
HAL Id: tel-01785574
https://laas.hal.science/tel-01785574v2

Submitted on 20 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intuitive, iterative and assisted virtual guides
programming for human-robot comanipulation

Susana Sanchez Restrepo

To cite this version:
Susana Sanchez Restrepo. Intuitive, iterative and assisted virtual guides programming for human-
robot comanipulation. Robotics [cs.RO]. Université Paul Sabatier - Toulouse III, 2018. English.
�NNT : 2018TOU30035�. �tel-01785574v2�

https://laas.hal.science/tel-01785574v2
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 01/02/2018 par :
Susana Sánchez Restrepo

INTUITIVE, ITERATIVE AND ASSISTED VIRTUAL GUIDES
PROGRAMMING FOR HUMAN-ROBOT COMANIPULATION

JURY
Olivier BRUNEAU Professeur des Universités à

l’IUT de Cachan, Université
Paris-Sud

Président du jury

Guillaume MOREL Professeur à l’Université
Pierre et Marie Curie

Rapporteur

Philippe FRAISSE Professeur à l’Université de
Montpellier

Rapporteur

Simon LACROIX Directeur de recherche CNRS,
LAAS/CNRS

Examinateur

Julie DUMORA Ingénieure de Recherche en
Robotique, CEA Tech

Examinatrice

Xavier LAMY Ingénieur de Recherche en
Robotique, CEA List

Encadrant

Daniel SIDOBRE Maître de Conférences à
l’Université Paul Sabatier

Directeur de thèse

École doctorale et spécialité :
EDSYS : Robotique 4200046

Double mention :
EDSYS : Automatique 4200046

Unité de Recherche :
Laboratoire d’analyse et d’architecture des systèmes

Directeur(s) de Thèse :
Daniel SIDOBRE et Xavier LAMY

Rapporteurs :
Guillaume MOREL et Philippe FRAISSE

This thesis is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

à Joris.
a Samuel,
a Sara,
a Olga y Julio,

Acknowledgments

“ ... para ser cada vez menos humanos ... ”
Camilo Arango Vélez, Congreso de filosofía

Colegio San Ignacio. Medellín, 2008

Je souhaite tout d’abord remercier l’ensemble des membres du jury : les pro-
fesseurs Guillaume Morel et Philippe Fraisse qui ont accepté sans hésitation le rôle
de rapporteur de mes travaux de thèse, Olivier Bruneau en tant que président et
Simon Lacroix et Julie Dumora en tant qu’examinateurs. J’ai beaucoup apprécié
nos échanges lors de la soutenance et vos compliments resteront gravés dans ma
mémoire !

Je remercie tout particulièrement mon directeur de thèse Daniel Sidobre et mon
encadrant Xavier Lamy. Daniel, merci pour ta réactivité et tes conseils, notamment
pour la rédaction de mes articles et du manuscrit. Merci aussi pour ton accueil si
chaleureux à Toulouse et pour ta grande disponibilité. Xavier, tu as été depuis le
début de la thèse une source d’inspiration pour moi et sache que j’admire fortement
ton travail et la passion avec laquelle tu mènes tes projets. Merci de m’avoir guidée
jusqu’à la fin... Tu demandais toujours un peu plus et cela m’a beaucoup motivée.
Merci aussi pour ton soutien dans les moments difficiles, que ce soit pour me remonter
le moral, travailler avec les quaternions, pour déboguer la TAO, essayer d’avoir un
ordinateur portable ou alors pour faire un peu de maintenance sur les robots. Enfin,
merci pour la confiance que tu m’as accordée et pour ta disponibilité même quand
tu n’avais pas vraiment le temps.

Cette thèse n’aurait pas été possible sans le LRI au CEA. Je remercie donc
Yann Perrot pour m’avoir accueillie au laboratoire. Je suis arrivée au LRI pour mon
stage de Master Recherche sous l’encadrement de Mathieu Grossard et Nolwenn
Kammerer. C’est grâce à eux que j’ai décidé de continuer dans le monde de la
recherche. Mathieu, Nolwenn, j’ai beaucoup aimé travailler avec vous. Merci pour
le soutien et les conseils que vous m’avez apportés, du début du stage à la fin de la
thèse. Je souhaite aussi remercier Fares et Dominique de m’avoir si bien accueillie
au BE... Toujours un sourire et des paroles d’encouragement ! Fares, même si notre

vi

collaboration a été courte, c’était un plaisir de travailler avec toi sur les actionneurs
à câbles. Je remercie aussi mes amis de l’atelier, et tout particulièrement Benoît
qui a toujours été là pour fabriquer de belles pièces pour mes démonstrations et
mes expérimentations (même si je le prévenais quelques heures avant). Et tous ces
bons moments partagés à la petite pause café de l’atelier à la fin de ma thèse. Un
grand merci à Elodie, la personne la plus efficace dans son travail que je n’ai jamais
rencontrée. Toujours un grand sourire pour gérer les petits problèmes administratifs
: quelle grande qualité humaine ! Merci Dominique Schoen pour tes compliments et
ton intérêt pour ma thèse. Merci Yvan et Max pour nos échanges intéressants sur
la cobotique et le Sybot. Merci Olivier David et Franck Geffard pour votre intérêt
pour ma thèse et vos questions pertinentes ! Merci Franck pour m’avoir motivée à
participer aux journées FéDev et aux journées de thèses à l’ENSTA. Merci Baptiste
pour nos échanges et débats sur la robotique, le management et l’architecture logi-
cielle. Merci pour avoir contribué à ma santé en me motivant pour aller courir et
nager à midi. C’était un plaisir de partager tout cela avec toi. Merci Olivier Lebec
pour ton aide avec le matériel informatique et pour toutes ces discussions où l’on
essayait de refaire le monde et où l’on rêvait d’une société différente. Merci aussi
de m’avoir rapprochée de Niccolo et Giorgia ! Amigos italianos, gracias por tanto
apoyo durante la tesis. Nicco, gracias por tus consejos y motivación. Je voudrais
remercier aussi ceux qui sont partis avant moi du CEA et qui ont eu une grande
influence sur la façon dont ma thèse s’est déroulée. Ils étaient là quand j’avais besoin
d’un coup de motivation ou de conseils pour la rédaction et la soutenance. Je les
appelle "mes anciens" : Alex Caldas, Franck Gonzalez, Pauline Maurice, Davinson,
Jérémy Dallard et Walid. Je remercie également Selma pour m’avoir aidée à rédiger
mon plan de thèse et pour les pauses détente dehors qui m’ont beaucoup aidée à
relativiser. Tu es une femme que j’admire ! Merci Titouan pour l’intérêt que tu as
porté à ma thèse et pour la bonne ambiance en bas ! François Lansade et Alexandre
Douin, merci pour le recul que vous avez apporté sur mes travaux et sur le doctorat
en général. François, merci pour ton expertise industrielle qui m’a inspirée pour mes
expérimentations. Alex, merci pour tes retours d’expérience, nos discussions sur le
management et ta motivation et organisation des courses de relais CEA. J’admire
ton énergie !

Maintenant, j’ai besoin de dire que pendant ces années au CEA j’ai eu la chance
de partager les déjeuners, les pauses et les robots avec des gens exceptionnels :
Marie Charlotte (ma complice, ma copine de bureau, une ingénieure robotique
avec beaucoup de classe, attention aux crocrodrilles et aux écroucreuilles, tu m’as
énormement manqué à la fin), Nolwenn (madame rigueur et organisation, j’admire
tes travaux de thèse... merci pour tes mots doux et ta motivation pendant ma
dernière année), Vaiyee (toujours là pour nous aider à décompresser et faire des
nouveaux amis), Emeline (l’artiste du groupe, merci d’avoir toujours été présente),
Laura (la que comprende mi cultura colombiana, una super ingeniera mecatrónica
et toujours motivée pour faire du sport)... et les garçons : Benoît ("tout va bien

vii

se passer"... merci infiniment pour ton aide (le débogage et l’optimisation de mes
codes), merci pour ta bonne énergie et pour avoir toujours été là pour moi, attention
aux canards), Djibri-lo (le maker le plus passionné du labo, j’ai adoré parler avec toi
de geekeries), Anthony (toujours content et la motivation incarnée), José (l’expert
des robots mobiles et du vélo, des conversations toujours intéressantes), Oscar y
Juan Miguel (la mejor oficina donde se habla español, gracias por tanto apoyo,
por escucharme y por interesarse en mi trabajo... ánimo que les falta poco ! y
cuidado con las plantas <3), Ugo (le petit dernier rigoureux, prends bien soin de
mon bureau). Merci aussi à tous les stagiaires qui sont passés par le LRI/LSI et qui
ont contribué à la bonne ambiance de travail ! Une pensée à Courosh, Sophie, Félix,
Jérémy, Simon, Olivier, Pierre, Clément, Samouri, Rabah...

During my thesis I had the pleasure to work with Gennaro Raiola. Together we
were very efficient and working seemed more like playing with robots. Gennaro, you
are very talented and I hope we can keep up our collaborative work ! Thanks for
sharing all your expertise with me and for the good moments at the lab. Et un grand
merci aussi à Pauline Chevalier avec laquelle j’ai eu la chance de collaborer pour
réaliser mes premiers tests utilisateurs. Merci Pauline pour ta grande contribution
et ta bonne énergie.

Je voudrais remercier très particulièrement les stagiaires que j’ai co-encadrés
pendant mon doctorat. Thomas et Jéssé, nous nous sommes complétés parfaitement
et votre travail sur les interfaces en réalité augmentée a été très utile pour la thèse.
Merci aussi pour la bonne ambiance et l’esprit de travail en équipe ! Je garderai
toujours tous ces bons souvenirs avec moi.

Ce doctorat a été pour moi, plus qu’un travail de recherche et d’expérimentation
en robotique, une grande opportunité d’enseigner et de transmettre mes connais-
sances. Fabien Dionnet, merci de m’avoir accueillie à l’ISEP et de m’avoir fait
autant de confiance pour encadrer tes élèves puis pour diriger les TD. J’ai beaucoup
appris de toi et de cette expérience merveilleuse. Un grand merci à mes élèves qui
m’ont indirectement motivée et avec lesquels j’ai grandi. Gracias a mis profesores
colombianos Hugo y Fabio que me motivaron a enseñar desde que estaba en el colegio
y por siempre creer en mí. Mi eterna gratitud !

Je remercie toutes les personnes qui ont participé à mes expérimentations avec
les différents robots, qui prenaient parfois longtemps ! Sans vous, cette thèse n’aurait
pas eu de sens.

Merci à mes nouveaux collègues de chez iFollow qui sont venus renforcer les
applaudissements : Vincent, Nicolas, Romain, Théo, Quentin, Jonathan ! Merci
Jonathan pour ton aide à la préparation de ma soutenance.

viii

Je voudrais aussi remercier très spécialement mes amis proches qui ont eu une
influence indirecte sur la thèse mais très importante. Valentin, merci d’avoir eu plus
de confiance en moi que moi-même, merci de m’avoir appris le français (on a encore
du boulot...), merci pour ton soutien inconditionnel ! Guillaume et Guillaume...
merci pour l’intérêt que vous avez porté à mes travaux et de m’avoir motivée à faire
du sport, me déplacer en vélo à Paris et garder une vie sociale active pendant le
doctorat ! Thomas (Toto), merci d’avoir partagé avec moi le congrès à Toulouse
et notre passion pour la robotique depuis le Master avec Benoît (canards). Merci
de m’avoir forcée à voyager en France pour me changer les idées, and thanks for
being just a call away. Lina, gracias por compartir conmigo desde los proyectos
integradores de mecatrónica hasta la tesis de doctorado. Gracias por tus palabras
d’encouragement, por tus regańos toujours pertinents, por tu honestidad et tes
relectures. Gracias por tanto, ya casi te toca ! Andrés, qué hubiera sido de mi sin
vos todas esas tardes en el lab en las que faltaba motivación. Gracias por tus consejos
y por escucharme hablar tanto de robots y con este acento paisa. Maud et Bertrand,
merci d’avoir toujours été là et de m’avoir ouvert l’esprit. A mis amigas que desde
Colombia nunca dejaron de apoyarme y alentarme e incluso algunas pasaron por la
casa parisina llenándome de buena energía y amor: Laura, Maria, Andrea, Mariana,
Manuela R., Ana, Manuela A., Isabel. En fin, al innombrable al que le debo parte
de mi pasión por la mecatrónica y a mis compañeros de la EIA !

Y entre esos amigos... Camilo: mientras escribí esta tesis sentí como si todo
hubiese comenzado gracias a aquel debate de filosofía en el 2008. Te debo mi amor
por la France, por la ciencia y l’envie de débattre. Gracias por interesarte por
esta tesis même si elle est loin de faire partie de ton domaine. Gracias por tanta
motivación e inspiración. Gracias por esos dos meses de invierno en París que
compartimos y que me ayudaron a seguir trabajando duro. Gracias por admirarme,
j’ai toujours du mal à le croire, un genio como vos. Et merci d’être venu à ma
soutenance, ce fut une grande surprise et un plaisir indescriptible de t’avoir eu dans
l’amphi. Et une pensée à Juan Diego !

"El hombre crece de dentro para afuera", decía Fernando González en 1936. Y
en su misma obra, Los negroides, donde critica la vanidad y la ceguera de América
Latina, dijo: "Lo primero es conocerse, y lo segundo, cultivarse. Nuestra individ-
ualidad es nuestro huerto, y la personalidad es nuestro fruto". Y en esos estados
de consciencia propia y de aprendizaje, la familia es el ejemplo, la motivación, la
fuente... la familia es el color de esas formas que cada uno dibuja, es el inicio y el fin,
sin ser un molde. Yo aprendí de mi familia el amor, la entrega y el trabajo constante;
Julio: el esfuerzo y el liderazgo, Olga: los buenos hábitos y la tenacidad, Sara:
ejemplo de talento y creatividad inagotable, César: un maravilloso rebelde con causa
a quien le debo mis primeros conocimientos en informática y el gusto por la buena
música, y Samuel: pura energía e inspiración ! Un agradecimiento especial a Sara
por haber contribuído activamente a la tesis con gran parte de las ilustraciones del

ix

manuscrito y la presentación. Mil gracias también por tanto apoyo durante mis años
de estudio y por ser incondicional incluso en la distancia. Gracias a mis padres por el
alto nivel de educación que me dieron, por esas bases que han sido claves en mi desar-
rollo como persona y profesional. Gracias por creer en mí, por haberme dado las alas
para volar lejos, lejos, lejos de casa. Gracias a los tres por venir a verme a la defensa
de la tesis y escuchar tantas horas de presentación en francés, gracias por tanto amor.

A los Restrepo... especialmente a Miryam (mi amiga en la distancia pero a
la vez tan cercana), Marta (por compartir conmigo la pasión por la docencia y la
academia), Jorge (por el apoyo incondicional durante mis estudios y sobretodo por
compartir conmigo la pasión por la domótica y la buena mesa), Andrés (esa visita
no tiene precio, gracias por creer en mí) y Camilo (fuente de inspiración inagotable,
de trabajo constante, un amor fraternal difícil de explicar). Manu, gracias por las
tardes que pasamos juntas en Medellín cuando viajé durante el doctorado, tu interés
en mi trabajo y tu sonrisa constante. Esta familia, es sin duda un ingrediente clave
en el éxito de mi carrera.

Gracias a la familia Sánchez por el apoyo a distancia y los mensajes alentadores !

Un grand merci à la famille Guerry pour votre soutien et l’intérêt que vous
avez porté à ma thèse, et surtout à mon bien être. Merci pour les weekends et les
vacances en famille ! Merci à Liliane et Yves Guerry.

La thèse, plus qu’une expérience professionelle est un projet personnel. Et une
partie très importante d’un tel projet, c’est l’état d’esprit. Pendant ces années
de doctorat, j’ai eu la chance de partager ma vie avec Joris, qui a eu la grande
responsabilité de me faire garder l’état d’esprit nécessaire à la réussite de mes
travaux. Mais pas que... Joris je te remercie aussi pour toutes ces nuits où l’on a
travaillé ensemble, que ce soit pour faire des figures avec GIMP, des simulations avec
Matlab, des relectures, des vidéos sur mes expérimentations, des maths ou encore
pour préparer mes présentations avec toute ta rigueur ! Merci pour tes bonnes idées
qui ont eu une influence si positive sur ces travaux. Merci pour ta contribution
à mon niveau de français et pour ton intérêt (si important pour moi) pour ma
langue maternelle et ma vie en Colombie. Merci notamment pour la préparation
de ma soutenance de thèse, pour laquelle le français me rajoutait une difficulté
supplémentaire. Merci pour la relecture de ce manuscrit, l’encouragement pendant la
rédaction et les bonnes pratiques en LATEX. Merci pour nos débats sur la robotique
et l’avenir de notre société. Merci pour ton enthousiasme et ta confiance en moi.
Merci d’avoir construit avec moi nos deux projets de doctorat en plus de notre chez
nous. Merci de m’avoir laissée prendre la main quand c’était nécessaire... mais
surtout de ne pas avoir laissé coulé le bateau quand je perdais le contrôle. Merci
de m’avoir transmis ton positivisme et ta passion. Gracias por tanto amor y entrega !

x

Y cierro este capítulo con González:

“ La emoción del conocimiento es lo que embellece...
La obra una vez terminada, es objeto. Lo único
dinámico, siempre prometedor y finalidad última
es el espíritu ... ”

... ese espíritu que crece en el amor, la responsabilidad y la disciplina. Mi espíritu
apasionado, rebelde y acompañado ...

Gracias, totales !

Contents

1 Introduction 3
1.1 Context . 4

1.1.1 Towards Interactive Robotics 4
1.1.2 Collaborative Robotics and Comanipulation 8
1.1.3 Intuitive, Iterative and Assisted Virtual Guides Programming 22

1.2 Related works . 24
1.2.1 Virtual Guides Definition . 24
1.2.2 Virtual Guides Creation . 28
1.2.3 Virtual Guides Enforcement 31
1.2.4 Virtual Guides Modification 35

1.3 Contributions . 38
1.4 Outline . 39

2 Virtual Guides Definition via Virtual Mechanisms 41
2.1 Definition of Virtual Mechanisms . 42
2.2 Implementation of Virtual Mechanisms 43
2.3 Stability during Interaction . 49
2.4 Kinematic Singularities . 51
2.5 Conclusion . 52

3 Virtual Guides Construction 53
3.1 Geometric and Kinematic Models of Virtual Guides 54
3.2 Virtual Guides as Position Constraints 55

3.2.1 Interpolation in R3 . 56
3.2.2 Position Constraints Construction through Akima Splines . . 62

3.3 Virtual Guides as Orientation Constraints 64
3.3.1 Related Works . 64
3.3.2 Interpolation in SO(3) . 67
3.3.3 Orientation Constraints Construction through Spherical Cubic

Interpolation . 74
3.4 6D Virtual Guides . 79
3.5 Conclusion . 82

xii Contents

4 Iterative Virtual Guides Programming 85
4.1 Human-Robot Interaction Roles . 86
4.2 Iterative, Intuitive and Assisted Programming of Virtual Guides . . 89
4.3 Interaction Modes . 91
4.4 Local Refinement and Modification of Virtual Guides 94

4.4.1 Virtual Guides Refinement of Translation 94
4.4.2 Portion Modification of a Virtual Guide 99

4.5 Iterative Programming of 6D Virtual Guides 100
4.5.1 Refinement of Orientation Components 101

4.6 Conclusion . 101

5 Experimental Evaluation 103
5.1 Statistic analysis . 104
5.2 Experiment 1: Virtual Guides Assistance advantages 107

5.2.1 Task definition . 107
5.2.2 Protocol . 110
5.2.3 Results . 112
5.2.4 Conclusion of experiment 1 119

5.3 Experiment 2: Iterative Programming 121
5.3.1 Task definition . 122
5.3.2 Protocol . 124
5.3.3 Measures . 124
5.3.4 Results . 127
5.3.5 Conclusion of experiment 2 145
5.3.6 Additional Remarks and Improvements 146

5.4 Conclusion . 150

6 Conclusion 151
6.1 Contributions . 151
6.2 Perspectives . 153

6.2.1 Virtual Guides Construction 153
6.2.2 Virtual Guides Programming Framework 153
6.2.3 Interaction - Interface . 154

A Co-manipulation with a Library of Virtual Guiding Fixtures 159

Bibliography 175

List of Figures

1.1 Examples of tools used to improve the (a) physical, (b) cognitive and
(c) perceptive abilities of humans. 4

1.2 Spacecraft Opportunity used in the Mars Exploration Rover (MER)
mission. Image credits: NASA/JPL/Cornell University. 5

1.3 Examples of recent innovative human-robot interfaces and sensors. . 6
1.4 Examples of recent innovative human-robot interfaces and sensors. . 7
1.5 Components of the industry 4.0. 7
1.6 The vision of Industry 4.0 . 8
1.7 Collaborative robot from Universal Robots 9
1.8 Cobotic systems conceived by The French Alternative Energies and

Atomic Energy Commission (CEA). 10
1.9 Classification of comanipulation . 12
1.10 Weight compensation systems . 13
1.11 Examples of cobots . 13
1.12 Strength amplification systems . 14
1.13 SteadyHand Project. 16
1.14 Classification of robot programming methods 17
1.15 Teach-pendant programming interface (smartPAD) for a Kuka robot. 18
1.16 Example of a Gaussian Mixture Models (GMM) (in green) trained

on a data set of three demonstrated trajectories (in black). 18
1.17 Teleoperation of a Staubli robot via a Virtuose 6D haptic device. . . 19
1.18 Kinesthetic teaching with several commercialized Collaborative Robot

(cobot)s. 20
1.19 Supervisory control system . 25
1.20 Scara cobot conceived by CEA. This image shows an example of

hands-on interaction where the user directly manipulates the robot. 26
1.21 Regional and guidance constraints (in black). 28
1.22 Virtual Guides general framework. 29
1.23 Programming by Demonstration analogy with humans learning by

imitation. Inspired from the original Willow Garage image under
BY-NC Creative Commons license. 30

1.24 Proxy and linkage simulation for virtual guides enforcement. An
elastic linkage between the robot end-effector and the proxy is simulated. 33

xiv List of Figures

1.25 Reference direction virtual guides. The force of the user is decomposed
into preferred – permitted by the constraint – and nonpreferred –
resisted by the constraint – components. 34

2.1 Examples of real guides. 42
2.2 Direct manipulation of the Cobomanip cobot designed by CEA-List

and Sarrazin to assist the operator during handling operation. 43
2.3 Virtual linking between a robot and the virtual mechanism using a

spring-damper system . 44
2.4 Virtual mechanism representation. The red curve represents the

possible configurations of the virtual mechanism in the Cartesian
space Xvm, and because of the spring-damper system linking, it
represents the allowed configurations of the robot end-effector X.
The current position of the virtual mechanism is described by its
parameterized space by the parameter svm ∈ R 46

2.5 Lateral view of the physical analogy of a virtual mechanism 48
2.6 Control law scheme of a 1-Degrees of freedom (DOF) virtual mecha-

nism. 49

3.1 Example of a Bezier curve with 4 control points 56
3.2 Example of the quadratic interpolation with different initial slopes. . 57
3.3 Comparison of different interpolation methods. 58
3.4 Comparison of different interpolation methods to create a circular

curve. 59
3.5 Comparison between interpolation into the angle-vector representation

vs. the SLERP interpolation method. 68
3.6 Comparison of the LERP (left) against the SLERP (right). 69
3.7 Difference between linear vector interpolation and SLERP interpolation 69
3.8 Example of the Spherical Linear Interpolation (SLERP) interpolation

between two unit quaternions on the sphere. 72
3.9 Example of the SLERP (orange) and the Spherical Cubic Interpolation

(SQUAD) (blue) interpolations between eight unit quaternions on
the sphere. We can see that in contrast to the SLERP curve, the
SQUAD curve is smooth at the control points (red). 74

3.10 Illustration of a XSpline where both translations and orientations
movements are considered in a single 6D curve. 80

3.11 Visualization of 6D Virtual Guides using an Augmented Reality interface 81

4.1 Illustration of some of the human-robot complementary skills. 87
4.2 Force vs. position profiles for three force scaling methods 93
4.3 Scaling force function . 94
4.4 SCODEF deformation applied to the constraint point 97
4.5 Several deformation functions: gate, peak and B-spline 98

List of Figures xv

4.6 Local refinement applied to the constraint points X1 and X2 lying on
the base guide. X ′

1 and X ′
2 are the initial and final point, respectively,

of the new guide portion. 100

5.1 Back-drivable cobots with screw-and-cable transmissions 104
5.2 Sweeping trajectory . 108
5.3 Interaction with the 3-DOF ISybot collaborative robot 109
5.4 Virtual Guide modification . 111
5.5 Main effect of the Assistance Mode on time 113
5.6 Effect of the Repetitions on the execution time of the task 114
5.7 Interaction effect of Repetitions and Experience with robots on the

time execution of the task . 115
5.8 Main effect of the Case on time . 115
5.9 Interaction effect of Modes and Cases on the time execution of the task116
5.10 Effect of Modes on the participants’ perception of the task performance117
5.11 Effect of Modes on the participants’ perception of the accuracy of the

task performance . 118
5.12 Effect of Modes on the participants’ perception of the helpfulness of

the cobot . 118
5.13 Effect of Experience on the participants’ perception of the difficulty

of the task . 119
5.14 Participants executing the task with the cobot 120
5.15 Programming task setup. The path to follow is highlighted in red . 122
5.16 Experiment setup . 123
5.17 Calibration points . 125
5.18 Accuracy measures . 126
5.19 Effect of the Programming Mode on the programming time 129
5.20 Effect of Repetitions on the programming time 129
5.21 Interaction effect between Programming Mode and Repetitions on

the programming time . 130
5.22 Interaction effect between the Programming Mode, Repetitions and

Gender on the programming time 132
5.23 Effect of the participants’ perception of Performance on the program-

ming time . 132
5.24 Effect of Programming Mode on the Root Mean Square Error (RMSE)

of the angle . 133
5.25 Effect of Programming Mode on the RMSE of the distance to reference

path . 134
5.26 Effect of Gender on the mean distance to reference path 135
5.27 Qualitative results . 136
5.28 Qualitative results . 137
5.29 Effect of Programming Modes on the participants’ perception of their

task programming performance . 138

xvi List of Figures

5.30 Effect of Programming Modes on the difficulty of the task 138
5.31 Effect of Programming Modes on the intuitiveness of the programming

interface . 139
5.32 Effect of Programming Modes on the comfortability 140
5.33 Effect of Programming Modes on the perception of the robot helpful-

ness . 140
5.34 Effect of Programming Modes on the difficulty for manipulating the

robot . 141
5.35 Effect of Programming Modes on the participants’ physical effort . . 141
5.36 Effect of Programming Modes on the participants’ cognitive load . . 142
5.37 Effect of Programming Modes on the participants’ stress 142
5.38 Interaction effect between the Programming Mode and Experience

with robots on the difficulty of the task 143
5.39 Interaction effect between the Programming Mode and Experience

with robots on the participants’ stress 144
5.40 Regular comanipulation postures during the experiment 144
5.41 Postures when using One Shot Programming Mode 147
5.42 Postures when using Iterative Programming Mode 148
5.43 Recording button should be placed on the handler 149
5.44 Another handling system should be placed on axis 4 150

6.1 Multiple Virtual Guides . 155
6.2 Augmented reality application . 156
6.3 Virtual Guides visualization interfaces. 156
6.4 Virtual Guides visualization through an AR interface 157
6.5 Snapshots of a digital human model performing a drilling activity . . 158

List of Tables

1.1 Advantages and drawbacks of symbolic and trajectory level represen-
tation of a skill . 19

1.2 Summary of our virtual guides definition 28

4.1 Main functionalities of the three interaction modes. 92

5.1 Main characteristics of ISybot cobots: PK0 and PK2 104
5.2 Effect of the Modes on the execution time of the task 113
5.3 Main effect of the Repetitions on the execution time of the task . . . 113
5.4 Interaction effect of Repetitions and Experience with robots on the

time execution of the task . 114
5.5 Effect of the Case on the execution time of the task. 115
5.6 Interaction effect of Modes and Cases on the time execution of the task116
5.7 Survey results of the user study for the Assistance Modes 117
5.8 Effect of the Experience on the participants’ perception of the task

difficulty . 119
5.9 Effect of the Programming Mode on the programming time. 128
5.10 Effect of the Repetitions on the programming time. 128
5.11 Interaction effect between Repetitions and Programming Modes on

the programming time . 130
5.12 Interaction effect between the Programming Mode, Repetitions and

Gender on the programming time 131
5.13 Effect of the Performance on the programming time 131
5.14 Effect of the Programming Modes on the RMSE of the angle 133
5.15 Effect of the Programming Modes on the RMSE of the distance . . 134
5.16 Effect of the Gender on the RMSE of the distance. 135
5.17 Results of the user study survey for two Programming Modes 137

Glossary

AR Augmented Reality. 81, 155–157

CEA The French Alternative Energies and Atomic Energy Commission. xiii, 10,
15, 26, 90, 104

cobot Collaborative Robot. xiii, 9, 11–13, 15, 20–24, 26, 31, 35, 36

ctg Constrained tool geometry. 32

DMFFD Direct Manipulated Free-Form Deformation. 96

DOF Degrees of freedom. xiv, 21, 37, 43, 47, 49, 66, 90, 154

DVG Dynamic Virtual Guides. 65, 66

geodesic In differential geometry, a geodesic is a generalization of the notion of
a straight line to curved spaces. Geodesics are (locally) the shortest path
between points in the space.. 71, 73

GMM Gaussian Mixture Models. xiii, 17, 18, 30, 31, 36, 54, 154

GMR Gaussian Mixture Regression. 30, 31, 54, 154

GUI Graphical User Interface. 36

HMM Hidden Markov Models. 17, 31

PbD Programming by Demonstration. 11, 15–17, 20, 23, 30, 31, 35–37, 51, 54, 64,
89, 151

RMSE Root Mean Square Error. i, xv, 124–127, 133–135, 145

SCODEF Simple Constrained Object Deformation. 96–99

SLERP Spherical Linear Interpolation. xiv, 68, 71–74

SQUAD Spherical Cubic Interpolation. xiv, 73–78, 83, 152

SRD Simple Radial Deformations. 96

Chapter 1

Introduction

“ How inferior the human machine is, compared to
man-made machines. They can be decoked, un-
screwed, oiled and parts replaced. Decidedly, nature
is not a very wonderful thing. ”

Joris-Karl Huysmans, In a letter to Arij Prins

Contents
1.1 Context . 4

1.1.1 Towards Interactive Robotics 4
1.1.2 Collaborative Robotics and Comanipulation 8
1.1.3 Intuitive, Iterative and Assisted Virtual Guides Programming 22

1.2 Related works . 24
1.2.1 Virtual Guides Definition . 24
1.2.2 Virtual Guides Creation . 28
1.2.3 Virtual Guides Enforcement . 31
1.2.4 Virtual Guides Modification 35

1.3 Contributions . 38
1.4 Outline . 39

This thesis presents a new kinesthetic teaching framework to program Virtual
Guides Assistance in the context of human-robot comanipulation, applied to in-
dustrial scenarios. Our approach is intuitive and flexible so it can be used by
non-robotics experts and easily reprogrammed when the tasks or the environment
change. Moreover, the human operator is assisted during the programming phase in
order to reduce physical effort and cognitive overload. In this Chapter, we present

4 Chapter 1. Introduction

the context of this doctoral research in Section 1.1 by first introducing human-robot
interaction (1.1.1), then defining the concept of collaborative robots (cobots) used
for comanipulation tasks (1.1.2). Here we explain the features of cobots, including
Virtual Guides Assistance and Programming by Demonstration, which are the base
concepts used in our work. In Subsection 1.1.3, we present the concept of our
programming framework. Finally, the state of the art of Virtual Guides and the
related problematics are presented in Section 1.2, to conclude with the contributions
of this thesis, raised in Section 1.3.

1.1 Context

1.1.1 Towards Interactive Robotics

One of the most distinctive characteristics of human beings is their will to increase
their abilities by using a variety of tools. These abilities can either be physical,
cognitive or perceptive. An example of tools used to enhance human power are
shown in Figure 1.1.

(a) Homo habilis using a bone
as a hammer.

(b) Abacus used for perform-
ing mathematical operations.

(c) Sheepshanks Telescope
(1900) used in astronomy.

Figure 1.1: Examples of tools used to improve the (a) physical, (b) cognitive and (c)
perceptive abilities of humans.

Robots are a kind of tool invented by humans in order to assist them at work. The
first robotic applications were designed for specific tasks where industrial constraints
such as precision, repeatability and production rate, shaped the conception of
automatic machines. The robots from the 80’s where conceived to execute repetitive
tasks at high speed, in closed environments with very limited human intervention.
An example of application is a "pick and place" task where a robot allows fast and
accurate positioning of electronic components on a circuit board. Other examples
are tasks such as palletization or industrial manufacturing. In general, the core
idea of robotics has been to assist the human being to achieve difficult, arduous or
dangerous tasks, such as space exploration missions (Figure 1.2).

The robotics field has evolved together with recently scientific developments
in mechanics, electronics, informatics, applied mathematics and materials. These
developments have improved areas like sensor technology, human-machine interfaces
and high-level programming (see Figure 1.3), making robots more cost-effective,

1.1. Context 5

Figure 1.2: Spacecraft Opportunity used in the Mars Exploration Rover (MER)
mission. Image credits: NASA/JPL/Cornell University.

robust, flexible and easy to use. We have passed from heavy and intimidating
automatic machines to more safe and friendly mechatronic systems (see Figures
1.3(a) and 1.3(b)). Today, other than industrial and military applications, we can
talk about service robotics, exploration robots, medical robots and even educational
robotics (see Figure 1.4). These new fields and the growing people acceptance of new
technology have revolutionized industrial robotics, particularly in small industries
where traditional hard automation was complex or expensive to apply. Thus, new
industrial comanipulated systems have been developed, in which the robot and the
operator physically interact for carrying out the task. The human and the robot
skills are combined in order to add flexibility to the system and enhance operators’
ergonomy at work.

Human-Robot Physical Interaction in Industry In the last decade, manu-
facturing has benefited from the development of robotics. Productivity as well as
quality have been enhanced and operational manufacturing costs have been reduced
in the case of repetitive, complex or arduous tasks. The vision of the industry of the
future, sometimes called Industry 4.0, is to reach even higher levels of productiv-
ity, efficiency, and self-managing production processes where human operators and
robots not only share the workspace but communicate and cooperate with each other
through physical interaction. Figure 1.5 shows the 9 components of Industry
4.0, where the key concepts are: Internet of Things (IoT), Cyber-Physical Systems
(CPS), and Smart Factories.

The context of this thesis is related to Smart Factories. A Smart Factory is
defined as a factory that is context-aware and assists people and machines in the
execution of their tasks [Lucke 2008]. A major component on Smart Factories
development is Flexible Automation. Robots of today must be able to quickly and
easily adapt to a change of product or environment. For example, in the case of
small and medium-sized companies, improved robotic responsiveness and flexibility
are of highly importance to decide whether to automate a process or not.

6 Chapter 1. Introduction

(a) Bebop drone and pilot interface from Par-
rot.

(b) Franka robot. The user can interact with
the robot using a tablet or the tangible inter-
face on the robot case.

(c) Embedded Kinect camera on a Robotnik Summit XL robot that allows to obtain low cost RGBD
images. Image inspired from [Guerry 2017], where new neural networks fusion approaches using
RGBD images are applied for people detection tasks in robotic exploration.

Figure 1.3: Examples of recent innovative human-robot interfaces and sensors.

1.1. Context 7

(a) The surgicobot. (b) Roomba.

Figure 1.4: Examples of recent innovative human-robot interfaces and sensors. a)
The Surgicobot robot. Designed for milling assistance, especially in orthopedic
surgery. It was developed by HAPTION (Laval, France) as part of the Surgicobot
project (ANR Tecsan). Image extracted from [Françoise 2013a], where different
control strategies for Surgicobot are proposed. b) iRobot Roomba Vacuum service
robot. This mobile robot is equipped with a camera that allows it to navigate using
VSLAM (Vision Simultaneous Localization and Mapping).

Figure 1.5: Components of the industry 4.0.

8 Chapter 1. Introduction

In this Smart Factory and Flexible Automation context, robots play a major
role. Robotic systems must be able to "smartly" accomplish tasks while being safe,
flexible, versatile and collaborative. Without needing to enclose the working
environment of these robots, their integration into human workspaces becomes more
cost-effective and productive, giving place to multiple possible industrial applications.
Thus, smart robots will not only take place in simply structured workflows within
closed areas, they will work hand in hand with humans to enable lean and intelligent
production methods (see Figure 1.6). Indeed, the human operator interacts in the
autonomously organized manufacturing system when human skills, such as dexterity
and decision making, are required. Furthermore, he/she becomes a strategic decision-
maker and a flexible problem solver. On the other hand, due to the increasing
complexity of production, humans benefit from the support of assistance systems.
These systems need to aggregate and show information comprehensibly to ensure
that humans can make informed decisions and solve urgent problems on short
notice [Gorecky 2014]. They can also physically assist the human worker
in the accomplishment of painful, exhausting or unsafe tasks. For this
assistance to be effective, successful and safe, it is necessary that robots interact
intuitively with their human co-workers and that humans are properly trained for
this kind of human-machine collaboration. Finally, these human-robot collaboration
is a promising solution to enhance flexibility and promote the robotization of small
industries.

Figure 1.6: The vision of Industry 4.0 is to have assembly lines where humans and
robots directly interact in order to guarantee high flexibility in the production of
highly customized products.

1.1.2 Collaborative Robotics and Comanipulation

For a very long time, automation was driven by the use of traditional industrial
robots placed in cages, programmed to repeat more or less complex tasks at their
highest speed and with maximum accuracy. This robot-oriented solution is heavily
dependent on hard automation which requires pre-specified fixtures and time con-

1.1. Context 9

suming programming, hindering robots from becoming flexible and versatile tools.
These robots evolve towards a new generation of small, inexpensive, inherently safe
and flexible systems that work hand in hand with humans. In these new collaborative
workspaces the human operator can be included in the loop as an active agent. As
a teacher and as a co-worker he/she can influence the decision-making process of
the robot.

The context of this thesis resides on the so called Collaborative Robotics. In
the literature, collaborative or cooperative robotic systems are understood as:
Human-Robot collaboration [Dumora 2014], [Rozo 2014] and Robot-Robot collabo-
ration [Shima 2009]. In this doctoral work we focus on Human-Robot collaboration
and specifically on Human-Robot comanipulation tasks in industrial envi-
ronments.

In this context, human-robot comanipulation means to add the human operator
in the control loop. It aims to combine the job expertise, dexterity and cognitive
skills of humans with the mechanical performances of robots (see Figure 1.7).

Figure 1.7: Collaborative robot from Universal Robots (UR5) used in Volkswagen’s
production line - "...While safety is imperative, that’s simply the cost of entry
into the cobot market now. We believe that being collaborative is just as much
being accessible, lowering the automation barrier by placing robots within reach of
manufacturers that never thought they would be able to deploy robots.” Universal
Robots.

Traditional industrial robots have been used for manipulation purposes [Lee 2006].
In the context of human-robot collaboration, it is desirable that the mechanical
qualities of the robot should be as complementary as possible to those of the human
worker. Industrial manipulator arms have been optimized for years to ensure high
accuracy and speed in handling objects that can reach several tens of kilograms.
This optimization work has resulted in a mechanical architecture that offers the best
compromise workspace, speed, accuracy, strength and rigidity. All these qualities
very complementary to those of the human workers are very appreciable in the
context of comanipulation. The main counterpart is that to ensure significant rigidity
and strength, more material and transmissions with high reduction ratios are needed.

10 Chapter 1. Introduction

This leads to relatively heavy robots, with significant inertia and joint friction. To
overcome this challenges, [Newman 1994] proposed an impedance control reducing
friction and inertia into the robot behavior. This solutions implies the use of a force
sensor at the robot end-effector.

(a) Orthese ABLE. (b) ISybot.

Figure 1.8: Cobotic systems conceived by CEA.

In this thesis we will focus on comanipulation tasks with collaborative robots
– called cobots –, which are specifically designed to work hand in hand with
humans and though present higher transparency than traditional industrial robots
conceived to work with limited human intervention.

An essential characteristic of the human-robot combination is the transparency
of the robot, i.e, its capacity to move without resistance in the presence of external
forces. A good transparency can be obtained with the help of the mechanical
properties of the actuation chain of the robot. For example, as mentioned before,
the high speed and accurate movements with important forces allowed by traditional
industrial robots, are obtained thanks to the high reduction ratio transmissions
which also produces non negligible articular friction. In addition to the high inertia
resulting from their heavy structure, these robots present low transparency. Among
the robots developed these last years for improving the transparency (see Figure
1.8), some of them use a solution presented by [Garrec 2010]. In this work, a novel
actioning and transmission system was conceived based on a Screw and Cable System
(SCS), allowing to obtain low friction and inertia and though high transparency. One

1.1. Context 11

drawback is that this kind of transmission reduces the stiffness of the mechanical
structure. However, a hundred percent transparency could be "an evil friend": when
a robot is carrying heavy loads, if there is no viscosity there is going to be a lot of
inertia and though it would be harder to manipulate the robot. Thus, a compromise
between stiffness and transparency may be done depending on the final application.

1.1.2.1 Cobots

The term cobot was first introduced to refer to wheeled robots using computer-
controlled steering for motion guiding [Colgate 1996]. Despite its specific initial
meaning, the term cobot is now often used to refer to robots capable of safe physical
interaction with human operators within a shared workspace. These cobotic systems
must:

• be intrinsically safe (e.g, lightweight robots with collision detection features),

• reduce human physical effort and cognitive overload,

• enhance human ergonomy at work (reducing work-related musculoskeletal
disorderser),

• take advantage of the user’s gesture expertise,

• be flexible enough to handle mutable process and uncertainty and

• be intuitive enough to be set and programmed by non-robotics experts.

[Morel 2012] proposes an interesting classification of cobots based on the char-
acteristics of the physical interaction, which can be parallel, serial or orthotic (see
Figure 1.9). The physical interaction is called parallel when the human manipulates
the robot by its end-effector, the human-robot system forms a parallel kinematic
system. Serial refers to hand-held devices, the human-robot system then forms a
serial kinematic chain. With a parallel comanipulator, the efforts of the operator
are added to those exerted by the active system to produce the movements of the
manipulated object, while with a serial comanipulator, the velocities are added.
Finally, the physical interaction is orthotic when the human-robot interaction is
parallel but is distributed in multiple contact points. Orthotic comanipulators are
also called exoskeletons. In this thesis we focus on parallel comanipulation with
cobots.

1.1.2.2 Cobots properties

cobots provide a variety of functionalities such as weight compensation, inertia
masking, strength amplification, tremor filtering, Programming by Demonstration
(PbD) and motion guidance assistance. These properties aim at reducing the human
worker’s effort resulting from the interaction with the tool or the environment and
improving the workstation ergonomics.

12 Chapter 1. Introduction

Figure 1.9: Classification of comanipulation. From left to right: parallel, orthotic,
serial.

Weight compensation: This function is used in manual handling jobs, it consists
in canceling the vertical component of the load gravity wrench. The load is hung
up to a variable-length cable, and in current systems its vertical manipulation is
power-assisted thanks to a force sensor set on the user handle (see Figures 1.10(a)
and 1.10(b)). This kind of assistance was first proposed in 1969 with the Tool
Balancer [Powell 1969]. This system was pneumatic and the compensating force
was manually adjusted by fixing the pressure. An improvement was proposed
by [Kornely 1989] using an electric motor to operate the system and introducing a
force sensor, placed on the winder, to automatically adjust the weight compensation.
More recently, [Kazerooni 2001] proposed to positionate the force sensor directly
at the operator’s handle, which makes the system even more sensitive and avoids
the calibration procedure for each new object being transported. On the other
hand, the operator can no longer handle the load directly. It is important to notice
that all cable systems require the cable attachment to be aligned with the center of
gravity of the object to be handled. In most cases, the cable can only be fixed above
the center of gravity of the object. This does not allow an effortless displacement
of the load along its roll and pitch axes, since the moments of the weight are not
compensated. Only rigid mechanisms such as industrial manipulator arms allow the
object to be freely manipulated in all its orientations independently of the position
of the center of gravity relative to the point of attachment.

Inertia masking: Inertia masking is used for manual shifting of heavy objects.
It consists in reducing the starting, stopping, and turning forces when manipulating
a load, and ensuring that motions in all directions respond equally to human input.
This function was proposed by [Peshkin 2001] on their scooter cobot (see Figure
1.11(a)). They proposed to control the steering of wheeled robots based on a virtual
fixtures surfaces strategy. The load is fixed to a trolley and the orientation of the

1.1. Context 13

(a) Free Standing EasyArmTM, Gorbel. (b) iLiftTM, Stanley Assembly Technologies.

Figure 1.10: Weight compensation systems

wheels is automatically adapted according to the force applied by the user. The
inertia effects experienced by the user during direction changes are therefore reduced.
However, intertia is not reduced at acceleration or deceleration phases. Another
example of inertia masking system is the iTrolleyTM(Stanley Assembly Technologies),
which is an improvement of the iLiftTMweight compensation system. The inertial
effects are compensated via fricton reduction by using a servo-controlled trolley and
a measure of the cable deviation from the vertical axis.

(a) Scooter three-wheeled cobot. (b) General Motors three-wheeled cobot

Figure 1.11: cobots presented in [Peshkin 2001], where motion guidance assistance
and inertia masking functionalities are applied.

14 Chapter 1. Introduction

Strength amplification: Strength amplification for comanipulation can be ap-
plied in two ways:

• to increase the effort the operator exerts on the tool or

• to increase the force felt by the operator relative to the one applied by the
tool.

(a) Extender project. (b) Hook Assistant.

(c) HULC exoskeleton from Ekso Bionics. (d) Hercule exoskeleton from RB3D and
CEA-List.

Figure 1.12: Strength amplification systems

In the first case, strength amplification consists in controlling the robot so that
the force it exerts on the manipulated tool (or environment) is an amplified image of
the force applied by the worker onto the robot. This function was first implemented

1.1. Context 15

during the Hardiman project (General Electrics) [Groshaw 1969]. The system was
based on an unilateral position coupling between a master manipulator physically
attached to the user and a slave manipulator following the user motions while exerting
amplified efforts on the environment. This idea was modified by [Kazerooni 1993]
in the Extender project (see Figure 1.12(a)). In this system the master robot was
removed so the user could directly interact with the slave robot. Today, exoskeletons
are probably the most known strength amplification systems [Bogue 2009] as HULC1

(Ekso Bionics) in Figure 1.12(c) or Hercule (RB3D, CEA-List), shown in Figure
1.12(d). These two systems are designed to help the user carry heavy loads without
limiting the displacement. However non-orthotic strength amplification systems also
exist. For instance, the Hook Assistant from Kinea Design (Figure 1.12(b)) designed
for beef boning [Santos-Munne 2010], or the cobot 7A.15 (RB3D, CEA, CETIM)
which has been used for various machining jobs. Strength amplification has also
been implemented on generic industrial manipulators [Lee 2006,Lamy 2011].

In the second case, the efforts perceived by an operator are increased so that
he/she delicately manipulates a tool whose interaction efforts with the environment
are very weak. The principle remains the same as in the first case. However,
the role of the tool and the operator are inverted and the dimensioning of the
robot and the sensors must be adapted to lower forces. Such a functionality was
implemented by [Cagneau 2008] in the context of laparoscopic surgery, on the
surgical comanipulation robot MC2ETM, in order to increase the perceived efforts
of interaction of the tool on soft and fragile tissues.

Tremor filtering: Tremor filtering methods exploit the rigidity of the robot,
the sensibility of the force sensors and an adequate viscosity control, in order to
facilitate fine manipulation of tools by suppressing the tremors of the operator. This
approach is mostly used in the field of surgical robotics, such as the Steady-Hand
project [Kumar 2000,Mitchell 2007] where it is applied on retina surgery (see Figure
1.13). This modality have also been used on industrial comanipulation. [Erden 2011]
applied it to a comanipulation robot to suppress the vibrations of the torch (attached
to the end-effector) during a welding task.

Programming by demonstration PbD was part of the evolution from manually
preprogrammed robots to more flexible user-based techniques to program them
(see Figure 1.14). The concept is associated with the observation-based learning
systems according to the robot programming classification proposed by [Biggs 2003].
Also referred to as imitation learning, PbD is a powerful tool for enhancing and
accelerating the training process of a robot to acquire new skills. Its core idea is to
overcome the major obstacles for natural and intuitive robot programming, such as
high programming and high technical skills or tedious trail-and-error approaches.
PbD allows to create a more collaborative environment in which humans and robots
join in the teaching-learning process.

1Human Universal Load Carrier

16 Chapter 1. Introduction

Figure 1.13: SteadyHand Project.

History PbD started to be applied in the field of manufacturing robots where it
appeared as a promising solution to automate the tedious manual programming of
robots while reducing the costs involved in the development of robots in industry.
As a first approach to PbD, symbolic reasoning was commonly adopted in robotics
[Segre 1985], using teach-in, guiding or play-back methods. Later, approaches using
all demonstrated movements were developed to take into account the variability of
human motion and the noise inherent to sensors (used to capture the movements).
In [Muench 1994] it was suggested to use machine learning techniques to define
a discrete set of basic motor skills. At this point, several key-issues of PbD were
raised:

• how to generalize a task,

• how to reproduce a skill in a novel situation,

• how to evaluate a reproduction attempt and

• how to better define the user role during learning.

As stated in [Billard 2008], the evolution of PbD techniques are related to
the evolution of training interfaces. Traditional ways of guiding/teleoperating
robots were progressively replaced by more user-friendly interfaces, such as vision
systems [Kang 1995], data gloves [Tung 1995] or kinesthetic teaching (i.e. by
manually guiding the arm of the robot arms through the motion) [Inamura 2006].
These interfaces presented new opportunities to develop and extend PbD methods.
As first suggested by [Muench 1994], the field progressively moved from only copying
the demonstrated movement to generalizing from a set of demonstrations. Machine
learning tools were incorporated in PbD approaches to address both the generalization

1.1. Context 17

Figure 1.14: Classification of robot programming methods (taken from [Vakan-
ski 2017]) Manual programming systems involve text-based programming and graph-
ical interfaces. In text-based programming the user develops a program code using
either a controller-specific programming language or extensions of a high-level mul-
tipurpose language, such as C++ or Python. The graphical programming systems
employ graphs, flowcharts, or diagrams to create a program code. On the other
hand, the conventional automatic programming systems employ a teach-pendant (i.e.,
hand held device with switches as shown in Figure 1.15) for guiding the robot links
through a set of states to achieve desired goals. The robot joint positions recorded
during the teaching phase are used to create a program code for task execution.
Learning systems inspire from the way humans acquire knowledge: in exploration
based systems, a robot learns a task with gradually improving the performance by au-
tonomous exploration (often based on reinforcement learning techniques); instructive
systems utilize a sequence of high-level instructions by a human operator for execut-
ing preprogrammed robot actions (often based on gesture, language and multimodal
communication approaches); observation-based systems learn from observation of
another agent while executing the task – we can place here the Programming by
Demonstration approach.

of demonstrations and the adaptation of the movement to new situations. Between
the used techniques there are: Artificial Neural Networks (ANNs) [Billard 1999],
Radial-Basis Function networks (RBFs) [Kaiser 1996], Hidden Markov Models
(HMM) [Lee 1996,Lee 2007,Calinon 2011] and GMM [Calinon 2007a,Raiola 2015]
(see Figure 1.16).

Learning interfaces During the observation process of the learning phase, the
robot must be able to record the movements of the human operator and the changes in
the environment. Recent interfaces used in PbD were categorized by [Vakanski 2017]
as follows:

• Kinesthetic teaching: the robot axes are manually manipulated by the operator
in order to show the robot a desired movement, as shown in Figure 1.18.

• Direct control: the robot axes are guided through a control panel such as
teach-pendant devices shown in Figure 1.15.

18 Chapter 1. Introduction

Figure 1.15: Teach-pendant programming interface (smartPAD) for a Kuka robot.

Figure 1.16: Example of a GMM (in green) trained on a data set of three demon-
strated trajectories (in black).

• Teleoperation: the human operator controls a master robot which manages a
slaved robot placed at a separate environment 1.17.

• Sensor based: such as vision, haptics, force, magnetic, and inertia.

• Virtual reality/augmented reality (VR-AR) environment.

Approaches In the literature, there are two kind of approaches to represent a
task:

• low-level representation of the skill – known as trajectories encoding [Cali-
non 2007a] – and

• high-level representation of the skill – known as symbolic encoding [Par-
dowitz 2007,Ekvall 2006,Alissandrakis 2007].

1.1. Context 19

Figure 1.17: Teleoperation of a Staubli robot via a Virtuose 6D haptic device.

Table 1.1: Advantages and drawbacks of symbolic and trajectory level representation
of a skill. Taken from [Billard 2008].

Span of the
generalization

process

Advantages Drawbacks

Symbolic level Sequential
organization of

pre-defined motion
elements

Allows to learn
hierarchy, rules and

loops

Requires to
pre-define a set of
basic controller for

reproduction
Trajectory level Generalization of

movements
Generic

representation of
motion which allows
encoding of very
different types of
signals/gestures

Does not allow to
reproduce
complicated

high-level skills

When learning a skill at a trajectory level, human movements can be encoded
in either joint, task or torque space. The encoding may correspond to cyclic
motion, discrete motion or to a combination of both. In symbolic encoding, the
skill is decomposed in a sequence of action-perception units. Some advantages and
drawbacks of trajectory and symbolic level skill representation are presented in
Table 1.1.

Other approaches use Dynamic Movement Primitives (DMPs) to encode the
dynamics of the movement during the observation phase [Ijspeert 2003,Stulp 2013].
This is a robust strategy to face dynamical changes in the environment. Recently, it

20 Chapter 1. Introduction

was stated in [Calinon 2013] that an efficient prior assumption in robot learning from
demonstration is to consider that skills are modulated by external task parameters.
Under this theory, they proposed a Task-Parameterized Gaussian Mixture Model (TP-
GMM) for representing skills based onboth rotations and translations in Cartesian
space [Calinon 2013,Calinon 2014]. The proposed TP-GMM approach was applied
in [Calinon 2018] to a wider range of affine transformations, including constraints
in both configuration and operational spaces, as well as priority constraints. The
interested reader is referred to [Billard 2016] for more details on PbD approaches.

Commercialized solutions Simple functions based on Programming by Demon-
stration and using kinesthetic teaching, are already being used in commercialized
cobots such as Baxter and Sawyer (Rethink Robotics R©), Yumi (ABB R©), LBR iiwa
(Kuka R©) and ISybot R©(see Figure 1.18).

(a) Sawyer. (b) Yumi.

(c) LBR iiwa. (d) ISybot.

Figure 1.18: Kinesthetic teaching with several commercialized cobots.

Conclusion Programming by Demonstration is used to learn and generalize a
skill to be reproduced later by the robot in the same or different conditions. In
this thesis we will use PbD in a different context. We aim at programming motion
guidance assistance on a cobot. In this case, the cobot use an encoded displacement
trajectory (cartesian positions and orientations) obtained by kinesthetic teaching,

1.1. Context 21

not to reproduce it but to guide the user through it – in a passive way – during a
comanipulation task. Previous works on this subject will be addressed in Section
"Related works". Motion guidance assistance functionality is explained next.

Motion guidance assistance cobots are capable of generating rigid constraints
while being intrinsically passive. Motion guidance consists in limiting the end-effector
DOF by hardware or software means, so that the tool can only perform specific
motions [Book 1996]. Thus, the human technical gesture gains in speed and accuracy,
while requiring less co-contraction effort2 and concentration. This concept has been
used in industrial applications, teleoperation and medicine. In [Colgate 2003] an
overview of the use of Intelligent Assistance Devices (IADs) and virtual guides in
industrial applications is presented. [Ryden 2013] uses virtual guides to teleoperate
an underwater robot. In [Park 2001] and [Becker 2013], it is suggested that accuracy
and stability of robotic end-effectors is essential for surgical tasks and could be
increased using motion guidance assistance. Also, this functionality may facilitate
physical rehabilitation [Reinkensmeyer 2004].

Different approaches exist to apply motion guidance and constrain the robot
end-effector. Mechanical techniques, like continuously variable transmission systems
(CVT) [Peshkin 2001], are advantageous since they are intrinsically passive. However,
most of these methods do not allow to set stiffness constraints which are important
features in comanipulation tasks. In addition, the implementation of such systems
could be cumbersome or complex for manipulator robots with six DOF . Conversely,
automatic control approaches can be easily applied to any kind of industrial robots
available in the market and they allow to set up the robot compliance. Among
these automatic methods, virtual fixtures [Rosenberg 1993] are more suitable to
describe constrained movements. The specification tools used to define them, which
are forward kinematics and virtual fixtures Jacobian, have the advantage of being
widely used in robotics. In this thesis we will refer to virtual fixtures as Virtual
Guides or Virtual Guides Assistance.

Although virtual guides could be functionally equivalent to guides in the real
world, there are many advantages inherent to virtual guides because they are
defined by software rather than physically implemented. In fact, when applied on a
workstation, the guides only interact with the user and not with the workspace. So the
workstation geometry does not impose constraints on the placement or configuration
of virtual guides. In addition, a virtual guide has no mass, no physical or
mechanical constraints, requires no machining time or maintenance and
can be easily modified.

The idea of virtual guides is to separate the Cartesian space in two: one part of
the degrees of freedom being controlled in position and the other in effort (hybrid
control position/force [Raibert 1981]). The degrees of freedom being controlled in
effort correspond to the displacements allowed to the operator, and the degrees of

2humans tend to constrain the antagonistic muscles to stiffen their movements, thus facilitating
the appearance of Musculoskeletal disorders (MSDs)

22 Chapter 1. Introduction

freedom controlled in position correspond to the locked directions. Also, virtual
guides can be assimilated to a set of ideal mechanical links (i.e., energy-neutral
mechanisms) that would be connected to the robot’s effector, with the objective
of giving the tool movement a particular law. [Joly 1997] introduced the notion of
virtual mechanisms. The force control of the robot is calculated from the simulation
of a passive virtual mechanism, connected to the effector of the robot by a fictitious
spring / damper system as illustrated in Figure 2.3. The advantage is that the
stability of the system is independent of the chosen virtual mechanism. In this thesis
we focus on the motion guidance assistance functionality using virtual guides
based on the virtual mechanisms concept proposed by [Joly 1997].

Conclusion on cobots properties We have explained several properties and
functions of cobots that are useful in a human-robot comanipulation context. In this
thesis, we propose to use Programming by Demonstration to intuitively program
Virtual Guides Assistance. Next, we expose the limits of the existing approaches
and we present the related works and the contributions of this thesis.

1.1.3 Intuitive, Iterative and Assisted Virtual Guides Program-
ming

As explained before, using virtual guides allows to reduce the physical effort and
cognitive overload of the user during the execution of a task. This kind of assistance
could be used in industry on manipulation tasks (insertion, assembly), cutting,
drilling and polishing. As a reminder, the assistance superpose a synthetic force to
forces perceived by the user through an haptic control interface of the robot. The
applied force constraints the user’s movements and so those of the controlled robot
through a particular trajectory, a surface or restrained volume, allowing to assure
motion guidance during the task accomplishment.

A known issue with virtual guides assistance is to program the virtual guides on
a robot. At least one of the following requirements should be met:

• expert knowledge of the task,

• high technical expertise,

• modeling of the task,

• high programming skills.

Some of these requirements restrict the usefulness of virtual guides to scenarios
with unchanging constraints. Yet, many industrial applications require multiple
operations to perform a task for which it would be necessary to easily generate and
modify the guides in order to adapt to different tasks and situations:

• changes on the part to work on (polish, sand, cut),

1.1. Context 23

• high variability due to low production volumes,

• transporting an object to one of multiple possible positions or

• different assembly sub-tasks to perform based on the tools availability.

Moreover, in an industrial context, virtual guides assistance is used by human
operators with the gesture expertise to realize a task but often without modeling or
programming skills. It is then less efficient and cost-effective for a factory to relay
on robotics engineers to program the virtual guides and modify them when there is
a change on the task or the environment.

For these reasons, we propose a kinesthetic teaching framework to program
virtual guides assistance in an intuitive and flexible way so it can be used by
non-robotics experts and easily reprogrammed when needed.

However, there are also some limitations when using kinesthetic teaching. The
remaining inertia and articular friction of cobots – even after gravity compensation
and inertia masking techniques being applied – can disrupt the fluent execution
of movements and hinder their manipulation. It is for example difficult to impose
a rectilinear trajectory because the robot tends to follow curved trajectories due
to joint space friction. Also, it is sometimes difficult to perform slow and small
displacements precisely. In order to keep the desired trajectory, the user must provide
additional effort and concentration. Most PbD approaches using kinesthetic teaching
need several demonstrations to encode a trajectory. This could be exhausting for
the user and contradictory to our approach since we are using PbD techniques
to program virtual guides in order to assist the user later on the execution of a
task. For these reasons we suggest that the operator must be assisted during
the programming phase. To this aim, we propose to use virtual guides
programming in an iterative way so only one demonstration without
assistance is needed. After the first demonstration, the assistance is activated
and the user is able to iteratively refine the virtual guides or modify them whenever
is needed. Elementary pre-programmed paths (primitives), such as straight lines,
circles or straight corners, can also be used to start the programming phase and be
assisted from the beginning.

This iterative programming approach could also be used to reduce the cognitive
load of users and increase their confort during the teaching process. Complex
trajectories in space, including cartesian position and orientation of the tool, require
high levels of concentration and effort, which could lead to trajectory encoding
errors while using the kinesthetic teaching technique. Thus, we also propose to
simplify the programming process by uncoupling cartesian positions and
orientations during the demonstrations. The same idea can be used when
other features are needed for the comanipulation task execution and though must
also be taught to the cobot, such as speed, variable compliance and force.

Next section presents the works related to the context of this thesis, to the
formerly raised limitations on the scientific fields of interest – Programming by

24 Chapter 1. Introduction

demonstration and Virtual Guides Assistance – and to the approaches proposed in
this thesis.

1.2 Related works

Virtual guides have been featured in several works using different definitions, appli-
cations and implementation methods. In this related works section we will cover
and classify some relevant works based on four main questions:

• How to define a virtual guide?

• How to create a virtual guide?

• How to enforce a virtual guide?

• How to modify a virtual guide?

For each question, we will compare these works with our implementation of
virtual guides assistance. For the first three questions we inspire from the exhaustive
classification given by [Bowyer 2014a].

1.2.1 Virtual Guides Definition

In this thesis, virtual guides are used to enforce virtual constraints on the movements
of cobots, in order to assist the user during a collaborative task. Virtual guides have
been first introduced by [Rosenberg 1993] as Virtual Fixtures. The fundamental
concept is that virtual fixtures can reduce mental workload, task time and errors
during teleoperated manipulation tasks. After Rosenberg’s initial work, the use
of virtual fixtures has been extended to robotic surgery under the name of active
constraints [Davies 2006] and to industrial applications in the context of Intelligent
Assist Devices [Colgate 2003]. Nowadays, virtual fixtures have been featured in
several different works, but unfortunately "there is currently no definitive concept
which unifies the field" [Bowyer 2014a].

Teleoperation and Hands-on Device approaches The first criteria to clas-
sify the virtual guides definition is done according to the user-robot interaction.
Generally, virtual guides have been used in teleoperation [David 2014,Xia 2013] or
comanipulation contexts [Lin 2006,Dumora 2014,Vitrani 2017].

In teleoperated systems, the user controls a master robot that manages the
movement of a slave robot which accomplishes the task in a separate environment
[Joly 1995,Aarno 2005,Abbott 2005,Bowyer 2013]. Thus, as shown in Figure 1.17,
the human user is physically separated from the robot carrying the tool.Teleoperation
offers benefits such as motion scaling and the possibility to operate in restricted and
unsafe environments. For example, [Ryden 2013] used virtual guides to teleoperate
an underwater robot and [David 2014] proposed a supervisory control system using

1.2. Related works 25

Figure 1.19: In [David 2014] virtual guides are created on the fly into a physical
engine, using linear interpolations. Since the guides are not programmed into the
real robot controller, slight variations in their respective positions are possible. Also,
in the context of co-manipulation tasks it would be more natural to program virtual
guides in the real workspace rather than in a simulated one. This is one of the
advantages of the hands on approach compared to the teleoperation.

virtual guides to speed up a disk-cutter insertion process, as illustrated in Figure
1.19. In some of these teleoperation applications, virtual guides are created into
a physical engine and though environment modeling is required, which could be a
limitation. In addition, since the guides are not programmed into the real robot
controller, one drawback of this method is the possible position errors induced by
the fact that the model may be mis-referenced with the reality. Moreover, the
required information about the environment is interpreted at the slave robot level,
then transmitted to the master device to be finally presented to the user either by
visual or haptic feedback. This makes the process poorly intuitive.

In hands-on devices approaches, the user is allowed to directly interact with the
robot through physical contact [Restrepo 2017,Becker 2013,Pezzementi 2007a], as
shown in Figure 1.20. This kind of interaction is more intuitive thanks to the direct
feedback the user has while manipulating the robot carrying the tool. Also, the user
is better integrated in the process compared to the case where the user interacts with
the workspace through a teleoperated robot. However, security of interaction must
be guaranteed by the comanipulation system since the user and the robot share the
workspace. This aspect has been studied by [Lamy 2011,Makarov 2013,Maurice 2017]
and corresponds to a whole new field that will not be treated in this thesis.

Another example of hands-on interaction is presented by [Dumora 2014] in
the context of big objects comanipulation. A library of virtual guides was hard

26 Chapter 1. Introduction

Figure 1.20: Scara cobot conceived by CEA. This image shows an example of
hands-on interaction where the user directly manipulates the robot.

programmed on the robot so it could detect the intention of the human collaborator
and activate the right assistance from the library. This approach was implemented to
assist an operator when the task and the environment are unknown. For applications
where erroneous or uncontrolled tool positions present a significant danger, a hands-
on robot is likely to be safer than a teleoperated one because the user can regulate
it and the actuation system can be conceived to be more compliant. Moreover,
when applying motion guidance functionality to a hands-on device, the fixtures will
constrain both the user and the tool with perfect correspondence between them. In
a teleoperation system, the constraint could be apply to the master, to the slave
or to both, which could have considerably different properties [Abbott 2003]. Our
work falls in the hands-on interaction category [Restrepo 2017,Raiola 2017a].
In the approach presented in this thesis, human operators directly manipulate cobots
during tasks execution or programming.

Impedance and admittance constraints Another category of the virtual
guides definition can be established according to the control scheme implemen-
tation. Impedance and admittance control are used because they are both suitable
for environment/user interaction and object manipulation [Hogan 1989]. They
are both based on the reciprocal mechanical properties of impedance and admit-
tance/compliance. In impedance control, when a constraint is about to be violated,
the controller applies a nullifying force to the robot to block motion. The control
variable is the force of resistance to external motions imposed by the environment.
On the other hand, an admittance control acts like a filter on the user’s intended mo-
tion, where only the components of motion respecting the constraints are transmitted

1.2. Related works 27

to the robot’s actuators.
A difference between both control schemes is that devices controlled in impedance

must be highly backdriveable (high transparency) so that the user is able to move
them freely when the controller force is null. Inversely, devices controlled in admit-
tance are highly stiff in response of external forces and only move when commanded
by the controller (not backdriveable). The high mechanical stiffness and non-
backdrivability of a typical admittance-controlled robot allow for slow and precise
motions, making it highly suitable for tasks that require accuracy near human
physical limits, such as microsurgery [Burschka 2005].

An implementation of impedance control is presented in [Joly 1995], where a
passive virtual mechanism is connected to the robot end-effector by a spring-damper
system. Impedance controllers have also been used by [Pezzementi 2007a] where
they are called "proxies". Implementations of admittance constraints are presented
in [Marayong 2003,Bettini 2004] where anisotropic matrices are used to attenuate
the non-preferred force components. These methods require sensing external inputs,
such as the force or the velocity applied by the user on the robot end-effector. This
is not required on impedance control architectures.

The approach presented by [Kosuge 1995] also uses the term virtual mechanism
to impose to the robot the behavior of an ideal virtual tool by specifying its dynamics.
However, this approach is different from the virtual mechanism definition presented
by Joly [Joly 1995], who demonstrated in [Joly 1997] that the control law proposed
by Kosuge [Kosuge 1995] is not robust to a poor identification of the system. Our
work is based on the impedance control scheme defined by [Joly 1995].

Regional and guidance constraints The type of assistance offered by the
virtual guides are either used to limit the user to a task-specific pathway – guidance
constraints) [Marayong 2003,Burghart 1999a,Bettini 2004] – or to limit the user to
move the robot within a safe region – forbidden region constraints [Abbott 2003].
We present both categories in Figure 1.21.

Regional constraints allow to separate the workspace into two regions: free and
forbidden. In the free region, the robot must not apply any force to the tool, it is
said to be as transparent as possible. Conversely, in the forbidden region, the robot
must be able to apply forces at the border of these regions so the tool does not to
penetrate into them. The interest of this type of virtual guides is demonstrated
for comanipulated orthopedic applications [Françoise 2013b]. Regional constraints
present some other advantages such as: task simplification [Rosenberg 1993,Payan-
deh 2002], reduced risk of tools damaging protected regions/obstacles [Li 2005a],
and avoidance of kinematic singularities [Turro 2001b].

On the other hand, guidance constraints are more intrusive upon the user than
regional constraints. However, the ability to constrain positions precisely, allowed
by guidance constraints, is important in many industrial and medical applications.
One example is the application of these constraints on the Steady-Hand robot in
the context of ocular micro-surgery [Marayong 2004] (see Figure 1.13). The surgeon

28 Chapter 1. Introduction

(a) Virtual guide defined as regional constraint. (b) Virtual guide defined as a guidance con-
straint.

Figure 1.21: Regional and guidance constraints (in black).

is assisted during an extreme precision task execution.

Conclusion on virtual guides definition The particular implementation of
virtual guides used in this thesis is based on impedance control. This implementation
is general and can be extended to both regional and guidance constraints. In
our work we are interested in generating trajectories that will be used
as guidance constraints in a hands-on comanipulation context. Table 1.2
shows a summary of our virtual guides definition.

Table 1.2: Summary of our virtual guides definition

Human-robot interaction Control scheme Constraints
Teleoperation Hands On Impedance Admittance Regional Guidance

" " "

1.2.2 Virtual Guides Creation

There are many possible solutions to create virtual guides. In most works of the
literature, virtual guides creation is done a priori by a separate process which usually
involves a human operator. There are some methods where constraints are generated
autonomously based on medical image processing [Navkar 2012,Li 2003,Kumar 2003,
Park 2011]. However this methods are mostly applied to well know tasks where
geometry models can be obtained with the aid of a vision system. So the creation of
guides is done automatically online but there is actually some complex beforehand
preparation. This is for example the case of collaborative robotic surgery. In the
context of this thesis we do not explore this kind of automatic creation processes.

1.2. Related works 29

We relay on the human expert knowledge of the task and we seek for an
accelerated and intuitive method using less of extra material as possible.

Usually, the way to create virtual guides is highly related to the final application.
The chosen constraint representation directly affects the geometrical form of the
constraints and the choice of the constraint evaluation method. Figure 1.22 shows
a virtual guides general framework explaining the relationship between definition,
creation, evaluation and enforcement of virtual guides (constraints).

Figure 1.22: Virtual Guides general framework.

Virtual guides have often been limited to pre-defined geometric shapes [Maray-
ong 2003] or combinations of shapes [Aarno 2005,Kuang 2004], well-defined geometric
models [Joly 1995,Dumora 2014] or defined through high level tasks models [Xia 2013].
The use of un-reconstructed raw data (i.e., point clouds) is currently morewidespread
within the literature [Yamamoto 2012,Rydén 2012] since constraints can be produced
and maintained effectively in real time. Some simpler methods use points [Bet-
tini 2001,Prada 2005,Marayong 2003], lines [Burghart 1999b,Srimathveeravalli 2007]
and planes [Rosenberg 1993, Seung 2010], which can be efficiently represented in
memory. However, these approaches highly restrain the creation of virtual guides for
complex tasks. Point constraints are limited to simple positioning-like tasks. With
linear constraints, the number of following trajectories that can be represented is
limited. Some works tried to overcome this limitation by combining multiple short,
linear constraints to create more complex guides [Aarno 2005].

A more flexible approach uses parametric curves as sinusoidal func-
tions or splines to create guides [Bettini 2004,Kwok 2013,Marayong 2004,Li 2005b].
The main advantage is that they are geometrically flexible and though are able to
describe complex tool trajectories with still reduced computationally cost. Our
work focus on parametric curves representation [Restrepo 2017]. Their
flexibility also allows simple and local modifications.

Parametric surfaces are an extension of parametric expressions from curves into
3D surfaces [Burschka 2005]. In general, nonuniform rational B-splines (NURBS)
are used to create both regional and guidance constraints [Ikits 2003]. Hyperplanar
constraints are an effective method to create constraints but being geometrically
rigid, it is difficult to apply them to complex environments. As for lines, they can be
combined to overcome their flexibility limits, but once a certain level of complexity is
reached, efficiency is degraded [Kapoor 2006]. A more complex method uses polygonal
mesh constraints, mostly for applications where the constraint profiles are extracted
from "real world" surfaces [Li 2007,Ren 2008]. However, for some applications, the

30 Chapter 1. Introduction

degree of flexibility offered by meshes is not worth the increased complexity. Finally,
volumetric primitive constraints can be combined in an effective way to represent
complex regional and guidance constraints [Prada 2009,Kuang 2004]. Other ap-
proaches for creating virtual guides use explicitly described constraints [Turro 2001a]
or artificial neural networks constraints [Ren 2008,Cretu 2003]. However, the former
are highly inflexible and the latter are still very challenging and little widespread.

Virtual Guides creation using Programming by Demonstration Recently,
PbD has appeared as a promising solution to program robots in a fast and simple way
when the task is known by the user. Several PbD approaches, allow the operator to
directly manipulate the robot end-effector to teach a desired movement – kinesthetic
teaching. This technique takes inspiration from the way humans learn new skills by
imitation to develop methods to transmit tasks to robots (see Figure 1.23).

Figure 1.23: Programming by Demonstration analogy with humans learning by
imitation. Inspired from the original Willow Garage image under BY-NC Creative
Commons license.

In PbD, teaching a path usually involves modeling the demonstrated set of
trajectories and retrieving a generalized representation of the data set suitable for
reproduction by a robot. In [Calinon 2010] and [Vakanski 2012], some stochastic
methods allow the extraction of a mean trajectory using a set of demonstrations
and a rate of variability associated to each portion of the curve. In [Calinon 2008]
the authors used GMM to encode a set of demonstrations and then reproduce the
task using Gaussian Mixture Regression (GMR). GMR allows to retrieve smooth
generalized trajectories with associated variance matrix describing the variations
and correlations between demonstrations. In [Rozo 2014] PbD was used to teach the

1.2. Related works 31

robot a desired path and the force needed to perform a human-robot cooperative
transportation task. These approaches use PbD for transmitting new skills to a robot
so they can be reproduced later. In this thesis, we get inspired from these works
and use kinesthetic teaching to program displacement (cartesian position
and orientation) trajectories on a cobot in order to create virtual guides.

Generating virtual guides using PbD has also been explored by [Aarno 2005].
Their adaptive approach used HMM to model and detect optimum guides obtained by
demonstration and represented as a sequence of linear guides. Here, the automatically
applied guide corresponds to the most probable state. Another interesting work about
virtual fixtures and PbD has been conducted by [Yoon 2014]. In this work, the authors
personalize virtual guides based on a set of demonstrations provided by the users in
order to match their preferences about the assistance. In our work [Raiola 2017a],
we proposed a framework for multiple probabilistic virtual guides where kinesthetic
teaching was used to create virtual guides. This probabilistic framework involves
modeling a demonstrated set of guides with GMM and retrieving a generalized
representation of the data set using GMR. Unfortunately, with these stochastic
approaches, a compromise must be made between the number of demonstrations –
time and effort demanding – and the level of information in the training data. In a
comanipulation context, requesting multiple demonstrations of a single task could be
exhausting for the user. Therefore, we believe that a PbD approach in this
context, should be capable of teaching a task to the robot from as few
demonstrations as possible. From the user perspective, the objective is that the
robot start performing the tasks right away to gradually improve its performance
while being monitored by the user. Besides, must of the literature approaches give a
high level of autonomy to the robot to decide what to do when changes occur in the
environment or in the task. In this thesis, we relay on the human operator
gesture expertise and choose him/her to be the master of the teaching
and the execution of the task.

Virtual guides evaluation After the definition and creation of a virtual guide,
a way to evaluate it must be determined. In general, the proximity between the
robot tooltip and the virtual guide geometry is evaluated. However, virtual guides
evaluation highly depends on their final application, and so we will not present
a wide review of these evaluation methods in this thesis. In Chapter 3: "Virtual
Guides Construction" we will explain our virtual guides evaluation method based on
Akima splines and quaternion interpolations. As stated before, parametric curves
such as splines are a flexible way of defining trajectory constraints while allowing
simple and local modifications.

1.2.3 Virtual Guides Enforcement

There is a wide variety of methods that are described within the literature for
enforcing virtual guides. In general, the input of these methods is the current

32 Chapter 1. Introduction

relative configuration of the Constrained tool geometry (ctg) and the virtual guide
geometry. Based on this relative configuration, the virtual guide enforcement
module decides if, and how, motion regulation should be applied (see Figure ??). We
next explain the most used approaches in the literature based on the classification
presented in [Bowyer 2014a].

Simple functions of constraint proximity This method uses a simple function
of the proximity between the ctg and the virtual guide in order to compute the effect
of the virtual guide on a device. The work of [Prada 2009,Gibo 2009,Seung 2010] used
linear functions to enforce virtual guides. Generally, linear functions are described
by the mechanical analogy of a spring system, with stiffness kp, between the ctg and
the virtual guide. A linear function for a Cartesian pure spring impedance controller
takes the form:

fp = kp(pconst − pctg)

where fp is the constraint force vector, kp is a linear gain as in a classic propor-
tional position controller, pconst is the closest point on the constraint geometry to
the ctg, and pctg is the closest point on the ctg to the constraint. The magnitude
of kp has an effect on how much the constraint acts on the robot. A positive
value generates an attractive constraint while a negative value generates a repulsive
one. The force fr is applied to the robot using the Jacobian and the principle of
virtual work [Seung 2010, Prada 2009]. The stability of this method is detailed
in [Abbott 2006,Joli 2007].

Linear enforcement methods have been improved for various applications by
adding derivative terms on the function [Ammi 2007, Ortmaier 2006]. If a user
moves against a constraint at a higher difference of velocity, then the force from the
controller in order to slow them down will be bigger. By introducing a derivative
term (viscosity), the controller is able to respond to this situation. This takes the
following form:

fpd = kp(pconst − pctg) + kd(ṗconst − ṗctg)

where fpd is the constraint force vector, and kd is a derivative gain. An extension to
viscoelastic constraints to 6-DOF using "eigenscrews" was presented in [Zhang 2012].

Proxy and linkage simulation A proxy is a completely simulated virtual object,
which dynamic properties are defined according to the controller and the virtual
guides requirements. The proxy is attached to the ctg by an elastic or viscoelastic
virtual linkage as illustrated in Figure 1.24. If the ctg violates a constraint the
virtual linkage will generate a force.

Proxies are the foundation of some more complex methods such as: implicit-force
and modified-damping control [Ho 1995], virtual mechanisms [Joly 1995] and pseudo-
admittance control [Abbott 2007]. Implicit-force and modified-damping control are
two proxy-based algorithms where a proportional-derivative position controller is
used to drive the ctg towards the desired position/proxy. The difference between the

1.2. Related works 33

implicit force and modified-damping variants lies in how the velocity of the proxy is
computed.

Figure 1.24: Proxy and linkage simulation for virtual guides enforcement. An elastic
linkage between the robot end-effector and the proxy is simulated.

Virtual mechanisms were formulated by [Joly 1995] as a way to constrain motion
in teleoperation tasks. This approach simulates the kinematics of an ideal mechanism
– with no mass – attached to both the master and slave arms via virtual linkages.
A composition of Virtual mechanisms was used later so the dynamics of master
and slave motions, in both constrained and unconstrained directions, are fully
controllable [Micaelli 1998].

Pseudo-admittance control was developed for admittance controlled robots to
obtain quasi-statistic transparency and tremor attenuation. To achieve this, [Ab-
bott 2003] conceived a proxy-based method using three control laws to define the
forces applied to master and slave devices and the simulated proxy. The master
forces are based on its separation from the slave device, the slave forces are based on
its separation from the proxy, and the proxy forces are based on the error between
the master and slave. In [Pezzementi 2007b] this method was used to apply velocity
virtual guides rather than just position constraints.

Non-energy storing virtual guides A limitation in common proximity-based
approaches is that they require at least a small amount of constraint violation before
any motion regulation is applied. Moreover, many enforcement techniques lead
to potential energy storage on the constraint level when the ctg is forced to move
against them. Simulated plasticity was proposed by [Kikuuwe 2008] so constraints
dissipate and never store energy. However, the system could become instable when
the tool crosses the constraint boundary. A solution to this drawback was proposed
in [Kikuuwe 2006].

Potential fields Potential fields were initially proposed in robotics as anti-collision
approaches [Khatib 1986]. For virtual guiding proposes, potential fields are used by
allocating low potential values to the areas where the robot is actively encouraged to

34 Chapter 1. Introduction

be – targets –, and allocate high potential values to the restricted areas – obstacles.
By calculating the negative gradient of the field, a force vector can be extracted for
robot positions which will point towards targets and away from obstacles. When
this force is applied to the robot, it generates motion in the desired directions.
Later research by [Turro 2001a] showed that potential field virtual guides could
be used in teleoperated systems with force-reflecting master devices. Other works
have been done in microscale telemanipulation [Ammi 2007] and in intracellular
injection [Ghanbari 2010] applications.

Reference direction virtual guides In this enforcement method, a compliance
matrix is used to force the robot to be more compliant when moved in a direction
that respects a constraint and less compliant when not. For a given time and position,
the entire space of possible directions of motion is divided into two complementary
subspaces: "preferred" (i.e., those which correspond to a direction permitted by the
active constraints) and "non-preferred" (i.e., those which correspond to a direction
restricted by the active constraints), as shown in Figure 1.25. The preferred directions
can be computed in a variety of different ways, allowing different constraints to be
represented, such as guidance constraints [Bettini 2001,Prada 2009,Marayong 2003]
and regional constraints [Burghart 1999b,Xia 2008].

Figure 1.25: Reference direction virtual guides. The force of the user is decomposed
into preferred – permitted by the constraint – and nonpreferred – resisted by the
constraint – components.

Conclusion The virtual guide enforcement method used in this thesis falls in the
proxy and linkage simulation category. The concept of virtual mechanisms proposed
by [Joly 1997] are used to enforce virtual guides assistance for comanipulation
tasks. More details about our virtual guides implementation are given in Chapter 2:
"Virtual Guides Definition via Virtual Mechanisms".

1.2. Related works 35

1.2.4 Virtual Guides Modification

It was stated above that Programming by Demonstration could provide a natural
and intuitive way to create virtual guides. However, the previously mentioned PbD
approaches cannot be modified both interactively and locally by the user. If the
task or the environment change, the user has to do a new set of demonstrations with
the robot to obtain a new task representation. In a cobot comanipulation context, it
could be exhausting and painful to repeat several times a demonstration in order to
encode a task or modify it. Moreover, it would be contradictory to our approach
since we look forward using PbD techniques to program virtual guides which will be
used to assist a human operator on the execution of a task.

Adaptive approaches Adaptive virtual guides methods have been proposed in
the literature to allow the generalization of a task to unknown environments or
situations that have not been explicitly preprogrammed on the robot. The controller
decides when and how to apply the constraints based on some knowledge of the task,
of the hardware or based on some previous information of the users. For example,
Hidden Markov Models (HMM) have been used to classify and interpret users’
intention. Some applications of adaptive virtual guides are presented by [Rozo 2014]
and [Aarno 2005]. In the first approach, this is applied on tasks where initial and
end points are more relevant than the trajectory itself. In the second, the fixtures
are made flexible and adaptive by decomposing the trajectory into straight lines.
The probability that the user is following a certain trajectory is estimated and
used to automatically adjust the compliance of the virtual guide. However, in
both approaches, several demonstrations are needed to learn the first trajectory
which could be tedious for the human operator. Moreover, the robot decides when
and how to modify the trajectory which could be counter-intuitive. An emerging
approach, known as Dynamic active constraints proposes to continuously modify
the virtual guide geometry as a result of changes in the physical environment or
task being undertaken. Much of the literature has focused on applications for
surgery [Taylor 2016] since additional material such as vision systems are needed
to update the model of the virtual guide. For this reason, we do not explore this
approach.

Incremental approaches PbD incremental learning approaches have been used
to reduce the number of demonstrations by gradually refining the task knowledge
as more examples become available. These incremental learning methods use
various forms (verbal and non-verbal) to guide the attention of the robot to the
important parts of the demonstration or to particular mistakes produced during the
reproduction of the task [Calinon 2007b]. Such incremental and guided learning is
often referred to as scaffolding or moulding the knowledge of the robot. Usually,
these methods are used for learning complex tasks within the household domain
from as few demonstrations as possible [Saunders 2006]. In previous work Appendix

36 Chapter 1. Introduction

A: "Co-manipulation with a Library of Virtual Guiding Fixtures", we applied
incremental training of GMM to create virtual guides from data obtained with
kinesthetic teaching and iteratively refine them [Raiola 2017a]. However, these kind
of approaches are useful for task refinement but not suitable for partial modifications
of the task. For example, we noted in [Raiola 2017a] that if a demonstration was too
different from a previous one the algorithm will consider it as a new virtual guide
and the previous guide would not be modified. Also, the refinement depends on a not
user-intuitive parameter such as a likelihood threshold. In this thesis, we inspire from
these incremental learning approaches and keep the idea of iterative refinement.
Yet, we also seek for an interactive and more intuitive method that also
allows local partial modifications of the task.

Interface-based approaches The approach presented by [Boy 2007], introduced
the concept of collaborative learning to design ergonomic virtual guides to a tricycle
cobot. Motion constraint can also be adapted to changes in the environment. In
this method, PbD is initially used to teach the cobot a path to follow. A dedicated
Graphical User Interface (GUI) path editor is provided on a PC for off-line definition
and modification of guide paths. Similarly, it was suggested in [Mollard 2015]
to improve the interaction protocol in a PbD context by including a GUI in the
programming loop to show to the user the learned information. A relevant difference
between the approaches of [Boy 2007] and [Mollard 2015] is that the latter intends
to optimize the learning of a task aimed to be automatically reproduced by the
robot, while the former approach uses the operator not only as a part of the
teaching phase but as a part of the task execution.Thus, motion guidance is
not implemented in [Mollard 2015]. On the other hand, in [Boy 2007] it is suggested
that only PbD is needed to design ergonomic guide paths for driving a tricycle cobot.
Conversely, the results of a user study presented in [Mollard 2015], confirmed the
interest of combining both processes to reduce the overall programming time and
effort and to increase precision. Indeed, there is a important complexity gap between
both tasks, which can explain why the GUI was more influent on a specific task.

Assisted approaches Inspired from the idea of collaborative learning and taking
into account the context of this thesis, we propose a programming framework to
assist the user throughout the teaching process. To this aim, we suggest to use vir-
tual guides programming in an iterative way so only one demonstration
without assistance is needed. Under this point of view, the work in [Tykal 2016]
appears to be much closer to our motivations. This method was proposed to ease
kinesthetic teaching by combining the idea of incremental learning through warping
several demonstrations with virtual tool dynamics [Kosuge 1995] to assist the user
during teaching. However, the assistance is gradually increased based on the demon-
strations accumulated up to that moment. Therefore, several demonstrations are
still needed to refine the task before having the correct assistance. Moreover, after
each iteration, it is the robot who chooses an assistance and not the operator who

1.2. Related works 37

decides where to refine the trajectory, which, might be counterintuitive to the hu-
man. In this thesis, we suggest that the operator be the master of the programming
and decides when and where a trajectory modification has to be done. Also, the
approach presented in [Tykal 2016], as other PbD incremental methods mentioned
above, are conceived for task refinement but not for partial modifications.

Our iterative and assisted programming approach could also be used to reduce
the cognitive load of users and increase their comfort during the teaching process.
Complex trajectories in space, including cartesian position and orientation of the tool,
require high levels of concentration and effort, which could lead to trajectory encoding
errors while using the kinesthetic teaching technique. Thus, we also propose to
simplify the programming process by uncoupling cartesian positions and
orientations during the demonstrations. To this aim, we should first address
the matter of n-dimensional virtual guides creation according to our constraint
definition. Since more details on our virtual guides implementation and evaluation
are given in Chapter 2 and at the beginning of Chapter 3, we will present the related
works on 6-DOF constraints definition in Chapter 3: "Virtual Guides Construction".

38 Chapter 1. Introduction

1.3 Contributions

In the literature review from the previous Section, we identified the following
challenges in the use of Virtual Guides in the context of human-robot comanipulation:

1. Human-Robot Interaction improvement and roles allocation.

2. Limited use of Virtual Guides Assistance.

3. Enhancement of the flexibility of Virtual Guides Programming,

This thesis presents a novel Virtual Guides Programming Framework that
allows the human worker to create and modify Virtual Guides by demonstration
through an iterative method based on kinesthetic teaching and interpolation
functions. Thanks to this approach, the human worker is able to iteratively modify
the guides by directly manipulating the end-effector, making the process more
intuitive plus reducing its painfulness. Our approach allows local refinement of
virtual guiding paths through physical interaction with the robots. The user is able
to modify a specific cartesian keypoint of the guide or re-demonstrate a portion. Our
approach was also extended to 6D Virtual Guides, where XSplines are defined via
Akima interpolation (for translation) and spherical cubic interpolation of quaternions
(for orientation). The user can initially define a Virtual Guide and then use the
assistance in translation to only concentrate on defining the orientations along the
path. We demonstrated that these innovations provide a novel and intuitive solution
to increase the human worker’s comfort during the programming and execution of
human-robot comanipulation tasks, in two industrial scenarios with a collaborative
robot.

Publications Some of the contributions of this thesis have been published in an
international conference and a journal, listed hereafter:

S. Sánchez Restrepo, G. Raiola, P. Chevalier, X. Lamy, and D. Sidobre. Iterative
virtual guides programming for human-robot comanipulation. IEEE International
Conference in Advanced Intelligent Mechatronics (AIM), 2017. Pages 219-226.

G. Raiola, S. Sánchez Restrepo, P. Chevalier, P. Rodriguez-Ayerbe, X. Lamy,
S. Tliba, F. Stulp. Co-manipulation with a library of virtual guiding fixtures. Au-
tonomous Robots Journal, Special issue on Learning for Human-Robot Collaboration,
2017. https://doi.org/10.1007/s10514-017-9680-7.

This doctoral work was rewarded with the Demenÿ-Vaucanson Award 2016.

More information about the scientific communications and supplementary mate-
rial related to this doctoral thesis can be found at: susanres.fr.

http://fedev.universite-paris-saclay.fr/le-prix-demeny-vaucanson/prix-demeny-vaucanson-2016
http://susanres.fr/

1.4. Outline 39

1.4 Outline

The organization of this thesis is detailed hereafter :

Chapter 1 presented the context of our research: programming of human-robot
comanipulation tasks in industrial environments using virtual Guides with collabo-
rative robots. Through an analysis of the existing solutions and limitations of the
approaches proposed by the literature, we justified the objectives of the thesis. The
contributions of this doctoral work were also exposed.

Chapter 2 explains the extension of the virtual mechanisms concept as 6D Vir-
tual Guides in a comanipulation context. The control scheme is presented and the
stability is addressed. This forms the basis of our work.

Chapter 3 details the construction of 6D Virtual Guides using kinesthetic teach-
ing and XSplines (translation and orientation), defined via Akima and quaternion
interpolations. The control scheme presented in Chapter 2 is used for the 6D Virtual
Guides enforcement.

Chapter 4 presents the concept of Iterative Virtual Guides Programming Frame-
work, which allows the user to create and modify the 6D Virtual Guides – explained
in Chapter 3 – in an intuitive way while being assisted by the robot.

In Chapter 5, we validate the interest of using Virtual Guides in a comanipulation
context and we evaluate the impact of our Iterative Virtual Guides Programming
Framework, with two different experiments.

Finally, Conclusions and Perspectives are detailed in Chapter 6.

Chapter 2

Virtual Guides Definition via
Virtual Mechanisms

Contents
2.1 Definition of Virtual Mechanisms 42
2.2 Implementation of Virtual Mechanisms 43
2.3 Stability during Interaction 49
2.4 Kinematic Singularities . 51
2.5 Conclusion . 52

This chapter details the theory of Virtual Mechanisms for the implementation
of Virtual Guides Assistance. In Section 2.1 the general definition of Virtual
Mechanisms is presented and then implemented in Section 2.2. In Section 2.3
the stability of the impedance controller is proven by proving its passivity via the
analysis of the dissipated energy. We discuss in Section 2.4 the problem related to
kinematic singularities of the Virtual Mechanism caused by the unpredictability of
users demonstrations and a solution using Jacobian normalization.

42 Chapter 2. Virtual Guides Definition via Virtual Mechanisms

2.1 Definition of Virtual Mechanisms

Virtual Guides Assistance allows the worker to relieve mental processing and physical
effort for task accomplishment, reducing the level of concentration devoted to the
task while increasing the human-robot interaction ergonomy. Virtual guides are
functionally equivalent to fixtures in the real world. An example of a non-virtual,
but real guide, is a straight edge system clamped to a wood panel to aid in making
a perfectly straight cut with a circular saw (see Figure 2.1(a)). During both virtual
and real guiding, the user is responsible for the progress of the task, and particularly
benefits from the accurate positioning of the tool (cobot end-effector / circular saw)
offered by the guide system (computer-generated guide / straight edge system), in
the form of haptic feedback. In other words, when using the virtual guides, the cobot
becomes a tool that improves human capabilities and enhances the task efficiency
in terms of execution time, mental workload, safety and precision. A virtual guide
can also be compared with a ruler (see Figure 2.1(b)), which helps the user to draw
lines with minimal effort and high precision.

(a) Straight edge system to cut straight with a circular saw

(b) Ruler used as a guide to draw a straight line

Figure 2.1: Examples of real guides.

As explained in the previous Chapter, in this thesis we are interested in using

2.2. Implementation of Virtual Mechanisms 43

virtual guides to assist human operators during industrial comanipulation tasks
with a cobot, both for task programming and task execution. To this aim, we define
Virtual Guides through the concept of Virtual Mechanisms introduced in [Joly 1995].
Thus, the cobot end-effector is virtually connected to the virtual mechanism through
a spring-damper system. The result is a confined motion of the cobot end-effector if
the virtual mechanism possesses less DOFs than the cobot.

Figure 2.2: Direct manipulation of the Cobomanip cobot designed by CEA-List and
Sarrazin to assist the operator during handling operation.

Originally, virtual mechanisms have been introduced to enhance safety in tele-
operating robotic systems [Joly 1995]. They were used for the remote inspection
of pipes during the maintenance of nuclear sites. The camera movements were
constrained along the pipe through a cylindrical virtual mechanism. In this thesis,
we use the same concept of virtual mechanisms but in a comanipulation context
where the user manipulates the robot directly, as shown in Figure 2.2.

2.2 Implementation of Virtual Mechanisms

Virtual mechanisms can be implemented using multiple DOFs to constrain movement
in 1D paths, surfaces or volumes [Joly 1997] (see Figure 2.3). In our work, we
implement the concept of virtual mechanisms (as defined in 1.2) to constrain the
movements of the cobot to a 6D path defined by position and orientation constraints
obtained by kinesthetic teaching. The cobot end-effector and the virtual mechanism
are coupled by a spring-damper system which corresponds to a proportional-derivative
controller whose coupling gains are the stiffness K and the damping B, as shown in
Figure 2.4. If the cobot end-effector moves, the virtual mechanism is pulled along the

44 Chapter 2. Virtual Guides Definition via Virtual Mechanisms

path in the direction of the movement; also, the virtual mechanism pulls the cobot
end-effector towards the path, since the linking acts in both directions. The general
effect is that the cobot end-effector can be moved easily along the constraining path,
but not away from it.

Figure 2.3: Virtual linking between a robot and the virtual mechanism using a
spring-damper system. Xvm and X represent the pose in Cartesian space of the
virtual mechanism and the robot end-effector respectively. The svmi represent the
degrees of freedom of the virtual mechanism. For example, as illustrated here, with a
2 degrees of freedom mechanism the robot can be constrained to move in a cartesian
plane.

Notation The Cartesian pose and velocity of the virtual mechanism and the
cobot end-effector are described by {Xvm ∈ SE(3), Ẋvm ∈ R(6)} and {X ∈ SE(3),
Ẋ ∈ R(6)} respectively. The Cartesian poses are defined by the translational and
rotational components of both virtual mechanism and cobot end-effector displacement
as:

Xvm ,
{
Xvm,trans ∈ R3

Xvm,rot ∈ SO(3)

}

X ,
{
Xtrans ∈ R3

Xrot ∈ SO(3)

}

To avoid singularity in the representaiton of rotations (Xvm,rot, Xrot), we use

2.2. Implementation of Virtual Mechanisms 45

unit quaternions [Dam 1998]. A quaternion q can be considered to be the association
of a scalar w ∈ R and a vector a ∈ R3:

q ,
[
w

a

]

The relation between a quaternion and a rotation will be defined in the next
chapter.

The Cartesian velocities are defined by twists ∈ R(6) describing the instant
movements of the robot end-effector relative to the robot base. We choose to reduce
the twists in the center of the robot end-effector. The twists are then formed by
the translational and rotational components of the time derivatives of both virtual
mechanism and cobot end-effector displacements:

Ẋvm ,
{
vvm ∈ R3

ωvm ∈ R3

}

Ẋ ,
{
v ∈ R3

ω ∈ R3

}

The current position of the virtual mechanism is described by its parameterized
space by the parameter svm ∈ R, and the evolution of the virtual mechanism is
described by ṡvm ∈ R.

The direct geometric and kinematic models of the virtual mechanism are defined
by Ls and Js respectively. The geometric model allows to determine the pose of
the virtual mechanism Xvm according to the configuration of its links (in this case
represented by svm), while the kinematic model allows to determine the velocity of
the virtual mechanism Ẋvm according to the evolution of it ṡvm.

Geometric model:
Xvm = Ls(svm) (2.1)

Kinematic model:
Xvm = f(svm) (2.2)

Ẋvm = Jsṡvm (2.3)

where Js[6×1] is the virtual mechanism’s Jacobian, as defined in [Wisama Khalil 1999].
In Chapter 3: "Virtual Guides Construction" we will describe how to imple-

ment the geometric and kinematic models through users demonstrations in both

46 Chapter 2. Virtual Guides Definition via Virtual Mechanisms

Figure 2.4: Virtual mechanism representation. The red curve represents the possible
configurations of the virtual mechanism in the Cartesian space Xvm, and because of
the spring-damper system linking, it represents the allowed configurations of the
robot end-effector X. The current position of the virtual mechanism is described by
its parameterized space by the parameter svm ∈ R

translational and rotational components.

Force on the cobot end-effector The force Fc applied by the spring-damper
system on the cobot is given by:

Fc = K(Xvm −X) +B(Ẋvm − Ẋ) (2.4)

Where K ∈ R(6 × 6) and B ∈ R(6 × 6) are diagonal matrix. Ktrans ∈ R(3 × 3)
represents the stiffness gain in translation and is a symmetric definite positive matrix.

The notation (Xvm −X) may be abusive for rotations. More adequate angular
error computation can be used without restrictions.

Xvm −X ,
{
Xvm,trans −Xtrans

δ(qvm, q)

}

We will give more details about the orientation representation on Chapter 3:
"Virtual Guides Construction".

Gains tuning – K and B – is similar to the tuning of a cartesian PD position loop.
The Jacobian of the cobot is given by J [6× n] where n represents the number

2.2. Implementation of Virtual Mechanisms 47

of DOF of the robot. We use the transposed Jacobian JT to transform the forces
into a torque reference for the controller [Wisama Khalil 1999]. The torque applied
to the joints of the cobot is described by τc:

τc = JTFc (2.5)

Force on the virtual mechanism The behavior of the virtual mechanism
impedance is given by:

τvm = Ks(scons − svm) +Bs(ṡcons − ṡvm) (2.6)

Where scons ∈ R and ṡcons ∈ R represent the reference position and the velocity
along the desired path, respectively. The gains Ks ∈ R and Bs ∈ R represent a
stiffness-damping coupling and define the impedance of the virtual mechanism.
Gains tuning – Ks and Bs – is similar to the tuning of a cartesian PD position loop
and is done independently from the tuning of the coupling gains – K and B.
The virtual mechanism being ideal, the efforts applied on it are null. The equilibrium
of the applied forces is given by:

JTs Fc = τvm (2.7)

Virtual boundaries constraints The purpose of "virtual stops" is to limit the
permissible displacements of the tool. They can be defined in a complementary
manner to a virtual mechanism, for example imposing limits on the travel of the
links that constitute it. More generally, they can be described by surfaces delimiting
an area of the working space in which the effector must remain confined.

In our virtual guides implementation, it is possible to specify the stiffness-damping
coupling – Ks, Bs – between the virtual mechanism specification and a reference
position scons along the desired path (see Figure 2.6). It is then possible to create
virtual boundaries at the extremities of the path by applying to scons the following
law:

• If svm ∈ [0, smax] then scons ← svm.

• If svm > smax then scons ← smax.

• If svm < 0 then scons ← 0.

With these boundary constraints the user will feel a repulsive force (spring-
damper effect) when he/she reaches the beginning or the end of the path.

Control law Using equations (2.3), (2.4), (2.6) and (2.7), we obtain:

JTs (K(Xvm −X) +B(Jsṡvm − Ẋ)) =−Bsṡvm +Ks(scons − svm) +Bsṡcons
(2.8)

48 Chapter 2. Virtual Guides Definition via Virtual Mechanisms

Figure 2.5: Lateral view of the physical analogy of a virtual mechanism. The desired
path is illustrated in red. The pose X of the cobotic system is linked to the pose
Xvm of the virtual mechanism by a spring-damper system. The current position of
the virtual mechanism is svm.

By solving equation (2.8) with respect to ṡvm, we obtain a first order dynamical
system that expresses the evolution of the virtual mechanism:

ṡvm = (Bs + JTs BJs)−1(−JTs (K(Xvm − x)−BẊ)) +Ks(scons − svm) +Bsṡcons
(2.9)

The matrix JTs BJs is symmetric, positive, definite because Js has full column rank
and B is symmetric, positive, definite.

svm can be determined at every instant by integrating the controller state equation
(2.9) in real time. Then, since svm and ṡvm are known, Xvm and Ẋvm can be
computed based respectively on equations (2.2) and (2.3). Finally, the driving force
can be computed using (2.4).

From equations (2.1), (2.3), (2.4), (2.5), (2.6) and (2.9) we obtain the control law
scheme presented in Figure 2.6.

The gains specifications of the coupling – K and B – are independent from the
virtual guide specification – Ls, Ks and Bs. Gains tuning is similar to the tuning of
a cartesian PD position loop. The higher the gains, the more the behavior of the
robotic system will tend to the one defined by the virtual mechanism. In general,

2.3. Stability during Interaction 49

Figure 2.6: Control law scheme of a 1-DOF virtual mechanism.

the spring K is chosen as stiff as possible.

2.3 Stability during Interaction

In comanipulation tasks, robots and humans work hand in hand sharing their
workspace. In this case safety is a major issue. According to [Van Damme 2010],
the safety of a robotic system is mainly enforced through three different factors:

• Safe element design inherent from the mechanics of the robot : for example the
use of padded and rounded link shapes to avoid injuries caused by accidental
contacts with the robot, and low weight components to reduce impact forces
in eventual collisions.

• Passive compliance devices to allow the robot to be more compliant (i.e.
less stiff) thus more safe. In case of contacts with the environment or with
humans, part of the energy is absorbed by the robot. Some examples are:
torque/velocity limitation devices, elastic actuators [Pratt 1995] or variable
stiffness actuators [Tonietti 2005].

• Active compliance. Compliance can also be ensured by the control law applied
to the robot. According to [Siciliano 2009], there are two main kind of compliant
controllers: force and impedance controllers.

In the impedance control scheme presented above, a virtual spring-damper system
is used to control the robot movements through a virtual mechanism previously
defined. This controller generates forces for the robot end-effector based on the
position and velocity of the virtual mechanism. In this section, we study the
passivity of this controller to assure that it does not lead to the instability of the

50 Chapter 2. Virtual Guides Definition via Virtual Mechanisms

robotic system [Khalil 1996]. This represents an important step to prove that the
co-manipulation with virtual guides is safe.

Stability proof using a passivity criterion It was proven by [Hogan 1988]
that the passivity of the system guarantees the stability of the controlled system
when it interacts with any passive environment, including a human operator.

In principle, a human operator is able to supply energy to a mechanical system,
thus it would not be passive. However, the results presented in [Hogan 1989] present
another point of view : humans are able to modulate the mechanical impedance
of their hands according to the task they want to accomplish, thanks to the co-
contraction of the antagonistic muscles distributed on each of the articulations, and
thanks to the richness of the postures that they can confer on their shoulder, arm
and wrist.

The variability of the impedance that the hand can adopt is very important:
it is found that the resulting stiffness in the hand can evolve over at least two
orders of magnitude. In his experiments, [Hogan 1989] notes that all the impedances
represented by the hand have as a common point to be passive. It is also found
that the man is able to adapt the impedance of his hand with a delay of about one
second.

[Colgate 1988] introduced a passivity criterion to ensure a stable interaction
between the controlled robot and an unknown and variable environment. A system
is considered passive when it does not provide more energy than it has received. In
the time domain, this property is often reflected as:

∀t ≥ t0 ≥ 0, ∫ t

t0
Pe(τ)dτ ≥ Ecobot(t)− Ecobot(t0) (2.10)

where Pe is the power supplied to the controller and Ecobot is the internal energy
of the cobotic system at the instant t. This equation reflects the idea that the cobot
cannot give to the environment more energy than it stored at the instant t0, when
cutting the supply energy, the system should evolve towards a minimum energy
state.

The advantage of this criterion is that the stability of the system in interaction
with any passive environment can be proven by only taking into account the system,
regardless of the environment. The passivity of the virtual mechanism controller
was proven by Joly in [Joly 1995] by using the mechanical analogy of the system
and studying the energy dissipation.

Passivity proof Considering the system in Figure 2.4, the supplied power of the
controller is given by:

2.4. Kinematic Singularities 51

P = τTvmṡvm − τTc q̇, (2.11)
= F Tc Ẋvm − F Tc Ẋ. (2.12)

Where q represents the joint velocities of the cobot.

P = F Tc (Ẋvm − Ẋ), (2.13)
= (K(Xvm −X))T (Ẋvm − Ẋ) + (Ẋvm − Ẋ)TB(Ẋvm − Ẋ). (2.14)

By integrating both sides of the equation above, we obtain the following energy
balance:

∫ t

0
P dt︸ ︷︷ ︸

supplied energy

= Epot(t)− Epot(0)︸ ︷︷ ︸
stored spring energy

+
∫ t

0
(Ẋvm − Ẋ)TB(Ẋvm − Ẋ) dt︸ ︷︷ ︸

dissipated energy

. (2.15)

In this equation Epot represents the potential energy associated to the spring K.
The controller is proven passive because both Epot and the dissipated energy are
positive (B is positive definite), implying that the controller do not supply more
energy than the initial one (as defined in equation 2.10):

∫ t

0
P dt >= −Epot(0). (2.16)

We invite the interested reader on the passivity of the system to consult the
more detailed proof presented in [Joly 1997].

2.4 Kinematic Singularities

By looking at the dynamical system of equation (2.9), it is clear that the term
(JstBJs) has to be invertible in order to avoid singularities on the evolution of the
virtual mechanism. In other words, we must guarantee for all values of svm that
the Jacobian Js is never null. In our implementation, the gain Bs used (together
with Ks) to create virtual boundaries, avoids the zero division in the evolution law
of the virtual mechanism. However, since the Jacobian Js is created through user
demonstrations (as will be explained in Chapter 3: "Virtual Guides Construction"),
if we use PbD recording time as the Virtual Guides parametrization the Jacobian
represents the velocity of the virtual mechanism and it is possible that it is not
normalized. These velocity variations could affect the users interaction with the
virtual mechanism. To overcome this problem, we propose to normalize the kinematic
model of the virtual mechanism.

52 Chapter 2. Virtual Guides Definition via Virtual Mechanisms

Jacobian Normalization We can parametrize the kinematic model of the virtual
mechanism using an approximation of the arc-length lvm ∈ R of the path that defines
the virtual mechanism, instead of the phase svm ∈ R which could depend on the –
variable – sampling time of the demonstrations.

Thus, we can replace the phase svm with the arc-length approximation lvm, to
rewrite the kinematics of the Virtual Mechanism as:

Xvm = f(lvm), (2.17)
Ẋvm = Js(lvm)l̇vm, (2.18)
with ||Js(lvm)|| = 1. (2.19)

In Chapter 3: "Virtual Guides Construction" we will explain how to define
the arc-length approximation for both translational and rotational components of
Virtual Guides. A constraint model coupling both movement components will be
presented together with the corresponding Jacobian normalization. Finally, the
geometric and kinematic models of 6D Virtual Guides will be defined.

2.5 Conclusion

In this chapter, we presented how the virtual mechanisms proposed by [Joly 1995] can
be used to implement Virtual Guides as 6D paths, for comanipulation applications.
These virtual mechanisms work as an impedance controller for the robot, allowing
movement along the preferred directions and prohibiting the movements along the
restricted ones. The passivity of the system is proven by studying the dissipated
energy of the system which proves also its stability. We also presented the problem of
singularities of the kinematic model of the virtual mechanism when the virtual guides
are defined through users demonstrations. A solution using Jacobian normalization
is proposed. In the following chapter we will see how Akima spline and quaternion
interpolations can be used to describe the kinematics of Virtual Guides using
demonstrations through kinesthetic teaching.

Chapter 3

Virtual Guides Construction

Contents
3.1 Geometric and Kinematic Models of Virtual Guides 54
3.2 Virtual Guides as Position Constraints 55

3.2.1 Interpolation in R3 . 56
3.2.2 Position Constraints Construction through Akima Splines . . 62

3.3 Virtual Guides as Orientation Constraints 64
3.3.1 Related Works . 64
3.3.2 Interpolation in SO(3) . 67
3.3.3 Orientation Constraints Construction through Spherical Cubic

Interpolation . 74
3.4 6D Virtual Guides . 79
3.5 Conclusion . 82

In the previous Chapter we explained how to use virtual mechanisms to implement
Virtual Guides in a comanipulation context. In order to create these Virtual Guides,
we have to implement the kinematic equations of the virtual mechanism described
by (2.2) and (2.3). As explained in Chapter 1: "Introduction", there are two main
ways to do it:

• through geometric modeling and

• through demonstrations.

Geometric modeling is the most common method in the literature. It was used
by [Joly 1995] in the context of teleoperation tasks. An important advantage of
this method is that it can lead to a precise definition of the shape of the virtual
guide. However, to implement the kinematic equations of the virtual mechanism,
this method implies a good knowledge and understanding of the task. In addition,
the geometric model has to be defined in the operational space of the robot, which
could require a transformation from the task reference to the robot reference and

54 Chapter 3. Virtual Guides Construction

though be less trivial. A most recent approach proposes to define the kinematics
of Virtual Guides using a set of demonstrations, which could be provided by the
user through kinesthetic teaching [Calinon 2007a]. Users are able to physically
manipulate and guide the robot in order to perform the desired movements. These
movements can be recorded by the robot and be used to define a model of the
Virtual Guide. A great advantage of this method is that the definition is done
directly in the human-robot workspace, which is ideal in a comanipulation context.
Moreover, a non-expert user may specify new virtual guides through lead-through
programming without any prior knowledge about the task or about its geometric
model, as done in [Stulp 2013,Tykal 2016]. The PbD approach is also a promising
solution to reduce the programming time of the tasks and enhance the flexibility of
the Virtual Guides Assistance presented in Chapter 2: "Virtual Guides Definition
via Virtual Mechanisms".

For these reasons and for the ones enlighted in Chapter 1: "Introduction", we
use kinesthetic teaching to create Virtual Guides from demonstrations. In previous
work Appendix A: "Co-manipulation with a Library of Virtual Guiding Fixtures",
we proposed a framework for Multiple Probabilistic Virtual Guides where kinesthetic
teaching was used in the programming process. This probabilistic framework involves
modeling a demonstrated set of guides with GMM and retrieving a generalized
representation of the data set using GMR [Raiola 2017a]. Unfortunately, with
these stochastic approaches, a compromise must be made between the number of
demonstrations – time and effort demanding – and the level of information in the
training data. In a comanipulation context, requesting multiple demonstrations of
a single task could be exhausting for the user. In this thesis, we propose to use
an iterative and assisted framework to program virtual guides through
kinesthetic teaching, with only one demonstration and the possibility to
refine or modify the guide later in an intuitive way. This framework will be
presented in Chapter 4: "Iterative Virtual Guides Programming".

In this Chapter, we will explain how to define the geometric and kinematic
models of Virtual Guides using interpolation functions. We will first address the
Virtual Guides construction as Position Constraints and as Orientation Constraints
separately and then propose a coupled solution position-orientation to define 6D
Virtual Guides through displacement splines. The approaches presented in Chapter
2: "Virtual Guides Definition via Virtual Mechanisms" and in this Chapter, are
the base of the programming framework in Chapter 4: "Iterative Virtual Guides
Programming".

3.1 Geometric and Kinematic Models of Virtual Guides

When the user manipulates the cobot and creates a displacement of the end-effector,
the force applied by the cobot on the virtual mechanism is expressed by a new value
of the phase svm by integrating the dynamical system defined in equation (2.9). We
can use the direct geometric model Ls (2.1) and the kinematic model Js (2.3) to

3.2. Virtual Guides as Position Constraints 55

compute the corresponding pose Xvm and velocity Ẋvm of the virtual mechanism for
a given value of the phase svm = s. These models are defined in this thesis through
interpolation functions and their derivatives.

In the following Sections of this Chapter, we will describe the interpolation func-
tions used for both Position Constraints – Section 3.2 – and Orientation Constraints
– Section 3.3 – construction. We will then propose a common parametrization to
generate 6D Virtual Guides through displacement splines in SE(3) – Section 3.4.

3.2 Virtual Guides as Position Constraints

In this Section we address the Virtual Guides construction as position constraints,
thus we only focus on the translations of the cobot end-effector Xtrans ∈ R3 (the
orientation of the end-effector being fixed or free). During the kinesthetic teaching,
the user is able to show the cobot the desired trajectory by manually moving its
end-effector. The Cartesian position Xtrans of the cobot end-effector is recorded
on user demand (e.g. when he or she pushes a button to record the current robot
end-effector position) or continuously with a determined sampling time. In both
cases, the position Xtrans and a recording parameter t are stored as a list of points
MT :

MT (ti) = {ti, (xtrans,i, ytrans,i, ztrans,i)}i=0:N−1 (3.1)

where N is the number of points.

When the recording of the trajectory is done by user demand, the recording
parameter starts at t0 = 0 and increases monotonically along with the recorded points.
When the recording is done continuously, the recording parameter corresponds to
the recording time. Thus, in both cases, the parameters t0, t1, t2...tN−1 satisfy a
monotonic condition:

t0 < t1 < t2...tN−2 < tN−1 (3.2)

In order to create a Virtual Guide using the list MT , we propose to use an
interpolation function that passes exactly through the recorded points so the demon-
strated trajectory is encoded in a precise and smooth way. As suggested in Chap-
ter 1: "Introduction" and as we will see in Chapter 4: "Iterative Virtual Guides
Programming", using interpolation functions to describe the geometric and kinematic
models of Virtual Guides presents the following advantages:

• Only one demonstration without Virtual Guides Assistance is needed.

• The recorded trajectory depends entirely on the demonstration and not on
any automatic algorithm.

56 Chapter 3. Virtual Guides Construction

• Virtual Guides defined through interpolation functions can be easily modified.

Next, we present some interpolation methods, among them the Akima Spline
interpolation method that will be used in this Chapter for Virtual Guides construction
in Cartesian space.

3.2.1 Interpolation in R3

To build a path through several waypoints, different solutions are available. It is for
example possible to interpolate these points or to approximate them. In addition,
depending on the type of interpolation or approximation, different properties, such
as continuity of derivatives, may vary among the built paths. A non-exhaustive list
of these methods and their properties is presented below.

Bezier curves This is an approximation method that uses control points instead
of interpolation points, so the created curve does not pass through the specified
waypoints but approaches them (see Figure 3.1). The degree of these curves is
proportional to the number of control points and can increase very rapidly.

Figure 3.1: Example of a Bezier curve with 4 control points: P (t) = P0(1− t)3 +
3P1t(1− t)2 + 3P2t

2(1− t) + P3t
3

B-Splines This is also an approximation method [De Boor 1972]. It allows to
overcome some disadvantages of the Bezier curves. For example, the degree of the
curve remains constant even when adding a point. Also, it is possible to make a
local modification of the curve without changing its natural aspect. With B-Splines,
it is possible to interpolate the waypoints by playing on the degree of the knots.
However, B-Splines imply complex calculus of the basic functions, and it would be
less intuitive for the user to manage the knots and the waypoints at the same time
in order to modify the curve.

Quadratic interpolation This is one of the simplest methods for interpolating
points. It consists in connecting the waypoints by pairs using two degree polynomials.

3.2. Virtual Guides as Position Constraints 57

In order to obtain a smooth interpolation, two conditions are imposed on each curve
connecting two waypoints:

• The curve must go through the two points that it connects.

• The tangent to the first point must be equal to the tangent to the second point
of the previous curve (the first slope of the first curve is arbitrarily defined).

The main disadvantage of this method is that depending on the choice of the
initial slope, the interpolation can be completely different, as shown in Figure 3.2. In
addition, this interpolation is not "natural", the created curve does not correspond
to what the user might expect.

(a) Quadratic interpolation with initial slope
m0 = −5.

(b) Quadratic interpolation with initial slope
m0 = 5.

Figure 3.2: Example of the quadratic interpolation with different initial slopes.

Cubic interpolation Unlike Quadratic interpolation, this method involves curves
of degree three. This makes it possible to impose an additional condition: the
tangent to the second point. Different types of cubic interpolations make it possible
to calculate the slopes according to the desired characteristics of the curve. General
requirements are function continuity and passing through all given points. There
could also be additional requirements such as continuity of higher derivatives.

The most common cubic interpolation methods are: natural, monotonic and
Akima. Natural cubic interpolation is a piecewise cubic curve with continuous second
derivative. The resulting curve is piecewise cubic on each interval, with matching
first and second derivatives at the supplied data-points. The second derivative
is chosen to be zero at the first and last points. A disadvantage of this method
is that the curves could oscillate in the neighborhood of an outlier, as shown in
Figure 3.3. Monotonic cubic interpolation is a variant of cubic interpolation that
preserves monotonicity of the data set being interpolated by modifying the tangents
definition [Fritsch 1980]. This method does not present oscillations in the presence
of outliers. The Akima cubic interpolation method [Akima 1970] is also based on
piecewise cubic polynomials. It differs from the previous methods by the conditions
imposed at the data points, which make the interpolation function robust to local

58 Chapter 3. Virtual Guides Construction

changes. In Figure 3.3 we show a comparison of these three cubic interpolation
methods and a linear interpolation. We can see that the monotonic and the Akima
curves present less oscillations than the natural curve.

Figure 3.3: Comparison of different interpolation methods.

We can see in Figure 3.4 that when it comes to an interpolation between 4 points,
the best interpolation method to obtain circles is the natural spline in comparison
with the monotonic and the Akima curves. However, to create Virtual Guides by
demonstration it is not desirable to use splines that could present oscillations. Also,
when modifying a point on a natural cubic interpolation, the whole curve could be
modified. For these reasons, from this point, we do not consider natural splines in
our choice. Finally, in Figure 3.4(b), we can see that when we rotate the 4 given
waypoints on the plane, by definition, the resulting monotonic curve resembles to
the linear interpolation curve. On the other hand, the Akima spline is closer to
the desired circular curve. Indeed, when creating Virtual Guides, it is important to
avoid straight angles since they could generate undesirable behaviors of the control
scheme.

To resume, some advantages of the Akima spline interpolation method are:

• It yields to a smooth natural-looking curve.

• There is no need to solve large equation systems. It is therefore computationally
very efficient.

• It reduces oscillatory effects.

• Local changes do not affect the interpolation beyond neighbor points.

• Akima spline points are intuitive to use in Virtual Guides modification.

Besides, the Akima spline interpolation method provides a curve of class C1

at least, and as stated in [Joly 1997], to define virtual mechanisms it is possible
to use any curve defined by a parametric function of class C1. When it comes to
interpolation, a compromise must be done between the smoothness of the curve and

3.2. Virtual Guides as Position Constraints 59

(a) Interpolation of 4 waypoints. The natural cubic interpolation
gives the closest resulting curve to a circle.

(b) Interpolation of 4 waypoints rotated on the plane. The mono-
tonic interpolation spline resembles to the linear interpolation
curve.

Figure 3.4: Comparison of different interpolation methods to create a circular curve.

60 Chapter 3. Virtual Guides Construction

the robustness to local modifications. For example, for path planning it is better
to guarantee C2 continuity in order to ensure continuous acceleration. For Virtual
Guides implementation we need at least C1 continuity and for our particular use of
Virtual Guides we need for sure to locally modify the splines.

For all these reasons we decided to use Akima spline interpolation to define
the geometric and kinematic models of the virtual mechanisms used to implement
Virtual Guides. Next, we give more details of this interpolation method.

3.2.1.1 Akima Spline Interpolation

The Akima Spline interpolation method was defined by [Akima 1970]. It is a
continuously differentiable sub-spline interpolation, built from piecewise third order
polynomials and applicable to successive intervals of the given points. Only data
from the next and previous two neighbor points are used to determine the coefficients
of the interpolation polynomial. Thus, the slope of the curve is locally determined
at each given point, by the coordinates of five points centered on the studied point.
In consequence, this spline type creates a smooth and natural curve between the
waypoints and always passes directly through them.

Slope The slope r of the curve at each given point is determined locally by the
coordinates of five points, with the point in question as a center point, and two
points on each side of it. A polynomial of degree three representing a portion of the
curve between a pair of given points is determined by the coordinates of the two
points and the local slope.

With the five data points 1, 2, 3, 4 and 5, the slope r of the curve at point 3 is
determined by:

r3 = (|m4 −m3|m2 + |m2 −m1|m3)
(|m4 −m3|+ |m2 −m1|)

(3.3)

where m1, m2, m3, m4 are the slopes of the line segments 12, 23, 34 and 45,
respectively as defined by (3.4).

mi = yi+1 − yi
xi+1 − xi

(3.4)

To determinate r, two assumptions are made:
• the slope of the curve at point 3 should approach that of the line segment 23
when the slope of 12 approaches that of 23,

• the slope is invariant under a linear-scale transformation of the coordinate
system.

Under the definition (3.3), the slope r3 of the curve at point 3 only depends
on the slopes of the four line segments, being thus independent from the interval
widths. Moreover, this definition implies that:

3.2. Virtual Guides as Position Constraints 61

• r3 = m2 when m1 = m2 and m3 6= m4.

• r3 = m3 when m3 = m4 and m1 6= m2.

which are the desired conditions.

It also follows from (3.3) that, when m2 = m3, r = m2 = m3. However, when
ml = m2 6= m3 = m4, the slope r3 is undefined under equation (3.3). In this special
case r is chosen such that:

r3 = m2 +m3
2

Interpolation between two points A portion of the curve between a pair of
consecutive data points is defined in such a way that the curve will pass through the
two points. At these points the slopes are determined by the procedure described
above. For example, the third-degree polynomial for the line segment 12 is determined
by:

y = p0 + p1(x− x1) + p2(x− x1)2 + p3(x− x1)3 (3.5)

where:

p0 = y1

p1 = r1

p2 =
[3 (y2−y1)

(x2−x1) − 2r1 − r2]
(x2 − x1)

p3 =
[r1 + r2 − 2 (y2−y1)

(x2−x1)]
(x2 − x1)2

The first derivate of the function is determined by:

ẏ = p1 + 2p2(x− x1) + 3p3(x− x1)2 (3.6)

Estimation of extra points At each end of the curve, two more points have
to be estimated from the given points. Let N be the number of given points. As
presented in [Akima 1970], the extra points are estimated by assuming that all of
the last three points (xN−2, yN−2), (xN−1, yN−1), (xN , yN) and the extra points
(xN+1, yN+1), (xN+2, yN+2) lie on a curve expressed by:

y = g0 + g1(x− xN) + g2(x− xN)2, (3.7)

where gi are constants. Assuming that

62 Chapter 3. Virtual Guides Construction

xN+2 − xN = xN+1 − xN−1 = xN − xN−2,

Then,

xN+1 = xN−1 + xN − xN−2,

xN+2 = 2xN − xN−2.

The ordinates yN+1 and yN+2 can be determined from (3.7), by using xN+1 and
xN+2, respectively. According to [Akima 1970], it gives:

(yN+2 − yN+1)
(xN+2 − xN+1) −

(yN+1 − yN)
(xN+1 − xN) = (yN+1 − yN)

(xN+1 − xN) −
(yN − yN−1)
(xN − xN−1)

= (yN − yN−1)
(xN − xN−1) −

(yN−1 − yN−2)
(xN−1 − xN−2)

Then,

yN+1 = (2mN−1 −mN−2)(xN+1 − xN) + yN ,

yN+2 = (2mN −mN−1)(xN+2 − xN+1) + yN+1.

Next, we will see how to use the Akima spline interpolation definition to create
Position Constraints.

3.2.2 Position Constraints Construction through Akima Splines

The above Akima Spline definition, slope, the interpolation function and the extra
points, can be applied to the list of MT points (3.1) where t values increase mono-
tonically (3.2). In a first stage we extend the monodimensional definition of the
Akima splines to multidimensional spaces.

3.2.2.1 Multi-dimensional Akima interpolation

A multi-dimensional Akima spline MDSpline is composed of several Akima splines,
each corresponding to an additional degree of freedom. For example, a MDSpline

representing a translation in Cartesian space will consist of three splines: one for
x axis - splinex(t) -, one for y axis - spliney(t) -, and one for z axis - splinez(t).
The synchronization of the axes in the Cartesian space is provided by their curve
parameter.

Indeed, for each point, the three axis have the same corresponding parameter t.
Thus, each waypoint will be reached at the same value of t:

3.2. Virtual Guides as Position Constraints 63

xtrans = splinex(t),
ytrans = spliney(t),
ztrans = splinez(t)

The first derivative of the interpolation function can also be calculated for each
axis to compose ˙MDSpline, using equation (3.6).

3.2.2.2 Parameterization

If we use time as the parameter for the curve, the Jacobian Js will correspond to
the velocity of the virtual mechanism. As explained in Chapter 2: "Virtual Guides
Definition via Virtual Mechanisms", since the trajectory is shown by demonstration,
the velocity is variable and could be null. Jacobian variations could affect the user’s
interaction with the virtual mechanism. In order to guarantee a normalized Jacobian,
it is desirable to evaluate the Akima spline at points based on the arc-length of the
curve instead of based on the recording sampling time. For that matter, we propose
to separate spacial and temporal aspects of the trajectory.

Let t be the time, s be the path-length curvilinear parameter and PT the list
containing the Akima spline points.

PT,i = {xtrans,i, ytrans,i, ztrans,i}

with i = 0 : N − 1, where N is the number of waypoints. When the points are
recorded manually, t = i.

The Akima spline curve MDSpline parametrized with time is defined by f :

f : R −→ R3

t 7−→ PT

The transformation function from the the arc-length curvilinear to time parame-
terization is defined by g:

g : R −→ R
s 7−→ t

where g corresponds to a monotonic cubic interpolation function [Fritsch 1980]. This
kind of interpolation is optimal for the transformation function since the resulting
curve does not present oscillations in the presence of outliers.

We approximate the computation of s by:

si+1 = si + ‖PT,i+1 − PT,i‖2

64 Chapter 3. Virtual Guides Construction

where s0 = 0 and i = 0 : N − 1.

The Akima spline curve is now defined as a composition of the initial curve
parameterized with time (f), and the space transformation function (g) as:

f(t) = f(g(s)) = f ◦ g(s) (3.8)

The Virtual Guide is now described by the following data list:

MT (ti, si) = {ti, si, xtrans,i, ytrans,i, ztrans,i}i=0:N−1

3.2.2.3 Geometric and Kinematic models

We can now define the geometric model of the virtual mechanism Ls (2.1) as:

Ls : R −→ R3

s 7−→ MDSpline(s)

and:

Xvm,trans = MDSpline(g(s)) (3.9)

We can notice that the parameter svm of the virtual mechanism corresponds to
the spline parameter s. We can then write:

Xvm,trans = MDSpline(g(svm)) (3.10)

The kinematic model of the virtual mechanism Js (2.3) can be defined as the
derivative of the multi-dimensional spline MDSpline. Finally :

Js(svm) = ˙MDSpline(g(svm)) (3.11)

and :

Ẋvm,trans = Jsṡvm (3.12)

3.3 Virtual Guides as Orientation Constraints

3.3.1 Related Works

Programming by Demonstration literature In PbD approaches, multivariate
Gaussians are widely used to encode robot behaviors. Such approaches do not provide

3.3. Virtual Guides as Orientation Constraints 65

the ability to properly describe end-effector orientation, as the distance metric in
the space of orientations is not Euclidean. In [Zeestraten 2017], the authors present
an extension of common probabilistic imitation learning techniques to Riemannian
manifolds. This work shows the importance of being able to represent end-effector
orientations from users demonstrations, coupled with cartesian positions. However,
it does not address virtual guides creation. Thus, the work of [Zeestraten 2017]
would be useful to extend Probabilistic Virtual Guides [Raiola 2017a] to a more
general framework using also orientation representation.

Virtual Guides literature Due to the task-dependent role of virtual guides,
most experiments have tried to address the most general scenarios for their ap-
plications. Many of these applications mainly consisted in general tasks such as
path following, targeting and object avoidance exercises in two dimensional en-
vironments [Bettini 2001], [Nolin 2003] and in more complex 3D environments
[Prada 2005], [Kuang 2004], [Raiola 2017a]. Fewer applications have addressed the
implementation of orientation virtual guides [Li 2007,Bowyer 2013].

Traditional virtual guides implementations deal with rotation and translation
separately in R3 space, the interconnection between them is not usually involved in
the virtual guide design. The method presented in [Li 2007] uses preferred directions
virtual guides, with an admittance control architecture, to constrain the user to
follow a curve, surface or orientation. In the experimental section of this work,
rotational and translational constraints were implemented separately. Autonomous
error compensation was used in [Castillo-Cruces 2010] to overcome human difficulties
in simultaneously controlling the position and orientation of a 6-DOF robot under
the vision-based preferred directions virtual guides presented in [Li 2007]. The
system uses computer vision as a sensor for providing a reference trajectory, and
the virtual guide control algorithm then provides haptic feedback for implementing
direct shared manipulation. The authors found that in a system with both position
or orientation reference direction fixtures, only position or orientation would be
effectively constrained at a time. They stated that this is due to the translational
and rotational components of motion being decoupled from each other in such a way
that the user, focusing on moving one, will not notice an error in the other. These
works, have addressed orientation virtual guides but for a different type from those
used in this thesis. Also, they address translation and orientation separately.

In the case of Dynamic Virtual Guides (DVG), the work of [Bowyer 2014b]
extended dynamic frictional constraints to be able to constrain the position or the
orientation of a tool. In contrast to our definition of Virtual Guides (Chapter 2: "Vir-
tual Guides Definition via Virtual Mechanisms"), DVG are applied to environments
which deform or move over time (e.g., soft tissue in the context of robot assisted
surgery), and though the constraints are not based on virtual mechanisms but on
elasto-plastic friction models. However, the definition of the position constraints
in R3 and orientation constraints in SO(3) are done independently, so there is no
synchronization of the translational and rotational movements, which is one of the

66 Chapter 3. Virtual Guides Construction

objectifs of our work: to propose a 6D constraint model that, in addition, can be
easily obtain through kinesthetic teaching. The authors used a simulated version of
The Steady-hand Game where users must simultaneously control both the position
and orientation of the ring. Results showed that the assistance provided by full
6-DOF dynamic frictional constraints (the constraints in position and orientation
are applied simultaneously but are not coupled) led to the best average user perfor-
mance compared to cases without any assistance, or with position and orientation
constraints separately. It was also found that constraining only position is beneficial
even when orientation is a factor in the task. The likely cause of this is that the
cognitive load involved in positioning the ring is reduced to such a degree that the
user has the time to actively consider and control the orientation as required for the
task.

In more recent work [Bowyer 2015], the authors extended their approach to
n-dimensions and applied translational and rotational dynamic friction constraints
using the same formalism. They repeated the task defined in their previous publi-
cation (The Steady-hand Game) and found out that the new approach can be of
significant benefit to tasks requiring simultaneous accurate movements in multiple
dimensions. The full dissipative controller, which employed energy redirection be-
tween all six dimensions, resulted in the best user performance when compared with
the uncoupled dissipative controller.

In [Zhang 2012], the structure of geometric and dynamic constraints of reference
tasks is analyzed using the screw theory. Virtual guides using screw theory unifies
rotational and translational constraints into one set. The spatial compliance/stiffness
matrices synthesis for admittance and impedance controlled devices was also studied.
In more recent work [Zhang 2014], the authors studied the application of virtual
guides in deforming environment, and proposed a novel framework of DVG for
admittance-type devices. A framework for DVG in the Euclidean Group SE(3) was
proposed to enhance the surgical operation accuracy of admittance-type medical
robotics in the deforming environment. This approach unites rotation and translation
in a compact form. The DVG can improve the dynamic properties of human-robot
cooperation in low-frequency deforming environment, and maintain synergy of
orientation and translation during the operation.

The difference between the approach of [Zhang 2014] and [Bowyer 2015] is that the
former is applied on dynamic constraints based on the concept of preferred directions
virtual guides presented in [Li 2007], and the latter n-dimensional dissipative control
strategy is proposed to enforce dynamic constraints employing a new technique called
“energy redirection”, both in a robot assisted surgery context. These last works
show the importance of coupling translation and orientation for Virtual Guides
construction. However, their approaches are based on Dynamic Virtual Guides
which are different from our non-dynamic definition based on virtual mechanisms.
Nevertheless, our work is similar to [Zhang 2014], in the choice of orientation
representation and distance definition in SE(3).

Next, we present our implementation of Orientation Constraints using interpola-

3.3. Virtual Guides as Orientation Constraints 67

tion functions in SO(3).

3.3.2 Interpolation in SO(3)

In this section we address the Virtual Guides construction in SO(3), focusing on
the orientation of the cobot end-effector. As explained before for the Position
Constraints Construction, during the kinesthetic teaching, the user is able to show
the cobot the desired movements by manipulating its end-effector. The orientation
Xrot of the cobot end-effector is recorded by user demand (e.g. by pressing a
button to record the current robot end-effector orientation) or continuously with
a determined sampling time. In both cases, the orientation Xrot ∈ SO(3) and a
recording parameter t ∈ R are stored as a list of points MR:

MR(ti) = {ti, Xrot,i}i=0:N−1 (3.13)

where N is the number of recorded points.

When the movements recording is done by user demand, the recording parameter
starts at t0 = 0 and increases monotonically along with the recorded points. When
the recording is done continuously, the recording parameter corresponds to the
recording time. Thus, in both cases, the parameters t0, t1, t2...tN−1 satisfy the
monotonic condition (3.2).

In order to create Orientation Constraints using the list MR, we propose to use
an interpolation function that matches exactly the recorded orientations in order to
encode in a precise and smooth way the demonstrated movements. We previously
stated the advantages of using interpolation functions for Position Constraints
construction. The same advantages apply for Orientation Constraints. Next, we
present some possible representations of orientations and the methods to interpolate
them in order to define the geometric and kinematic models of the virtual mechanism
from equations (2.1) and (2.3), defined in Chapter 3: "Virtual Guides Construction".

3.3.2.1 Orientation Representation through Unit Quaternions

The most common representations of orientations are rotation matrices and Eu-
ler angles. However, they both present several disadvantages for using them for
orientation interpolations:

• The rotation matrix is not an optimal representation because it uses nine
parameters to represent the three degrees of freedom of a rotation. Matrix
would be more suitable when representing all the other transformations such
as translation, scaling, projection and shearing.

• When using Euler angles, rotation must be expressed as the angles about
three explicit axes, where the order matters. Describing a general rotation

68 Chapter 3. Virtual Guides Construction

in this way is not natural or intuitive for the user. Also, it is possible to
encounter gimbal lock [Shoemake 1985]. It could be troublesome to uphold the
mathematical constraints on this representation during calculations. Finally, to
interpolate Euler angles, the coordinates of each basis axis must be interpolated
independently. Thereby the interdependencies between the axes are ignored.

Among all others, the axis-angle representation is the most intuitive one since a
rotation is defined through an angle θ about an axis represented by a unit vector v̂.
The vector v = θv̂ ∈ R3 is known as the angle-axis representation of the rotation.
However, when interpolating directly using R3 vectors (designed by i = 1 : N),
we can find some inappropriate behavior of the resulting curve: the interpolation
occurring in the 2D vector space leads to a coupled interpolation between θi and
||v̂i||. Firstly, this leads to the angle θi to compensate the crushing of the vector (as
illustrated by the blue curve in Figure 3.5. This phenomenon results in an undesired
rotation (see Figure 3.7). Besides, it induces an irregular step interpolation in the
orientation space as shown in Figure 3.6. In Subsection 3.3.2.2 we will explain the
SLERP interpolation method which allows to overcome the just mentioned issues of
interpolating directly using R3 vectors.

Figure 3.5: Comparison between interpolation into the angle-vector representation
vs. the SLERP interpolation method. The figure on the right represent the plane
between the two interpolated angle-vectors. By using linear interpolation directly
into this space the distance between the unit circle and the interpolated angle-vector
does not evolve linearly (as shown by the blue curve on the left). On the contrary,
the angle-vectors obtained by SLERP interpolation represented by the dotted orange
path allows to keep a linear interpolation of the rotation angle and of the direction
vector.

We find that the best choice for our context of application is the quaternion
representation. The quaternion representation is compact with a more natural
geometrical interpretation and a parameterization of rotation that is not dependent

3.3. Virtual Guides as Orientation Constraints 69

Figure 3.6: Comparison of the LERP (left) against the SLERP (right).

(a) Linear interpolation of axis-angle
representation using vectors

(b) Slerp interpolation

Figure 3.7: Difference between linear vector interpolation and SLERP interpolation.
We represent a rotation of pi/2 rad around the z axis. The problem we find is that
the interpolation in the angle-vector representation produces intermediate rotations
that do not remain on the (x,y) plane. This effect is more pronounced when the
rotation angle increases.

on the coordinate system. Also, quaternion rotations have the unique property that
the angle between any two vector representations (i.e. arccos(q1 · q2)) is exactly half
the minimum angle between the two rotations that they represent. Moreover, the set
of unit quaternions can be considered as a unit 3-sphere, SO(3) , R4 and therefore
the geodesic distance between any two quaternions on SO(3) is also exactly half the
minimum angle between the two rotations. Subsequently, the direction of a geodesic
between two quaternions gives the most direct rotation between them. It is this
property that makes quaternions pertinent for interpolation between rotations. A
larger description of the advantages of using quaternions representation is presented

70 Chapter 3. Virtual Guides Construction

in [Funda 1990].
Next, we present some quaternion notations useful to the reading of this chapter.

Notations A quaternion q can be considered to be the association of a scalar
w ∈ R and a vector a ∈ R3:

q ,
[
w

a

]

Considering the three complex variables i, j, k, such as:

i2 = j2 = k2 = −1 ij = k jk = i ki = j

We can also define the quaternion q by:

q = w + ii + jj + kk

In vectorial form:

q =
[
w

a

]
=

w

i

j

k

Relation with the angle-axis representation: The quaternion q corresponding
to the rotation through an angle θ along the axis v̂ is defined by:

q =
[
w

a

]
=

w

i

j

k

 =

cos(θ2)
vx sin(θ2)
vy sin(θ2)
vz sin(θ2)

The conjugate of a quaternion is denoted q∗ and is defined by:

q∗ =
[
w

a

]∗

=
[
w

−a

]

The norm of a quaternion is denoted ‖q‖ and is defined by:

‖q‖ =
√
w2 + i2 + j2 + k2

3.3. Virtual Guides as Orientation Constraints 71

The multiplicative inverse of a quaternion is denoted q−1 and is defined by:

q−1 = q∗

‖q‖

where the division of a quaternion by a real-valued scalar is just component-wise
division.

If ‖q‖ = 1, the q is called a unit quaternion and in this case q−1 = q∗. The set
of unit quaternions constitutes a unit sphere in four-dimensional space. We will use
these group of quaternions to represent rotations.

The mapping between rotations and quaternions is unambiguous with the excep-
tion that every rotation can be represented by two quaternions q and −q.

The logarithm of a unit quaternion is defined by:

log(q) =
[

0
v̂θ

]
(3.14)

where v̂ is the unit vector representing the axis of rotation through an angle θ.
As presented in [Hanson 2005], the instantaneous angular velocity ω̂ ∈ R3 of an

unit quaternion q with first derivative q̇ ∈ Q, is defined by:

[
0
ω̂

]
= 2q̇ · q−1 (3.15)

Next, we first address the interpolation between two orientations using spherical
linear interpolations of quaternions. Then, we explain the interpolation of a list of
orientations using spherical cubic interpolation of quaternions.

3.3.2.2 Interpolation between two orientations

The interpolation between two given orientations can be done using the axis-angle
or the quaternions representations. In this thesis, we will use unit quaternions to
interpolate orientations and though we will not discuss interpolations using other
representations of rotations.

SLERP SLERP of quaternions generates constant motion along the geodesic
linking between two unit quaternions. A detailed definition of SLERP is given
in [Shoemake 1985,Dam 1998]. Here, we present the analogous quaternion formula
of the Euclidean expression for linear interpolation: x(t) = x0 + t(x1 − x0).

As the interpolation parameter t uniformly varies between 0 and 1, the values
Slerp(t) are required to uniformly vary along the circular arc from p to q, where p and
q are unit quaternions. SLERP can be written in an exponential form [Dam 1998]
as:

72 Chapter 3. Virtual Guides Construction

Slerp(t; p, q) = p(p−1q)t (3.16)

An example of the application of (3.16) is shown in Figure 3.8.

Figure 3.8: Example of the SLERP interpolation between two unit quaternions on
the sphere.

The first derivative along t [Dam 1998] is given by:

˙Slerp(t; p, q) = p(p−1q)tlog(p−1q) (3.17)

Although p and −p represent the same rotation, the values of Slerp(t; q, p) and
Slerp(t; q,−p) are not the same. Indeed, geometrically the geodesic is a 4D-circle,
so it can be followed from q in two directions, arriving firstly in p or firstly in −p.
This is a consequence of SO(3), because in this set a rotation about some direction
of 2π returns to the same orientation of origin. The shorter path can be established
simply by comparing the distance between p and q with the distance between −p
and q. As explained in [Eberly 2002], it is customary to choose the sign σ on p

so that q · (σp) ≥ 0. In other words, the angle between q and σp is acute. This
implementation choice avoids extra spinning caused by the interpolated rotations.

3.3. Virtual Guides as Orientation Constraints 73

3.3.2.3 Interpolation over a Series of Orientations

In the set of unit quaternions, the SLERP interpolation curve of two quaternions is a
geodesic (i.e., the shortest interpolation path between two quaternions on the 4D unit
sphere). However, the simple juxtaposition of the successive geodesic interpolations
joining a series of orientations presents some limitations (see Figure 3.9):

• the curve is not smooth at the control points,

• the angular velocity is not constant and

• the angular velocity is not continuous at the control points.

A reparametrization can easily ensure continuity across the entire interpolation,
but fails to fix the lack of smoothness at the control points [Dam 1998]. The
smoothness is understand here as the continuity of, at least, the first derivative (C1

continuity).

SQUAD The Spherical Cubic Interpolation called Squad – spherical and quad-
rangle – was presented by [Shoemake 1985]. It takes inspiration from Bezier curves,
but involves spherical linear interpolations instead of simple linear interpolations.

The evaluation of SQUAD uses an iteration of three SLERP similarly to the
Casteljau algorithm [Farin 2014]:

1. Imagine four unit quaternions p, a, b, and q as the ordered vertices of a
quadrilateral.

2. Interpolate the quaternion c along the "edge" from p to q using Slerp(t; p, q).

3. Interpolate the quaternion d along the "edge" from a to b using Slerp(t; a, b).

4. Now interpolate the edge interpolations c and d to get the final result e.

The end result (final interpolation) is denoted SQUAD and is given by:

Squad(t; p, a, b, q) = Slerp(2t(1− t));Slerp(t; p, q), Slerp(t; a, b)) (3.18)

We can use (3.16) to obtain the exponential form of SQUAD:

Squad(t; p, a, b, q) = Slerp(t; p, q)(Slerp(t; p, q)−1Slerp(t; a, b))2t(1−t) (3.19)

An example of the application of equation (3.19) is shown in Figure 3.9.
The derivative of SQUAD in equation (3.19) is defined in [Eberly 2002] as:

˙Squad(t; p, q, a, b) = d

dt
[UW 2t(1−t)] (3.20)

74 Chapter 3. Virtual Guides Construction

Figure 3.9: Example of the SLERP (orange) and the SQUAD (blue) interpolations
between eight unit quaternions on the sphere. We can see that in contrast to the
SLERP curve, the SQUAD curve is smooth at the control points (red).

Where

U(t) = Slerp(t; p, q)
V (t) = Slerp(t; a, b)
U̇(t) = U(t)log(p−1q)
V̇ (t) = V (t)log(a−1b)
W (t) = U(t)−1V (t)

where ˙Squad is not an unit quaternion.
It is also shown in [Eberly 2002] that the derivatives of SQUAD at the endpoints

are:

˙Squad(0; p, a, b, q) = p[log(p−1q) + 2log(p−1a)] (3.21)
˙Squad(1; p, a, b, q) = p[log(p−1q)− 2log(q−1b)] (3.22)

3.3.3 Orientation Constraints Construction through Spherical Cu-
bic Interpolation

Given a sequence of N unit quaternions {qn}n=0:N , we want to build an interpolation
curve between those quaternions, subject to the following conditions:

• the spline pass through the control points

3.3. Virtual Guides as Orientation Constraints 75

• the first derivatives are continuous at the control points

To this aim, the idea is to chose intermediate quaternions an and bn to allow
control of the derivatives at the endpoints of the spline segments. More precisely, let
Sn(t) = Squad(t; qn, an, bn+1, qn+1) be the spline segments. By definition of SQUAD,
the last quaternion of a previous segment n− 1 is equal to the first quaternion of
the current segment n:

Sn−1(1) = qn = Sn(0)

To obtain continuous derivatives at the endpoints we need to match the derivatives
of two consecutive spline segments:

Ṡn−1(1) = Ṡn(0) (3.23)

From equation (3.22) we can write:

Ṡn−1(1) = qn[log(q−1
n−1qn)− 2log(q−1

n bn)]

and

Ṡn(0) = qn[log(q−1
n qn+1) + 2log(q−1

n an)]

The derivative continuity equation (3.23) provides one equation in the two
unknowns an and bn, so there is one degree of freedom. It is suggested in [Dam 1998]
and [Eberly 2002] to use an average Tn of "tangents", so Ṡn−1(1) = qnTn = Ṡn(0),
where:

Tn =
log(q−1

n qn+1) + log(q−1
n−1qn)

2 (3.24)

With this two equations (3.23), (3.24), an and bn can be determined as follows:

an = bn = qnexp

(
− log(q

−1
n qn+1) + log(q−1

n qn−1)
4

)
(3.25)

and bn = an+1.
Thus, Sn(t) = Squad(t; qn, an, an+1, qn+1).

The expression of SQUAD is not defined in the first and last interval since
qn−1 appears in the expression for a0 and qn+1 appears in the expression for an.
Therefore, it is necessary to define bound values for a0 and an. This choice could

76 Chapter 3. Virtual Guides Construction

have an impact on the resulting interpolation curve continuity class and can be
avoided during the implementation. Indeed, we could add two points, before the
beginning and after the end of the useful path, to ensure continuity order on the
desired portion.

Squad extrapolations In order to avoid discontinuities when implementing the
Virtual Guides using the SQUAD interpolation curve, it is important to provide the
extrapolations of the Virtual Guides.

For n = −1, we define the interpolation as:

q(t) = interpolation(t; q−1, q0) = Slerp(t; q0, q1) (3.26)

with t the interpolation parameter between two quaternions.
and its derivative by:

q̇(t) = ˙Slerp(t; q0, q1) (3.27)

For n = N + 1, we define the interpolation as:

q(t) = interpolation(t; qN−1, qN) = Slerp(t; qN−2, qN−1) (3.28)

where N represents the number of interpolation quaternions as though the quaternion
q(s = smax).

and its derivative by:

q̇(t) = ˙Slerp(t; qN−2, qN−1) (3.29)

3.3.3.1 Parameterization

As presented in Chapter 2: "Virtual Guides Definition via Virtual Mechanisms" and
in Section 3.2: "Virtual Guides as Position Constraints", singularities can appear on
the virtual mechanisms when the Jacobian Js is not normalized. These singularities
can disturb the interaction between the user and the Virtual Guides controller. Since
the list of orientations recorded by the cobot are obtained by users demonstrations,
we can not guarantee the normality of Js.

In order to guarantee a normalized Jacobian, it is desirable to evaluate the
SQUAD at orientations based on the arc-length of the curve instead of based on
the recording sampling time. For that matter, we propose to separate spacial and
temporal aspects of the trajectory.

Let t be the time, sθ be the arc-length quaternion curvilinear parameter and PR
the list containing the SQUAD orientations waypoints qrot ∈ SO(3).

PR,i = {qrot,i}

3.3. Virtual Guides as Orientation Constraints 77

with i = 0 : N − 1, where N is the number of orientation waypoints. When the
waypoints are recorded manually, t = i.

The SQUAD curve parametrized with time t is defined by fθ:

fθ : R −→ SO(3)
t 7−→ PR

The transformation function from the the arc-length curvilinear to time parame-
terization is defined by gθ:

gθ : R −→ R
sθ 7−→ t

Where gθ corresponds to a monotonic cubic interpolation function [Fritsch 1980].
This kind of interpolation is optimal for the transformation function since the
resulting curve does not present oscillations in the presence of outliers.

In the context of rotations in SO(3), the natural metric is equal to the angle
between two rotations. Specifically, given two rotation quaternions r and p, the
product rp−1 is also a rotation by an angle θ ∈ [0, π] about some axis. We chose to
use the metric of quaternion d(r, p) defined by:

d(r, p) = ‖log(r−1p)‖ = θ (3.30)

where the log function is defined in (3.14).
We approximate the computation of sθ by:

sθ,i+1 = sθ,i + d(qi, qi+1)

where sθ,0 = 0 and i = 0 : N − 1. The computation of d(qi, qi+1) is done using
(3.30).

The result of this parameterization is an equal arc length quaternion curve
subdivision, thus a normalized Jacobian Js.

The SQUAD spline can now be defined as a composition of the initial curve
parameterized with time fθ and the space transformation function gθ as:

fθ(t) = fθ(gθ(sθ)) = fθ ◦ gθ(sθ) (3.31)

The Virtual Guide is now described by the following data list of length N :

MR(ti, si) = {ti, si, qrot,i}i=0:N−1

Geometric and Kinematic models The above definitions of the interpolation
function for quaternions can be applied to the list ofMR points (3.13) where t values

78 Chapter 3. Virtual Guides Construction

increase monotonically (3.2).

MR(ti) = {ti, xrot,i}i=0:N−1

where N represents the number of points.
We can now define the geometric model of the virtual mechanism Ls (2.1) as:

Ls : R −→ SO(3)
sθ 7−→ Squad(sθ;φ)

where φ represents the other function parameters needed to compute Squad.
and:

Xvm,rot = Squad (gθ(sθ), φ) (3.32)

We can notice that the parameter svm of the virtual mechanism corresponds to
the spline parameter sθ. We can then write:

Xvm,rot = Squad (gθ(svm), φ) (3.33)

The kinematic model of the virtual mechanism Js (2.3) can be defined as the
angular velocity which can be obtained using the SQUAD derivative. In this thesis,
we decided to use the discrete derivative of SQUAD, since the implementation of
the derivative defined in equation (3.20) and detailed in [Dam 1998], resulted in
undesired behaviors of the angular velocity. For example, we were unable to obtain
constant rotation velocity when applying SQUAD between a list of uniformly spaced
orientations (i.e., same angle between orientations). We believe, this could come
from the implementation of the chain rule and the product rule for quaternions.

We defined the discrete derivative by:

˙Squad(t;φ) = Squad(t+ ε;φ)− Squad(t− ε;φ)
2ε ×

(1
smax − smin

)
(3.34)

In our implementation, a value of ε = 0.001 gave good results.

The kinematic model of the virtual mechanism Js can be defined using the
instantaneous angular velocity ω̂ ∈ R3 from (3.15), by:

Js = ω̂ =

ωxωy
ωz

 (3.35)

˙Xvm,rot = Js ˙svm (3.36)

3.4. 6D Virtual Guides 79

3.4 6D Virtual Guides

We presented in Section 3.2 and Section 3.3 how to define and construct Position and
Orientation constraints. However, robotic applications usually use the pose of the
end-effector (or the calibrated tool). We presented in Subsection 3.3.1 the related
works to the creation of 6D Virtual Guides and we will present in this Section our
new approach based on virtual mechanisms and interpolation functions.

6D Virtual Guides through XSplines To enforce 6D Virtual Guides we use
the virtual mechanisms controller presented in Chapter 2: "Virtual Guides Definition
via Virtual Mechanisms". However, we must first define the Virtual Guides and
implement their geometric and kinematic models. To this aim, we developed the
concept of XSplines.

XSplines are curves in SE(3), defined by both position interpolations in R3 and
orientation interpolations in SO(3) of poses of a robot obtained through kinesthetic
teaching. In other words, XSplines are a composition of MDSplines and Squads.
Figure 3.10 shows an illustration of this concept. The advantage of XSplines is that
they are parameterized in a way that allows the synchronization of the translation
and orientation movements.

A pose X ∈ SE(3) is defined as:

X =
{
Xtrans ∈ R3

Xrot ∈ SO(3)

}
=

x

y

z

w

i

j

k

Parameterization The space parameter sx is defined to variate depending on
both the translational and rotational components of a pose. This parameterization
allows sx to evolve along the curve even if the movement is done only on one of the
components. This feature could be very useful when the movement is described by
only a rotation along an axis without any translation. In this case, since translation
and rotation are coupled via an XSpline, the curve parameter will continue to evolve.

This parameterization uses the previously defined parameterizations in R3 and
SO(3). To this aim, we define a scaling factor L between the two parameters, which
value depends on the geometry of the tool used on the robot.

For two displacements e and u, we define the space parameter sx by using the
distance dx(e, u) between them, with:

dx(e, u) =
√
s2 + Ls2

θ (3.37)

80 Chapter 3. Virtual Guides Construction

Figure 3.10: Illustration of a XSpline where both translations and orientations
movements are considered in a single 6D curve.

where:

• s: represents the cartesian translation parameter defined in Subsection 3.2.2.2:
"Parameterization",

• sθ: represents the SO(3) rotation parameter defined in Subsection 3.3.3.1:
"Parameterization" and

• L represents the scaling factor between both parameters.

We approximate the computation of sx by:

sx,i+1 = sx,i + dx(xi, xi+1)

where s0 = 0 and i = 0 : N−1. The computation of dx(xi, xi+1) is done using (3.37).

In our implementation, presented in Chapter 5: "Experimental Evaluation" - Exper-
iment 2, L = 0.1 (corresponding to a lever arm of 10cm) gave good results.

An example of 6D Virtual Guides using XSplines – parameterized as explained
above – is shown in Figure 3.11.

3.4. 6D Virtual Guides 81

(a)

(b)

(c)

(d)

Figure 3.11: Visualization of 6D Virtual Guides using an Augmented Reality (AR)
interface. The XSplines are represented by the pose of the tool attached to the cobot.
The translational component of the guide is represented by cartesian points (white
points on figure c)) and the rotational component of the guide is represented by
trihedrons along the path (red-green-blue). We can also see the different orientations
of the model of the tool through the path (transparent gray).

82 Chapter 3. Virtual Guides Construction

Geometric and Kinematic models The above definition of XSplines can be
applied to a list of MX poses (3.13) where t values increase monotonically (3.2).

MX(ti) = {ti, xi}i=0:N−1

where N represents the number of poses.
We can define the geometric model of the virtual mechanism Ls (2.1) as:

Ls : R −→ SE(3)
sx 7−→ XSpline(sx;λ)

where λ represents the other function parameters needed to compute XSpline:
λ = Xtrans,i, Xtrans,i+1, Xrot,i, ai, ai+1, Xrot,i+1.

As explained before, the parameter svm of the virtual mechanism corresponds to
the curve parameter sx. Then:

Xvm = XSpline (svm, λ) (3.38)

with:

XSpline(svm, λ) ,
{
MDSpline(g(svm)) ∈ R3

Squad(gθ(svm), λ) ∈ SO(3)

}

The kinematic model of the virtual mechanism Js (2.3) can be defined using:

Js =
[˙MDSpline(g(svm))

ω̂

]
=

˙splinex(g(svm))
˙spliney(g(svm))
˙splinez(g(svm))

ωx
ωy
ωz

(3.39)

and :

Ẋvm = Jsṡvm (3.40)

3.5 Conclusion

In this Chapter we explained how the geometric and kinematic models of Virtual
Guides – presented in Chapter 2: "Virtual Guides Definition via Virtual Mechanisms"
– can be programmed through kinesthetic teaching and modeled through interpolation
functions. To construct Position Constraints we implement multi-dimensional Akima

3.5. Conclusion 83

Spline interpolations. To construct Orientation Constraints in SO(3) we use Spherical
Cubic Quaternion interpolations (SQUAD). In both cases we proposed to separate
the time and space components of the curves to parameterize them in a way that
guarantees the Jacobian normality. We also proposed a 6D Virtual Guides definition
through XSplines ∈ SE(3), based on both position interpolations – MDSpline ∈ R3

– and orientation interpolations – Squad ∈ SO(3) – of poses obtained through
kinesthetic teaching. The advantage of XSplines is that they are parameterized in a
way that allows the synchronization of the translation and orientation movements.
These guides form the basis of our iterative programming framework presented next
in Chapter 4: "Iterative Virtual Guides Programming".

Chapter 4

Iterative Virtual Guides
Programming

Contents
4.1 Human-Robot Interaction Roles 86
4.2 Iterative, Intuitive and Assisted Programming of Virtual

Guides . 89
4.3 Interaction Modes . 91
4.4 Local Refinement and Modification of Virtual Guides . . . 94

4.4.1 Virtual Guides Refinement of Translation 94
4.4.2 Portion Modification of a Virtual Guide 99

4.5 Iterative Programming of 6D Virtual Guides 100
4.5.1 Refinement of Orientation Components 101

4.6 Conclusion . 101

In this chapter we present a new framework to program Virtual Guides in
an intuitive way by using an iterative kinesthetic teaching approach where the
human operator is assisted. The Virtual Guides definition and implementation were
presented in Chapter 2: "Virtual Guides Definition via Virtual Mechanisms". Then,
Virtual Guides construction using information directly recorded by the robot was
explained in Chapter 3: "Virtual Guides Construction". With these elements, we
will show how to iteratively refine or modify Virtual Guides both in position and
orientation. In Section 4.1 we define the roles assigned to the cobot and the human
operator during the task programming and execution. Then, we present in Section
4.2 the definition of our novel Virtual Guides programming framework. Section 4.3
explains the possible interaction modes with the cobot and Sections 4.4 and 4.5
present the iterative Virtual Guides modification.

86 Chapter 4. Iterative Virtual Guides Programming

4.1 Human-Robot Interaction Roles

When seeking for an intuitive, fast and cost-effective method for programming
Virtual Guides on a comanipulation robot, the roles of interaction between the cobot
and the human operator should be defined. In comanipulation tasks, the division
of responsibilities can be done according to the skills of the actors involved in the
collaboration. [Dumora 2014] discussed several methods of role assignment between
man and machines in the context of long objects comanipulation. We next present
a brief summary of these role allocation methods.

• Allocation by imitation: This strategy was proposed by [Reed 2008] where it
is used in the context of human-robot interaction. It consists in designing a
robot capable of imitating a man who interacts with a human partner. This
method is not suitable to our context since it does not take into account the
capabilities of the robot, which is the core of the assistance for comanipulation
tasks in industrial environments. The interest of associating a robot and a
human operator is to be able to carry out tasks that each one alone is not able
to carry out. This strategy seems more adapted to analyse human behavior
and interaction.

• Economic allocation: This strategy consists in allocating to the machine only
the most profitable functions among the automatable ones, compared to the
cost of a human operator. Here again, this method does not rely on the limits
of the human operator. The goal of our framework is to provide assistance to
human workers while programming a cobot, since the working conditions of
the operator are a major issue.

• Leftover allocation: This strategy consists in allocating to the machine all
the automatable functions. The human operator is assigned the remaining
functions, for which automation techniques are not available. This strategy
assigns to the robot as many functions as possible, relieving the operator of
cognitive and physical overload so he/she can focus on a minimum of subtasks.
However, this can be frustrating in cases where the robot performance is less
efficient than what the human could achieve, creating a negative psychological
feeling for the operator. Furthermore, this strategy does not take into account
the capabilities of each actor of the collaboration. The operator is left in the
background even though his/her involvement in the system is particularly
important because the assistance is aimed to be used by him/her.

• Comparison allocation: This strategy is a pioneer on role allocation. It is
based on the comparison of the relative capacities of humans and machines in
order to fulfill each function. A function is assigned to the actor with the best
ability to perform it. This strategy is also called MABA MABA – "Men Are
Better At" "Machines Are Better At" – [Fitts 1951], and it allows to exploit
the complementary capabilities of each partner.

4.1. Human-Robot Interaction Roles 87

In the context of human-robot comanipulation assistance, the MABA MABA
strategy seems to be the more pertinent. An example of this strategy criteria is
shown in Figure 4.1. Next, we explain how we apply this strategy to our Virtual
Guides programming framework.

Figure 4.1: Illustration of some of the human-robot complementary skills.

The human operator should master the action plan. In the context of
human-robot comanipulation in small industries, the human operator generally
knows the task and has the gesture expertise to execute it. Besides this knowledge,
he has also the capacity for interpreting visual data in a much more robust and
cost-effective manner than commercial cobots. Also, his ability to improvise when
facing an unexpected situation (i.e., changes in the environment or the task) allows
him to instantly change his action plan. Moreover, dexterity and cognitive abilities
of today cobots are very poor compared to those of humans. For these reasons, we
entrusted the decision of the action plan to the operator, relying on the cognitive
ability of the operator to add flexibility to the system.

The human operator should master the motion generation. As presented
in Chapter 2: "Virtual Guides Definition via Virtual Mechanisms", a major constraint
in human-robot interaction is to ensure the stability. It was shown in [Mussa-Ivaldi
F. A. 1985] that the human operator is very complex and difficult to characterize,
since the impedance at the point of interaction, i.e. his hand, is very variable.
However, it was demonstrated in [Hogan 1989] that humans have the ability of
providing energy when necessary while emulating a passive impedance interaction
system. For this reason, the role of generating motions is also attributed to the
operator.

This role can demand an important physical effort to the operator. This is why
we propose an iterative framework for programming the cobot. The operator could

88 Chapter 4. Iterative Virtual Guides Programming

not only be relieved of physical effort but also the cognitive load could decrease
thanks to the iterative nature of the process.

Role of the human operator. In summary, the human operator should be the
master of both the programming and the execution of the task, in order to benefit
from his/her gesture experience and knowledge of the task and the environment. Also,
his/her cognitive abilities add flexibility to the system. Finally, the requested physical
effort to generate movements are reduced by using the Virtual Guides Assistance
presented in Chapter 2: "Virtual Guides Definition via Virtual Mechanisms".

The cobot should be able to refuse the action plan and act according to
the human operator’s intention. The decision of the action plan was attributed
to the operator who knows the task and the environment and has higher cognitive
capabilities than the cobot. However, the cobot must be able to force the operator’s
movements to follow some guide. For example, it is easier for the cobot to prevent
a collision with itself thanks to its proprioceptive sensors. The assignation of this
role to the cobot allows also the operator to only concentrate on the task and not
on the cobot. We also decided that the cobot should act according to the human
operator’s intention. To do this, they are two approaches:

• Predictive approach: the idea is to anticipate the intention of the operator by
prediction. In this case, the robot uses information that allows it to act before
the operator realizes or tries to realize his/her action.

• Reactive approach: the idea is to recognize the intention of the operator. In
this case, the robot uses information that comes from the action of the operator
who is trying to realize his/her intention.

Since we have defined that the human operator should master the action plan
and the generation of the movements, the cobot should then follow instructions
rather than applying any automatic algorithm to try to identify the intention of
the operator. Moreover, one drawback of the predictive approach is that it could
became counterintuitive for the user if it is not well implemented on the cobot. We
use then a pure reactive approach, where the intention of the operator is taken into
account by explicit actions via physical buttons. Using the force information coming
from the human operator interaction with the cobot could be an interesting solution
to apply the reactive approach. However, this is left out for future work. Another
interesting application of this approach was presented in [Dumora 2014] where naive
Bayesian classification is used to recognize the intention of the operator to use a
library of assistances in the context of big objects comanipulation.

The cobot should force the movements according to the programmed
task. The physical abilities of robots are much higher than those of the operator
and also invariable over time. This is why we attribute to the cobot all the physical

4.2. Iterative, Intuitive and Assisted Programming of Virtual Guides89

tasks. The cobot must then physically assist the operator to facilitate both the
programming and the execution of the task. To this aim, we propose to assign
to the cobot the task of blocking the degrees of freedom of motion not used by
the operator’s action plan (i.e., programmed movements) and let free those used,
as presented in Chapter 2: "Virtual Guides Definition via Virtual Mechanisms".
Thereby, the operator can move the cobot end-effector through the allowed paths,
without having to worry about unwanted movements.

Role of the cobot: In summary, the main roles of the cobot are to constrain the
movements that do not correspond to the desired programmed task (e.g. a path
to follow). The cobot does not automatically predict or detect the intention of the
operator, it follows explicit instructions.

Conclusion: It is important to note that our decisions apply only to the pro-
gramming and task execution in an industrial comanipulation context presented in
Chapter 1: "Introduction". The field of human-robot interaction is far larger and
choices would be different depending on the application and the type of human-robot
interaction. We have reached the solution of dividing the human operator and the
cobot work according to their skills. The main roles of the operator are to decide
the action plan and generate the movements. In this context, the cobot force is used
to avoid undesired motions and to follow the instructions of the user.

Based on the previously defined roles of interaction of the human operator and
the cobot, we present next a new framework for programming Virtual Guides.

4.2 Iterative, Intuitive and Assisted Programming of
Virtual Guides

In Chapter 1: "Introduction" - Section 1.1.3, we presented the core motivations of our
programming framework based on the problematics of the context of this research
and on the current limitations of the literature. In this section, we summarize the
main features of our framework.

The main objective is to propose different tools to enhace the flexibility of Vir-
tual Guides programming. To increase flexibility we think the framework must
propose easy and fast modification tools and also be intuitive so no robotics-
experts can use it. This is why we choose to use PbD and particularly, kinesthetic
teaching. However, in the context of collaborative robotics, cobots could present
some remaining inertia and friction that can make the direct manipulation harder.
Since the core idea is to assist human operators during a programming task, we pro-
pose to make the programming iterative. In this way, users do a first demonstration
of the Virtual Guide by directly manipulating the end-effector of the cobot and then
the Virtual Guides Assistance is activated. While the assistance is active, the user
can refine or modify the Virtual Guide in both position and/or orientation.

90 Chapter 4. Iterative Virtual Guides Programming

The process is done iteratively until the user is satisfied with the result. An
important advantage of this iterative approach, beyond the gain of flexibility of the
process, is that the physical effort and cognitive overload of the user can
be reduced. The first demonstration can also be replaced by pre-programmed
paths or simple tools to rapidly create basic guides such as: straight lines, arcs,
planar surfaces, among others. In addition, the iterative programming idea can be
applied to more complex tasks where velocity, force and stiffness (of the virtual
mechanism spring) must be encoded together with the guiding path. Indeed, it is
easier for the user to concentrate in only one task at the time (e.g. teaching first
position and then orientation, velocity, force or stiffness). If well implemented, this
framework can also allow the users to program Virtual Guides faster and increase
accuracy. Finally, these tools are thought for the human operators that are the
masters of both the task programming and execution. We aim at reducing the
penibility of the programming process while increasing the user’s satisfaction and
comfort.

Implementation The iterative programming framework can be implemented in
any kind of collaborative robot that allows safe physical interaction with human
operators. It can also be used together with other programming approaches but this
highly depend on the final application.

The tools presented in this Chapter, were gradually developed by using three
different robots: 2-DOF , 3-DOF and 6-DOF . Experimental validation with users
on the 3-DOF and 6-DOF cobots will be presented in Chapter 5: "Experimen-
tal Evaluation". All the components of the framework, from the Virtual Guides
Controller ((Chapter 2: "Virtual Guides Definition via Virtual Mechanisms")),
passing through the Virtual Guides Construction (Chapter 3: "Virtual Guides
Construction"), to the Virtual Guides Iterative Programming tools (presented in
this Chapter), where programmed within the proprietary Robotics Framework from
the Interactive Robotics Laboratory at CEA.

Interfaces To interact with the cobot in order to create, activate or modify Virtual
Guides, the human operator can use tangible, graphical and augmented reality
interfaces. The core interface of our framework is the robot itself (physical buttons
and haptic feedback) since the programming is done manually by demonstration.
However, together with the developement of the Virtual Guides tools, a few prototype
interfaces were also conceived. In the context of this thesis, the implementation
of the framework in different robots and the development of interaction interfaces
can be considered as a more technical contribution and so we will not exhaustively
discuss this subject on this chapter. However, there are a few important concepts to
keep in mind for the interfaces conception:

• They must be as most intuitive as possible since it is the core idea of the
framework.

4.3. Interaction Modes 91

• The ergonomy of the interaction should be considered (e.g. too many buttons
or information could annoy the user)

• The user must be able to save/load the Virtual Guides in order to use or
modify them later.

• Virtual Guides within the iterative framework can be considered as the ad-
dition of a base guide (i.e., obtained through the first demonstration or a
pre-programmed guide) and a history of guide modifications. In this way, the
user can undo one or several modifications applied to the Virtual Guide, or
reuse a guide modification to apply it to another base guide later.

• The interface should be programmed using a modular architecture, so new
tools can be added easily. It should also be possible to use with any robot (at
least those who use the same Robotics Framework).

Finally, visual feedback is an important feature for the use of Virtual Guides.
We addressed this subject by developing an Augmented Reality interface to visualize
6D Virtual Guides. We will briefly discuss this in Section 6.2: "Perspectives" of last
chapter.

Next, we present three different interaction modes that allow to program and
use the Virtual Guides. Further in this Chapter, Virtual Guides refinement and
modification will be addressed.

4.3 Interaction Modes

Within the programming framework presented above, the user will need, at some
point, to "escape" from a Virtual Guide due to variations in the environment or in the
task. If a particularly stiff guidance constraint is in use, this could be difficult. For
example, if a physical obstacle blocks the path, the robot can become immobilized.
In [Marayong 2004], a process for selecting the optimal constraint compliance value
with respect to this problem is reported. The method described searches for a
compromise between the level of permissible accidental violation of the constraint
and the need for freedom of intentional violation of it. In [Nolin 2003] three methods
for deciding when to apply a force scaling in an "explicit", "implicit" or "autonomous"
way, were studied. It was stated that the autonomous mode could be surprising for
the user. Similarly, [Passenberg 2011] used "interaction forces" between the user and
the robot to achieve an autonomous response. By monitoring how much agreement
there is between the user and robot they classify intentional violation cases and react
accordingly. In our case, we have previously defined the roles of interaction between
a user and a cobot, and stated that the role of the cobot was to physically and
passively assist the user while following instructions and reacting to users’ explicit
commands. This is why we propose to define interaction modes based on explicit
cues.

92 Chapter 4. Iterative Virtual Guides Programming

Inspired from [Nolin 2003] and [Raiola 2017b], we define three different modes of
interaction in our framework.

1. Hard Virtual Guides: The user is constrained to the Virtual Guides without
being able to escape them. The spring K from the virtual mechanism, will
exert high forces to pull the end-effector back to the Virtual Guide. This is
useful in scenarios where there are no changes in the environment or the task
and the user benefits from the Virtual Guides assistance to execute a task.

2. Soft Virtual Guides. The user is able to "escape" the Virtual Guides. The
force exerted by the virtual mechanism decreases if the distance to the Virtual
Guide becomes large. This mode is particularly useful to let the user refine
the guides within the iterative programming framework. It is also useful to
modify an existing Virtual Guide whenever there are changes in the task or
the environment.

3. Null Virtual Guides. This mode is equivalent to operating the robot in gravity
compensation mode with no Virtual Guides Assistance. It is used to realize
the first demonstration of a new Virtual Guide.

We present in Table (4.1) the differences between the features of the three
interaction modes.

Type of guide
Null Soft Hard

Create new Virtual Guides Yes Yes No
Refine/modify virtual Guides No Yes No
Attracted to Virtual Guide when close to it No Yes Yes
Attracted to Virtual Guide when far from it No No Yes

Table 4.1: Main functionalities of the three interaction modes.

Soft Virtual Guides implementation: As explained above, the user might
need to momentarily escape the Virtual Guide, in order to refine or modify it
while the assistance is still active. To this matter, we use the concept force scaling
presented in [Nolin 2003,Raiola 2015]. It allows the user to get out of a constraint
and locally modify the Virtual Guide. In [Nolin 2003], three force scaling functions
were proposed: toggle, fade and hold (see Figure 4.2). In this work, no consistent
patterns for user preference between scaling modes were found. We decided to use
the fade mode since we consider that smooth transitions could be more pleasant
and intuitive for the user.

When the user tries to "escape" the guide, the force of the virtual mechanism
fades proportionally with the distance between the pose of the virtual guide xvm
and the current pose of the cobot end-effector x. The user will feel an attractive
force F when escaping or approaching the guide, up to a defined distance dmax.

4.3. Interaction Modes 93

Figure 4.2: Force vs. position profiles for three force scaling methods presented
in [Nolin 2003]. Position is the perpendicular distance between the user and the
line representing the virtual fixture, where ’0’ is on the line and ’a’ is the activation
point.

F = α(ε)Fc

Where Fc is the force applied by the virtual mechanism on the cobot, as explained
in Chapter 2: "Virtual Guides Definition via Virtual Mechanisms".

In order to produce a quick fading effect at the proximity of the guide, the force
fading is not linear as in [Nolin 2003] but follows a smooth curve. For computational
efficiency purposes, α(ε) is defined as a 4th degree polynomial f(x) as follows:

f(x) = ax4 + bx3 + cx2 + dx+ e (4.1)

ḟ(x) = 4ax3 + 3bx2 + 2cx+ d (4.2)

We take into account the following constraints to solve the equation system of
(4.1) and (4.2):

• f(0) = 1

• ḟ(0) = 0

• f(−1) = f(1) = 0

• ḟ(−1) = ḟ(1) = 0

We obtain the following polynomial:

f(x) = x4 − 2x2 + 1 (4.3)

And we use it to define α(ε) as shown in 4.3, where:

94 Chapter 4. Iterative Virtual Guides Programming

ε = ‖ x− xvm ‖
dmax

Figure 4.3: Scaling force function using a fourth degree polynomial: f(ε) = ε4 −
2ε2 + 1. Here, ’a’ is the activation point.

The parameter dmax can be manually tuned to modify the basin of attraction of
the virtual guide. In the case of 6D Virtual Guides, ε should be defined according
to the metric (3.37) defined in Chapter 3: "Virtual Guides Construction".

Finally, a more distinctive feature of this soft interaction approach is the pos-
sibility to go back to the Virtual Guide intuitively without needing to change the
control mode.

4.4 Local Refinement andModification of Virtual Guides

When asking the operator to perform several times the ideal path he has in mind,
one realizes that there may be many variations. These variations are due to the
forces of interaction with the robot that the operator must compensate, the poor
repeatability inherent to human gestures, the variability in the task and, often,
simply concentration errors on a trajectory portion. For these reasons and the ones
enlightened in Section 4.2, we propose that the operator incrementally modifies the
virtual guides while being assisted by the robot. The refinement or modification are
done directly on the workspace by manually placing the cobot end-effector to the
new desired position, orientation or by doing a partial demonstration of a portion of
the Virtual Guide to modify.

4.4.1 Virtual Guides Refinement of Translation

We understand by refinement of a Virtual Guide, the local modification of a point
of the guide. Next, we will discuss the refinement of the translational component of
a 6D Virtual Guide (or position constraints).

4.4. Local Refinement and Modification of Virtual Guides 95

Usually, the shape control of spline curves like the B-Splines is achieved by the
modification of its knots values [Juhász 2001]. However, since the translational
component of Virtual Guides are constructed via interpolation curves, we propose
to modify them by applying a "deformation" method to the the control points of
the Akima splines presented in Chapter 3: "Virtual Guides Construction". Next, we
present a brief review of deformation methods inspired from the field of Computer
Design and Animation [Gain 2008].

4.4.1.1 Spatial Refinement Theory

Spatial deformations modify – or "deform" – an object by warping its ambient space.
The deformation can be formulated as a mapping from the world space through a
local parameter space, defined by the deformation tools of a particular technique.
They are different types of deformations:

• Point-based (0D)

• Curve-based (1D)

• Surface-based (2D)

• Volume-based (3D)

In general, all deformations are controlled by positioning and repositioning
control points, and possibly by means of simple ways for specifying scaling, tangent
orientation or deformation regions. The criteria to analyse a deformation method
can depend on different factors:

• Versatility: position, size and shape of the deformation boundary offered by
each technique.

• Ease of use.

• Efficiency: interactive feedback, computation cost.

• Correctness: internal validity and external realism of the shape.

In our case, we want to locally modify a point of a Virtual Guide that is
implemented as a curve. For this reason, we relay on Point-based (0D) deformation
methods.

Point-based deformation: The idea is to enable a user to drag object points and
have the surrounding surface to adapt smoothly. For instance, pushing or pulling
a single object point will create either a dimple or a mound in the object. The
deformation of an object is defined by the displacement of points called constraints.
There are several approaches which we do not discuss exhaustively.

96 Chapter 4. Iterative Virtual Guides Programming

Two of the most commun approaches are the Free-Form and Direct Manipulated
Free-Form Deformation (DMFFD), presented by [Sederberg 1986,Hsu 1992]. The
issue with this type of deformation is that the regions of influence of constraint
points cannot be varied independently, which is not intuitive enough for our iterative
programming approach.

On the other hand, Simple Radial Deformations (SRD) approaches offer great
simplicity and efficiency among the point-based spatial deformations. In these
schemes, deformations are determined by an arbitrary number of constraints, each
consisting of a spherical radius of effect ri centered on a constraint point Ci with an
associated displacement δCi . When applied to an object, the result is a collection of
smooth, possibly overlapping bumps. As the name implies, sample points of SRD
are parametrized only by their distance from the constraint points and deformations,
thus radiate uniformly in all directions. In contrast to the DMFFD approach, all
constraint parameters (radius ri, constraint point Ci, displacement vector δCi) are
completely independent.

Simple Constrained Object Deformation (SCODEF) presented by [Borrel 1994]
is part of SRD methods. The user defines a set of constraint points, giving a desired
displacement and radius of influence for each. Unlike other radial methods, the
deformation effect is local, this is why we chose to use it for the refinement of
Virtual Guides. We present next how to apply the SCODEF to our programming
framework.

4.4.1.2 Virtual Guides Refinement via Point-based Deformation

SCODEF was introduced in the field of geometric modeling and interactive shape
edition for producing controlled spatial deformations. It can be viewed as the
deformation obtained by creating an arbitrary number of possibly overlapping B-
spline shaped "bumps" over the space. The location and height of a bump are
defined by a constraint and its width by the radius of influence of the constraints.
SCODEF is a constraint based deformation in two senses: first, it is defined using
constraints; second, the constraints directly influence the final shape of the deformed
objects, and this shape can be fine-tuned by adjusting the radius of influence of
each constraint point. This deformation method can satisfy an arbitrary number
of constraints, unless two conflicting constraints are applied to the same unique
point, in which case a best approximation is calculated. For points lying within the
regions of influence of several constraints, a weighted combination of each constraint
is applied. To obtain local deformation, B-splines functions are used but any other
function having a limited range could be used.

We got inspiration from the SCODEF concept to locally modify Position Con-
straints Virtual Guides. We also get inspired by [Raffin 2000], where an extension of
SCODEF is presented in order to modify the deformation function without changing
the deformation model.

Our contribution is to implement the SCODEF method to locally modify the

4.4. Local Refinement and Modification of Virtual Guides 97

Position Constraints constructed via Akima splines.

Implementation of SCODEF In our programming framework, the human
operator can modify the Virtual Guide at a specific point of the spline interpolation
without modifying the entire curve. The control point (waypoint) to be modified
is called a constraint point Xk. Once Xk is defined, the operator modifies the
interaction mode (Section 4.3) to be able to "scape" the Virtual Guide and displace
the end-effector in space, using a Soft Virtual Guide. He/she can then specify the
new point X ′

k to replace Xk.
A vector of displacement #»

d between Xk and X ′
k is determined:

#»

d =
»

XkX
′
k

A radius r determines the region of influence of the deformation. It seems natural
to choose r proportional to the magnitude of #»

d :

r = g ‖
»

XkX
′
k ‖

This radius of influence r allows an intuitive control of the Virtual Guide
modification. The only parameter to tune is g, for which a compromise must be
done between the shape of the curve and the locality of the deformation, i.e, the
neighbor points that will be also modified.

Figure 4.4: SCODEF deformation applied to the constraint point Xk lying on the
spline curve. Xk

′ is the new desired position. In gray, the circle of influence of
radius r. In red, the deformed spline. In dark blue, the displacement vector ~d of the
constraint keypoint and in light blue the displacement vector of the other keypoints.

A local deformation function F centered at the constraint point Xk and de-
creasing to zero for points beyond the radius r, must be determined. According
to [Raffin 2000], deformation functions can be defined using three required conditions:

• f(Xk) = 1 to satisfy the constraint Xk.

98 Chapter 4. Iterative Virtual Guides Programming

Figure 4.5: Several deformation functions: gate, peak and B-spline. Image inspired
from [Raffin 2000].

• f(r) = 0 by definition of the radius of influence.

• f is continuous, to ensure the continuity of the deformation.

For example, in Figure 4.5 a gate function, a peak function and the original
B-spline function are shown.

In order to obtain a smooth displacement of the Akima spline control points, we
apply the fourth degree polynomial f(x) previously defined in equation (4.3). We
define x by:

x = (svm,i − svm,k)
r

Where {svm,i}i=0:N−1 represent the curvilinear abscissa parameter of the Akima
spline, and N is equal to the number of interpolation points.

Since the deformation polynomial f(x) is continuous, the SCODEF deformation
function F is also continuous.

Once the deformation function applied, a list containing the new guide points
after the deformation is defined. This provides a new Akima interpolation defining
the new Virtual Guide.

To summarize, the deformation steps are:

1. Deformation constraint definition (selecting a guide point and assigning it a
new location).

2. Definition of the associate function to the constraint.

3. New Virtual Guide construction via Akima spline interpolation.

Perspective: The concept of the radius of influence greatly helps to intuitively
control the locality of the deformation. We previously saw that the SCODEF
region of influence is circular. It was demonstrated in [Raffin 2000] that different

4.4. Local Refinement and Modification of Virtual Guides 99

areas of influence can be defined such as ellipsoids, star-shaped and triangles. Also
a curvilinear displacement was proposed to extend the "straight deformations"
originally proposed for SCODEF . We did not applied this in our work, but there
are interesting solutions to explore.

Drawback: The number of control points of the Akima spline can be a limitation
for the proposed modification approach. For example in the case where the point
that the user wants to modify is "too far" from a control point. In this case, the
point to be modified can be added as a control point Xk.

4.4.2 Portion Modification of a Virtual Guide

The previous method is useful to locally modify the trajectory, however sometimes
the user needs to modify a whole portion of it. To do so, a partial demonstration of
the portion to modify can be done using kinesthetic teaching and the interaction
modes presented in Section 4.3.

Initial and final positions of the partial demonstration do not always match a
control point of the guide. To merge the new portion with the rest of the guide, we
propose to use the previously explained point deformation method to modify the
closest points on the base guide for matching the first and last points on the new
guide portion.

Let X1 and X2 be the constraint points of the current guide. X ′
1 and X ′

2 are the
initial and final points of the new guide portion, respectively (see Figure 4.6). The
constraint points are defined as the two base guide’s points which are closest to X ′

1
and X ′

2, respectively. We obtain X1 and X2 by calculating the distance from X
′
1

and X ′
2 to the base guide’s control points. Then we select the two control points

of minimum distance. Displacement vectors #»

d1 and #»

d2 are determined between
X1 and X ′

1, and between X2 and X ′
2. A radius of influence r must be defined for

both constraints. Again, we choose the radius proportional to the magnitude of the
displacement vector.

#»

d 1 =
»

X1X
′
1; r1 = g1 ‖

#»

d 1 ‖

#»

d 2 =
»

X2X
′
2; r2 = g2 ‖

#»

d 2 ‖

The radius r1 and r2 allow a more intuitive control of the deformation. The
only parameters to tune are g1 and g2, where a compromise must be done between
the shape of the curve and the area of influence of the deformation, i.e, the neighbor
points that will be deformed.

A local deformation function F (x) is defined, as done previously in Subsection
4.4.1.2, using the polynomial of equation (4.3).

The deformation function F (x) is applied to both X1 and X2 to obtain the new
control points, including X ′

1 and X ′
2.

100 Chapter 4. Iterative Virtual Guides Programming

Figure 4.6: Local refinement applied to the constraint points X1 and X2 lying on
the base guide. X ′

1 and X ′
2 are the initial and final point, respectively, of the new

guide portion.

The new control points of the Virtual Guide are stored in a vector defined by
the modified base guide’s control points before X1 and after X2, along with the new
guide portion’s control points. Finally, we perform a new Akima spline interpolation
to define the new Virtual Guide.

4.5 Iterative Programming of 6D Virtual Guides

During the execution of a complex task in space, it would be difficult to concentrate
in both translation and orientation of the robot. In this Section, we propose to
realize the trajectory programming in two phases to reduce the cognitive load of the
user and enhance the programming experience by separating the translation and
the rotation programming.

The first time we record both translation and orientation. The second time we
use the virtual mechanism’s translation only in order to just modify the orientation.

1. The user does a first demonstration of the trajectory (Positions) using the
cobot in gravity compensation mode.

2. A Position Constraint Virtual Guide is constructed and activated.

3. While being guided through the Position Constraint trajectory, the user does
a demonstration of the tool orientations. The orientation of the tool xR is
recorded without adding new keypoints to the curve. For translation, we use
the position of the virtual mechanism xvm instead of the position of the tool
since we want to keep the initial position information recorded in step 1. We
could also just record the orientation of the tool and fusion both informations
of translation and orientation. This is just an implementation issue.

4. A 6D Virtual Guide is constructed and activated.

4.6. Conclusion 101

4.5.1 Refinement of Orientation Components

The approaches presented in Subsections 4.4.1 and 4.4.2 can be applied to SE(3).
Thus, the orientation components can also be refined locally or modified on a portion
of the 6D Virtual Guide. This functionality can be used iteratively using the Soft
interaction mode presented in Section 4.3.

4.6 Conclusion

In this chapter we presented a new intuitive, iterative and assisted framework for
programming 6D Virtual Guides. First, we defined the roles allocation: the human
operator masters the action plan and the cobot assists the human passively and
under explicit demand. Next, we proposed a solution to edit Virtual Guides using
three interaction modes (Soft, Hard and Null Virtual Guides): guides can be locally
refined or modified by the user in both Cartesian position and orientation. Especially
we proposed to use Virtual Guide Assistance through an iterative process to relieve
the users. This method aims at reducing the cognitive load of the human operator
and enhance the programming experience by allowing the programmation of the
translation and the rotation iteratively for 6D Virtual Guides. Two experiments
showing the advantages of using Virtual Guides Assistance and our programming
framework are presented in the following chapter : Chapter 5: "Experimental
Evaluation".

Chapter 5

Experimental Evaluation

“ Les conclusions théoriques n’ont de valeur que s’il
est montré qu’elles permettent effectivement d’obtenir
des résultats concrets. ”

Luc Joly, PhD Thesis, 1997

Contents
5.1 Statistic analysis . 104
5.2 Experiment 1: Virtual Guides Assistance advantages 107

5.2.1 Task definition . 107
5.2.2 Protocol . 110
5.2.3 Results . 112
5.2.4 Conclusion of experiment 1 119

5.3 Experiment 2: Iterative Programming 121
5.3.1 Task definition . 122
5.3.2 Protocol . 124
5.3.3 Measures . 124
5.3.4 Results . 127
5.3.5 Conclusion of experiment 2 145
5.3.6 Additional Remarks and Improvements 146

5.4 Conclusion . 150

104 Chapter 5. Experimental Evaluation

In this chapter we present two main experiments conducted using the Virtual
Guides Assistance and the Iterative Programming Approach explained in Chapter
2: "Virtual Guides Definition via Virtual Mechanisms", Chapter 3: "Virtual Guides
Construction" and Chapter 4: "Iterative Virtual Guides Programming". The main
objective of the following experiments is to show the influence of the Virtual Guides
Assistance on the execution of a comanipulation task and the influence of our
Iterative Approach on the programming of a comanipulation task, both in terms
of time and accuracy. We will also show that our approaches improve the user
experience when programming or executing a task with a cobot.

(a) 3-DOF ISybot cobot (b) 6-DOF ISybot cobot

Figure 5.1: Back-drivable cobots with screw-and-cable transmissions

Both experiments were conducted on back-drivable cobots with screw-and-cable
transmissions [Garrec 2010] developed by CEA and ISybot1 (see Figure 5.1). The
main characteristics of the two versions we used are summarized in Table 5.1.

Table 5.1: Main characteristics of ISybot cobots: PK0 and PK2

Cobot Number of axis Weigth (kg) Payload (kg) Working radius (m)

PK0 3 40 14 1.2
PK2 6 50 8 1.2

5.1 Statistic analysis

In this section we define some useful concepts to better understand the analysis of
the results obtained in the next sections of this chapter.

1http://www.sybot-industries.com/

5.1. Statistic analysis 105

We will use two types of variables for the statistic analysis of our experiments:

• Dependant variable: A variable measured by the experimenter to be analyzed
(quantitative).

• Independent variable: A variable manipulated by the experimenter to deter-
mine its effects on the dependent variable (qualitative).

In general, a statistic analysis combines several independent variables but just
one dependent variable. In this chapter, the standard deviation of a dependent
variable will be represented as σvariable.

Hypothesis test The main purpose of statistics is to test a hypothesis. A
hypothesis is an educated guess about something in the world around us. It should
be testable, either by experiment or observation. A statistical hypothesis test is a
method of statistical inference. Commonly, two statistical data sets (groups) are
compared. A hypothesis is proposed for the statistical relationship between the two
data sets, and this is compared as an alternative to an idealized null hypothesis that
proposes no relationship between two data sets.

• Null hypothesis (H0): there is no difference between the two data sets.

• Alternative hypothesis (HA): there is a significance difference that is not due
to random sampling.

To decide between the null hypothesis and the alternative hypothesis, it is useful
to identify two conceptual types of errors (type I and type II), and specify some
limits, for example, how much type I error is allowed. This is called the significance
level (α), understood as the probability threshold below which the null hypothesis
will be rejected. Common values are α = 5% and α = 1%.

• Type I error: reject H0 when it is true, it is called α.

• Type II error: accept H0 whereas it is false, it is called β.

The more we reduce α, the more we increase β, however, β 6= 1− α.

ANOVA An ANOVA (Analysis of variance) test is a way to find out if survey
results or experiment results are significant. In other words, they help us figure out
if we need to reject or accept the null hypothesis. Basically, we test groups to see if
there is a difference between the means of the measured Dependant Variable.

An F-statistic is computed for each tested hypothesis. It is any statistical test in
which the test statistic has the asymmetric F-distribution under the null hypothesis.
The probability, assuming the null hypothesis is true, of observing a result at least
as extreme as the test statistic, is called the p-value. In other words, the p-value
represents the probability the results could have happened by chance.

106 Chapter 5. Experimental Evaluation

• If p-value > .05, then the risk is too great to reject H0, and we declare the
absence of significant difference according to the conditions.

• If p-value < .05, then we can reject H0 and declare that our conditions lead to
significant differences.

• If .05 < p-value < .10, we can consider that the observed phenomenon is a
trend that could become significant if we increase the number of subjects of
the study.

Repeated measures ANOVA A "repeated measures ANOVA" is an ANOVA
test where the same group of participants is being measured over and over again,
thus they are not independent. In this case, we can not use the same approach as
in a regular ANOVA test. Indeed, each repetition measure is naturally correlated
to the subject. This is why we define the repetitions as a factor of the ANOVA
test. This kind of factor, based on an internal condition, is what we call a within
factor as opposed to between factors, which are based on external conditions of the
experiment (such as subjects’ age or gender).

Post-hoc tests An ANOVA test tells us if the null hypothesis is true or may
be rejected, but in the latter case, it does not tell us where the difference is. To
determine which groups differ from another we need to make complementary tests,
called post-hoc tests.

One of the most used post-hoc tests after an ANOVA is the Tukey Test
[Tukey 1949]. However, this test makes the assumption that the studied groups are
independent, which is not the case for the repeated measures ANOVA groups.

We chose to use separate paired-samples t-tests2 [Student 1908] and a sequentially
acceptive step-up Benjamini procedure [Benjamini 1995] based on the conservative
Bonferroni correction. This approach is specially adapted to the "repeated measures
ANOVA test". Bonferroni laws says that if we do N comparisons3, the type I error
cannot be superior to N ·α. We consider FWER as the probability that a family of
comparisons contains at least one type I error. If we want to keep FWER = α, then
we should simply use a threshold of α/i, where i represents the current comparison.
The Benjamini procedure proposes to use an adaptive threshold of α(N + 1− i)/N ,
which is less conservative than the initial threshold correction and avoids error type
II when N increases.

We will use this formalism to analyse the data of our experiences. The interested
reader is referred to [Lomax 2013] for further details on statistic tests and post-hoc
analysis.

2A t-test, also called t-Student test, evaluates if there is a significant difference between two
groups distributions. When the groups are dependent from each other, (which is the case for groups
of a repeated measures ANOVA) we use a paired t-test.

3A comparison is an independent t-test for each combination of factors.

5.2. Experiment 1: Virtual Guides Assistance advantages 107

5.2 Experiment 1: Virtual Guides Assistance advan-
tages

In Chapter 2: "Virtual Guides Definition via Virtual Mechanisms" and Chapter
3: "Virtual Guides Construction" we presented our virtual guides implementation
for a comanipulation context using Akima splines. These virtual guides were then
used in Chapter 4: "Iterative Virtual Guides Programming" as part of our iterative
programming approach. The main objective of this first experiment is to show the
advantages of virtual guides assistance on a comanipulation task with a cobot, to
validate the interest of using them on our cobot programming approach.

We designed a user study in order to analyse the participants’ peformance of a
comanipulation task with a cobot (time and accuracy) and to observe how novice
users perceive the Virtual Guides Assistance (helpful and intuitive).

The following hypotheses were tested:

• H1: Virtual Guides Assistance reduces the execution time of the task.

• H2: Virtual Guides Assistance improves the users’ task performance.

• H3: Virtual Guides Assistance is perceived as helpful by the users.

• H4: Virtual Guides Assistance is easy to use.

• H5: Virtual Guides Assistance is more useful when the task requires higher
level of attention.

In order to verify these hypotheses, we designed a specific comanipulation
experience using the approaches explained in Chapter 2: "Virtual Guides Definition
via Virtual Mechanisms", Chapter 3: "Virtual Guides Construction" and Chapter 4:
"Iterative Virtual Guides Programming".

5.2.1 Task definition

This first experiment seek to simulate a sanding task where an operator and a
robot collaborate to clean a metal sheet. The general task is to follow a sweeping
trajectory with the 3-DOF ISybot cobot of Figure 5.1(a) appended with an industrial
sander tool. The sander tool is thus used to erase the 2 red marks shown in Figure
5.2.

It was necessary to choose a task where no technical expertise is needed in order
to minimize the impact of different skill levels of participants. Also, to execute a
real sanding task experiment, security measures would have been harsher and dust
and noise could have disturbed the user. Finally, since we wanted to analyse the
effects of virtual guides only in a trajectory level (without measuring forces), we
sticked to an erasing task. However, the system could be used in more dynamic and
complex scenarios.

In order to verify our hypotheses, two tasks are studied:

108 Chapter 5. Experimental Evaluation

Figure 5.2: Sweeping trajectory (in red). In order to reproduce the same trajectory
for each participant and each repetition a black tape canvas was used.

1. Case A consists on cleaning the metal sheet while following the sweeping
trajectory,

2. Case B consists in performing the same task with an obstacle blocking the
trajectory.

The obstacle in Case B is a symbol that represents changes in the task, as for
example a new metal sheet to sand that has a different form or holes to avoid. It
also demands the user a higher level of attention compared to Case A.

In both cases, we compare two Assistance Modes:

1. Gravity Compensation Assistance,

2. Virtual Guides Assistance.

For the first Mode, users are able to move the robot freely. For the second Mode, an
expert user programs the virtual guide aimed to assist the participants during the
execution of the task, as explained in Chapter "Virtual Guides Definition via Virtual
Mechanisms". The expert user also modifies a portion of the guide generated for
Case A, using the iterative approach explained in Section 4.4.2, in order to realize
Case B.

Programming virtual guides by an expert user To program a virtual guide
for Case A - Virtual Guides Assistance Mode, the expert user uses a function
that takes two non-adjacent vertices of a rectangle and generates a set of points
describing a sweeping trajectory filling the rectangle. These vertices are shown by
demonstration to the cobot and recorded using the lower green button placed on
the 3rd axis of the cobot, as shown in Figure 5.3. With the previously generated set
of points, the virtual guide represented in Figure 5.4,i) is created.

5.2. Experiment 1: Virtual Guides Assistance advantages 109

(a) Cobot programming interface. Lower green
button is used to record key points. Upper black
button is used to end the recording and activate
the virtual guide.

(b) Expert user recording a key point

Figure 5.3: Interaction with the 3-DOF ISybot collaborative robot

For Case B - Virtual Guides Assistance Mode there is an obstacle blocking
the trajectory. As a consequence, the previous approach must be completed by
a modification done by the expert. This modification of the guide is done using
the approach explained in Section 4.4.2. When the guide is active, the expert
user is able to move along the trajectory while being constrained to move in other
directions. Once arrived near the obstacle, the user is able to escape the guide, as
presented in Section 4.3, by using the lower green button placed on the 3rd axis of
the cobot. Then, the partial modification is shown by demonstration to the cobot
and recorded using the upper black button (see Figure 5.4,i). After recording is
stopped, the upper button triggers the refining algorithm and a new guide is created
(see Figure 5.4,ii).

Our approach allowed the expert user to modify the first guide while being
assisted by it, in order to adapt to a change of environment. In this case of applica-
tion, only the demonstration of two points and the demonstration of a portion of

110 Chapter 5. Experimental Evaluation

trajectory were needed to obtain two guides. Thanks to our method, the user
just had to modify locally the guide to get around the obstacle, avoiding
the entire guide demonstration with the cobot.

For the Virtual Guide Assistance Mode, the controller gains were tunned as
explain in Chapter 2: "Virtual Guides Definition via Virtual Mechanisms" and set
as follows:

K =
[
10000 10000 10000

]
N/m

B =
[
400 400 400

]
N/m.s−1

Ks =
[
5000

]
N/m and N/m.rad

Bs =
[
5
]
N/m.rad.s−1

Sampling time was set at 1ms.
During the modification of the virtual guide, the expert user set:

dmax = 0.01m
α1 = 1
α2 = 2

These values were chosen through trial-and-error to meet the conditions described
in 4.4.2. An example of the influence of the choice of α1 et α2 is shown in Figure
5.4,ii.

5.2.2 Protocol

We recruited 14 participants from different research laboratories (between 22 and
33 years old, 5 women). Nine participants stated they had prior experience with
robots, ranging from robotic courses to hands-on experience with industrial robots.

All participants were asked to perform the tasks Case A and Case B (ie. cleaning
task; cleaning task with an obstacle), in both Modes: Gravity Compensation and
Virtual Guides Assistance, resulting to four test conditions. The four (2× 2) test
conditions were presented in a randomized order to avoid biasing the results towards
the last tested Mode due to training effects. For each condition, the participants were
asked to perform the task 3 times in a row (Repetitions). In total, the participants
performed 12 = 2× 2× 3 (Case*Mode*Repetition) cleaning tasks. At the beginning
of each condition, the Case and the Mode were presented to show the participants
how to use the cobot. Then, they were able to familiarize themselves with the
system and try the tested condition on their own. When a condition was completed,
it was asked to the participants to fill the same post-condition survey – Likert-scale

5.2. Experiment 1: Virtual Guides Assistance advantages 111

Figure 5.4: a) Base guide and new guide portion. The areas of influence are
represented by the red disks which are centered at the constraint points X1 and
X2, lying on the base guide. Each radius of influence is α times proportional to
the magnitude of the corresponding displacement vector, as explained in Section
IV. Here, α1 = 1 and α2 = 2. X ′

1 and X ′
2 are the initial and final points of the new

guide portion. b) Resulting virtual guide after local refinement. The choice of each
α has an impact on the final curve. In our case, we compare α2 = 1 and α2 = 2
(α1 is fixed to 1). α2 = 2 allows to reach another key point of the base guide, thus
improving smoothness of the resulting curve.

112 Chapter 5. Experimental Evaluation

survey with a rating from 1 (strong disagreement) to 7 (strong agreement).
To validate our hypotheses, we recorded the following measures:

1. Time of execution of the task for the twelve conditions, to validate H1 and
H3 – Virtual Guides Assistance reduces the execution time of the task and is
perceived as helpful by the users.

2. Observed collisions in Case B, to validate H2 – Virtual Guides Assistance
improves the user’s task performance.

3. Survey results for both Cases and both Modes, to validate H2-H5 – Virtual
Guides Assistance improves the user’s task performance, is perceived as helpful
by the users, is easy to use and is more useful when the task requires higher
level of attention.

5.2.3 Results

We performed a Repeated-measures ANOVA for the time execution of the task as the
Dependent Variable on three within factors (internal conditions of the experience):

1. Modes

2. Cases

3. Repetitions

We performed independent repeated-measures ANOVA for each survey question
on the first two within factors mentioned above. Repetitions were not taken into
account on the post-condition surveys. For all ANOVA tests, participants were
grouped by one between factor (external conditions of the experience): their previous
Experience with robots. Other factors as Age and Gender had no influence on the
time of execution.

We set our significance level at α = 0.05, which means there is at least 5%
chance of having a difference between means of the studied variables. We con-
sider a result strongly significant when p-value < 0.01 and poorly significant when
p-value < 0.1. We use poorly significant results to show trends and give further
analysis of data, however we do not draw conclusions based on these results. Post
hoc pairwise comparisons were computed using non-pooled error terms (i.e., by
computing separate paired-samples t-tests; sequentially acceptive step-up Benjamini
procedure [Benjamini 1995], with an alpha level of 0.05.)

We use box plots and group means plots to visualize both main effects and
interaction effects on the dependent variables. Box plots are useful to represent
the median value (less affected by outliers) and data dispersion, while group means
plots indicate a more "easy to see" relation between the mean values of the studied
variables. On the group means plot, the bars represent a confidence interval of 95%.

All the results and graphs were obtained using R language4.
4https://www.r-project.org/

5.2. Experiment 1: Virtual Guides Assistance advantages 113

Gravity Compensation Virtual Guides

10
15

20
25

Mode

T
im

e
(s

)

(a) Box plot
12

13
14

15
16

Mode

T
im

e
(s

)

Gravity Compensation Virtual Guides

(b) Group means with confidence interval of
95%

Figure 5.5: Main effect of the Assistance Mode on time

5.2.3.1 Time and collision results

We found a significant main effect of the Modes on the execution time of the task
(p− value < .01). As shown in Table 5.2 and Figure 5.5, participants were faster
when they used the Virtual Guides Mode. This validates hypothesis H1 – Virtual
Guides Assistance reduces the execution time of the task.

Table 5.2: Effect of the Modes on the execution time of the task

Mode meanT ime (s) σT ime (s)

Gravity Compensation 15 4.73
Virtual Guides 12.06 3.90

We also found a significant main effect of the Repetitions on the execution time of
the task (p− value < .001). Post hoc analyses showed that the first Repetition was
longer than the second (p−value < .025) and the third Repetitions (p−value < .001).
These results are shown in Table 5.3 and Figure 5.6, and they confirm there is a
training effect through Repetitions.

Table 5.3: Main effect of the Repetitions on the execution time of the task

Repetition meanT ime (s) σT ime (s)

1st 14.63 5.23
2nd 13.02 4.24
3rd 12.95 4.03

114 Chapter 5. Experimental Evaluation

First Second Third

10
15

20
25

Repetition

T
im

e
(s

)

(a) Box plot
12

13
14

15
16

Repetition
T

im
e

(s
)

First Second Third

(b) Group means with confidence interval of
95%

Figure 5.6: Effect of the Repetitions on the execution time of the task

Moreover, there is a significant effect of interaction between Repetitions and
participants’ previous Experience with a robot (p− value < .01). Post hoc analyses
showed that the first Repetition was longer than the second (p− value < .025) and
the third Repetitions (p− value < .025), only in the group of participants without
previous Experience with robots. These results are shown in Table 5.4 and Figure
5.7. This indicates us that the participants who did not have previous Experience
with robots had a greater improvement in their execution time through Repetitions
than those who had previous Experience. These results support the hypothesis H3 –
Virtual Guides Assistance is perceived as helpful by the users.

Table 5.4: Interaction effect of Repetitions and Experience with robots on the time
execution of the task

Repetition Experience meanT ime (s) σT ime (s)

1st No 15.50 5.16
2nd No 13.18 3.72
3rd No 12.04 3.14
1st Yes 14.14 5.27
2nd Yes 12.94 4.55
3rd Yes 13.45 4.41

We found a low effect of the Case on the execution time of the task (p− value =
0.064). As shown in Table 5.5 and Figure 5.8, participants were slower when there
was an obstacle obstructing the sweeping trajectory.

Moreover, there is a significant interaction effect of Mode and Case on the
execution time of the task (p − value < 0.05) (see Table 5.6). Post hoc anal-

5.2. Experiment 1: Virtual Guides Assistance advantages 115

(a) Box plot

12

14

16

18

First Second Third

Repetition

T
im

e
(s

)

Experience

No

Yes

(b) Group means with confidence interval of
95%

Figure 5.7: Interaction effect of Repetitions and Experience with robots on the time
execution of the task

Table 5.5: Effect of the Case on the execution time of the task.

Case meanT ime (s) σT ime (s)

A (Obstacle) 12.76 4.82
B (No Obstacle) 14.31 4.18

No Obstacle Obstacle

10
15

20
25

Case

T
im

e
(s

)

(a) Box plot

12
.0

12
.5

13
.0

13
.5

14
.0

14
.5

15
.0

Case

T
im

e
(s

)

No Obstacle Obstacle

(b) Group means with confidence interval of
95%

Figure 5.8: Main effect of the Case on time

116 Chapter 5. Experimental Evaluation

ysis showed that there was a significant influence of the Mode only for Case A
(p − value < 0.001). In other words, the Virtual Guides Assistance Mode made
a bigger difference on the execution time of the task where there was an object
obstructing the sweeping trajectory (see Figure 5.9). This result validates H5 – Vir-
tual Guides Assistance is more useful when the task requires higher level of attention.

Table 5.6: Interaction effect of Modes and Cases on the time execution of the task

Mode Case meanT ime (s) σTime (s)

Gravity Compensation A 13.72 4.77
Virtual Guides A 11.79 4.74
Gravity Compensation B 16.28 4.39
Virtual Guides B 12.34 2.86

(a) Box plot

10

12

14

16

18

Gravity Compensation Virtual Guides

Mode

T
im

e
(s

)

Case

No Obstacle

Obstacle

(b) Group means with confidence interval of
95%

Figure 5.9: Interaction effect of Modes and Cases on the time execution of the task

Finally, for Case B, collisions only occurred when the users used the Gravity
Compensation Assistance Mode. This result goes in the direction to validate H2 –
Virtual Guides Assistance improves the users’ task performance.

5.2.3.2 Survey results

For clarity reasons, the information of the participants’ answers to the questions of
our user study for each Mode are summarized in Table 5.7. With this survey, we
observed a significant main effect of the Mode on the execution time of the task.

In Virtual Guides Assistance Mode, participants found that:

5.2. Experiment 1: Virtual Guides Assistance advantages 117

Table 5.7: Survey results of the user study for the Assistance Modes

Gravity Compensation Virtual Guides

Question mean σ mean σ p-value

Q1: Do you think the task was easy to perform? 5.32 1.44 5.68 1.15 ns
Q2: Do you think that you performed the task well? 5.25 1.21 5.89 0.92 0.0135
Q3: Did you feel you performed the task precisely? 4.82 1.17 5.64 1.06 0.0031
Q4: Did you feel comfortable during the task execution? 5.18 1.16 5.36 1.39 ns
Q5: Did you feel stressed during the task execution? 1.93 1.09 1.96 1.23 ns
Q6: Do you think the robot was easy to work with? 5.11 1.26 5.39 1.37 ns
Q7: Do you think the robot was helpful during the task execution? 3.82 1.59 5.29 1.65 0.0234

1. They performed the task better (see Figure 5.10).

2. They felt more precise in the execution in the task (see Figure 5.11)

3. The cobot was more helpful (see Figure 5.12)

Gravity Compensation Virtual Guides

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

Assistance Mode

Le
ve

l o
f a

gr
ee

m
en

t

(a) Box plot

5.
0

5.
5

6.
0

Assistance Mode

Le
ve

l o
f a

gr
ee

m
en

t

Gravity Compensation Virtual Guides

(b) Group means with confidence interval of
95%

Figure 5.10: Effect of Modes on the participants’ perception of the task performance

Like suggested by the previous analyses, this questionnaire validates H2 and H3 –
Virtual Guides Assistance improves the users’ task performance and Virtual Guides
Assistance is perceived as helpful by the users.

We also found a significant main effect of the Experience on the participants’
perception of the task difficulty (p− value = 0.0335). It is shown in Table 5.8 and
Figure 5.13, that participants who had previous Experience with robots found the
task easier.

There were no significant interaction effects between Modes and participants’
previous Experience with robots. This means the benefits of the Virtual Guides
Assistance Mode highlighted above do not depend on the user’s Experience with
robots.

118 Chapter 5. Experimental Evaluation

Gravity Compensation Virtual Guides

2
3

4
5

6
7

Assistance Mode

Le
ve

l o
f a

gr
ee

m
en

t

(a) Box plot
4.

5
5.

0
5.

5
6.

0

Assistance Mode
Le

ve
l o

f a
gr

ee
m

en
t

Gravity Compensation Virtual Guides

(b) Group means with confidence interval of
95%

Figure 5.11: Effect of Modes on the participants’ perception of the accuracy of the
task performance

Gravity Compensation Virtual Guides

1
2

3
4

5
6

7

Assistance Mode

Le
ve

l o
f a

gr
ee

m
en

t

(a) Box plot

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Assistance Mode

Le
ve

l o
f a

gr
ee

m
en

t

Gravity Compensation Virtual Guides

(b) Group means with confidence interval of
95%

Figure 5.12: Effect of Modes on the participants’ perception of the helpfulness of
the cobot

From Table 5.7, we can see that there is no significant main effect of the Mode
for questions Q1, Q4 and Q6, so we cannot validate hypothesis H4 – Virtual Guides
Assistance is easy to use. However, we can see that, in average, participants found
the task easy to perform for both Modes and slightly easier when using the Virtual
Guides Assistance. Also, they felt more comfortable performing the task and they
found the robot easier to work with when they were assisted by the Virtual Guides.

5.2. Experiment 1: Virtual Guides Assistance advantages 119

Table 5.8: Effect of the Experience on the participants’ perception of the task
difficulty

Experience meanT ime (s) σT ime (s)

No 4.95 1.36
Yes 5.80 1.19

No Yes

3
4

5
6

7

Experience

Le
ve

l o
f a

gr
ee

m
en

t

(a) Box plot

4.
8

5.
0

5.
2

5.
4

5.
6

5.
8

6.
0

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

One shot Iterative

(b) Group means with confidence interval of
95%

Figure 5.13: Effect of Experience on the participants’ perception of the difficulty of
the task

This goes in the direction to validate H4. A possible reason for not getting a
significant result for this hypothesis might be that the task was too easy, so it is
harder for participants to perceive the difference of influence of the two Assistance
Modes. Or, having more participants could also increase the chances of getting a
significant result.

Finally, there was no significant main effect of the Mode on the participants’
stress while executing the task. We can see in Table 5.7 that, in average, participants’
did not feel stressed when using both Assistance Modes.

Comanipulation Participants were free to manipulate the cobot the way they
felt more comfortable. In general, they used the tool handler with one hand as
shown in Figure 5.14.

5.2.4 Conclusion of experiment 1

Using the previous results, we can make the following conclusions about the initial
hypotheses of the experiment:

120 Chapter 5. Experimental Evaluation

Figure 5.14: Participants executing the task with the cobot

H1 The main effect of the Assistance Mode on the time execution of the task
validates the hypothesis H1 – Virtual Guides Assistance reduces the execution time
of the task.

H2 Several results supported the hypothesis H2 – Virtual Guides Assistance
improves the users’ task performance – and though we validate it:

• There were no collisions while using the Virtual Guides Assistance.

• Participants found that they performed the task better (i.e. best compromise
between time and accuracy) and more precisely with the Virtual Guides
Assistance.

H3 Several results supported the hypothesis H3 – Virtual Guides Assistance is
perceived as helpful by the users – and though we can also validate it:

• Participants found that the cobot was more helpful with the Virtual Guides
Assistance.

5.3. Experiment 2: Iterative Programming 121

• From the interaction effect of Repetitions and user’s Experience with robots,
we found out that the participants with no previous Experience had a better
improvement through Repetitions than participants with Experience with
robots.

H4 We couldn’t validate hypothesis H4 – Virtual Guides Assistance is easy to
use – since the task was generally perceived as easy for the users in both Assistance
Modes. However we confirmed that the task remains easy while using the Virtual
Guides Assistance.

H5 From the interaction effect of Modes and Cases, we found out the Virtual
Guides Assistance Mode made a bigger difference on the execution time of the task
when there was an object obstructing the sweeping trajectory. Thus, we validate
hypothesis H5 – Virtual Guides Assistance is more useful when the task requires
higher level of attention.

With this experiment we confirmed the advantages of using virtual guides for
comanipulation tasks. On the next experience we will show an extended application
using 6D virtual guides (translation and orientation) generated by demonstration by
the users without using any automatic algorithms. We will also analyze the impact
of our approach on users that not only execute a task but program a cobot using
our iterative programming method.

5.3 Experiment 2: Iterative Programming of a coma-
nipulation task

This second user study was designed in order to observe how novice users perceive
the Iterative Programming Mode and to analyse the impact of our approach on a
comanipulation task programming by comparing it to a classic programming mode
used in the industry that we called One Shot and provides a gravity compensation
assistance.

The following hypotheses were tested:

• H1: The Iterative Programming Mode reduces the programming time of the
task.

• H2: The Iterative Programming Mode improves the accuracy of the results.

• H3: The Iterative Programming Mode is intuitive and comfortable to use.

• H4: The Iterative Programming Mode is perceived as helpful by the users.

• H5: The Iterative Programming Mode reduces the user’s physical effort and
cognitive overload to program the task.

• H6: The comanipulation task with the cobot is not perceived as stressful.

122 Chapter 5. Experimental Evaluation

We will now verify these hypotheses with the following comanipulation task
programming experience.

5.3.1 Task definition

The following experience is conducted with a 6-DOF ISybot collaborative robot of
Figure 5.1(b) and a scraper tool. The general task consists in programming the
cobot to follow the contour of a 2cm thickness wood part (see Figure 5.15) respecting
two conditions. As shown in Figure 5.16, participants have to:

1. Keep the tooltip orientation angle at 45◦ with the vertical axis (Figure 5.16(a)).

2. Stay parallel to the tangent of the curve at each point of the trajectory (Figure
5.16(b)).

The scraper tool (with a rectangular form) was designed for the experience in
order to increase the difficulty of the task, by asking the participants to keep the
tool parallel to the tangent of the curve.

Figure 5.15: Programming task setup. The path to follow is highlighted in red

An inclinometer is placed on the tool in order to help the users to maintain
the 45◦ angle instruction. Participants have to follow a specific portion of the top
contour designed with 4 straight lines, convex radius, two concave different radius
and a right angle (270◦). The path to be learnt is highlighted in red on Figure 5.15.

5.3. Experiment 2: Iterative Programming 123

(a) (b)

Figure 5.16: . a) The scraper tool orientation angle β must be kept at 45◦ within
the vertical plane. b) The scraper tool must be kept parallel to the tangent of the
curve at each point of the path.

To program the cobot, participants must record discrete key points of the
trajectory using the rec button – upper button placed on the 4th axis of the cobot,
indicated by the red arrow in Figure 5.15. These points are then interpolated via
Akima splines and quaternion interpolations and used to create 6D Virtual Guides
as explained in Chapter 3. Each participant is free to choose the number of key
points. Each key point is recorded with a short click on the rec button, but for
the last one a long click is used to indicate to the cobot that the trajectory is over.
Participants should program the task with "a good accuracy/speed ratio".

To analyse the impact of our Iterative Programming Mode, we compare it to a
classic programming mode used in the industry that we call One Shot.

One Shot programming mode allows only one demonstration with gravity com-
pensation assistance.

The Iterative programming mode allows programming in two steps:

1. demonstration of translation key points with gravity compensation assistance,

2. demonstration of orientation key points with virtual guiding assistance in
translation using the previous demonstration, as explained in Chapter 4.

For the virtual guides assistance used in the Iterative Programming Mode, the con-
troller gains were tunned as explain in Chapter 2: "Virtual Guides Definition via
Virtual Mechanisms" and set as follows:

K =
[
10000 10000 10000 3000 3000 3000

]
N/m and N/m.rad

124 Chapter 5. Experimental Evaluation

B =
[
150 150 150 30 30 30

]
N/m.s−1 and N/m.rad.s−1

Ks =
[
5000

]
N/m and N/m.rad

Bs =
[
5
]
N/m.rad.s−1

Sampling time was set at 1ms.

5.3.2 Protocol

We recruited 17 participants from our research laboratory (between 20 and 53 years
old, 7 females). Ten participants stated they had prior experience with robots,
ranging from robotic courses to hands-on experience with industrial robots. All
participants were asked to program the cobot to follow the contour of the wood
part, using both Programming Modes – One Shot and Iterative – resulting in two
test conditions. The two test conditions were presented in a randomized order to
avoid biasing the results towards the last Mode tested. For each condition, the
participants were asked to program the cobot 2 times in a row (Repetitions). In
total, the participants performed 4 = 2×2 (Mode × Repetition) cobot programming
tasks.

At the beginning of each condition, the Programming Mode was presented to
the participants and the tested case was demonstrated to show the participants
how to use the cobot and the programming interface. Then, they were able to
familiarize themselves with the system and try the tested case on their own. After
each repetition, the result was shown to the participants (i.e., they could feel the
virtual guide they created and compare the learned path with the real contour of
the part thanks to the haptic feedback given by the cobot. Finally, when a condition
was completed, it was asked to the participants to fill the same post-condition
survey – Likert-scale survey with a rating from 1 (strong disagreement) to 7 (strong
agreement).

5.3.3 Measures

To validate our hypotheses, we performed the following measures:

1. Programming time, to validate H1 – The Iterative Programming Mode reduces
the programming time of the task.

2. RMSE of the angle and RMSE of the distance, to validate H2 – The Iterative
Programming Mode improves the accuracy of the results.

3. Survey results, to validate H2, H3, H4, H5 and H6 – The Iterative Programming
Mode improves the accuracy of the results, is intuitive and comfortable to
use, is perceived as helpful by the users, reduces the user’s physical effort and
cognitive overload to program the task. The comanipulation task with the
cobot is not perceived as stressful.

5.3. Experiment 2: Iterative Programming 125

1 - Time: The programming time is measured in seconds and automatically
recorded by the cobot for each Programming Mode and each Repetition. It was
measured between the beginning of the programming task (one short click on upper
button) and the last point saved (one long click on upper button). For the Iterative
Programming Mode, the total programming time is the result of the addition of the
two iterations.

2 - Accuracy: To measure the accuracy of the programming task, two quantitative
variables were taken into account:

• The RMSE of the angle

• The RMSE of the distance between the participants’ and the reference paths

Participants’ paths were saved after each programming task execution using
Matlab through a RPC communication protocol with the cobot. The interpolation
algorithm we used gives us a 0.5 mm spatial resolution.

Figure 5.17: Calibration points. The initial wood part measured 37x37x2 cm. It
was then cut to shape the contour to follow.

We defined a parametric model of the wood part based on its exact measures.
Before the experience, we took 9 calibration points with the tooltip of the cobot
as shown in Figure 5.17. Using these 9 recorded points, we computed the affine
transformation to fit the cobot reference frame to the Matlab reference frame5. We
applied this unique transformation to every participants’ path for both Programming
Modes and both Repetitions. We can now compare the participants’ recorded
re-aligned path to its corresponding model portion as shown in Figure 5.18.

5This calibration method has the drawback of being highly dependent on the calibration of
the tooltip and the mechanic flexibility of the cobot. However, these measures were used to do
a comparison between paths obtained under the same conditions and using the same calibration
process. Besides we used 9 points for the calibration where 3 points could be enough.

126 Chapter 5. Experimental Evaluation

For all interpolation points of the reference path, we defined normal vectors # »nj ,
tangent vectors #»

tj and the resulting vectors #»sj of the cross product of the tangent
and normal vectors (respectively in green, black and magenta in Figure 5.18), thus
resulting in a direct orthonormal basis.

For every interpolation point of a participants’ path, we defined the vector #»vj
representing the orientation of the tooltip (in dark yellow).

We define :

• vtj = #»
tj · #»vj , the tangential component,

• vnj = # »nj · #»vj , the normal component.

2.1 - Angle: The required angle βj was calculated as: βj = atan2d(vtj , vnj). In
other words, it corresponds to the angle between the scraper tool and the vertical
vector of the cobot frame within the plane perpendicular to the trajectory. For this
angle, we calculated the RMSE of the angle δRMSE , between the 45◦ instruction
and βj for each trajectory.

Figure 5.18: Accuracy measures: d – distance between each recorded interpolation
point and its closest corresponding point on the reference path – and β – angle
between the scraper tool and the vertical vector of the cobot frame within the plane
perpendicular to the trajectory. Reference paths are plotted in red and participant’s
paths are plotted in blue. The yellow arrows represent the tool orientation vectors,
green arrows represent the normal vectors to the path, and the red arrows represent
the normal vectors to the tangent of the path at each interpolation point. Top-left
figure: Perspective view of the wood part. Top-right figure: Top view (x-y axis) of
the representation of the followed path by participants. Distance values are on cm.
Bottom-left figure: Perspective view. The measure d is shown. Bottom-right figure:
Perspective view. The measure β is shown.

5.3. Experiment 2: Iterative Programming 127

2.2 - Distance: As previously defined, the participant had also to precisely stick
to the contour of the part. Thus, we measured the distance d between each recorded
interpolation point and its closest corresponding point on the reference path as
shown in Figure 5.18. We computed the RMSE of the distance dRMSE for each
trajectory.

Finally, we recorded the answers to the two post-condition surveys after each
condition was performed by the participant.

5.3.4 Results

We performed independent repeated-measures ANOVA tests for 3 dependent vari-
ables:

1. Time

2. RMSE of the angle (δRMSE)

3. RMSE of the distance (dRMSE)

Each ANOVA test was performed on two within factors (internal conditions of
the experience):

1. Modes

2. Repetitions

Participants were grouped by four between factors (external conditions of the
experience):

1. Age

2. Gender

3. Previous Experience with robots

4. Participants’ perception of Performance

We performed independent repeated-measures ANOVA for each survey question
on one within factor : the Mode. Only for two questions, participants were grouped
by the four between factors mentioned above. For the other questions this factors
had no influence. We set our significance level at α = 0.05, which means there is
at least 5% chance of having a difference between means of the studied variables.
We consider a result strongly significant when p-value < 0.01 and poorly significant
when p-value < 0.1. We use poorly significant results to show trends and give further
analysis of data, however we do not draw conclusions based on these results. Post
hoc pairwise comparisons were computed using non-pooled error terms (i.e., by
computing separate paired-samples t tests; sequentially acceptive step-up Benjamini
[Benjamini 1995] procedure, with an alpha level of .05.

128 Chapter 5. Experimental Evaluation

We use box plots and group means plots to visualize both main effects and
interaction effects on the dependent variables. Box plots are useful to represent the
median value (less affected by outliers) and data dispersion, while group means plots
indicate a more "easy to see" relation/interaction between the mean values of the
studied variables. On the group means plot the bars represent a confidence interval
of 95%.

All the results and graphs were obtained using R language6.

5.3.4.1 Time results

Participants were grouped by Gender, Age, their previous Experience with robots
and their perception of Performance – precisely or both precisely and fast.

We found a significant main effect of the Programming Modes on the task
execution time of the participants (p-value < .01). As we can see in Table 5.9,
participants were faster with the Iterative Programming Mode than with the One
Shot Programming Mode. This indicates that the Iterative Programming Mode
using virtual guides, reduced the programming time and also allowed more "stable"
performance since the standard deviation is 1.6 times smaller (see Fig. 5.19).
This result validates hypothesis H1 –The Iterative Programming Mode reduces the
programming time of the task.

Table 5.9: Effect of the Programming Mode on the programming time.

Mode meanT ime (s) σT ime (s)

One Shot 248.08 93.67
Iterative 210.99 58.31

We also found a significant main effect of the Repetitions on the programming
time of the participants (p-value < .01). We can see in Table 5.10 and Figure 5.20,
participants were slower during the first repetition. This result confirms there is a
training effect through Repetitions.

Table 5.10: Effect of the Repetitions on the programming time.

Repetitions meanT ime (s) σT ime (s)

1st 242.89 85.07
2nd 216.90 72.97

There is no significant effect of interaction between Repetitions and the Program-
ming Mode (p-value = 0.1204). However, we can say from Table 5.11 and Figure 5.21
that participants were faster during both Repetitions for the Iterative Programming
Mode.

6https://www.r-project.org/

5.3. Experiment 2: Iterative Programming 129

One shot Iterative

10
0

15
0

20
0

25
0

30
0

35
0

40
0

Programming mode

T
im

e
(s

)

(a) Box plot

20
0

22
0

24
0

26
0

28
0

Programming mode

T
im

e
(s

)

One shot Iterative

(b) Group means with confidence interval of 95%

Figure 5.19: Effect of the Programming Mode on the programming time

First Second

10
0

15
0

20
0

25
0

30
0

35
0

40
0

Repetition

T
im

e
(s

)

(a) Box plot

20
0

22
0

24
0

26
0

Repetition

T
im

e
(s

)

First Second

(b) Group means with confidence interval of 95%

Figure 5.20: Effect of Repetitions on the programming time

130 Chapter 5. Experimental Evaluation

Table 5.11: Interaction effect between Repetitions and Programming Modes on the
programming time

Mode Repetition meanT ime (s) σT ime (s)

One shot 1st 267.26 101.03
Iterative 1st 218.54 58.81
One shot 2nd 230.37 84.65
Iterative 2nd 203.44 58.59

First First Second Second

10
0

15
0

20
0

25
0

30
0

35
0

40
0

Programming mode. Yellow: One shot, Blue: Iterative

T
im

e
(s

)

(a) Box plot

180

200

220

240

260

280

300

320

One shot Iterative

Programming mode

T
im

e
(s

)

Repetition

First

Second

(b) Group means with confidence interval of 95%

Figure 5.21: Interaction effect between Programming Mode and Repetitions on the
programming time

5.3. Experiment 2: Iterative Programming 131

In conclusion, the Iterative Programming Mode allowed the participants to execute
the task faster during both Repetitions, which shows that the general training effect
between Repetitions did not influence the effect of the Programming Mode on the
time.

On the other hand, there is a small effect of interaction between the Programming
Mode, Repetitions and Gender (p-value = 0.0523) (see Table 5.12 and Fig.5.22) that
indicates the training effect and the influence of the Programming Mode on the
programming time could depend on Gender. There is a bigger mean time difference
between Programming Modes for men during the first Repetition and for women
during the second Repetition. Also, the difference between Programming Modes is
more constant through Repetitions for women. This could indicate that the training
effect is more present in male participants. However, to give such a conclusion with
higher confidence we would need more participants.

Table 5.12: Interaction effect between the Programming Mode, Repetitions and
Gender on the programming time

Mode Repetition Gender meanT ime (s) σT ime(s)

One shot 1st Female 267.12 60.06
Iterative 1st Female 236.47 53.06
One shot 2nd Female 245.69 66.44
Iterative 2nd Female 205.39 55.65
One shot 1st Male 267.35 125.46
Iterative 1st Male 205.98 62.02
One shot 2nd Male 219.64 97.39
Iterative 2nd Male 202.08 63.50

There is a main effect of the participants’ perception of Performance on the
programming time (p-value = 0.064) (see Fig. 5.23). As shown in Table 5.13, when
the participants thought they have done the task precisely they were indeed slower
than when they thought they have done the task both precisely and fast. This
indicates a relation between time and precision. However, there is no significant
correlation between time and quantitative accuracy measures (mean angle error,
mean distance).

Table 5.13: Effect of the Performance on the programming time

Performance meanT ime (s) σT ime (s)

Precisely 276.19 106.30
Precisely and fast 215.65 64.43

Finally, Age and previous Experience with robots did not have a significant
influence on the programming time. There was not either any interaction effect
between these factors and the Programming Modes or Repetitions.

132 Chapter 5. Experimental Evaluation

F−F F−F S−F S−F F−M F−M S−M S−M

10
0

15
0

20
0

25
0

30
0

35
0

40
0

F−F: First−Female, F−M: First−Male, S−F: Second−Female, S−M: Second−Male
 Programming mode. Yellow: One shot, Blue: Iterative

T
im

e
(s

)

Figure 5.22: Interaction effect between the Programming Mode, Repetitions and
Gender on the programming time

Precisely Both

10
0

15
0

20
0

25
0

30
0

35
0

40
0

Repetition

T
im

e
(s

)

(a) Box plot

20
0

22
0

24
0

26
0

28
0

30
0

32
0

Performance

T
im

e
(s

)

Precisely Both

(b) Group means with confidence interval of 95%

Figure 5.23: Effect of the participants’ perception of Performance on the program-
ming time

5.3. Experiment 2: Iterative Programming 133

5.3.4.2 Accuracy results

Participants were grouped by Gender, Age, their previous Experience with robots
and their perception of Performance – precisely or both precisely and fast. Two
quantitative variables were analyzed (cf. 5.3.3):

• the RMSE of the angle (δRMSE),

• the RMSE of the distance (dRMSE).

There is no significant main effect of Programming Modes or Repetitions on the
RMSE of the angle. However, we can see in Table 5.14 that the error was lower
when participants used the Iterative Programming Mode. This effect is shown in
Figure 5.24(a) and 5.24(b).

Table 5.14: Effect of the Programming Modes on the RMSE of the angle

Programming Mode meanδRMSE
(◦) σδRMSE

(◦)

One Shot 2.93 1.83
Iterative 2.82 2.11

One shot Iterative

1
2

3
4

5

Programming mode

R
M

S
E

 a
ng

le
 (

°)

(a) Box plot

2.
5

3.
0

3.
5

Programming mode

R
M

S
E

 a
ng

le
 (

°)

One shot Iterative

(b) Group means with confidence interval of 95%

Figure 5.24: Effect of Programming Mode on the RMSE of the angle

There is no significant main effect of Programming Modes or Repetitions on the
RMSE of the distance. However, Table 5.15 and Figure 5.25 show that the RMSE
of the distance is smaller when the Iterative Programming Mode is used.

There is a significant main effect of Gender on the RMSE of the distance
(p-value = 0.02). From Table 5.16 and Figure 5.26, we can conclude that male

134 Chapter 5. Experimental Evaluation

Table 5.15: Effect of the Programming Modes on the RMSE of the distance

Programming Mode meandRMSE
(cm) σdRMSE

(cm)

One Shot 0.70 0.29
Iterative 0.64 0.22

One shot Iterative

0.
2

0.
4

0.
6

0.
8

1.
0

Programming mode

R
M

S
E

 d
is

ta
nc

e
(c

m
)

(a) Box plot

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

Programming mode

R
M

S
E

 d
is

ta
nc

e
(c

m

One shot Iterative

(b) Group means with confidence interval of 95%

Figure 5.25: Effect of Programming Mode on the RMSE of the distance to reference
path

5.3. Experiment 2: Iterative Programming 135

participants were more accurate when programming the trajectory on the cobot.
However, there is not a significant difference between male and female participants
concerning the RMSE of the angle, so we cannot conclude that Gender has a main
effect on the overall accuracy of the task.

Table 5.16: Effect of the Gender on the RMSE of the distance.

Gender meandRMSE
(cm) σdRMSE

(cm)

Female 0.81 0.29
Male 0.57 0.19

Female Male

0.
2

0.
4

0.
6

0.
8

1.
0

Gender

R
M

S
E

 d
is

ta
nc

e
(c

m
)

(a) Box plot

0.
5

0.
6

0.
7

0.
8

0.
9

Gender

R
M

S
E

 d
is

ta
nc

e
(c

m
)

Female Male

(b) Group means with confidence interval of 95%

Figure 5.26: Effect of Gender on the mean distance to reference path

Moreover, there is no significant effect of the participants’ previous Experience
with robots on the RMSE of the distance or on the RMSE of the angle, so we cannot
conclude that Experience with robots has a main effect on the overall accuracy of
the task. Also, we recall that there was not either any influence of the Experience
on the programming time.

On the other hand, there is no significant correlation between the RMSE of
the angle and the RMSE of the distance. Thus, we cannot conclude that when
participants were accurate in translation they were also accurate in orientation. This
might be because the level of difficulty of both conditions (translation, orientation)
is not the same and so even if a participant had the same level of concentration to
perform both, other skills such as physical force prevented him/her to keep the same
accuracy level.

In conclusion, there is no significant difference between the Iterative and the One
Shot Programming Modes on the accuracy of the task, so we cannot validate H2 –

136 Chapter 5. Experimental Evaluation

The Iterative Programming Mode improves the accuracy of the results. Some of the
best participants’ qualitative results using both Programming Modes are shown in
Figures 5.27 and 5.28. We can see that it would be difficult to say which method
produces better results only by looking at the curves, which can explain the no
significant difference found statistically. However, quantitative results go in the
direction of H2 and show that participants had better results when they used the
Iterative Programming Mode.

−5 0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

X

Y

−5 0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

X

Y

Figure 5.27: Best qualitative results from two different participants using One
Shot Programming Mode. Top view (x-y axis) of the representation of the followed
trajectory by participants. The reference path is plotted in red and participant’s
paths are plotted in blue. Distance values are on cm. The yellow arrows represent
the tool orientation vectors and the red arrows represent the normal vectors to the
tangent of the path at each interpolation point.

Age and participants’ perception of Performance did not have a significant
influence on the accuracy variables. There was not either any interaction effect
between these factors and the Programming Modes or Repetitions.

5.3.4.3 Survey results

For clarity reasons, the answers to the 9 questions of our user study survey for
each Programming Mode are summarized in Table 5.17. For questions 2 and 9,
users where grouped by: Age, Gender, Previous Experience with robots and their
perception of Performance (precisely versus both precisely and fast).

With this survey, we observed a significant main effect of the Programming Mode
on several of the studied questions.

We found a low main effect of the Programming Mode on the participants’
perception of their task programming performance. We can see in Table 5.17, that
the p-value for this question (Q2) is not < .05, so we will consider this result
as a trend. We can see in Figure 5.29 that, in average, participants thought

5.3. Experiment 2: Iterative Programming 137

−5 0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

X

Y

−5 0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

X

Y

Figure 5.28: Best qualitative results from two different participants using Iterative
Programming Mode. Top view (x-y axis) of the representation of the followed
trajectory by participants. The reference path is plotted in red and participant’s
paths are plotted in blue. Distance values are on cm. The yellow arrows represent
the tool orientation vectors and the red arrows represent the normal vectors to the
tangent of the path at each interpolation point.

Table 5.17: Results of the user study survey for two Programming Modes

One Shot Iterative

Question Mean σ Mean σ p-value

Q1: Do you think that you performed well the task? 4.00 1.17 4.58 1 0.065
Q2: Do you think the task was easy to perform? 4.47 1.73 4.94 1.39 0.054
Q3: Do you think the robot was helpful during the task execution? 2.41 1.06 4.35 1.45 <0.0001
Q4: Did you feel comfortable with the robot while performing the task? 2.94 0.83 4.71 1.31 <0.0001
Q5: Do you think the programming interface was intuitive? 4.59 1.37 5.23 0.83 0.052
Q6: Do you think the robot was easy to manipulate? 2.65 1.17 4.12 1.41 <0.0001
Q7: Did you feel you had to put high physical effort to perform the task? 4.35 1.58 3.24 1.03 <0.01
Q8: Did you feel your level of concentration to perform the task was high? 5.88 1.26 3.88 0.93 <0.0001
Q9: Did you feel stressed using the robot while performing the task? 2.53 1.55 1.76 0.90 0.032

they performed better the programming task when using the Iterative
Programming Mode. This result is coherent with the accuracy results of the
previous Subsection, which shows a positive effect of our Iterative Programming
Mode but not significant difference compared to the One Shot Programming Mode.

Participants found that it was easier to program the cobot using the
Iterative Programming Mode. We can see in Table 5.17, that the p-value for
this question (Q1) is not < .05, so we will consider this result as a trend that we
can also visualize in Figure 5.30. This result supports hypothesis H3 – The Iterative
Programming Mode is intuitive and comfortable to use.

We also found a low main effect of the Programming Mode on the participants’
perception of the intuitiveness of the programming interface. We can see in Table
5.17, that the p-value for this question (Q2) is not < .05, so we will consider this
result as a trend. We can see in Figure 5.34 that, in average, participants found
the programming interface more intuitive while using the Iterative Pro-

138 Chapter 5. Experimental Evaluation

One shot Iterative

2
3

4
5

6

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

(a) Box plot

3.
5

4.
0

4.
5

5.
0

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t
One shot Iterative

(b) Group means with confidence interval of 95%

Figure 5.29: Effect of Programming Modes on the participants’ perception of their
task programming performance

One shot Iterative

1
2

3
4

5
6

7

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

(a) Box plot

3.
5

4.
0

4.
5

5.
0

5.
5

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

One shot Iterative

(b) Group means with confidence interval of 95%

Figure 5.30: Effect of Programming Modes on the difficulty of the task

gramming Mode. This result supports hypothesis H3 – The Iterative Programming
Mode is intuitive and comfortable to use.

Participants felt more comfortable while programming the cobot with
the Iterative Programming Mode. This significant result is shown in Table 5.17
and Figure 5.32 and supports hypothesis H3 – The Iterative Programming Mode is

5.3. Experiment 2: Iterative Programming 139

One shot Iterative

2
3

4
5

6

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

(a) Box plot
4.

0
4.

5
5.

0
5.

5

Programming mode
Le

ve
l o

f a
gr

ee
m

en
t

One shot Iterative

(b) Group means with confidence interval of 95%

Figure 5.31: Effect of Programming Modes on the intuitiveness of the programming
interface

intuitive and comfortable to use.
Participants found that the cobot was more helpful when they used the

Iterative Programming Mode. This significant result is shown in Table 5.17
and Figure 5.33 and validates hypothesis H4 – The Iterative Programming Mode is
perceived as helpful by the users.

Participants found that the cobot was easier to manipulate when they
used the Iterative Programming Mode. This significant result is shown in
Table 5.17 and Figure 5.34 and supports hypothesis H4 and H5 – The Iterative
Programming Mode is perceived as helpful by the users and it reduces the user’s
physical effort and cognitive overload to program the task.

Participants found that they had to used less physical effort and concen-
tration to program the cobot with the Iterative Programming Mode. This
significant results are shown in Table 5.17 and Figures 5.35 and 5.36. They validate
hypothesis H5 – The Iterative Programming Mode reduces the user’s physical effort
and cognitive overload to program the task.

Participants felt less stressed while programming the cobot with the
Iterative Programming Mode. This significant result is shown in Table 5.17 and
Figure 5.37. We can also see that, in average, participants did not feel stressed while
using both Programming Modes, which validates hypothesis H6 – The comanipulation
task with the cobot is not perceived as stressful.

Moreover, we found an interaction effect between the Programming Mode and
the participants’ previous Experience with robots on the task difficulty - Question 2
- (p-value = 0.0076). As we can see in Figure 5.38, participants who had not worked

140 Chapter 5. Experimental Evaluation

One shot Iterative

2
3

4
5

6
7

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

(a) Box plot

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

One shot Iterative

(b) Group means with confidence interval of 95%

Figure 5.32: Effect of Programming Modes on the comfortability

One shot Iterative

1
2

3
4

5
6

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

(a) Box plot

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

One shot Iterative

(b) Group means with confidence interval of 95%

Figure 5.33: Effect of Programming Modes on the perception of the robot helpfulness

5.3. Experiment 2: Iterative Programming 141

One shot Iterative

1
2

3
4

5
6

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

(a) Box plot

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

One shot Iterative

(b) Group means with confidence interval of 95%

Figure 5.34: Effect of Programming Modes on the difficulty for manipulating the
robot

One shot Iterative

2
3

4
5

6

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

(a) Box plot

3.
0

3.
5

4.
0

4.
5

5.
0

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

One shot Iterative

(b) Group means with confidence interval of 95%

Figure 5.35: Effect of Programming Modes on the participants’ physical effort

142 Chapter 5. Experimental Evaluation

One shot Iterative

4.
0

4.
5

5.
0

5.
5

6.
0

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

(a) Box plot

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

One shot Iterative

(b) Group means with confidence interval of 95%

Figure 5.36: Effect of Programming Modes on the participants’ cognitive load

One shot Iterative

1
2

3
4

5
6

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

(a) Box plot

1.
5

2.
0

2.
5

3.
0

Programming mode

Le
ve

l o
f a

gr
ee

m
en

t

One shot Iterative

(b) Group means with confidence interval of 95%

Figure 5.37: Effect of Programming Modes on the participants’ stress

5.3. Experiment 2: Iterative Programming 143

with a robot before thought the task was easier to perform when they used the
Iterative Programming Mode. For experimented participants, the difference between
the Programming Modes was smaller. Post hoc tests showed no significant interaction
effect between each Mode and Experience combinations. Thus, no conclusions can be
done about the influence of Experience on the Programming Mode effect regarding
the difficulty of the task.

No No Yes Yes

1
2

3
4

5
6

7

Programming mode. Yellow: One shot, Blue: Iterative

Le
ve

l o
f a

gr
ee

m
en

t

Figure 5.38: Interaction effect between the Programming Mode and Experience with
robots on the difficulty of the task

There is also an interaction effect between the Programming Mode and the
participants’ previous Experience with robots on the participants’ stress during the
task - Question 9 - (p-value = 0.0680). We can see in Figure 5.39 that participants
who had not worked with a robot before were much less stressed when using
the Iterative Programming Mode. For experimented participants the difference
between both Modes was smaller but they still felt less stressed using the Iterative
Programming Mode. Post hoc tests showed no significant interaction effect between
each Mode and Experience combinations. Thus, no conclusions can be done about the
influence of Experience on the Programming Mode effect regarding the participants’
stress. However, we recall that, in average, the level of stress was low for all
participants, which is why we were able to validate hypothesis H6.

Comanipulation Participants were free to manipulate the cobot the way they
felt more comfortable. In general, they used the tool handler and helped themselves
by grabbing the 4th axis of the cobot as shown in Figure 5.40. This could indicate
that the cobot design was not totally apt for the task or that it was not transparent
enough so the users found it difficult to place the tooltip exactly were they wanted
to.

144 Chapter 5. Experimental Evaluation

No No Yes Yes

1
2

3
4

5
6

Programming mode. Yellow: One shot, Blue: Iterative

Le
ve

l o
f a

gr
ee

m
en

t

Figure 5.39: Interaction effect between the Programming Mode and Experience with
robots on the participants’ stress

(a) Manipulation by the handle of the
tool

(b) Manipulation by the handle of the
tool and the 4th body of the arm

Figure 5.40: Regular comanipulation postures during the experiment

5.3. Experiment 2: Iterative Programming 145

5.3.5 Conclusion of experiment 2

Using the previous results, we can make the following conclusions about the initial
hypotheses of the experiment:

H1 The main effect of the Programming Mode on the time execution of the task
validates the hypothesis H1 – Iterative Programming Mode reduces the execution
time of the task.

H2 Several results supported the hypothesis H2 – Iterative Programming Mode
improves the accuracy of the results :

• The RMSE of the angle was smaller when participants used the Iterative
Programming Mode

• The RMSE of the distance was smaller when participants used the Iterative
Programming Mode

• Participants found that they performed the task better when using the Iterative
Programming Mode.

However, the tests ANOVA did not show a significant difference between both
Programming Modes for both accuracy variables and for Question Q1 – Do you think
you performed well the task. Thus, we cannot validate H2. This lack of significance
can be explained by the number of participants on the experiment. We believe that
our results show a trend and that a user study with more participants could lead to
the validation of this hypothesis.

H3 Several results supported the hypothesis H3 – The Iterative Programming
Mode is intuitive and comfortable to use – and though we validate it:

• Participants found that it was easier to program the robot when using the
Iterative Programming Mode.

• Participants found that it was more comfortable to program the robot with
the Iterative Programming Mode.

• Participants found that it was more intuitive to program the robot with the
Iterative Programming Mode.

H4 The main effect of the Programming Mode on the survey questions Q3 and
Q6 (Do you think the robot was helpful during the task execution? - Do you think
the robot was easy to manipulate?) validates the hypothesis H4 – The Iterative
Programming Mode is perceived as helpful by the users.

146 Chapter 5. Experimental Evaluation

H5 The main effect of the Programming Mode on the survey questions Q6, Q7
and Q8, validates the hypothesis H5 – The Iterative Programming Mode reduces the
user’s physical effort and cognitive overload to program the task.:

• Q6: Do you think the robot was easy to manipulate?

• Q7: Did you feel you had to put high physical effort to perform the task?

• Q8: Did you feel your level of concentration to perform the task was high?

H6 For both Programming Modes the mean score on the survey question Q9
(Did you feel stressed using the robot while performing the task?) was low. This
result validates the hypothesis H6 – The comanipulation task with the cobot is
not perceived as stressful. Moreover, it was also shown that participants felt less
stressed when using the Iterative Programming Mode.

With this experiment we confirmed the advantages of using 6D Virtual Guides
for comanipulation tasks. We also showed the positive impact of our Iterative
Programming approach – divide the programming process in two phases: first
positions and then orientations. Participants found our method easier to use, more
comfortable and more intuitive than the One Shot method (that uses Gravity
Compensation). Participants also found that our approach reduces physical effort
and cognitive overload. Finally, the comanipulation task with the cobot did not
introduce any stress on participants.

5.3.6 Additional Remarks and Improvements

During the experience we noticed participants did not have the same posture while
using both Programming Modes. Awkward and uncomfortable postures were mostly
taken when participants used the One Shot Programming Mode as shown in Figure
5.41. More ergonomic postures were taken when they used the Iterative Programming
Mode 5.42. An improvement of the experience will include measures of participants’
forces in different body parts to analyse ergonomics and take the results into account
to improve our algorithm, as suggested in [Maurice 2017].

At the end of each survey we asked the participants to give extra feedback about
the experiences and make some comments.

Some user’s comments when using the One Shot Programming Mode:

• "It is very hard to manipulate the robot precisely."

• "It’s difficult to keep the right orientation of the tool."

• "I cannot do what I want with the robot."

Some user’s comments when using the Iterative Programming Mode:

• "The programming process is really fast. To be guided in translation allows to
better deal with the rotations."

5.3. Experiment 2: Iterative Programming 147

(a) (b)

(c) (d)

Figure 5.41: Postures when using One Shot Programming Mode

148 Chapter 5. Experimental Evaluation

(a) (b)

(c) (d)

Figure 5.42: Postures when using Iterative Programming Mode

5.3. Experiment 2: Iterative Programming 149

• "Rather natural and easy to use. Programming is better with the iterative
mode."

• "It was much better like that. A problem to solve at once!"

Some user’s general comments:

• "At the end it is more difficult to perform the task, depending on the angle of
the last axis of the robot"

• "Translation is easier than rotation"

• "Trajectories are quite easy to teach, the interface is simple, but the robot
itself is quite a pain to manipulate on the whole working area".

Between the improvements mentioned there was the need to have a recording
(interaction) button on the handler and not on the 4th axis so it could be more
comfortable to program the cobot. Figure 5.43 shows two cases where a button on
the tool handler would be more useful.

(a) (b)

Figure 5.43: Recording button should be placed on the handler

Another improvement would be to add two handles on the 4th axis since it would
be very useful to help manipulate the cobot. This is because in this particular
version of the 6-DOF ISybot, axis 5 and 6 are too hard to manipulate. This could
be taken into account by ISybot on the design of their future cobots. Figure 5.44
shows two cases where a handle on the 4th axis would be useful.

150 Chapter 5. Experimental Evaluation

(a) (b)

Figure 5.44: Another handling system should be placed on axis 4

We also noticed the height of the table was not adaptable to each person, so
for taller people it was harder to find a comfortable posture for both Programming
Modes.

5.4 Conclusion

Both experiments showed the interest of using Virtual Guides Assistance in coma-
nipulation tasks. Experiment 2 showed also that these Guides are useful to assist
the human operator during the iterative programming of a cobot. We demonstrated
that our programming framework is intuitive, comfortable and helpful for users.
We also showed that our approach has an influence in reducing the physical effort
and cognitive overload of the human operator while accelerating the programming
process. It is important to notice that these advantages do not depend on the user’s
previous experience with robots, gender or age, which make it suitable to be used by
human operators that have high knowledge of the task and the gestures to execute
it, but have little or no experience with robots. Finally, we have reasons to believe
that our framework could allow the improvement of the user’s ergonomy, which is a
major issue in collaborative robotics applications.

Chapter 6

Conclusion

“ C’est le commencement qui est le pire, puis le
milieu puis la fin ; à la fin, c’est la fin qui est le
pire. ”

Samuel Beckett, L’Innommable, 1953

The main contributions presented in this thesis are summarized hereafter. Then,
perspectives for improvements and extension of the developed Virtual Guides pro-
gramming framework are proposed.

6.1 Contributions

We presented in Chapter 1: "Introduction" the problematics of the context of this
research and the current limitations of the literature in both our areas of interest:
Virtual Guides Assistance and Programming by Demonstration (PbD). Therefore,
the work presented in this thesis focuses on the development of new tools to
enhance the flexibility of the use and programming of Virtual Guides
Assistance in a human-robot comanipulation context. The proposed ap-
proach relies on PbD, and particularly on kinesthetic teaching. Indeed, the use of
this method allows non-robotics experts to intuitively program robots,
because users can program a task by directly manipulating the end-effector of the
robot.

In Chapter 2: "Virtual Guides Definition via Virtual Mechanisms" and Chapter
3: "Virtual Guides Construction", we presented an extension of virtual mech-
anisms approach to 6D Virtual Guides for comanipulation applications.
Virtual Guides work as an impedance controller for the robot, allowing movement
along the preferred directions and prohibiting movements along the restricted ones.
In Chapter 2: "Virtual Guides Definition via Virtual Mechanisms", the passivity of
the system is proven by studying the dissipated energy of the system which proves

152 Chapter 6. Conclusion

also its stability. We also presented the problem of singularities of the kinematic
model of Virtual Guides when they are defined through users demonstrations (using
kinesthetic teaching). We proposed a solution using Jacobian normalization
to overcome this issue.

In Chapter 3: "Virtual Guides Construction", we proposed how the geomet-
ric and kinematic models of Virtual Guides can be programmed through
kinesthetic teaching and modeled through interpolation functions. To
construct Position Constraints we implemented multi-dimensional Akima Spline
interpolations. To construct Orientation Constraints in SO(3) we used SQUAD
interpolations. In both cases we proposed to separate the time and space components
of the curves to parameterize them in a way that guarantees the Jacobian normality.
We also proposed a 6D Virtual Guides definition through XSplines, based
on both position interpolations – MDSpline ∈ R3 – and orientation interpolations –
Squad ∈ SO(3) – of poses obtained through kinesthetic teaching. The advantage of
XSplines is that they are parameterized in a way that allows the synchronization
of the translation and orientation movements.

Chapter 4: "Iterative Virtual Guides Programming" presented a new intuitive,
iterative and assisted framework for programming 6D Virtual Guides. We
explained how Virtual Guides can be locally refined or modified by the user in both
Cartesian position and orientation. During this iterative process, the user benefits
from the Virtual Guides Assistance. Also, three interaction modes with the cobot
are presented: Soft, Hard and Null Virtual Guides. Finally, we presented an iterative
approach to program 6D Virtual Guides in two phases. This method aims at
reducing the cognitive load of the user and enhance the programming
experience by separating the translation and the rotation programming.
The allocation of roles on the human-cobot interaction were also defined: the human
operator masters the action plan and the cobot assists the human passively and
under explicit demand.

Two experiments showing the advantages of using Virtual Guides As-
sistance and our programming framework are presented in Chapter 5:
"Experimental Evaluation". Both experiments showed the interest of using Vir-
tual Guides Assistance in comanipulation tasks. Experiment 2 showed also that these
Guides are useful to assist the human operator during the iterative programming of
a cobot. We demonstrated that our programming framework is intuitive,
comfortable and helpful for users. We also showed that our approach
has an influence in reducing the physical effort and cognitive overload
of the human operator while accelerating the programming process. It is
important to notice that these advantages do not depend on the user’s previous
experience with robots, gender or age, which make it suitable to be used by human
operators that have high knowledge of the task and the gestures to execute it, but
have little or no experience with robots. Finally, we have reasons to believe that our
framework could allow the improvement of the user’s ergonomy, which is a major
issue in collaborative robotics applications.

6.2. Perspectives 153

Beyond the specific application of the Virtual Guides programming framework
on industrial tasks, this approach could be used and evaluated in other
areas such as robotic assisted surgery or rehabilitation. This thesis provides
some tools to construct, enforce and modify 6D Virtual Guides that can
be applied to the iterative programming framework but also used separately in other
task programming or execution scenarios.

6.2 Perspectives

In the future, some interesting points should be investigated to improve and extend
the 6D Virtual Guides programming framework proposed in this doctoral work.

6.2.1 Virtual Guides Construction

We presented in Chapter 3: "Virtual Guides Construction" an approach for construct-
ing 6D Virtual Guides based on interpolation functions. It could be interesting to
explore the use of other interpolations and the differences with the choice made in this
thesis. Also, as mentioned in Chapter 4: "Iterative Virtual Guides Programming",
simple guides such as straight lines, arcs or circles could be used to initialize the
programming process. The choice of an interpolation function is usually made
according to the application. The advantages of each method could be taken into
account in order to use several interpolations rather than just the one which gives
the best global compromise. For example, monotonic cubic interpolations are more
suitable for generating straight lines and corners, and natural cubic splines should
be used to generate circle paths. Quintic interpolation [Erkorkmaz 2005] could be
also of interest in further research about Virtual Guides construction.

6.2.2 Virtual Guides Programming Framework

As presented in Chapter 4: "Iterative Virtual Guides Programming", the Virtual
Guides iterative programming approach can be also applied for:

• Programming the force the robot should apply during a particular task execu-
tion: to this aim, a force sensor attached to the tool handle would be needed in
order to record the forces during the kinesthetic teaching. Teaching forces by
demonstration has been addressed in [Rozo 2014] for human-robot cooperative
transportation tasks, this could be a good base to continue the research on
this topic.

• Programming the velocity to reproduce a task automatically: in human-robot
comanipulation, there are some parts during the execution of a task where
the robot can be used in autonomous mode. During the Virtual Guides
construction by kinesthetic teaching, the time of the demonstration is encoded.
Then the guide is parameterized on space and a transformation function (using
a monotonic interpolation) from the space parameter to time is done. Using

154 Chapter 6. Conclusion

this function we can always access the parameterization time of the curve and
then encode the velocity of the demonstration. This could also be used within
the iterative approach, by first programming the trajectory, activating the 6D
Virtual Guide, and finally demonstrating to the robot the desired velocity to
reproduce the trajectory automatically.

• Programming the stiffness of the Virtual Guide: depending on the application,
it could be useful to modify the stiffness of the Virtual Guide online, by
modifying the gain K corresponding to the spring of the virtual mechanism.
To this aim, we could use again kinesthetic teaching to show to the cobot the
zones where the stiffness should vary. An idea to explore could be to perform
wide going and coming movements to program low stiffness, and counterwise,
small ones to program high stiffness. Again, this could be integrated to the
iterative programming framework as a second or third phase of the process.
With the 6D Virtual Guide activated in Soft interaction mode, the user is able
to go out the guide and then go back. With this feature, he/she is able to
demonstrate the desired stiffness as explained above.

Finally, it would be interesting to integrate the developments presented in our
previous work Appendix A: "Co-manipulation with a Library of Virtual Guiding
Fixtures" to the ones presented in this thesis, in order to extend the Virtual Guides
iterative programming framework using a library of Virtual Guides, where multiple
guides can be activated at the same time. The library of guides was conceived using
a probabilistic approach through GMM and GMR, though the challenge resides on
merging both Virtual Guides construction approaches in an optimal manner.

6.2.3 Interaction - Interface

6.2.3.1 Virtual Guides Visualization

One problem raised by some participants during the experiments presented in
Chapter 5: "Experimental Evaluation" and particularly on the experiment presented
in our previous work [Raiola 2017a], is the absence of a visualization interface for
the Virtual Guides (voir Appendix A: "Co-manipulation with a Library of Virtual
Guiding Fixtures"). This makes it harder for the user to find where the guides are
placed in the robot’s workspace, and the difficulty increases with the number of
DOF of the path to follow. For the Pick-and-Place task in [Raiola 2017a], Virtual
Guides were on R3 and several guides were active at the same time (see Figure 6.1).
After programming the guides, the user did not remember exactly how he performed
the movement on space or where the starting point was. It was even more difficult
to remember the emplacement of the multiple guides.

In Experiment 2 – Section 5.3: "Experiment 2: Iterative Programming", Virtual
guides were on R3 and on SO(3), so the user needed to remember not only the
position of the tool but also the orientation. Furthermore, we proposed in Chapter 4:
"Iterative Virtual Guides Programming" an iterative programming framework were

6.2. Perspectives 155

Figure 6.1: Multiple Virtual Guides created in the robot workspace for the Pick-
and-Place Experiment presented in [Raiola 2017a]. The task consisted in taking 6
discs from the robot’s workstation and insert them inside specific boxes identified
with 3 different colors: blue, brown and black. For each box there were two discs
with a piece of tape of the same color.

6D Virtual Guides can be refined and modified. An enhancement of our framework
would be to add visualization assistance in order to make it more intuitive to the
user to program the guides or make modifications. During this thesis, we developed
a prototype for Virtual Guides visualization using an AR interface, however no
measures or user studies were performed. This feature could also be useful to allow a
new user (who did not program the task initially) to visualize what has been done on
the workspace and go on with the task. Which will be also important in the context
of flexible manufacturing introduced in Chapter 1: "Introduction", where robots
should be collaborative and intuitive in order to add flexibility to the production
system.

The visualization problem affects the interaction with the Virtual Guides in both
Soft and Hard interaction modes. During the Soft interaction mode, the user can
"escape" the guides, but since he/she can not see them, it is difficult to join them
back again. This could also affect the iterative modification of the Virtual Guides.
During the Hard interaction mode, the absence of visual feedback causes the user to
involuntarily move against the guided directions generating a corrective force exerted
by the spring-damper system which could cause the user to exert unnecessary efforts.
In fact, when interacting with the Virtual Guides the user only benefits from haptic
feedback.

The idea of visualizing Virtual Guides is not new in literature. The original
definition of virtual fixtures proposed also a visualization interface in order to fully
exploit their advantages [Rosenberg 1993]. Virtual Fixtures visualization was used
by Rosenberg to enhance operator performance in the telerobotic control of Fitt’s
Law peg-board task (see Figure 6.2). However, the technology at this time made the

156 Chapter 6. Conclusion

Figure 6.2: Augmented reality application on telerobotic control of Fitt’s Law
peg-board task [Rosenberg 1993]. Image by GardenM - Own work, CC BY-SA 4.0.

interface cumbersome and neither easy nor cost-effective to implement in industrial
environments.

(a) AR interface proposed by [Rosenberg 1993], used
in teleoperation tasks.

(b) Microsoft Hololens AR headset, used by our team
for the comanipulation of an ISybot cobot.

Figure 6.3: Virtual Guides visualization interfaces.

Today, recent commercial solutions, like the Microsoft Hololens, allow to integrate

6.2. Perspectives 157

an AR interface to robotics applications (see Figure 6.3). We actually used the
Hololens headset to create an AR interface in order to allow Virtual Guides visual-
ization, as shown in Figure 6.4. As stated above, we did not run any experimental
validation of this implementation but we have reasons to believe that this interface
could enhance the Virtual Guides programming process. Future work includes the
integration of our refinement and modification tools to the AR interface so the
user is able to, for example, modify a point of the guide by manipulating it via the
AR interface. We could imagine the user "drawing" Virtual Guides directly on the
working space.

Some drawbacks of our implementation were related to the calibration process.
For example, sometimes the visualized Virtual Guide did not match exactly the real
contour of the object, and the rendering changed with the perspective of the point
of view. Further analysis and developments are needed to overcome this problem.
Also, the first version of the Hololens headset presented a limited field of view which
disturbs the user interaction with the Virtual Guides. A solution to this problem
should be proposed soon by Microsoft.

Figure 6.4: Virtual Guides visualization through an AR interface using an Hololens
headset. Tested on the Experiment 2 (5.3) presented in Chapter 5: "Experimental
Evaluation". a) Visualization of 6D Virtual Guides using an AR interface. 6D
Virtual Guides are represented by the pose of the tool attached to the cobot. The
translational component of the guide is represented by cartesian points (white points)
and the rotational component of the guide is represented by trihedrons along the
path (red-green-blue). We can also see the different orientations of the model of the
tool through the path (transparent gray). b) User wearing the Hololens headset to
visualize the Virtual Guides (shown in Figure a)

158 Chapter 6. Conclusion

6.2.3.2 Ergonomy

The main objective of our programming framework is to assist the human operator.
In Chapter 5: "Experimental Evaluation", we confirmed that the use of our proposed
Virtual Guides Iterative programming approach reduced the physical effort and
cognitive overload of the user. However, this was just validated by a user survey. It
would be useful to add a force sensor on the cobot handle in order to measure the
forces exerted by the user with and without the iterative programming framework.
Also, a deep analysis of the user’s postures and gestures while manipulating the
cobot in real case scenarios, would allow to better understand and quantify the
impact of the tools presented in this thesis and would also give some leads to further
developments. An excellent base to continue this research is the work realized
in [Maurice 2017], where a generic method for performing detailed ergonomic
assessments of comanipulation activities is presented (see Figure 6.5).

Figure 6.5: Snapshots of a digital human model performing a drilling activity without
assistance (left) and with the assistance of two near-optimal collaborative robots
(middle and right). The colored spheres represent the instantaneous level of joint
effort: where maximum efforts are in red and minimum in green. [Maurice 2017].

Appendix A

Co-manipulation with a Library
of Virtual Guiding Fixtures

The following document [Raiola 2017a] is a copy of the journal article we published
in the Autonomous Robots Journal.

Noname manuscript No.
(will be inserted by the editor)

Co-manipulation with a Library of
Virtual Guiding Fixtures

Gennaro Raiola · Susana
Sanchez Restrepo ·
Pauline Chevalier · Pedro
Rodriguez-Ayerbe ·
Xavier Lamy · Sami
Tliba · Freek Stulp

the date of receipt and acceptance should be inserted later

Abstract Virtual guiding fixtures constrain the movements
of a robot to task-relevant trajectories, and have been suc-
cessfully applied to, for instance, surgical and manufactur-
ing tasks. Whereas previous work has considered guiding
fixtures for single tasks, in this paper we propose a library of
guiding fixtures for multiple tasks, and propose methods for
1) Creating and adding guides based on machine learning; 2)
Selecting guides on-line based on probabilistic implementa-
tion of guiding fixtures; 3) Refining existing guides based
on an incremental learning method. We demonstrate in an
industrial task that a library of guiding fixtures provides an
intuitive haptic interface for joint human-robot completion
of tasks, and improves performance in terms of task execu-
tion time, mental workload and errors.

G. Raiola1,2,4

E-mail: gennaro.raiola@ensta-paristech.fr

S. Sanchez Restrepo2

E-mail: susana.sanchezrestrepo@cea.fr

P. Chevalier1

E-mail: pauline.chevalier@ensta-paristech.fr

P. Rodriguez-Ayerbe3

E-mail: pedro.rodriguez@centralesupelec.fr

X. Lamy2

E-mail: xavier.lamy@cea.fr

S. Tliba3

E-mail: sami.tliba@lss.supelec.fr

F. Stulp1,4,5

E-mail: freek.stulp@dlr.de
1 Robotics and Computer Vision, ENSTA-ParisTech, Palaiseau,
France · 2 CEA-List, Gif-sur-Yvette, France · 3 Univ. Paris-Sud,
CNRS, CentraleSupelec, Gif-sur-Yvette, France · 4 FLOWERS Team,
INRIA, Bordeaux Sud-Ouest, France · 5 German Aerospace Center
(DLR), Institute of Robotics and Mechatronics, Wessling, Germany

Keywords Human robot collaborative tasks in manufactur-
ing · Learning from demonstration · Virtual fixture

1 Introduction

Recent improvements in the safety and (force) sensing capa-
bilities of robots now enable humans to physically interact
and solve tasks collaboratively with robots. The advantages
of this collaboration is that it enables non-expert users to
quickly teach robots new behaviours for new tasks. This is
essential for modern assembly lines, where lot sizes are be-
coming ever smaller due to customization, and high degrees
of flexibility are necessary to quickly adapt to changing mar-
kets (Hermann et al, 2016).

This flexibility and teach-in programming requires
robots to be adaptive and to predict the intentions of hu-
mans, for which machine learning is a key enabler. In this
paper, we apply machine learning and probabilistic methods
to “virtual guiding fixtures” (Lin et al, 2006), so that non-
expert users can teach new fixtures, and the robot is able to
recognize on-line which fixture the human intends to select.

A virtual guiding fixture (Lin et al, 2006) constrains the
motion of an end-effector to certain task-relevant trajecto-
ries. A well-known example of a guiding fixture from every-
day life is the ruler, which allows us to draw very straight
lines by constraining the movement of the pen tip along a
1-D trajectory on the 2-D paper. Robots are able to imple-
ment more complex virtual guiding fixtures, as illustrated in
Fig. 1.

Whereas previous work has focussed on single virtual
guides for single tasks, here we consider scenarios in which
multiple tasks must be solved, and a library of virtual guides
is thus necessary. Therefore, to maintain and evaluate such
a library, we make the following contributions1:

– Apply incremental training of Gaussian Mixture Mod-
els (GMM), as previously used for Programming by
Demonstration (PbD) in (Calinon, 2007), to create and
refine virtual guides (Section 4 and 6).

– Define a controller to select among multiple virtual
guides based on a probabilistic implementation of them
(Section 5), which constitutes the main technical contri-
bution of our work.

– Present an user study (Section 7), in which we evaluate
the usability and impact of the library of virtual guides
in the context of an industrial pick-and-place task.

The rest of this paper is structured as follows. In the next
section, we discuss related work. In Section 3, we introduce

1 Our previous work (Raiola et al, 2015a,b) focussed on the the-
oretical framework underlying multiple virtual guides, as well as an
analysis of their stability. This paper focusses instead on the pragmatic
implementation of a library of such guides, including a full user study.

2 Gennaro Raiola et al.

Ruler as a guide. Robot as a guide.

Robot as a guide
for industrial tasks.

Fig. 1: Rulers simplify the drawing of lines, because they
constrain (guide) the movement of the pencil tip (top left).
Robots can similarly constrain human motions with virtual
guides, but allow more flexibility on the shape of the guide
(top right). Such virtual guides enable co-manipulation for
industrial tasks (bottom).

a possible way to generate virtual guides by using virtual
mechanisms as proposed in (Joly and Andriot, 1995), which
forms the background of our work. In Section 4, we intro-
duce how to create and add guides to the library. In Section 5
we present the controller which enables the on-line selec-
tion of multiple virtual guides. In Section 6 we discuss how
to refine existing guides based on the incremental training of
GMM. We present the user study in Section 7, and conclude
with Section 8.

2 Related Work

Virtual guides are used to enforce virtual constraints on the
movements of robots, in order to assist the user during a
collaborative task. Virtual fixtures are especially useful in
contexts where human decision making is still required to
perform the overall task, but where constraints on the accu-
racy or required forces of the motion preclude humans from
performing such tasks without robot assistance. Virtual fix-
tures were first introduced by (Rosenberg, 1993), where vir-
tual fixtures are presented as an overlay of augmented sen-
sory information on a workspace used to improve human
performance in a teleoperated manipulation task. The fun-
damental concept is that virtual fixtures can reduce mental
workload, task time, and errors during the collaborative task.
After Rosenberg’s initial work, the use of virtual fixtures has
been extended to robotic surgery under the name of active
constraints (Ho et al, 1995; Davies et al, 2006) and to indus-

trial applications by (Colgate et al, 2003) in the context of
Intelligent Assist Devices.

Nowadays, virtual fixtures has been featured in sev-
eral different works, but unfortunately “there is currently
no definitive concept which unifies the field” (Bowyer
et al, 2014) because of the different definitions, applications
and implementation methods. Generally, virtual fixtures has
been used in teleoperation or comanipulation contexts. In
teleoperation, the user controls a slave robot via a separate
master device (Joly and Andriot, 1995; Aarno et al, 2005;
Abbott, 2005; Bowyer and y Baena, 2013), this offers ben-
efits such as motion scaling and the possibility to operate
in restricted and unsafe environments, for example (Ryden
et al, 2013) use virtual guides to teleoperate an underwater
robot, while (David et al, 2014) proposed a supervisory con-
trol system to speed up a disk-cutter insertion process.

In a comanipulation context, the user directly interacts
with the robot through physical contact (Raiola et al, 2015a;
Becker et al, 2013; Dumora, 2014; Pezzementi et al, 2007).
This allows a direct interaction between the robot and the
user, and a more intuitive ability to perform the task since
the user is better integrated in the procedure compared to the
case where the user interacts with the environment through
a teleoperated robot. The type of assistance offered by the
virtual fixtures can vary among different definitions, but in
general they are either used to guide the user along a task-
specific pathway or to limit the user to move the robot within
a safe region.

The particular implementation of virtual guides we use
is based on the work presented by (Joly and Andriot, 1995),
where a passive virtual mechanism is connected to the robot
end-effector by a spring-damper system in a teleoperation
context. Instead, we use the virtual mechanisms in a co-
manipulation framework, i.e. the user is directly in contact
with the robot. Virtual mechanisms have also been used
by (Pezzementi et al, 2007), where they are called “prox-
ies”. Virtual guides may also be implemented by using
anisotropic admittances to attenuate the non-preferred user
force component (Marayong et al, 2003; Bettini et al, 2004).
These methods require sensing external inputs, such as the
force or the velocity applied by the user on the robot end-
effector. This is not required with our control scheme.

Regarding the way virtual fixtures can be created, there
are many possible solutions since there are different possi-
ble applications where they can be useful, usually the way to
create them is strictly related to the goals of the application.
In general, virtual fixtures have often been limited to pre-
defined geometric shapes (Marayong et al, 2003) or com-
binations of shapes (Aarno et al, 2005; Kuang et al, 2004)
or defined through well-defined geometric models (Joly and
Andriot, 1995; Dumora, 2014). On the other hand, program-
ming by demonstration (PbD) appears as a promising solu-
tion to program robots in a fast and simple way when the

Co-manipulation with a Library of Virtual Guiding Fixtures 3

task is known by the user. In PbD, teaching a path usually
involves demonstrating the set of trajectories and retrieving
a generalized representation of the data set suitable for re-
production by a robot. Generating guides from demonstra-
tions has been explored by (Aarno et al, 2005), who model
demonstrations in a segmented sequence of straight lines.
Another interesting work about virtual fixtures and program-
ming by demonstrations has been conducted by (Yoon et al,
2014). In this work the authors personalize the virtual fix-
ture based on a set of demonstrations provided by the users
in order to match their preferences about the guidance.

In our work, we use the demonstrations of the user
to train Gaussian Mixture Models (GMM) as in (Calinon
et al, 2007), which ensures smooth movements and explic-
itly models the variance in user demonstrations. Moreover,
this allows us to define one of the novel aspect of our work,
i.e. the probabilistic virtual guides. A first advantage of the
probabilistic approach is that it enables a guide to be acti-
vated/deactivated based on the probability of belonging to
it, which leads to smooth transitions. This is preferable to
switching the guide on/off as in (Li and Okamura, 2003;
Aarno et al, 2005; Yu et al, 2005), and does not require
the manual design of distance thresholds for activation, as
in (Nolin et al, 2003).

A second advantage is that the probabilistic approach
allows us to simultaneously activate and recognize several
guides, by assigning probabilities to each guide based on
user behavior. Thus, our method enables the use of a li-
brary of guides, with one guide for each distinct task. Multi-
ple guides have been previously used, but these (sub)guides
are activated sequentially for one unique task, rather than in
parallel for several tasks. For instance (Kuang et al, 2004)
combine different shape primitives to facilitate maze nav-
igation. (Aarno et al, 2005) use HMM to probabilistically
choose a guide in a sequence of linear guides to accomplish
a pick and place task.

Finally, we consider a co-manipulation instead of tele-
operation framework, as is customary with PbD. In this re-
spect, our work can be compared to (Amor et al, 2014; Med-
ina et al, 2012; Rozo et al, 2016; Wrede et al, 2013) where
the user and the robot have to execute a learned task together.
Regarding the definition of the virtual guides through PbD,
our work can be compared to the work done by (Vakanski
et al, 2012; Mollard et al, 2015; Boy et al, 2007; Ewerton
et al, 2016; Lee and Ott, 2011; Sanchez Restrepo et al, 2017)
where the concept of Task refinement is exploited, as we will
see in Section 6 this is possible due to the incremental train-
ing of GMM (Calinon, 2007).

3 Background: Virtual Mechanisms as Virtual Guides

We implement a virtual guide as a connection between the
end-effector of the robot and a simulated virtual robot called

“virtual mechanism” (Joly and Andriot, 1995). The equa-
tions and control schemes in (Joly and Andriot, 1995) are
important background knowledge to understand our contri-
butions, so we provide an overview of them in this section.

In general the virtual robot has fewer degrees of free-
dom than the real one, and thus the movements of the real
robot are constrained by the possible movements of the vir-
tual robot, see Fig. 2.

Fig. 2: Left: A virtual mechanism is a virtual (spring-
damper) connection between the robot and the virtual robot
with fewer degrees of freedom. xvm and xr represent respec-
tively the end-effector position in Cartesian space of the vir-
tual mechanism and the robot. svmi represents the degree
of freedom of the virtual mechanism. Right: In our work,
the virtual mechanism has only one degree of freedom rep-
resented by svm, which represents the movement along a
trajectory, the virtual guide. The virtual mechanism can be
thought as a cart moving along a rail, with the rail acting as
the constraint.

The robot end-effector and the virtual “cart” mechanism
are coupled by a spring-damper system. In this way if the
robot end-effector moves, the cart is pulled along the rail in
the direction of the movement, on the other hand, the cart
also pulls the robot towards the rail, because the connection
pulls in both directions. The overall effect is that the robot
end-effector can be moved easily along the virtual rail, but
not away from the rail. The position of the cart on the rail in
Cartesian space is described by xvm. The distance it has trav-
eled along the rail is function of the phase svm, with svm = 0
at the beginning and svm = 1 at the end of the rail, as illus-
trated in Fig. 3. The kinematics of the virtual mechanism is
described by:

xvm = f (svm), (1)

ẋvm = Jvm(svm)ṡvm. (2)

In Section 5.1 we will describe how to implement the
functions f (svm) and Jvm(svm) from user demonstrations.

3.1 Force on the virtual mechanism

The virtual mechanism is connected to the robot end-
effector with a virtual spring-damper system. The force ap-

4 Gennaro Raiola et al.

Fig. 3: The main variables and equations of the virtual
mechanism.

Fig. 4: Control scheme for the virtual mechanism.

plied to the virtual mechanism by the robot is:

Fr = K(xr−xvm)+B(ẋr− ẋvm). (3)

The virtual mechanism is ideal, so the efforts applied on it
are null

Jvm
ᵀFr = 0, (4)

which leads to

Jvm
ᵀ(K(xr−xvm)+B(ẋr−Jvmṡvm)) = 0. (5)

By solving (5) with respect to ṡvm, we obtain a first order
dynamical system that expresses the evolution of the virtual
cart along the virtual rail:

ṡvm = (Jvm
ᵀBJvm)

−1Jvm
ᵀ(K(xr−xvm)+Bẋr). (6)

Moving the robot end-effector away from the virtual cart
(xr 6= xvm) will thus make it slide along the rail, with a ve-
locity described by (6)2.

2 Eq. (6) contains the inverse of the matrix (Jvm
ᵀBJvm), which may

lead to singularities. This problem and possible solutions are presented
in Section 2.3 of (Raiola, 2017).

3.2 Force on the robot end-effector

Because the virtual mechanism and the robot end-effector
are connected to each other, the virtual mechanism also ap-
plies a force on the robot end-effector, i.e.

Fvm =−Fr = K(xvm−xr)+B(ẋvm− ẋr). (7)

This virtual force can be transformed into actual control
commands for the robot, for instance with a compliance con-
troller. In our implementation, we used the robot’s Jacobian
transposed Jᵀr to convert the forces into torque references
for the motor controllers. Fig. 4 illustrates the signals con-
nections between the robot and the virtual mechanism.

4 Creating and Adding Guides

In the previous section, we explained how a virtual guide
is implemented as a virtual mechanism. In this paper, the
mechanism may be considered as a virtual cart on a rail (a
3D trajectory), which is connected to the robot end-effector
with a spring-damper system. In this section, we present a
method for adding a new guide (rail) to a library of guides
through demonstrations and machine learning.

4.1 Gaussian Mixture Model

In our approach, virtual guides are extracted from (multiple)
user demonstrations by training a Gaussian Mixture Model
with Expectation Maximization, as in (Calinon et al, 2007).

Fig. 5: Example of a Gaussian Mixture Model, trained on
three demonstrated trajectories

In a GMM, the demonstrated data is modelled by a mix-
ture of K components defined by a probability density func-
tion:

p(ζ m) =
K

∑
k=1

p(k)p(ζ m|k), (8)

where {ζ m}M
m=1 represents the demonstrated set of Carte-

sian points of dimension D, p(k) is the prior probability and
p(ζ m|k) is the conditional probability. A Gaussian Mixture
Model can be fully described by its parameters θ which are

Co-manipulation with a Library of Virtual Guiding Fixtures 5

θ = {πk,µk,Σ k,M}K
k=1, respectively the priors, the means,

the covariance matrices and the number of samples3 in ζ .
For a mixture of K components of dimensionality D the

parameters in (8) are defined as:

p(k) = πk,

p(ζ m|k) = N (ζ m; µk,Σ k), (9)

=
e(−

1
2 (ζ m−µk)

ᵀΣ k
−1(ζ m−µk))

√
(2π)D|Σ k|

. (10)

The log-likelihood of the model described by θ , given a
set of M datapoints {ζ m}M

m=1 is:

L (θ) =
1
M

M

∑
m=1

ln(p(ζ m)). (11)

Where p(ζ m) is the probability that ζ m has been gener-
ated by the model, which is computed using (8).

4.1.1 Training the Gaussian Mixture Model

The GMM is initially trained from user demonstra-
tions, using the approach described in (Calinon et al,
2007; Raiola et al, 2015a), and briefly repeated here.
The demonstrated trajectories consist of samples {ζ m =
[x(tm),y(tm),z(tm)]}M

m=1. Multiple trajectories are first
aligned using Dynamic Time Warping. Then, each sam-
ple in a trajectory is associated with a phase value defined
as s(tm) = (tm − t1)/(tM − t1), i.e. s(t1) = 0 at the begin-
ning of the demonstration, and s(tM) = 1 at the end. The
resulting samples in one trajectory then have the format
{[xm,ym,zm,sm]}M

m=1.
Fitting the GMM to this data is done with the

Expectation-Maximization algorithm (EM). EM incremen-
tally adjusts the priors πk and the parameters µk and Σ k of
the Gaussian functions to fit the data until a stop criterion
is met. This algorithm guarantees monotone increase of the
likelihood of the training set during optimization.

4.2 Gaussian Mixture Regression

Virtual mechanisms require implementations of
the kinematics equations xvm = f (svm) (1) and
ẋvm = Jvm(svm)ṡvm (2). These are extracted from the
GMM through Gaussian Mixture Regression (GMR). In
the context of a virtual mechanism, the input space is S, and
the output space is X , respectively the phase svm and virtual

3 Note that M is not strictly necessary to describe the model but it
will be useful for the incremental training.

mechanism’s position xvm. Given this partition, the mean
and covariance matrix4 are decomposed as

µk = [µᵀ
k,S,µ

ᵀ
k,X]

ᵀ and Σ k =

[
Σ k,S Σ k,SX

Σ k,XS Σ k,X

]
, (12)

The implementation of xvm = f (svm) in (1) corresponds to
computing xvm = E(xvm|svm), i.e. the expectation of xvm

given the input svm:

xvm =
K

∑
k=1

βk(svm)(µk,X +Σ k,XSΣ−1
k,S(svm−µk,S)), (13)

with:

βk(svm) =
πkg(x; µk,S,Σ k,S)

∑K
l=1 πlg(x; µ l,S,Σ l,S)

=
πkg(x;sk

vm)

∑K
l=1 πlg(x;sl

vm)
. (14)

The function g represents a Gaussian distribution defined as:

g(x; µ,Σ) =
e(−

1
2 (x−µ)ᵀΣ−1(x−µ))
√

(2π)D|Σ |
. (15)

The function Jvm(svm) in (2) is implemented with the
analytical derivative of (13) in respect of svm.

In summary, the kinematics of the virtual mechanism
xvm = f (svm) is computed with Gaussian Mixture Regres-
sion (13), based on a Gaussian Mixture Model (8), whose
parameters are trained by applying the Expectation Maxi-
mization algorithm to a set of demonstrated trajectories.

5 Selecting Guides

In a library of virtual guides, different guides exist to solve
different tasks, see Fig. 6. Our aim is to enable the robot to
recognize on-line which task the user intends to solve. To
avoid abrupt switches, we implement a control scheme in
which all mechanisms are simultaneously active, but scaled
with the probability that the task with which the mechanism
is associated is being solved. Thus, the final force Fres ap-
plied to the end-effector is a weighted sum of the forces from
each guide Fn=1...N

vm :

Fres =
N

∑
n=1

pnFn
vm. (16)

Our approach requires the computation of the probabil-
ities pn=1...N , which represent the probability that the nth

guide is responsible for the current task. To do so, we first
propose “probabilistic virtual mechanisms”, show how they
enable pn=1...N to be computed, and propose different inter-
action modes based on the exact scaling in (16).

4 The covariance matrix Σ e,S is actually a scalar, because the phase
is always 1-dimensional. For consistency, we nevertheless use the bold
symbol Σ rather than σ2.

6 Gennaro Raiola et al.

Fig. 6: Multiple virtual mechanisms – one for each task –
simultaneously connected to the robot end-effector.

5.1 Probabilistic Virtual Mechanism

We define a probabilistic virtual mechanism as a virtual
mechanism in which there is uncertainty about the position
of the virtual end-effector, i.e. the position of the cart on the
rail. This uncertainty is represented by a Gaussian distribu-
tion, as visualized in Fig. 7.

Fig. 7: The current state of the virtual mechanism is mod-
elled as a multi-variate Gaussian distribution N (xvm,Σ vm).

The covariance matrix of the distribution is readily com-
puted from the Gaussian Mixture Model through Gaussian
Mixture Regression by computing the conditional variance
VAR(xvm|svm):

Σ vm =
K

∑
k=1

βk(svm)
2
(

Σ k,X −Σ k,XSΣ−1
k,SΣᵀ

k,XS

)
. (17)

Thus, the (uncertain) position of the virtual mechanism
is represented by the Gaussian distribution:

xvm = E(xvm|svm = s), (18)

Σ vm =VAR(xvm|svm = s). (19)

We now show how the probabilistic virtual mechanism
is used to compute the probabilities pn=1...N for each of the
N guides in the library.

5.2 Probabilistic Weighting

Fig. 8 illustrates the association problem when using mul-
tiple guides. The two Gaussian Mixture Models represent

the two virtual guides, which are associated with two dif-
ferent tasks. The inset to the right shows how the robot end-
effector xr is connected to both of the virtual mechanism (the
“carts”). Because xr is closer to the lower cart 2, it is more
likely that the user intends to execute task 2, and the force
exerted by the cart 2 should be higher than that exerted by
cart 1. This intuition is implemented with the probabilistic
weighting scheme.

Fig. 8: Left: demonstrated trajectories (light gray) and
the two GMMs. Right: Relevant variables for computing
g(xr;svm).

If we have N virtual mechanisms, there are N cart posi-
tions xn=1:N

vm , and N probabilities. The probability pn that the
nth cart is responsible for guiding the end-effector at position
xr is

p(n;xr,sn
vm) =

g(xr; µn
vm,Σ n

vm)

∑N
i=1 g(xr; µ i

vm,Σ i
vm)

=
g(xr;sn

vm)

∑N
i=1 g(xr;si

vm)
,

(20)

where the means and covariance matrices of the cart position
are determined from the cart phase svm with (13) and (17)
respectively.

Each of the N virtual mechanisms applies a force Fn
vm to

the end-effector. The relative influence of each VM is scaled
with the probability p(n;xr,sn

vm), so that the resultant force
on the end-effector is5:

Fres =
N

∑
n=1

p(n;xr,sn
vm)F

n
vm. (21)

As described in (Raiola et al, 2015a), the underlying as-
sumption in using (21) is that xr must belong to one of the
VMs6. Another approach is to assume that if xr is too far
from the VMs, it does not belong to any of the VMs. To do
so, we use a Gaussian function h(xr; µvm,Σ vm) combined
with (21), i.e. a probability density function as in (10), but

5 The stability of such probabilistically weighted virtual guides is
analyzed in (Raiola et al, 2015b).

6 For this reason, we call the resulting guides “Hard Guides”

Co-manipulation with a Library of Virtual Guiding Fixtures 7

without the normalization factor
√
(2π)k|Σ vm|, as the Gaus-

sian function has a known maximum of 1.

h(x,xvm) = e(−
1
2 (x−xvm)ᵀΣvm−1(x−xvm)). (22)

By using these weights (to determine if an individual vir-
tual guide is active in the first place), as well as the probabil-
ity p(n;xr,sn

vm) (to determine the relative weighting between
all the guides), the resultant force becomes

Fres =
N

∑
n=1

h(xr;sn
vm)p(n;xr,sn

vm)F
n
vm. (23)

The overall effect of this weighting scheme is the fol-
lowing: if the robot end-effector is not close to any guide,
it is simply in zero-gravity mode, as none of the guides ex-
erts a force to pull the end-effector towards the guide7. As
soon as the robot end-effector approaches one of the guides,
it starts exerting a force, and the end-effector is pulled to-
ward the guide. The relative scaling between the guides is
determined by the relative probability that the guide is re-
sponsible.

6 Refining Guides

To modify a guide we can exploit the incremental EM
presented in (Calinon, 2007). After the user provides a
new demonstration, the incremental clustering detects if the
demonstration belongs to an existing guide, see Section 6.2.
In this case, the demonstration is used to incrementally train
the GMM which gets updated with the new data. Otherwise
the demonstration is used to create a new guide, see Fig. 9.

6.1 Incremental GMM Estimation

The idea is to adapt the classic EM algorithm by splitting
the part related to the old data from the part dedicated to the
newly demonstrated data (Calinon, 2007). The update of the
model is done under the assumption that the set of poste-
rior probabilities {p(k|ζ m)}M

j=1 remains the same when the

new data {ζ̃}M̃
m=1 is used to update the model, this is called

data coherency constraint. This assumption is true only if
the new data is close to the trained model. This means that it
is necessary to determine if the new data belongs or not to an
already trained GMM (as anticipated, we will address this
problem in the next section). Thus, the model is first created
using the classic EM algorithm. Starting from an initial es-
timation8 of the GMM with parameters {π0

k ,µ
0
k ,Σ

0
k}K

k=1, at

7 We call the resulting guides “Soft Guides”
8 In practice, the initial estimation is frequently performed using the

K-means clustering algorithm which defines the initial values for the
priors, means and covariance matrices.

each step the following two steps are performed until a stop
criterion is met:

E-step:

pt+1
k,m = π t

kN (ζ m; µ t
k,Σ

t
k), (24)

Et+1
k =

M

∑
m=1

pt+1
k,m . (25)

M-step:

π t+1
k =

Et+1
k
M

, (26)

µ t+1
k =

∑M
m=1 pt+1

k,m ζ m

Et+1
k

, (27)

Σ t+1
k =

∑M
m=1 pt+1

k,m (ζ m−µ t+1
k)(ζ m−µ t+1

k)ᵀ

Et+1
k

. (28)

The EM algorithm stops after a certain number of itera-
tions T when

L t+1

L t −1 < C , (29)

with the L defined in (11)9. The resulting GMM
is completely defined by the set of parameters θ =

{πT
k ,µ

T
k ,Σ

T
k ,M}K

k=1.
When a new demonstration is provided by the user,

T̃ steps are performed to update the model with the
new data ζ̃ with initial condition given by the previ-
ous model {π̃0

k , µ̃
0
k , Σ̃

0
k , Ẽ

0
k }K

k=1 = {πT
k ,µ

T
k ,Σ

T
k ,E

T
k }K

k=1 with
Ẽ0

k = π̃0
k M.

The EM algorithm can be rewritten as:
E-step:

p̃t+1
k,m = π̃ t

kN (ζ̃ m; µ̃ t
k, Σ̃

t
k), (30)

Ẽt+1
k =

M̃

∑
m=1

p̃t+1
k,m . (31)

M-step:

π̃ t+1
k =

Ẽ0
k + Ẽt+1

k

M+ M̃
, (32)

µ̃ t+1
k =

Ẽ0
k µ̃0

k +∑M̃
m=1 p̃t+1

k,m ζ̃ m

Ẽ0
k + Ẽt+1

k

, (33)

Σ̃ t+1
k =

Ẽ0
k (Σ̃

0
k +(µ̃0

k− µ̃ t+1
k)(µ̃0

k− µ̃ t+1
k)ᵀ)

Ẽ0
k + Ẽt+1

k

, (34)

+
∑M̃

m=1 p̃t+1
k,m (ζ̃ m− µ̃ t+1

k)(ζ̃ m− µ̃ t+1
k)ᵀ

Ẽ0
k + Ẽt+1

k

. (35)

Also in this case, the number of iterations T̃ is deter-
mined by the stop criterion defined in (29).

9 The threshold C = 0.01 is used in our case.

8 Gennaro Raiola et al.

Fig. 9: Left: With the incremental training of GMM it is possible to iteratively modify an existing virtual guide. The number
indicates the number of demonstrated trajectories used to incrementally train the guide. Right: Incremental training including
incremental clustering, as explained in Section 6.2.

6.2 Incremental clustering

When the user demonstrates a new trajectory, we have to
automatically detect if the new data belongs to one of the
guide that has been previously created or if can be used to
create a new one. This is necessary given the constraints on
the data coherency of the proposed incremental EM. When
the user demonstrates a new trajectory, the new data ζ̃ is
used to create a new GMM with the following parameters
θnew = {πk,µk,Σ k,M}. Since these parameters are the re-
sult of a set of EM steps, the associated likelihood repre-
sents the maximum likelihood, i.e. L(θnew|ζ̃) = L(θML|ζ̃).
We can use the maximum likelihood L(θML|ζ̃) as a baseline
to select which GMM best fits the data ζ̃ . To perform the
comparison we use the relative likelihood (Held and Bov,
2013) expressed as:

L̂(θn|ζ̃) =
L(θn|ζ̃)

L(θML|ζ̃)
, ∀ n = 1..N, (36)

where L(θn|ζ̃) represents the likelihood of an existing model
n given the new demonstrated data ζ̃ . In particular, we have
1 ≥ L̂(θn) ≥ 0 and L̂(θML) = 1; because of this property,
the relative likelihood is also called the normalized likeli-
hood. The same expression can be computed using the log-
likelihood, i.e. L̂ (θn) = log(L̂(θn)) = L (θn)−L (θML)
where for the log-likelihood we have 0 ≥ L̂ (θn) > − inf
with L̂ (θML) = 0. For simplicity, we omitted the data set ζ̃
since is the same in each comparison. We can compute the
relative likelihood L̂(θn) for each existing GMM. As pro-
posed in (Held and Bov, 2013), we can select the model to
update by using the following categorization based on the
relative likelihood and a threshold c:

1≥ L̂(θn)> c. (37)

The threshold c can be selected arbitrarily. For example, we
could categorize the likelihood as:

1≥ L̂(θn)>
1
3

θn very plausible, (38)

1
3
≥ L̂(θn)>

1
10

θn plausible, (39)

1
10
≥ L̂(θn)≥ 0 θn not plausible. (40)

However, such a pure likelihood approach to inference has
the disadvantage that the threshold c is somewhat arbitrar-
ily chosen. The candidate model to be updated with the new
incoming data is chosen in the interval given by (38). Be-
tween all the models that satisfy this inequality, we select
the model with the maximum L̂(θn). If none of the available
models satisfy (38), the model θML is used to create a new
guide. This method requires the creation of a new GMM
each time new data is provided. By creating a new model,
we can keep track of the updates, meaning that the user can,
at any time, revert a guide to its original shape. The advan-
tages of this method are: it is easy to implement, fast and
configurable due to the parameter c, does not require storing
the previous data (only the GMM parameters are stored).
The main drawbacks are: the selection and the significance
of c and the necessity to create a new GMM that could not
be used.

7 Experimental Evaluation

The following experiment was conducted on a 3-DOF ISY-
BOT10 comanipulation robot with a gripper, see Fig. 11.
The general task was to use the robot and the library of
virtual guides11 to simulate pick and place operations. For
the virtual guide assistance, the stiffness was set as K = kI
with k = 10000 N/m and the damping as B = bI with b =
400 N/ms−1.

10 http://www.isybot.com
11 The code used to generate and interact with the library of virtual

guides is available at https://github.com/graiola/virtual-fixtures

Co-manipulation with a Library of Virtual Guiding Fixtures 9

To create the virtual guides we used the incremental
training presented in Section 6 with a fixed number of 10
Gaussians per model. Each demonstration was composed by
M = 2000 samples {ζ m = [x(tm),y(tm),z(tm)]}M

m=1 recorded
at 100 Hz. The phase s for each time step was computed
with dynamic time warping and the mapping s(tm) = (tm−
t1)/(tM− t1), as explained in Section 4.1.1.

7.1 User Study

We designed the study to observe: (1) how novice users per-
ceived the virtual guide assistance with multiple guides, (2)
to determine if creating new virtual guides with the library is
intuitive and comfortable. We recruited 20 participants (with
age between 22 and 33 years old, 7 females). Twelve par-
ticipants stated they had prior experience with robots. We
divided the user study in 4 sessions:

1 The user performs a pick and place task without the
guides. (pp1)

2 The user performs a pick and place task with multiple de-
fault guides active. (pp2)

3 The user is trained on how to use the library of guides,
afterwards the user is able to create his personal set of
guides. (tr)

4 The user performs the pick and place task with the guides
created in the previous session. (pp3)

Fig. 10: Default virtual guides created by the expert user.
Left: The colored lines represent the mean of the GMMs.
Right: Virtual guides in the robot workspace.

The default guides for the session pp2 were generated by
an expert user with the library of virtual guides, see Fig. 10.

Four hypotheses were tested:

– H1: Virtual guides assistance improves task’s perfor-
mances, in terms of time and collisions occurrences.

– H2: Virtual guides assistance is more helpful when the
task requires higher level of attention.

– H3: Virtual guides assistance is perceived as useful by
the users.

– H4: It is intuitive and comfortable for novice users to
create new virtual guides.

All participants were asked to perform the four sessions.
The sessions pp1,2 were presented in a randomized order to
avoid training effects, while pp3 was always presented af-
ter the session tr. At the beginning of pp1,2, the participants
were able to familiarize with the system.

7.2 Task explanation

The task in pp1,2,3 consisted in taking 6 discs from the
robot’s workstation and insert them inside specific boxes
identified with 3 different colors: blue, brown and black.
For each box there were two discs with a piece of tape of
the same color, see Fig. 11. The objective of the task was to
place the discs in the associated box trying to minimize the
time in respect of two constraints:

– The participant had to avoid collisions between the robot
and the boxes.

– The discs had to be placed gently inside the boxes (it was
not possible to drop the discs in the boxes to save time).

The boxes were disposed to obtain an increasing difficulty in
terms of distance and accessibility ranging from the easiest
(blue) to the hardest (black), see Fig. 11.

Fig. 11: Setup for the user study (left) and buttons used for
the experiment (right). The upper button was used to hold
and release the discs with the pneumatic gripper, while the
lower button was used to start and stop the recording of the
demonstrations.

We measured the total task time (Tj) necessary to com-
plete the single session pp j with j = 1,2,3 (the time Tj was

10 Gennaro Raiola et al.

taken starting from the pick of the first disc and ending when
the last disc was placed) and the pick and place time for
each disc and session (ti, j) with i = 1, ..,6 (which leads to
18 = 6x3 measures for each participant). The total time Tj
differs from the sum over the single times ∑6

i=1 ti, j because it
includes the time necessary for the user to pick the disc with
the robot and to bring the robot back to the workstation after
each placing.

In session tr the experimenter explained to the partici-
pants how to interact with the system, see Fig. 11. The par-
ticipants were able to create their own guides in order to
execute the task in session pp3. During this session, the par-
ticipants were allowed to ask for help from the experimenter.
No time was recorded in tr.

Fig. 12: Different approaches to the guides creation done
by eight of our participants. Blue, brown and black curves
are the guides created to place the disc inside the respective
box. Gray curves are extra guides created to help connecting
the guides. For comparison in the upper-left corner there are
the guides created by the expert user.

Resulting guides from eight different users are shown
in Fig. 12. At the end of pp1,2,3 the participants answered a
post-condition survey focusing on the usage experience with
the virtual guides on the form of a Likert-scale survey with
a rating from 1 to 7, with 1 as strong disagreement and 7 as
strong agreement, see Table 1. For session tr the participants
answered to a different survey focusing on the creation of
the virtual guides, see Table 2.

7.3 Results

To validate our hypothesis we measured:

– Total task time Tj for each session pp1,2,3 and pick and
place time ti, j for each disc and session. Both are used to
validate H1 and H2.

– Observed collisions, to validate H1 and H2.
– Survey results for sessions pp1,2,3 to validate H3.
– Survey results for session tr to validate H4.

We performed a repeated-measure ANOVA (Girden, 1992)
on Tj, ti, j and on the survey, on three factors: (1) the ses-
sions pp j with j = 1,2,3, (2) the difficulty, represented by
the three boxes (blue; brown; black) and (3) the repetitions
for each box (r1;r2). Posthoc analyses were performed with
Tuckey’s HSD test (Abdi and Williams, 2010). For the col-
lisions we observed that the participants collided with the
boxes only during pp1,3. For this reason, we performed
Fisher-exact test between pp1,3 on the number of partici-
pants that did at least one collision during the task and those
that did not collide during the task. The significance thresh-
old was set to p < 0.05.

7.3.1 Time Analysis

Effects of sessions on time:
We found a statistically significant difference (p = .0023)
between the sessions pp1,2,3 on the total time (T) (Fig. 13,
Left). Posthoc analysis shows that pp1,2 and pp1,3 are sta-
tistically different (p = .005, p = .005). In pp1 (No Guides)
the participants were slower than in pp2,3 (Default and Per-
sonal Guides). In addition, we found a statistically signif-
icant difference (p = .00076) between the sessions on the
pick and place time (t) (Fig. 13, Right). Also in this case,
the posthoc analysis shows that pp1,2 and pp1,3 are statis-
tically different, with (p = .004, p = .001) respectively. We
found again that in pp1 the participants were slower than in
pp2,3. These two results enlighten that the virtual guides re-
duced the time to complete the task (both total time and pick
and place time for each disc). This validates H1. Moreover
we found that there is not statistical difference between the
execution time with default and personal guides. This indi-
cates us that the users were able to create guides that were
as efficient as the default guides created by the expert user.
This is an indication that H4 may be true, which we further
discuss in Section 7.3.3.

Effects of the difficulty on time:
As pointed out in 7.2, the difficulty related to the disc in-
sertion is different between the boxes (p < .001). This can
be seen in Fig. 14. Even if not statistically relevant, we re-
ported also the t related to each box and each session. We
can observe that the disc insertion for the black box requires
more time without guides, this can be explained with the
distance of the box from the workstation and with its dispo-
sition that does not facilitate the disc insertion. Instead, with
the guides the time seems to increase linearly, meaning that

Co-manipulation with a Library of Virtual Guiding Fixtures 11

Fig. 13: Left: Mean of the total task time (T). Right: Mean
of pick and place time (t).

the box disposition does not affect the insertion but only the
distance does. These results support H2.

Fig. 14: Left: Mean of t for each box. Right: Mean of t for
each box and each session.

Effects of repeated disc insertions on time:
We found a statistically significant effect (p < .001) of the
repeated insertions on t, see Fig. 15. The second repetition
is shorter than the first. This represents a training effect on
repeated disc insertions. However, we find a statistically sig-
nificant interaction effect (p = .047) between the sessions
and the repetition. Posthoc analysis shows that in pp1 there
is no statistical difference between the two repetitions but
in pp2,3 the second repetition is shorter than the first one,
with (p = .047, p = .012) respectively. This informs us that,
with guides, there is a training effect: repetitive use of vir-
tual guides can improve the user performances. This is not
necessary to prove H1 but it is a factor to take into account
when using virtual guides.

7.3.2 Collisions Analysis

For the collisions, we measured that the participants collided
with the boxes only during pp1,3. In pp2, the collisions were

Fig. 15: Left: Mean of t for the two repetitions. Right: Mean
of t for the two repetitions and each session.

not possible due to the guides created by the expert user
(Fig. 10). In pp3, collisions occurred because some partic-
ipants did not proof-test their guides. For the collision, we
found a statistical difference (p = 0.0001) between pp1 and
pp3: in pp1, 18 of the 20 participants had at least one col-
lision during the task, while in pp3 only 6 of the 20 partic-
ipants did. This indicates that using virtual guides leads to
a safer task execution (Fig. 16), which goes in the direction
of H1. Another observation could be done on the number of
collisions for each box. As shown in Fig. 16, the majority of
collisions occurred with the black box when the guides were
not available. When the guides are used, the number of col-
lisions with the black box reduces drastically (respectively 0
collisions with default guides and 1 collision with personal
guides). This last result goes in direction of H2. The higher
number of collisions with the blue box when the personal
guides are used can be explained with the fact that the par-
ticipants often started to create a guide for the blue box; this
lead to a higher number of mistakes since it was their first
training trial with the system.

Fig. 16: Left: Total number of collisions by session. Right:
Total number of collisions for each box and session.

12 Gennaro Raiola et al.

pp1 pp2 pp3

Question Mean SD Mean SD Mean SD F(2, 38) P-value

1) Do you think the task was easy to perform? 5.0 1.45 5.75 1.21 5.85 1.0 3.6157 0.03652
2) Do you think that you performed well the task? 4.6 1.57 5.8 0.83 5.45 1.1 7.4660 0.00184
3) Do you think the robot was helpful during the task execution? 4.3 1.52 5.45 1.54 5.75 1.02 10.298 0.00027
4) You felt comfortable with the robot while performing the task: 5.25 1.55 5.5 1.1 5.65 1.2 0.59262 0.55791
5) You felt stressed to use the robot while performing the task: 2.35 1.35 1.75 0.85 2.3 1.56 1.9334 0.15862
6) Do you think the robot is easy to work with: 4.85 1.46 5.6 1.35 5.55 1.0 2.6567 0.08319
7) Did you feel you had to put physical effort to perform the task: 2.75 1.65 3.25 1.8 2.8 1.36 1.4790 0.24068
8) Did you feel you performed the task precisely? 4.25 1.52 5.8 0.89 5.25 0.96 13.048 0.00005
9) Did you feel constrained by the robot during the experience? 2.95 1.64 4.25 1.77 3.3 1.69 4.4915 0.01774

Table 1: Survey results for the three pick and place sessions.

7.3.3 Survey on Pick and Place

Table 1 shows the results of the survey. From it we can ob-
serve the following:

1 The task was perceived as easier to perform when using
guides (both with default and personal guides).

2 Users thought that they performed better the task when
using guides. Particularly better using the default guides.
This can be verified with the collisions (no collisions us-
ing default guides, few collisions using personal guides).
Moreover, the default guides were more precise since they
were created by an expert user, see Fig. 10, while the per-
sonal guides were created in a little time by novice users.

3 Participants felt the robot was more helpful to perform the
task when using guides. No relevant difference between
default and personal guides.

4 Participants felt more comfortable with their own guides.
In this case the result is not statistically relevant.

5 Participants felt less stressed when using the default
guides, but more stressed when using their own guides.
Again, this could be explained with the number collisions
occurred during pp3. In this case we have a weak rele-
vance.

6 Participants felt that was easier to work with the robot
when the guides were active.

7 Participants perceived that they had to put more physi-
cal efforts to perform the task with the default guides.
This could be explained by the fact that the controller
generates a correction when the user tries to move away
from the guide. This effect, reduces the naturalness of the
switching when multiple guides are used. To solve this, it
could be useful to measure or estimate user’s external in-
puts, such as the force or the velocity applied on the end-
effector, to facilitate the switch. Another possible reason
for this result, is related to the fact that during the exper-
iments some participants did not have a clear vision of
where the guides were placed. During the task execution,
some participants, instead of moving the robot along the
guide, tried to move the robot where they wanted. Even
if not statistically relevant, this could be interpreted as

Question Mean SD

1) I believe that creating the new guides was:
- Intuitive 5.35 1.31
- Comfortable 4.85 1.04
- Physically demanding 3.1 2.02
- Cognitively demanding 3.9 1.71

2) I believe that to perform the task I should use:
- NO Guides at all 3.15 1.56
- ONE Guide 3.1 1.74
- MULTIPLE Guides 5.75 1.5

3) I believe that the guide(s) I created reflected
what I demonstrated

5.7 1.17

4) I believe that the guide(s) I created was(were)
precise

5.0 1.25

Table 2: Survey results for the training session.

a clear evidence that some sort of visualization for the
guides is needed.

8 Participants felt that they performed the task more pre-
cisely when using guides.

9 The participants felt more constrained when using the de-
fault guides. This can be explained by the fact that is eas-
ier to feel one’s own guides than guides created by another
person.

By looking at the results highlighted in Table 1 for the
questions 1,2,3,6,8 we can confirm that virtual guide as-
sistance is perceived as useful by the users, which validates
H3.

7.3.4 Survey Training

From (Table 2) we can see that participants felt that creating
the virtual guides was quite intuitive and comfortable (ques-
tion 1). For the selected task multiple guides were felt as
necessary (question 2). Moreover, participants felt that the
guides they created effectively reflected what they demon-
strated (question 3) and were enough precise (question 4).
With these results we can validate H4.

Co-manipulation with a Library of Virtual Guiding Fixtures 13

8 Conclusions

The development of robotics tools such as virtual guides can
be very useful to improve human performances in indus-
trial tasks that can not be completely automatized. Robots
possess characteristics such as precision, strength and accu-
racy that can be exploited in co-manipulation tasks by using
the virtual guiding assistance. In this paper, we presented
a novel way to create virtual guides; we developed an in-
tuitive and easy way to program them through kinesthetic
teaching by using Gaussian Mixture Models. Furthermore,
the incremental training of GMM enables the user to refine
the guides iteratively with the possibility to be assisted by
the virtual guide during the refining process. We also de-
fined a controller that allows the user to use multiple vir-
tual guides in parallel, and selects which guide is responsi-
ble for the task execution, based on the variance estimated
by the GMM. Together, this constitutes a library of virtual
guides that enables the user to create, modify and use mul-
tiple guides. Finally, we studied the utility of virtual guides
with an industrial task and concluded that virtual guides im-
prove the human performances in terms of time and colli-
sions, and they can relieve the workload from the user. In fu-
ture work we will explore the possibility to exploit the uncer-
tainty given by the probabilistic model to adapt the stiffness
of the guide (Medina et al, 2012; Calinon et al, 2014) and
add a way to visualize the virtual guides in order to increase
the user’s immersion in the robot’s workspace (Rosenberg,
1993).

Acknowledgements This project has received funding from DIGI-
TEO (www.digiteo.fr)

References

Aarno D, Ekvall S, Kragic D (2005) Adaptive virtual fix-
tures for machine-assisted teleoperation tasks. In: ICRA,
pp 897–903

Abbott JJ (2005) Virtual fixtures for bilateral telemanipula-
tion. PhD thesis, Johns Hopkins University

Abdi H, Williams LJ (2010) Tukeys honestly significant
difference (hsd) test. Encyclopedia of Research Design
Thousand Oaks, CA: Sage pp 1–5

Amor HB, Neumann G, Kamthe S, Kroemer O, Peters J
(2014) Interaction primitives for human-robot coopera-
tion tasks. In: Robotics and Automation (ICRA), 2014
IEEE International Conference on, IEEE, pp 2831–2837

Becker BC, Maclachlan RA, Lobes LA, Hager GD, Riviere
CN (2013) Vision-based control of a handheld surgical
micromanipulator with virtual fixtures. IEEE Trans Robot
29(3):674–683

Bettini A, Marayong P, Member S, Lang S, Okamura AM,
Hager GD (2004) Vision assisted control for manipulation

using virtual fixtures. In: International Conference on In-
telligent Robots and Systems (IROS), pp 1171–1176

Bowyer SA, y Baena FR (2013) Dynamic frictional con-
straints for robot assisted surgery. In: World Hap-
tics Conference (WHC), 2013, pp 319–324, DOI
10.1109/WHC.2013.6548428

Bowyer SA, Davies BL, y Baena FR (2014) Ac-
tive constraints/virtual fixtures: A survey. IEEE
Transactions on Robotics 30(1):138–157, DOI
10.1109/TRO.2013.2283410

Boy ES, Burdet E, Teo CL, Colgate JE (2007) Investigation
of motion guidance with scooter cobot and collaborative
learning. IEEE transactions on robotics 23(2):245–255

Calinon S (2007) Incremental learning of gestures by imita-
tion in a humanoid robot. In: In Proceedings of the 2007
ACM/IEEE International Conference on Human-Robot
Interaction, pp 255–262

Calinon S, Guenter F, Billard A (2007) On learning, repre-
senting and generalizing a task in a humanoid robot. IEEE
Transactions on Systems, Man and Cybernetics, Special
issue on robot learning by observation, demonstration and
imitation 37(2):286–298

Calinon S, Bruno D, Caldwell DG (2014) A task-
parameterized probabilistic model with minimal interven-
tion control. In: Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA), Hong Kong, China, pp 3339–3344

Colgate JE, Peshkin MA, Klostermeyer SH (2003) Intelli-
gent assist devices in industrial applications: a review. In:
IROS, pp 2516–2521

David O, Russotto FX, Simoes MDS, Measson Y (2014)
Collision avoidance, virtual guides and advanced super-
visory control teleoperation techniques for high-tech con-
struction: Framework design. Automation in Construction
44:63–72

Davies B, Jakopec M, Harris SJ, Baena FRY, Bar-
rett A, Evangelidis A, Gomes P, Henckel J, Cobb
J (2006) Active-constraint robotics for surgery.
Proceedings of the IEEE 94(9):1696–1704, DOI
10.1109/JPROC.2006.880680

Dumora J (2014) Contribution à linteraction physique
homme-robot: application à la comanipulation dobjets de
grandes dimensions. PhD thesis, Montpellier 2

Ewerton M, Maeda G, Kollegger G, Wiemeyer J, Pe-
ters J (2016) Incremental imitation learning of context-
dependent motor skills. In: Humanoid Robots (Hu-
manoids), 2016 IEEE-RAS 16th International Conference
on, IEEE, pp 351–358

Girden ER (1992) ANOVA: Repeated measures. 84, Sage
Held L, Bov DS (2013) Applied Statistical Inference: Like-

lihood and Bayes. Springer Publishing Company, Incor-
porated

Hermann M, Pentek T, Otto B (2016) Design principles
for industrie 4.0 scenarios. In: 2016 49th Hawaii Inter-

14 Gennaro Raiola et al.

national Conference on System Sciences (HICSS), IEEE,
pp 3928–3937

Ho SC, Hibberd RD, Davies BL (1995) Robot assisted
knee surgery. IEEE Engineering in Medicine and Biology
Magazine 14(3):292–300, DOI 10.1109/51.391774

Joly L, Andriot C (1995) Imposing motion constraints
to a force reflecting telerobot through real-time sim-
ulation of a virtual mechanism. In: Robotics and
Automation, 1995. Proceedings., 1995 IEEE Interna-
tional Conference on, vol 1, pp 357–362 vol.1, DOI
10.1109/ROBOT.1995.525310

Kuang A, Payandeh S, Zheng B, Henigman F, MacKenzie C
(2004) Assembling virtual fixtures for guidance in train-
ing environments. In: Haptic Interfaces for Virtual Envi-
ronment and Teleoperator Systems, 2004. HAPTICS ’04.
Proceedings. 12th International Symposium on, pp 367–
374, DOI 10.1109/HAPTIC.2004.1287223

Lee D, Ott C (2011) Incremental kinesthetic teaching of
motion primitives using the motion refinement tube. Au-
tonomous Robots 31(2-3):115–131

Li M, Okamura AM (2003) Recognition of operator motions
for real-time assistance using virtual fixtures. In: In Proc.
11th Symposium on Haptic Interfaces for Virtual Envi-
ronments and Teleoperator Systems, pp 125–131

Lin HC, Marayong P, Mills K, Karam R, Kazanzides P, Oka-
mura AM, Hager GD (2006) Portability and applicabil-
ity of virtual fixtures across medical and manufacturing
tasks. In: IEEE International Conference on Robotics and
Automation, pp 225–340

Marayong P, Li M, Okamura AM, Hager GD (2003) Spatial
motion constraints: theory and demonstrations for robot
guidance using virtual fixtures. In: ICRA, IEEE, pp 1954–
1959

Medina JR, Lee D, Hirche S (2012) Risk-sensitive opti-
mal feedback control for haptic assistance. In: Robotics
and Automation (ICRA), 2012 IEEE International Con-
ference on, IEEE, pp 1025–1031

Mollard Y, Munzer T, Baisero A, Toussaint M, Lopes M
(2015) Robot programming from demonstration, feed-
back and transfer. In: Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on, pp
1825–1831, DOI 10.1109/IROS.2015.7353615

Nolin JT, Stemniski PM, Okamura AM (2003) Activation
cues and force scaling methods for virtual fixtures. In: in
Proc. 11th Int. Symp. Haptic Interfaces for Virtual Envi-
ronment and Teleoperator Systems, pp 404–409

Pezzementi Z, Hager GD, Okamura AM (2007) Dynamic
guidance with pseudoadmittance virtual fixtures. In: IEEE
International Conference on Robotics and Automation, pp
1761–1767

Raiola G (2017) Co-manipulation with a library of virtual
guides. PhD thesis, Université Paris-Saclay

Raiola G, Lamy X, Stulp F (2015a) Co-manipulation
with multiple probabilistic virtual guides. In: Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ Interna-
tional Conference on, IEEE, pp 7–13

Raiola G, Rodriguez-Ayerbe P, Lamy X, Tliba S, Stulp F
(2015b) Parallel guiding virtual fixtures: Control and sta-
bility. In: Intelligent Control (ISIC), 2015 IEEE Interna-
tional Symposium on, IEEE, pp 53–58

Rosenberg L (1993) Virtual fixtures: perceptual tools for
telerobotic manipulation. In: Proc. IEEE Virtual Reality
International Sympsoium

Rozo L, Calinon S, Caldwell DG, Jimnez P, Torras C (2016)
Learning physical collaborative robot behaviors from
human demonstrations. IEEE Transactions on Robotics
PP(99):1–15, DOI 10.1109/TRO.2016.2540623

Ryden F, Stewart A, Chizeck H (2013) Advanced telerobotic
underwater manipulation using virtual fixtures and haptic
rendering. In: Oceans - San Diego, 2013, pp 1–8

Sanchez Restrepo S, Raiola G, Chevalier P, Lamy X,
Sidobre D (2017) Iterative virtual guides programming
for human-robot comanipulation. In: IEEE International
Conference on Advanced Intelligent Mechatronics (AIM)

Vakanski A, Mantegh I, Irish A, Janabi-Sharifi F (2012)
Trajectory learning for robot programming by demon-
stration using hidden markov model and dynamic time
warping. Systems, Man, and Cybernetics, Part B: Cy-
bernetics, IEEE Transactions on 42(4):1039–1052, DOI
10.1109/TSMCB.2012.2185694

Wrede S, Emmerich C, Grünberg R, Nordmann A, Swadzba
A, Steil J (2013) A user study on kinesthetic teaching of
redundant robots in task and configuration space. Journal
of Human-Robot Interaction 2(1):56–81

Yoon H, Wang R, Hutchinson S (2014) Modeling
user’s driving-characteristics in a steering task to cus-
tomize a virtual fixture based on task-performance.
In: Robotics and Automation (ICRA), 2014 IEEE
International Conference on, pp 625–630, DOI
10.1109/ICRA.2014.6906920

Yu W, Alqasemi R, Dubey R, Pernalete N (2005) Telema-
nipulation assistance based on motion intention recog-
nition. In: Robotics and Automation, 2005. ICRA 2005.
Proceedings of the 2005 IEEE International Conference
on, pp 1121–1126, DOI 10.1109/ROBOT.2005.1570266

Bibliography

[Aarno 2005] D. Aarno, S. Ekvall and D. Kragic. Adaptive Virtual Fixtures for
Machine-Assisted Teleoperation Tasks. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, 2005. ICRA 2005,
April 2005. (Cited in pages 24, 29, 31, and 35.)

[Abbott 2003] Jake J. Abbott and Allison M. Okamura. Virtual Fixture Architectures
for Telemanipulation, 2003. (Cited in pages 26, 27, and 33.)

[Abbott 2005] Jake J. Abbott. Virtual Fixtures for Bilateral Telemanipulation. PhD
thesis, Johns Hopkins University, 2005. (Cited in page 24.)

[Abbott 2006] Jake J Abbott and Allison M Okamura. Stable forbidden-region
virtual fixtures for bilateral telemanipulation. Journal of dynamic systems,
measurement, and control, vol. 128, no. 1, pages 53–64, 2006. (Cited in
page 32.)

[Abbott 2007] Jake J Abbott and Allison M Okamura. Pseudo-admittance bilateral
telemanipulation with guidance virtual fixtures. The International Journal of
Robotics Research, vol. 26, no. 8, pages 865–884, 2007. (Cited in page 32.)

[Akima 1970] Hiroshi Akima. A New Method of Interpolation and Smooth Curve
Fitting Based on Local Procedures. J. ACM, October 1970. (Cited in pages 57,
60, 61, and 62.)

[Alissandrakis 2007] Aris Alissandrakis, Chrystopher L Nehaniv and Kerstin Daut-
enhahn. Correspondence mapping induced state and action metrics for robotic
imitation. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 37, no. 2, pages 299–307, 2007. (Cited in page 18.)

[Ammi 2007] Mehdi Ammi and Antoine Ferreira. Robotic assisted micromanipulation
system using virtual fixtures and metaphors. In Robotics and Automation,
2007 IEEE International Conference on, pages 454–460. IEEE, 2007. (Cited
in pages 32 and 34.)

[Becker 2013] B. C. Becker, R. A. MacLachlan, L. A. Lobes, G. D. Hager and C. N.
Riviere. Vision-Based Control of a Handheld Surgical Micromanipulator

176 Bibliography

With Virtual Fixtures. IEEE Transactions on Robotics, June 2013. (Cited in
pages 21 and 25.)

[Benjamini 1995] Yoav Benjamini and Yosef Hochberg. Controlling the False Dis-
covery Rate: A Practical and Powerful Approach to Multiple Testing. Journal
of the Royal Statistical Society. Series B (Methodological), vol. 57, no. 1,
pages 289–300, 1995. (Cited in pages 106, 112, and 127.)

[Bettini 2001] A Bettini, S Lang, A Okamura and G Hager. Vision assisted control
for manipulation using virtual fixtures. In Intelligent Robots and Systems,
2001. Proceedings. 2001 IEEE/RSJ International Conference on, volume 2,
pages 1171–1176. IEEE, 2001. (Cited in pages 29, 34, and 65.)

[Bettini 2004] Alessandro Bettini, Panadda Marayong, Student Member, Samuel
Lang, Allison M. Okamura and Gregory D. Hager. Vision Assisted Control
for Manipulation Using Virtual Fixtures. In International Conference on
Intelligent Robots and Systems (IROS), pages 1171–1176, 2004. (Cited in
pages 27 and 29.)

[Biggs 2003] Geoffrey Biggs and Bruce MacDonald. A survey of robot programming
systems. In Proceedings of the Australasian conference on robotics and
automation, pages 1–3, 2003. (Cited in page 15.)

[Billard 1999] Aude Billard and Gillian Hayes. Drama, a connectionist architecture
for control and learning in autonomous robots. Adaptive Behavior, vol. 7,
no. 1, pages 35–63, 1999. (Cited in page 17.)

[Billard 2008] Aude Billard, Sylvain Calinon, Ruediger Dillmann and Stefan Schaal.
Robot programming by demonstration. In Springer handbook of robotics,
pages 1371–1394. Springer, 2008. (Cited in pages 16 and 19.)

[Billard 2016] Aude G Billard, Sylvain Calinon and Rüdiger Dillmann. Learning
from humans. In Springer Handbook of Robotics, pages 1995–2014. Springer,
2016. (Cited in page 20.)

[Bogue 2009] Robert Bogue. Exoskeletons and robotic prosthetics: a review of recent
developments. Industrial Robot: An International Journal, vol. 36, no. 5,
pages 421–427, 2009. (Cited in page 15.)

[Book 1996] Wayne John Book, Robert Charles, Hurley T. Davis and Mario Waldorff
Gomes. The Concept and Implementation of a Passive Trajectory Enhancing
Robot, November 1996. (Cited in page 21.)

[Borrel 1994] Paul Borrel and Ari Rappoport. Simple Constrained Deformations
for Geometric Modeling and Interactive Design. ACM Trans. Graph., April
1994. (Cited in page 96.)

Bibliography 177

[Bowyer 2013] S. A. Bowyer and F. Rodriguez y Baena. Dynamic frictional con-
straints for robot assisted surgery. In World Haptics Conference (WHC),
2013, pages 319–324, April 2013. (Cited in pages 24 and 65.)

[Bowyer 2014a] S. A. Bowyer, B. L. Davies and F. Rodriguez y Baena. Active
Constraints/Virtual Fixtures: A Survey. IEEE Transactions on Robotics,
vol. 30, no. 1, pages 138–157, Feb 2014. (Cited in pages 24 and 32.)

[Bowyer 2014b] Stuart A Bowyer and Ferdinando Rodriguez y Baena. Dynamic
frictional constraints in translation and rotation. In Robotics and Automation
(ICRA), 2014 IEEE International Conference on, pages 2685–2692. IEEE,
2014. (Cited in page 65.)

[Bowyer 2015] Stuart A Bowyer and Ferdinando Rodriguez y Baena. Dissipa-
tive Control for Physical Human–Robot Interaction. IEEE Transactions on
Robotics, vol. 31, no. 6, pages 1281–1293, 2015. (Cited in page 66.)

[Boy 2007] Eng Seng Boy, E. Burdet, Chee Leong Teo and J.E. Colgate. Investigation
of Motion Guidance With Scooter Cobot and Collaborative Learning. IEEE
Transactions on Robotics, April 2007. (Cited in page 36.)

[Burghart 1999a] Catherina Burghart, Jochen Keitel, Stefan Hassfeld, Ulrich Rem-
bold and Heinz Woern. Robot Controlled Osteotomy in Craniofacial Surgery,
1999. (Cited in page 27.)

[Burghart 1999b] Catherina Burghart, Jochen Keitel, Stefan Hassfeld, Ulrich Rem-
bold and Heinz Woern. Robot controlled osteotomy in craniofacial surgery. In
Proceedings of the 1st International Workshop on Haptic Devices in Medical
Applications, Paris, 1999. (Cited in pages 29 and 34.)

[Burschka 2005] Darius Burschka, Jason J Corso, Maneesh Dewan, William Lau,
Ming Li, Henry Lin, Panadda Marayong, Nicholas Ramey, Gregory D Hager,
Brian Hoffmanet al. Navigating inner space: 3-d assistance for minimally
invasive surgery. Robotics and Autonomous Systems, vol. 52, no. 1, pages
5–26, 2005. (Cited in pages 27 and 29.)

[Cagneau 2008] Barthelemy Cagneau, Guillaume Morel, Delphine Bellot, Nabil
Zemiti and Ginluca A d’Agostino. A passive force amplifier. In Robotics
and Automation, 2008. ICRA 2008. IEEE International Conference on, pages
2079–2084. IEEE, 2008. (Cited in page 15.)

[Calinon 2007a] S. Calinon, F. Guenter and A. Billard. On Learning, Representing,
and Generalizing a Task in a Humanoid Robot. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), April 2007. (Cited in
pages 17, 18, and 54.)

178 Bibliography

[Calinon 2007b] Sylvain Calinon and Aude G Billard. What is the teacher’s role
in robot programming by demonstration?: Toward benchmarks for improved
learning. Interaction Studies, vol. 8, no. 3, pages 441–464, 2007. (Cited in
page 35.)

[Calinon 2008] S. Calinon and A. Billard. A probabilistic Programming by Demon-
stration framework handling constraints in joint space and task space. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008.
IROS 2008, September 2008. (Cited in page 30.)

[Calinon 2010] S. Calinon, F. D’halluin, E.L. Sauser, D.G. Caldwell and A.G. Bil-
lard. Learning and Reproduction of Gestures by Imitation. IEEE Robotics
Automation Magazine, June 2010. (Cited in page 30.)

[Calinon 2011] Sylvain Calinon, Antonio Pistillo and Darwin G Caldwell. Encoding
the time and space constraints of a task in explicit-duration hidden Markov
model. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ Interna-
tional Conference on, pages 3413–3418. IEEE, 2011. (Cited in page 17.)

[Calinon 2013] Sylvain Calinon, Tohid Alizadeh and Darwin G Caldwell. On im-
proving the extrapolation capability of task-parameterized movement models.
In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on, pages 610–616. IEEE, 2013. (Cited in page 20.)

[Calinon 2014] Sylvain Calinon, Danilo Bruno and Darwin G Caldwell. A task-
parameterized probabilistic model with minimal intervention control. In
Robotics and Automation (ICRA), 2014 IEEE International Conference on,
pages 3339–3344. IEEE, 2014. (Cited in page 20.)

[Calinon 2018] Sylvain Calinon. Robot learning with task-parameterized generative
models. In Robotics Research, pages 111–126. Springer, 2018. (Cited in
page 20.)

[Castillo-Cruces 2010] Raúl A Castillo-Cruces and Jürgen Wahrburg. Virtual fixtures
with autonomous error compensation for human–robot cooperative tasks.
Robotica, vol. 28, no. 2, pages 267–277, 2010. (Cited in page 65.)

[Colgate 1988] J. Edward (James Edward) Colgate. The control of dynamically
interacting systems. Thesis, Massachusetts Institute of Technology, 1988.
(Cited in page 50.)

[Colgate 1996] J Edward Colgate, J Edward, Michael A Peshkin and Witaya Wanna-
suphoprasit. Cobots: Robots for collaboration with human operators. Citeseer,
1996. (Cited in page 11.)

Bibliography 179

[Colgate 2003] J.E. Colgate, M. Peshkin and S.H. Klostermeyer. Intelligent assist
devices in industrial applications: a review. In 2003 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2003. (IROS 2003).
Proceedings, October 2003. (Cited in pages 21 and 24.)

[Cretu 2003] A-M Cretu, Emil M Petriu and Gilles G Patry. Neural network
architecture for 3D object representation. In Haptic, Audio and Visual
Environments and Their Applications, 2003. HAVE 2003. Proceedings. The
2nd IEEE Internatioal Workshop on, pages 31–36. IEEE, 2003. (Cited in
page 30.)

[Dam 1998] Erik B Dam, Martin Koch and Martin Lillholm. Quaternions, interpola-
tion and animation, volume 2. Datalogisk Institut, Københavns Universitet,
1998. (Cited in pages 45, 71, 72, 73, 75, and 78.)

[David 2014] Olivier David, François-Xavier Russotto, Max Da Silva Simoes and
Yvan Measson. Collision avoidance, virtual guides and advanced supervisory
control teleoperation techniques for high-tech construction: framework design.
Automation in Construction, August 2014. (Cited in pages 24 and 25.)

[Davies 2006] B. Davies, M. Jakopec, S. J. Harris, F. Rodriguez Y Baena, A. Barrett,
A. Evangelidis, P. Gomes, J. Henckel and J. Cobb. Active-Constraint Robotics
for Surgery. Proceedings of the IEEE, vol. 94, no. 9, pages 1696–1704, Sept
2006. (Cited in page 24.)

[De Boor 1972] Carl De Boor. On calculating with B-splines. Journal of Approxi-
mation theory, vol. 6, no. 1, pages 50–62, 1972. (Cited in page 56.)

[Dumora 2014] Julie Dumora. Contribution à l’interaction physique homme-robot :
Application à la comanipulation d’objets de grandes dimensions. PhD thesis,
Université Montpellier 2, March 2014. (Cited in pages 9, 24, 25, 29, 86,
and 88.)

[Eberly 2002] David Eberly. Quaternion algebra and calculus. Magic Software Inc,
2002. (Cited in pages 72, 73, 74, and 75.)

[Ekvall 2006] Staffan Ekvall and Danica Kragic. Learning task models from multiple
human demonstrations. In Robot and Human Interactive Communication,
2006. ROMAN 2006. The 15th IEEE International Symposium on, pages
358–363. IEEE, 2006. (Cited in page 18.)

[Erden 2011] Mustafa Suphi Erden and Bobby Marić. Assisting manual welding
with robot. Robotics and Computer-Integrated Manufacturing, vol. 27, no. 4,
pages 818–828, 2011. (Cited in page 15.)

[Erkorkmaz 2005] Kaan Erkorkmaz and Yusuf Altintas. Quintic spline interpolation
with minimal feed fluctuation. Transactions of the ASME-B-Journal of

180 Bibliography

Manufacturing Science and Engineering, vol. 127, no. 2, pages 339–349, 2005.
(Cited in page 153.)

[Farin 2014] Gerald Farin. Curves and surfaces for computer-aided geometric design:
a practical guide. Elsevier, 2014. (Cited in page 73.)

[Fitts 1951] Paul M Fitts. Human engineering for an effective air-navigation and
traffic-control system. 1951. (Cited in page 86.)

[Françoise 2013a] Vincent Françoise. Assistance au fraisage par comanipulation en
chirurgie orthopédique. PhD thesis, Paris 6, 2013. (Cited in page 7.)

[Françoise 2013b] Vincent Françoise. Assistance au fraisage par comanipulation en
chirurgie orthopédique. PhD thesis, Paris 6, 2013. (Cited in page 27.)

[Fritsch 1980] Frederick N Fritsch and Ralph E Carlson. Monotone piecewise cubic
interpolation. SIAM Journal on Numerical Analysis, vol. 17, no. 2, pages
238–246, 1980. (Cited in pages 57, 63, and 77.)

[Funda 1990] Janez Funda, Russell H Taylor and Richard P Paul. On homogeneous
transforms, quaternions, and computational efficiency. IEEE Transactions
on Robotics and Automation, vol. 6, no. 3, pages 382–388, 1990. (Cited in
page 70.)

[Gain 2008] James Gain and Dominique Bechmann. A survey of spatial deformation
from a user-centered perspective. ACM Transactions on Graphics (TOG),
vol. 27, no. 4, page 107, 2008. (Cited in page 95.)

[Garrec 2010] Phillipe Garrec. Screw and Cable Acutators (SCS) and Their Appli-
cations to Force Feedback Teleoperation, Exoskeleton and Anthropomorphic
Robotics. In Robotics 2010 Current and Future Challenges. InTech, 2010.
(Cited in pages 10 and 104.)

[Ghanbari 2010] Ali Ghanbari, Hamid Abdi, Ben Horan, Saeid Nahavandi, Xiaoqi
Chen and Wenhui Wang. Haptic guidance for microrobotic intracellular
injection. In Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd
IEEE RAS and EMBS International Conference on, pages 162–167. IEEE,
2010. (Cited in page 34.)

[Gibo 2009] Tricia L Gibo, Lawton N Verner, David D Yuh and Allison M Okamura.
Design considerations and human-machine performance of moving virtual
fixtures. In Robotics and Automation, 2009. ICRA’09. IEEE International
Conference on, pages 671–676. IEEE, 2009. (Cited in page 32.)

[Gorecky 2014] Dominic Gorecky, Mathias Schmitt, Matthias Loskyll and Detlef
Zühlke. Human-machine-interaction in the industry 4.0 era. In Industrial
Informatics (INDIN), 2014 12th IEEE International Conference on, pages
289–294. IEEE, 2014. (Cited in page 8.)

Bibliography 181

[Groshaw 1969] PF Groshaw. General Electric Co.: Hardiman I Arm Test, Hardi-
man I Prototype, General Electric Rep. Technical Report, S-70-1019, Sch-
enectady, 1969. (Cited in page 15.)

[Guerry 2017] Joris Guerry, Bertrand Le Saux and David Filliat. "Look At This
One" Detection sharing between modality-independent classifiers for robotic
discovery of people. In ECMR 2017-European Conference on Mobile Robotics,
pages 1–6, 2017. (Cited in page 6.)

[Hanson 2005] Andrew J Hanson. Visualizing quaternions. In ACM SIGGRAPH
2005 Courses, page 1. ACM, 2005. (Cited in page 71.)

[Ho 1995] S. C. Ho, R. D. Hibberd and B. L. Davies. Robot assisted knee surgery.
IEEE Engineering in Medicine and Biology Magazine, vol. 14, no. 3, pages
292–300, May 1995. (Cited in page 32.)

[Hogan 1988] N. Hogan. On the stability of manipulators performing contact tasks.
IEEE Journal on Robotics and Automation, December 1988. (Cited in
page 50.)

[Hogan 1989] N. Hogan. Controlling impedance at the man/machine interface. In
IEEE International Conference on Robotics and Automation, 1989. (Cited
in pages 26, 50, and 87.)

[Hsu 1992] William M Hsu, John F Hughes and Henry Kaufman. Direct manip-
ulation of free-form deformations. In ACM Siggraph Computer Graphics,
volume 26, pages 177–184. ACM, 1992. (Cited in page 96.)

[Ijspeert 2003] AJ Ijspeert, Jun Nakanishi and Stefan Schaal. Learning control
policies for movement imitation and movement recognition. In Neural in-
formation processing system, volume 15, pages 1547–1554, 2003. (Cited in
page 19.)

[Ikits 2003] Milan Ikits, J Dean Brederson, Charles D Hansen and Christopher R
Johnson. A constraint-based technique for haptic volume exploration. In
Visualization, 2003. VIS 2003. IEEE, pages 263–269. IEEE, 2003. (Cited in
page 29.)

[Inamura 2006] Tetsunari Inamura, Naoki Kojo and Masayuki Inaba. Situation
recognition and behavior induction based on geometric symbol representation
of multimodal sensorimotor patterns. In Intelligent Robots and Systems,
2006 IEEE/RSJ International Conference on, pages 5147–5152. IEEE, 2006.
(Cited in page 16.)

[Joli 2007] Pierre Joli, Shahram Payandeh, M Chan and Benjamin Bayart. A new
approach to solve constraint forces of virtual fixtures in haptic rendering. In
Proc. 12th World Congr. Mech. Mach. Sci. Conj. IFToMM, 2007. (Cited in
page 32.)

182 Bibliography

[Joly 1995] L.D. Joly and C. Andriot. Imposing motion constraints to a force
reflecting telerobot through real-time simulation of a virtual mechanism. In
, 1995 IEEE International Conference on Robotics and Automation, 1995.
Proceedings, May 1995. (Cited in pages 24, 27, 29, 32, 33, 43, 50, 52, and 53.)

[Joly 1997] Luc Joly. Commande hybride position/force pour la teleoperation: une
approche basée sur des analogies mécaniques. PhD thesis, Paris 6, 1997.
(Cited in pages 22, 27, 34, 43, 51, and 58.)

[Juhász 2001] Imre Juhász and Miklós Hoffmann. The effect of knot modifications
on the shape of B-spline curves. Journal for Geometry and Graphics, vol. 5,
no. 2, pages 111–119, 2001. (Cited in page 95.)

[Kaiser 1996] Michael Kaiser and Rüdiger Dillmann. Building elementary robot skills
from human demonstration. In Robotics and Automation, 1996. Proceedings.,
1996 IEEE International Conference on, volume 3, pages 2700–2705. IEEE,
1996. (Cited in page 17.)

[Kang 1995] Sing Bing Kang and Katsushi Ikeuchi. A robot system that observes
and replicates grasping tasks. In Computer Vision, 1995. Proceedings., Fifth
International Conference on, pages 1093–1099. IEEE, 1995. (Cited in page 16.)

[Kapoor 2006] Ankur Kapoor, Ming Li and Russell H Taylor. Constrained Control
for Surgical Assistant Robots. In ICRA, pages 231–236, 2006. (Cited in
page 29.)

[Kazerooni 1993] Homayoon Kazerooni. Extender: a case study for human-robot
interaction via transfer of power and information signals. In Robot and Hu-
man Communication, 1993. Proceedings., 2nd IEEE International Workshop
on, pages 10–20. IEEE, 1993. (Cited in page 15.)

[Kazerooni 2001] Homayoon Kazerooni. Human power amplifier for vertical maneu-
vers, October 9 2001. US Patent 6,299,139. (Cited in page 12.)

[Khalil 1996] Hassan K Khalil and JW Grizzle. Nonlinear systems, volume 3.
Prentice hall New Jersey, 1996. (Cited in page 50.)

[Khatib 1986] Oussama Khatib. Real-time obstacle avoidance for manipulators and
mobile robots. The international journal of robotics research, vol. 5, no. 1,
pages 90–98, 1986. (Cited in page 33.)

[Kikuuwe 2006] Ryo Kikuuwe, Naoyuki Takesue, Akihito Sano, Hiromi Mochiyama
and Hideo Fujimoto. Admittance and impedance representations of friction
based on implicit Euler integration. IEEE Transactions on Robotics, vol. 22,
no. 6, pages 1176–1188, 2006. (Cited in page 33.)

Bibliography 183

[Kikuuwe 2008] Ryo Kikuuwe, Naoyuki Takesue and Hideo Fujimoto. A control
framework to generate nonenergy-storing virtual fixtures: Use of simulated
plasticity. IEEE Transactions on Robotics, vol. 24, no. 4, pages 781–793,
2008. (Cited in page 33.)

[Kornely 1989] Michael Kornely. Self balancing electric hoist, February 28 1989. US
Patent 4,807,767. (Cited in page 12.)

[Kosuge 1995] K. Kosuge, T. Itoh, T. Fukuda and M. Otsuka. Tele-manipulation
system based on task-oriented virtual tool. In , 1995 IEEE International
Conference on Robotics and Automation, 1995. Proceedings, May 1995.
(Cited in pages 27 and 36.)

[Kuang 2004] A.B. Kuang, S. Payandeh, Bin Zheng, F. Henigman and C.L. MacKen-
zie. Assembling virtual fixtures for guidance in training environments. In
Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004.
HAPTICS ’04. Proceedings. 12th International Symposium on, pages 367–374,
March 2004. (Cited in pages 29, 30, and 65.)

[Kumar 2000] Rajesh Kumar, Peter Berkelman, Puneet Gupta, Aaron Barnes,
Patrick S Jensen, Louis L Whitcomb and Russell H Taylor. Preliminary
experiments in cooperative human/robot force control for robot assisted mi-
crosurgical manipulation. In Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on, volume 1, pages 610–617. IEEE,
2000. (Cited in page 15.)

[Kumar 2003] Rajesh Kumar, Ankur Kapoor and Russell H Taylor. Preliminary
experiments in robot/human cooperative microinjection. In Intelligent Robots
and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International
Conference on, volume 4, pages 3186–3191. IEEE, 2003. (Cited in page 28.)

[Kwok 2013] Ka-Wai Kwok, Kuen Hung Tsoi, Valentina Vitiello, James Clark,
Gary CT Chow, Wayne Luk and Guang-Zhong Yang. Dimensionality re-
duction in controlling articulated snake robot for endoscopy under dynamic
active constraints. IEEE Transactions on Robotics, vol. 29, no. 1, pages
15–31, 2013. (Cited in page 29.)

[Lamy 2011] Xavier Lamy. Conception d’une interface de pilotage d’un Cobot. PhD
thesis, Paris 6, January 2011. (Cited in pages 15 and 25.)

[Lee 1996] Christopher Lee and Yangsheng Xu. Online, interactive learning of
gestures for human/robot interfaces. In Robotics and Automation, 1996.
Proceedings., 1996 IEEE International Conference on, volume 4, pages 2982–
2987. IEEE, 1996. (Cited in page 17.)

[Lee 2006] Kye-Young Lee, Seung-Yeol Lee, Jong-Ho Choi, Sang-Heon Lee and
Chang-Soo Han. The application of the human-robot cooperative system for

184 Bibliography

construction robot manipulating and installing heavy materials. In SICE-
ICASE, 2006. International Joint Conference, pages 4798–4802. IEEE, 2006.
(Cited in pages 9 and 15.)

[Lee 2007] Dongheui Lee and Yoshihiko Nakamura. Mimesis scheme using a monoc-
ular vision system on a humanoid robot. In Robotics and Automation, 2007
IEEE International Conference on, pages 2162–2168. IEEE, 2007. (Cited in
page 17.)

[Li 2003] Ming Li and Russell H Taylor. Optimum robot control for 3D virtual fixture
in constrained ENT surgery. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 165–172. Springer,
2003. (Cited in page 28.)

[Li 2005a] Ming Li, Ankur Kapoor and Russell H Taylor. A constrained optimization
approach to virtual fixtures. In Intelligent Robots and Systems, 2005.(IROS
2005). 2005 IEEE/RSJ International Conference on, pages 1408–1413. IEEE,
2005. (Cited in page 27.)

[Li 2005b] Ming Li and Russell H Taylor. Performance of surgical robots with
automatically generated spatial virtual fixtures. In Robotics and Automation,
2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference
on, pages 217–222. IEEE, 2005. (Cited in page 29.)

[Li 2007] Ming Li, Masaru Ishii and Russell H Taylor. Spatial motion constraints
using virtual fixtures generated by anatomy. IEEE Transactions on Robotics,
vol. 23, no. 1, pages 4–19, 2007. (Cited in pages 29, 65, and 66.)

[Lin 2006] H. C. Lin, K. Mills, P. Kazanzides, G. D. Hager, P. Marayong, A. M.
Okamura and R. Karam. Portability and applicability of virtual fixtures across
medical and manufacturing tasks. In Proceedings 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA 2006., pages 225–230,
May 2006. (Cited in page 24.)

[Lomax 2013] Richard G Lomax and Debbie L Hahs-Vaughn. Statistical concepts:
A second course. Routledge, 2013. (Cited in page 106.)

[Lucke 2008] Dominik Lucke, Carmen Constantinescu and Engelbert Westkämper.
Smart factory-a step towards the next generation of manufacturing. Manu-
facturing systems and technologies for the new frontier, pages 115–118, 2008.
(Cited in page 5.)

[Makarov 2013] Maria Makarov. Contribution à la modélisation et la commande
robuste de robots manipulateurs à articulations flexibles. Applications à la
robotique interactive. PhD thesis, Supélec, 2013. (Cited in page 25.)

Bibliography 185

[Marayong 2003] Panadda Marayong, Ming Li, Allison M. Okamura and Gregory D.
Hager. Spatial motion constraints: theory and demonstrations for robot
guidance using virtual fixtures. In ICRA, pages 1954–1959. IEEE, 2003.
(Cited in pages 27, 29, and 34.)

[Marayong 2004] Panadda Marayong and Allison M Okamura. Speed-accuracy
characteristics of human-machine cooperative manipulation using virtual
fixtures with variable admittance. Human Factors, vol. 46, no. 3, pages
518–532, 2004. (Cited in pages 27, 29, and 91.)

[Maurice 2017] Pauline Maurice, Vincent Padois, Yvan Measson and Philippe
Bidaud. Human-oriented design of collaborative robots. International Journal
of Industrial Ergonomics, vol. 57, pages 88–102, 2017. (Cited in pages 25,
146, and 158.)

[Micaelli 1998] Alain Micaelli, Catherine Bidard and Claude Andriot. Decoupling
control based on virtual mechanisms for telemanipulation. In Robotics and
Automation, 1998. Proceedings. 1998 IEEE International Conference on,
volume 3, pages 1924–1931. IEEE, 1998. (Cited in page 33.)

[Mitchell 2007] Ben Mitchell, John Koo, Iulian Iordachita, Peter Kazanzides, Ankur
Kapoor, James Handa, Gregory Hager and Russell Taylor. Development and
application of a new steady-hand manipulator for retinal surgery. In Robotics
and Automation, 2007 IEEE International Conference on, pages 623–629.
IEEE, 2007. (Cited in page 15.)

[Mollard 2015] Y. Mollard, T. Munzer, A. Baisero, M. Toussaint and M. Lopes.
Robot programming from demonstration, feedback and transfer. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), September 2015. (Cited in page 36.)

[Morel 2012] Guillaume Morel, J. Szewczyk and M.A. Vitrani. Comanipulation.
J. Troccaz, editeur, Robotique Medicale, page 343–392, 2012. (Cited in
page 11.)

[Muench 1994] S Muench, J Kreuziger, M Kaiser and R Dillman. Robot programming
by demonstration (rpd)-using machine learning and user interaction methods
for the development of easy and comfortable robot programming systems. In
Proceedings of the International Symposium on Industrial Robots, volume 25,
pages 685–685. INTERNATIONAL FEDERATION OF ROBOTICS, &
ROBOTIC INDUSTRIES, 1994. (Cited in page 16.)

[Mussa-Ivaldi F. A. 1985] Bizzi E. Mussa-Ivaldi F. A. Hogan N. Neural, mechanical,
and geometric factors subserving arm posture in humans. The Journal of
neuroscience : the official journal of the Society for Neuroscience, 1985.
(Cited in page 87.)

186 Bibliography

[Navkar 2012] Nikhil V Navkar, Zhigang Deng, Dipan J Shah, Kostas E Bekris
and Nikolaos V Tsekos. Visual and force-feedback guidance for robot-assisted
interventions in the beating heart with real-time MRI. In Robotics and
Automation (ICRA), 2012 IEEE International Conference on, pages 689–694.
IEEE, 2012. (Cited in page 28.)

[Newman 1994] Wyatt S Newman and Yuandao Zhang. Stable interaction control
and coulomb friction compensation using natural admittance control. Journal
of Field Robotics, vol. 11, no. 1, pages 3–11, 1994. (Cited in page 10.)

[Nolin 2003] Jason T. Nolin, Paul M. Stemniski and Allison M. Okamura. Activation
Cues and Force Scaling Methods for Virtual Fixtures. In in Proc. 11th Int.
Symp. Haptic Interfaces for Virtual Environment and Teleoperator Systems,
pages 404–409, 2003. (Cited in pages 65, 91, 92, and 93.)

[Ortmaier 2006] Tobias Ortmaier, Holger Weiß, Ulrich Hagn, Markus Grebenstein,
Mathias Nickl, A Albu-Schaffer, Christian Ott, S Jorg, Rainer Konietschke,
Luc Le-Tienet al. A hands-on-robot for accurate placement of pedicle screws.
In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, pages 4179–4186. IEEE, 2006. (Cited in page 32.)

[Pardowitz 2007] Michael Pardowitz, Steffen Knoop, Ruediger Dillmann and
Raoul D Zollner. Incremental learning of tasks from user demonstrations,
past experiences, and vocal comments. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 37, no. 2, pages 322–332, 2007.
(Cited in page 18.)

[Park 2001] Shinsuk Park, Robert D. Howe and David F. Torchiana. Virtual Fixtures
for Robotic Cardiac Surgery. In Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2001. Springer Berlin Heidelberg, October
2001. (Cited in page 21.)

[Park 2011] Jun Woo Park, Jaesoon Choi, Yongdoo Park and Kyung Sun. Haptic
virtual fixture for robotic cardiac catheter navigation. Artificial organs, vol. 35,
no. 11, pages 1127–1131, 2011. (Cited in page 28.)

[Passenberg 2011] Carolina Passenberg, Raphaela Groten, Angelika Peer and Mar-
tin Buss. Towards real-time haptic assistance adaptation optimizing task
performance and human effort. In World Haptics Conference (WHC), 2011
IEEE, pages 155–160. IEEE, 2011. (Cited in page 91.)

[Payandeh 2002] Shahram Payandeh and Zoran Stanisic. On application of virtual
fixtures as an aid for telemanipulation and training. In Haptic Interfaces
for Virtual Environment and Teleoperator Systems, 2002. HAPTICS 2002.
Proceedings. 10th Symposium on, pages 18–23. IEEE, 2002. (Cited in
page 27.)

Bibliography 187

[Peshkin 2001] M.A. Peshkin, J.E. Colgate, W. Wannasuphoprasit, C.A. Moore,
R.B. Gillespie and P. Akella. Cobot architecture. IEEE Transactions on
Robotics and Automation, August 2001. (Cited in pages 12, 13, and 21.)

[Pezzementi 2007a] Z. Pezzementi, G. D. Hager and A. M. Okamura. Dynamic
Guidance with Pseudoadmittance Virtual Fixtures. In IEEE International
Conference on Robotics and Automation, pages 1761–1767, 2007. (Cited in
pages 25 and 27.)

[Pezzementi 2007b] Zachary Pezzementi, Allison M Okamura and Gregory D Hager.
Dynamic guidance with pseudoadmittance virtual fixtures. In Robotics and
Automation, 2007 IEEE International Conference on, pages 1761–1767. IEEE,
2007. (Cited in page 33.)

[Powell 1969] Edgar R Powell. Tool balancer, February 18 1969. US Patent 3,428,298.
(Cited in page 12.)

[Prada 2005] Rodolfo Prada and Shahram Payandeh. A study on design and analy-
sis of virtual fixtures for cutting in training environments. In Eurohaptics
Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environ-
ment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pages
375–380. IEEE, 2005. (Cited in pages 29 and 65.)

[Prada 2009] Rodolfo Prada and Shahram Payandeh. On study of design and
implementation of virtual fixtures. Virtual reality, vol. 13, no. 2, pages
117–129, 2009. (Cited in pages 30, 32, and 34.)

[Pratt 1995] Gill A Pratt and Matthew M Williamson. Series elastic actuators. In
Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative
Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, volume 1,
pages 399–406. IEEE, 1995. (Cited in page 49.)

[Raffin 2000] Romain Raffin, Marc Neveu and Frédéric Jaar. Curvilinear displace-
ment of free-form-based deformation. The Visual Computer, vol. 16, no. 1,
pages 38–46, 2000. (Cited in pages 96, 97, and 98.)

[Raibert 1981] Marc H Raibert and John J Craig. Hybrid position/force control
of manipulators. Journal of Dynamic Systems, Measurement, and Control,
vol. 102, no. 127, pages 126–133, 1981. (Cited in page 21.)

[Raiola 2015] G. Raiola, X. Lamy and F. Stulp. Co-manipulation with multiple
probabilistic virtual guides. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), September 2015. (Cited in pages 17
and 92.)

[Raiola 2017a] G. Raiola, S. Sánchez Restrepo, P. Chevalier, P. Rodriguez-Ayerbe,
X. Lamy, S. Tliba and F. Stulp. Co-manipulation with a Library of Virtual

188 Bibliography

Guiding Fixtures. Autonomous Robots, Special issue on Learning for Human-
Robot Collaboration, 2017. (Cited in pages 26, 31, 36, 54, 65, 154, 155,
and 159.)

[Raiola 2017b] Gennaro Raiola. Co-manipulation with a library of virtual guides.
PhD thesis, Université Paris-Saclay, 2017. (Cited in page 92.)

[Reed 2008] Kyle B Reed and Michael A Peshkin. Physical collaboration of human-
human and human-robot teams. IEEE Transactions on Haptics, vol. 1, no. 2,
pages 108–120, 2008. (Cited in page 86.)

[Reinkensmeyer 2004] David J. Reinkensmeyer, Jeremy L. Emken and Steven C.
Cramer. Robotics, motor learning, and neurologic recovery. Annual Review
of Biomedical Engineering, 2004. (Cited in page 21.)

[Ren 2008] Jing Ren, Rajni V Patel, Kenneth A McIsaac, Gerard Guiraudon and
Terry M Peters. Dynamic 3-D virtual fixtures for minimally invasive beating
heart procedures. IEEE transactions on medical imaging, vol. 27, no. 8, pages
1061–1070, 2008. (Cited in pages 29 and 30.)

[Restrepo 2017] Susana Sánchez Restrepo, Gennaro Raiola, Pauline Chevalier,
Xavier Lamy and Daniel Sidobre. Iterative virtual guides programming for
human-robot comanipulation. In Advanced Intelligent Mechatronics (AIM),
2017 IEEE International Conference on, pages 219–226. IEEE, 2017. (Cited
in pages 25, 26, and 29.)

[Rosenberg 1993] L.B. Rosenberg. Virtual fixtures: Perceptual tools for telerobotic
manipulation. In , 1993 IEEE Virtual Reality Annual International Sympo-
sium, 1993, September 1993. (Cited in pages 21, 24, 27, 29, 155, and 156.)

[Rozo 2014] L. Rozo, S. Calinon and D.G. Caldwell. Learning force and position
constraints in human-robot cooperative transportation. In 2014 RO-MAN:
The 23rd IEEE International Symposium on Robot and Human Interactive
Communication, August 2014. (Cited in pages 9, 30, 35, and 153.)

[Rydén 2012] Fredrik Rydén and Howard Jay Chizeck. Forbidden-region virtual
fixtures from streaming point clouds: Remotely touching and protecting a
beating heart. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pages 3308–3313. IEEE, 2012. (Cited in page 29.)

[Ryden 2013] F. Ryden, A. Stewart and H. J. Chizeck. Advanced telerobotic under-
water manipulation using virtual fixtures and haptic rendering. In Oceans -
San Diego, 2013, September 2013. (Cited in pages 21 and 24.)

[Santos-Munne 2010] J.J. Santos-Munne, M. Peshkin, E.L. Faulring, J.E. Colgate,
A. Makhlin, T. Moyer, T. Hauptman and W. Hoffmann. An apparatus for
use in breaking down an animal carcass, March 11 2010. WO Patent App.
PCT/AU2009/001,164. (Cited in page 15.)

Bibliography 189

[Saunders 2006] Joe Saunders, Chrystopher L Nehaniv and Kerstin Dautenhahn.
Teaching robots by moulding behavior and scaffolding the environment. In
Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot
interaction, pages 118–125. ACM, 2006. (Cited in page 35.)

[Sederberg 1986] Thomas W Sederberg and Scott R Parry. Free-form deformation
of solid geometric models. ACM SIGGRAPH computer graphics, vol. 20,
no. 4, pages 151–160, 1986. (Cited in page 96.)

[Segre 1985] Alberto Segre and Gerald DeJong. Explanation-based manipulator
learning: Acquisition of planning ability through observation. In Robotics and
Automation. Proceedings. 1985 IEEE International Conference on, volume 2,
pages 555–560. IEEE, 1985. (Cited in page 16.)

[Seung 2010] Sungmin Seung, Byungjeon Kang, Wooyoung Kim, Jongoh Park and
Sukho Park. Development of image guided master-slave system for minimal
invasive brain surgery. In Robotics (ISR), 2010 41st International Symposium
on and 2010 6th German Conference on Robotics (ROBOTIK), pages 1–6.
VDE, 2010. (Cited in pages 29 and 32.)

[Shima 2009] Tal Shima and Steven Rasmussen. Uav cooperative decision and
control: challenges and practical approaches. SIAM, 2009. (Cited in page 9.)

[Shoemake 1985] Ken Shoemake. Animating rotation with quaternion curves. In
ACM SIGGRAPH computer graphics, volume 19, pages 245–254. ACM, 1985.
(Cited in pages 68, 71, and 73.)

[Siciliano 2009] B. Siciliano, L. Sciavicco, L. Villani and G. Oriolo. Robotics: Mod-
elling, planning and control. Advanced Textbooks in Control and Signal
Processing. Springer, 2009. (Cited in page 49.)

[Srimathveeravalli 2007] Govindarajan Srimathveeravalli, Venkatraghavan Gouris-
hankar and Thenkurussi Kesavadas. Comparative study: Virtual fixtures and
shared control for rehabilitation of fine motor skills. In EuroHaptics Confer-
ence, 2007 and Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems. World Haptics 2007. Second Joint, pages 304–309.
IEEE, 2007. (Cited in page 29.)

[Student 1908] Student. The probable error of a mean. Biometrika, pages 1–25,
1908. (Cited in page 106.)

[Stulp 2013] Freek Stulp, Gennaro Raiola, Antoine Hoarau, Serena Ivaldi and Olivier
Sigaud. Learning compact parameterized skills with a single regression. In Hu-
manoid Robots (Humanoids), 2013 13th IEEE-RAS International Conference
on, pages 417–422. IEEE, 2013. (Cited in pages 19 and 54.)

190 Bibliography

[Taylor 2016] Russell H Taylor, Arianna Menciassi, Gabor Fichtinger, Paolo Fiorini
and Paolo Dario. Medical robotics and computer-integrated surgery. In
Springer handbook of robotics, pages 1657–1684. Springer, 2016. (Cited in
page 35.)

[Tonietti 2005] Giovanni Tonietti, Riccardo Schiavi and Antonio Bicchi. Design and
control of a variable stiffness actuator for safe and fast physical human/robot
interaction. In Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, pages 526–531. IEEE, 2005. (Cited in page 49.)

[Tukey 1949] John W Tukey. Comparing individual means in the analysis of variance.
Biometrics, pages 99–114, 1949. (Cited in page 106.)

[Tung 1995] Chao-Ping Tung and Avinash C Kak. Automatic learning of assembly
tasks using a dataglove system. In Intelligent Robots and Systems 95.’Human
Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ
International Conference on, volume 1, pages 1–8. IEEE, 1995. (Cited in
page 16.)

[Turro 2001a] N. Turro, O. Khatib and E. Coste-Maniere. Haptically augmented
teleoperation. In IEEE International Conference on Robotics and Automation,
2001. Proceedings 2001 ICRA, 2001. (Cited in pages 30 and 34.)

[Turro 2001b] Nicolas Turro and Oussama Khatib. Haptically augmented teleopera-
tion. In Experimental Robotics VII, pages 1–10. Springer, 2001. (Cited in
page 27.)

[Tykal 2016] Martin Tykal, Alberto Montebelli and Ville Kyrki. Incrementally
assisted kinesthetic teaching for programming by demonstration. In The
Eleventh ACM/IEEE International Conference on Human Robot Interaction,
pages 205–212. IEEE Press, 2016. (Cited in pages 36, 37, and 54.)

[Vakanski 2012] A. Vakanski, I. Mantegh, A. Irish and F. Janabi-Sharifi. Trajectory
Learning for Robot Programming by Demonstration Using Hidden Markov
Model and Dynamic Time Warping. IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, August 2012. (Cited in page 30.)

[Vakanski 2017] Aleksandar Vakanski and Farrokh Janabi-Sharifi. Robot learning
by visual observation. John Wiley & Sons, 2017. (Cited in page 17.)

[Van Damme 2010] M Van Damme, P Beyl, B Vanderborght, R Van Ham, I Van-
derniepen, A Matthys, P Cherelle and D Lefeber. The role of compliance in
robot safety. In Proceedings of the Seventh IARP Workshop on Technical
Challenges for Dependable Robots in Human Environments, pages 65–71,
2010. (Cited in page 49.)

Bibliography 191

[Vitrani 2017] Marie-Aude Vitrani, Cécile Poquet and Guillaume Morel. Applying
virtual fixtures to the distal end of a minimally invasive surgery instrument.
IEEE Transactions on Robotics, vol. 33, no. 1, pages 114–123, 2017. (Cited
in page 24.)

[Wisama Khalil 1999] Etienne Dombre Wisama Khalil. Modélisation, identification
et commande des robots. Hermès science, Paris, janvier 1999. (Cited in
pages 45 and 47.)

[Xia 2008] Tian Xia, Clint Baird, George Jallo, Kathryn Hayes, Nobuyuki Nakajima,
Nobuhiko Hata and Peter Kazanzides. An integrated system for planning,
navigation and robotic assistance for skull base surgery. The International
Journal of Medical Robotics and Computer Assisted Surgery, vol. 4, no. 4,
pages 321–330, 2008. (Cited in page 34.)

[Xia 2013] T. Xia, S. Léonard, I. Kandaswamy, A. Blank, L. L. Whitcomb and
P. Kazanzides. Model-based telerobotic control with virtual fixtures for satellite
servicing tasks. In 2013 IEEE International Conference on Robotics and
Automation, pages 1479–1484, May 2013. (Cited in pages 24 and 29.)

[Yamamoto 2012] Tomonori Yamamoto, Niki Abolhassani, Sung Jung, Allison M
Okamura and Timothy N Judkins. Augmented reality and haptic interfaces
for robot-assisted surgery. The International Journal of Medical Robotics
and Computer Assisted Surgery, vol. 8, no. 1, pages 45–56, 2012. (Cited in
page 29.)

[Yoon 2014] H.U. Yoon, R.F. Wang and S.A. Hutchinson. Modeling user’s driving-
characteristics in a steering task to customize a virtual fixture based on task-
performance. In Robotics and Automation (ICRA), 2014 IEEE International
Conference on, pages 625–630, May 2014. (Cited in page 31.)

[Zeestraten 2017] Martijn JA Zeestraten, Ioannis Havoutis, Joao Silvério, Sylvain
Calinon and Darwin G Caldwell. An approach for imitation learning on
Riemannian manifolds. IEEE Robotics and Automation Letters, vol. 2, no. 3,
pages 1240–1247, 2017. (Cited in page 65.)

[Zhang 2012] Dongwen Zhang, Lei Wang, Jia Gu, Zhicheng Li and Ken Chen. Real-
ization of spatial compliant virtual fixture using eigenscrews. In Engineering
in Medicine and Biology Society (EMBC), 2012 Annual International Con-
ference of the IEEE, pages 1506–1509. IEEE, 2012. (Cited in pages 32
and 66.)

[Zhang 2014] Dongwen Zhang, Qingsong Zhu, Jing Xiong and Lei Wang. Dynamic
virtual fixture on the Euclidean group for admittance-type manipulator in
deforming environments. Biomedical engineering online, vol. 13, no. 1, page 51,
2014. (Cited in page 66.)

Title: Intuitive, Iterative and Assisted Virtual Guides Programming for Human-
Robot Comanipulation
Keywords: Virtual guides, programming by demonstration, collaborative robotics,
comanipulation
Abstract: For a very long time, automation was driven by the use of tra-
ditional industrial robots placed in cages, programmed to repeat more or
less complex tasks at their highest speed and with maximum accuracy. This
robot-oriented solution is heavily dependent on hard automation which requires
pre-specified fixtures and time consuming programming, hindering robots from
becoming flexible and versatile tools. These robots have evolved towards a
new generation of small, inexpensive, inherently safe and flexible systems that
work hand in hand with humans. In these new collaborative workspaces the
human can be included in the loop as an active agent. As a teacher and as
a co-worker he can influence the decision-making process of the robot. In
this context, virtual guides are an important tool used to assist the human
worker by reducing physical effort and cognitive overload during tasks accom-
plishment. However, the construction of virtual guides often requires expert
knowledge and modeling of the task. These limitations restrict the usefulness
of virtual guides to scenarios with unchanging constraints. To overcome these
challenges and enhance the flexibility of virtual guides programming, this
thesis presents a novel approach that allows the worker to create virtual guides
by demonstration through an iterative method based on kinesthetic teaching
and displacement splines. Thanks to this approach, the worker is able to
iteratively modify the guides while being assisted by them, making the process
more intuitive and natural while reducing its painfulness. Our approach allows
local refinement of virtual guiding trajectories through physical interaction
with the robots. We can modify a specific cartesian keypoint of the guide or
re-demonstrate a portion. We also extended our approach to 6D virtual guides,
where displacement splines are defined via Akima interpolation (for translation)
and quadratic interpolation of quaternions (for orientation). The worker can
initially define a virtual guiding trajectory and then use the assistance in
translation to only concentrate on defining the orientation along the path. We
demonstrated that these innovations provide a novel and intuitive solution
to increase the human’s comfort during human-robot comanipulation in two
industrial scenarios with a collaborative robot (cobot).

Titre: Programation Intuitive, Itérative et Assistée de Guides Virtuels pour
la Comanipulation Homme-Robot
Mots clés : Guides vrituels, programation par démonstration, robotique
collaborative, comanipulation
Résumé : Pendant très longtemps, l’automatisation a été assujettie à l’usage
de robots industriels traditionnels placés dans des cages et programmés pour
répéter des tâches plus ou moins complexes au maximum de leur vitesse et de
leur précision. Cette automatisation, dite rigide, possède deux inconvénients
majeurs : elle est chronophage dû aux contraintes contextuelles applicatives et
proscrit la présence humaine. Il existe désormais une nouvelle génération de
robots avec des systèmes moins encombrants, peu coûteux et plus flexibles. De
par leur structure et leurs modes de fonctionnement ils sont intrinsèquement
sûrs ce qui leurs permettent de travailler main dans la main avec les humains.
Dans ces nouveaux espaces de travail collaboratifs, l’homme peut être inclus
dans la boucle comme un agent décisionnel actif. En tant qu’instructeur ou
collaborateur il peut influencer le processus décisionnel du robot : on parle
de robots collaboratifs (ou cobots). Dans ce nouveau contexte, nous faisons
usage de guides virtuels. Ils permettent aux cobots de soulager les efforts
physiques et la charge cognitive des opérateurs. Cependant, la définition d’un
guide virtuel nécessite souvent une expertise et une modélisation précise de
la tâche. Cela restreint leur utilité aux scénarios à contraintes fixes. Pour
palier ce problème et améliorer la flexibilité de la programmation du guide
virtuel, cette thèse présente une nouvelle approche par démonstration : nous
faisons usage de l’apprentissage kinesthésique de façon itérative et constru-
isons le guide virtuel avec une spline 6D. Grâce à cette approche, l’opérateur
peut modifier itérativement les guides tout en gardant leur assistance. Cela
permet de rendre le processus plus intuitif et naturel ainsi que de réduire la
pénibilité. La modification locale d’un guide virtuel en trajectoire est possible
par interaction physique avec le robot. L’utilisateur peut déplacer un point clé
Cartésien ou modifier une portion entière du guide avec une nouvelle démon-
stration partielle. Nous avons également étendu notre approche aux guides
virtuels 6D, où les splines en déplacement sont définies via une interpolation
Akima (pour la translation) et une interpolation quadratique des quaternions
(pour l’orientation). L’opérateur peut initialement définir un guide virtuel en
trajectoire, puis utiliser l’assistance en translation pour ne se concentrer que
sur la démonstration de l’orientation. Nous avons appliqué notre approche
dans deux scénarios industriels utilisant un cobot. Nous avons ainsi démontré
l’intérêt de notre méthode qui améliore le confort de l’opérateur lors de la
comanipulation.

