
HAL Id: tel-01591472
https://laas.hal.science/tel-01591472v2

Submitted on 23 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Motion planning for digital actors
Mylène Campana

To cite this version:
Mylène Campana. Motion planning for digital actors. Robotics [cs.RO]. Université Paul Sabatier -
Toulouse III, 2017. English. �NNT : 2017TOU30097�. �tel-01591472v2�

https://laas.hal.science/tel-01591472v2
https://hal.archives-ouvertes.fr


THÈSETHÈSE

En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ FÉDÉRALE
TOULOUSE MIDI-PYRÉNÉES

Délivré par :

l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Discipline ou Spécialité :

Robotique

Présentée et soutenue le 07/07/2017 par :

Mylène CAMPANA

MOTION PLANNING FOR DIGITAL ACTORS

JURY
Jean-Paul LAUMOND Directeur de recherche Directeur de thèse

Katsu YAMANE Senior Researcher Rapporteur

Lionel REVERET Directeur de Recherche Rapporteur

Marilena VENDITTELLI Associate Professor Membre du jury

Juan CORTÉS Directeur de Recherche Président du jury

École doctorale et spécialité :
EDSYS : Robotique 4200046

Unité de Recherche :
Laboratoire d’analyse et d’architecture des systèmes (LAAS)

Directeur de Thèse :
Jean-Paul LAUMOND

Rapporteurs :
Katsu YAMANE et Lionel REVERET





i

Acknowledgement

Firstly, I would like to thank my thesis director Jean-Paul Laumond who has guided

and advised me all along the thesis. His support, rigor and teaching skills helped me

to discover multiple problems and to address them in a pleasant way. I also thank

the people who worked with me and made us achieve our publications: Florent

Lamiraux, Pierre Fernbach, Steve Tonneau and Michel Taïx.

Secondly, I thank all my mates of Gepetto who really cheered me up during

these three years: Maximilien, Mathieu, Alexis, Christian, François, Kevin, Nemo,

Galo, Joseph, Guilhem, Naoko, Ganesh, Robert, Justin, Andrea, Dinesh, Rohan,

Céline and the Barbus.

Finally, I thank my family for trusting me to achieve this degree, and particularly

my partner Gurvan for advising me and sharing my life while making this work

possible.





Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Problem statement and notations 5
2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Sampling-based motion planning . . . . . . . . . . . . . . . . . . . . 6

2.3 Numerical path optimization techniques . . . . . . . . . . . . . . . . 7

2.4 Path planner software . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Kinematic chain . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.2 Operations on configurations and vectors . . . . . . . . . . . 10

2.5.3 Straight interpolation . . . . . . . . . . . . . . . . . . . . . . 11

3 A gradient-based path optimization method for motion planning 13
3.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Optimization variables . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Unconstrained resolution . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Linear constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 New constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.2 Linearized constraint computation . . . . . . . . . . . . . . . 20

3.5 Convergence analysis and algorithm refinement . . . . . . . . . . . . 20

3.5.1 Geometrical representation of the dependency between linear

constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.2 Algorithm refinement . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7.1 From 2D basic examples . . . . . . . . . . . . . . . . . . . . . 26

3.7.2 To 3D complex problems . . . . . . . . . . . . . . . . . . . . 27

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Jumping in robotics and computer animation 37
4.1 Jumping robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Motion planning techniques and data driven animation . . . . . . . . 38

4.3 Physics-based motion synthesis . . . . . . . . . . . . . . . . . . . . . 40

4.4 Related work analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 42



iv Contents

5 Ballistic motion planning for a point-mass 43
5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Unconstrained ballistic motion . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Accessible space of ballistic motion . . . . . . . . . . . . . . . 44

5.2.2 Goal-oriented ballistic motion . . . . . . . . . . . . . . . . . . 46

5.3 Ballistic motion with constraints . . . . . . . . . . . . . . . . . . . . 47

5.3.1 Non-sliding constraints . . . . . . . . . . . . . . . . . . . . . . 47

5.3.2 Constraint formulation . . . . . . . . . . . . . . . . . . . . . . 50

5.3.3 Velocity constraints . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.4 Constraint collection and solution existence . . . . . . . . . . 51

5.4 Motion planning algorithm . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.2 Probabilistic convergence study . . . . . . . . . . . . . . . . . 55

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Ballistic motion planning for jumping superheroes 61
6.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Non-slipping constraint for an arbitrary number of contacts . . . . . 62

6.3 A reduced character model for contact location estimation . . . . . . 64

6.4 Motion planning algorithm for the reduced model . . . . . . . . . . . 66

6.5 Motion synthesis for wholebody animation . . . . . . . . . . . . . . . 69

6.5.1 Computation of wholebody contact configurations, and iden-

tification of takeoff and landing phases . . . . . . . . . . . . . 70

6.5.2 Wholebody animation of the jump trajectory . . . . . . . . . 72

6.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.6.1 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . 74

6.6.2 Time performances . . . . . . . . . . . . . . . . . . . . . . . . 78

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Conclusion 81
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A Appendix: Computation details of intersections 85
A.1 Intersection between a cone and a vertical plane . . . . . . . . . . . 85

A.2 Intersection between a convex sum of cones and a vertical plane . . . 88

B Appendix: Rotation effect 94

C Preliminary work: angular momentum feasibility study 97

Bibliography 99



Chapter 1

Introduction

1.1 Context

For six decades, robotics methods have improved the automation of motion gener-

ation [Chapuis 1949]. Robots are able to repeatably execute motions requiring an

important accuracy. Besides, depending on their design, their motions can surpass

the average human limits. Due to the complexity of tasks and environments, robot

motions have initially been manually generated by human operators. However, the

rise of the artificial intelligence and optimization tools has inverted this trend in the

thirty last years. Planning offers the possibility of returning a trajectory reaching

a desired configuration and complying with constraints. Most planners now only

require some user-defined specifications and modeling of the environment to avoid

collisions. In these specifications, optimization criteria can be provided to improve

the trajectory, during planning or afterwards. This thesis exposes, for instance, how

the length of a planned path can be reduced while avoiding collisions.

Computer graphics has also benefited from the advances of artificial intelligence

and automation. Large sets of motion capabilities are necessary to autonomously

evolve in various environments: walking, running, climbing, jumping, falling etc.

Instead of designing character trajectories by hand (see Figure 1.1), or relying on

motion capture systems (as commonly seen for animation movies or video games),

new possibilities have appeared to synthesize them. Physics-based assumptions or

motion capture poses bring the necessary constraints to guide motions and make

them plausible to the user. If a motion appears as unrealistic or if collisions occur,

the immersion in the animation is altered. Combining the autonomy of motion

planning and animation-based constraints constitutes the heart of the second con-

tribution of this thesis.

Figure 1.1: Example of a manually designed trajectory for animation, with key-postures.
c©Autodesk Maya



2 Chapter 1. Introduction

1.2 Contributions

This thesis provides two main contributions to motion planning applications in

arbitrary environments:

Contribution 1: We propose a path-optimization method that reduces the path

length of random planner outputs. The method lies in a trade-off between simplic-

ity, computation efficiency and adaptation to the environment modeling. Without

neither prior knowledge nor pre-processing of both robot and environment, the

method optimizes path length with a gradient-based algorithm while constraining

the path with constraints defined in the task space. We demonstrate that this

method is more efficient to improve paths in some situations compared to random

shortcuts.

Contribution 2: We present an original method that returns ballistic motions

for a jumping character in an arbitrary environment. For computational efficiency,

the character shape is simplified during the planning step. There is no air drag

assumption so the ballistic path is supported by a parabola. Physics-based con-

straints are considered to make the ballistic trajectory realistic. Then, the sequence

of jumps is built with a probabilistic planner. Based on the simplified character

shape, contact generation between jumps is conducted. Finally, key-frames postures

guide the wholebody motion interpolation and re-planning toward a plausible and

collision-free motion.

1.3 Plan

The thesis firstly addresses the path optimization contribution. Brief motion plan-

ning and path optimization states of the art are given in Chapter 2. We also

introduce there the motion planning library in which our algorithms were imple-

mented. Then, Chapter 3 presents the path-optimizer motivations, framework and

results. Focus is made on convergence analysis and parameter tuning.

The manuscript secondly tackles the ballistic motion planner contribution. Re-

lated works on jumping in robotics and computer animation are discussed in Chap-

ter 4. Then the planner is described in two steps, corresponding respectively to

Chapters 5 and 6. First, we address the notion of constrained ballistic path for a

point-mass. We implement it in a basic motion planner and provide simulations.

Next, we extend this planner to a wholebody ballistic motion planner, considering

contact phases and flight animations. We conclude on simulations with various

characters and environments.

Discussions on the thesis contributions are reminded and perspectives for future

work are finally given in Chapter 7.



1.4. Related publications 3

1.4 Related publications

Journal article:

- Mylène Campana, Florent Lamiraux and Jean-Paul Laumond, A gradient-
based path optimization method for motion planning, Advanced

Robotics Journal, Special Issue on Recent Advancements on Industrial Robot

Technology, 2016.

International conference proceedings with review committee:

- Mylène Campana and Jean-Paul Laumond, Ballistic motion planning,

IEEE/RSJ Intelligent Robots and Systems Conference (IROS), 2016. Finalist

of the Best Paper Award on Safety Security and Rescue in Robotics.

- Mylène Campana, Pierre Fernbach, Steve Tonneau, Michel Taïx and Jean-

Paul Laumond, Ballistic motion planning for jumping superheroes,

Motion in Games Conference (MIG), 2016.

- Joseph Mirabel, Steve Tonneau, Pierre Fernbach, Anna-Kaarina Seppälä,

Mylène Campana, Nicolas Mansard and Florent Lamiraux, HPP: a new
software for constrained motion planning, IEEE/RSJ Intelligent Robots

and Systems Conference (IROS), 2016.





Chapter 2

Problem statement and
notations

Contents
2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Sampling-based motion planning . . . . . . . . . . . . . . . . 6

2.3 Numerical path optimization techniques . . . . . . . . . . . 7

2.4 Path planner software . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Kinematic chain . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.2 Operations on configurations and vectors . . . . . . . . . . . 10

2.5.3 Straight interpolation . . . . . . . . . . . . . . . . . . . . . . 11

This chapter introduces the motion planning problem and the planners which

will be at the center of the thesis. Then, considering the limits of the probabilistic

planners, an overview of optimization methods is given. Finally, motion planning

library and notations are detailed.

2.1 Problem statement

Motion planning for systems in cluttered environments has been addressed for more

than thirty years [Brady 1983]. The motion planning problem consists in deciding

if there exists a collision-free path to connect an initial configuration to a goal

configuration of a robot moving around obstacles. The path is a geometrical object

that has to be continuous and collision-free. One seminal formulation is the so-called

piano movers problem [Schwartz 1983]. In this formulation, the robot is a rigid

body. The generalization of the problem to articulated bodies has been introduced

by promoting the notion of Configuration Space CS [Lozano-Pérez 1983].

The robot configuration is represented by its joint coordinates. Therefore CS is

a manifold whose size is the degree of freedom (DOF) of the robot. In CS, the robot

configurations are equivalent to points (see Figure 2.1). Thus, the problem of finding

a continuous path in a topological space becomes a combinatorial problem of search-

ing a path in a graph. The basics are developed by [Latombe 1991, LaValle 2006].



6 Chapter 2. Problem statement and notations

q1

q2

q3

q4

q5

q6

q1

q2 q3

q4

q5

q6

Figure 2.1: Illustration of configurations of the humanoid robot HRP-2 in the workspace
(left) and in a Configuration-Space representation (right).

Multiple approaches exist to solve the motion planning problem. They can be

classified in three main families: deterministic methods, numerical optimization-

based methods and random-based methods. This thesis focuses on the last family

of methods.

2.2 Sampling-based motion planning

To explore the connected components of collision-free configuration spaces, pio-

neering contributions in the 90’s introduced certain levels of random searches, i.e.

random walks [Barraquand 1991], random sampling [Kavraki 1996, LaValle 2001].

Today most motion planners are inspired by these seminal approaches. The

configuration-space is randomly sampled and a graph of collision-free configura-

tions and paths is build.

The probabilistic methods are commonly classified in two families:

• Diffusion-based methods inspired by the Rapidly-exploring Random Tree

(RRT) [LaValle 2001]. They consist in growing a tree of configurations by

iteratively extending it toward a random configuration.

• Sampling-based methods derived from the Probabilistic RoadMap (PRM)

[Kavraki 1996]. First, a roadmap that captures the topology of the collision-

free configuration space is built. This step can be conducted offline if online

performances are required. Then, initial and final desired configurations are

added to the roadmap and a solution path is computed among it to link them.

This step is not time consuming compared to the first one. It can often be

done with real-time performances.

Randomness avoids local minima that trap gradient-based methods. It also

limits the computation time dependency on the number of DOFs. Furthermore,

random-based methods are easy to implement and they are probabilistically com-

plete: if a solution path exists, the probability to find a path converges to 1 when



2.3. Numerical path optimization techniques 7

computation time increases. However, such planners cannot determine if no solu-

tion exists, e.g. if the initial and goal configurations do not belong to the same

connected component of the collision-free configuration subset. Besides, solution

paths contain detours and unnecessary DOF activation. They need to be optimized

and post-processed before being executed by a virtual or real robot. Alternative

strategies exist however to produce paths of higher quality:

• Planning by path-optimization [Park 2012, Garber 2004] where obstacle

avoidance is handled by constraints or cost using computation of the near-

est obstacle distance. Most of these planners are using non-linear optimiza-

tion [Betts 2009] under constraints. Such planners provide close-to-optimality

paths and have smaller time computation for easy problems, but they are

mostly unable to solve narrow passage issues.

• Optimal random sampling [Karaman 2011] is also close to an optimal solution,

but computation time is significantly higher than classic approaches.

As our contribution belongs to path optimization processes, an exhaustive state

of the art is addressed in the next section.

2.3 Numerical path optimization techniques

Optimization is always with respect to one or multiple criteria. The most common

in motion planning are:

• the path length, which penalizes detours,

• the obstacle clearance for safety and

• the execution time, which is influenced by the path length but also by velocity

constraints.

CHOMP algorithm [Zucker 2013] optimizes an initial guess provided as input.

It minimizes a time invariant cost function using efficient covariant Hamiltonian

gradient descent. The cost is quantified by non-smooth parts (with high velocities)

and an obstacle avoidance term, provided by the distance to the nearest obstacle for

each iteration of the trajectory. Calculating these nearest distances however is time-

consuming because the distances between all pairs of objects must be computed at

each time step along the path. To reduce the computation time, the method starts

by building offline a map of distances that will be called during the optimization

at the requested time. Besides, meshes are pre-processed into bounding spheres so

that distances are computed faster at the cost of a geometry approximation.

STOMP method [Kalakrishnan 2011] avoids computing an explicit gradient for

cost optimization using a stochastic analysis of local random samples. But as for

CHOMP, the obstacle cost term requires a voxel map to perform its Euclidean Dis-

tance Transforms, and represents the robot bodies with overlapping spheres. Such



8 Chapter 2. Problem statement and notations

technique provides a lot of distance and penetration information but remains very

time consuming and it is not as precise as some distance computation techniques

based on the problem meshes as Gilbert-Johnson-Keerthi [Gilbert 1988].

Some optimization-based planners may not require an initial guess but

some naive straight-line manually or randomly-sampled initialization as Tra-

jOpt [Schulman 2014]. The path is iteratively optimized with sequential convex

optimization by minimizing at each step its square length, linear and non-linear

constraints being considered as penalties. To deal with collision-constraints, near-

est obstacle distances are calculated at each discrete time of the trajectory vector.

This can be a burden for a high-dimensional robot or a complex environment.

However, it may be compensated with a short path composed of only one or two

waypoints (see Figure 2.2).

The elastic strips framework [Brock 2002] is also an optimization-based method.

The path is modeled as a spring and obstacles give rise to a repulsive potential field.

Although designed for on-line control purposes, this method may be used for path

shortening. In this case however, the number of distance computations is very high.

The authors also propose to approximate the robot geometry by spheres.

Some heuristics use Random Shortcuts (RS) on the initial guess combined with

a trajectory re-building. For instance, smooth shortcuts made of parabola and

line combinations can be returned, relying on the classic bang-bang control ap-

proach [Hauser 2010]. These local refined trajectories are time-optimal since they

comply with acceleration and velocity constraints. The authors of [Guernane 2011]

have guided the configuration generation with local holonomic considerations. Nev-

ertheless this method remains only locally optimal, and does not address high-

DOF problems. A Partial Random Shortcut (PRS), only applied on certain

DOFs, combined with medial axis retraction for clearance has also been pro-

posed [Geraerts 2007]. However it is relatively slower than a classic random short-

cut, and only investigated for freeflyer robots. Furthermore, PRS is not taking

advantage of information returned by the collision checker, e.g. which limbs are

colliding, in order to guide the selection of a relevant group of DOFs to shortcut.

The work of [Pan 2012b] relies on collision checking and backtracks when an

iteration is detected in collision, instead of trying to constantly satisfy distance

constraints. Collision constraints are handled by interpolating configurations which,

at some points of the trajectory, freeze the whole robot configuration instead of a

Figure 2.2: Result of TrajOpt path optimization on a humanoid robot crossing a narrow
passage [Schulman 2014].



2.4. Path planner software 9

pertinent subpart.

2.4 Path planner software

All the methods presented in this thesis have been implemented in the open source

library Humanoid Path Planner (HPP1) [Mirabel 2016]. The code of the methods

presented in this manuscript is available online2.

HPP is a modular library that handles classic path planners, collision detection

and task-space-based constraints. Based on them, additional algorithms are de-

veloped, such as manipulation planning, path optimization, locomotion planning,

ballistic motion planning etc. It originates in the motion planning software Move3D

(1998) [Laumond 2006]. The library is specially designed for legged robots such as

humanoids, but can also handle freeflyer and manipulator robots. Documented

objects can also be considered for manipulation planning.

2.5 Notations

This chapter details the mathematical notations of the manuscript planning meth-

ods.

2.5.1 Kinematic chain

A robot is defined by a kinematic chain composed of a tree of joints. The ordered

list of joints is denoted by (J1, · · · ,JNJ
). Each joint Ji, i ∈ {1..NJ}, is represented

by a mapping from a sub-manifold of Rni , where ni is the dimension of Ji in CS,

to the space of rigid-body motions SE(3). The rigid-body motion is the position

of the joint in the frame of its parent. In the examples presented in the thesis, four

types of joints are considered (see Table 2.1). Two examples of modeling choices

are illustrated in Figure 2.3.

A configuration q of the robot is defined by the concatenation of the joint

configurations:

q = (q1, · · · , qn1
︸ ︷︷ ︸

J1

, qn1+1, · · · , qn1+n2
︸ ︷︷ ︸

J2

, · · ·qn), n,

NJ∑

i=1

ni

Note that the robot configuration space CS ⊂R
n, and that a configuration belongs

to a sub-manifold of Rn.

The velocity of each joint Ji, 1 ≤ i ≤ NJ , belongs to the tangent space of the

joint configuration space, and is defined by a vector of Rpi , where pi is the number

of DOFs of Ji. Note that the velocity vector does not necessarily have the same

dimension as the configuration vector.

1http://humanoid-path-planner.github.io/hpp-doc/index.html
2https://github.com/mylene-campana

http://humanoid-path-planner.github.io/hpp-doc/index.html
https://github.com/mylene-campana


10 Chapter 2. Problem statement and notations

Name dimension config space velocity

translation 1 R R

bounded rotation 1 R R

unbounded rotation 2 S1 ⊂ R
2

R

SO(3) 4 S3 ⊂ R
4

R
3

Table 2.1: Translation and rotation joint positions are defined by one parameter corre-
sponding respectively to the translation along an axis and a rotation angle around an axis.
Unbounded rotation is defined by a point on the unit circle of the plane: two parameters
corresponding to the cosine and the sine of the rotation angle. SO(3) is defined by a unit
quaternion. The velocity of translation and bounded rotation joints is the derivative of
the configuration variable. The velocity of an unbounded rotation joint corresponds to the
angular velocity. The velocity of a SO(3) joint is defined by the angular velocity vector
ω ∈ R

3.

translation

translation

bounded
rotation

translation

translation

translation

SO(3)

bounded
rotation

unbounded
rotation

root

root

Figure 2.3: Examples of joints for a humanoid character and the PR2 robot.

The velocity of the robot is defined as the concatenation of the velocities of each

joint:

q̇ = (q̇1, · · · , q̇p1
︸ ︷︷ ︸

J1

, q̇p1+1, · · · , q̇p1+p2
︸ ︷︷ ︸

J2

, · · · q̇p), p,
NJ∑

i=1

pi

2.5.2 Operations on configurations and vectors

By analogy with the case where the configuration space is a vector space, the

following operators are defined between configurations and vectors:

q2−q1 ∈ R
p, q1,q2 ∈ CS



2.5. Notations 11

is the constant velocity moving from q1 to q2 in unit time, and

q + q̇ ∈ CS, q ∈ CS, q̇ ∈ R
p

is the configuration reached from q after following constant velocity q̇ during unit

time.

Note that the definitions above stem from the Riemanian structure of the con-

figuration space of the robot. The above sum corresponds to the exponential map.

One can easily state that “following a constant velocity” makes sense for the four

types of joints defined in Table 2.1. We refer the reader to [Absil 2008] Chapter 5

for details about Riemanian geometry.

2.5.3 Straight interpolation

Let q1,q2 ∈ CS be two configurations. Straight interpolation between q1 and q2 is

defined as the curve in CS defined on interval [0,1] by:

t→ q1 + t(q2−q1)

This interpolation corresponds to the linear interpolation for translation and

bounded rotations, to the shortest arc on S1 for unbounded rotation and to the

so called slerp interpolation for SO(3).





Chapter 3

A gradient-based path
optimization method for motion

planning

Contents
3.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Optimization variables . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Unconstrained resolution . . . . . . . . . . . . . . . . . . . . . 17

3.4 Linear constraints . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 New constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.2 Linearized constraint computation . . . . . . . . . . . . . . . 20

3.5 Convergence analysis and algorithm refinement . . . . . . . 20

3.5.1 Geometrical representation of the dependency between linear

constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.2 Algorithm refinement . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7.1 From 2D basic examples . . . . . . . . . . . . . . . . . . . . . 26

3.7.2 To 3D complex problems . . . . . . . . . . . . . . . . . . . . 27

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Motivations

In this chapter, we propose a method aiming at shortening path length after a

path planning step. Note that we do not address path planning, but that we take

the result of a probabilistic motion planner as the input to our path optimization

method.

For this shortening purpose, random shortcut (RS) methods are still very popu-

lar [Sekhavat 1998, Geraerts 2007, Hauser 2010]. However, RS requires fine tuning

of the termination condition and is not efficient for long trajectories where only a



14
Chapter 3. A gradient-based path optimization method for motion

planning

qinit qfinal

robot

Figure 3.1: Case of a long initial path from qinit to qfinal (above) containing a small part
that can be optimized (below). Random shortcut is unlikely to optimize the initial dashed
part containing detours in the box, whereas our method succeeds (in blue). This type of
issue is common in navigation problems, where environments contain long corridors.

z

y

x

optimal path

initial pathshortcut tentative

qinit qfinal

top view

qinit qfinal

Figure 3.2: Example of a path in R
3. The optimal path belongs to the x−y plane containing

qinit and qfinal. Random shortcut will never manage to optimize the initial path: each
shortcut attempt will provide a collision.

minor part needs to be optimized, as in Figure 3.1. Figure 3.2 presents another situ-

ation where RS will always fail to optimize the initial path, since it cannot decouple

the robot DOFs on which the optimization occurs. This problem is addressed by our

method. Processing a path pruning [Geraerts 2007], in order to remove redundant

nodes from the initial path, is a classic preliminary step for path length shortening.

A pruning will efficiently solve the example introduced in Figure 3.1, however it

will fail tackling the issue in Figure 3.2, as RS.

On the other hand, numerical optimization methods like CHOMP [Zucker 2013]

can be used as a post-processing step. They have clear termination conditions, but

collision avoidance is handled by inequality constraints sampled at many points



3.1. Motivations 15

CT (ms)

Collision-checking 8.07
Distance 60.2

Table 3.1: Mean computation times (CT) over 1000 samples for a PR2 robot in a kitchen.
The robot and the environment are made of meshes with no geometry reduction. 34 %
of the configurations were not collision-free so the collision-checker stopped after finding a
collision (which may have reduced the number of checks), contrary to the distances which
are computed between all objetcs.

along the trajectory. These methods therefore require a pre-processing step of the

robot (and/or environment) model in order to make it simpler: [Zucker 2013] covers

PR2 bodies with spheres, while [Schulman 2014] needs to decompose objects into

convex subsets. These simplifications are necessary because these methods rely

on robot-obstacle distance computation which may be computationally expensive.

For instance, Table 3.1 presents a comparison between mean computation times of

collision-checking and distance in HPP.

Finally it should be noticed that optimality in robot motion is a notion that

should be clarified. Most of the time motion planners provide an optimized motion,

which is not optimal at all, but is the output of a given optimization method.

When optimal motions exist, numerical algorithms mostly fail in accounting for

their combinatorial structure. In addition, optimization algorithms bypass (not

overcome) the question of the existence of optimal motions [Laumond 2014]. In

that perspective, a path optimization algorithm has to be evaluated with respect

to other existing optimization techniques, from qualitative properties and from

computational performance.

The idea of our method is to find a good trade-off between the simplicity of blind

methods like shortcut algorithms, and the complexity of distance based optimization

techniques. The method iteratively shortens the initial path with gradient-based

information. When a collision is detected at a given iteration, the method back-

tracks to the latest valid iteration and inserts a one-dimensional constraint between

the objects detected in collision. Only collisions between objects are evaluated,

therefore no pre-processing of either the robot or environment models is necessary

to increase distance computation speed. Respecting the problem geometry also

preserves that a solution can still be found, e.g. for narrow passages as holes or

grippers. The method is also repeatable since no randomness is introduced. The

underlying optimization algorithm is a Linearly Constrained Quadratic Program

(LCQP).

Another important feature of our contribution is that we optimize paths on the



16
Chapter 3. A gradient-based path optimization method for motion

planning

robot configuration space in a proper mathematical way. Most other optimization

algorithms represent SO(3) rotations by a vector directed along the rotation axis

and the norm of which is the rotation angle, also known as the exponential map of

SO(3), or even worse by Euler angles.

3.2 Problem definition

This section describes the establishment of the Gradient-based optimizer. The

method works as a classic LCQP, reducing the path length expressed as a cost

function and avoid collisions with linearized constraints. Details of the LCQP ele-

ments will be given in the following subsections. They are associated to functions

that will populate the algorithm, presented in the last section.

3.2.1 Optimization variables

We consider as input a collision-free path composed of a concatenation of straight

interpolations between N + 2 configurations: (q0,q1, · · · ,qN+1). This path is the

output of a random sampling path planning algorithm between q0 and qN+1.

We wish to find a sequence of waypoints q′
1,...,q′

N such that the new path

(q0, q′
1, · · · ,q′

N , qN+1) is shorter and collision-free. Note that q0 and qN+1 are

unchanged. We denote by x the optimization variable:

x , (q1, · · · ,qN )

Each path x is a mapping from interval [0,1] into CS: x(0) = q0, x(1) = qN+1.

Finally, a continuous collision checker inspired of [Schwarzer 2004] is used to validate

paths. It also returns the first colliding configuration and its abscissa along the path.

3.2.2 Cost

Let W ∈ R
p×p be a diagonal matrix of weights:

W =









w1Ip1
0

w2Ip2

. . .

0 wmIpm









where Ipi
is the identity matrix of size pi and wi is the weight associated to the joint

Ji. We define the length of the straight interpolation between two configurations

as:

‖q2−q1‖W ,

√

(q2−q1)TW 2(q2−q1)

Weights are used to homogenize translations and rotations in the velocity vector.

For a rotation, the weight is equal to the maximal distance of a point of the body

to the center of the joint. For a translation, it is equal to 1.



3.3. Unconstrained resolution 17

Given q0 and qN+1 fixed, the cost we want to minimize is defined by

C(x) ,
1

2

N+1∑

k=1

λk−1‖qk−qk−1‖2W

The influence of λk−1 coefficients will be commented in Section 3.7. Note that C is

not exactly the length of the path, but it can be established that minimal length

paths also minimize C. This latter cost is better conditioned for optimization

purposes.

The gradient of the cost function ∇C(x) is computed as follows:

∇C(x) =
(

(λk(qk+1−qk)T −λk+1(qk+2−qk+1)T )W 2
)

k∈{0..N−1}

From the gradient expression, we notice that the Hessian H is constant:

H =


















(λ0 +λ1)W 2 −λ1W
2 0 · · · 0

−λ1W
2 (λ1 +λ2)W 2 −λ2W

2 0 · · · 0

0 −λ2W
2 (λ2 +λ3)W 2 −λ3W

2 0
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 −λN−2W
2 (λN−2 +λN−1)W 2 −λN−1W

2

0 · · · · · · 0 −λN−1W
2 (λN−1 +λN )W 2


















3.3 Unconstrained resolution

We assume that the direct interpolation between the initial and final configurations

contains collisions. An iteration at stage i is described as follow:

pi =−H−1∇C(xi)
T

xi+1 = xi +αipi

(3.1)

where αi is a real-valued parameter. Taking αi = 1 yields the unconstrained minimal

cost path, i.e. all waypoints aligned on the straight line between q0 and qN+1. Since

this solution is in collision, we set αi = αinit where αinit is a parameter in interval

[0,1].

Computation of pi from Equation (3.1) is associated to an unconstrained version

of function computeIterate.

We iterate step (3.1) until path xi+1 is in collision. When a collision is detected,

we introduce a constraint and perform a new iteration from xi as explained in the

next section.



18
Chapter 3. A gradient-based path optimization method for motion

planning

q0

q1

qk

qk+1

qN+1

qk+1

xi(κi)

xi+1(κi)

qk
q1

xi

xi+1

Figure 3.3: Illustration of one iteration of the path optimization. xi+1 appears to be
in collision with the obstacle. The first colliding configuration xi+1(κi) at abscissa κi is
returned by the continuous collision checker. The corresponding constraint will be computed
in the backtracked configuration xi(κi).

3.4 Linear constraints

Let us assume that at iteration i, j linear constraints have been inserted before the

current iteration. These constraints are stored as lines of a matrix as follows:

Φi =







L1
...

Lj







where the step pi is constrained to be in the kernel of Φi as follows:

Φi pi = 0

These linear constraints are built from the linearization of a collision-constraint

function, which will be detailed in the following section.

3.4.1 New constraint

As illustrated in Figure 3.3, let us denote by κi the abscissa of the first collision

detected on path xi+1, which previous iteration xi was collision-free. Thus in con-

figuration xi+1(κi) a collision has been detected. Two cases are possible:

1. The collision occurred between two bodies of the robot: B1 and B2.

2. The collision occurred between a body of the robot B1 and the environment.

In the rest of this section, the first case only will be considered. Reasoning about

the second case is similar, except that the constraint is on the position of B1 with

respect to the environment.

The principle of the method is to compute a linear constraint, initialized on

the collision-free configuration xi(κi) to avoid the collision appearing at xi+1(κi).

To handle this, we introduce a one-dimensional constraint based on the orthogonal

direction of the encountered collision.



3.4. Linear constraints 19

P1
P2

u
Body 1

Body 2

PcBody 1

Body 2

M1

M2

global frame

global frame

pi

xi+1(κi) xi(κi)

Π

Figure 3.4: Bodies representation in collision-configuration (left) and backtracked collision-
free configuration (right). A contact point (i.e. any point in the intersection of the bodies)
Pc can be returned by the Flexible Collision Library [Pan 2012a], used to detect collisions.
Constraint defined by Equation (3.4) aims at keeping P2(q) in plane Π fixed to B1.

At the collision-configuration xi+1(κi), let Pc ∈R3 be a contact point expressed

in the global frame (Figure 3.4 left). We denote by:

• Ploc
1 (resp. Ploc

2 ) the coordinate vector of Pc in the local frame of B1

(resp. B2).

• M1(q) ∈ SE(3) (resp. M2(q) ∈ SE(3)) the rigid-body transformation repre-

senting the position of B1 (resp. B2) in the global frame, in configuration q.

• M1
2 (q) = M1(q)−1M2(q) the position of B2 local frame in B1 local frame, in

configuration q.

• P1(q) (resp. P2(q)) the points moving with B1 (resp. B2) of local coordinate

Ploc
1 (resp. Ploc

2 ) in B1 (resp. B2) local frame.

We define u as the coordinate vector of the unit vector linking points P1 and P2

in configuration xi(κi), expressed in local frame of B1 (Figure 3.4 right):

u =
M1

2 (xi(κi))Ploc
2 −Ploc

1

‖M1
2 (xi(κi))Ploc

2 −Ploc
1 ‖

Note that u is well defined since configuration xi(κi) is collision-free.

Let g be the real valued function mapping the projection of vector P1 P2(q) on

u to a configuration q. For any q ∈ CS:

g(q) =
(

M1
2 (q)Ploc

2 −Ploc
1 |u

)

(3.2)



20
Chapter 3. A gradient-based path optimization method for motion

planning

Let f be the function defined from CSN to R by:

f(x) = g(x(κi)) (3.3)

The constraint defined for any path x by:

f(x)−f(xi) = 0. (3.4)

aims at keeping point P2(q) in a plane attached to B1, orthogonal to u and and

passing by P2 in configuration xi(κi) (Figure 3.4 right).

We linearize the constraint around xi:

∂f

∂x
(xi)(x−xi) = 0

The computation of the linearized constraint is described in the next section. Then,

a line is added in the constraint Jacobian matrix Φi:

Φi+1 =







L1
...

Lj+1







with

Lj+1 =
∂f

∂x
(xi)

This stage is performed by function addCollisionConstraint.

Finally, we refer to [Nocedal 2006] for solving LCQP. The step computation is

associated to a constrained version of computeIterate.

3.4.2 Linearized constraint computation

Let qk,i denote the waypoint k along path xi. There exist β ∈ [0,1] and k such that

xi(κi) can be written as a combination of two waypoints:

xi(κi) = qk,i +β(qk+1,i−qk,i)

Thus the linearized constraint Jacobian ∂f
∂x

(xi) is built by matrix blocks us-

ing the Jacobian ∂g
∂q

expressed in each of the two waypoints and β. This step is

performed by computeCollisionConstraint.

3.5 Convergence analysis and algorithm refinement

Although linearized constraints may differ from the initial geometrically relevant

non-linear constraint when the iterate goes away from the linearization path, we

show in this section that our algorithm converges under some reasonable assump-

tions. The underlying idea of the proof is sketched in an analogous problem to the

path shortening in Figure 3.5.



3.5. Convergence analysis and algorithm refinement 21

Figure 3.5: Illustration of linearly constrained quadratic program on an analogous problem
to the path shortening problem. Iterations xi are represented for αinit = 0.25. The non-
linear constraint is defined as f(x)≤ 0 and the linearized ones as the Li lines. The bottom
right picture shows a condition for the linearized constraint L1 to be linearly dependent on
L2 by being stationary at the boundary of f .

In this problem, the quadratic cost 1
2‖x−x∗‖2,x ∈ R

2 is minimized under the

non-linear constraint f(x) ≤ 0. The algorithm starts from x0. The first iterate

is x1 which satisfies the constraint. The second iterate is x2 that does not sat-

isfy the constraint. The algorithm backtracks to x1 and inserts linear constraint

L1 : ∂f
∂x

(x1)(x−x1) = 0. x3 is the global minimum under L1. As x3 does not sat-

isfy the constraint, the algorithm moves to x4 that satisfies the constraint, and

then to x5 that does not. The algorithm backtracks to x4, inserts constraint

L2 : ∂f
∂x

(x2)(x−x2) = 0, and returns x4 as a solution since the dimension of the

search space is 0. Notice that the same non-linear constraint may give rise to sev-

eral linear constraints. The convergence of the algorithm relies on the fact that the

kernel of constraint L2 is not contained in the kernel of the current constraints (L1

only here). The convergence analysis can be roughly summarized as follows. L2 to

be linearly dependent of L1 requires that f is stationary along L1 at x4. This is

unlikely (but possible) since x4 is not far from the boundary of the domain defined

by f(x)≤ 0. If L2 was not linearly independent from L1, the algorithm would keep

searching new iterates between x5 and x4. If by any chance constraint f linearized

around each of those collision-free iterates was each time linearly dependent from

L1 the iterates would converge to the boundary of the domain defined by f(x)≤ 0.

By continuous differentiability of f , this would mean that f is stationary at the

boundary. In other words, the straight line passing by x1 and x3 would cross the

boundary tangentially (as in Figure 3.5 bottom right picture). This is possible but

unlikely, unless the problem has been defined as such on purpose.

We now clarify on what assumption the constraints are linearly independent,

similarly to the analogous problem. From the definition of Φi, it is straightforward

that:

Ker Φi+1 ⊂Ker Φi (3.5)



22
Chapter 3. A gradient-based path optimization method for motion

planning

In other words, any path iteration complying with the set of constraints contained

in Φi+1 will satisfy the set Φi. Let us assume that:

Lj+1pi 6= 0 (3.6)

We will elaborate later on this assumption. This means that pi /∈Ker Φi+1, and as

pi ∈Ker Φi, then:

Ker Φi 6= Ker Φi+1

From Equation (3.5), we deduce that:

dim(Ker Φi+1)< dim(Ker Φi)

This result proves that under Assumption (3.6), each additional constraint is lin-

early independent from the previous ones. Thus, the dimension of search space

decreases and our algorithm terminates in a finite number of iterations.

3.5.1 Geometrical representation of the dependency between lin-
ear constraints

As in the previous section, we assume that xi is collision-free and that xi+1 is in

collision at abscissa κi. According to Equation (3.3), the evaluation of the constraint

function f along the iteration line xi + tαipi, t ∈ [0,1] going from xi to xi+1 can be

written as follows:

f(xi + tαipi) = g ((xi + tαipi)(κi)) (3.7)

The argument of function g above is a trajectory in the robot configuration space

that we denote by Γ:

Γ(t) = (xi + tαipi)(κi), t ∈ [0,1] (3.8)

The trajectory Γ is defined by taking the constant abscissa κi and by moving from

path xi along step pi (see Figure 3.6). Note that configuration xi+1(κi) is reached

when t is equal to 1. Substituting Equation (3.8) into Equation (3.7) and differen-

tiating with respect to t yields

f(xi + tαipi) = g(Γ(t)) (3.9)

αi
∂f

∂x
(xi + tαipi)pi =

d

dt
g(Γ(t)) (3.10)

Property 1. From the definition of g in Equation (3.2), the right hand side of

Equation (3.10) represents the velocity of point P2 in reference frame B1 projected

on vector u along trajectory Γ.



3.5. Convergence analysis and algorithm refinement 23

Γ(0)

Γ(1)xi

xi+1

Γ(t)

Γ(1)

Figure 3.6: Representation in the robot configuration space of the trajectory Γ, defined in
Equation (3.8).

Therefore the following expressions

αi
∂f

∂x
(xi)pi =

d

dt
g(Γ(0)) αi

∂f

∂x
(xi+1)pi =

d

dt
g(Γ(1))

correspond to (vP2/B1
|u), respectively in configurations xi(κi) and xi+1(κi), where

vP2/B1
represents the velocity of point P2 in reference frame B1. Note that As-

sumption (3.6) is equivalent for the first above equality to be different from 0. In

conclusion, Assumption (3.6) is violated (i.e. constraints Lj and Lj+1 are linearly

dependent) if and only if vP2/B1
is orthogonal to u. Although very unlikely, this

case might appear for some new constraint. In this case, inserting constraint Lj+1

is useless since

Ker Φi = Ker Φi+1

3.5.2 Algorithm refinement

When the new constraint is not linearly independent from the set of previous con-

straints, the algorithm enters an additional loop, performed by Algorithm 1, in

order to find a new constraint that is linearly independent. The loop keeps looking

for paths along line segment [xi,xi+1] by dichotomy. A pair containing the latest

free path and the latest path in collision, denoted by (xF ree,xColl) is stored along

the loop. New iterations are chosen in the middle of this pair.

• If the new path is collision-free, it replaces xF ree in the pair.

• If the new path is in collision, it replaces xColl in the pair.

In both cases, a new constraint is built following the method described in Sec-

tion 3.4.1. Then two cases are possible:

1. at some point in the loop the new constraint is linearly independent from the

previous constraints. The new constraint is added to Φi to give rise to Φi+1,

and the loop is interrupted, or

2. each new constraint is linearly dependent from the previous constraints and

the loop never ends.

In the second case, the iterations of the loop converge to a path that we denote

by x̄. xF ree and xColl also both converge to x̄. x̄ necessarily lies at the boundary



24
Chapter 3. A gradient-based path optimization method for motion

planning

Algorithm 1 Description of findNewConstraint() which returns a linearly in-
dependent constraint w.r.t. previous constraints stacked in Φ.

Input: (xF ree,xColl) latest collision-free and in collision paths, p and α such that
xColl← xF ree +αp

Output: linearized constraint ∂f
∂x

(xF ree)

Require: constraint ∂f
∂x

(xF ree) built from xColl would produce a rank loss in con-
straint Jacobian Φ
solved← false
while (not(solved)) do

α← 1
2 α

x← xF ree +αp
if (validatePath(x)) then

xF ree← x
else

xColl← x
∂f
∂x

(xF ree)←computeCollisionConstraint(xColl, xF ree)

solved← isFullRank(Φ , ∂f
∂x

(xF ree))

between free paths and paths in collision. Let us denote by κ̄ the abscissa along x̄
where B1 and B2 come to contact, and let us denote by P̄ the contact point.

At each iteration, the new linear constraint

Lj+1 =
∂f

∂x
(xF ree)

is tested. As iterations xF ree and xColl tend toward x̄, it can be established by

a geometric reasoning analogous to Property 1, that Lj+1pi tends to the norm of

the velocity of point P̄ belonging to B2 in the frame of B1. The following property

summarizes the result of this section.

Property 2. As long as along iteration pi, the trajectory (xi + tαipi)(κ̄) does not

enter in collision with contact point velocity equal to 0 in the frame of B1, Algo-

rithm 1 converges in a finite number of steps.

Property 2 means that the gradient-based algorithm converges in all cases, ex-

cept for ill-defined problems.

3.6 Algorithm

The gradient-based path-optimizer is described in Algorithm 2. Note that the

LCQP optimal step p, computed by computeIterate, is known. The collision

detection on a path is handled by validatePath, which returns true if the given

path is collision-free.

The idea of the algorithm is to process iterations that reduce the path length

according to the LCQP cost. If collision-constraints have been added to the LCQP,



3.7. Results 25

Algorithm 2 Gradient-based (GB) algorithm for path-optimization.

Input: path to optimize x0

Output: optimized collision-free path x0

α← αinit

minReached← false
while (not(noCollision and minReached)) do

p = computeIterate()
minReached= (||p||< 10−3 or α= 1)
x1← x0 +αp
if (not(validatePath(x1))) then

noCollision← false
if (α 6= 1) then

computeCollisionConstraint(x1, x0)
findNewConstraint()
addCollisionConstraint()
α← 1

else
α← αinit

else
x0← x1

noCollision← true
return x0

further iterations will comply with them. The algorithm stops when the LCQP

minimum is reached and collision-free.

One main difficulty is to handle the scalar parameter α determining how

much of the computed step will be traveled along. As presented in Algo-

rithm 2, α takes two values, αinit < 1 to process small steps, or 1 to go di-

rectly to the optimum under the latest set of constraints. This latter case is

interesting since, if this optimal path is collision-free, the algorithm has con-

verged and returns the path as the solution. Choosing to travel small steps

from a valid path decreases the chances of being in collision. Besides if a col-

lision occurs, the collision-constraint is computed on the last valid path, which

is not too much deformed compared to the path that has collisions. As a re-

sult, collision-constraints are only computed (computeCollisionConstraint)

and added (addCollisionConstraint) when performing a reduced iteration (i.e.

α= αinit).

Note that even though the constraints are linearized, the algorithm converges.

3.7 Results

This part gathers optimization results performed on HPP. Initial paths are obtained

with two kinds of probabilistic planners: Visibility-PRM [Siméon 2000] and RRT-

connect [Kuffner 2000]. We denote them by PRM and RRT respectively. Unless



26
Chapter 3. A gradient-based path optimization method for motion

planning

another value is provided, αinit is set to 0.2. A further section provides a discussion

on the αinit value tuning.

3.7.1 From 2D basic examples

q0

qN+1

x

y

robot

q0

qN+1

x

y

robot

Figure 3.7: Path-optimization results on 2D robots, moving around gray obstacles. Initial
paths are dashed and crosses represent contact points Pc related to collision-constraints.
Note that, on the left, the detour completely disappears.

Figure 3.7 shows the result of our optimizer on 2D cases. Contact points which

have led to constraints are represented. They permit to understand how the path

is kept out of the obstacles while reducing detours. Note that, since not obstacle

clearance is considered, the robot may pass close to obstacles.

Figure 3.1 illustrates a very long path example which RS or PRS will not manage

to optimize in an affordable time, because of probabilistically failing to sample

configurations in the box. The GB method succeeds to optimize the path contained

in the box, with the following cost coefficients:

λk−1 =
1

√

(qk,0−qk−1,0)TW 2(qk,0−qk−1,0)
, k ∈ {1..N +1}

aiming at keeping the same ratio between path segment lengths at minimum as at

initial path, represented by the waypoints (qk,0)k∈{0..N}. Without these coefficients,

the path that minimizes the cost corresponds to a straight line with the waypoints

equidistantly allocated. This is not relevant for Figure 3.1 type of problems where

a local passage is very constrained by obstacles. Note that this cost is also working

with all other examples presented in this section, and provides better quality results

than the original cost.



3.7. Results 27

3.7.2 To 3D complex problems

3.7.2.1 Comparison to random shortcut algorithms

Algorithm 3 Random shortcut as adapted from [Sekhavat 1998] Section 6.4.1.
straightInterpolation returns the linear interpolation between two configura-
tions. x|I denotes path x restricted to interval I. tlim represents the duration
limitation of the algorithm.

Input: path to optimize x, time limit tlim
Output: optimized collision-free path x
tstart← currentTime()
t← 0
while t < tlim do

failure← true
t1 < t2← random numbers in [0,1]
lp0← straightInterpolation(x(0),x(t1))
lp1← straightInterpolation(x(t1),x(t2))
lp2← straightInterpolation(x(t2),x(1))
newPath← empty path defined on [0,0]
if validatePath(lp0) then

newPath← lp0;
else

newPath← x|[0,t1]

if validatePath(lp1) then
newPath← concatenate(newPath, lp1)

else
newPath← concatenate(newPath,x|[t1,t2])

if validatePath(lp2) then
newPath← concatenate(newPath, lp2)

else
newPath← concatenate(newPath,x|[t2,1])

x← newPath
t← currentTime()− tstart

return x

Our algorithm has also been experimented on more complex robots and environ-

ments1. In Figures 3.8, 3.9, 3.12 and 3.13, we present multiple situations where the

GB algorithm is tested and compared to RS and PRS. After describing the random

optimizers, we will present each benchmark and its qualitative path results. Then

quantitative convergence graphs and averages will be given and discussed.

The RS implementation is given in Algorithm 3. RS shortens the path by ran-

domly sampling configurations along it, and by trying to link them with collision-

free interpolations. The termination condition of RS is a duration time limit tlim,

1Video of the experimental results is available at https://youtu.be/1MFn0en51qI

https://youtu.be/1MFn0en51qI


28
Chapter 3. A gradient-based path optimization method for motion

planning

and is typically set as the GB convergence time. Concerning PRS, its implementa-

tion is identical to [Geraerts 2007]: for a random DOF, configurations are sampled

along the initial path as in Algorithm 3. The straight interpolation returns a path

made of an interpolation only on the current DOF, while it is based on the previous

subpath for other DOFs. If this path is collision-free, it is added to the final path

as in RS. The process is stopped when the duration exceeds tlim.

Before entering the manipulator examples, the GB algorithm is analyzed on a

popular problem in the motion planning literature: a freeflyer puzzle, corresponding

to Figure 3.12(b). The puzzle has to cross down the obstacle using the hole in the

middle. The initial path planned with PRM contains detours above and below the

obstacle, as well as small superfluous motions in the hole. Results of the three

optimizers are similar in terms of path length. Note that for GB, trajectory parts

above and below the obstacle are not completely shorten, i.e. the puzzle center is

still committing detours. This is the result of adding collision-constraints on these

parts of the trajectory, between one of the puzzle branches and the obstacle. In

total, 43 collision-constraints have been produced. One idea could be to arbitrarily

cancel constraints in these upper and lower parts of the trajectory, and to keep the

ones in the hole. However we want the present GB algorithm to remain general and

basic, such constraint relaxation is part of the possible future work.

In the double-arms benchmark (4 DOFs), Figure 3.12(a), one arm has to get

around a cylinder obstacle while the other arm stays in the same configuration. As

expected, the initial path given by RRT activates both arms to solve the problem.

Unlike RS, the GB optimizer manages to cancel the rotations of the free arm while

optimizing the first arm motion, creating collision-constraints with the cylinder

obstacle.

Some problems involve a 6-axis manipulator arm, also called UR5, equipped with

a bar or a gripper. In a relatively free environment, represented in Figure 3.12(c), re-

sults from our method and RS are similar. Note also that the end-effector trajectory

is completely different from the initial one: the robot is easily passing between the

meshed spheres, keeping its end-effector above. For an UR5 working in a cluttered

environment inspired by an industrial issue (Figure 3.8), GB path optimization ef-

ficiently returns a shorter solution, close to the result of RS and to what can be

observed in reality.

A problem involving a Baxter-like2 robot manipulating in an office environment

is presented in Figure 3.13(c). The robot starts with its end-effectors above the

computer and has to turn and reach the shelf. According to the quality of the

left-wrist trajectories, the GB optimizer provides the smoothest motion.

In the three following high-DOF examples involving the PR2 robot (35 DOFs),

note that results are better in terms of path quality, as a result of the parasite DOF

motion removal.

In the example shown in Figure 3.9, PR2 simply has to cross its arms from

the left arm up position to the right arm up one, without any assumption about

2A torso rotation was added and the grippers were removed.



3.7. Results 29

the group of DOFs to activate (i.e. no DOF is locked). The RRT planner returns

detours and activates non-useful DOFs such as the head, the torso lift and the

mobile base. Such behavior induces a high initial path length. RS hardly optimizes

the mobile base translation (Figure 3.9 middle) of the robot and other unnecessary

DOF uses. Whereas the GB optimized-path mainly results in moving the arms

as expected (Figure 3.9 right), just creating two collision-constraints between the

arms.

In the PRS result, only presented in the video, the motion is less optimized

than with RS: the arms are moving widely and the mobile base remains activated.

One solution to remove such unnecessary DOF activation, can be to try applying

a partial shortcut on each DOF between the initial and final configurations. It

appears that this step is more costly in terms of computation time than the GB

duration, therefore it cannot be afforded by our PRS implementation, due to the tlim
condition. However, this solution could be applied as a preliminary optimization

stage for each optimizer.

Figure 3.8: (Bottom left) An industrial use-case example proposed by Philips for the
Factory-in-a-Day project3. A similar environment has been created (top) to illustrate that
our method can comply with an industrial problem, where initial and final configurations of
the UR5 are constrained in boxes. End-effector trajectories are illustrated (bottom right):
RRT planning in red, a RS optimization in blue, a PRS one in cyan and the GB optimization
in green.

Similar results are obtained on the PR2 performing manipulation tasks in a

3Source: Robothon of Factory In A Day - Philips case. Video: https://youtu.be/fhKlfVsupOE

https://youtu.be/fhKlfVsupOE


30
Chapter 3. A gradient-based path optimization method for motion

planning

Problem Computation time
Relative remaining length (%)

GB RS PRS

Freeflyer-puzzle (αinit = 0.05) 742 ms 53.0 41.4 46.1

Double-arms (RRT) 29.0 ms 44.7 53.6 56.6

UR5-with-spheres (RRT, αinit = 0.3) 453 ms 48.5 42.1 72.0

UR5-industrial-example 765 ms 40.3 29.6 43.4

Baxter-in-office 18.8 s 36.5 45.2 79.8

PR2-crossing-arms 882 ms 19.9 43.2 95.2

PR2-in-kitchen-1 13.5 s 28.3 42.7 90.6

Table 3.2: Average results for 50 runs of several examples. For each run, a solution path
is planned by Visibility-PRM (unless ‘RRT’ for RRT-connect is mentioned) as initial guess
for the three optimizers. RS and PRS results correspond to averages of 50 launches of the
random optimizers on each initial guess. The GB computation time is the work duration
allowed for the random optimizers. αinit = 0.2 unless another value is specified. Boxes
highlight the best path length reduction result among the three optimizers.

kitchen environment. Firstly, the robot moves its hands from the top to the bot-

tom of a table. The different trajectories of the right gripper are indicated in

Figure 3.13(a). Our optimizer manages to reduce the initial path length from PRM

and improves the path quality just adding constraints between the table and the

robot arms. Thus, the robot just slightly moves backward and uses its arm DOF to

avoid the table, instead of processing a large motion to move away from the table.

Secondly, another example of PR2 going from the set to the fridge door is presented

in Figure 3.13(b) with the mobile base trajectories. Here, GB and RS results are

similar in terms of length and rendering.

For some of the presented benchmarks, convergence graphs of the path length

reduction are given in Figure 3.14. The chosen initial paths are unchanged, i.e.

correspond to Figures 3.12 and 3.13. Each graph illustrates the percent ratio of the

optimized path length over the initial path length, during the optimization. It is

not a surprise that GB is globally slower than RS due to the difference of the com-

putations complexity during the optimization. Thus RS converges faster. However,

it seems that GB catches up and overcomes RS before ending (see Figures 3.14(d)

and 3.14(e)), thanks to the optimization of the mobile base motion. Therefore, it

could be interesting to investigate the performance of a composed optimizer, start-

ing by a RS stage until convergence and finishing by a GB stage to improve the

path length reduction. In the puzzle example (see Figure 3.14(b)), the difference of

optimization speed between GB and the random optimizers is significant. This can

be partly explained by the fact that collision checking is rapidly performed in such

basic geometry problem. This favors the random shortcut tries while GB spends

time on the LCQP resolution.

Since the GB optimizer results depend on the shape of the initial guess, e.g. the

number of waypoints and the proximity to obstacles, results averages for 50 initial

paths of each benchmark are presented in Table 3.2. As mentioned, the paths are

obtained from PRM or RRT. Due to their nature, these motion planners provide



3.7. Results 31

Figure 3.9: PR2-crossing-arms example: the PR2 robot has just to exchange the positions
of its arms (left). The task is simple, however, in absence of explicit indication, any proba-
bilistic motion planner will compute a path that makes the PR2 mobile base purposelessly
move around the + marker. Path optimization is expected to remove unnecessary motions.
RS fails in this case while GB succeeds

different types of path: the output of PRM contains less waypoints and does not

tend to be close to the contact, behavior induced by the extension process of RRT.

In some cases, αinit is reduced to comply with very narrow passages, or increased

in the opposite case.

The results seem to be consistent with the trajectory analysis and convergence

graphs. Except the low-DOF problem of the puzzle and the UR5, our method

provides shorter or similar results compared to RS. Results even seem to be better

when the number of DOFs increases, as the baxter and PR2 examples.

3.7.2.2 Analysis of αinit influence

This section deals with the influence of the parameter αinit on the GB convergence.

Reducing αinit makes Algorithm 2 process smaller iterations. Some expected behav-

iors are visible in Figure 3.10. For instance, Figure 3.10(a) illustrates an expected

influence of a αinit reduction on the final path lengths. Besides, commonly to

Figures 3.10(a) , 3.10(b) and 3.10(d), αinit = 0.05 has the higher convergence time.

However, due to the strong non-linearity of the constraints, reduced iterations

do not necessarily lead to a slower but refined solution. GB can stop earlier in local

minimum, which may also have a better path length reduction. This is the case of

Figure 3.10(b) where αinit = 0.2 results in a shorter path than αinit = 0.05. More

surprisingly in Figure 3.10(b), αinit = 0.05 yields the worse reduction.

Instead of investigating a way to find a constant αinit conditioned by the problem

and the initial path, we plan to adapt αinit during the optimization process. This

can be achieved by taking into account geometrical considerations inspired from the

continuous collision checker. For instance, the collision checker is able to return a

lower bound of the distance between objects.



32
Chapter 3. A gradient-based path optimization method for motion

planning

(a) 2D sliding-robot (Fig. 3.7 right) (b) Double-arms

(c) Freeflyer-puzzle (d) Baxter-in-office

Figure 3.10: Influence of αinit on the convergence graphs of the GB optimizer. For each
benchmark, the considered initial paths correspond to the ones of Figures 3.12 and 3.13.

3.7.2.3 Influence of a pruning preliminary step

For the UR5-industrial benchmark, we compared the optimization convergence

graphs with and without a pruning step. Pruning was implemented follow-

ing [Geraerts 2007], to remove redundant nodes in the initial path by creating valid

shortcuts between the waypoints. RRT has been chosen as motion planner because

it usually produces more waypoints than PRM, so the impact of pruning is more

accountable. Results are given in Figure 3.11. The path length reduction of the

three optimizers are still compared, but the notable information is the computation

time of GB that is 16 times higher without pruning. Such lower computation time

prevents the random optimizers to converge, so the GB result appears as better.

Note that, if pruning always reduces the GB optimization time, it sometimes

spoils the path length reduction. In fact, there can be cases where multiple way-

points are useful to bypass an obstacle, rather than a long straight line in the

configuration space.



3.8. Conclusions 33

(a) Without pruning (b) With pruning

Figure 3.11: Influence of a pruning step on the optimization processes. RRT-connect pro-
vides an initial path with 62 waypoints, which is downed to 2 waypoints by Prune. Concern-
ing the path length, it is only reduced of 6.2% by Prune. Thus, final path lengths provided
by GB in both cases are equivalent, the major difference results in the computation time
of GB.

3.8 Conclusions

We managed to settle a path optimization for navigation and manipulation prob-

lems, and tested it with various robots and environments. Our algorithm uses stan-

dard numerical tools as collision checking, linearized one-dimensional constraint and

LCQP resolution. It correlates them in a simple but effective way, and the algo-

rithm structure is organized so that its convergence is guaranteed. Furthermore, our

method only requires collision checking, therefore neither geometry pre-processing

nor offline optimization are necessary to counterbalance costly distance computa-

tions. We demonstrate that the optimizer may be time-competitive compared to

random shortcut in complex models where collision tests are time-consuming. It

also proposes better quality paths, reducing the path length and removing unnec-

essary DOF motions. Finally, our optimizer manages to reduce a local detour in a

long path while random shortcut methods will mostly fail.

For future work, we have room for improvement. We can take advantage of the

sparsity of the constraint Jacobian to reduce computation time. We may also adapt

the iteration scalar parameter from geometrical considerations on the current path,

e.g. using a lower bound of the distance between certain objects.



34
Chapter 3. A gradient-based path optimization method for motion

planning

(a) Double-arms

(b) Freeflyer-puzzle

(c) UR5-with-spheres

Figure 3.12: (Left) Initial and final configurations. (Right) Trajectories of end-effectors or
centers along the different paths: the initial path is represented in red, the RS output in
blue, the PRS output in cyan (top only) and the GB optimized path in green. The full robot
motions can also be visualized in the joined video. The trajectory comparison highlights
the optimization success of our method, which manages to deliver a shorter or similar path
compared to the RS output. Note that, in the double-arms example, GB optimization also
cancels the lower arm activation contrary to RS and PRS.



3.8. Conclusions 35

(a) PR2-in-kitchen-1

(b) PR2-in-kitchen-2

(c) Baxter-in-office

Figure 3.13: Other trajectories comparisons of end-effectors or mobile bases (initial path in
red, RS output in blue, PRS output in cyan and GB output in green).



36
Chapter 3. A gradient-based path optimization method for motion

planning

(a) 2D sliding robot (Figure 3.7) (b) Freeflyer-puzzle

(c) UR5-with-spheres (d) PR2-crossing-arms

(e) PR2-in-kitchen-1 (f) Baxter-in-office

Figure 3.14: Convergence graphs of the three optimizers during the optimization process.
For each benchmark, the considered initial paths correspond to the ones of Figures 3.12
and 3.13. The remaining path length relative to the initial one is represented. The dashed
blue line is the final result of GB. RS and PRS averages and standard deviations (in grey)
are plotted for 50 launches.



Chapter 4

Jumping in robotics and
computer animation

Contents
4.1 Jumping robots . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Motion planning techniques and data driven animation . . 38

4.3 Physics-based motion synthesis . . . . . . . . . . . . . . . . . 40

4.4 Related work analysis . . . . . . . . . . . . . . . . . . . . . . . 42

Ballistic motion synthesis has always been in roboticists’ and animators’ sights.

Jumping increases the range of robot or character reachable space, and offers in-

dependence to the environment discontinuities. Furthermore, synthesizing highly

dynamic motions is very challenging as these motions lie in the limits of the hu-

man capabilities [Edwardes 2009]. Figure 4.1 illustrates a jump from a parkour

performance.

Figure 4.1: Execution of a parkour-style jump between to small walls. c©Pixabay

While in robotics, robots have to be strong and agile enough to propel themselves

in the air, in computer animation focus is done on the realism of the animations.

This related work focuses on the different approaches to generate jump trajectories,

borrowed to the two domains as they tackle the problem differently.



38 Chapter 4. Jumping in robotics and computer animation

4.1 Jumping robots

In robotics, ballistic motion planning has been relatively little addressed, or

in a simplified way. One-legged robots are hopping while keeping balance

[Raibert 1984, Batts 2017], another miniature robot jumps to climb horizontal stairs

[Stoeter 2005]. Similarly, the Sand Flea robot [Boston Dynamics 2012] is able to

jump at a height of 10 meters using a CO2 powered piston. A 2D multi-articulated

gymnast robot jumps over obstacles on a horizontal surface, while taking into ac-

count the whole-body angular momentum [Papadopoulos 2007]. These works rely

on horizontal surfaces and vertical obstacle clearance, which is constraining regard-

ing the environment composition.

More recently, researchers have tried to design robots capable to execute

parkour-like motions such as wall climbing in 2D [Degani 2014, Haldane 2016]. Fo-

cus is made on robot capacities to propel themselves in the air, and on re-orientation

(see Figure 4.2). However, friction coefficients are artificially increased to reduce

the risk of slippage, gravity effect may be lowered and contact planning is absent,

the control relies on a state machine. The Handle robot [Boston Dynamics 2017]

is rolling and jumping with its legs above obstacles or on flat surfaces, no motion

planning seems to be involved for now.

Figure 4.2: Robot presented by [Haldane 2016], and trajectories obtained when jumping
from the ground to a vertical wall.

4.2 Motion planning techniques and data driven ani-
mation

Path planning is accurate when searching for a valid sequence of motions, including

jumping, to reach a desired position. Synthesizing high quality motions for char-

acters in such an application is challenging: the dimension of the problem equals



4.2. Motion planning techniques and data driven animation 39

the number of DOFs, the environment is large and complex, and the motion is

additionally constrained by the dynamics of the world. For this reason, motion

synthesis is typically addressed with a decoupled approach. First, during the path

planning phase, a collision-free path is found for the character using a sample-based

planner. Then, during the animation phase, a motion is computed and played along

the path.

A standard motion synthesis technique is to use pre-existing animations, pro-

duced either by 3D artists or from motion capture. These approaches are favored

because of the high quality of the resulting animations [Kovar 2002] which are con-

sidered as plausible by the user.

The coordination of both planning and animation phases is critical to obtain

plausible animations. This decoupling works well with stereotypical motions such as

walking [Choi 2003, Pettré 2003, Esteves 2006, van Basten 2011]. Thanks to sim-

plifying assumptions (periodic animations, contacts occurring with the ground...),

the planned path for the character center easily extends to a trajectory at the an-

imation phase, without considering the full dynamics of the model [Kajita 2003].

Contact generation or motion adaptation to changes of the environment or the

character is then typically handled in the animation phase using local deformation

methods on reference motions [Witkin 1995, Kovar 2002, Holden 2016]. However,

they produce unnatural results when the deformation becomes too important.

It is also possible to analyze features that characterize the contact-rich motion

repertoire of a character and to detect valid transitions in the environment where

each of these motions may be possible and which surfaces will be used for sup-

port [Kapadia 2016]. This method is still limited to environments that fit with the

motion database.

Animated motion planning has also been addressed with jumps [Yamane 2010].

This latter method computes a sequence of jumps whose heights are tuned in order

to reach different levels while avoiding obstacles (see Figure 4.3).

Figure 4.3: Snapshots of a planned motion including jumps, from the work of
[Yamane 2010].



40 Chapter 4. Jumping in robotics and computer animation

4.3 Physics-based motion synthesis

Rather than using reference animations, physics-based methods synthesize motions

with algorithms based on a simplified model of the law of physics, which is solved

most of the time with numerical optimization.

Space-time constraints is an old family of the physics-based techniques, claiming

to replace part of manually defined animations so the motions look real at a basic

mechanical level [Witkin 1988]. Space-time constraints can also be applied to create

transitions in motion graphs, between segments of captured motions [Rose 1996,

Arikan 2003, Safonova 2007].

Work by [Mordatch 2012] is focusing on automatic generation of contacts at

the crossroad of motion synthesis and path planning. As the starting point

and the modelization are crucial for the optimization to quickly converge to-

ward plausible motions, motion capture often appears as a good initial guess

[Safonova 2004, Levine 2011, Liu 2012]. In a similar way, existing motions may be

edited of re-timed to consider physical objectives such as friction [Lamouret 1996,

Pollard 2000, McCann 2006]. Finally, motion database can be coupled with a

heuristic-based graph-search planner and trajectory optimization [Dellin 2012].

Figure 4.4: Trajectories of a jumping dog and a jumping raptor from [Peng 2016].

It is common for physics-based method to rely on proportional derivative (PD)

controllers to compute the desired joint torques, once a target posture has been

defined by the physics model and given a finite state machine. PD controllers have

been used for athletic ballistic motions, for biped periodic locomotion and for dog

jumps [Hodgins 1995, Wooten 1996, Yin 2007, Coros 2010, Coros 2011]. However

PD controllers require a fine tuning of the parameters and, without a force model,

simulated characters can exceed human capabilities. Plus, the number of states

increases with the complexity of the environment and the desired motions, which

can be bypassed with learning techniques. For instance, [Peng 2016, Liu 2016]

synthesize online near optimal running and jumping motions for quadrupeds with

reinforcement-based learning techniques (see Figure 4.4). Even so, they are based

on simplifying assumptions regarding the location and periodicity of the contacts,

which do not hold in arbitrary environments.

To guide manual design of jumping motions, physics-inspired methods display

indications along the animation [Shapiro 2011]. The center of mass trajectory is

shown as well as physically possible ones, regarding the execution time or the shape-



4.3. Physics-based motion synthesis 41

closeness to the initial trajectory (see Figure 4.5). This work also provides a tool

to correct the global angular momentum from the limb motions to make the global

orientation more realistic.

Figure 4.5: Illustrations of the ballistic shaping tool from [Shapiro 2011]. (Left) Example
of the generation of multiple ballistic paths between two locators. (Right) One of these
paths (in red) can serve to match a center of mass path (in blue) of a manually created
trajectory.

Similarly optimization-based methods are not complete, and can get trapped in

local optima [Mordatch 2012]. On top of data driven or physics-based animations,

motion planning methods are required to provide the guarantee that a solution

will be found in complex environments. Regarding motion planning, considering

contact dynamics is not possible in the decoupled approach because it requires

planning the contact locations simultaneously with the path. This introduces a

combinatorial explosion of the computation time [Bretl 2004, Escande 2008]. The

issue of generating relevant contacts along the motion is thus central and needs to

be addressed properly.

Overall, some contributions that have studied jumping motions do not focus ex-

plicitly on path planning, rather on the physically accurate adaptation or synthesis

of the jump animation. [Wensing 2014] introduce a simulated humanoid robot that

runs and jumps on a horizontal platform. The takeoff leg angle and intensity are

computed to cross the large gap. Similarly computer graphics contributions assume

that the ballistic jumping motion is already precomputed [Reitsma 2003], and fo-

cus on the preparation phase [Sulejmanpašić 2005, Reitsma 2008], or the reception

phase [Ha 2012]. New possibilities have also been explored to synthesize motions.

For instance, exploiting the natural vibration modes of the body is able to produce

walking and jump motions, without animating individual joints [Kry 2009].

To plan highly dynamic motions, recent contributions have proposed hybrid

approaches, using both data-driven and physics-based methods to generate mo-

tions [Levine 2012, Tonneau 2016a]. In particular, they deform motion capture

trajectories using physics-based heuristics, constraining the motion adaptation to

respect the Euler equation of motion, given customizable bounds on the angular

momentum of the character [Yamane 2010]. Because the contact locations are pre-

defined relatively to the center of mass by the reference motion capture animation,

the linear part is necessarily validated. However, this limitation once again prevents



42 Chapter 4. Jumping in robotics and computer animation

generalization to arbitrary environments, where the contacts must be changed to

obtain a valid motion.

4.4 Related work analysis

On one hand, despite promising results based on learning methods, data driven

approaches do not generalize well to arbitrary environments. Because they rely on

a limited set of reference motions, they are not complete (i.e. guaranteed to find a

solution if it exists).

On the other hand, integrating dynamic models within sampling-based motion

planners appears to be a difficult but necessary step to solve the motion synthesis

problem in complex environments. Formerly, it has been necessary to integrate

the dynamic properties of legged locomotion in motion planners, to ensure that

the computed trajectories can be executed in a plausible manner. Our framework

proposes a significant step in this direction, by extending a ballistic motion planner

with the integration of a multi-contact dynamic model.

Additionally, it appears that neither data driven nor physics-based animation

techniques are able to correctly compute contact locations when simplifying as-

sumptions do not apply anymore (coplanar horizontal contacts, or predefined con-

tact locations). Our framework is able to compute arbitrary contact configurations

for such scenarios, based on our relaxed contact model.



Chapter 5

Ballistic motion planning for a
point-mass

Contents
5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Unconstrained ballistic motion . . . . . . . . . . . . . . . . . 44

5.2.1 Accessible space of ballistic motion . . . . . . . . . . . . . . . 44

5.2.2 Goal-oriented ballistic motion . . . . . . . . . . . . . . . . . . 46

5.3 Ballistic motion with constraints . . . . . . . . . . . . . . . . 47

5.3.1 Non-sliding constraints . . . . . . . . . . . . . . . . . . . . . . 47

5.3.2 Constraint formulation . . . . . . . . . . . . . . . . . . . . . . 50

5.3.3 Velocity constraints . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.4 Constraint collection and solution existence . . . . . . . . . . 51

5.4 Motion planning algorithm . . . . . . . . . . . . . . . . . . . . 53

5.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.2 Probabilistic convergence study . . . . . . . . . . . . . . . . . 55

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Problem statement

We consider the ballistic motion planning for a jumping robot in 3D environments

containing slippery surfaces. It is well-known that ballistic motion results in a

parabola trajectory. According to the Coulomb friction law, a condition for the

robot not to slide during its takeoff is that the contact force belongs to a so-called

friction cone. This latter property extends to the landing phase. We consider a

point-mass robot with simplified contact dynamics: we assume that the robot is

submitted to an impulse force as soon as it lands, so that the transition between

landing and takeoff is instantaneous. This gives rise to a discontinuity between the

contact forces and the contact velocities. Moreover we assume that the robot has

limited energy resources, which limit the velocity at takeoff. The landing velocity

is also constrained to avoid requiring to dissipate too much energy (and damaging

the robot). These energy restrictions are realized by limiting the magnitude of the



44 Chapter 5. Ballistic motion planning for a point-mass

velocity vectors during the takeoff and landing phases. Constraints on the velocity

vector magnitudes are named velocity constraints.

The contribution of this chapter is to design an algorithm, the Ballistic Motion

Planner, which is able to plan a collision-free path satisfying both sliding and veloc-

ity constraints in such a context. This chapter does not consider the full dynamics

of articulated avatars, but is restricted to point-robots. With respect to the state

of the art, the contribution is to account for slipping prevention as well as takeoff

and landing velocity limitations. Furthermore, the proposed approach applies on

3D environments and rough terrains without any approximation, prior knowledge

or restriction.

Let us consider a point-robot moving in a 3D environment. The robot begins

from a starting position cs and wants to reach a goal position cg, only by performing

jumps from one contact to another. Both cs and cg are assumed to be in contact

with the environment. There is no distinction between ground and obstacles. The

purpose of this method is to determine a sequence of jumps, under the following

assumptions:

• The robot is modeled by a point mass m of position c with respect to the

origin.

• The only force that applies to the robot during a jump is mg where

g = (0 0 −g)T , g =−9.81. No air drag is considered.

• Contact phases are instantaneous, so that the velocity at a contact point is

discontinuous, i.e. transition from landing to takeoff results from an impul-

sion.

• The surface material is uniform in the environment, i.e. the non-sliding con-

straints can be modeled everywhere by a friction cone with a constant coeffi-

cient. We denote by µ the tangent of the cone half-angle.

• Takeoff and landing velocity magnitudes are bounded by the same value, so

that an admissible jump path can be followed in a reversed direction.

• There is no constraint on the energy balance between one jump and the next.

• The robot cannot collide with the obstacles.

Figure 5.1 illustrates the effects of the friction and velocity constraints on the

existence of parabola sequences. The following section reminds the basics of ballistic

motion and details the equations of parabolas linking two points.

5.2 Unconstrained ballistic motion

5.2.1 Accessible space of ballistic motion

We denote the global frame basis by (ex,ey,ez). When Newton’s second law of

motion is integrated with respect to time for a ballistic shot from the cs position



5.2. Unconstrained ballistic motion 45

cs

robot

cg cs cg

cs cg

Figure 5.1: Three sequences of parabolas between cs and cg positions for different con-
straints. In the case illustrated on the right, friction cones are narrower than those on the
left, so that the parabola on top is not admissible anymore, and a waypoint has to be used.
In the bottommost case, the initial velocity has been limited compared to the left case,
resulting in a sequence with numerous jumps.

with a ċs initial velocity, the following robot trajectory is obtained:

c(t) =−g
2
t2 ez + ċs t+cs (5.1)

Let (x y z)T be the coordinates of c. The ballistic motion belongs to a vertical

plane denoted by πθ. The orientation of the plane is given by the initial velocity

components as follows:

θ = atan2(ẏs, ẋs) ∈ [−π,π]

Considering Θ = (cos(θ) sin(θ) 0)T , we introduce the following variable changes

involving the scalar product:

xθ = c ·Θ, xθs
= cs ·Θ

xθg
= cg ·Θ, ẋθs

= ċs ·Θ

Thus from Equation (5.1), one can rewrite the main equations of motion determin-

ing the robot coordinates (xθ z)
T in πθ (see Figure 5.2):

z =−g
2

(xθ−xθs
)2

ẋ2
θs

+
żs

ẋθs

(xθ−xθs
)+zs (5.2)



46 Chapter 5. Ballistic motion planning for a point-mass

ez

ex

ey

ċs
αs

θ

cs

exθ

πθ

(xθ, z)

-g ez

Figure 5.2: The parabola always belongs to the plane πθ defined by (cs,exθ
,ez), where

exθ
= cos(θ)ex +sin(θ)ey.

cs

vs = 5 m/s

cs

αs = 0.8 rad

Figure 5.3: Accessible space from cs = (0 0)T when varying takeoff angle αs (left), or when
varying initial velocity vs (right). On left, the bold parabola leads to the maximal range at
given initial velocity, and is obtained for αs = π

4
.

ż

ẋθs

=−gxθ−xθs

ẋ2
θs

+
żs

ẋθs

(5.3)

Let us denote the takeoff angle by αs = atan2(żs, ẋθs
) and the velocity value ||ċs||

by vs. Equations (5.2-5.3) highlight the two parameters αs and ẋθs
that determine

a parabola in πθ. For instance, Figure 5.3 presents the parabola beams when vs

(resp. αs) is fixed. This can also be viewed as the accessible space of the robot

performing ballistic motions.

5.2.2 Goal-oriented ballistic motion

Now we want our robot to reach the goal position cg with a jump starting from

cs. Therefore, the value θ = atan2(yg − ys,xg −xs) is now known. Let Xθ equal

xθg
−xθs

and Z equal zg−zs. Since Z is fixed, it appears that from Equation (5.2),

αs is the only remaining variable to compute the parabola beam leading to cg. In



5.3. Ballistic motion with constraints 47

cs

cg

Figure 5.4: Physically-feasible parabolas linking cs and cg, for multiple values of αs in
[0.91,1.27] rad.

fact, the initial velocity ẋθs
can be obtained with the following equation:

ẋθs
=

√

gX2
θ

2(Xθ tan(αs)−Z)
(5.4)

Equation (5.4) implies that ẋθs
is only defined for top-curved parabolas, which is

consistent with gravity. Non-physically-feasible parabolas such as down-curved ones

are not considered. Therefore we impose:

atan2(Z,Xθ)< αs <
π

2
(5.5)

An example of a goal-oriented parabola beam is presented Figure 5.4. Finally, we

denote a parabola starting from cs and its parameters by Ps(θ,α,v).

5.3 Ballistic motion with constraints

So far we have defined a beam of feasible parabolas to connect two positions. In this

section, the non-sliding and velocity constraints are introduced, and the resulting

reduction of the space of admissible parabola beams is detailed.

5.3.1 Non-sliding constraints

5.3.1.1 Impulse model

Let us consider one point c at the contact of an environment surface. The surface

normal is denoted by n. We may takeoff from this point, landing to this point

or make a transition between two jumps at this point. We denote by ċt and ċl

respectively the takeoff and landing velocity vectors. The instantaneous velocity



48 Chapter 5. Ballistic motion planning for a point-mass

shift dċ is constrained by the relationship:

dċ = ċt− ċl (5.6)

Under the conservative non-slipping condition, Newton’s equation is written:

m
dċ
dt
−mg = fc

with fc the impulse contact force applied by the point-robot on the surface. Under

the impulse hypothesis dt is instantaneous, such that the action of gravity is not

measurable:

mdċ≈ fcdt

Thus, dċ and fc are colinear. From here, takeoff and landing have to be executed

without slippage. According to the friction law, this implies that the contact force

fc has to belong to the friction cone Kc of the surface containing c:

||fc− (fc ·n)n|| ≥ µ(fc ·n)

We make the following observation that, by definition of a convex cone:

− ċl ∈ Kc and ċt ∈ Kc =⇒ dċ ∈ Kc (5.7)

Proposition (5.7) provides a sufficient condition for satisfying the non-slipping con-

dition: the velocity vectors have to lie in the friction cone so that the non-sliding

constraint is respected. The benefit of this conservative condition will be detailed

in the motion planner section.

A non-slipping condition benefit is presented in Figure 5.5, where the absence

of friction constraints results in an unnatural trajectory. We use the non-slipping

condition for validating jumping trajectories in the motion planner we present in a

further section.

Figure 5.5: Illustration of the conservative non-slipping condition. (Top) The trajectory is
valid, since landing and takeoff velocties are included in the centroidal green cone. (Bottom)
The trajectory is found invalid by our criterion.



5.3. Ballistic motion with constraints 49

5.3.1.2 2D reduction

Non-sliding constraints impose the robot to land and take off along velocity vectors

that belong to 3D friction cones of apexes based on cs and cg.

ez

exθ

αs

cs

cg

start cone

goal cone

2δg2δs

ns

γs

ng

γg

Figure 5.6: (Top) Representation of the intersection between πθ and two 3D cones. (Bot-
tom) 2D cones resulting of the intersection and an example of parabola belonging to both
cones.

Since the motion has to lie in a vertical plane πθ, the problem of computing a

parabola between the two 3D friction cones is reduced to a 2D problem. Corre-

sponding 2D cones result from the intersections of the 3D cones with the plane πθ

(see Figure 5.6 top). If one of both intersection sets is reduced to a point, there

is no possible jump between cs and cg. Otherwise, let us denote their half-apex

angles respectively by δs and δg, and their directions projected in πθ respectively

by ns and ng. Detailed computation of δs and δg is presented in Equation (A.5) of

Appendix A. Note that δs and δg may be smaller that arctan(µ). For the 2D start

cone of direction ns = (nxs nys nzs)T , let us denote by γs the angle between the

cone direction and the horizontal line:

γs = atan2(nzs ,nxs cos(θ)+nys sin(θ))



50 Chapter 5. Ballistic motion planning for a point-mass

γg is similarly defined, respectively to the 2D goal cone. Thus the problem of

slippage avoidance is reduced to the problem of finding a parabola going through

the 2D cones (see Figure 5.6 bottom).

5.3.2 Constraint formulation

Since the equation of a parabola starting at cs and ending at cg only depends on

αs, the four constraints are just formulated relatively to αs.

For the non-sliding takeoff constraint, the inequalities on αs are immediate:

α−
1 ≤ αs ≤ α+

1 with

{

α−
1 = γs− δs

α+
1 = γs + δs

To express the three remaining constraints according to αs, Equations (5.2-5.3)

are brought back to the parabola origin cs. Thus constraints are still expressed as

inequalities:

α−
i ≤ αs ≤ α+

i , i ∈ {2..4}
For the landing cone constraint, different cases appear, depending on the accessi-

bility of the cone. They are tackled by Algorithm 4, which returns the constraint

bounds (α−
2 ,α

+
2 ). Note that one of the bounds may not exist, and that the con-

straint may also not be satisfied.

5.3.3 Velocity constraints

Takeoff velocity limitation is expressed as vs ≤ Vmax. Vmax is manually cho-

sen according to the maximal allowed jump range Xmax (e.g. on a flat ground,

Xmax = V 2
max/g). Equation (5.2) leads to:

gX2
θ tan(αs)2−2XθV

2
max tan(αs)+gX2

θ +2ZV 2
max ≤ 0 (5.8)

Let us set:

∆ = V 4
max−2gZV 2

max−g2X2
θ

If ∆ < 0, Equation (5.8) has no solution. In other words, it means that the goal

position is not reachable with an initial velocity satisfying the limitation. In the

case where the constraint is solvable, we write:

{

α−
3 = (V 2

max−
√

∆)/gXθ

α+
3 = (V 2

max +
√

∆)/gXθ

The same argument can be applied for the landing velocity limitation (see Fig-

ure 5.7). Using Equations (5.3-5.4), we can rewrite the constraint equation

vf ≤ Vmax as:

gX2
θ tan(αs)2− (4XθZg+2XθV

2
max)tan(αs)+gX2

θ +2ZV 2
max +4gZ2 ≤ 0 (5.9)



5.3. Ballistic motion with constraints 51

Algorithm 4 Resolution of the landing cone constraint.

Output: Defined constraint bounds α−
2 , α+

2

if γg > 0 then
α−

g = γg−π− δg

α+
g = γg−π+ δg

if α+
g <−π

2 then
No solution

else
α−

2 = arctan( 2Z
Xθ
− tan(α+

g ))

if α−
g >−π

2 then
α+

2 = arctan( 2Z
Xθ
− tan(α−

g ))
else

α+
2 not defined

else
α−

g = γg +π− δg

α+
g = γg +π+ δg

if α+
g > π

2 then
No solution

else
α+

2 = arctan( 2Z
Xθ
− tan(α−

g ))

if α+
g < π

2 then
α−

2 = arctan( 2Z
Xθ
− tan(α+

g ))
else

α−
2 not defined

Let us set:

Λ = V 4
max +2gZV 2

max−g2X2
θ

If Λ< 0, Equation (5.9) has no solution. Otherwise, we write:

{

α−
4 = (V 2

max +2gZ−
√

Λ)/gXθ

α+
4 = (V 2

max +2gZ+
√

Λ)/gXθ

A symmetry property of the parabola implies that, given one parabola from cs to

cg determined by ċs, the same parabola can be obtained from cg to cs with −ċg as

initial velocity. In the latter case, the contact velocity becomes −ċs. We use this

property to apply the same bound Vmax for the takeoff and landing velocities. Thus

the parabola can be traveled both ways without violating the velocity limitation

constraints.

5.3.4 Constraint collection and solution existence

The domains where constraints are satisfied are convex. Thus, we intersect these

domains to determine if an interval ]α−
s ,α

+
s [ of αs values complying with all the



52 Chapter 5. Ballistic motion planning for a point-mass

cs cs

ċg
cg

ċg

cg

Figure 5.7: The landing velocity limitation allows to reject parabolas that have too impor-
tant an impact velocity magnitude vg (right).

constraints exists. The interval bounds are given by:

{

α−
s = max(α−

1 , α
−
2 , α

−
3 , α

−
4 )

α+
s = min(α+

1 ,α
+
2 , α

+
3 , α

+
4 )

Note that Equation (5.5) has to be simultaneously satisfied to consider an admis-

sible parabola. Figure 5.8 presents an illustration of this constraint intersection.

Constraint bounds (α−
i ,α

+
i )i∈{1..4} are used to plot parabolas, representing the do-

mains where constraints are satisfied. The intersection of these domains leads to

the set of possible solutions.

α−
sα+

scs

cg

4. Landing velocity limitation

1. Takeoff from initial cone

3. Takeoff velocity limitation

2. Landing in final cone

4.

3.

1.

2.

Figure 5.8: Illustration of the constraints on a practical example: each constraint bound
is used as αs and represents a bold parabola. Between these bounds, the constraint is
satisfied, out of them not. The constraint intersection is given by the bounds (α−

s ,α
+
s ) and

illustrated by the gray zone: blue parabolas belonging to it are admissible solutions to the
problem.

Finally, the existence of an admissible jump between two points is guaranteed

as soon as:



5.4. Motion planning algorithm 53

Figure 5.9: Three parabola examples linking cs to cg with different constraints. Large
(blue) and narrow (violet) friction cones are considered, forcing the solution parabola to be
adapted. With a large velocity limitation, cg can be directly reached (blue). Otherwise, an
intermediate position has to be considered (red).

• Neither of the intersections between both friction cone and πθ is reduced to a

point.

• (α−
s ,α

+
s ) are defined and α−

s ≤ α+
s .

The two conditions are necessary and sufficient. The interval ]α−
s ,α

+
s [ gives

a simple parametrization of the solution beam. Choosing αs as the average

0.5(α−
s +α+

s ) allows to optimize the distance to the constraints, e.g. to be far

from the limits of the friction cones, and so far from sliding. Figure 5.9 illustrates

the constraint effects on a simple example.

5.4 Motion planning algorithm

5.4.1 Algorithm

To find a sequence of parabola arcs between an initial position cs and a final one

cg, we use a dense PRM-based Probabilistic Roadmap Planner [Kavraki 1996] (see

Algorithm 5), where the roadmap may contain cycles. The planner can be used

offline to explore an unknown environment and build a roadmap in the 3D space by

randomly sampling contact positions (randomSample). The surface sampling is

conducted similarly to [Amato 1996] to have a normalized repartition of the sam-

ples among the obstacle surfaces, modelized by triangles. Then, positions are linked

(steer) with admissible collision-free parabola arcs. The roadmap construction is

over as soon as either a path linking cs and cg is found (areConnected), or compu-

tation time is over. Finally, the function findShortestPath explores the roadmap

to return the shortest path sequence, in terms of sum of parabola lengths. As no

symbolic expression exists to compute the parabola lengths, a Simpson quadrature



54 Chapter 5. Ballistic motion planning for a point-mass

cs
cg

Figure 5.10: Preliminary result of a roadmap generation in a desert environment. Nodes
are represented by their friction cones.

Algorithm 5 Probabilistic roadmap planner for ballistic motion planning.

Input: environment, cs, cg, µ, Vmax

Output: Collision-free solution sequence to problem
path←steer(cs,cg)
finished← areConnected(cs,cg)
while not(finished) do

crandom← randomSample()
addToRoadmap(crandom)
for cnode ∈Roadmap do

path←steer(cnode,crandom)
addToRoadmap(path)

finished← areConnected(cs,cg)
return sequence← findShortestPath()

of order 6 is used to compute them numerically. An example of ballistic roadmap

is given in Figure 5.10.

Note that the sufficient non-slipping condition reduces the dimensionality of the

motion planning problem, because it removes the relationship between the entering

velocity and the exiting velocity of a node. With a classic kynodynamic planner

[Kunz 2014], to verify whether a trajectory can be connected with another one,

it is required to extend the state space with the velocities and so it doubles the

dimensionality of the problem. In our case, this is only required to verify whether

there exists a velocity vector belonging to the cone each time we want to add a new

path, independently of other paths.

The function beam is described in Algorithm 6. It computes the interval of

takeoff angles that generate constrained parabolas to link cs and cg. The algorithm



5.4. Motion planning algorithm 55

Algorithm 6 beam(cs,cg): Computes the parabola beam represented by the take-
off angle interval ]α−

s ,α
+
s [.

Input: cs, cg, µ, Vmax

Output: Interval of takeoff angles Ibeam

cone2D
s ← computeIntersection(cone3D

s ,πθ)
cone2D

g ← computeIntersection(cone3D
g ,πθ)

if isReduced(cone2D
s ) or isReduced(cone2D

g ) then
return Ibeam←∅

(α−
i α

+
i ,fail)i∈{1..4}← computeConstraints()

if fail = true then return Ibeam←∅
α−

s ←max(α−
1 ,α

−
2 ,α

−
3 ,α

−
4 )

α+
s ←min(α+

1 ,α
+
2 ,α

+
3 ,α

+
4 )

return Ibeam←]α−
s ,α

+
s [

starts by calculating each cone and plane πθ intersection, and continues only if both

intersections are not reduced to the cone apexes. Then, takeoff angle bounds related

to constraints are computed as presented in Section 5.3. A boolean fail conveys

the feasibility of constraints, i.e. if one constraint cannot be satisfied, fail is set to

true. At this stage, an admissible parabola exists if the global constraint bounds

verify α−
s ≤ α+

s .

Then the steering method steer detailed in Algorithm 7 selects a takeoff an-

gle αs and tests the corresponding parabola for collisions. If the parabola is not

collision-free (hasCollisions), then we select a new parabola αs by dichotomy on

the interval ]α−
s ,α

+
s [ until the resolution threshold nlimit is reached. In the worst

case, the dichotomy function allows to span the almost entire parabola beam.

Doing so, the algorithm is probabilistically complete as proven by the following

property.

5.4.2 Probabilistic convergence study

The two following properties prove the probabilistic convergence of our algorithm,

under some given assumptions.

Property 3 (Topological property). Let us consider an admissible parabola

Ps(θ,α,v) starting at cs and ending at cg. There exists a neighborhood Ns (resp.

Ng) of cs (resp. cg) such that any pair of points (c∗
s,c∗

g) belonging to Ns×Ng can

be linked by an admissible parabola.

Proof. Let us consider the parabola family {Ps(θ+ e1,α+ e2,v+ e3), ei ∈]− ε,ε[}
starting at cs. The function giving the three parabola parameters from the three

coordinates of cg is an homeomorphism. Therefore such a family spans a neighbor-

hood of cg. Let c∗
g be a point of this neighborhood and Ps(θ+e∗

1,α+e∗
2,v+e∗

3) the

parabola from cs to c∗
g. c∗

g may be chosen close enough from cg to guarantee that e∗

is small enough, and then Ps(θ+ e∗
1,α+ e∗

2,v+ e∗
3) is admissible. Because the con-



56 Chapter 5. Ballistic motion planning for a point-mass

Algorithm 7 steer(cs,cg): Steering method based on a constrained parabola.
Returns a collision-free path linking cs and cg. Otherwise, returns an empty path.

Input: cs, cg, µ, Vmax, nlimit

Output: Collision-free parabola path path
]α−

s ,α
+
s [← Ibeam

n← 1
Ibeam← beam(cs,cg)
if isEmpty(Ibeam) then return path← emptyPath
else
αs← 0.5(α−

s +α+
s )

path← computeParabola(cs,cg,αs)
while hasCollisions(path) and n < nlimit do

αs← dichotomy(]α−
s ,α

+
s [,n)

path← computeParabola(cs,cg,αs)
n← n+1

if hasCollisions(path) then path← emptyPath
return path

struction is symmetric, let us consider the same parabola as starting at c∗
g and end-

ing at cs. We get a new parametrization of the same parabola, i.e. Pg(θ∗,α∗,v∗). By

using the same argument as above, the parabola family {Pg(θ∗ +e1,α
∗ +e2,v

∗ +e3),

e ∈]− ε,ε[} starting at c∗
g spans a neighborhood of cs. The property holds for any

point c∗
g sufficiently close to cg. Therefore, there exists a neighborhood Ns (resp.

Ng) of cs (resp. cg) such that any pair of points (c∗
s,c∗

g) belonging to Ns×Ng can

be linked by an admissible parabola.

Property 4 (Probabilistic convergence). Let us consider a sequence of collision-

free ballistic jumps between two points cs and cg in a given environment. Let us

assume that the entire path is at a distance of about ε from the obstacles. Then

the probability for Algorithm 5 to find a sequence of collision-free ballistic jumps

between cs and cg converges to 1 when running time tends to infinity.

Proof. The property 4 is a direct consequence of the Property 3. Indeed, let us

consider a sequence of collision-free ballistic jumps between two points cs and cg.

Let ci and ci+1 two consecutive points in the sequence. ci and ci+1 are linked by

a collision-free parabola Pi. From the topological property, there are two neigh-

borhoods Ni (resp. Ni+1) of ci (resp. ci+1) such that any pair of points (c∗
i ,c∗

i+1)

belonging to Ni×Ni+1 can be linked by an admissible parabola P∗
i . Because Al-

gorithm 5 tends to sample the environment uniformly, the probability of sampling

two points in Ni and Ni+1 respectively tends to 1 when time tends to infinity. Ni

and Ni+1 can be arbitrarily small. As a consequence, P∗
i can be arbitrarily close

to Pi. Because Pi is away about ε from the obstacles, P∗
i is guaranteed to be

collision-free.

Note that, contrary to classic path planning, ballistic motions can occur between



5.5. Results 57

1 2 3 4

visible from 2 visible from 1-3 visible from 2-4 visible from 3

qstart qgoal

guard node cannot be created in 2 (resp. 3) because visible from 1 (resp. 4)

connection cannot be created here because contact-space is not continuous

Thus Visibility-PRM cannot solve this problem

Figure 5.11: Example where Visibility-PRM will fail to find a path whereas a solution
exists.

two non-continuous spaces, such as platforms, and the amplitude of a motion is

limited by the takeoff velocity bound. Thus, completeness of planners using the

ballistic steering method may become invalid if they require that paths lie in a

continuous space. For example, the Visibility-PRM planner [Siméon 2000] builds a

sparse roadmap contrary to PRM, based on nodes visibility to each other. Because

nodes can only be created at some specific places of the environment, and the

visibility is limited by the velocity constraint, the planner can become incomplete

(see Figure 5.11).

5.5 Results

The ballistic motion planner was tested in 3D environments containing slippery

surfaces, using HPP. Graphical renderings were done using Blender 2.7. In all

described examples, the parameter nlimit from Algorithm 7 was set to 6.

We planned sequences of parabolas for a point-robot in three environments.

For each example, we considered weak and strong constraints. The results are

shown in Figures 5.12, 5.13 and 5.14. Movies of the trajectories are available in

the companion video1. Solutions under strong constraints tend to increase the

number of waypoints. It is not only a consequence of the velocity limitation that

forces to reach closer positions (see also Figure 5.9 bottom), it also results from the

cone narrowness. As it is shown in Figure 5.9 top, narrow cones provide parabolas

with greater heights, more likely to produce collisions or to exceed the environment

bounds.

1https://youtu.be/vv_K7HqANmk

https://youtu.be/vv_K7HqANmk


58 Chapter 5. Ballistic motion planning for a point-mass

ex
ey

ez

Vmax = 5.3 m/s
µ = 1.2µ = 0.5

cs

cg

Vmax = 6.8 m/s

Figure 5.12: Full path planning results in an environment containing two windows to cross
from right to left. The red solution is more constrained, so it results in a longer sequence
of parabolas. Number of triangles: 47733.

Parameters Computation Collision Roadmap Path
µ Vmax time (s) found nodes length (m)

0.5 6.5 m/s 9.89 3270 1995 39.9
0.5 7 m/s 9.99 4002 1835 37.4
1.2 6.5 m/s 1.04 601 282 28.1
1.2 7 m/s 0.909 540 237 27.0

Table 5.1: Averages of 40 ballistic planning of the example Figure 5.13, for four combinations
of the parameters. Benchmarking was done on a PC with 4 GB of main memory and using
one core of an Intel Xeon E3-1240 processor running at 3.4 GHz.

Table 5.1 presents the average performance results of the ballistic motion planner

run on the Figure 5.13 benchmark. The velocity limitation is less restrictive in terms

of computation time than the cone coefficient. However, the velocity limitation

cannot be reduced without endangering the existence of a solution. In fact, the

robot has to reach other platforms in order to find a solution path sequence.

5.6 Conclusions

We presented a method that analytically computes a non-sliding jump for a point-

robot, resulting in a parabola going from one friction cone to another. The method

has been implemented as a steering method in a probabilistic-roadmap motion

planner in order to determine a sequence of jumps between given start and goal

positions.

We believe that designing new type of paths, specially jumps, is relevant to

improve the robot capacities to explore their environment. In particular, rescuing

missions can rely on jumping to perform on rough terrains.

Besides, this method is the first stage of a more ambitious challenge. Our final

purpose is to address dynamic motion planning for digital artifacts. The solution

which we provide can be used to compute the center of mass path when the artifact

is jumping. Now, it remains to consider more realistic models of contacts (e.g. mul-



5.6. Conclusions 59

ex

ey
ez

Vmax = 6.5 m/s

µ = 1.2

µ = 0.5

cs

cg

Vmax = 7 m/s

Figure 5.13: Full path planning results in an environment containing platforms and a
chimney. The blue path is constrained by large cones, the red path by narrow cones.
Reducing µ prevents the creation of a parabola linking two low platforms with the same
inclination. Number of triangles: 696.

ex

ey

ez Vmax = 4.5 m/s

µ = 1.2

µ = 0.5

cs

cg

Figure 5.14: Path planning results in a cave. The robot has to avoid the numerous stalac-
tites, stalagmites and holes. Number of triangles: 33513.



60 Chapter 5. Ballistic motion planning for a point-mass

tiple contacts involving feet and hands) and impacts (e.g. including energy balance).

Furthermore, the steering method we consider in the motion planner is assumed to

be symmetric. This assumption is not realistic. Indeed, for a given parabola, the

energy required to overcome the gravity effect from a position is greater than the

energy to dissipate when landing at the same position. The extension of the motion

planner to more realistic energetic models is the purpose of future developments.

Part of these perspectives is tackled in the next chapter, with the extension of

the jumping motions to a wholebody character.



Chapter 6

Ballistic motion planning for
jumping superheroes

Contents
6.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Non-slipping constraint for an arbitrary number of contacts 62

6.3 A reduced character model for contact location estimation 64

6.4 Motion planning algorithm for the reduced model . . . . . 66

6.5 Motion synthesis for wholebody animation . . . . . . . . . . 69

6.5.1 Computation of wholebody contact configurations, and iden-

tification of takeoff and landing phases . . . . . . . . . . . . . 70

6.5.2 Wholebody animation of the jump trajectory . . . . . . . . . 72

6.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.6.1 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . 74

6.6.2 Time performances . . . . . . . . . . . . . . . . . . . . . . . . 78

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Problem statement

Synthesizing high quality motions for legged characters in arbitrary environments

is challenging:

(i) the dimension of the problem is high, equal to the number of DOFs,

(ii) the environment is big and complex, and

(iii) the motion is additionally constrained by the dynamics of the world.

For these reasons, motion synthesis is typically addressed with a decoupled ap-

proach. First, in the path planning phase a collision-free path is found for the

character using a PRM-based approach [Kavraki 1996]. Then, in the animation

phase a motion is computed and played along the path. Using this decoupled ap-

proach, we consider the issue of synthesizing highly dynamic jumping motions for

legged characters. However in general there is no guarantee that a collision-free



62 Chapter 6. Ballistic motion planning for jumping superheroes

path can be executed by a virtual character without considering a full dynamic

model [Kunz 2014].

For concision, our scope is restricted to the generation of sequences of jumping

motions, disregarding alternations with classic walking / running trajectories. Thus,

given start and goal configurations for an character in an arbitrary environment,

our framework outputs a motion described as a sequence of parabolic wholebody

jumps, respecting a set of kinematic and dynamic constraints for the character.

The key idea is the introduction of a simplified multi-contact model within a

sampling based planner. We relax the dynamics of the problem with an impulse

hypothesis, which assimilates our character with a superhero. Our character is thus

assumed to be able to exert a large force instantaneously, as proposed in Chapter 5.

This formulation simplifies the verification of the Newton equation of the motion

regarding the dynamic constraints on the character. We assume that the Euler

equation is always satisfied as we consider centroidal dynamics.

The impulse hypothesis leads to an efficient, low dimensional formulation of the

motion planning problem, solved with a sequence of simple geometric tests, while

partially capturing the dynamic model of the character to compute plausible trajec-

tories. To handle the combinatorial aspect of the contact generation problem, we

decouple the trajectory planning phase from the contact generation phase, thanks

to a heuristic based on the reachable workspace of the character [Tonneau 2015b].

In this work, the authors introduce a way to decouple the character model into a

dual-shape including the limb reachable spaces. Thus, planning with this reduced

system is faster while obstacle reachability for contacts is verified. Once contact

placements are chosen, classic non-sliding constraints are transferred from the con-

tact positions to the character center of mass (COM) through a new friction cone

representation which complies with the use of the Ballistic Motion Planner.

Finally, to propose a complete framework, we implement a method based on

key-frame interpolation to automatically animate the computed trajectory. Some

of the key-frames are generated automatically by the method while others are pre-

defined by the user. Since motion generation may produce limb collisions or contact-

constraints violation, a local planner is used to prevent these effects.

6.2 Non-slipping constraint for an arbitrary number of
contacts

We denote by m ∈R the mass of the character or robot. The COM position c ∈R
3

depends on the posture of the system. It is not a fixed point belonging to the

body. However, for simplification purpose, we consider the center of mass as lying

in the body-root of the kinematic chain. ċ ∈ R
3 is the velocity of c and c̈ ∈ R

3 is

its acceleration.

Our contact model is based on Coulomb’s non-slipping constraint, which we

recall briefly in this section. We generalize the constraint to handle an arbitrary

number of contacts, by expressing it at the COM of the robot. From this formu-



6.2. Non-slipping constraint for an arbitrary number of contacts 63

lation, assuming an impulse formulation of the model, we propose a conservative

condition for non-slipping, that is sufficient, but not necessary. This condition, re-

duced to a simple geometric test, is then used in our motion planner, presented in

Section 5.3.

For the i-th contact point pi, 1 ≤ i ≤ h, Ki is the associated convex friction

cone, considering a friction coefficient µi, and a surface normal ni. fi is the contact

force applied at pi. The non-slipping condition is still given by Coulomb’s law: the

contact will not slip if the contact reaction force fi lies strictly within the friction

cone Ki.

Now, if we consider an arbitrary number h of contacts, each reaction force fi

must lie in its associated cone Ki. The resulting force fc applied at the center of

mass c of the character, is defined as the sum of all the forces fi. It follows that the

set of admissible resulting forces K such that the non-slipping condition is respected

is defined as the Minkowski sum of each individual friction cone:

K = {f1 + · · ·+ fh|fi ∈ Ki} (6.1)

As a Minkowski sum of convex cones, K is itself a convex cone [Boyd 2004]. Since

the analytical form of K is unknown, it is common to process the Minkowski sum of

the linearized shape of the cones [Bretl 2008]. However, linearization is conservative

and it introduces noise. For instance, in the work of [Carón 2016], the method based

on cdd cannot afford three or more contact supports in terms of computation time.

Instead, we apply the fact that what we need for our path planner is the intersection

of K with a vertical plane including the parabola trajectory. In such a context, an

analytic computation of the intersection can be simply provided, rather than using

a linear approximation of the cones. The details of this intersection computation

are given in Appendix A Section A.1. Due to the vertical plane dependency, the

planner modification will be detailed in a further section. The resulting shape, a

2D cone or a point, is denoted Kc, originating at c, of normal nc and friction µc.

Figure 6.1 illustrates the construction of Kc in the case of two and three contact

points.

The cone Kc is included in K by construction, and is thus a conservative ap-

proximation of K. Force closure contact configurations, where the resulting normal

nc is null, are considered invalid in this formulation. Although this formulation

is intuitively really conservative, it has an analytic form that makes it extremely

efficient to compute. We justify the interest of this formulation with the variety of

the solutions found by our planner.

For the impulse-force model of the non-sliding constraints, we simply extend

the model proposed in Section 5.3.1 to multi-contact motions, by applying it to the

centroidal cone Kc.

Let us assume that between two jumps, there exists an impulse-force that instan-

taneously changes the COM velocity from landing to next takeoff. By the propriety

of the convex cone, this implies that there exists a distribution of impulse-forces at

each contact point which belong to their respective friction cones. The force applied



64 Chapter 6. Ballistic motion planning for jumping superheroes

c

πθ

πθ

Kc

nc

Kc

nc

c

Figure 6.1: Two examples of intersections between a convex-cone and a vertical plane, for
two (left) and three (right) summed cones.

to the COM is then the resultant of the contact forces. Therefore, the combina-

tion of the impulse-force model and the convex-cone is dynamically valid with the

friction constraints.

6.3 A reduced character model for contact location es-
timation

Motion planning for legged characters requires generating contact configurations for

force exertion. This is hard because it is impossible to generate randomly a contact

configuration. Random contact configuration are obtained by selecting randomly

a collision-free configuration and by projecting it on the boundary of an obstacle.

Thus projectors are required [Bretl 2004]. They mostly consist in iterative pro-

jections that solve the inverse kinematics, which is time consuming. Furthermore,

contacts are associated with kinematic and dynamic constraints, and introduce com-

binatorics hard to handle for such approaches, resulting into hours of computation.

In order to reduce the dimensionality of the problem and break the combinatorial

complexity, the planner does not consider neither the complete character model at

this phase, nor the explicit computation of contact configurations.

We consider a legged character, described by a kinematic chain R, composed

of a root R0, and l limbs Rk,1 ≤ k ≤ l. The root has a minimum of r ≥ 6 degrees

of freedom (DOFs), which describe its position and orientation in the world frame.

The additional DOFs describe the articulations the character torso, head, spine etc.

R is fully described by a configuration q ∈ R
r+n.



6.3. A reduced character model for contact location estimation 65

Character
Fullbody Reduced Full number Reduced number Friction Maximal takeoff -

representation representation of DOFs of DOFs coefficient landing velocities (m/s)

Skeleton 43 15 0.6 8 - 12

Jumper-man 38 12 1.2 10 - 15

Frog 45 9 1.2 6 - 8

Ant 66 12 1.2 4.5 - 8

Lamp 11 6 1 8 - 9

Kangaroo 42 18 1.2 7 - 8

Table 6.1: Character models1and default planning parameters. The W shapes of each char-
acter are shown on the right. W is composed of the trunk and the accessibility workspaces
of the limbs (green). The trunk is approximated with bounding boxes (red). Spine DOFs
of the Skeleton are not activated because they can be neglected [Hickox 2016].

We define:

• qk denotes the configuration (a vector of joint values) of the limb Rk;

• qk denotes the vector of joint values of R not related to Rk. We note for

convenience q = qk⊕qk;

• q0 ∈ R
r denotes the configuration of the root R0.

At the planning phase, to check the non-slipping condition, we need an es-

timation of the contact locations. To avoid dealing with the combinatorial and

computational complexity of contact generation, we introduce a contact estima-

tion heuristic, based on a dual, low-dimensional representation of the character,

introduced by [Tonneau 2015b]. We recall it here for completeness.

13D models are freely available and can be found in the following websites: http://tf3dm.com/
and http://archive3d.net/.

http://tf3dm.com/
http://archive3d.net/


66 Chapter 6. Ballistic motion planning for jumping superheroes

Rather than considering the complete body configuration, the planner only con-

siders the root configuration q0. To perform collision detection, the complete body

is approximated with a bounding shape W0. Additionally, for each limb k, we

attach to the root a shape Wk, computed as the reachable workspace of the limb.

Its computation is based on gathering the end-effector positions for numerous ran-

dom configurations of the limb (typically 10 000 samples). Then, a convex envelop

of these samples is generated as the Wk shape. The list of character models and

parameters is presented in Table 6.1. Note that the friction coefficients could also

depend on the environment materials, but for convenience we assume that they are

constant for each character.

Our contribution is to use the reachable workspace of each limb for contact

location estimation. Given a configuration q0, we assume that if Wk is in collision

with the environment, it is possible for the character to create a contact (Figure 6.3)

between the limb Rk and the environment. The contact location is estimated to

be roughly at the center of the intersection between the largest colliding contact

surface and Wk. Figure 6.2 presents examples of contact locations.

Figure 6.2: Two examples of contact cone locations from the intersections between reachable
workspaces Wk (green) and environments.

This heuristic provides an efficient method to approximate the contact location,

and allows the verification of the non-slipping condition without considering the

expensive complete model (i.e. no limb configuration is computed). The contact-

configuration generation step is detailed in Section 6.5.1.

6.4 Motion planning algorithm for the reduced model

The animation-planning procedure is divided in two main steps: planning the path

s of the dual-shape and then animating it into a trajectory s. This section deals

with the first planning step. Note that animation is not directly processed during

the planning stage due to performance considerations.

Our algorithm is an extension of the Ballistic Motion Planner introduced in

Chapter 5, adapted to generate multi-contact jumping motions. We modify the

original algorithm in three ways:



6.4. Motion planning algorithm for the reduced model 67

• First, as proposed by [Tonneau 2015b], the configuration sampling is biased

towards configurations that allow to generate contacts. Without loss of com-

pleteness, we only consider configurations for which at least ncn shapes Wk

are in collision, i.e. ncn contact creations are possible (Figure 6.3). ncn is

typically equal to the number of shapes Wk, except for humanoids where

ncn = 2;

• Then, to generate the root trajectory between two configurations, we use

the parabolic steering method previously introduced to represent the root

location. Other root DOFs such as orientation are randomly generated. As

we limit the takeoff and landing velocity magnitudes by different values, paths

are now oriented;

• Our contribution lies in the validation of the generated trajectory. A trajec-

tory between two configurations is only validated if the multi-contact non-

slipping condition is validated.

First, given an environment, a roadmap can be generated to capture the topol-

ogy of the space regarding the reduced robot (preComputeRoadmap). A user-

defined termination condition typically determines the duration, or number of iter-

ations, of the roadmap exploration. Once the graph has been generated, requesting

a trajectory between two given configurations (q0
start, q0

goal) consists in adding them

to the roadmap using Algorithm 8. Each requested configuration is assumed to

be close enough to obstacles to perform contacts if needed. If both configurations

have been successfully added, the shortest trajectory connecting them is obtained

by computing the shortest traversal of the graph.

We detail the algorithm functions:

• validTrunkRandomSample returns a root configuration q0 such that W0

is collision-free, and at least ncn number of shapes Wk are in collision. Compu-

tation details of q0 can be found in Section 6.2.1 of [Tonneau 2015a]. Instead

66 DOFs
9 DOFs

Figure 6.3: Illustration of a necessary condition for contact creation. If the trunk bounding
box is collision-free (left–red), and the reachable workspaces of the limbs are in collision
with the environment (left–green), we assume that a contact configuration can be created
between the effectors and the environment (right).



68 Chapter 6. Ballistic motion planning for jumping superheroes

Algorithm 8 Ballistic motion planner for a W-shaped system.

Input: q0
start, q0

goal, Environment, µ, ċmax
l , ċmax

t

Output: Sequence of jumps linking the two configurations
Roadmap← preComputeRoadmap()
findContacts(q0

s)
Kc← computeCone(q0

s)
addToRoadmap(q0

s ,Kc)
findContacts(q0

g)
Kc← computeCone(q0

g)
addToRoadmap(q0

g ,Kc)
connected← False
while not(connected) do

q0
rand← validTrunkRandomSample()

findContacts(q0
rand)

Kc← computeCone(q0
rand)

addToRoadmap(q0
rand,Kc)

for q0 ∈Roadmap do
T←validSteer(q0,q0

rand, ċ
max
l , ċmax

t )
addToRoadmap(T)
T←validSteer(q0

rand,q
0, ċmax

l , ċmax
t )

addToRoadmap(T)

connected← areConnected(q0
s ,q

0
g)

s← findShortestPath(q0
s ,q

0
g)

s← rotateAlongPath(s)
return s

of being random, the trunk orientation can intuitively be modified. For in-

stance, the trunk is orientated so that the robot lies on the ground (standing

or on all fours). This prevents orientations where creating a contact is pos-

sible but unnatural to provide an impulsion (e.g. a hand in the back of the

character pushing a wall).

• findContacts estimates the contact positions on the surfaces resulting of

the intersections between the Wk shapes and the environment. From the

estimated contact locations, the centroidal cone Kc is computed with the

method computeCone.

• validSteer is an extension from the parabola-steering-method of Chapter 5.

To generate a trajectory between two configurations q0
a and q0

b , the method

determines whether there exists a parabola that verifies the non-sliding con-

dition. This means that the takeoff velocity belongs to the centroidal cone

Kc(a), while the landing velocity belongs to Kc(b). The takeoff and landing

velocities are also limited by user-defined bounds ċmax
t and ċmax

l . The tra-

jectory is validated if the resulting parabola is collision-free, that is if W0 is

collision-free along the path. If no valid parabola can be found, validSteer



6.5. Motion synthesis for wholebody animation 69

returns an empty trajectory T.

• TerminationCondition is a user-defined function that determines the du-

ration, or number of iterations, of the roadmap exploration. In the case of

a planning query between two configurations, this function is replaced by

areStartAndGoalConnected which indicated if the configurations are

linked through the roadmap.

• findShortestPath builds the sequence of parabola trajectories, using classic

A∗ algorithm that searches for the shortest path through the roadmap to

connect the two given configurations.

• rotateAlongPath is a re-orientation of the character trunk to follow the

next parabola-direction, while the robot still lays on the ground as anticipated

during the shooting stage. The re-orientation method is a personalized effect

to improve realism. During the sequence of jumps, the character turns so

that at the end of a jump, it faces the next jump direction. As a consequence,

the character is not rotating during the last jump (Figure 6.4). If the rota-

tion effect is invalidating a transition configuration, the orientation given by

validTrunkRandomSample is conserved as it is generated to be valid (see

Figure 6.5).

Computation details of re-orientation procedures are given in Appendix B.

Figure 6.4: Sequence of parabola paths for an ant reduced model. The takeoff velocity
limitation prevents the direct connection from start to goal, so a waypoint is found by the
planner to solve the problem. At each waypoint configuration, the accessible workspaces of
the legs are in collision with the environment. During the first jump, the robot is rotating
to match the second parabola orientation.

6.5 Motion synthesis for wholebody animation

A remaining step is to extend the trajectory q0(t) computed for the root of the

character into a full body animation. In this phase, despite the impulse model

formulation, to obtain a plausible animation, we consider that contact duration is



70 Chapter 6. Ballistic motion planning for jumping superheroes

valid
configuration

invalid
configuration

Figure 6.5: Comparison of orientations along a path of the reduced kangaroo in a desert.
(Left) The original path contains a randomly generated configurations so the interpolated
orientation may appear as unnatural. (Right) The random configuration is re-orientated
to fit the path direction. However it becomes invalid as the Wk shapes are no longer in
collision with the ground. Therefore the new orientation is not retained.

not instantaneous. This requires identifying the transition times between contact

and flight for each effector.

The wholebody animation technique proceeds as follows for each jump:

• First, several key configurations are automatically computed at specific times

of the trajectory: two contact configurations at the takeoff and landing phases;

one configuration at each moment where an effector contact is broken (respec-

tively created); one configuration at the apex of the trajectory (Figure 6.10).

• Then, a linear interpolation is performed for each DOF of the character be-

tween each key configurations. It is designed in such a way that collisions are

avoided and contact location constraints are maintained.

6.5.1 Computation of wholebody contact configurations, and iden-
tification of takeoff and landing phases

We first address the identification and animation of the takeoff and landing phases,

where contacts occur between the character and the environment. To keep the ex-

planation simple, in this section we consider an input trajectory q0(t) which consists

in a single jump, and assume that contacts are created and broken simultaneously,

although the method handles the general cases.

We first generate a collision-free, wholebody contact configuration that veri-

fies the non-sliding condition at the initial frame (which corresponds to the exact

parabola extremity) qt
contact. This configuration is generated using Inverse Kine-

matics (IK), where the effector is placed on the obstacle surface with eventually

a constraint on its orientation (e.g. the hand is facing the surface). To increase

the plausibility of the contact configuration, a heuristic is used to bias contact gen-

eration towards configurations as close as possible to a pre-defined reference con-

figuration (Figure 6.6). Contact locations may differ from the planned ones since

if a re-orientation was applied to the waypoint, the contacts may no be reachable



6.5. Motion synthesis for wholebody animation 71

anymore by the respective limbs. Furthermore, configurations returned by IK may

not be satisfying in terms of realism for takeoff and landing postures.

New contacts are accepted as long as the corresponding centroidal cone Kc is

compatible with the trajectory (i.e. satisfies the criterion (5.7) of Chapter 5). An

example is provided in Figure 6.7.

For visual purpose, contacts are not instantaneously released when the character

takes off from qt
contact. Instead, we identify the transition time between the takeoff

and flight phases using an iterative approach. We go forward in time from t0 = 0.

Next iterations are computed as ti+1 = ti + δt. δt is set to 5 ms to avoid breaking

the IK. At each time step ti, we update the root configuration q0(ti), and solve

an inverse kinematics problem for each limb to maintain the contacts active at the

same locations than initially with the obstacle surface. If possible, the end-effector

initial orientations are conserved as well. The last time ttransit before the inverse

kinematics fails is the transition time with the flight phase. The corresponding

wholebody configuration is denoted qt
transition. Note that contacts can be released at

different times, ttransit is computed when the last contact could not be maintained.

Different termination conditions are also included, such as a maximal number of

iterations (typically 100), or a ratio of the parabola length (e.g. not further than

on third of the parabola length). Finally, the landing phase is handled similarly,

with the exception that we go backwards in time from the impact time, and the

configuration is denoted ql
transition.

For the Jumper-man character, Figure 6.8 illustrates two key-frames, the initial

configuration and the last configuration of the landing phase before contacts are

released. Arms configurations were designed to increase the motion plausibility

when they do not create contacts with the environment.

Note that other heuristics can be used to generate the contact configuration,

instead of bias it toward a reference posture. The two following methods can be

considered:

• The EFORT heuristic provides the best contact configuration given a force

direction to process a motion toward this direction [Tonneau 2015b]. Based

on the resultant of the contact-force applied to c, EFORT can lead to relevant

Figure 6.6: Illustration of the generation of a contact configuration. (Left) The manually
defined reference configuration. (Middle) The root of the reference configuration is placed
close to an obstacle so that the obstacle is in the accessible space of the limbs. (Right)
Result of the configuration projection on the obstacle to create contacts with the hands
and the feet.



72 Chapter 6. Ballistic motion planning for jumping superheroes

Figure 6.7: Different contact cones for the jumping lamp. (Left) The blue cone comes from
the intersection between the Wk shape and the left surface, and is moved to the COM
of the reduced lamp model. It is used to validate the non-sliding constraint during the
planning stage. (Right) The red cone is the friction cone from the contact on the right
surface, moved to the COM. As the parabola lies inside the red cone, this configuration
satisfies the non-sliding constraint.

Figure 6.8: Key-frames of Jumper-man during a contact (left) or during a transition to a
flight phase (right). These configurations increase the plausibility of the takeoff and landing
motions when arms are not constrained to be in contact with the environment.

results.

• A manipulability heuristic returns the best configuration to process a motion

toward any directions. This option is more accurate if no force-direction is

provided, e.g. the two paths which arrives to and goes from the contact pose

are unknown.

Previous methods are interesting in the case where the user cannot define a refer-

ence configuration. A qualitative comparison between contact configurations from

the reference-configuration heuristic and from EFORT is illustrated in Figure 6.9.

As the heuristic choice is only an appearance criterion, we choose to rely on the

reference-based one.

6.5.2 Wholebody animation of the jump trajectory

For the flight animation, the root motion is guaranteed to be collision-free and re-

mains unchanged. The limb configurations are not simply interpolated between the

contact configurations (qt
contact, ql

contact) because it looks unnatural. Instead, for



6.5. Motion synthesis for wholebody animation 73

Reference configuration Generation from reference Generation from EFORT

Figure 6.9: Contact configuration examples of the ant character. (Middle) The heuristic
based on a reference configuration is used. (Right) EFORT with an upward direction is
applied.

qapex

qt
contact (t0)

ql
contact

takeoff

landing

ql
transition

qt
transition (ttransit)

Figure 6.10: Key configurations computed along a parabola trajectory.

each parabola path, we first insert three key-frame limb configurations, including

the transition contact configurations (qt
transition, ql

transition) of the previous section.

An additional key configuration is generated at the apex of the parabola qapex. It

is sampled to be collision-free, with a bias to lie in the neighborhood of a manu-

ally defined reference configuration. Key-frames positions on a parabola path are

illustrated in Figure 6.10.

Then, the linear interpolation between the key-frame configurations can result

in one limb being in collision with the environment or another limb. This situation

is equivalent to a local motion planning where a collision-free path has to be found

for the limb between its two key-configurations. To solve it, we simply use the

sample-based planner bi-RRT. During this re-sampling, only the DOFs of the limb

in collision are modified.

Note that no solution to limb collisions may be found. In that case, forcing

the framework to return a valid solution may output from a trade-off between

collision avoidance and realism. For example, problematic limb trajectories may be

frozen to one configuration which reduces the risk of collision with other limbs or

the environment. Contacts may also be canceled to more easily find collision-free

trajectories.

A summary of the wholebody configuration generation and the flight interpola-

tion is provided in Algorithm 9.



74 Chapter 6. Ballistic motion planning for jumping superheroes

Algorithm 9 Wholebody animation procedure from a root trajectory with manu-
ally defined reference limb configurations.

Input: environment, q0(t), reference configurations
Output: Animated path s

[qt
contact, q

l
contact]← generateContacts(s)

for each parabola p ∈ s do
do

qt
transition←maintainContacts(p,qt

contact)
ql

transition←maintainContacts(p,ql
contact)

while (maintained(qt
contact,q

t
transition) or maintained(ql

contact,q
l
transition))

p← interpolateAndSolve(p,qt
contact,q

t
transition,qapex,ql

transition,q
l
contact)

addToSequence(p,s)

return s

6.6 Simulations

Our framework has been implemented in HPP. Final renderings have been gener-

ating with Blender 2.7 using the automatic blender export tool of HPP.

We demonstrate the genericity of our approach with four characters in five

environments. The characters have different morphologies from two up to six limbs.

They also have different jump abilities, expressed as the friction coefficients of the

environment, as well as velocity bounds given in Table 6.1. We first detail key

qualitative results on the different scenarios that illustrate the aspects and the

limits of the method. Details are also available in the companion video2. Then

performances are provided and discussed concerning the real time potential of the

approach.

6.6.1 Qualitative results

Jumper-man on cubes This example justifies the use of the non-sliding con-

straint to eliminate unnatural jumps (Figure 6.11). Without friction cones to con-

straint the parabolas, the COM trajectory is tangent to the obstacle surface. In the

video, we provide another example of a jumping ant without sliding constraints.

Jumper-man on houses This scenario involves the Jumper-Man character

jumping on house roofs (Figure 6.12–red). This example shows the genericity of our

approach, which handles well cases where assumptions on the number of contacts

are not verified, due to the approximations made by our planner. In Figure 6.13, for

instance, the jump transition only occurs with one foot, even if both leg accessible

spaces were in collision with an obstacle. This case shows that we can create an

arbitrary number of contacts (two or one here) during the trajectory, where motion

capture based classic approaches would fail. In Figure 6.14, we provide another

situation where Jumper-man is jumping on cubes from two to four contacts.

2Video of the simulations: https://youtu.be/GGisCV5BoHw

https://youtu.be/GGisCV5BoHw


6.6. Simulations 75

Figure 6.11: Trajectory of Jumper-man in the cubic environment, where non-sliding con-
straints are disabled. Friction cones are only displayed to help understanding the trajectory.
As constraints are off, the second parabola that is outside of the friction cone is accepted
by the planner. However, as it is tangent to the obstacle surface, the second jump seems
unrealistic.

Figure 6.12: Trajectories of Jumper-man (red) and the skeleton (blue and green) on the
roofs. The skeleton has the same velocity limits (25 m/s) as Jumper-man for the green
curve, and reduced ones (18 m/s) for the blue curve.

Skeleton on houses We consider the same environment, initial and final con-

figurations, addressed with a different character. The previous path cannot be the

same because we decrease the friction coefficient in first case (Figure 6.12–green).

The number of jumps in the resulting trajectory does not change (6) because the



76 Chapter 6. Ballistic motion planning for jumping superheroes

Figure 6.13: During the path planning of the Jumper-man on roofs, one reduced configura-
tion is found on a roof edge (left). Both leg accessible spaces are in collision so the reduced
configuration is valid. However, while generating contacts, the right foot is firstly placed on
the only valid spot for the left foot (right). Our method handles this case correctly despite
a wrong initial assumption on the number of contacts, contrary to existing approaches.

Figure 6.14: Jumper-man jumping on cubes, with a transition occurring on four contacts.

planned path is more direct towards the goal than the Jumper-man path which

is making a detour. Then we decrease the takeoff velocity bound such that it is

impossible to do a very long jump. This results in an increase in the number of

jumps, to 11. (Figure 6.12–blue).

Skeleton in desert This environment contains a narrow passage that justifies the

need of the motion planner. The character has to find one of the two possible holes

to cross the wall. It also has to jump high enough to prevent collision between its

legs and the wall bottom. Results are shown by Figure 6.15. Despite the non-sliding

constraints, some jump transitions are in the limits of the friction cone. Thus the

character has to process an important angular momentum to execute its motion.

Frog in pond We present a frog jumping on rock and plants in a pond-

environment (see Figure 6.16). This example accounts for the genericity of our

method.



6.6. Simulations 77

Figure 6.15: Trajectories of the skeleton in a desert with a holed wall.

Figure 6.16: Full trajectory of the frog character in the pond environment.



78 Chapter 6. Ballistic motion planning for jumping superheroes

Lamp on platforms This example involves a lamp jumping on platforms (see

Figure 6.17). This is the most simple example in terms of contact creation and

non-sliding verification since the character has only one limb. However, going down

by jumping on the vertical walls seems demanding on the angular momentum gen-

eration. Using our heuristic rejecting implausible momentum generation, we can

invalidate such trajectories.

Figure 6.17: Shapshots of the jumping lamp trajectory on platforms. On top-right, zoom
on a transition between two vertical walls.

6.6.2 Time performances

Scenarios
Offline Online

Roadmap
N. of nodes

Full trajectory One-jump CT (s) N. of Contact
CT (s) CT (s) Average Min | Max jumps generation (s)

Skeleton in desert 0.51 22.4 2.8718 0.3231 0.2167 - 0.9147 9.2 0.0253
Frog in pond 0.76 46.6 0.4742 0.1185 0.1077 - 13.25 5.3 0.0326

Jumper-man on houses∗ 44.93 142.4 7.2497 1.3894 0.3307 - 3.9250 6.1 0.0765
Skeleton on houses∗ 107.13 1256.3 7.2737 0.5057 0.4381 - 0.6923 14.4 0.0264

Table 6.2: Computation time (CT) averages of the method stages for 50 runs of each of
the scenarios. Offline columns concern the planning procedure while online columns deal
with the path query in the roadmap and the motion synthesis of the whole trajectory. The
number of nodes reflects the roadmap memory occupation. Number of triangles: house
449267, desert 47733, pond 6994, Jumper-man 10052. ∗Skeleton parameters: ċmax

t = 18
m/s, ċmax

l = 25 m/s. ∗Jumper-man parameters: ċmax
t = ċmax

l = 25 m/s.

Table 6.2 provides a quantitative analysis of our approach performances in four

scenarios. We separate the offline step, including the roadmap construction, from



6.7. Conclusions 79

the online step, including the trajectory query and the jump synthesis. Since a

full-path motion synthesis is dependent on the number of waypoints found by the

planner, we give the average computation times to synthesize one jump and one

contact configuration. All benchmarks were run on a PC with 64 GB of main

memory and using one core of an Intel Xeon E5-1630 processor running at 3.7 GHz.

From the results we obtain, we observe that the complete computation time for

one jump is inferior to the actual animation time. This is also true for our worst

case scenario, the houses rooftops with Jumper-man. In this case, the large number

of triangles that describe both the scene and the character explain the gap in the

performances, due to the collision tests. As usually done in video games, using

simplified meshes at the planning phase would probably allow us to obtain better

performances without impacting the quality of the results. However we chose to

preserve the complexity of the scene in this work, to demonstrate that the method

scales well with the number of triangles.

More importantly, the critical observation is that both the trajectory query and

the contact generation are real time in every scenario. We recall that these are the

main contributions of our work, and the performances obtained allow us to consider

interactive applications with more advanced animation methods.

6.7 Conclusions

This work introduces an efficient extension of the ballistic motion planner, able to

compute and animate complex trajectories for jumping legged characters. In par-

ticular, contrary to previous works based on finite state machines or data-driven

animation, the planner is able to automatically compute non-coplanar multi-contact

configurations, without making hypotheses about the number of contacts required

and their locations. As such, it is able to address arbitrary characters and environ-

ments.

Our planner is computationally competitive, thanks to the introduction of a low

dimensional conservative criterion for verifying the non-slipping condition without

explicitly computing the contacting limb configurations. This reduction of the prob-

lem dimension only approximates the kinematic constraints of the character, and in

rare cases (less than 1% [Tonneau 2016b]), the wholebody contact generation at the

animation phase will fail. However, in case of failure, the planner cannot determine

if planning another path will be enough to solve the contact generation problem or

if no solution exists. This limit is common to classic probabilistic planner, and is

currently an open-ended question.

Regarding the quality of the obtained animations, we believe that the non-

slipping criterion increases the plausibility of the obtained motion. We leave the

validation of this hypothesis through a perception user study for future work. Be-

sides, constraining the limb configurations to maintain the contacts during jump

transitions reduces the lack of realism of the dynamic impulse contact model. Con-

trary to physics-based models, we do not require to explicitly compute the contact



80 Chapter 6. Ballistic motion planning for jumping superheroes

force distribution for feeding a dynamic engine and obtain the animation. The limb

accessible-space shapes Wk could be reduced to be more relevant for bending con-

tacts. Such shapes would be learned from sampled limb configurations when limbs

are in flexion, which is a notion that has to be firstly clarified.

Another current limitation of the method is that the parabola trajectory is fol-

lowed by the geometrical center of the character instead of the COM. This can be

improved by the introduction of a path-constraint after the wholebody animation,

that projects any sampled configuration to a new one with its COM located on the

parabola. The parabola also has to be followed with respect to a time parametriza-

tion, to visually express the character velocities and accelerations. This is crucial

for the animation perception.

Another limit of the method is that limb motions and angular momentum are

detached. Applying physics-based motions for limbs that are not in contact could

increase the plausibility of the animation, as humanoids use their arms to coun-

teract the gravity effects when they take off [Cheng 2008], and as the upper-body

helps to stabilize the character when landing [Ashby 2006]. Mid-air re-orientation

inspired by the falling cat problem [Kane 1969, Montgomery 1993] or more recent

studies would improve realism during flight phases [Mather 2009, Bingham 2014,

Zhao 2015, Shu 2016].

A current limitation of the model is that it does not consider the Euler equation

in the planning phase. A feasibility study of the character’s capacity to re-orientate

itself knowing the contact locations could reject impracticable paths during the

planning stage. A preliminary version of this study is proposed in Appendix C).

This work would improve the plausibility of the ballistic trajectory because the

rotation speeds produced with contact forces are limited by the physics.

Lastly, we aim at extending our planner to integrate other phases than jump-

ing, to be able to alternate running or rolling sequences, for a larger spectrum of

application. Our ballistic motion planner already inspired a recent work on legged

multi-contact locomotion [Fernbach 2017]. The method is state-dependent and con-

siders full centroidal dynamic constraints, contrary to our momentum decoupled

approach.



Chapter 7

Conclusion

7.1 Contributions

Through this thesis, new applications benefiting from motion planning have arisen.

Planning provides general tools to autonomously find a trajectory reaching a goal

configuration and satisfying constraints. We based our studies on sampling-based

planners as they are a breakthrough being probabilistically complete and avoiding

local minima.

We have analyzed the planners limits in two different directions, corresponding

to the thesis contributions:

1. How can classic path returned by these simple planners can be improved?

2. Can these planners be extended to new type of motions such as wholebody

jumping?

First, a path-optimization tool based on a Linearly Constrained Quadratic Pro-

gram has been provided. The method shortens the path length of a probabilistic

planner output. The framework lies in a trade-off between the simplicity of blind

random methods, and the complexity of heavy-computationally distance-based op-

timization techniques. A convergence study has been conducted to prove that the

method cannot be stuck in an infinite loop. Simulations were conducted to show

that the optimizer is time-competitive compared to random shortcuts. It even

qualitatively surpasses them on high-DOF robots.

To address the second question, a ballistic motion planner was designed in two

steps. First ballistic paths are planned for a point-mass and then for a simpli-

fied robot. Finally the trajectory is completed with contact generation and limb

animation. The strength of the method is not to rely on an assumption on the

legged character neither the environment nor the contact periodicity. Furthermore,

planning with the simplified robot shape breaks the combinatorial complexity of

contact generation. The planner parametrization is limited, with up to three main

parameters (the friction coefficient and the velocity limitations), but they are crit-

ical for the problem completeness. Finally, the notion of constrained ballistic path

is independent of the framework and can be re-used in another implementation, for

instance in a jumping robot.



82 Chapter 7. Conclusion

7.2 Limits

The path-optimizer parametrization can be automatized according to geomet-

rical considerations. Computation time can be lowered if we want its time-

competitiveness to be less questionable, in particular when the path has many

waypoints. The method also lacks of flexibility in its constraint setting, as con-

straints may become too restrictive for the length reduction process. Constraint

relaxation and re-creation could improve the optimization result. This is possible

at the cost of introducing a new loop, which requires a tuned termination condition

so that the algorithm is insured to converge.

The formulation of the ballistic motion planner contains several limits. Most

of them are related to the simplifications made for computation efficiency to the

detriment of solution existence. For instance, the impulse model of contact force

constrains the takeoff and landing velocities, which is a harder condition than di-

rectly constraining the contact force. The two steps formulation of first plan for

a simplified shape and then generate the wholebody motions is heuristic. Limb ani-

mation may fail because of a wrong planning or because the problem is infeasible.

More striking, the quality result of animations is questionable from the computer

graphics viewpoint. Relying on a few manually designed key-frames instead of mo-

tion capture appears less natural than classic animations. To remain independent of

a database, physics-based motions obtained by constrained optimization or learning

are also a good solution.

7.3 Perspectives

Figure 7.1: Snapshots1of a leopard executing multiple jumps. Contact changes from front
to back legs during a jump transition are circled in red.

In the future, we plan to extend the ballistic motion planner and combine it

with other motion sets, e.g. running and landing. There are also other ways to

conceive jump, including contacts such as vaulting. Inspired of quadruped animals

(see Figure 7.1), the possibility of changing contacts during a jump transition is

also a challenge to tackle.

All these ideas can be addressed with new path types which will enrich the

roadmap. At this stage, transitions between different types of motion do not have

to be detailed. Once the path sequence is chosen, the motion generation will follow

the chosen types of paths.

1Source: Rare Species Conservation Centre, Kent, UK. Video: https://youtu.be/2C3JEM8Szbw

https://youtu.be/2C3JEM8Szbw


7.3. Perspectives 83

To continue the angular momentum study, especially its generation through limb

motions and trunk postures, we want to take inspiration from the falling cat problem

(see Figure 7.2) and more recent work based on it [Kane 1969, Montgomery 1993,

Mather 2009, Bingham 2014, Zhao 2015, Shu 2016].

Figure 7.2: A falling cat that lands on its feet despite its original orientation. c©Ralph
Cane - Life magazine





Appendix A

Appendix: Computation details
of intersections

A.1 Intersection between a cone and a vertical plane

This section details how to analytically compute the intersection between a 3D cone

C and a vertical plane πθ.

O

ex

ey

ez

n

θ

πθ

N

2δ

M+

nθ

M−

C

Figure A.1: Notations for the intersection between the cone C and the plane πθ.

The notations are the followings:

• O = (0 0 0)T is the cone C apex.

• n = (nx ny nz)T is the cone C normed direction.

• µ is the tangent friction coefficient. It is equal to tan(φ) with φ the half-apex

angle of C. We pose µ12 = 1+µ2.

• P is the plane passing by N and of normal n. As ||n||= 1, P verifies:

nxx+ny y+nz z = 1 (A.1)



86 Appendix A. Appendix: Computation details of intersections

• Let S be the sphere of center N = (nx ny nz)T and of radius µ. S equation is

the following:

(x−nx)2 +(y−ny)2 +(z−nz)2 = µ2 (A.2)

The circle C of center N, radius µ and normal n is defined as the intersection

of S and P. By definition, C belongs to the cone surface.

By combining Equations (A.1-A.2), C equations can be simplified as it follows:

x2 +y2 +z2 = µ12

nxx+ny y+nz z = 1
(A.3)

Note that C is also the intersection between S ′ and P, where S ′ is the sphere

of center O and radius µ12.

• πθ is the plane passing by O and of normal nθ = (sin(θ) − cos(θ) 0)T .

So πθ equation is:

xsin(θ)−y cos(θ) = 0 (A.4)

• For convenience: cos(θ) = cθ, sin(θ) = sθ, tan(θ) = tθ (if defined).

Given that πθ goes through O, πθ intersects the cone C (with a result different

from O) if and only if the plane πθ intersects the circle C . We denote by M+ =

(x+
M y+

M z+
M)T and M− = (x−

M y−
M z−

M)T the resulting points of the intersection

between πθ and C . Note that they may be equal, and also be equal to O. From

Equations (A.3-A.4), the intersection computation is analytically detailed within

the cases of Table A.1.

Finally, when the intersection does not result in O, (O,OM+,OM−) forms a

2D cone of apex O and included in πθ. Its half-apex angle δ is given by:

δ =
1

2
atan2(||OM+×OM−||,OM+ ·OM−) (A.5)



A.1. Intersection between a cone and a vertical plane 87

Cases Conditions (M+, M−) coordinates

nz 6= 0
A= 1+ tθ2 +(nx + tθny)2/n2

z

I
θ 6=±π

2

B =−2(nx + tθny)/n2
z

C = 1/n2
z−µ12

nz 6= 0 x±
M = 0.5(−B±

√
B2−4AC)/A

I.a θ 6=±π
2 y±

M = tθx±
M

B2−4AC ≥ 0 z±
M = (1−nxx

±
M−nyy

±
M)/nz

nz 6= 0
M± = OI.b θ 6=±π

2
B2−4AC < 0

nz 6= 0
A= 1+(ny/nz)2

II
θ =±π

2

B =−2ny/n
2
z

C = 1/n2
z−µ12

nz 6= 0 x±
M = 0

II.a θ =±π
2 y±

M = 0.5(−B±
√
B2−4AC)/A

B2−4AC ≥ 0 z±
M = (1−nyy

±
M)/nz

nz 6= 0
M± = OII.b θ =±π

2
B2−4AC < 0

III

nz = 0 x±
M = 1/(nx + tθny)

θ 6=±π
2 y±

M = (1−nxx
±
M)/ny

ny 6= 0
z±

M =±
√

µ12− (1+ tθ2)x±2
Mnx + tθny 6= 0

IV

nz = 0

M± = O
θ 6=±π

2
ny 6= 0

nx + tθny = 0

nz = 0 x±
M = 1

V θ 6=±π
2 y±

M = tθ

ny = 0 z±
M =±

√

µ12− (1+ tθ2)

nz = 0 x±
M = 0

VI θ =±π
2 y±

M = 1/ny

ny 6= 0 z±
M =±

√

µ12−1/n2
y

nz = 0
M± = OVII θ =±π

2
ny = 0

Table A.1: Case-study of the different results of the plane-circle intersection.



88 Appendix A. Appendix: Computation details of intersections

A.2 Intersection between a convex sum of cones and a
vertical plane

We consider multiple contact cones Kk, 1≥ k ≥ n, assuming that there is no force-

closure. We denote the convex cone K resulting from the Minkowski sum of multiple

cones. This section details how to analytically compute the intersection between K
and a vertical plane πθ. If only one contact one is considered, we refer the reader

to the previous section for the intersection computation.

We consider the following notations:

• n≥ 2 is the number of contact cones considered for the Minkowski sum.

• All the cone apexes are equal to O = (0 0 0)T .

• All the cone friction coefficients are equal to µ which is equal to tan(φ) with

φ the half-apex angles. We pose µ12 = 1+µ2.

• ni = (nix niy niz)T is the cone Ki direction.

• We denote by Zij the convex sum of two cones Ki and Ki (see Figure A.2).

• πθ is the plane passing by O and of normal nθ = (sin(θ) − cos(θ) 0)T .

So πθ equation is:

xsin(θ)−y cos(θ) = 0 (A.6)

• For convenience: cos(θ) = cθ, sin(θ) = sθ, tan(θ) = tθ (if defined).

πθ

O

K1

K2

K3

Z12

Z23Z13

Figure A.2: Illustration of convex sums Zij (green) in the case n = 3. An example of
intersection with πθ is given (red) to show that it also intersects Zij shapes.



A.2. Intersection between a convex sum of cones and a vertical plane89

The analytical formulation of K does not exist. However, getting its intersection

with πθ is possible. As convex sums Zij constitute the borders of K, the plane πθ

intersects the convex-cone K if and only if πθ intersects at least one convex sum

Zij . Note that for all Ki and Kj cones, the intersection between K and πθ is always

included in the convex union of the intersections between Zij and πθ.

When the intersection between K and πθ is not reduced to O, we denote it as a

2D convex-cone Kc.

Property 5.

Kc = {F ∈ πθ | ∃(fi)i∈[1..Nf ] ∈ (Ck)k∈[1..n],F =

Nf∑

i

fi}

All vectors in the Kc can be written as a resultant of forces which belong to contact

cones Kk. All resultant of forces belonging to contact cones, that also belongs to πθ,

is included in Kc.

Proof. By definition, the Kc represents the intersection between πθ and K.

⇒ All vector that belongs to a subset of K, belongs to K, so can be written as a

combination of forces belonging to the contact cones.

⇐ Let us assume that their exist a resultant F of contact-forces that belongs to

πθ. F being a resultant of forces that lie in contact cones, F belongs to K. As F
also belongs to πθ, F lies in the intersection of K and πθ, i.e. Kc. So F belongs to

Kc.

Thus, computing Kc results in computing all the intersections with the sub-

convex-cones Zij and then, computing their convex union. The framework is given

in Algorithm 10.

Algorithm 10 Process to compute Kc from contact cones Kk and plane πθ.

Input: n cones Kk, πθ

Output: Intersection points M+ and M−, half-apex angle ϕcc

for 1≤ i≤ n do
for i < j ≤ n do

Mlist← conePlaneIntersection(Ki,πθ)
if (isNotParallel(Zij ,πθ)) then

Qlist← convexConePlaneInters(Zij ,πθ)

[M+,M−,ϕKc ]← computeMaxRange(Qlist,πθ)
return [M+,M−,ϕKc ]

For convenience, we detail the process in the case n= 2 (i= 1 and j = 2).

We precise the following notations:

• n1 notation is simplified to (nz ny nz)T , n2 = (n2x n2y n2z)T

• N = (nx ny nz)T .



90 Appendix A. Appendix: Computation details of intersections

• t12 = (tx ty tz)T is the inter-cones direction from K2 to K1: t12 = n1−n2.

• Cyz = nyn2z−nzn2y; Czx = nzn2x−nxn2z; Cxy = nxn2y−nyn2x

• n12 = n1 ·n2; n12z = nzn12−n2z

• P = (xP yP zP)T is a point of the cone K1.

• Q = (xQ yQ zQ)T is a point of the plane πθ.

O

nθ

n1

n2

t12

P+

Q+

N

πθ

Z12

P−

Q−

Figure A.3: Notations for the convex sum Z12 of two cones and its intersection with the
plane πθ.

We detail the functions of Algorithm 10:

• isNotParallel: Returns false if πθ is parallel to t12, i.e. nθ ·t12 = 0. Thus

the parallelism condition is equivalent to:

sθ tx− cθ ty = 0

• conePlaneIntersection(Ki,πθ) computes the points of the intersection

between Ki and πθ. The function follows the method of the previous section.

Resulting points (M+, M−) are added to a list of points Qlist.

• convexConePlaneIntersection(Zij ,πθ): computes the part of the points

of the intersection between Zij and πθ. This intersection does not include

points of the cones Ki and Kj as this is addressed by another method. Re-

sulting points (Q+, Q−) are added to the list of points Qlist.

Note that this function is only used if the parallelism condition is not verified.

Otherwise, as we look for the convex union of the resulting points, points from



A.2. Intersection between a convex sum of cones and a vertical plane91

conePlaneIntersection include points of the intersection between Zij and

πθ.

We construct the intersection from a geometrical approach (see Figure A.3).

We first compute extremities of Z12 on the cone K1, denoted as (P+, P−)

points. Then we project them on πθ following the direction t12 to obtain

(Q+, Q−) points.

P coordinates verify the following equations:

– NP ·n = 0, therefore:

xPnx +yPny +zPnz = 1 (A.7)

– P ∈ C where C is the circle of center N = (nz ny nz)T , radius µ and

in the plane of normal n (thus C belongs to the cone surface). Thus P
verifies:

x2
P +y2

P +z2
P = µ12 (A.8)

– NP · t12 = 0, therefore:

xPn2x +yPn2y +zPn2z = n12 (A.9)

When solving Equations (A.6-A.7-A.8-A.9), we obtain two solutions (P+,P−)

depending on the cases exposed in the Table A.2.

The projection of P on πθ with the direction t12 is described by the following

equations:

– Q ∈ πθ, (note that O ∈ πθ) therefore:

xQ sin(θ)−yQ cos(θ) = 0 (A.10)

– PQ× t12 = 0, thus:

∃ α ∈ R | PQ = αt12 (A.11)

When solving Equations (A.10) and (A.11), we obtain two solutions (Q+,Q−)

depending on the cases exposed in the Table A.3. Then, (Q+,Q−) are added

to the list of points Qlist.

• computeMaxRange: computes the two vectors delimiting the maximal 2D

angular sector ϕKc from all the vectors built with Qlist (see Figure A.4). ψi

is the angle ∠(exθ
,OQi

list):

ψi = atan2(zi,xθ i)



92 Appendix A. Appendix: Computation details of intersections

Cases Conditions (P+, P−) coordinates

I

nz 6= 0

A= 1+C2
zx/C

2
yz +(nyCzx +nxCyz)2/(nzCyz)2

B = −2Czxn12z/C
2
yz

−2(nyCzx +nxCyz)(Cyz +nyn12z)/(nzCyz)2

Cyz 6= 0

C = n2
12z/C

2
yz +(Cyz +nyn12z)2/(nzCyz)2−µ12

x±
P = 0.5(−B±

√
B2−4AC)/A

y±
P = Czxx

±
P/Cyz−n12z/Cyz

z±
P = (1−nxx

±
P−nyy

±
P)/nz

II

nz 6= 0
x±

P = n12z/Czx

A= 1+n2
y/n

2
z

B =−2ny(1−nxx
±
P)/n2

z

Cyz = 0
C = (1−nxx

±
P)2/n2

z +x±2
P −µ12

y±
P = 0.5(−B±

√
B2−4AC)/A

z±
P = (1−nxx

±
P−nyy

±
P)/nz

III

nz = 0
A= 1+n2

x/n
2
y +C2

xy/(nyn2z)2

B =−2nx/n
2
y +2Cxy(nyn12−n2y)/(nyn2z)2

ny 6= 0
C = 1/n2

y +(nyn12−n2y)2/(nyn2z)2−µ12

x±
P = 0.5(−B±

√
B2−4AC)/A

n2z 6= 0
y±

P = (1−nxx
±
P)/ny

z±
P = (Cxyx

±
P +nyn12−n2y)/(nyn2z)

IV

nz = 0 x±
P = (n2y−nyn12)/Cxy

ny 6= 0 y±
P = (1−nxx

±
P)/ny

n2z = 0
z±

P =±
√

µ12−x±2
P −y±2

PCxy 6= 0

V

nz = 0 x±
P = nx

ny 6= 0 y±
P = (1−nxx

±
P)/ny

n2z = 0
z±

P =±
√

µ12−x±2
P −y±2

PCxy = 0

VI
nz = 0 x±

P = 1

ny = 0 y±
P =±µ

√

n2
2z/(n

2
2z +n2

2y)

n2z 6= 0 z±
P =−n2yy

±
P/n2z

VII
nz = 0 x±

P = 1
ny = 0 y±

P = 0
n2z = 0 z±

P =±µ

Table A.2: Case-study of the different results of Z12 extreme points (P+, P−) located on
K1. Results are valid if n×n2 6= O. Note that the case V is a force-closure case.



A.2. Intersection between a convex sum of cones and a vertical plane93

Cases Conditions (Q+, Q−) coordinates

I θ 6=±π
2

α= (tθx±
P−y±

P)/(ty− txtθ)
x±

Q = αtx +x±
P

y±
Q = αty +y±

P

z±
Q = αtz +z±

P

II θ =±π
2

α=−x±
P/tx

x±
Q = 0

y±
Q = αty +y±

P

z±
Q = αtz +z±

P

Table A.3: Case-study of the different results (Q+, Q−) obtained from the projection of
extreme points (P+, P−) on πθ. Results are valid if nθ · t12 6= 0.

πθ

Oexθ

ez

Q3
list

M−

M+
ψ6

ϕKc

Q1
list

Q5
list

Q4
list

Q2
list

Q6
list

Figure A.4: Example of a convex cone Kc delimited by (O,OM+,OM−) and of half-apex
angle ϕKc .

Border points are given by:

M+ = argmin
Qi

list

(ψi) and M− = argmax
Qi

list

(ψi)

The half-apex angle of the 2D convex cone Kc becomes:

ϕKc =
1

2
atan2(||OM+×OM−||,OM+ ·OM−)



Appendix B

Appendix: Rotation effect

In this section we explain the computation details to re-orientate a character so

that it intuitively lays on its limbs on the surface and it faces the direction given

by an angle.

n

surface

ex0

ex

ez

ex

ez

θ v
0

ez0

Rr

R0

Rr

Figure B.1: Local frame definitions for a humanoid (left) and a non-humanoid character
(right). v0 is the desired facing direction, given a surface normal n and an orientation angle
θ.

A is the unknown rotation matrix describing the character orientation from its

local frameRr of superscript r, to the global frameR0 of superscript 0. We consider

a surface of normal denoted n and a perpendicular direction nθ to the desired θ

angle direction, so that nθ = (sin(θ) − cos(θ) 0)T . According to the Figure B.1

definitions, the character standing direction is given by ez and its facing direction

is ex. By definition, er
z = (0 0 1)T and er

x = (1 0 0)T . So the rotation matrix

becomes:

A= (e0
x e0

z×e0
x e0

z) ∈ R
3×3

The identification of these directions in R0 depends on the desired orientation for

the character. We consider two cases:

1. The standing case: this case includes all characters that are not humanoid.

Humanoids are considered if the surface is almost horizontal, which is tested

by the arbitrary condition:

n .e0
z > 0.707

This assumption is made because it is unusual to see a humanoid character



95

jumping only with its legs on a vertical surface, we rather think that it will also

use its arms. By identification, e0
z = n and e0

x verifies the following conditions:







||e0
x||= 1

e0
x ⊥ n

e0
x .nθ = 0

2. The on all fours case: this case is complementary to the previous one and

only concerns the humanoids. The method is similar, simply switching e0
z and

−e0
x. So e0

x =−n and e0
z verifies:







||e0
z||= 1

e0
z ⊥ n

e0
z .nθ = 0

The system solution is identical in both cases. We detail the solving for an arbitrary

direction vector v0 = (a b c)T . Thus the previous conditions become:







a2 + b2 + c2 = 1

anx + bny + cnz = 0

asin(θ)− bcos(θ) = 0

We split our resolution into the different cases presented in Table B.1.



96 Appendix B. Appendix: Rotation effect

Cases Conditions v0 = (a b c)T coordinates

Definition θ ∈]− π
2 ; π

2 ] S = 1

Definition θ /∈]− π
2 ; π

2 ] S =−1

I θ 6=±π
2

a= S
√

n2
z/(n

2
z +n2

ztθ
2 +(nx +nytθ)2)

nz 6= 0
b= tθa

c=−a(nx +nytθ)/nz

II
θ 6=±π

2 v0 = e0
znz = 0

III
θ =±π

2

a= 0

ny 6= 0
b=−nz c/ny

c= S
√

n2
y/(n

2
y +n2

z)

IV
θ =±π

2 a= 0
ny = 0 b ∈ R

nx = 1 c ∈ R

V
θ =±π

2
v0 = e0

yny = 0
nx 6= 1

Table B.1: Case-study of the different results for v0. tθ stands for tan(θ) when defined.



Appendix C

Preliminary work: angular
momentum feasibility study

Let us consider a parabola sequence with orientations s determined by the function

rotateAlongPath in Algorithm 8. We iteratively determine if the orientation

change along each jump is feasible given the previous jump angular momentum,

the contact locations and the character dynamic properties.

We remind the Newton-Euler equations of dynamics that apply during a contact

phase:

mc̈ =
k∑

i=1

fi +mg L̇ =
k∑

i=1

(Pi−c)× fi

where k is the number of contacts with the environment, Pi are the contact point

positions, fi the contact impulse-forces and L̇ the angular momentum variation.

The second equation can be reformulated as:

mc× (c̈−g)+ L̇ =
k∑

i=1

(Pi× fi)

In order to compute a COM acceleration and contact forces that satisfy the

equations of dynamics, the non-sliding constraints and the velocity limitations, one

possibility is to extend the centroidal cone to a 6 dimensional wrench-cone, following

the formulation of [Caron 2015]. However, this method may change the resultant

of the contact forces, and so may not be valid regarding the landing and takeoff

velocities of the contact phase, that were found during the ballistic planning process.

Instead, we chose to limit the problem to a feasibility study.

We introduce the following notations:

• Given two consecutive parabolas of superscripts j and j+ 1 (the process is

the same for one parabola at the extremity of the path, adjusting the values

that become null),

• ∆t is the estimated duration of contact between the two jumps,

• T is the duration of flight along a parabola, T = Xθ

ẋθs
,

• Ic is the character momentum of inertia expressed at its COM [Orin 2013]. For

simplification, Ic is assumed to be constant and it is computed by assimilating

all characters to cylinders, the COM being located at the center.



98Appendix C. Preliminary work: angular momentum feasibility study

The following matrices are the momenta of inertia for cylinders of axis ez and

ex respectively:

Iez =






1
12m(3r2 +h2) 0 0

0 1
12m(3r2 +h2) 0

0 0 1
2mr

2






Iex =






1
2mr

2 0 0

0 1
12m(3r2 +h2) 0

0 0 1
12m(3r2 +h2)






where m is the cylinder mass, R is its radius and H its height.

Character m (kg) R (m) H (m)

Ant 25 0.1 0.55
Skeleton 20 0.23 1.44

Jumper-man 70 0.245 1.61
Lamp 70 0.099 0.2

Kangaroo 90 0.23 0.9
Frog 20 0.09 0.25

Table C.1: Character parameters for momentum of inertia computation.

The angular momentum during a flight is given by:

L = Ic

∆Θ
T

where ∆Θ is the difference of the character orientations at takeoff and landing.

The feasibility problem is defined as trying to find contact forces fi under the

following constraints:

Fc =
ċl− ċt

m∆t
=

k∑

i=1

fi

L̇ =
Lj+1−Lj

∆t
=

k∑

i=1

(Pi× fi)−mc× (c̈−g)

This Linear Problem can be solved numerically. If a solution is likely to be found,

the angular momentum variation, and so the re-orientation, are feasible, and so

the oriented jump should be plausible. Otherwise, the character re-orientation will

appear as unnatural.

This feasibility study can be implemented in a function that would take action

after rotateAlongPath in Algorithm 8. If the feasibility is proved, the initial

sequence s is conserved. Otherwise, the related parabolas are invalidated in the

roadmap. Then, the motion planner is started again to replace the removed paths

with new ones.



Bibliography

[Absil 2008] P. A. Absil, R. Mahony and R. Sepulchre. Optimization algorithms on

matrix manifolds. Princeton University Press, Princeton (NJ), 2008. (Cited

in page 11.)

[Amato 1996] N. Amato and Y. Wu. A randomized roadmap method for path

and manipulation planning. In IEEE International Conference on Robotics

and Automation (ICRA), volume 1, pages 113–120 vol.1, 1996. (Cited in

page 53.)

[Arikan 2003] O. Arikan, D.A. Forsyth and J.F. O’Brien. Motion Synthesis from

Annotations. ACM Trans. Graph., vol. 22, no. 3, pages 402–408, 2003. (Cited

in page 40.)

[Ashby 2006] B.M. Ashby and S.L. Delp. Optimal control simulations reveal mech-

anisms by which arm movement improves standing long jump performance.

Journal of Biomechanics, vol. 39, no. 9, pages 1726 – 1734, 2006. (Cited in

page 80.)

[Barraquand 1991] J. Barraquand and J.-C. Latombe. Robot Motion Planning:

A Distributed Representation Approach. International Journal of Robotics

Research (IJRR), vol. 10, no. 6, pages 628–649, 1991. (Cited in page 6.)

[Batts 2017] Z. Batts, J. Kim and K. Yamane. Untethered one-legged hopping in

3d using linear elastic actuator in parallel (leap), pages 103–112. Springer

International Publishing, Cham, 2017. (Cited in page 38.)

[Betts 2009] J.T. Betts. Practical methods for optimal control and estimation using

nonlinear programming. Cambridge University Press, New York (NY), 2nd

ed., 2009. (Cited in page 7.)

[Bingham 2014] J.T. Bingham, R. Lee, R.N. Haksar, J. Ueda and C.K. Liu. Orient-

ing in Mid-air through Configuration Changes to Achieve a Rolling Landing

for Reducing Impact after a Fall. In IEEE International Conference on In-

telligent Robots and Systems (IROS), Chicago, Illinois, 2014. (Cited in

pages 80 and 83.)

[Boston Dynamics 2012] Boston Dynamics. Description of the Sand Flea robot,

2012. https://www.bostondynamics.com/sandflea. (Cited in page 38.)

[Boston Dynamics 2017] Boston Dynamics. Description of the Handle robot, 2017.

https://www.bostondynamics.com/handle. (Cited in page 38.)

[Boyd 2004] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge Uni-

versity Press, 2004. (Cited in page 63.)

https://www.bostondynamics.com/sandflea
https://www.bostondynamics.com/handle


100 Bibliography

[Brady 1983] M. Brady, J. Hollerbach, T. Johnson, T. Lozano-Pérez and M. T.

Masson. Robot motion: Planning and control. MIT Press, Cambridge

(MA), 1983. (Cited in page 5.)

[Bretl 2004] T. Bretl, S. Rock, J.-C. Latombe, B. Kennedy and H. Aghazarian.

Free-Climbing with a Multi-Use Robot. In Marcelo H. Ang Jr. and Oussama

Khatib, editors, ISER, volume 21 of Springer Tracts in Advanced Robot.,

pages 449–458. Springer, 2004. (Cited in pages 41 and 64.)

[Bretl 2008] T. Bretl and S. Lall. Testing Static Equilibrium for Legged Robots.

IEEE Transactions on Robotics, vol. 24, no. 4, pages 794–807, 2008. (Cited

in page 63.)

[Brock 2002] O. Brock and O. Khatib. Elastic Strips: A Framework for Motion

Generation in Human Environments. International Journal of Robotics Re-

search (IJRR), vol. 21, no. 12, pages 1031–1052, 2002. (Cited in page 8.)

[Caron 2015] S. Caron, Q.-C. Pham and Y. Nakamura. Leveraging Cone Double

Description for Multi-contact Stability of Humanoids with Applications to

Statics and Dynamics. In Robotics: Science and System, 2015. (Cited in

page 97.)

[Carón 2016] S. Carón and A. Kheddar. Multi-contact walking pattern generation

based on model preview control of 3D COM accelerations. In IEEE Inter-

national Conference on Humanoid Robotics (Humanoids), pages 550–557,

2016. (Cited in page 63.)

[Chapuis 1949] A. Chapuis and E. Droz. Les Automates: figures artificielles

d’hommes et d’animaux. Histoire et technique. Neuchatel, Editions du Grif-

fon, 1949. (Cited in page 1.)

[Cheng 2008] K.B. Cheng, C.-H. Wang, H.-C. Chen, C.-D. Wu and H.-T. Chiu. The

mechanisms that enable arm motion to enhance vertical jump performance

- A simulation study. Journal of Biomechanics, vol. 41, no. 9, pages 1847–

1854, 2008. (Cited in page 80.)

[Choi 2003] M.G. Choi, J. Lee and S.Y. Shin. Planning biped locomotion using mo-

tion capture data and probabilistic roadmaps. ACM Transactions on Graphics

(TOG), vol. 22, no. 2, pages 182–203, 2003. (Cited in page 39.)

[Coros 2010] S. Coros, P. Beaudoin and M. van de Panne. Generalized Biped Walk-

ing Control. ACM Transactions on Graphics (Proceedings SIGGRAPH),

vol. 29, no. 4, pages 130:1–130:9, 2010. (Cited in page 40.)

[Coros 2011] S. Coros, A. Karpathy, B. Jones, L. Reveret and M. van de Panne. Lo-

comotion Skills for Simulated Quadrupeds. ACM Transactions on Graphics

(TOG), vol. 30, no. 4, page Article TBD, 2011. (Cited in page 40.)



Bibliography 101

[Degani 2014] A. Degani, A.W. Long, S. Feng, H.B. Brown, R.D. Gregg, H. Choset,

M.T. Mason and K.M. Lynch. Design and Open-Loop Control of the Park-

ourBot, a Dynamic Climbing Robot. IEEE Transactions on Robotics, vol. 30,

no. 3, pages 705–718, 2014. (Cited in page 38.)

[Dellin 2012] C. Dellin and S. Srinivasa. A framework for extreme locomotion

planning. In IEEE International Conference on Robotics and Automation

(ICRA), pages 989–996, Saint Paul (MN), 2012. (Cited in page 40.)

[Edwardes 2009] D. Edwardes. The parkour and freerunning handbook, first edi-

tion. HarperCollins Publisher, 2009. (Cited in page 37.)

[Escande 2008] A. Escande, A. Kheddar, S. Miossec and S. Garsault. Planning

Support Contact-Points for Acyclic Motions and Experiments on HRP-2.

In Oussama Khatib, Vijay Kumar and George J Pappas, editors, ISER,

volume 54 of Springer Tracts in Advanced Robot., pages 293–302. Springer,

2008. (Cited in page 41.)

[Esteves 2006] C. Esteves, G. Arechavaleta, J. Pettré and J.-P. Laumond. Ani-

mation planning for virtual mannequins cooperation. ACM Transactions on

Graphics (TOG), vol. 25, no. 2, pages 319–339, 2006. (Cited in page 39.)

[Fernbach 2017] P. Fernbach, S. Tonneau, A. Del Prete and M. Taïx. A Kinody-

namic steering-method for legged multi-contact locomotion. In To appear in

IEEE International Conference on Intelligent Robots and Systems (IROS),

2017. (Cited in page 80.)

[Garber 2004] M. Garber and M.C. Lin. Algorithmic Foundations of Robotics V,

chapitre Constraint-Based Motion Planning Using Voronoi Diagrams, pages

541–558. Springer Berlin, 2004. (Cited in page 7.)

[Geraerts 2007] R. Geraerts and M. Overmars. Creating High-Quality Paths for Mo-

tion Planning. International Journal of Robotics Research (IJRR), vol. 26,

no. 8, pages 845–863, 2007. (Cited in pages 8, 13, 14, 28 and 32.)

[Gilbert 1988] E.G. Gilbert, D.W. Johnson and S.S. Keerthi. A Fast Procedure for

Computing the Distance Between Complex Objects in Three-Dimensional

Space. IEEE J. Rob. Autom., vol. 4, no. 2, pages 193–203, 1988. (Cited in

page 8.)

[Guernane 2011] R. Guernane and N. Achour. Generating optimized paths for mo-

tion planning. Robotics and Autonomous Systems, vol. 59, no. 10, pages

789–800, 2011. (Cited in page 8.)

[Ha 2012] S. Ha, Y. Ye and C.K. Liu. Falling and Landing Motion Control for

Character Animation. ACM Transactions on Graphics (TOG), vol. 31, no. 6,

page 1, 2012. (Cited in page 41.)



102 Bibliography

[Haldane 2016] D.W. Haldane, M.M. Plecnik, J.K. Yim and R.S. Fearing. Robotic

vertical jumping agility via series-elastic power modulation. Science

Robotics, vol. 1, no. 1, 2016. (Cited in page 38.)

[Hauser 2010] K. Hauser and V. Ng-Thow-Hing. Fast smoothing of manipulator

trajectories using optimal bounded-acceleration shortcuts. In IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 2493–2498,

Anchorage (AK), 2010. (Cited in pages 8 and 13.)

[Hickox 2016] L.J. Hickox, B.M. Ashby and G.J. Alderink. Exploration of the valid-

ity of the two-dimensional sagittal plane assumption in modeling the standing

long jump. Journal of Biomechanics, vol. 49, no. 7, pages 1085 – 1093, 2016.

(Cited in page 65.)

[Hodgins 1995] J.K. Hodgins, W.L. Wooten, D.C. Brogan and J.F. O’Brien. An-

imating Human Athletics. In Proceedings of the 22Nd Annual Conference

on Computer Graphics and Interactive Techniques, SIGGRAPH ’95, pages

71–78, New York, NY, 1995. ACM. (Cited in page 40.)

[Holden 2016] D. Holden, J. Saito and T. Komura. A Deep Learning Framework for

Character Motion Synthesis and Editing. ACM Transactions on Graphics

(Proceedings SIGGRAPH), vol. 35, no. 4, pages 138:1–138:11, 2016. (Cited

in page 39.)

[Kajita 2003] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi

and H. Hirukawa. Biped Walking Pattern Generation by using Preview Con-

trol of Zero-Moment Point. In IEEE International Conference on Robotics

and Automation (ICRA), Taipei, Taiwan, 2003. (Cited in page 39.)

[Kalakrishnan 2011] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor and

S. Schaal. STOMP: Stochastic trajectory optimization for motion planning.

In IEEE International Conference on Robotics and Automation (ICRA),

pages 4569–4574, Shanghai, China, 2011. (Cited in page 7.)

[Kane 1969] T.R. Kane and M.P. Scher. A dynamical explanation of the falling cat

phenomenon. International Journal of Solids and Structures, vol. 5, no. 7,

pages 663–670, 1969. (Cited in pages 80 and 83.)

[Kapadia 2016] M. Kapadia, X. Xianghao, M. Nitti, M. Kallmann, S. Coros, R. W.

Sumner and M. Gross. Precision: Precomputing Environment Semantics

for Contact-rich Character Animation. In Proceedings of the 20th ACM

SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’16,

pages 29–37, New York, NY, USA, 2016. (Cited in page 39.)

[Karaman 2011] S. Karaman and E. Frazzoli. Sampling-based Algorithms for Opti-

mal Motion Planning. International Journal of Robotics Research (IJRR),

vol. 30, no. 7, pages 846–894, 2011. (Cited in page 7.)



Bibliography 103

[Kavraki 1996] L.E. Kavraki, P. Svestka, J.-C. Latombe and M.H. Overmars.

Probabilistic roadmaps for path planning in high-dimensional configuration

spaces. IEEE Trans. Rob. Autom., vol. 12, no. 4, pages 566–580, 1996. (Cited

in pages 6, 53 and 61.)

[Kovar 2002] L. Kovar, M. Gleicher and F. Pighin. Motion graphs. In ACM Trans-

actions on Graphics (TOG), volume 21, New York, NY, USA, 2002. ACM.

(Cited in page 39.)

[Kry 2009] P. Kry, L. Reveret, F. Faure and M.-P. Cani. Modal locomotion: animat-

ing virtual characters with natural vibrations. Computer Graphics Forum,

vol. 28, no. 2, pages 289–298, 2009. (Cited in page 41.)

[Kuffner 2000] J.J. Kuffner and S.M. Lavalle. RRT-Connect: An efficient approach

to single-query path planning. In IEEE International Conference on Robotics

and Automation (ICRA), volume 2, pages 995–1001, San Francisco (CA),

2000. (Cited in page 25.)

[Kunz 2014] T. Kunz and M. Stilman. Probabilistically complete kinodynamic plan-

ning for robot manipulators with acceleration limits. In IEEE International

Conference on Intelligent Robots and Systems (IROS), pages 3713–3719,

2014. (Cited in pages 54 and 62.)

[Lamouret 1996] A. Lamouret and M. van de Panne. Motion synthesis by example,

pages 199–212. Springer Vienna, Vienna, 1996. (Cited in page 40.)

[Latombe 1991] J.-C. Latombe. Robot motion planning. Kluwer Academic Pub-

lishers, Boston, MA, 1991. (Cited in page 5.)

[Laumond 2006] J.-P. Laumond. A success story of motion planning algorithms.

IEEE Robotics and Automation Magazine, vol. 13, no. 2, 2006. (Cited in

page 9.)

[Laumond 2014] J.-P. Laumond, N. Mansard and J.-B. Lasserre. Optimality in

Robot Motion: Optimal Versus Optimized Motion. Communications of the

ACM, vol. 57, no. 9, pages 82–89, 2014. (Cited in page 15.)

[LaValle 2001] S.M. LaValle and J.J. Kuffner, Jr. Algorithmic and computa-

tional robotics: New directions, chapitre Rapidly-Exploring Random Trees:

Progress and Prospects, pages 293–308. Wellesley (MA), 2001. (Cited in

page 6.)

[LaValle 2006] S.M. LaValle. Planning algorithms. Cambridge University Press,

New York, NY, USA, 2006. (Cited in page 5.)

[Levine 2011] S. Levine, Y. Lee, V. Koltun and Z. Popović. Space-time Planning

with Parameterized Locomotion Controllers. ACM Transactions on Graphics

(TOG), vol. 30, no. 3, 2011. (Cited in page 40.)



104 Bibliography

[Levine 2012] S. Levine and J. Popović. Physically Plausible Simulation for Char-

acter Animation. In Symposium on Computer Animation, pages 221–230,

2012. (Cited in page 41.)

[Liu 2012] L. Liu, K. Yin, M. van de Panne and B. Guo. Terrain Runner: Control,

Parameterization, Composition, and Planning for Highly Dynamic Motions.

ACM Transactions on Graphics (Proceedings SIGGRAPH), vol. 31, no. 6,

pages 154:1–154:10, 2012. (Cited in page 40.)

[Liu 2016] L. Liu, M. van de Panne and K. Yin. Guided learning of control graphs

for physics-based characters. ACM Transactions on Graphics (TOG), vol. 35,

no. 3, page 29, 2016. (Cited in page 40.)

[Lozano-Pérez 1983] T. Lozano-Pérez. Spatial Planning: A Configuration Space

Approach. IEEE Trans. on Computers, vol. C-32, pages 108–120, 1983.

(Cited in page 5.)

[Mather 2009] T.W. Mather and M. Yim. Modular configuration design for a

controlled fall. In 2009 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 5905–5910, 2009. (Cited in pages 80 and 83.)

[McCann 2006] J. McCann, N.S. Pollard and S. Srinivasa. Physics-Based Motion

Retiming. In ACM SIGGRAPH / Eurographics Symposium on Computer

Animation, 2006. (Cited in page 40.)

[Mirabel 2016] J. Mirabel, S. Tonneau, P. Fernbach, A. Seppälä, M. Campana,

N. Mansard and F. Lamiraux. HPP: a new software for constrained mo-

tion planning. In IEEE International Conference on Intelligent Robots and

Systems (IROS), 2016. (Cited in page 9.)

[Montgomery 1993] R. Montgomery. Gauge theory of the falling cat, volume 1.

Fields Institute Communications, 1993. (Cited in pages 80 and 83.)

[Mordatch 2012] I. Mordatch, E. Todorov and Z. Popović. Discovery of complex

behaviors through contact-invariant optimization. ACM Transactions on

Graphics (TOG), vol. 31, no. 4, 2012. (Cited in pages 40 and 41.)

[Nocedal 2006] J. Nocedal and S. Wright. Numerical optimization. Springer New

York, 2nd ed., 2006. (Cited in page 20.)

[Orin 2013] D. Orin, A. Goswami and S.H. Lee. Centroidal dynamics of a humanoid

robot. Autonomous Robots, vol. 35, no. 2, pages 161–176, 2013. (Cited in

page 97.)

[Pan 2012a] J. Pan, S. Chitta and D. Manocha. FCL: A general purpose library

for collision and proximity queries. In IEEE International Conference on

Robotics and Automation (ICRA), pages 3859–3866, Saint Paul (MN), 2012.

(Cited in page 19.)



Bibliography 105

[Pan 2012b] J. Pan, L. Zhang and D. Manocha. Collision-free and Smooth Tra-

jectory Computation in Cluttered Environments. International Journal of

Robotics Research (IJRR), vol. 31, no. 10, pages 1155–1175, 2012. (Cited

in page 8.)

[Papadopoulos 2007] E. Papadopoulos, I. Fragkos and I. Tortopidis. On Robot

Gymnastics Planning with Non-zero Angular Momentum. In IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 1443–1448,

2007. (Cited in page 38.)

[Park 2012] C. Park, J. Pan and D. Manocha. ITOMP: Incremental Trajectory

Optimization for Real-Time Replanning in Dynamic Environments. In In-

ternational Conference on Automated Planning and Scheduling (ICAPS),

pages 207–215, Atibaia, São Paulo, Brazil, 2012. (Cited in page 7.)

[Peng 2016] X.B. Peng, G. Berseth and M. van de Panne. Terrain-Adaptive Lo-

comotion Skills Using Deep Reinforcement Learning. ACM Transactions on

Graphics (Proceedings SIGGRAPH), vol. 35, no. 5, 2016. (Cited in page 40.)

[Pettré 2003] J. Pettré, J.-P. Laumond and T. Siméon. A 2-stages Locomo-

tion Planner for Digital Actors. In Proceedings of the 2003 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, SCA ’03,

pages 258–264, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics

Association. (Cited in page 39.)

[Pollard 2000] N.S. Pollard and F. Behmaram-Mosavat. Force-based motion edit-

ing for locomotion tasks. In IEEE International Conference on Robotics

and Automation (ICRA), volume 1, pages 663–669 vol.1, 2000. (Cited in

page 40.)

[Raibert 1984] M.H. Raibert, M.A. Chepponis and H. Benjamin Brown. Experi-

ments in Balance With a 3D One-Legged Hopping Machine. International

Journal of Robotics Research (IJRR), vol. 3, pages 75–92, 1984. (Cited in

page 38.)

[Reitsma 2003] P.S.A. Reitsma and N.S. Pollard. Perceptual Metrics for Character

Animation: Sensitivity to Errors in Ballistic Motion. ACM Transactions on

Graphics (TOG), vol. 22, no. 3, pages 537–542, 2003. (Cited in page 41.)

[Reitsma 2008] P.S.A. Reitsma, J. Andrews and N.S. Pollard. Effect of Character

Animacy and Preparatory Motion on Perceptual Magnitude of Errors in

Ballistic Motion. Comput. Graph. Forum, vol. 27, no. 2, pages 201–210,

2008. (Cited in page 41.)

[Rose 1996] C. Rose, B. Guenter, B. Bodenheimer and M.F. Cohen. Efficient Gen-

eration of Motion Transitions Using Spacetime Constraints. In Proceedings



106 Bibliography

of the 23rd Annual Conference on Computer Graphics and Interactive Tech-

niques, SIGGRAPH ’96, pages 147–154, New York, NY, USA, 1996. ACM.

(Cited in page 40.)

[Safonova 2004] A. Safonova, J.K. Hodgins and N.S. Pollard. Synthesizing Physi-

cally Realistic Human Motion in Low-dimensional, Behavior-specific Spaces.

ACM Transactions on Graphics (TOG), vol. 23, no. 3, pages 514–521, 2004.

(Cited in page 40.)

[Safonova 2007] A. Safonova and J.K. Hodgins. Construction and Optimal Search

of Interpolated Motion Graphs. ACM Transactions on Graphics (TOG),

vol. 26, no. 3, 2007. (Cited in page 40.)

[Schulman 2014] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow,

J. Pan, S. Patil, K. Goldberg and P. Abbeel. Motion Planning with Se-

quential Convex Optimization and Convex Collision Checking. International

Journal of Robotics Research (IJRR), vol. 33, no. 9, pages 1251–1270, 2014.

(Cited in pages 8 and 15.)

[Schwartz 1983] J.T. Schwartz and M. Sharir. On the piano movers problem I.

The case of a two-dimensional rigid polygonal body moving amidst polygonal

barriers. Communications on Pure and Applied Mathematics, vol. 36, no. 3,

pages 345–398, 1983. (Cited in page 5.)

[Schwarzer 2004] F. Schwarzer, M. Saha and J.-C. Latombe. Algorithmic Foun-

dations of Robotics V, chapitre Exact Collision Checking of Robot Paths,

pages 25–41. Springer Berlin, 2004. (Cited in page 16.)

[Sekhavat 1998] S. Sekhavat, P. Svestka, J.-P. Laumond and M. Overmars. Multi-

level path planning for nonholonomic robots using semi-holonomic subsys-

tems. International Journal of Robotics Research (IJRR), vol. 17, no. 8,

pages 840–857, 1998. (Cited in pages 13 and 27.)

[Shapiro 2011] A. Shapiro and S.H. Lee. Practical Character Physics For Anima-

tors. Computer Graphics and Applications, Special Issue on Physics, vol. 31,

no. 4, pages 45–55, 2011. (Cited in pages 40 and 41.)

[Shu 2016] R. Shu, A. Siravuru, A. Rai, T. Dear, K. Sreenath and H. Choset. Opti-

mal Control for Geometric Motion Planning of a Robot Diver. In IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2016.

(Cited in pages 80 and 83.)

[Siméon 2000] T. Siméon, J.-P. Laumond and C. Nissoux. Visibility based proba-

bilistic roadmaps for motion planning. Advanced Robotics Journal, vol. 14,

no. 6, pages 477–493, 2000. (Cited in pages 25 and 57.)



Bibliography 107

[Stoeter 2005] S.A. Stoeter and N. Papanikolopoulos. Autonomous stair-climbing

with miniature jumping robots. IEEE Transactions on Systems, Man, and

Cybernetics: Part B, vol. 35, no. 2, pages 313–325, 2005. (Cited in page 38.)

[Sulejmanpašić 2005] A. Sulejmanpašić and J. Popović. Adaptation of Performed

Ballistic Motion. ACM Transactions on Graphics (TOG), vol. 24, no. 1,

pages 165–179, 2005. (Cited in page 41.)

[Tonneau 2015a] S. Tonneau. Motion planning and synthesis for virtual characters

in constrained environments. PhD thesis, Institut National des Sciences

Appliquées (INSA) Rennes, France, 2015. (Cited in page 67.)

[Tonneau 2015b] S. Tonneau, N. Mansard, C. Park, D. Manocha, F. Multon and

J. Pettré. A reachability-based planner for sequences of acyclic contacts in

cluttered environments. In International Symposium on Robotics Research

(ISRR), 2015. (Cited in pages 62, 65, 67 and 71.)

[Tonneau 2016a] S. Tonneau, R. A. Al-Ashqar, J. Pettré, T. Komura and

N. Mansard. Contact re-positioning under large environment deformation.

Computer Graphics Forum (Proc. Eurographics), 2016. (Cited in page 41.)

[Tonneau 2016b] S. Tonneau, A. Del Prete, J. Pettré, C. Park, D. Manocha and

N. Mansard. An efficient acyclic contact planner for multiped robots. Tech-

nical report, 2016. (Cited in page 79.)

[van Basten 2011] B.J.H. van Basten, A. Egges and R. Geraerts. Combining path

planners and motion graphs. Journal Visualization and Computer Anima-

tion, vol. 22, no. 1, pages 59–78, 2011. (Cited in page 39.)

[Wensing 2014] P.M. Wensing and D.E. Orin. Development of high-span running

long jumps for humanoids. In IEEE International Conference on Robotics

and Automation (ICRA), pages 222–227, 2014. (Cited in page 41.)

[Witkin 1988] A. Witkin and M. Kass. Spacetime constraints. ACM SIGGRAPH

Computer Graphics, vol. 22, no. 4, pages 159–168, 1988. (Cited in page 40.)

[Witkin 1995] A. Witkin and Z. Popović. Motion Warping. In Proceedings of the

22nd Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH ’95, pages 105–108, New York, NY, 1995. ACM. (Cited in

page 39.)

[Wooten 1996] W.L. Wooten and J.K. Hodgins. Animation of Human Diving. Com-

puter Graphics Forum, 1996. (Cited in page 40.)

[Yamane 2010] K. Yamane and K. W. Sok. Planning and Synthesizing Superhero

Motions. In Conference on Motion in Games, pages 254–265, 2010. (Cited

in pages 39 and 41.)



108 Bibliography

[Yin 2007] K. Yin, K. Loken and M. van de Panne. SIMBICON: Simple Biped

Locomotion Control. ACM Transactions on Graphics (TOG), vol. 26, no. 3,

2007. (Cited in page 40.)

[Zhao 2015] J. Zhao, T. Zhao, N. Xi, M. W. Mutka and L. Xiao. MSU Tail-

bot: Controlling Aerial Maneuver of a Miniature-Tailed Jumping Robot.

IEEE/ASME Transactions on Mechatronics, vol. 20, no. 6, pages 2903–2914,

2015. (Cited in pages 80 and 83.)

[Zucker 2013] M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith,

C. Dellin, J. Bagnell and S. Srinivasa. CHOMP: Covariant Hamiltonian op-

timization for motion planning. International Journal of Robotics Research

(IJRR), vol. 32, no. 9-10, pages 1164–1193, 2013. (Cited in pages 7, 14

and 15.)



Résumé en Français :
Les algorithmes probabilistes offrent de puissantes possibilités quant à la ré-

solution de problèmes de planification de mouvements pour des robots complexes

dans des environnements quelconques. Cependant, la qualité des chemins solutions

obtenus est discutable. Cette thèse propose un outil pour optimiser ces chemins et

en améliorer la qualité. La méthode se base sur l’optimisation numérique contrainte

et la détection de collision pour réduire la longueur du chemin tout en évitant les

collisions.

La modularité des méthodes probabilistes nous a aussi inspirés pour réaliser

un algorithme de génération de sauts pour des personnages. Cet algorithme est

décrit par trois étapes de planifications, de la trajectoire du centre du personnage

jusqu’à son mouvement corps-complet. Chaque étape bénéficie de la rigueur de la

planification pour éviter les collisions et pour contraindre le chemin. Nous avons

proposé des contraintes inspirées de la physique pour améliorer la plausibilité des

mouvements, telles que du non-glissement, de la limitation de vitesse et du maintien

de contacts.

Les travaux de cette thèse ont été intégrés dans le logiciel “Humanoid Path

Planner” et les rendus visuels effectués avec Blender.

Mots clés : Planification de mouvement, animation graphique, mouvement

ballistique, optimisation de chemin, simulation

Abstract:
Probabilistic algorithms offer powerful possibilities as for solving motion plan-

ning problems for complex robots in arbitrary environments. However, the quality

of obtained solution paths is questionable. This thesis presents a tool to optimize

these paths and improve their quality. The method is based on constrained numer-

ical optimization and on collision checking to reduce the path length while avoiding

collisions.

The modularity of probabilistic methods also inspired us to design a motion gen-

eration algorithm for jumping characters. This algorithm is described by three steps

of motion planning, from the trajectory of the character’s center to the wholebody

motion. Each step benefits from the rigor of motion planning to avoid collisions and

to constraint the path. We proposed physics-inspired constraints to increase the

plausibility of motions, such as slipping avoidance, velocity limitation and contact

maintaining.

The thesis works have been implemented in the software ‘Humanoid Path Plan-

ner’ and the graphical renderings have been done with Blender.

Keywords: Motion planning, computer animation, ballistic motion, path op-

timization, simulation


