th iteration is not reachable from configurations in T 2 k+1 and vice versa.

Assume Figure 3.4 shows the k + 1-th iteration. Then, Figure 3.4(a) shows the roadmap obtained at the begining of interation k + 1, T i k . Event E k happens since the two trees T i k are on different B g i . q 1 k+1 , the configuration q new on Figure 3.4(d), is not on a B g i reached by T 2 k+1 . Assuming the same assertion is true for q 2 k , not on this Figure, then event F k happens. In other words, the two trees could not be connected before iteration k + 1 (event E k) and iteration k + 1 did not change it (event F k+1).

Thus the probability of E k is the probability that T 1,2 generates configuration that are reachable from each other using transition T 2,2 . When p(F k+1 | E k) < 1, then lim k→∞ p(E k) = 0, which is desirable otherwise the problem cannot be solved. I now prove the above theorem.

Proof. After iteration k, event E k+1 happens if L(T 2,2 , T 1 k+1)∩L(T 2,2 , T 2 k+1) = ∅. As T i k ⊂ T i k+1 , event E k+1 implies L(T 2,2 , T 1 k) ∩ L(T 2,2 , T 2 k) = ∅, q 1 k+1 / ∈ L(T 2,2 , T 2 k+1) and q 2 k+1 / ∈ L(T 2,2 , T 1 k+1), i.e
. events E k and F k+1 . So event E k+1 happens only if E k happened and F k+1 happens knowing E k happened. Thus, we get the following recursive rule.

p

(E k+1) = p(E k) × p(F k+1 | E k) So P (E k) = P (E 0) k-1 i=0 p(F i+1 | E i) (a) q 1
k and q 2 k are not reachable. (b) q 1 k and q 2 k are reachable.

Figure 3.8: Reachability of configurations generated by Manipulation-RRT at iteration k. The two gray sets are states S 1 and S 2 . The coloured lines are leaves of the foliation of each state. q i k is the projection of q rand onto the intersection of S 1 ∩ S 2 with the red line passing by q near i . (a) shows the general case where q 1 k and q 2 k are not in the same foliation of S 2 , i.e. on the same green line. (b) shows a particular case where the projection is made orthogonally to the green lines.

I now analyse the value of p(F k | E k-1). Figure 3.8 shows how q 1 k and q 2 k are generated by M-RRT. Let q rand ∈ CS be a random configuration and q near i its nearest neighbour in

T i k-1 . F k can be rewritten as "q 1 k / ∈ L(T 2,2 , T 2 k-1) and q 2 k / ∈ L(T 2,2 , T 1 k-1) and T 2,2 .f (q 1 k) = T 2,2 .f (q 2 k)". Then, p(F k | E k-1) = (1 -p(T 2,2 .f (q 1 k) ∈ L(T 2,2 , T 2 k-1) | E k-1)) × (1 -p(T 2,2 .f (q 2 k) ∈ L(T 2,2 , T 1 k-1) | E k-1)) × (1 -p(T 2,2 .f (q 1 k) = T 2,2 .f (q 2 k) | E k-1))
Let C(q) be the intersection of S 2 and the leaf of S 1 of parameter T 1,2 .f (q). When extending T i k-1 with T 1,2 , the constraint applied to generate q i k are C(q near i). Let F -1 (q * , l) = {q ∈ C(q *) | T 2,2 .f (q) = l} be the pre-image of l by T 2,2 .f in C(q *). Let P -1 (q * , l) = {q ∈ CS | projector(q, C(q *)) ∈ F -1 (q * , l)} be the pre-image of F -1 (q * , l) by projector onto C(q *)). It is the subset of CS whose projection onto C(q *) is in the leaf of parameter l, i.e. T 2,2 .f (q proj) = l. Let's consider each term of the above equation independently.

• The first term is p(T 2,2 .f (q 1 k) ∈ L(T 2,2 , T 2 k-1) | E k-1).
We have

{q rand ∈ CS | T 2,2 .f (q 1 k) ∈ L(T 2,2 , T 2 k-1)} ⊂ (q ′ 1 ,q ′ 2)∈T 1 k-1 ×T 2 k-1 P -1 (q ′ 1 , T 2,2 .f (q ′ 2)).
It is only a subset because of the nearest neighbour search. In the general case, F -1 (q * , l) is a measure zero subset of C(q *). This happens for instance when T 2,2 .f is continuous and non-redundant with constraint C(q *). In this case, P -1 (q * , l) is the pre-image of a set of measure zero by the projector. If the projector is unbiased, then P -1 (q * , l) has measure zero and p(T 2,2 .f (

q proj i) ∈ L(T 2,2 , T 3-i k-1) | E k-1)) = 0. • The second term p(T 2,2 .f (q 2 k) ∈ L(T 2,2 , T 1 k-1) | E k-1) is symmetrical. • The third term is p(T 2,2 .f (q 1 k) = T 2,2 .f (q 2 k) | E k-1).
This probability is the probability of sampling a random configuration whose projections q 1 k and q 2 k are such that T 2,2 .f (q

) k) = T 2,2 .f (q 2 k)
. This is p(q rand ∈ l∈R n P -1 (q near 1 , l) ∩ P -1 (q near 2 , l) . I consider two cases:

T 1,2 .f (q near 1) = T 1,2 .f (q near 2) and T 1,2 .f (q near 1) = T 1,2 .f (q near 2).
In the first case, the constraints applied to generate q 1 k and q 2 k are the same. The two projected configurations are thus equal. This case is not very interesting because it means the two trees are already reachable by T 1,1 .

In the second case, the constraints applied to generate q 1 k and q 2 k are different. It is hard in the general case to estimate the probability. Figures 3.8(a) and 3. 8(b) show what can happen. On Figure 3.8(b), the projection is orthogonal to the green lines. This means that the projection did not influence T 2,2 .f . This can happen is the configuration space is a vector space, T 1,2 .f and T 2,2 .f are linear and the green lines are orthogonal to the red ones. Although I cannot provide a proof, I believe that with a non-linear configuration space and non-linear constraints, the measure of l∈R n P -1 (q near 1 , l) ∩ P -1 (q near 2 , l) is very low, if not zero. And so is the probability. This seemed verified in practice as random exploration without the crossed foliation transition, detailed in next section, was never able to solve problems with crossing foliations in the amount of time I let it run.

Definition 3.8 (Correlated constraint).

A projector onto C(q) is correlated with parametrization function f if and only if ∀(q 1 , q 2) ∈ CS 2 , l∈R n P -1 (q 1 , l) ∩ P -1 (q 2 , l) = 0 where P -1 (q, l) is the subset of CS whose projection onto C(q) is in the pre-image of l by f . Corollary 3.1 (Crossed foliation issue). Consider the case of Theorem 3.1. Let C(q) be the intersection of S 2 and the leaf of S 1 of parameter T 1,2 .f (q) and let proj be the projector onto C(q). When proj is unbiased, proj and T 2,2 .f are correlated and when T 1,1 .f (q 1) = T 1,1 .f (q 2), the probability of randomly generating reachable configurations for T 2,2 is zero.

Proof. From the comments above, p(F k+1 | E k) = 1 so, using Theorem 3.1, p(E k) = 1.

When there are no correlation as defined in Definition 3.8, a value very close to one of p(F k+1 | E k) means the likelihood to solve the problem is very low. When this is true for both transition T 2,1 and T 1,2 , then, the M-RRT algorithm will run forever. To address this issue, next section introduces the cross foliation transition. This transition ensures that p(T 2,2 .f (q

1 k) ∈ L(T 2,2 , T 2 k-1) | E k-1) = 1 and p(T 2,2 .f (q 2 k) ∈ L(T 2,2 , T 1 k-1) | E k-1) = 1.

Crossed foliation transition

To overcome the crossed foliation issue, I define a new type of transition called crossed foliation transition. This transition generates new configurations in leaves that have already been reached by other connected components. To achieve this, the roadmap builds and stores the leaf parameter set reached by each connected component of the roadmap, of each transition of this type. In the Graph of Constraint, a transition of this type must be inserted parallel to transitions inducing a foliation. It must also know the parametrization function of the crossing foliation. The graph on Figure 3.9 contains two states S 1 and S 2 , four transitions T i→j , 1 ≤ i, j ≤ 2 from S i to S j and two crossed foliation transition T cf 1→2 and T cf 2→1 . When extending a node belonging to state S 1 , Algorithm 3.1 randomly chooses between the three outgoing transitions. When it selects T cf 1→2 , the extension algorithm picks randomly an element l of the leaf parameter set of T 2→2 reached by any other connected component of the current roadmap. Constraint T 2→2 .f (q) = l is then added to the projector (Line 4 of Algorithm 3.2).

By definition of the leaf parameter set L(T 2→2 , T), l is associated to one or several configuration(s) of the roadmap lying in state S 2 and satisfying T 2→2 (q) = l. As a consequence, q proj is on the same leaf as those configurations for the transition T 2→2 . Eventually, Algorithm 3.3 may connect these configurations.

Generalized reduction property

Siméon et al. [2004], [START_REF] Harada | A manipulation motion planner for dual-arm industrial manipulators[END_REF], [START_REF] Lertkultanon | A single-query manipulation planner[END_REF] do not encounter the crossed foliation issue. They overcome the issue by using the reduction property. This property reduces the complexity of the problem with a robot manipulating one object to a constrained motion planning problem. The intersection of grasp and placement spaces is not foliated. However, the reduction property, recalled in Section 1.3.2, only covers cases where a full actuated gripper grasps a free floating object. It does not cover the cases of two grippers manipulating the same object, of "non-holonomic" grippers and of articulated objects. In this section, I propose a generalized reduction property. It extends the reduction property to the cases mentioned above. This generalization relies on the notion of manipulability which I propose a definition of.

The reduction property relies on the notion of grasp and of placement. I define them through the notion of gripper and handle as follows.

A handle is a frame, attached to a static or movable body. It is defined by a forward kinematic function e h : CS → SE(3). A gripper is a full-actuated handle, i.e. all the gripper velocities, Im(J eg), are actionable. This is always the case if all the joints from the root joint of the kinematic tree and the joint are actuated. It is sometimes not verified. For instance, a non-holonomic mobile platform, with a manipulator arm with strictly less that six DoFs mounted on it has non-actionable velocities in some configurations. Definition 3.9 (Grasp, Placement). A placement is a fixed relative transformation constraint between two handles h and h ′ , i.e. e h (q) -1 e h ′ (q) = M ∈ SE(3).

A grasp is a fixed relative transformation constraint between a gripper g and a handle h, i.e. e g (q) -1 e h (q) = M ′ ∈ SE(3).

The reduction property is given as input a path in CG ∩ CP. Grasps and placements along this path are valid and only these sets of grasp and placement are used in the following paragraph.

Generalized reduction property

The reduction property, as stated in Dacre-Wright et al. [1992], is not complete. Figure 3.10 gives two counter examples. It shows two different robots manipulating an cylindrical object.

On Figures 3.10(a) and 3.10(c), the robot has one rotational DoF and the object can move in the plane (3 DoFs). In both positions, the object is grasped by the robot. There is a motion in CG ∩CP that solves the problem: the robot stay still and the object rotates around its axis. However, clearly, the problem has no solution because the robot cannot execute this motion. The reduction property does not apply in this case.

On case, in both position, the object is grasped by the robot. And again, there is a motion in CG ∩ CP that solves the problem: the robot stay still and the object rotates around its axis. In this set-up, given an initial object position (x 0 , y 0 , θ 0), reaching (x 0 , y 0 , θ 1) requires to switch between inverse kinematic solutions. When using only one inverse kinematic solution, the only reachable object angle in (x 0 , y 0) is θ 0 . If not considering collisions, the path in CG ∩ CP can be transformed into a valid sequence of transit and transfer paths. However, it cannot be approximated. So, with the obstacles, the problem has no solution because a path going from one inverse kinematic solution to the other will always collide either with the object or with one obstacle. The reduction property does not apply in this case too. In the following, M i (q, ε) denotes the set of admissible paths from q and included in B (q, ε), i.e. {p ∈ C i ([0, 1], B (q, ε)) | p(0) = q}. Paths in M i (q, ε) are i times continuously differentiable. B (x, ε) is the open ball of center x and radius ε.

Definition 3.10 (Small Space Controllability).

A robot R is small space controllable in q ∈ CS if and only if ∀ε > 0, ∃η > 0, ∀q ′ ∈ B (q, η) , ∃p ∈ M 1 (q, ε) such that p(1) = q ′ . These two robots are small space controllable. However, in both cases, the robot end-effector is not small space controllable in the configuration space of the object. For instance, consider the 2 DoFs robot on Figure 3.10(b). Let (φ r , ψ r) be the two angles of the robot and (x e , y e , θ e) = f (φ r , ψ r) be the position and orientation of the end-effector. The set of angles that can be reached in (x e , y e), i.e. {θ ∈ [0, 2π[| ∃(φ r , ψ r), f (φ r , ψ r) = (x e , y e , θ)}, has only two elements so the end-Figure 3.11: Small Space Manipulability. For all path p o included in B (q o , ε o)) starting in q o , there exists a path p r included in B (q r , ε r)) starting in q r such that the relative position of O with respect to R is constant.

effector is not small-space controllable in the configuration space of the object. This can be formalized by the Small Space Manipulability (SSM) property, which also applies to articulated objects. O is small space manipulable by R from (q r , q o) ∈ CS R × CS O if and only if ∀ε r > 0, ∃ε o > 0, ∀p o ∈ M 1 (q o , ε o), ∃p r ∈ M 1 (q r , ε r) such that e r (p r (t)) -1 e o (p o (t)) = e r (q r) -1 e o (q o) Figure 3.11 pictures this condition. The "Jacobian" of e r can be defined 5 by der•pr dt (t) = J r (p r (t)) dpr dt (t). The Jacobian J o of e o is defined similarly.

Lemma 3.1 (Necessary condition and sufficient condition of SSM). Using the notations of Definition 3.11 the following assertions verifies (i) =⇒ (ii) =⇒ (iii).

(i) q r is a regular point of J r and ∃ε r > 0,

∃ε o > 0 such that, ∀(q ′ r , q ′ o) ∈ B (q r , ε r) × B (q o , ε o), Im(J o (q ′ o)) ⊂ {v r × e r (q r) -1 e o (q o) | v r ∈ Im(J r (q ′ r))} (ii) ∀ε r > 0, ∃ε o > 0, ∀p o ∈ M 1 (q o , ε o), ∃p r ∈ M 1 (q r , ε r) such that e r (p r (t)) -1 e o (p o (t)) = e r (q r) -1 e o (q o) 5
In the following, I use a formalism not described here: der •pr dt (t) ∈ se(3) and dpr dt (t) is in the tangent to the joint space. This formalism is well described in the book of [START_REF] Featherstone | Rigid body dynamics algorithms[END_REF].

(iii) Im(J o (q o)) ⊂ {v r × e r (q r) -1 e o (q o) | v r ∈ Im(J r (q r))} Before providing a proof, I explain what (i) and (iii) mean. (iii) means that all admissible velocities of the object are admissible for the robot end-effector. (i) means that on a neighbourhood of a regular robot configuration, all the admissible velocities of the object on a neighbourhood of its original position are admissible for the robot end-effector, keeping the grasp constant.

In the previous examples, we immediately see that (iii) is false, thus the object is nowhere small-space manipulable by the robot.

Consider the cases where the Jacobian of the robot end-effector is of rank 6. By using results of Section 2.2.2, there exists a neighbourhood where the rank is constant. Thus, on this neighbourhood, Im(J r) = se(3) and (i) is true. So all objects are small-space manipulable by the robot in considered configuration. This is the case which was considered by Dacre-Wright et al. [1992].

Proof. I first prove that (ii) =⇒ (iii). Assume assertion (ii) is true.

Let

v o ∈ Im(J o). There exists qo such that v o = J o qo . Let p o ∈ M 1 (q o , ε o) such that dpo dt (0) = qo . There exists a path p r ∈ M 1 (q r , ε r) such that e r (p r (t)) -1 e o (p o (t)) = e r (q r) -1 e o (q o) (3.2)
By rearranging Eq. (3.2) and taking the derivative, we have:

J r (p r (t)) dp r dt (t) × e r (q r) -1 = J o (p o (t)) dp o dt (t) × e o (q o) -1 (3.3)
which implies that v o = J r (q r) dpr dt (0) × e r (q r) -1 e o (q o). So (iii) is true. I now prove that (i) =⇒ (ii). Assume assertion (i) is true. Note that if (ii) is true for some εr , it is obviously true for all ε r > εr .

Let p o be an object path. Consider the differential equation dp dt (t) = f (t, p(t)), of unknown p, and the initial condition e r (p r (0)) = e r (q r). We seek a path in M 1 (q r , ε r), i.e. a continuously differentiable solution. The function f is

f : t, p → J r (p(t)) † J o (p o (t)) dp o dt (t) × e o (q o) -1 e r (q r)
As q r is a regular point and q → J r (q) is continuous, Theorem 2.1 applies. There exists ε 0 r such that q → J r (q) † is continuous on B q r , ε 0 r . Assertion (i) implies that there exists ε 1 r > 0 and

ε o > 0 such that ∀(q ′ r , q ′ o) ∈ B q r , ε 1 r × B (q o , ε o), Im(J o (q ′ o)) ⊂ {v r × e r (q r) -1 e o (q o) | v r ∈ Im(J r (q ′ r))} (3.4)
Thus, let ε r > 0 be fixed such that ε r < min(ε 0 r , ε 1 r). Assertion (i) is still true for ε r < ε 0 r . Let p 0 be fixed in M 1 (q o , ε o). Cauchy-Lipschitz theorem states that there is a unique maximal solution p r ∈ M 1 (q r , ε r). Moreover, Equation (3.4) implies

J o (p o (t)) dp o dt (t) × e o (q o) -1 e r (q r) ∈ Im(J r (p r (t))) Thus, J r (p(t))f (t, p r (t)) = J r (p(t))J r (p(t)) † J o (p o (t)) dp o dt (t) × e o (q o) -1 e r (q r) J r (p(t)) dp r dt (t) = J o (p o (t)) dp o dt (t) × e o (q o) -1 e r (q r)
The above equation integrates to Eq. 3.2 so assertion (ii) is true.

The following theorem formulates the generalized reduction property.

Theorem 3.2 (Generalized reduction property). Let R be a robot and O be an object. Any path p lying in CG ∩ CP satisfying the following conditions at all time can be transformed into a finite sequence of transit and transfer paths:

the robot is not in collision with static obstacles at p(t),

-R is small space controllable.

-O is small space manipulable by R from p(t).

Proof. Let p : [0, 1] → CG ∩ CP. Let p r , resp. p o , be the projection of p onto CS R , resp. CS O . Let t 0 ∈ [0, 1] be a fixed time. As, R is not in collision with static obstacle in p r (t 0), we can find ε > 0 such that B (p r (t 0), ε) ⊂ CS R,f ree .

As O is small-space manipulable by R from p(t 0), there exists ε r > 0 and ε o > 0 such that all configurations of B (p r (t 0), ε r) are reachable by paths from q r included in B (p r (t 0), ε), thus collision free, and such that

∀p o ∈ C 0 ([0, 1], B (q o , ε o)) | p o (0) = q o , ∃p r ∈ C 0 ([0, 1], B (q r , ε r)) | p r (0) = q r such that e r (p r (t)) -1 e o (p o (t)) = e r (q r) -1 e o (q o)
As p is continuous, there exists δ > 0 such that

∀τ ∈]t 0 -δ, t 0 + δ[, p r (τ) ∈ B (p r (t 0), ε r) and p o (τ) ∈ B (p o (t 0), ε o) ∀τ ∈]t 0 -δ o , t 0 + δ o [, p o (τ) ∈ B (p o (t 0), ε o)
As p is continuous, there exists δ r , δ o > 0 such that

∀τ ∈]t 0 -δ r , t 0 + δ r [, p r (τ) ∈ B (p r (t 0), ε r) ∀τ ∈]t 0 -δ o , t 0 + δ o [, p o (τ) ∈ B (p o (t 0), ε o) Let δ = min(δ r , δ o), τ ∈]t 0 , t 0 + δ[and π o : [t 0 , τ] → B (p o (t 0), ε o) t → p o (t)
There exists π r ∈ C 0 ([t 0 , τ], B (q r , ε r)) such that π r (t 0) = q r and e r (π r (t)) -1 e o (π o (t)) = e r (q r) -1 e o (q o). Note that the time interval [0, 1] as been rescaled to [t 0 , τ]. The path (π r , π o) constitutes a valid transfer path. R is smallspace controllable, so as π r (τ) and p r (τ) are in B (q r , ε r), there exists an admissible collision-free path π ′ r from π r (τ) to p r (τ).

p : t → (π ′ r (t), p o (τ)) is a valid transit path.
The path from (p r (t o), p o (t o)) to (p r (τ), p o (τ)) has been transformed into a valid transfer path followed by a valid transit path.

As p r is a compact set included in an open set of CS R,f ree , This local transformation can be applied on a finite covering of [0, 1]. Thus, we get a finite number of elementary manipulation paths.

Grasps and placements

The definition of grasp and placement given above implies that a grasp is a placement. The reverse is not true. The difference is that a grasp can induce a motion.

Theorem 3.2 generalizes the reduction property to articulated objects. It makes use of two forward kinematic functions e r and e o . The DoFs involved in e o are not necessarily actuated while the DoFs involved in e r are. Now consider an object O and two grippers G 1 and G 2 . Indexes 1 and 2 in this paragraph refers to one of these grippers. Both gripper can hold the object at the same time. Then, three cases can happen.

First case, one gripper is not enough to carry the object. Both are needed at the same time, for instance for a heavy object. Thus, there is only one grasp, which happens when both grippers hold the object. Though the generalized reduction property does not cover this case, I believe it could be extended by considering the following function as gripper function:

e g : CS → SE(3) × SE(3) q → (e g 1 (q), e g 2 (q))
Second case, each gripper is sufficient to hold the object. The generlized reduction property applies for paths in CG 1 ∩ CP, in CG 2 ∩ CP or in CG 1 ∩ CG 2 Consider a path p lying in CG 1 ∩ CG 2 . It is not in general a valid manipulation path, for the same reason as a path in CG ∩ CP is not. Let us temporarily view CG 2 as a set of valid placement. Then, when the hypothesis of Theorem 3.2 holds for e r = e G 1 and e o = e G 2 , the decomposition given in the proof gives a path which is a alternative sequence of valid transfer by gripper G 1 , lying in CG 1 ∩ CG 2 , transit for gripper G 1 , and where G 2 is static and holds O, thus also valid. This path is thus a valid manipulation path. This is expressed by the following corollary of Theorem 3.2.

Third case, gripper G 1 can carry the object alone but G 2 cannot. If the problem has no solution considering grasps with G 1 only, then it has no solution at all. Corollary 3.2 (Corollary to the generalized reduction property). Let R be a robot with two grippers and O be an object. Any path p lying in CG 1 ∩ CG 2 satisfying the following conditions at all time can be transformed into a finite sequence of transit and transfer paths:

the robot is not in collision with static obstacles at p(t), -R is small space controllable.

-O is small space manipulable by R from p(t).

Limitations

In general, the reduction property does not cover coupled DoFs. Indeed, the above demonstrations all assume the e r and e o are decoupled. For instance, the DoFs of a humanoid robot are all coupled by an equilibrium constraint. However, in this case, the constraint is infinitely differentiable. It seems reasonable, although merely an assumption, that the generalized reduction applies.

Narrow passages

Narrow passages are known to be challenging for motion planning algorithms. Unfortunately, manipulation planning encounters them very often. To overcome this issue, I introduce the notion of way-points.

Low sampling probability

A search for a path to grasp an object necessarily goes close to collisions because the object has to be in the gripper. Figure 3.12 shows a simple case where a gripper with two fingers manipulates a ball. From Figure 3.12(a) to Figure 3.12(b), the gripper goes to a grasp pose, close to the object. Without a hint on how to approach the ball, randomized motion planning will spend a lot of time searching for a solution through this narrow passage. In this case, a basic hint would be the direction of approach of the gripper. A straight line approach along this direction is likely to be collision-free.

Figure 3.13 shows a Graph of Constraint which integrates an intermediate state corresponding to poses like the one showed on Figure 3.12(c). Transitions Grasp ball and Move gripper up compute motion from Figure 3.12(c) to 3.12(b) and vice versa. While poses where the ball is grasped are very cluttered, pre-grasp poses, like on Figure 3.12(c), are much less cluttered. The most natural method to compute this path is to constrain the gripper to move on the line passing through the two ends. A straight line in Euclidean space means the path in CS is not straight. However, if the distance between the two configurations is small, the straight line in CS is very close to a straight line for the gripper, in Euclidean space. So a straight line in CS does not decrease much the likelihood of a collision-free path. Moreover, the projection algorithm requires to solve a system of linear equations and makes use of singular values for the continuity criterion. Those operations are of cubic complexity so the marginal increase of time for projection for each additional constraint increases. Straight lines in CS arepotentially a lot -less time-consuming. I experimented both strategies and preferred the second one as it speeds up projections.

Figure 3.15 shows a Graph of Constraint which integrates three intermediate Figure 3.14: Effect of a way-point transition in the configuration space. C grasp and C placement are represented. A path from q init ∈ C grasp to q end ∈ C placement built with graph on Figure 3.15 will contains three way-points: w 1 in "Ball above ground", w 2 in "Grasp -Placement" and w 3 in "Gripper above ball". The two red lines shows the sub-paths which are expected to be short.

states. Gripper above ball corresponds to poses like on Figure 3.12(c), already explained. Ball above ground corresponds to poses like on Figure 3.12(f). The robot holds the ball and the ball is at a pre-placement position. The intermediate state encodes the hypothesis that, going from pre-placement to pre-grasp, from Figure 3.12(f) to 3.12(c), requires to find a pose like on Figure 3.12(e). This restricts the set of solutions. This is illustrated in Figure 3.14.

Way-point transition

In the examples above, I use states to specify approaching poses. This fastens the search by giving hints on how to execute an action. The hints are given as a pose constraint for the end-effector or the object. However, hints should not be states as it would slow down the search for the two following reasons. First, two or more iterations would be required to compute a path between grasp and placement. The fact that transition Grasp ball should directly follow Approach ball is ignored. Second, the approaching configuration is close to the grasping configuration so generating the grasping configuration from the approaching configuration is likely to succeed. The path between the two configurations is very short so, if the approaching configuration is collision-free, the path is also likely to be collision-free. Two steps mean two different random configurations. More likely, it will result in a projection failure or in a longer path, more likely not collision-free.

To overcome these issues, I introduce the way-point transition. This type of transition tells the planner to chain the transition. For instance, on Figure 3.13, whenever Approach ball is selected and generates q proj from a random q rand and a neighbour q near , Grasp ball is called and generates a configuration from q rand and q proj . These transitions are also useful to specify transitions representing motions lying in several states. For instance on Figure 3.13, the way-point transition from placement to grasp represents motion that lies first in placement (Approach ball and Grasp ball) and then in grasp (Take ball up and Take ball away). The second graph corresponds to the one of Figure 3.9, where transitions are not way-point transitions but standard transitions. This means the algorithm does not chain them. For instance, Grasp ball will not necessarily be applied to configuration obtained by Approach ball.

Experimental results

The third graph corresponds to the one of Figure 3.9, with way-point transitions. This means the algorithm will apply systematically Approach ball, Grasp ball, Take ball up and Take ball away in sequence.

The results show that properly using guidance information has a huge effect on the computation time. With way-point transitions, the problem was solved more than 300 times faster than without guidance information.

Guidance

No This chapter presents a method to generate a Graph of Constraint. The method relies on affordance. Each robot and object comes with a documentation containing intrinsic information about its capabilities.

The first section presents the documentation developed in the framework of this thesis. The second introduces an algorithm that generates a Graph of Constraint from the documentation.

The importance of this algorithm resides in the fact that it makes manipulation planning accessible to non-expert users. Indeed, the problem can be defined simply through two set of rules. The first set of rules specify pairs of end-effector and objects that can generate a grasp. The second set of rules concerns object stability. It contains a set of support surfaces on environment and contact surfaces on objects and robots.

Documented objects

Models of robots, objects and environments are augmented with guidance information, referred to as object documentation. It contains geometrical information. Two types of interactions are proposed. The robot can interact with its surroundings by grasping with its end-effectors. It can also interact by creating contacts. Each type of interaction is presented in the two following sections.

I do not consider low-level grasping for complex grippers, such as human-like grippers. Such grippers could be documented through contact surfaces. However, full-body motion planning for a robot, considering 15 degrees of freedom (DoFs) per hand, becomes rather complex.

Grippers and handles

When a robot grasps an object o with an end-effector e, the relative transformation of the object with respect to the end-effector, T e o , is constant. However, there may be several or even infinite admissible values for T • A reference frame R defines the center of the element, with respect to a specified body frame B(q). The X axis defines an approaching direction. The Z axis defines an axis for a potential rotation freedom.

• A positive real value, called clearance and denoted by δ, gives an idea of how big the element is. It should be more that the shortest distance along X axis, the approaching axis, at which a plane orthogonal to X axis would not be in collision with the element.

The documentation of a handle also contains information about the parametrization of grasps. Object can be long, axial or long axial. long means the translation along Z parametrizes grasps. axial means the rotation around Z parametrizes grasps. long axial means the two previous simultaneously. This could be extended to more types of parametrization.

In order to write the grasp constraints, let me denote the relative transformation of the handle with respect to the gripper by

T g h (q) = R -1 g × B g (q) -1 × B h (q) × R h ∈ SE(3).
As an element of SE(3), it can be mapped to an element of se(3) using the inverse of the exponential map exp : se(3) → SE(3) that gives the smallest angle. I denote this element by log

T g h (q) = ([ω] × , v) (4.1) where v = (v x , v y , v z) ∈ R 3 and ω = (ω x , ω y , ω z) ∈ R 3 such that ||ω|| 2 ≤ π.
The validation and parametrization constraints can now be built. Consider the handle h is of type axial. Other types can be easily guessed from this example. Two validation constraints corresponding to pre-grasp poses and to grasp poses:

f grasp (q) = [v x , v y , v z , ω x , ω y] = 0 (4.2) f pregrasp (q) = [v x + δ h + δ g , v y , v z , ω x , ω y] = 0 (4.3)
The parametrization constraints are the same for pre-grasp and grasp:

fgrasp (q) = fpregrasp (q) = [ω z] = b (4.4)
This model of grasps is not meant to be exhaustive. It limits grippers and objects that can be considered. The reference frame is not really intrinsic to a gripper or an object. Indeed, one handle reference frame may not be sufficient for both a big and a small gripper. The handle reference frame may have to be shifted along the X axis. These values are not robust to big ranges of gripper and object size.

Contact surfaces

Possible contact surfaces are defined as convex planar polygons. This representation is generic enough to represent most objects (object meshes are typically composed of triangles). I only consider planar contact between polygons though sphere / plane and cylinder / plane contact models could also be considered. Users define a polygon by providing an ordered set of vertices and the body it is attached to. Two parts A and B (B can be the environment) are in contact when two contact polygons, one for each part, are in contact, i.e. the distance between them is less than a threshold ε. The focus is only contact creation and not equilibrium criterion, which is assumed to be handled by some other means, like another constraint.

The main difficulty is to define the distance between two surfaces. This distance must take into account polygon positions and normals relative orientation. A distance is proposed in the following paragraph.

Distance between polygons For a polygon P , n P denotes its normal, C P the centroid of its vertices and • R P is a reference frame center at C P , whose X axis is aligned with n P and Y axis is aligned with one vertex.

• Q P,S the orthogonal projection of C P onto the plane containing another planar polygon S.

d (M, S) = ||C S Q M,S || 2 if Q M,S / ∈ S 0 otherwise (4.6) d(M, S) = d ⊥ (M, S) 2 + d (M, S) 2 (4.7)
Constraints The functions are build with two sets of polygons: a set of object polygons (M i) and a set of support polygons (S j).

Let I, J = arg min i,j d(M i , S j) be the indexes of the pair of the closest pair of polygons according to the distance function d. I denote by T S j M i the relative transformation of R M i with respect to R S j . The same decomposition as in (4.1) gives:

log

T S J M I (q) = log R M I (q) -1 R S J (q) = ([ω] × , v) where v = (v x , v y , v z) ∈ R 3 and ω = (ω x , ω y , ω z) ∈ R 3 such that ||ω|| 2 ≤ π.
Let δ be a user-defined distance for pre-placements. I define the placement 1 Formally, they are not distances as they are not symmetric.

validation constraints:

f place (q) = [v x , 0, 0, ω y , ω z] if Q M,S ∈ S [v x , v y , v z , ω y , ω z] otherwise = 0 (4.8) f preplace (q) = [v x + δ, 0, 0, ω y , ω z] if Q M,S ∈ S [v x + δ, v y , v z , ω y , ω z] otherwise = 0 (4.9)
and the placement parametrization functions:

fplace (q) = [v y , v z , ω x] if Q M,S ∈ S [0, 0, ω x] otherwise (4.10) fpreplace (q) = [v y , v z , ω x] if Q M,S ∈ S [0, 0, ω x] otherwise (4.11)
If f place (q) = 0, the distance function is minimal, so polygons are in contact. The two constraints f place (q) = 0 and fplace (q) = b together fully constrain the relative motion between the closest polygons. Indeed, the two constraints together are equivalent to a constant T S j M i (q). The presented method is compatible with other primitives such as cylinder, resp. sphere, which would define linear, resp. punctual contacts. With additional calculations, one can similarly define distances for those primitives.

These functions are only piecewise continuously differentiable. As state in Section 3.2, the projector may not satisfy Property 3.1, i.e. it may be biased. The projection of a uniformly distributed configuration in CS has higher probability to be on the edges of the table than in the middle.

Though the discontinuity points may cause instability in the projection algorithm, none were encountered in all the cases and the efficiency of the projector did not seem altered. [START_REF] Escande | A Strictly Convex Hull for Computing Proximity Distances With Continuous Gradients[END_REF] proposed a more complex approach with continuous gradient.

Eventually, the pair of surfaces used in the parametrization function is not identified in the output. In other words, specifying b in constraint fplace (q) = b does not specify the pair. So the parametrization function does not correctly parametrize the placement space when there are more than one polygon in (M i) and (S j).

The example shown in Section 5.2.2 shows a case where the support surface is moving. When it is moving, the object put on it should follow its motion. This is automatically handled by the above constraints.

Constraint graph generation

In this section, I explain how a Graph of Constraint is automatically built from a set of objects and robot grippers. The objects, grippers, robots and the environment comes with the documentation defined above.

The number of nodes of the constraint graph may quickly grow when the number of objects and grippers increases. The user may provide as input only a subset of relevant grasps to algorithm 4.1 so that the result remains tractable. This subset can be provided as a grasp-placement table as in [START_REF] Tournassoud | Regrasping[END_REF], [START_REF] Lertkultanon | A single-query manipulation planner[END_REF].

I denote by GRASP (g, h) the validation constraint defined by the grasp of handle h by gripper g. I denote by CON T ACT (L 1 , L 2) the validation constraint that enforces contact between either polygons of two sets L 1 and L 2 . I denote by F IXED(obj, g) the validation constraint that enforces a constant relative transformation between object obj and g, either a robot gripper or the environment. for all injective mapping f 1 from G ′ to H do 7:

S 1 ← MakeState(f 1 , G ′) 8: states ← states ∪ {S 1 } 9:
for all g 1 ∈ G ′ do 10:

G ′′ ← G ′ \ {g 1 } 11: f 0 ← f 1 restricted to G ′′ 12:
S 0 ← states.getState(f 0)

13:

MakeTransitions(S 0 , S 1) 14:

MakeLoopTransition(S 1 , S 1)

Building the states

Algorithm 4.1 describes the construction of the Graph of Constraint relative to a manipulation problem. One or several handles are attached to each object. The algorithm loops over all possible combinations of "some grippers hold some handles" f 1 (Lines 5, 6), by increasing number of gripper involved in a grasp.

States are created by increasing order because state priority is then the same as creation order. When there are no placement for an object, S 1 will be a subset of S 0 and it must have higher priority.

To reduce the combinatorial, I also introduced rules, which are not shown in Algorithm 4.1. A rule gives to the user the ability to forbid or authorize association of grippers with handles. This is done by checking where function f 1 in the loop Line 6 fulfils user-defined rules. If not, then, this f 1 is skip and directly go the next value for f 1 . This is useful to reduce the exponential combinatorial. Also note that, when G′ has greater cardinal than H, there is no injective mapping from G′ to H.

The algorithm creates a state for each combination. Then, transitions are created to the new state S 1 from each state S 0 defined by the same set of grasps minus the one involving g 1 (lines 9-13). Method getState returns the state built with the combination of grasps f 1 given as input (Line 12). C contact ←Contact(obj.polygons, P) S.transConstr.add(FIXED(f 1 (g 1).obj, g 1))

14:

return S Function MakeState is shown in Algorithm 4.2. The set of handles of object obj is denoted by obj.handles (line 5). It loops over all ungrasped objects (Line 5) and creates constraints so that those objects stay in stable contact pose. Then it loops over each grasp g 1 defined by f 1 (Line 9) and creates the corresponding constraint. Each state stores a set of parametrization constraint that will be inserted in transitions by function MakeTransitions (Lines 8 and 13). Crossed foliation transitions are added even when there is only one foliated manifold. This increases the chance of solving a problem since the two random trees can meet both in the non-foliated and in the foliated manifold. Function MakeLoop-Transition (Line 14 of Algorithm 4.1) behaves similarly to Algorithm 4.3 with only T 0 and T 1 . T * 0 and T * 1 are not built. T 0 ←EmptyTransitionBetween(S 0 , S 1) 3:

Transition detection

S 0 W 1 W 2 W 3 S 1 f grasp (q) = 0 x x x f pregrasp (q) = 0 x f place (q) = 0 x x x f preplace (q) = 0 x C sub x x
T 1 ←EmptyTransitionBetween(S 1 , S 0) 4:

T 0 .constraints.add(S 0 .transConstr) if S 0 .transConstr is not empty then 7:

T * 1 ←CrossedFoliationTransition(T 1)

8:

T * 1 .crossingParametrizationFunction(S 0 .transConstr)

9:
if S 0 .transConstr is not empty then 10:

T * 0 ←CrossedFoliationTransition(T 0) 11:

T * 0 .crossingParametrizationFunction(S 1 .transConstr)
In Algorithm 4.3, lines 6 and 9, the crossed foliation issue corresponds to the parametrized constraints S 1 .transConstr and S 2 .transConstr to be both nonempty. Line 7 and 10, function CrossedFoliationTransition builds a crossed foliation transition that encodes the same motion as the transition passed as parameter. Line 8 and 11, function crossingParametrizationFunction sets the parametrization function of the crossing foliation.

Algorithm 4.4 builds a transition with three way-points, as in Figure 3.15. Table 4.1 shows the validation constraint of state S 0 and S 1 and of way-point states W i . Table 4.2 shows the parametrization function of way-point transitions T ij . sub refers to the manifold of S 0 without placement constraint of the object involved in the grasp. Note that if the object is already involved in another gripper/handle pair, then only grasp and pre-grasp constraint should be used, and placement constraint should not be used. In this case, way-point states W 2 and W 3 of Table 4.1 and transitions T 23 , T 32 , T 34 and T 43 are not necessary. This is because one grasp is considered sufficient to have a stable position of an object.

Function WaypointTransition builds a way-point transition. The first argument is the ordered list of states. The second is the list of transition between the states. The W i and the T ij are internal to the way-points transitions. Line 8-15 does exactly as explained in the previous paragraph.

Algorithm 4.4 Make a transition -With pre-grasp and pre-placement

1: function MakeTransitions(S 0 , S 1 , f 0 , f 1 , G′, g 1) 2: h ← f 1 (g 1) 3: o ← h.object
Sub-manifold sub of the transitions: same as S 0 without placement for o.

sub.RemovePlacementOf(o)

Build way-point states as in Table 4.1 and way-point transitions as in Table 4.2.

6:

T 0 ←WaypointTransition((S 0 , W 1 , W 2 , W 3 , S 1), (T 01 , T 12 , T 23 , T 34))

7:

T 1 ←WaypointTransition((S 1 , W 3 , W 2 , W 1 , S 0), (T 43 , T 32 , T 21 , T 10)) This chapter shows the results obtained with the algorithm described in Chapter 3. The continuous path projection algorithms and the Manipulation-RRT (M-RRT) algorithm have been integrated into the Humanoid Path Planner (HPP) software.

As an important outcome of this thesis, this library is briefly described in the first section. The two next sections show various results obtained with the implementation of the presented approach in HPP. First, I present results obtained with manipulator arms with and without mobile platform. Then, I present results with humanoid robots. Two types of problems, different in appearance, are treated: locomotion problems and manipulation problems.

Humanoid Path Planner

The Humanoid Path Planner1 [Mirabel et al., 2016] is an open-source library addressing generic motion planning problem. It contains tools dedicated to humanoid robots, hence its name. The development of the software was initially impulsed by my PhD supervisor Florent Lamiraux. He and myself are the two main developers. Two well-known alternatives to HPP are Open Motion Planning Library (OMPL) [Şucan et al., 2012] and Open Robotics Automation Virtual Environment (OpenRAVE) [START_REF] Diankov | Automated Construction of Robotic Manipulation Programs[END_REF]. However, this two alternatives did not fit all our needs.

OMPL does not have an abstraction for continuous path. Instead, paths are always discretized. This is not desirable for the two following reasons. First, the discretization step has to be tuned for each case. Second, some algorithms need to evaluate a path at times which are not known beforehand. This is discussed in more details in Section 2.1.3.

OpenRAVE handles constraint through inverse kinematic solvers. Users can provide their own solvers via plugins. However, consider the case where a humanoid robot is to manipulate two objects, like in Section 5.3.3. The constraints to be considered are: equilibrium constraint of the robot and valid placement and valid grasp of each object. Each state has a different set of constraints. As these constraints are coupled, they cannot be solved separately. This means one would have to create a different inverse kinematic solver to handle each case separately. We preferred to put in the core an abstraction of the constraint. Package hpp-pinocchio wraps the Pinocchio library. It provides models of joints as described in Section 2.1 and summarized in Table 5.1.

Library architecture

Type

Configuration space Velocity space

Prismatic (1D) R (translation) R (linear) Unbounded revolute (1D) S 1 ⊂ R 2 (unit complex) R (angular) Bounded revolute (1D) R (angle) R (angular) Ball joints (3D) S 3 ⊂ R 4 (unit quaternion) R 3 (angular)
Table 5.1: Main types of joints provided by default. For each joint, the representation of their configuration space (q vector) and their tangent space (velocity q vector) is specified.

Package hpp-core is the main package. It contains an abstraction of tools for motion planning, such as random configuration generator, collision checker, projectors for configuration and paths and planning algorithms. It provides some implementations for each of these tools. The Progressive and Global path projection algorithms have been implemented in this package.

Package hpp-manipulation contains the Graph of Constraint and the M-RRT algorithm. Package hpp-manipulation-urdf contains the documentation parser.

Finally, package hpp-tutorial and hpp-doc contains tutorials and the API documentation.

Path abstraction

The abstraction of a path contains a time interval [t 1 , t 2], a constraint C and a method interpolate : R → CS. The interpolate method is handled differently depending on the type of path. For instance, straight path uses straight lines while car-like path uses Reeds-Shepp curves. Evaluation of the path at a time t is then done as follows.

p : [t 1 , t 2] → CS t → projector(interpolate(t), C)
It corresponds to the abstraction described in Section 2.1.3.

Constraint Package hpp-constraints provides an abstraction of differentiable functions. This abstraction contains two methods. The first, value(q), evaluates the function at a point passed as argument. The second, jacobian(q), evaluates its derivative.

Then, package hpp-core contains an abstraction of validation and parametrization constraint and an implementation of the Newton-Raphson (NR) algorithm. A constraint C contains a differentiable function f , an operator ∆ among {=, >, <} and a right hand side b. The constraint is then f (q) ∆ b. The NR algorithm then uses C.f .value(q) and C.f .jacobian(q) to generate configurations satisfying the constraints. It corresponds to the abstraction described in Section 2.1.2.

Results

Benchmarks We compared the performance of the implementation of the RRTconnect algorithm of OMPL and HPP. OMPL proposes other planners, not implemented in HPP. We did not find other benchmarks from other softwares to compare ourselves to. This benchmark shows that the efficiency of the default planner of HPP is comparable to OMPL.

To carry out the comparison, we used the benchmark database provided by OMPL, picking the three problems solved with RRT-Connect2 . To provide a comparison as fair as possible, we had to take into account implementation details of OMPL and HPP. Firstly, OMPL uses a range parameter, which determines the maximum distance between two nodes in the roadmap, automatically computed for each scenario. Depending on the benchmark, this value can improve or slow down the computation time. The HPP implementation does not use such parameter.

Secondly, HPP includes a continuous collision checking method. It has a higher atomic cost than discretized collision checking, but has the advantage that only one test is required between two configurations, regardless of their distance.

To compare HPP and OMPL on an equivalent implementation of RRT-Connect, we consider on one hand a "no range" version of OMPL (OMPL-NR), where the range is set to a high value. On the other hand we consider a HPP implementation scenario min time (s) avg time (s) with discretized collision checking (HPP-D). The discretization step is the same in HPP and OMPL3 . To be exhaustive we also included benchmarks performed with the specificities of the softwares: we thus also consider the standard "range" version of OMPL (OMPL), and the continuous collision checking version of HPP (HPP-C). Table 5.2 presents the results for all three scenarios and implementations. The success rate represents the relative number of runs that succeeded before a given maximum time limit. When computing minimum, average and maximum time values, only successful runs were considered. The runs, single-threaded, were performed on a 64 bits computer with 8 processors of 1.2Ghz, 64Go or RAM.

In any considered case, HPP implementation presents equivalent or better average computation times compared to OMPL. The important point is that the performances remain in the same order of magnitude between HPP and OMPL.

Robot programming

To my best knowledge, the earliest industrial application of motion planning is Kineo [Laumond, 2006]. Since this first successful attempt, many graphical interfaces have been developed to ease the use of motion planning algorithms [START_REF] Coleman | Reducing the barrier to entry of complex robotic software: a MoveIt! case study[END_REF]. For instances, [A. [START_REF] Şucan | moveit![END_REF] developed MoveIt!, [START_REF] Brunner | Rafcon: A graphical tool for engineering complex, robotic tasks[END_REF] developed RAFCON, OpenRAVE comes with its graphical interface. For the DARPA Robotic Challenge, [START_REF] Marion | Director: A user interface designed for robot operation with shared autonomy[END_REF] developed Director and [START_REF] Rodehutskors | Intuitive bimanual telemanipulation under communication restrictions by immersive 3d visualization and motion tracking[END_REF] developed their own interface using virtual reality headset. The goal for these interfaces is to make robotic tools more accessible and user-friendly. A prototype graphical interface has also been developed with HPP. It provides to non-expert user an easy way of generating a Graph of Constraint and of solving manipulation problems. For instance, the sequence in Figure 5.1 was programmed within ten minutes only using the graphical interface and with the same tools as the one used to generate the examples in next sections. In these simulations, Baxter robot must move some boxes on a table in four different settings, numbered 1, 2, 3 and 4. In the first two cases, only the right arm of the robot is used. In the last two cases, both arms are used. The three first cases have only two boxes. Case 4 has three boxes. The constraint graph of case 1 is given in Figure 5.3. In the first case, the box positions are only shifted and the problem is monotone, i.e. there exists a solution which manipulates each box only once, one after the other. In the other 3 cases, the boxes are to be permuted. There are no monotone solution to these 3 problems. At least one intermediate box position must be found or simultaneous manipulation must occur.

Table 5.3 and Figure 5.2 summarizes the results. The solver is able to find solutions in all the four cases. For cases 1 and 2, the problem is not difficult and the solution comes quickly. Cases 3 and 4 corresponds to artificially-hard toy problems, yet the planner is able to discover a solution in a reasonable amount of time.

From case 3 to case 4, the time to solve the problem explodes. This shows a limitation of the approach. It does not scale to a high number of objects because there is no task planner. Case 1 shows that the presented approach is not as efficient as task planning based approaches on monotone cases. In contrast, it can solve non-monotone instances, as shown in cases 2, 3, 4. These cases shows the ability to discover new common valid placement. Case 3 and 4 also show the ability of the planner to consider simultaneous manipulation.

Tool use inference

In this example, PR2 robot picks up a box. Figure 5.4(a) and 5.4(f) show the initial and goal configurations. The planner must infer that it must open the drawer to pick up the box. Figure 5.4 shows the result path. Another interesting point is that interaction between the drawer and the object is inferred from the manipulation The constraint graph has been designed using the algorithm proposed in Section 4.2. The documentation consists of one handle and one contact surface for the object, one handle and one contact surface for the drawer and two grippers for PR2 robot.

The rules to limit the combinatorial were as follows. The left hand can grasp the box. The right hand can grasp the drawer. The drawer is always at a valid placement, An object pose is stable if the box surface and the drawer surface are in contact.

Humanoid robots

In this section, I apply the approach to humanoid robots. I demonstrate by some examples that the locomotion problem can be formulated as a manipulation problem. This is done by formulating quasi-static stability as a constraints. Then, I give some two examples of manipulation problems. They both illustrates simultaneous manipulation. The first also shows an articulated object. The second shows that it is able to cope with the crossed foliation issue.

Quasi-static walking motion

In this example, I model a locomotion problem as a manipulation planning problems. This approach is able to compute a quasi-static walking path for HRP-2. I consider three different scenarios. The environments are respectively a flat floor, a flat floor with an low obstacle and stairs. Contact constraints are build from contact surfaces in the documentation of the robot and the environment. The three following stability criteria are used. • two from double support to single support,

• two from single support to double support composed of only standard transition,

• two from single support to double support composed of one crossed foliation transition at the beginning and two standard transitions. This crossed foliation transition the algorithm to choose a foot pose on the floor for the free foot that has been visited by other connected components. shows the solution path found on flat floor and for stepping over. Figure 2.9 shows the path found for climbing stairs. The graph for this example is similar to the previous graph at the exception that it uses the third equilibrium criterion. These examples show the ability of finding common valid foot placement. Foot placement is considered in the same way as object placement. Indeed, in all these problems, there are two foliations crossing each other. They also show that this approach is abstract enough to be applicable to a wide range of problems. This manipulation planner can thus be used to address locomotion problem. In this example, Romeo holds a placard. The manipulation planning problem consists in rotating the placard around the vertical axis. To do so, the robot needs to go through a sequence of states where the robot holds the placard by the right hand, the left hand and both hands. Applying a task planning based approach for this problem seems difficult since the minimal sequence of tasks highly depends on the workspace of the robot arms and is very difficult to precompute. The results obtained after 20 runs of the algorithm are displayed in Table 5.4. The variance of the computation time is surprisingly high. Path planning was not interrupted after a threshold time as usually done for difficult problems. Note that the model of the robot is very accurate (each hand has four fingers with 3 segments) and a lot of time is spent in collision checking. Moreover, the solution path goes through several "narrow passages" since grasping the pole requires to avoid a lot of collisions between the object and the fingers. Half of the time, the problem is solved in less than 15 minutes.

Romeo holding a placard

Min Median Max

Grasping behind a door

I now demonstrate the implementation of a more complex manipulation planning problem. A humanoid robot has to grasp an object and place it inside a fridge while opening the fridge door. The sequence of high level actions is not given.

Conclusion

This thesis addressed the manipulation planning problem. I analysed the structure of the configuration space to model it. The contributions are organized around the Graph of Constraint. The overall approach to solve a manipulation planning problem is simple. First, the user documents the robots and the objects. Then, he specifies some elementary association rules which are used to automatically generate a Graph of Constraint. This graph provides useful information to the Manipulation-RRT to plan a manipulation path.

From a broader point of view, this approach could be used to program robots for industrial tasks. A prototype graphical interface based on this approach has had promising results in this direction. With a few interactions with the interface, it is possible to build a Graph of Constraint. This graph defines what are the interactions of the robot with the world. Then, manipulation planning problem can be defined using this graph and some other inputs, like position of a part to be processed. Then, this problem can be solved to generate a trajectory for each part. While the task is defined off-line in an abstract manner by the graph, the problem can be solved online with varying inputs. The big advantage of this approach is that it is robust to changes the inputs. For instance, the position of each input parts does not have to be the same. However, this assumes that some technical challenges are solved. For instance, the position of the parts has to be measured by some mean and three dimensional models of the environment and the objects must be available. Next section discusses possible future works.

Perspectives

Optimization of manipulation paths The manipulation paths produced by randomized algorithms contain erratic and undesirable movements. Although there exists optimization techniques in motion planning, they do not apply directly on manipulation paths because of the foliated structure of the configuration space. They can be split into a sequence of constrained path, to which standard optimization techniques applies. This method is implemented in Humanoid Path Planner (HPP) and gives good but insufficient results. Indeed, although it has the advantage of being easy to implement, the method cannot optimize the configuration linking the paths together. The method is doomed not to succeed in finding a path better than the linear interpolation between these configurations. For instance, this method is not able to change a "bad" grasp or a placement. Research in optimization for manipulation paths has already generated interest [START_REF] Zhang | Co-optimizing task and motion planning[END_REF]Shah, 2016, Hadfield-Menell et al., 2016].

Manipulator arms Many robots, like most manipulator arms, have an interval for revolute joints of width bigger than 2π. For instance, UR5 and IIWA robots have intervals of width 4π. This means that, for n joints, there are 2 n configurations for the same robot geometry. Random configurations often are at more the 2π along one revolute joint coordinate from its nearest neighbour. This is not desirable as it leads to motions where the robot does a full loop around one articulation. Moreover, it greatly slows down the search because it generates longer paths more often colliding with the environment. On my experiments, changing the interval from] -2π, 2π] to]π, π] has a non-negligible impact on solving time and improves a lot the quality of the solution path. However it is not a satisfactory solution since it reduces the capabilities of motion. Another possible solution I did not explore is to apply a modulus operation on rotation joints after having selected the nearest neighbour.

Variety of tasks This thesis did not consider tasks such as sweeping a surface. These actions are useful and appears often in factories. The problem of pushing object has already been addressed [Barry, 2013]. This framework considers actions which can be represented as constraint. It means they do not depend on time. Pushing could be written by a time-dependant constraint of the form f : CS × [0, 1] → R n . Sweeping a surface is different because it does not involve an object. The goal is not defined through the motion of an object.

Metric on the configuration space Randomized algorithm are sensitive to the chosen metric on the configuration space. Indeed, this metric is used to select the nearest neighbour and thus what part of the tree is extended. However, the foliated structure of the configuration space in manipulation planning should impact the nearest neighbour search. Indeed, configurations close to each other with a standard euclidean metric may be connected only by a very long path. For instance, two configurations corresponding to the same robot pose but a different object pose should account for the fact that the robot must also move.

Integration with task planning

The novelty of the Manipulation-RRT (M-RRT) is not to call a motion planning for each action it takes. In the current version, it decides of what action to take randomly. This is interesting as it shows that, although it helps, a task planner is not required for simple tasks. However, the problem becomes intractable when the number of states in the Graph of Constraint increases. Integrating a task planner may help to keep this tractable. Moreover, the task planner could highly benefit from the Graph of Constraint. First, motion planners used by most integrated task and motion planning approaches return at most a graph of configuration along with a solution path when found. It does not provide information on the search. In its current implementation, the Graph of Constraint returns statistical information about elementary actions that were taken and the reason when they fail. A task planner may use these to help the M-RRT to choose actions to take.

• Joint p k (n) is a rotation:

J n v p k (n) = O n O p k (n) × n p k (n) , J n ω p k (n) = n p k (n)
• Joint p k (n) is a translation:

J n v p k (n) = n p k (n) , J n ω p k (n) = 0 • Joint p k (n) is a SO(3): J n v p k (n) = O n O p k (n) × , J n ω p k (n) = I 3
Thus, when p k (n) is a rotation, we have || J

A.3 Hessian

The Hessian matrix is defined by H

A.3.1 Element of the Hessian matrix

• Joint p j (n) is a rotation 2 :

j > k, H n v p j (n),p k (n) = n p j (n) × J n v p k (n) H n ω p j (n),p k (n) =0 j ≤ k, H n v p j (n),p k (n) = n p j (n) × J n v p k (n) - J p j (n) v p k (n) -O n O p j (n) × n p j (n) × J p j (n) ω p k (n) H n ω p j (n),p k (n) = -n p j (n) × J p j (n) ω p k (n)
• Joint p j (n) is a translation:

H n v p j (n),p k (n) = -n p j (n) × J p j (n) ω p k (n) H n ω p j (n),p k (n) = 0 2
The case j = k can be covered by both expression. This can be shown by using n p j (n) × n p k (n) × = 0 and J p j (n) v p k (n) = 0.

• Joint p j (n) is a SO(3):

H n v p j (n),p k (n) = J n v p k (n) - J p j (n) v p k (n) × H n ω p j (n),p k (n) = 0

A.3.2 Bounds

By the mean value theorem, an upper bound of |||| H n (q)|||| F on CS is a suitable Lipschitz constant for J

n . An explicit upper bound is computed in this section.

The Hessian norm can be written as follows.

||||

Résumé en français:

Cette thèse traite du problème de planification de mouvement pour objets documentés. La difficulté du problème réside dans le couplage d'un problème symbolique et d'un problème géométrique. Les approches habituelles combinent la planification de tâche et la planification de mouvement. Elles sont complexes à implémenter et coûteuse en temps de calcul. Notre approche se différencie sur trois aspects.

Le premier aspect est un cadre théorique modélisant les mouvements admissibles du robot et des objets. Ce modèle théorique utilise des contraintes pour lier tâche symbolique et chemins géométriques accomplissant cette tâche. Un graphe de contrainte permet de modéliser les règles de manipulation. Un algorithme de planification utilisant ce graphe est proposé.

Le deuxième aspect est la gestion de chemin contraint. Dans le cadre de la manipulation, un définition abstraite sous forme de contrainte numérique est nécessaire. Un critère de continuité pour les méthodes de type Newton-Raphson est proposé pour assurer la continuité de trajectoire dans des sous-variétés.

Le dernier aspect est la documentation des objets. Certaines informations, facile à définir pour l'être humain, accélère grandement la recherche d'une solution. Cette documentation, spécifique à chaque objet et préhenseur, est utilisée pour générer un graphe de contrainte, facilitant ainsi la spécification et la résolution du problème.

Mots clés: Planification de manipulation, Planification sous contraintes, Génération de trajectoire continue, Affordance, Objets documentés

Abstract:

This thesis tackles the manipulation planning for documented objects. The difficulty of the problem is the coupling of a symbolic and a geometrical problem. Classical approaches combine task and motion planning. They are hard to implement and time consuming. This approach is different on three aspects.

The first aspect is a theoretical framework to model admissible motions of the robot and objects. This model uses constraints to link symbolic task and motions achieving such task. A graph of constraint models the manipulation rules. A planning algorithm using this graph is proposed.

The second aspect is the handling of constrained motion. In manipulation planning, an abstract definition of numerical constraint is necessary. A continuity criterion for Newton-Raphson methods is proposed to ensure the continuity of trajectories in sub-manifolds.

The last aspect is object documentation. Some information, easy to define for human beings, greatly speeds up the search. This documentation, specific to each object and end-effector, is used to generate a graph of constraint, easing the problem specification and resolution.

Definition 1. 7 (

 7 Planning Task). A planning task P = (O, I, G) is a triple where O is the set of actions, and I (the initial state) and G (the goals) are sets of atoms. Definition 1.8 (Plan). Given a planning task P = (O, I, G). A plan is a sequence P = o 1 , . . . , o n of actions in O that solves the task, i.e., for which G ⊆ Result(I, P) holds.

Figure 2 . 1 :

 21 Figure 2.1: Path projection example with UR5 robot. UR5 end-effector must follow the red line with constant orientation. Planning in configuration space with pointwise path projection can generate discontinuous path.

 are the singular values of two matrices of the same size, B and B, then

 Figure 2.4: Progressive projection method. The green surface is f (q) = 0. (a) shows the input path. (b) and (c) shows two successful iterations. The two first IPs are added without refinement because they are close enough from the previous IP. (d) shows a rejected IP. As it is too far from the previous IP, it is refined by dividing λ by two. It results in (e) and the new IP is finally added.

Figure 2 .

 2 Figure 2.5 shows the path after some iterations. From 2.5(b) and 2.5(c), the projection loop (Line 6) reduces the constraint violation point-wise. Between 2.5(c) and 2.5(d), an IP is added (Line 18).

 Figure 2.5: Global projection method. The green surface is f (q) = 0. (a) shows the input path. (b) and (d) shows two re-interpolation steps. New IPs are added when the distance between consecutive IPs is too big. (c) and (e) shows the constraint violation reduction step. Each IP is updated in order to decrease the constraint violation.

Figure 2 . 6 :

 26 Figure 2.6: Path projection results with UR5 robot for two input paths. UR5 endeffector must follow an horizontal line, with fixed orientation. The red lines give the left part of the input paths that was successfully projected. In both cases, the pointwise projection failed. Hermite refers to the RHP algorithm. The three algorithms manage to project the input path 1, from (a) to (b). Only the Progressive projection method managed to project the input path 2, from (c) to (d). In this case, Global projection and RHP did not succeed at all.

Figure 2 . 7 :

 27 Figure 2.7: HRP2 opening a door. This illustrates a problem where continuous path projection is needed. Without continuous projection, the algorithm returns discontinuous solutions.

Figure

 Figure 2.8:Non-coplanar friction-less multi-contact criterion. The circle represents the robot joints. The dashed arrows represent forces applied to the robot. P i is a contact point and f i n i is the force applied in P i .

Figure 2 . 9 :

 29 Figure 2.9: Robot HRP-2 climbs stairs quasi-statically. This path was generated using the friction-less multi-contact equilibrium criterion described in Section 2.3 and the manipulation planning algorithm in Chapter 3. It is detailed in Section 5.3.1.

 Graph . 42 3.1.1 States and transitions . 42 3.1.2 Problem statement . 46 3.1.3 Manipulation RRT . 47 3.2 Crossed foliation issue . 50 3.2.1 Example . 50 3.2.2 Conditions . 51 3.2.3 Crossed foliation transition 56 3.3 Generalized reduction property 57 3.3.1 Generalized reduction property 57 3.3.2 Grasps and placements . 62 3.3.3 Limitations . 63 3.4 Narrow passages . 63 3.4.1 Low sampling probability . 63 3.4.2 Way-point transition . 65 3.4.3 Experimental results . 66

Figure 3

 3 Figure 3.1: Graph of Constraint for a problem with a robot with one gripper manipulating one object.

GraspFigure 3 . 2 :

 32 Figure 3.2: Illustration of grasp and placement constraints. A gripper can grasp a cylindrical object with a DoF in rotation. The cylindrical object can be placed on the table. The parameters y p , z p and θ p are constrained by the placement parameterization constraint. They parameterize the foliation of the placement space. The parameter θ g is constrained by the grasp parameterization constraint. It parameterizes the foliation of the grasp space.

 Figure 3.4: Steps of the M-RRT algorithm. (a)-(e)shows the steps of one iteration of the algorithm. q rand is a random configuration. q near is its nearest neighbour. q proj is the projection of q rand onto the reachability set. q new is the configuration obtained after extension. (f) shows the roadmap when a solution was found, after more iterations.

Figure 3 . 5 :

 35 Figure 3.5: Grasp and placement with unique grasp: If the grasp is unique, any pair of grasp configurations are connectible by a transfer path.

FigureFigure 3 . 6 :

 36 Figure 3.6: The crossed foliation issue: if grasp and placement are foliated, trees rooted at initial and goal configurations will never meet.

Figure 3 . 9 :

 39 Figure 3.9: Graph of Constraint for a problem with a robot with one gripper manipulating one object. The double line represents crossed foliation transition.

 Figures 3.10(b) and 3.10(d), the case is slightly different. The robot has two rotational DoFs and the object can move in the plane (3 DoFs). As in the previous

Figure 3

 3 Figure 3.10: Two counter examples to the reduction property. Circles are rotation joints: 1 rotation on (a) and (c), 2 rotations on (b) and (d). The circle with a radius is an object that moves on the plane (3 DoFs). Hatched areas are obstacles. Start configurations are the top figures and goal configurations are the bottom ones. From (a) to (c), the problem has no solution independently of the obstacles. From (b) to (d), the problem has no solution because the obstacles.

Definition 3 .

 3 11 (Small Space Manipulability). Let R be a robot and O be an object. Let e r : CS R → SE(3), resp. e o : CS O → SE(3) be the continuous forward kinematic function that maps the robot, resp. object, configuration to the gripper, resp. handle, pose.

Figure 3

 3 Figure 3.12: This simple example illustrates narrow passages. (a) and (b) show a gripper and a ball. (c) gives a possible approaching pose. (d) and (e) show the same environment but the ball is in a box. The passage is now even narrower and lifting the ball up is a second narrow passage. (f) gives a possible lifting pose.

Figure 3 . 15 :

 315 Figure 3.15: A Graph of Constraint for the problem on Figures 3.12(d) and 3.12(e) with intermediate states similar to Figures 3.12(c) and 3.12(f). Dashed line represents way-point transition.

 Figure 3.16: Benchmark of way-point transition using UR5.

eo.

 Those admissible values depend on intrinsic parameters of e, intrinsic parameters of o and coupling parameters which depends on their association. In the following, I ignore coupling parameters.

 Figure 4.1: Documentation of gripper, handle and contact surfaces. On (a) and (b), the frames represent the grasping positions. The X axis, in red, is the approaching axis. The Z axis, in blue, is the possible rotation axis. The green surfaces on (b) and (c) are contact surfaces. Object surfaces can go on environment surfaces.

 Figure 4.1(b) and 4.1(c) give an example.

Figure 4 . 2 :

 42 Figure 4.2: Distance between polygons. Support polygon S is included in plane Π. C M is the centroid of the moving polygon M . Q M,S is its orthogonal projection onto Π. d (M, S) corresponds to Eq. (4.6) and d ⊥ (M, S) corresponds to Eq. (4.5)

Algorithm 4. 1

 1 Build the constraint graph 1: G ← set of grippers, 2: H ← set of handles, 3: function buildConstraintGraph 4: states ← ∅ 5:for all subset G ′ of G by increasing cardinal do 6:

Algorithm 4. 2 5 :

 25 Build a state f 1 ← set of contact polygons of the environment G′ ← set of grippers, 1: O ← set of objects (with contact polygons), 2: P ← set of contact polygons of the environment3: function MakeState(f 1 , G ′) for all obj ∈ O | f 1 (G ′) ∩ obj.handles = ∅ do 6:

Algorithm 4. 3

 3 Make a transition -No pre-grasp or pre-placement 1: function MakeTransitions(S 0 , S 1) 2:

 Package architecture The software is organized in small packages. It relies on hpp-fcl, a modified version of FCL [Pan et al., 2012], for collision checking, and on Pinocchio [Mansard et al., 2014] for robot modelling and forward kinematics.

Figure 5 . 1 :Figure 5 . 2 :

 5152 Figure 5.1: Robot programming with HPP. The robot UR5 is programmed with a graphical interface to move shaver parts. It must move them from the left carousel to the center one, where they are to be processed, and then move them to the right carousel. This is a use case of the European project Factory-In-A-Day.

Figure 5 . 3 :

 53 Figure 5.3: Constraint graph for Case 1 with Baxter robot: 2 boxes and considering only the right arm. The constraint graph is produced by an extension of Algorithm 4.1 that inserts way-point corresponding to approaching positions of the gripper in front of the object.

Figure 5

 5 Figure 5.4: PR2 robot picks up a box in a drawer

Figure 5 . 5 :

 55 Figure 5.5: Graph of Constraint to pick up a box in a drawer. The diamond are way-point internal states: P G stands for pre-grasp, I for intersection of grasp and placement, and P P for pre-placement. The two foliated spaces are drawer placements and object placements.

Figure 5 . 6 :Figure 5 . 7 :

 5657 Figure 5.6: Robot HRP-2 walking quasi-statically on flat floor.

Figure 5 .

 5 8 shows the graph for the two first cases. CoM lr is constraint C line CoM , and CoM l and CoM r are constraint C l CoM and C r CoM . For the last scenario, only the frictionless non-coplanar multiple contacts constraint is used. There are six way-point transitions:

SS l + Figure 5 . 8 :

 +58 Figure 5.8: Constraint graph to generate quasi-static walking motions. l and r indexes stand for left and right foot, DS for Double Support, SS for Single Support, CoM s for CoM on foot r and PS for pre Support, poses where the foot is close to its future pose on the floor.

Figure 5 .

 5 Figure 5.6 and 5.7 shows the solution path found on flat floor and for stepping over. Figure2.9 shows the path found for climbing stairs. The graph for this example is similar to the previous graph at the exception that it uses the third equilibrium criterion. These examples show the ability of finding common valid foot placement. Foot placement is considered in the same way as object placement. Indeed, in all these problems, there are two foliations crossing each other. They

Figure 5 . 9 :

 59 Figure 5.9: Robot Romeo holding a placard. In final configuration, the placard is rotated by 180 degrees. The manipulation planning algorithm needs to explore manifolds defined by right, left and both hand grasps.

Figure 5 .

 5 Figure 5.10: Robot Romeo puts a box in a fridge.

 First, I generate a path for the sliding robot. Then the path can be post processed to generate a walking trajectory as proposed by Dalibard et al. [2013] or Carpentier et al. [2016]. I successfully planned a path where Romeo robot takes an object and puts it in a fridge. Figure 5.10 shows the solution found.

 n v p k (n) || ≤ L and || J n v p k (n) || ≤ 1. Otherwise, we have || J n v,w p k (n) || ≤ 1.

Key words :

 words Manipulation planning, Constrained planning, Continuous trajectory generation, Affordance, Documented objects

. . 13 1.3 Manipulation planning . 14 1

 Joseph Mirabel and Florent Lamiraux. Manipulation planning: addressing the crossed foliation issue. In IEEE International Conference on Robotics and Automation (ICRA), June 2017. Joseph Mirabel, Steve Tonneau, Pierre Fernbach, Anna-Kaarina Seppälä, Mylène Campana, Nicolas Mansard, and Florent Lamiraux. HPP: a new software for constrained motion planning. In IEEE/RSJ Intelligent Robots and Systems (IROS), Other problem formulations 8 1.1.2 Constrained motion planning3.1 Multi-layer manipulation planners

	Chapter 1
	State of the art
	Contents	
	1.1 Motion planning .	5
	1.1.1	
	October 2016. 15, 79	

9 1.1.3 Motion planning for humanoid robot 12 1.2 Task planning . 15 1.3.2 Single layer planners . 16

Contents 2.1 Notations and definitions . 20

	2.1.1 Configuration space .	20
	2.1.2 Constraints .	22
	2.1.3 Path .	24
	2.2	

Continuous path on manifolds 25

	2.2.1 Newton-Raphson algorithm	25
	2.2.2 Continuity of the Newton-Raphson iteration function	26
	2.2.3 Two path projection algorithms	27
	2.2.4 Continuous planning algorithm	30
	2.3	

Static stability . 35

	2.3.1 Static stability constraint .	35
	2.3.2 Integration to a motion planner	37

Table 2 .

 2 1: Quadratic problems benchmarks. Each case is run 10 times. The rows correspond to the average and maximum computation time t avg , t max , the average, minimum and maximum distance between consecutive IPs d avg , d min , d max , and the average number of interpolation points N ip .

	Global proj. Circle	Parabola
	t avg /t max (µs) 16/90	201/231
	d min /d avg /d max (mm)	-	0.2/51/316
	N ip	0	10
	Progressive proj.	Circle	Parabola
	t avg /t max (µs)	78/134	173/207
	d min /d avg /d max (mm) 284/462/512 1/71/316
	N ip	4.75		14
	Recursive hermite proj.	Circle	Parabola
	t avg /t max (ms)	503/900	0.017/0.03
	d min /d avg /d max (µm) 50/75/100	-
	N ip	28946		0
	Constrained planning		

Table 2 .

 2

	Projection method Global Progressive	RHP
	t avg /t max (ms) 85/746	6.5/9.5	160/175
	N ip	123	72	3403
	False negative	54%	0%	8%

2: Results of UR5 case. The rows have the same meaning as in Table

2

.1. The number of false negative corresponds to the ratio of rejected path over all tests, while a continuous path exists.

Table 2 .

 2 3: Benchmark of friction-less multi-contact equilibrium criterion. Several quasi-static equilibrium criteria are used to project configurations in the scenario of Figure2.9. The values are averaged over the same set of 10000 random configurations. T eval is the time to evaluate the function and its Jacobian. T proj is the time to project a random configuration. The last row is the ratio of random configuration successfully projected. "CoM above center" refers to the criterion in[START_REF] Dalibard | Dynamic walking and whole-body motion planning for humanoid robots: an integrated approach[END_REF], "CoM above line" to the second criterion in Appendix B, "QP" to this criterion without the priorities detailed in Section 2.3.2 and "QP with priorities" with the priorities.

	T eval (µs)	345	362	545	545
	T proj (ms)	3.90	2.93	9.46	10.3
	Success ratio	99%	99%	78%	75%

CoM above center CoM above line QP QP with priorities

 Table 3.1: Results of the benchmark of way-point transitions with UR5. Each case is run 100 times. t is the computation time. and N is the number of nodes generated. No guidance means that no intermediate poses were given. Guidance with transitions and way-point transitions means that intermediate poses were provided. In the former case, this information was provided using standard states and transitions while the latter case uses way-point transitions. Grippers and handles . 70 4.1.2 Contact surfaces . 71

				Chapter 4
				Affordance
	Contents			
	4.1 Documented objects . 69
	4.1.1			
			With transitions With way-point transitions
	t avg /t max (s)	74.8 / 296	1.52 / 8.92	0.234 / 0.245
	N avg /N max 3553 / 13840	53 / 291	5 / 5

4.2 Constraint graph generation 73 4.2.1 Building the states . 74 4.2.2 Transition detection . 75

 C grasp ←Grasp(g 1 , f 1 (g 1))

	7:	S.constraints.add(C contact)
	8:	S.transConstr.add(FIXED(obj, env))
	9: 10:	for all g 1 ∈ G ′ do
	11:	S.constraints.add(C grasp)
	12:	if C grasp .dimension < 6 then
	13:	

Table 4 .

 4 1: Constraints of way-point states. C sub denotes the constraint of the submanifold in which the overall transition lies. For instance, it is composed of the grasp constraints of some pairs gripper / handle, and of the placement constraints of non-grasped objects. It does not contains the placement of the object of the current handle.T 01 T 10 T 12 T 21 T 23 T 32 T 34 T 43

	state	S 0	S 0	S 0	S 0	S 1	S 1	S 1	S 1
	f grasp			x	x	x	x	x	x
	f place	x	x	x	x	x	x		
	f sub	x	x	x	x	x	x	x	x

Table 4 .

 4 2: Constraints of transition between way-point states. f sub denotes the parametrization function of the foliation in which the overall transition lies. As in Table4.1, it is composed of the grasp parametrization function of some pairs gripper / handle, and of the placement parametrization function of non-grasped objects.Algorithm 4.3 shows function MakeTransition in cases with no pre-grasp and no pre-placement. Algorithm 4.4 shows the same function with pre-grasp and pre-placement. Similar algorithm have been designed for the two other cases.

 Library architecture . 80 5.1.2 Results . 81 Rearrangement planning . 84 5.2.2 Tool use inference . 85

		Chapter 5
		Results
	Contents
		5.1 Humanoid Path Planner . 79
		5.1.1 5.2 Manipulator arm . 84
		5.2.1
	8:	if Grasp is foliated then
	9: 10: 11: 12:	T * 01 ←CrossedFoliationTransition(T 01) T * 01 .crossingParametrizationFunction(f grasp) T * 0 ←WaypointTransition((S 0 , W 1 , W 2 , W 3 , S 1), (T * 01 , T 12 , T 23 , T 34)) if Placement is foliated then
	13: 14: 15:	T * 43 ←CrossedFoliationTransition(T 43) T * 43 .crossingParametrizationFunction(f place) T * 1 ←WaypointTransition((S 1 , W 3 , W 2 , W 1 , S 0), (T * 43 , T 32 , T 21 , T 10))

5.3 Humanoid robots . 86 5.3.1 Quasi-static walking motion 86 5.3.2 Romeo holding a placard . 90 5.3.3 Grasping behind a door . 91

Table 5 .

 5 2: Results for 50 runs of each planner. Green values are used when the HPP implementation performs better than all OMPL implementations. Red values are used when HPP performs worse than at least one OMPL implementation. A planning is considered to have failed after running longer than the specified timeout value.

		HPP-D	HPP-C	OMPL	OMPL-NR	HPP-D	HPP-C	OMPL	OMPL-NR
	Pipedream-Ring	0.065 0.043 0.458	0.618	1.24	2.05	3.00	4.23
	Abstract	0.159 0.408 23.5	14.3	47.6	34.4	107	107
	Cubicles	0.049 0.024 0.096	0.118	0.271 0.130 0.277	0.329
	scenario		max time (s)		success rate (%)
		HPP-D	HPP-C	OMPL	OMPL-NR	HPP-D	HPP-C	OMPL	OMPL-NR
	Pipedream-Ring	6.52	7.35	10.4	14.1	100	100	100	100
	Abstract	258	178	297	270	94	94	96	98
	Cubicles	0.902 0.946 0.665	1.06	100	100	100	100
	scenario		avg number of nodes	time-out (s)	
			HPP-D	HPP-C	OMPL	OMPL-NR		
	Pipedream-Ring	2283	2452	16100	22681		20	
	Abstract	11927 10807 177914 181427		300	
	Cubicles	495	302	261	307		20	

Table 5 .

 5 3: Benchmark of rearrangement planning with Baxter robot: Minimum, median and maximum solving time and number of nodes, over 20 runs, for the cases described in Section 5.2.1.

				Solving time (s)	Number of nodes
	Case Nb Arm Min Med Max Min Med Max
	1 2	2	Right	0.15 1.4 1.1 4.6	3.5 10.6	11 42	55 199	141 482
	3 4	3	Both	3.7 76	18 397 1028 664 3659 8830 60 103 273 832
			pregrasp			pregrasp		
			intersec		free	intersec		
			preplace			preplace		
			r_gripper grasps box1		r_gripper grasps box2	

Table 5 .

 5 4: Benchmark of planning for Romeo holding a placard

	Number of nodes	42	1370	7002
	Solving time (s)	19	880	6500

 I consider in joint trees so the Hessian matrix is sparse. Joints not in I(n) do not influence the placement of joint n. It gives the following bound. Table A.1 and A.2 below summarizes the upper bound of σ. 4|I R ||I SO(3) |L 2 4|I T ||I SO(3) | 4|I SO(3) |(|I SO(3) | -1)L 2Table A.1: Upper bound for σ(v, χ, κ). I know give a proof of the values in Table A.1. CoM Center of Mass. 12, 28, 38, 88, 89, 101, 102 DA-RRT Diverse Action RRT. 18 DoF degree of freedom. 5, 22, 39, 43, 44, 50, 57, 58, 62, 63, 69, 95 FF Fast Forward. 14, 16 Graph of Constraint Graph of states and transitions encoding manipulation rules. ix, xiii, 2, 3, 41-43, 45-47, 49, 56, 63, 64, 66, 69, 73, 74, 80, 83, 87, 93, 94 HPP Humanoid Path Planner. xi, 2, 4, 31, 79, 81-83, 93 IP interpolation point. 11, 27-32, 34, 35 M-RRT Manipulation-RRT. ix, 3, 42, 47, 48, 52, 54, 55, 79, 80, 93, 94 NAMO Navigation Among Movable Obstacles. 14 NR Newton-Raphson. 9, 10, 24-27, 29, 30, 34, 37, 52, 81 OMPL Open Motion Planning Library. 79-82 OpenRAVE Open Robotics Automation Virtual Environment. 79, 80, 82 PRM Probabilistic RoadMaps. 7, 8, 17 RGD Randomized Gradient Descent. 9 RHP Recursive Hermite Projection. 10, 11, 31-35 RRT Rapidly exploring Random Tree. 2, 3, 7-9, 11, 12, 18, 30, 31, 34, 47, 49, 50 Notations CS Configuration space of the robot. 5-12, 16, 20, 22-27, 35, 37, 41-43, 45-47, 52, 54, 55, 57-59, 61, 62, 64, 73, 81, 94, 97 CS f ree Free configuration space. 6, 7, 9, 17 CS obs Obstacle configuration space. 6 CG Subset of valid grasp of CS. 16, 17, 23, 45, 46, 57, 58, 61-63 CP Subset of valid placement of CS. 16, 17, 45, 46, 57, 58, 61, 62 se(3) Lie algebra of SE(3). 59, 60, 70 SE(3) Special Euclidian group. 43, 57, 59, 70 SO(2) Special orthogonal group. 20, 21 SO(3) Special orthogonal group. 20, 21, 95-99

	H n |||| 2 F = |||| H n |||| 2 F ≤ |I(n)| 2 (max(9L 2 , (L + 2) 2) + 1) j∈I(n),k∈I(n) || H n v j,k || 2 2 + || H n ω j,k || 2 2 For convenience, I introduce an intermediate variable σ(m, χ, κ) and rewrite (A.2) (A.3) (A.2). σ(m, χ, κ) = j∈Iχ(n),k∈Iκ(n) || H n m j,k || 2 2 |||| H n |||| 2 F = m∈{v,ω},(χ,κ)∈{R,T,SO(3)} 2 σ(m, χ, κ) A.3.2.1 Upper bound for σ(v, χ, κ) χ\κ R T SO(3) R |I R | 2 L 2 4|I R ||I T | 2|I R ||I SO(3) |L 2 T 2|I R ||I T | 0 2|I T ||I SO(3) | CHOMP Covariant Hamiltonian Optimization for Motion Planning. 8 SSC Small Space Controllability. 58 SSM Small Space Manipulability. ix, 59 SO(3) Glossary STOMP Stochastic Trajectory Optimization for Motion Planning. 8
	TS Tangent Space Sampling. 9, 10
	V-PRM Visibility PRM. 7

M can be computed using the Appendix A.

As, for instance, in the video experiment of[START_REF] Srivastava | Combined task and motion planning through an extensible planner-independent interface layer[END_REF]: https://youtu.be/ 7DUw5L5bx7s.

I assume solutions to the optimization problem are continuous with respect to the inputs so that yi > 0 holds on a ball. fi = 0 is then true on this ball so the derivative at the center is zero.

The number of variables is multiplied by

The number of constraints stays the same.

I will often abusively use a state in place of the subset of CS it defines.

p|[0,t] is the restriction of p to [0, t], i.e. p| [0,t] = [0, t] → CS s → p(s)

There always exists a coordinate system in which this is true.

Smooth enough functions have the 0-property, which corresponds to Property 3.1. See Ponomarev[1987] for more details.

https://humanoid-path-planner.github.io/hpp-doc/

In the third scenario (Pipedream-Ring), no mesh of the ring-shaped robot was provided by OMPL, so we replaced it with a ring mesh of 982 triangles.

converted to the standard metric system from OMPL that uses inches.

This is an extended notation. SO(3) joints have no normal and nn is never used.

Remerciements

Appendix A

Bound of the Hessian matrix of a kinematic chain A.1 Notations

Consider a tree of joints with N joints and d degrees of freedom (DoFs). The types of joint considered are:

• rotation: denoted by R, 1 DoF;

• translation: denoted by T , 1 DoF;

• spherical: denoted by SO(3), 3 DoFs.

Each joint can have one or several DoFs. p(n) denotes the parent joint of joint n and p k (n) = p k-1 (p(n)) is its k-th ancestor. O n , resp. n n , is the center, resp. normal 1 , of joint n. Let L be the longest possible distance between two centers of joint.

Let I(n) be the set of joint indexes of the chain between the root joint and joint n. Let I R (n) (resp. I T (n), I SO(3) (n)) be the subset of indexes of rotation (resp. translation, SO 3) joint in I(n). They are such that

A.2 Jacobian

The Jacobian of the placement of joint n is

n ω j denotes the angular velocity part of J n C j . Both J n v j and J n ω j have 3 rows. Their number of columns is the number of DoF of the joint type. This is summarized in (A.1).

The elements of J n are as follows. The unlisted blocks are matrices of zeros.

Proof. From the element of the Hessian matrix given in Section A.3.1, we get:

and ∀j ∈ I SO(3) :

The Jacobi identity of cross product on Proof. From the element of the Hessian matrix given in Section A.3.1, we get:

A.3.2.3 Upper bound for the Hessian

The above inequalities put together gives the following bound.

Static stability constraints

The following paragraphs detail static stability criterion for a humanoid robot with one or two co-planar horizontal contacts. (r com (q) -r f oot (q)) × z world = 0 CoM above the line segment linking the feet center The motivation is to define a criterion which make it possible to switch from left single support to right single support. Figure B.1 schematically represents a humanoid robot. r r (q) denotes the right foot position and r l (q) the left one. r com (q) denotes the position of the CoM. u = r r (q) -r l (q) denotes the vector from left to right foot and e = r com (q)r l +rr 2 denotes the vector from the middle point between the feet and the CoM. The constraint is defined as follows.

Center of Mass (CoM

e × u, z world = 0 (B.1) r com (q) -r l (q), u ≥ 0 (B.2) r r (q) -r com (q), u ≥ 0 (B.3) Equation (B.1) imposes r com to be on the vertical plane passing by points r r and r l . Equations (B.2) and (B.3) reduces the plane to a slice "between" the feet. Overall, the constraint is of dimension 3. Note the u is not normalized for numerical reasons. First, the Jacobian of u is much cheaper to evaluate than of u ||u|| 2 . Second, it avoids numerical issues around ||u|| 2 = 0. This favours to configuration with smaller ||u|| 2 as they have smaller error. For the extreme case u = 0, the criterion does not ensure stability. Fortunately, such configuration are in collisions.

Height of the CoM

To the previous constraints, I also add a constraint on the height of the center of mass, of the form (r com (q) -r f oot (q)) ,