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Soutenance le 19 Décembre 2017, devant le jury composé de
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Prof. Jean-Pierre RICHARD École Centrale de Lille, Lille
Dr. Christophe PRIEUR GIPSA-LAB-CNRS, Grenoble
Dr. Silviu-Iulian NICULESCU L2S-CNRS-Centrale-Supéléc, Paris
Dr. Sophie TARBOURIECH LAAS-CNRS, Toulouse





Contents

Preface i

Notations iii

1 General Introduction 1
1.1 Networked Control Systems with limited information . . . . . . . . . . . . . . . . . 2

1.1.1 Communication delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Time-quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Space-quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Distribution and neighboring . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Time delay systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Robust sampled-data control . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Event-based control & hybrid dynamical systems . . . . . . . . . . . . . . . 7
1.2.4 Multi-agent and distributed systems . . . . . . . . . . . . . . . . . . . . . . 8
1.2.5 Infinite-dimensional systems . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Organization of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Time-delay systems 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Particularities of time-delay systems . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 System and delay models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Usual assumptions on the delay functions . . . . . . . . . . . . . . . . . . . 18

2.2 Stability of time-delay systems using the 2nd Lyapunov Method . . . . . . . . . . . 20
2.2.1 Second Lyapunov method . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Lyapunov-Razumikhin approach . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Lyapunov-Krasovskii approach . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Integral inequalities and time-delay systems . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Jensen’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Wirtinger-based integral inequality . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Extension of the Wirtinger-based inequalities . . . . . . . . . . . . . . . . . 30
2.3.4 Bessel-Legendre inequality on Hilbert spaces . . . . . . . . . . . . . . . . . 30

2.4 Application to linear systems with a constant delay . . . . . . . . . . . . . . . . . . 38
2.4.1 Stability theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3



2.4.2 Remark on the choice of the Lyapunov-Krasovskii functional . . . . . . . . . 40
2.4.3 Hierarchy of LMI stability conditions . . . . . . . . . . . . . . . . . . . . . 41

2.5 Numerical applications and extensions . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.1 Linear systems with a single discrete delay . . . . . . . . . . . . . . . . . . 43
2.5.2 Linear systems with multiple discrete delays . . . . . . . . . . . . . . . . . 46
2.5.3 Linear systems with a distributed delay . . . . . . . . . . . . . . . . . . . . 47

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Sampled-data systems 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Problem formulation and theoretical motivations . . . . . . . . . . . . . . . . . . . . 50

3.2.1 System data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 A first stability result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.3 An illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Input delay approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Sampled-data systems modeled as fast-varying delay systems . . . . . . . . 53
3.3.2 Methodology to derive efficient stability conditions . . . . . . . . . . . . . . 54
3.3.3 Extensions & Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Stability analysis using Looped-functionals . . . . . . . . . . . . . . . . . . . . . . 61
3.4.1 Basics of the Looped-functionals approach . . . . . . . . . . . . . . . . . . 62
3.4.2 Main result on asymptotic stability of sampled-data systems . . . . . . . . . 62
3.4.3 What is a good structure for a looped functional? . . . . . . . . . . . . . . . 64

3.5 Extensions and an emphasis to networked control systems . . . . . . . . . . . . . . 67
3.5.1 A brief overview of the latter achievements . . . . . . . . . . . . . . . . . . 67
3.5.2 Application to sampled-data dynamic output-feedback control under input

saturations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Conclusions and Perspectives 75
4.1 General conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Further results on sampled-data systems . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Robust sampled-data control . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.2 Event-triggered sampled-data control . . . . . . . . . . . . . . . . . . . . . 78

4.3 Stability analysis and control of time-delay systems . . . . . . . . . . . . . . . . . . 82
4.3.1 Stability analysis of time-delay systems . . . . . . . . . . . . . . . . . . . . 82
4.3.2 Emphasis on time-varying delay systems . . . . . . . . . . . . . . . . . . . 82
4.3.3 Stabilization and control of time-delay systems . . . . . . . . . . . . . . . . 84
4.3.4 Finite dimensional controllers and observers for time-delay systems . . . . . 84

4.4 Stability and control of infinite dimensional systems . . . . . . . . . . . . . . . . . . 86
4.4.1 Stability of coupled linear ODE-PDE systems . . . . . . . . . . . . . . . . . 87
4.4.2 Stabilisation of PDE systems and backstepping methods . . . . . . . . . . . 89
4.4.3 Sampled-data and event-based control of PDE . . . . . . . . . . . . . . . . . 90



Bibliography 92





Preface

This manuscript aims at presenting a synthetic view of the research and accomplishments I have been
pursuing since I started my PhD. Of course, this document is full of equations, theorems, proofs and,
unfortunately, full of LMIs and functionals (I did my best to not provide too many of them). This
document however does not illustrate and reflect the personal view on this fantastic profession. The
contributions presented in this manuscript are the fruit of numerous interactions with students and
colleagues in France and abroad. Hence, I would like to take few lines of this manuscript to express
my feelings towards them before entering into the core of the science.

The first words of this preface are naturally addressed to the three reviewers of my manuscript.
I was deeply honored to have Prof. Dr. Sandra Hirche, Prof, Dr. Carsten Scherer and Prof. Jean-
Michel Coron as reviewers of my work. I would like to express my gratitude for having carefully red
my manuscript and expressing warms recommendations on it. Their comments and encouragements
mean a lot to me. I also take the opportunity of this preface to like to thank the other members of the
jury, Sophie Tarbouriech, Jean-Pierre Raymond, Jean-Pierre Richard, Jamal Daafouz, Silviu-Iulian
Niculescu, and Christophe Prieur, for accepting my invitation. I know how their time is precious and
I was delighted to see their enthusiasm to participate to the jury.

I discovered the academic and research world in 2003 when I started my PhD in Ecole Centrale
de Lille. This experience has really been a revelation for me. I am deeply grateful to Jean-Pierre
Richard and Michel Dambrine for providing me with all the opportunities to start this career. This
“Lilloise” or “Ch’tite” experience with them and all the members of the SyNER team was full of
professional and personal accomplishments. This experience was then pursued with two post-docs
in Leicester, in UK, and at KTH, Stockholm in Sweden. At the origin, these two years abroad were
only meant to improve my ashamed and inglorious English level. More than that, I finally discovered
the life and work with new colleagues, new friends or both, in other labs, in other countries. I have
deeply modified my view and opinion on many things thanks to this experience. I thus would like
to express my deepest gratitude to Sarah K. Spurgeon, Christopher Edwards, Karl-Henrik Johansson
for giving me this chance. A bottom line is also to mention Dimos V. Dimarogonas for the mutual
support during this Swedish winter.

My French career at CNRS started in 2008 when I was hired at GIPSA-Lab in Grenoble. I only
spend three or four years in the NeCS Team, joint CNRS and Inria - Rhônes-Alpes project team led
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Notations

Definition of sets:

• N: Set of positive integers

• Z: Set of natural integers

• R: Set of real numbers

• C: Set of complex numbers

• R+: Set of non negative real numbers

• Rn: Set of n dimensional real valued vectors

• Rn×m: Set of matrices of n rows and m columns

• Sn: Set of symmetric matrices of dimension n

• Sn+: Set of symmetric positive definite matrices of dimension n

For any vector x in Rn and matrix A in Rn×m:

• xT : Transpose of vector x

• AT : Transpose of matrix A

• ‖x‖ : Euclidienne norm of a vector x

• ‖A‖ : Euclidienne norm of. matrix A

• aij : Coefficient of matrix A in the ith row and jth column

• In : Identity matrix of Rn×n (The subscript “n” will be ommitted which permitted)
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• A ≺ 0 (resp. A � 0) : A is symmetric negative (positive) definite of Sn+ ⊂ Rn×n

• λmin(A) (resp. λmax(A)): is the minimum (resp. maximum) eigenvalue of a symmetric matrix

of Sn

For any h in R+:

• C([−h, 0];Rn): Set of continuous functions from [−h, 0] to Rn

• C1([−h, 0];Rn) : Set of continuously differential functions from [−h, 0] to Rn

• ‖.‖h : Supremum norm on C defined by ∀φ ∈ C([−h, 0];Rn) : ‖φ‖C = supθ∈[−h,0]{‖φ(θ‖)}
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2 CHAPTER 1. GENERAL INTRODUCTION
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Figure 1.1: Modified control loop in view of networked control systems.

Figure 1.2: Effect of a network communication link

1.1 Networked Control Systems with limited information

Networked Control Systems (NCS) represent today a general paradigm for describing phenomena in
various domains such as Biology (for genes transcription networks or models of schools of fishes),
Robotics (in tele-operated manipulators for medical applications or in coordinated unmanned ve-
hicles), Computer Sciences (congestion control and load balancing in the Internet management),
Energy Management (in electric grids), Traffic Control (fluid models of traffic flow) etc. The anal-
ysis and design of networked systems represent nowadays an important challenge in the Automatic
Control community.

An enormous scientific and industrial interest has been given to NCS, which are ubiquitous in
most of modern control devices. An NCS is a control system wherein its components (plants, sensors,
embedded control algorithms and actuators) are spatially distributed. The defining feature of an NCS
is that control and feedback signals are exchanged among the system’s components in the form of
digital information packages as depicted in the simple control loop presented in Figure 1.1. The
primary advantages of an NCS are reduced wiring, ease of diagnosis and maintenance and increased
flexibility. Despite of these advantages, the use of communication networks also introduces several
imperfections that will be described latter. Such imperfections may lead to poor system performances
and even instability if not appropriately taken into account. The practical and theoretical challenges
brought in the context of NCS rely on the consideration of the imperfections induced by the use of
communication networks in control loops.

Initial and classical problems in Automatic Control refers to the design of stability conditions,
stabilizing controller and observers for dynamical systems (see [19, 171] to cite only few). As it
was mentioned earlier, the main challenges in the vision brought by NCS are related to the fact
that systems may be composed of different distributed elements, which are connected through a
communication network. Because of bandwidth and debit limitations, the communication brings
unavailable distortion to the information to be transmitted. Therefore, an initial information x(t)
becomes after passing through a communication network, a notably modified signal x̂(t) as depicted
schematically in Figure 1.2. To get an overview of the related problem the reader may refer to the
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survey papers [137, 153, 352, 347].

Network links with limited capacity and bandwidth can be modeled in various manners. A first
model consists in including into the control loop a quantization process, which basically constrains a
signal evolving in a continuous set of values to a relatively small and possibly saturated discrete set.
Another model has been proposed to describe the discretization in time of the exchanged information.
Embedded control algorithms use sampled versions of the system state or output. The difficulty lies in
fact that, in real time applications, sampling is often generated in an asynchronous manner. This issue
makes the analysis and design of NCS a complex task. On one side, this asynchronism may represent
an undesired phenomena (jitter or packet drop-out) and it may be a source of instability. From the
control theory point of view, it must be taken into account in a robust manner. On the other side, one
may deliberately introduces asynchronism in the control loop via scheduling algorithms, in order
to reduce the number of data transmissions and, therefore, optimize the computational costs. This
corresponds to the recent research trend of event-based control, where a data is transmitted only if a
particular event has occurred. The new challenges for control design of NCS are particularly evident
in large-scale interconnection of multi-agent systems. For example, in formation and cooperation
control, it is not reasonable, from the practical point of view, to allow all-to-all communication. Each
agent has only a local view of the overall network and he may not be able to store and manipulate
the complete state of the system. Hence, an agent is able to exchange information only with its
neighbors, in the space or in the communication graph.

The reminder of this section exposes the main difficulties and challenges regarding the control
with limited information.

1.1.1 Communication delays : x̂(t) = x(t− h), h > 0

This first aspect of limited information is not properly linked with the limitation of the information
data itself but rather on the limitation of the debit of the communication link. Indeed, the transmission
of information through a communication network is not performed in an instantaneous manner. There
always exists a communication delay to get the information at the receiver side. Depending on the
network properties (for instance wire or wireless), this delay can be small and negligible or large,
almost contant or with notable variations. The size of the delay has to be regarded with respect
to the dynamics of the system affected by this delay. Indeed, if a controlled system is stabilizable
without delay, it will still be stable even if the controller is affected by a sufficiently small delay. The
main issue is to quantify the “sufficiently small” delay so that the closed-loop system remains stable.
Generally speaking, delays are often the source of a decrease of performance and lead to unstable
behavior.

From the control point of view, the effects of delays have been well studied in the literature.
The reader may refer to [101, 135, 222, 261], where a history of this field is provided. This class
of systems may be studied using a frequency domain approach [136, 318], a time-domain approach
[101], Integral Quadratic Constraints (IQC) [337, 169, 170], Quadratic separation [14, 127, 128].
Note that the three last method usually leads to stability conditions expressed in terms of Linear
Matrix Inequalities (LMI) [11, 83, 269] that can be easily implemented on Matlab using semi-definite
programming algorithms [180, 193].
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1.1.2 Time-quantization : x̂(t) = x(tk), t ∈ [tk, tk+1]

Another limitation due to the presence of a communication network is the time-quantization of the
information. Indeed due to bandwidth limitations, the current information x(t) cannot be transmitted
continuously and only samples of the information x(tk), where {tk}k∈N represents a strictly increas-
ing sequence of sampling instants such that limk→∞ tk =∞. This limitation does not only appears in
NCS but more generally when the control loop is composed of digital components and consequently
working in discrete time. Even if new technologies make reasonable the idea of components working
in high frequency, i.e. with small sampling interval (or tk+1 − tk � 1), it might be also reasonable
to think that one may reduce the energy consumption in the network or in the digital controller by
reducing the frequency and, consequently, enlarging the latency between two successive sampling in-
stants. As for the delay situation, if one is able to design a continuous-time controller that stabilizes
the closed-loop system, there exists a sufficiently small bound on the sampling interval (tk+1 − tk)
such that the sampled-data closed-loop system remains stable. Again, the notion of “sufficiently
small” sampling interval has to be quantified in order to improve the co-design of the controller, i.e.
the control law as well as the frequency. Several articles drive the problem of time-varying periods
based on a discrete-time approach [154, 226, 350]. An input delay approach using the Lyapunov-
Krasovskii (LK) theorem is provided in [105]. Improvements are provided in [113, 209], using the
small gain theorem and in [218] based on the analysis of impulsive systems.

On a second hand, an increasing attention has been paid to the so-called event- or self-triggered
control paradigm [7, 8, 17, 18, 147]. In this framework, the samplings instants are seen as an addi-
tional degree of freedom to the controller. in other words, the controller delivers both the value of
the control input and the time instant at which this value must be implemented. From the theoretical
point of view, one may consider input-to-state stability-type of conditions [327, 197], Lyapunov-
based approaches [338, 310] or hybrid dynamical systems approach [2, 146].

1.1.3 Space-quantization : x̂(t) = q(x(t)), q(x(t)) ∈ {q1, q2, . . . , qN}

Following the same principles of the time-quantization described in the previous paragraph, the dis-
cretization of the information to be transmitted through the network imposes another deterioration
with respect to the initial message. The bandwidth constraints limit the size of the message. There-
fore, the information is reduced to a limited number of bits, leading to a quantified version of the
initial data. For instance, it can be illustrated as the reduction of the real number π to 3.14. The re-
maining question can be resumed as the impact of this reduction to the closed-loop systems. Space-
quantization is often related to another relevant constraints which is the saturations of the informa-
tion. This is indeed due to the limitations on the number of digits in a data packets. The problem of
controlling a system subject to quantization and saturations has been the subject of many researches
over the past years. The reader may refer to [53, 71, 92, 112, 157, 183, 217] for the sole quantization
aspects and to [56, 122, 329, 332, 333] for saturations ones. One of the main difficulties related to
these two classes of nonlinear problems is due to the fact that global or local, asymptotic or practical
stability issues needs to be discussed with precautions.
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1.1.4 Distribution and neighboring : x̂(t) =

[
δ1

. . .
δn

]
x(t), δi = 0, 1

Another source of disturbances due to the limitations of the communication link is related to the
quantity of information to be transmitted over the network. One may think that some components
contained in the global information vector x(t) are not available and only a partial and limitations
version of x(t) has been selected to be forwarded to the network.

This situation does not only refer to the situation of constructing output feedback control laws
for a usual control problem. Indeed, this limitations is also connected to the study of multi-agents
systems from the point of view of Automatic Control. This area have received much attention in re-
cent years. The field includes consensus algorithms for multi-agent systems [231, 229, 258], flocking
[228], distributed sensor networks [225, 358], and autonomous systems as underwater and unmanned
air vehicles (AUVs and UAVs) [182, 256]. Cooperative formation control and motion coordination
have been extensively studied, see [89, 268, 200, 224], among many others. Another aspect deals
with the distributed control and estimation problem for distributed systems [156, 206, 207].

1.2 Summary of the contributions
My contributions related to Networked Control Systems since I started my PhD can be organized as
follows. I have been interested in the stability analysis, stabilization and observation problems with
a particular attention to the five following topics

− Time-delay systems

− Robust sampled-data control;

− Event-based & hybrid dynamical systems

−Multi-agents systems & distributed control

− Infinite dimensional systems.

Indeed, these five items cover a broad range of systems encountered in the fields of NCS. The next
sections aim at presenting a brief but detailed summary of the main contributions with a particular
attention on their improvements with respect to the literature. In addition, a table is presented to
summarize the main publications, the projects, the PhD students and post-doc, and main collaborators
related to each topic.

1.2.1 Time delay systems
As mentioned earlier in this introduction, the presence of delays in a control loop may have a visible
effect on the stability of a closed-loop system. In order to evaluate the robustness of a system with
respect to the delay, a popular direction refers to the application of the Lyapunov-Krasovskii theorem.
This method leads to conditions usually expressed in the frameworks of Linear Matrix Inequalities
(LMI), which can be easily solved with semi-definite programming algorithms. The main objective
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is there to reduce the conservatism of the resulting conditions. In other words, the conditions are
evaluated with respect to the accuracy of the numerical results and the complexity of the LMI, which
depends on the number of decisions variables and the size of the LMI. I have contributed since
the beginning of my PhD in 2003 to the problem of exponential stability and stabilization of time-
delay systems [284], with input saturations [123, 124], the design of sliding mode controllers and
observers [290, 289, 288], where the main motivations was to understand how saturations, sliding
mode controllers can be included in the presence of delays.

In the literature, most of the contributions are based on the a priori selection of Lyapunov func-
tionals and the application of Jensen’s inequality, which basically represents an efficient integral in-
equality related to the Cauchy-Schwartz inequality. This lemma has been seen for a long time as the
unique technical tool allows one to get LMI conditions and I have followed this line at the beginning
of my carrier. Nevertheless, it is also well-know that this inequality brings some inherent conser-
vatism which can be reduced using a discretization process [40]. Looking at the recent literature,
we have proposed a new approach, which consists in providing an alternative vision of this inequal-
ity first as a consequence of the Wirtinger inequality [296] and second as a Bessel-like inequality
[298] on Hilbert spaces, the second one being a generalization of Jensen’s and the Wirtinger-based
integral inequalities. It appears that these two new contributions have received some attention in
the time-delay community for several reasons. The associated approach provides efficient numerical
results compared with the literature, from the point of view of the reduction of the conservatism and
the computational complexity. It has opened new and productive directions of research on efficient
integral inequalities for time-delay systems. This aspect will be fully described in Chapter 2.

1.2.2 Robust sampled-data control
An important aspect of NCS arises from the discretization and asynchronism of control data when
transmitted through a communication network. The problem of robust sampled-data control has
attracted a large number of researchers over the last decade. Together with several colleagues, we
have prepared the survey paper [155], which describes most of the methods that allow the analysis of
this class of systems such as the discrete model approach [66, 79, 148, 149, 154, 227], variable delay
[105, 205], robust approaches [113, 168, 233] and hybrid systems [220, 219].

Among the methods presented in this survey paper, I particularly want to highlight two con-
tributions. The first one, [105, 195], which was initiated at the beginning of my PhD, introduced
the input-delay approach with a complete analysis issued from the application of the Lyapunov-
Krasovskii theorem. At that time, the contributions on the stability analysis of linear systems subject
to time-varying delays was stuck because of a constraint on the time-derivative of the delay function
h, i.e. ḣ(t) < 1, which actually corresponds to the critical constraints in the input delay approach for
sampled-data systems. Together with E. Fridman and J.-P. Richard, we have used the recent contri-
bution of [107], which was able to remove this constraint from the stability conditions, giving thus
rise to the extension to sampled-data systems as it will be explained in Chapter 3.

The second approach was presented in [280], and then named looped-functionals in [48]. To-
gether with C Briat, when he was post-doc at KTH, Sweden, we developed a new theoretical class
of functionals, that is particularly relevant to the case of sampled-data systems but also impulsive
and switched systems in the particular situation when the sampling, impulse or switching instants
only depend on time. The particularity of this class of Lyapunov functionals compared to Lyapunov-
Krasovskii ones relies on the possibility to relax some positive definite constraint in the design of the
functionals. These two approaches will be developed in Chapter 3.
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(a) Time-triggered sampling scheme.

 

(b) Event-triggered sampling scheme.

Figure 1.3: Sampled-data implementation in [310, 311].
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Figure 1.4: Hybrid control of a three nodes server in [4, 5].

1.2.3 Event-based control & hybrid dynamical systems
Event-based control represents a very active field of Automatic Control since approximatively a
decade. The problem is quite different from the one of the robustness analysis of the sampled-data
systems presented in Section 1.2.2, where the sampling instants are defined by an external operator
as depicted in Figure 1.3(a). The sampling is no longer seen as a perturbation but as an additional
control input. In other words, the next sampled-data control update is triggered when some function
of the systems state crosses a predesigned threshold and generates an event as showed in Figure
1.3(b). To better understand this paradigm, the principle can be interpreted as follows: “As long
as the state of the system behaves correctly, it is not necessary to change the control value”. As a
result, this controller type brings new performance in terms of energy gain and computing time. The
reader may refer to one of the first contributions in this direction to [17] and to the more recent works
[8, 147, 197, 252, 327, 328] to cite only few papers. More details about this field are provided in
Chapter 4.

I have started to investigate on this direction in 2010 in [310, 311] in collaboration with C.
Prieur and N. Marchand (CNRS, GIPSA-Lab). I have continued this activity with S. Tarbouriech
and L. Zaccarian (LAAS) with particular attention to hybrid dynamic modeling, which proves to be
a particularly effective angle of attack to represent this class of controller systems. Compared to
the existing literature, we decided to focus mainly on event-based control problems with saturation
constraints [313, 315, 314] or with output-feedback control [314, 330].
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(a) Architecture of the controlled system. (b) Source seeking control using a distributed
strategy based on unicycle systems.
Source: ANR CONNECT, C. Canudas de Wit.

Figure 1.5: Formation control and source-seeking strategies for nonlinear multi-agent systems de-
veloped during the PhD of Lara Briñon Arranz in [52] and supported by the FP7 EU STREP Feed-
NetBack and ANR CONNECT Projects.

A notable side effect of this work is that it made me discover the Hybrid Dynamical Systems
framework (see [118, 119]) and its potential to model systems composed by continuous and discrete
dynamics. I was confronted to other problems that can be effectively represented in this framework
and which are not only related to the sampled-data systems. For example, we have developed hybrid
control laws for controlling a network of servers (see [4, 5]), summarized in Figure 1.4. The main
contribution there was to develop a hybrid control strategy that allows to trigger the activity of a node
(αi = 1 if the node is on and 0 if not) such that a consensus on the queue length qi of the servers,
which are modeled by a single integrator, is achieved among the active nodes.

1.2.4 Multi-agent and distributed systems
A multi-agent system is a system composed of autonomous agents, evolving in a certain environment.
They interact in a collaborative and distributed manner to accomplish a common task. In general, an
agent represents a process, a robot, human being, etc... From the Automatic Control point of view,
several interests appear for some applications such as the cooperation of (mobile) robots, such as
drones, robots or autonomous submarines, or in a network of sensors in intelligent buildings, syn-
chronization of clock, etc... There exists a large number of theoretical tools that allow the synthesis
of decentralized or distributed orders, such as, for example, algorithms of consensus [89, 229, 258].
The main goal of consensus algorithms is to allow agents to find an agreement on a given quantity
of interest. Once again, communication among agents adds new dynamics that can degrade the per-
formance of the overall system. Furthermore, it appears that the connectivity of the communication
network, which refers to the graph theory [264], has a significant impact on the performance of the
algorithm. In this context, the main lines of research on which I have concentrated are the following.

Distributed formation and source seeking control

A first study I have conducted during the PhD of L. Briñon Arranz concerns the design of control
strategies that allow a fleet of agents following unicycle dynamics to move in a circular formation.
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(a) System setup.
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(b) Simulation results showing the performance
of an LQR controller versus a Model Predictive
Controller.

Figure 1.6: Distributed strategy for load carrying Drones developed in the context of A. Arce Rubio’s
post-doc and Fabien Niel’s PhD, supported by the MDrones project.

This problem is pertinent to some applications where the agents should perform collaborative tasks
requiring the formation to displace towards an a priori unknown direction [67]. For instance, in
source seeking applications, the formation is displaced in the source gradient direction (which is
computed on-line, and instrumented as an additional outer loop) [182].

Formation control has been extensively studied in [182, 275, 199, 224, 274, 273, 187] among
many others. These studies concern circular and parallel formations [275, 274, 273], but also mo-
tions of formation induced by flocking [230, 259]. One strategy to produce formation motions (i.e.
flight formations) is the virtual-leader approach [256], where an agent is designed as being the leader,
and then a suitable inter-distance (and orientation) is set between agents. The motion of the formation
results from the motions of the leader. Although it is possible to create circular formations via a par-
ticular pursuit graph as suggested in the work of [199], it turns out impossible to apply these methods
to the problem of circular formation if the formation is desired to be keep ”rigid” while moving. In
the context of the source seeking problem of underwater vehicles advocated here, it is necessary to
keep AUVs (uniformly distributed) formation during the source search to avoid unnecessary energy
waist, and to produce efficient search motions.

In order to design control laws that allow source seeking, we have provided several layer of
controllers whose structure is presented in Figure 1.5(a) and whose objectives includes translation
and contraction control while achieving a uniformly distributed circular formation in the conference
papers [34, 36, 35, 39] or the summarized journal version [52]. One of the interests of this uniformly
distributed control law is the development of distributed gradient estimation that was developed in
[37, 38]. Then, we have considered the whole problem of source-seeking control in [33], leading to
trajectories presented in Figure 1.5(b).

Another aspect developed during the PhD of G. Rodrigues de Campos and summarized in [262] is
the inspection and deployment of mobile robots. The principle is to determine a control law ensuring
a compact deployment of a fleet of mobile robots to cover the largest surveillance area.
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(a) Modification of the double integrator consensus algorithm
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(b) Estimation of the convergence rate α to the
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and the control parameter φ.

Figure 1.7: Improved double integrator consensus algorithm using artificial samplings.

Distributed control for load-carrying drones

This project related to F. Niel’s PhD and A. Arce Rubio’s Post-doc consisted in the design of dis-
tributed control laws assuring a safe transportation of a load performed by several drones. This
situation is relevant in practice since it provides an unmanned alternative to the transport of materials
or water in dangerous areas. The main motivations of this work were to consider the interaction of
agents that are not simply connected through a network link but also through a mechanical relation-
ship. To illustrate this problem, we have revisited the “Ball and Beam” problem in the situation when
the actuation of the beam is performed by two different drones as depicted in Figure 1.6. We have
studied a linearized version of this problem [12]. More especially, the expertise of A. Arce Rubio on
Model Predictive Control have conducted to the comparison of several centralized/distributed control
laws, with a particular attention to the computational issues of this class of controllers.

Robustness and design of consensus algorithms

A first study concerns the robustness study of consensus algorithms with respect to delay and sam-
pling phenomena following the idea of [214, 215, 230]. I have started this study during my post-doc
at KTH with D.V. Dimarogonas and K.H. Johansson [287, 286]. Then, in the context of G. Rodriguez
de Campos, we have studied and evaluated the robustness of consensus algorithms with respect to
periodic and asynchronous samplings [263, 263]. The interesting by product of this study is briefly
presented in Figure 1.7, where the idea is to include an artificial sampling in consensus algorithms.
While one may think of a decrease of the performance, we have shown that, for the single or double
integrator, the performance can be notably increased as showed in Figure 1.7(b). Indeed, the best
convergence rate α of the algorithm is not obtained when the sampling period T or the parameter φ
are zero (i.e. continuous time case). More recently, in [241, 242], the main idea is to find the best
weights to allocate to the different communication links between agents to improve the performance
of the algorithm.

1.2.5 Infinite-dimensional systems
This last aspect corresponds to a topic that I have recently studied since 2015. Infinite dimensional
systems are systems whose dynamics are governed by partial differential equations (see, for example,
[25, 72, 179, 178]). They are found in a large number of applications related to traffic control [158],
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(a) c = 10 (b) c = 6.83 (c) c = 6.5

Figure 1.8: Chart of u for system composed of the coupling of an ODE and the wave PDE, char-
acterized by the wave speed c with the parameters: u0(x) = (cos(πx) + 1) KX0

2
, X(0) = [1 1]>,

v0(x) = 0 and c0 = 0.15 for 3 values of c, presented in [24].

tokamak [340], etc... This new direction can be seen as a natural extension since delay systems can be
already seen as special cases of such a class of infinite dimensional systems. The goal of my activities
is to know whether the methods of analysis, control and observation developed in the framework of
delay systems (that will be detailed in Chapter 2) can be extended to a larger class of systems of
infinite dimension and more particularly sys (PDE) with a finite-dimensional system (ODE). As a
complementary approach to the predictor and backstepping controllers from [178], we want to find
a new method for the stability analysis of a larger class of infinite dimensional systems than the
sole time-delay ones. The novelty of this approach comes from the use of the Bessel inequality that
we have put forward in the framework of the delay system analysis [298], but which proves to be
equally relevant in the framework of other classes of infinite dimensional systems. This research
topic corresponds to the objectives of the project ANR JC/JC SCIDIS. We have already obtained
our first promising results for the analysis of coupled linear systems between a transport PDE and
an ODE [28, 266, 267], but also with the heat equation [27] and the wave equation [24]. To get a
better understanding of the objective, Figure 1.8 has been included to illustrate the results obtained
in the context of M. Barreau’s PhD, and more particularly on the design of speed-dependent stability
conditions for a systems composed of an ODE, X(t), and the wave PDE,utt(x, t) = c2uxx(x, t),
characterized by the wave speed c and with boundary conditions u(0, t) = KX(t) and ux(1, t) =
−c0ut(1, t). The stability conditions, resulting from the use of the Bessel-Legendre inequality, are
able to characterize stability regions of the speed of the wave equation, c. Figure 1.8 presents three
simulations of this system with three different speeds. More particulaly, Figure 1.8(b) shows the
situation were the lowest speed parameter c = 0.683, for which the closed-loop system remains
stable, where the solutions convergeslowly to the equilibrium. These activities will be discussed in
Chapter 4.

1.3 Organization of the manuscript
In order to propose a synthetic view of my research, I made the choice of presenting a focus on only
two of the five aspects presented earlier in this chapter. The remainder of the manuscript is organized
as follows:
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• Chapter 2: Time-delay Systems. The next chapter aims at exposing the main challenges re-
lated to the stability analysis of time-delay systems. After a brief presentation of the main dif-
ficulties when dealing which this particular class of infinite dimensional systems with respect
to the non-delay case, a description of the main methods and procedures to derive stability
conditions based on the application of the Lyapunov-Krasovskii theorem, which has attracted
many researchers for more than two decades. A particular emphasis is proposed on the key
technical tool to derive stability conditions for delay systems, the so-called Jensen’s inequality,
which was presented in the context of time-delay systems in [133]. After a discussion on some
recent contributions, which refine this first integral inequality including the Wirtinger-based
integral and the Bessel-Legendre inequalities is given, an application of the Bessel-Legendre
inequality is presented to cope with the stability analysis of linear systems subject to a single
and constant delay. Finally, the chapter ends with the illustration of the previous methodology
on several numerical examples and problems.

• Chapter 3: Sampled-data Systems. This second contributed chapter deals with the stability
analysis of systems subject to asynchronous samplings. After a brief motivation of the problem
and a brief review of the literature on this topic, the chapter presents two possible methods to
assess stability of this class of systems. The first one is the so-called “input-delay approach”
[105] and consists in noting that the sampling effect can be modeled as a particular class of
time-delay systems subject to a saw-tooth delay functions. This modeling allows one to use the
methods and technics from the time-delay systems theory as presented in the previous chapter.
Compared to Chapter 2, an emphasis is done on the time-varying delay case. The second
approach to be presented in this chapter refers to the class of Lyapunov functionals introduced
in [280], called looped-functionals. The main features and differences with respect to the
input-delay approach are described as well as their potential extensions. The chapter ends
with an application of this second method to the local stability analysis of linear continuous-
time systems controlled by a saturated discrete-time dynamic output controller. This example
demonstrates that the looped-functionals method can be combined with other tools issue from
the saturation theory.

• Chapter 4: Conclusions and Perspectives. After a brief conclusion, this chapter aims at
drawing several perspectives for my future researches. These perspectives can be summarized
under the title of “stability and control of heterogenous Cyber-Physical Systems”. First, a
discussion presenting the perspectives linked to what is presented in Chapters 2 and 3 on time-
delay, sampled-data systems and event-based control. These axes represent the short term
researches I envisioned for the next following years. In a second time, I will discuss about a
new direction of research (for me) related to the stability and control of infinite-dimensional
systems and more particularly on systems composed by the interconnection of ordinary differ-
ential equations and of partial differential equations.
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2.1 Introduction

2.1.1 Particularities of time-delay systems

Unlike more classical systems governed by ordinary differential equations, time-delay systems rep-
resent a particular class of infinite dimensional systems that can be modeled for instance by the
coupling of an ordinary differential equation and a partial differential equation. This particularity
has several implications on the properties of the time-delay system under consideration.

This section introduces some of the basic particularities of time-delay systems in terms of math-
ematical considerations through a simple example. More particularly, this section exposes some
reasons for which researches are still investigating in the topic. To have a better understanding and
reading of this section, we will focus on a simple example. The goal is to help the reader to under-
stand the most relevant aspects of time-delay systems. Let x ∈ R be a variable whose evolution is
governed by:

∀t > t0, ẋ(t) = −x(t− h) (2.1)

where h > 0 is a positive scalar which represents a constant delay. If one considers the delay-free
case, i.e. h = 0, it is well known that the solutions of the system are stable and are of the form
x(t) = x(t0)et0−t. In the following, particular aspects of this equation with delay will allow us
pointing out the major difficulties of time-delay systems and the difference with the delay-free case.

Initial conditions and functional state: Consider the case where h = −π/2. The two functions
x1(t) = sin(t) and x2(t) = cos(t) are trivial solutions of (2.1), which are depicted in Figure 2.1.
In this figure, one can find a contradiction with the Cauchy theorem. In the delay free case, if two
solutions of this linear differential equation cross, then the two solutions are the same. In this simple
example, it is clear that the two solutions x1 and x2 cross each other infinitely many times but are, by
definition, not equal. This problem comes from the fact that the state of a time-delay system is not
only a vector considered at an instant t, as it is in the delay free case, but is function taken over an
interval (or a window) of the form [t − h, t]. Consequently, it is not sufficient to initialize the state
of the system by only including the initial position of the state at time t = 0. It is required to define
a vector function φ : [−h, 0] → R such that x(θ) = φ(θ) for all θ lying in the first delay interval
[−h, 0].

Note, however, that the Cauchy theorem still holds. It is rewritten as follows: If two solutions are
equals over an interval of length h, then the solutions are equals over the whole simulation time.

Infinite dimensional systems: Consider h = 1 and the initial conditions φ(θ) = 1, for all θ in
[t0 − h, t0]. The solutions are shown in Figure 2.2.

As expected, in the non delay case, the solution is a exponential decreasing function. In the
delay case, the solution are not always of this form anymore. First the solution have an oscillatory
behavior around 0. Those oscillations are the usual and expected effects when introducing a delay
in a dynamical system. For small values of the delay, those oscillations can of very low amplitude
and thus negligible. However, for greater values of h (for instance h = 2), the oscillations become
of large amplitude and the solution are unstable.

Considering h = 1 and the same initial conditions, it is possible to construct the solution of the
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Figure 2.1: Possible solution for h = π/2
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Figure 2.2: Solution for h = 0, 1 and constant initial conditions

system by integrating interval by interval:

t ∈ [−1, 0], x(t) = 1,
t ∈ [ 0, 1], x(t) = 1− t,
t ∈ [ 1, 2], x(t) = 1/2− t+ t2,
. . .

Thus, the solution of the system is a polynomial functions whose degree increases with time.
One can then see the time-delay system as an infinite dimensional system since the solutions of this
time-delay system with a constant initial condition are a polynomial of infinite dimension.

Another property of time-delay systems to understand that this class of systems is of infinite
dimension, is to consider the Laplace transform of equation (2.1). The characteristic equation is

s+ e−hs = 0

This characteristic equation, evein though it is quite simple, has an infinite number of complex roots
as shown in Figure 2.3. This remark also illustrates that time-delay systems are infinite dimensional
systems.

Remark 2.1

The stability conditions based on the location of roots of the characteristic equation still holds,
i.e. the stability is ensured if its roots have a negative real part (see [135] or [222] for more
detailed explanations). These methods will not be discussed in this manuscript.
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Figure 2.3: Solution for h = 0, 1 and constant and zero initial conditions

2.1.2 System and delay models

In this part, we will present the different types of delay systems encountered in the literature. We
do not expose the Cauchy problem, initially studied by Mishkis [216]. The reader is referred to the
works [29], [175] or [260] on the existence and uniqueness of solutions.

General representation of delayed systems

As we have said, delayed systems are dynamical systems governed by functional differential equa-
tions bearing both on current and past values in time. If we assume that the derivative of the state
vector can be expressed at each time t, such systems are governed by differential equations of the
form: 

ẋ(t) = f(t, xt, ut),
xt0 = φ(θ), ∀θ ∈ [t0 − h, t0],
ut0 = ζ(θ), ∀θ ∈ [t0 − h, t0],

(2.2)

where h > 0 and the functions xt and ut emploies the Shimanov notation [317], which consits of the
following definition

xt :

{
[−h, 0]→ Rn,
θ 7→ xt(θ) = x(t+ θ),

(2.3)

ut :

{
[−h, 0]→ Rn,
θ 7→ ut(θ) = u(t+ θ).

(2.4)

We will denote in the sequel C = C0([−h, 0],Rn), the set of continuous functions from [−h, 0]
to Rn. The function xt ∈ C represents the state of the delay system a time t, ut is the (control or
disturbance) input of the system. The initial conditions, denoted as φ and ζ at time t0, are functions
from [t0 − h, t0] to Rn and are generally assumed to be continuous or piecewise continuous. Due
to these features, delay systems belongs to the class of infinite dimensional systems, since the state
function xt belongs to an infinite dimensional state.
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Linear delay systems

In this chapter, we will focus on the case of linear delay systems. These systems can be seen as the
linearized version of the general nonlinear class of systems presented in (2.2) around a local equi-
librium. The most usual class of linear systems with delays is described by the following functional
differential equation {

ẋ(t) = Ax(t) + Adx(t− h), ∀t ≥ 0,
x(t) = φ(t), ∀t ∈ [−h, 0],

(2.5)

where x(t) ∈ Rn denotes the instantaneous state vector, φ is a function defined on the interval [−h, 0]
and represents the initial conditions of the system. The matrices A and Ad are, in the simplest case,
assumed to be constant matrices.

Equation (2.5) refers to the case of linear continuous-time systems subject to a discrete delay,
in the sense that only a discrete value of the state function xt, i.e. x(t − h) affects the dynamics
of the system. As mentioned in the previous chapter, this class of systems appears in Networked
Control Systems [153, 352], among many other application fields such as Biology, Traffic Control
(see [101, 222, 261, 318] for more information) or tele-operated systems [64]. In this formulation,
the delay h may be a constant scalar of a time-varying function. The usual assumption on the delay
will be discussed in the next section. One may also face systems where several discrete values of the
state function affect the current dynamics. In this situation, we are used to say that the system has
multiple delays. The reader may refer to [57, 61, 81, 232, 319] to cite only few, in order to have an
overview of the various methods for the stability analysis and control of this class of systems.

Another class of time-delay systems is the so-called distributed delay systems. It consists of dy-
namics where the whole state function xt affects the current dynamics of the system. These systems
can be modeled as follows ẋ(t) = Ax(t) +

∫ 0

−h
AD(θ)x(t+ θ)dθ, ∀t ≥ 0,

x(t) = φ(t), ∀t ∈ [−h, 0],
(2.6)

where x(t) ∈ Rn is the state vector, φ ∈ C([−h, 0] → Rn) is a continuous function, represent-
ing the initial conditions, A is constant matrix and AD denotes a known continuous function of
L2([−h, 0]→ Rn×n) and represents the kernel of the distributed delay. Several applications follows
this clas of dynamics such as combustion in rocket motor chambers in [81], population dynamics
with gamma-distribution [68], etc... This class of systems has been studied in a large number of
papers (see [62, 90, 111, 212, 213, 302, 321, 343] to cite only few).

In order to cope with a larger class of systems, some uncertainties or disturbances may affect the
previous dynamics. In this situation, the matrices A and Ad are not assumed to be know nor to be
constant. The most common classes of uncertainties that have been considered in the literature are
described below

Norm Bounded Uncertainties: In this situation, the matrices A and Ad are unknow and/or time-
varying parameters but are assumed to satisfies the following condition

A = A0 + EΘ(t)F,Ad = Ad0 + EdΘ(t)Fd,
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where the matricesE,F,Ed, Fd, of appropriate dimension, are known and the uncertainties are
captured in the uncertain matrix Θ, which verifies

Θ>(t)Θ(t) ≤ εI,

where ε is a given parameter. This last equation justifies the name of norm-bounded uncertain-
ties.

Polytopic Uncertainties: In this situation, the matrices A and Ad are assumed to belong to a poly-
tope given by [

A Ad
]
∈ Coi=1,...m

{[
Ai Aid

]}
where m is a positive integer, and the matrices Ai and Aid, where i = 1, . . . ,m are constant
and known. This formulation implicitly refers to the existence of weighting scalar functions
λi, for i = 1, . . . ,m that maps R to [0, 1], and such that

∑m
i=1 λi(t) = 1 and

[
A Ad

]
=

m∑
i=1

λi(t)
[
Ai Aid

]
.

In general, assessing stability of such classes of uncertain time-delay systems can be performed
by simple tricks transforming stability conditions for a nominal linear delay system (2.5) to cope with
these uncertainties. This manipulation relies generally on the convexity of the stability conditions
with respect to the matrices A and Ad.

2.1.3 Usual assumptions on the delay functions
In this section, we will successively expose the various model of delays that can be found in the
literature.

a) Constant delay functions: The first studies of time-delay systems concerned indeed the case
of constant delay functions and was mainly carried out using frequency domain approaches.
Indeed, one may look at several stability criteria applied to the Laplace transfer function (the
reader may refer to the following books [135, 222]. Concerning the time-domain approach
and the second Lyapunov method, numerous studies have been provided, see for instance [101,
172] to assess stability of linear systems with constant and known/unknown delays. Some of
them are said delay-independent (see for instance [30, 31, 77, 185, 223, 344] among many
others), meaning that the conditions does not depend on the value of the delay, or are delay-
dependent (see for instance [90, 96, 97, 110, 109, 129, 143, 211, 345] among many others),
meaning here that the condition may be guaranteed only for some values of the delay. Since
the 90’s, an explosion of the number of stability criteria within the time domain approach have
been made possible thanks to the developments of semi-definite programming, allows to find
solutions to Linear Matrix Inequalities in a simple and efficient manner, for instance on Matlab
[84, 114, 180, 193, 257, 150, 236, 335]. For instance, one may have a look at [176, 184] and
[222, 135] to find the first contributions in this direction.

b) Bounded time-varying delays: In practical application, the assumption of having constant de-
lays becomes to restrictive. In particular in Networked Control Systems applications (see for
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instance [153, 194, 352]), delay may arise from the communication through unreliable (wire-
less) networks. For instance, congestion in the network and the packet loss phenomenon may
lead to non negligible variations on the delay functions.

In such situations, researchers consider delay functions that verify the following assumption
[159]. There exists a positive scalar h2 > 0 such that:

0 ≤ h(t) ≤ h2. (2.7)

Some authors also include some additional conditions on the derivative of the delay functions
in order to ensure causality and regularity. This will be described in the next paragraph. If
no additional constraints on the derivative of the delay function is required, several authors
denotes this class of delay function as fast-varying delays [105]. This class of delay functions
are of particular interests, notably for sampled-data and/or networked control systems.

c) Interval or Non small delays: Again, in the context of networked control systems or in some
application such as in [10], the previous assumption may be too restrictive, since the delay
functions are allowed to reach zero (i.e. system without delay), while, from the application
point of view, this would be that the transport of the information or more generally of the
quantity of interest may be achieved with a arbitrarily fast velocity. However in some applica-
tions, this velocity is limited and therefore, there is a minimal time before the current quantity
of interest is available to the controller or to the system.

Hence, the assumption saying that the delay functions belong to an interval of the form [0, h2]
becomes too restrictive and the associated stability analysis may lead to inherent conservatism.
One can then define interval or non small delay functions that prevent the delay functions to
be equal or too close to zero. The assumption on the delay functions is related to the existence
of two positive scalars 0 < h1 ≤ h2 such that

0 < h1 ≤ h(t) ≤ h2. (2.8)

The first results in this direction were developed in [98, 99, 106], or in [162, 163]. The method
proposed in these papers consists in rewriting the delay function as the sum of a constant and
known delay equal, for instance h1 or (h1 + h2)/2 and of the residual time-varying function.
The first constant delay term can be seen as the nominal delay while the second term represents
the variation or the disturbance with respect to this nominal constant delay.

d) Delay functions with constrained derivatives A large number of papers addressing the stability
systems subject to time-varying delays require additional assumptions on the delay functions.
It generally comes from the differentiation of integral terms considered over interval of the
form [t, t − h(t)] or [t − h(t), t − h2]. Historically, the first contributions in this direction
require the following condition (see for instance [109, 108]

ḣ(t) ≤ d < 1. (2.9)

Looking more into the details of this assumption, the previous condition imposes that the
function f(t) = t− h(t), representing the evolution of the delayed information with respect to
time, is strictly increasing and consequently bijective. From the engineering point of view, this
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assumption means that the delayed information or the quantity of interest affect the systems
following a chronological order.

Another usual assumption arising from the recent developments on the stability analysis of
systems subject to time-varying delays is provided below.

d1 ≤ ḣ(t) ≤ d2. (2.10)

Here, the upper bound d2 is not necessarily strictly smaller than 1 [296]. This assumption is
required when the resulting stability conditions depends linearly on the derivative of the delay
functions. Thus this assumption is considered to include more constraints to the allowable
delay function.

e) Piecewise continuous delay functions: This situation is relevant when one has to face with net-
worked control systems where the information may travel among several communication chan-
nels. In this situation, the delay function may be affected by a brutal modification of channel,
leading to a discontinuity in the delay function. Another relevant motivation of this class of
delay functions is concerned with the stability analysis of sampled-data systems (see [105])
where the effects of a periodic or aperiodic sampling can be modeled as a discontinuous delay
function, which, in addition, verifies the following constraint on its derivative

ḣ(t) ≤ 1. (2.11)

Coming back to the comments provided on assumption d), this assumption makes that the
function f(t) = t − h(t) can be constant. This means that the information is held while the
delay verifies ḣ(t) = 1, which corresponds indeed to the effect of a sampling.

2.2 Stability of time-delay systems using the Second Lyapunov
Method

In this section, we recall some results assessing the asymptotic stability of delay systems by focusing
on a time-domain approach related to the second method of Lyapunov.

2.2.1 Second Lyapunov method
Let us consider the generic time-delay system given by

ẋ(t) = f(t, x(t), xt), ∀t ≥ 0
x0(θ) = φ(θ), ∀θ ∈ [−h, 0],

(2.12)

for which we assume the existence and uniqueness of solutions and, without loss of generality, the
solution xt = 0 is an equilibrium.

2.2.2 Lyapunov-Razumikhin approach
In this approach, the goal is to consider a classical Lyapunov function V (t, x(t)), as the one employed
for the delay-free case (i.e. for ordinary differential equations). The main idea of the Lyapunov-
Krasovskii theorem is that it is not necessary to ensure the negative definiteness of V̇ (t, x(t)) along
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all the trajectories of the system. Indeed, it is sufficient to ensure its negative definiteness only for
the solutions that tend to escape the neighborhood of V (t, x(t)) ≤ c of the equilibrium. This idea is
formalized in the following theorem [175].

Theorem 2.1

Let u, v and w : R+ → R+ be nondecreasing functions such that u(θ) and v(θ) are strictly
positive for all θ > 0. Assume that the vector field f of (2.12) is bounded for bounded values
of its arguments.
If there exists a continuous and differentiable function V : R× Rn → R+ such that:

a) u(‖φ(0)‖) ≤ V (t, φ) ≤ v(‖φ‖),

b) V̇ (t, φ) ≤ −w(‖φ(0)‖) for all trajectories of (2.12) satisfying:

V (t+ θ, φ(t+ θ)) ≤ V (t, φ(t)), ∀θ ∈ [−h, 0], (2.13)

then the solution xt = 0 is uniformly stable for (2.12).

Moreover, if w(θ) > 0 for all and is there exists a strictly increasing function p : R+ → R+

such that p(θ) > θ for all θ > 0 and

i) u(‖φ(0)‖) ≤ V (t, φ) ≤ v(‖φ‖),

ii) V̇ (t, φ) ≤ −w(‖φ(0)‖), for all trajectories of (2.12) verifying:

V (t+ θ, x(t+ θ)) ≤ p(V (t, x(t))), ∀θ ∈ [−h, 0], (2.14)

then such a function V Lyapunov-Razumikhin function and solution xt = 0 is uniformly
asymptotically stable for system (2.12).

In practice, the functions p are usually considered as p = qθ where q is a constant strictly greater
than 1. Moreover, Lyapunov functions more commonly employed in the Razumikhin approach are
of the form

V (t) = x>Px(t), (2.15)

where P is a symmetric positive definite matrix of dimension n, the dimension of x(t). Equation
(2.14) thus becomes

x>(t+ θ)Px(t+ θ) ≤ qx>(t)Px(t), ∀θ ∈ [−h, 0], and q > 1. (2.16)

Although the Lyapunov-Razumikhin approach generally leads to more conservative results than
those based on the Lyapunov-Krasovskii theorem, presented in the next paragraph, it allows taking
into account variable delays without restriction on derivative of the delay function (2.9) and generally
leads to delay-independent stability conditions. It has also been shown that for constant delays,
the existence of a Lyapunov-Razumikhin function is equivalent to the existence of a Lyapunov-
Krasovskii functional [80].
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2.2.3 Lyapunov-Krasovskii approach
The Lyapunov-Krasovskii method is an extension of the second Lyapunov method dedicated to the
stability analysis of functional differential equations. It consists in selecting “energy” functionals,
i.e. (functions of the functional state xt) of the form V(t, xt), that are positive definite and decreasing
along the trajectories of system (2.12). The Lyapunov-Krasovskii theorem is stated below [175].

Theorem 2.2

Let u, v and w : R+ → R+ be continuous and increasing functions such that u(θ) et v(θ) are
strictly positive for all θ > 0 and u(0) = v(0) = 0. Assume that the vector field f of (2.12) is
bounded for all bounded values of its arguments.
If there exists a continuous and differentiable functional V : R× C → R+ such that:

a) u(‖φ(0)‖) ≤ V(t, φ) ≤ v(‖φ‖),

b) V̇(t, φ) ≤ −w(‖φ(0)‖) for all t ≥ t0 along the trajectories of (2.12), where
V̇(t, φ) denote here the derivative of V in the Dini sense, i.e. V̇(t, φ) =

limε→0+ sup V(t+ε,xt+ε)−V(t,xt)
ε

.

Then the solution xt = 0 of (2.12) is uniformly stable. Moreover, if w(θ) > 0 for all θ > 0,
then the solution xt = 0 is uniformly asymptotically stable for system (2.12).

Such a functional is called a Lyapunov-Krasovskii functional.

The main idea behind the statement of this theorem is to determine a positive definite functional
V , such that its derivative with respect to time along the trajectories of the system (2.12) is negative
definite. The main problem within the application of this theorem is the design functional and then
to provide some conditions that guarantee its positive definiteness and the negative definiteness of its
derivative

The derivation of stability conditions using Lyapunov-Krasovskii functionals usually involves
quite elaborate developments. To give an idea of the procedure involved in this approach and to
provide a glimpse of its technical flavor, we present here some basics on the procedure to follow
in order to derive asymptotic stability criteria for time-delay systems expressed in terms of Linear
Matrix Inequality (LMI). Based on elementary considerations, we expose the main difficulties and
the most relevant tools. The basic steps for deriving constructive stability conditions are illustrated
as follows.

Step 1. Propose a candidate Lyapunov-Krasovskii functional V . The Lyapunov-Krasovskii func-
tional that is necessary and sufficient for the stability of LTI systems with delay has a rather complex
form, even for the case of constant delays [175]. Let us provide a non-exhaustive list of usual terms
that are employed in the literature

• Complete Lyapunov-Krasovskii functionals:

V(t, xt) = x>t (0)Pxt(0) + 2x>t (0)

(∫ 0

−h
Q(s)xt(s)ds

)
+

∫ 0

−h

∫ 0

−h
x>t (s)T (s, θ)xt(θ)dsdθ +

∫ 0

−h
x>t (s)(S + (h+ s)R)xt(s)ds,

(2.17)
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where the matrices P = P>, R = R> and S = S> and the matrix functions Q and T are
matrices of appropriate dimension. The matrices function T also verifies T (s, θ) = T>(θ, s).

Behind the complexity of the formulation, there are several interests of employing such a func-
tionals. First of all, it is easy to see that when the delay h tends to zero, one recovers the
classical quadratic function usually employed for linear time invariant systems. A second and
notable interest of this functional has been demonstrated in [173]. In this paper, it is shown
that a linear system subject to a constant delay is asymptotically stable if and only if it ad-
mits a Lyapunov-Krasovskii functional that have exactly the same form as in (2.17), where the
parameters P,Q, R, S, T are derived from the solution of matrix partial differential equations.
Unfortunately, this notable result only provides the existence of the Lyapunov-Krasovskii func-
tional but does not provide a method to construct those parameters from a numerical point of
view. Therefore this method can not be directly applied to assess stability of time-delay sys-
tems. An attempt in this direction was proposed by K. Gu in [132, 134, 135] using a discretiza-
tion process on the delay interval in which the parameters are, to stay short, affine functions
of the integration variables. The resulting stability conditions are expressed in terms of LMI.
In [238, 247, 248], another method was proposed based on polynomial parameters, that suc-
cessfully address the asymptotic stability of time-delay systems through the SoS of Squares
framework [245, 246, 253].

A notable aspect of these two methods is that the objective is finally to derive a numerical test to
approximate the parameters of the Complete Lyapunov-Krasovskii functionals. Since in both
methods, letting the number of discretization or the degree of the polynomials tend to infinity
lead to a good approximation of those parameters. Notably, a discussion on the conservatism
of the polynomial method was discussed in [247], leading potentially to a non conservative
test. Nevertheless, these two resulting stability conditions have drawbacks. Their complexity
in terms of implementation and of number of decision variables made these method not “user-
friendly” and many researchers of the fields were looking for simpler Lyapunov-Krasovskii
functionals (see for instance [177]), leading to simplified stability conditions.

• Delay-independent Lyapunov-Krasovskii functionals:

V0(xt) = x>t (0)Pxt(0) +

∫ 0

−h
x>t (s)Sxt(s)ds.

This functional can be compared with (2.17), by setting the parametersQ, T andR to zero. The
specifications delay-independent comes from the fact that, when deriving stability conditions
from this functional, the resulting conditions does not depend on the value of the delay h.
Hence, if the condition holds, it implies that the system remains stable for any values of the
delay.

Of course this functional leads to conservative results since a large class of the delay systems
may be stable only for some values of the delay. This is the reason why several study have
considered functionals leading to delay-dependent conditions

• Delay-dependent Lyapunov-Krasovskii functionals:

V (xt, ẋt) = x>t (0)Pxt(0) +

∫ 0

−h
x>t (s)Sxt(s)ds+ h

∫ 0

−h

∫ 0

θ

ẋ>t (s)Rẋt(s)dsdθ (2.18)
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or equivalently

V (xt, ẋt) = x>t (0)Pxt(0) +

∫ 0

−h
x>t (s)Sxt(s)ds+ h

∫ 0

−h
(h+ s)ẋ>t (s)Rẋt(s)ds

where the matrices P, S and R are symmetric positive definite. This class of functionals,
introduced in in [107], is richer than the delay-independent functional and includes many types
of functionals. The novelty in the definition of this functional relies on the last terms, which
depends on ẋt(s) = d

dt
x(t + s). This functional does not exactly meets the requirement of

the Lyapunov-Krasovskii theorem since this theorem does not mention the possibility for a
functional to have ẋt as an argument. Nevertheless, extensions of the Lyapunov-Krasovskii
theorem including this particularity has been investigated and is now admitted (see, for instance
[101, Section 3.1.2]).

• Multiple integral functionals:

Vm(ẋt) =
h2

2

∫ 0

−h

∫ 0

θ1

∫ 0

θ2

ẋ>t (s)Rmẋt(s)dsdθ2dθ1 (2.19)

or equivalently

Vm(ẋt) =
h2

2

∫ 0

−h
(h+ s)2ẋ>t (s)Rmẋt(s)ds

where the matrix Rm is positive definite. This functional was considered. This class of func-
tionals, introduced in [326] provided new possibilities to enrich the functional by many terms.
In order to be efficient, from the numerical point of view, these functionals require gener-
ally the introduction of an additional quadratic term which depends on

∫ 0

−h xt(s)ds or on∫ 0

−h

∫ 0

θ
xt(s)dsdθ. Many extensions to more general multiple integral functional have been

considered in the literature and have led to some numerical improvements (see, for instance,
[88, 239], among many others).

• Delay partitioning/decomposition functionals:

Vm(xt) = h

∫ 0

−h/2

[
xt(s)

xt(s− h/2)

]>
Rm

[
xt(s)

xt(s− h/2)

]
ds (2.20)

Following the idea of the discretization method provided by K. Gu in [132, 134, 135], sev-
eral researches turns to enrich the functional with intermediate values of the state function.
Indeed in the previous functional, one can see the introduction of the term xt(−h/2). As for
the discretization method, this method allows to refines the resulting stability conditions by
taking into account more and more information on the state function xt. Several contributions
towards this direction were proposed [131, 140, 362, 354, 91] among many other. It is worth
mentioning that the analysis of reduction of the conservatism was studied in [40, 131].

To conclude on the selection of the candidate for being a good Lyapunov-Krasovskii functionals,
the previous discussion show that much efforts have been dedicated to the construction of more and
more evolved functionals. Except for the discretization and the delay partitioning methods, in most of
the case, the main procedure is to follow the paradigm “try and check”, meaning that researchers were
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developing and introducing more and more terms to be included in the functional and have followed
the procedure to derived “good” stability conditions. There was no clear vision and explanation
on what is a good functional for a time-delay system. This question consisting in finding a good
candidate still represents an open question, on which we are trying to provide an answer.

Step 2. Compute the derivative of V .
For the functional (2.18) this leads to

V̇ (xt, ẋt) = 2ẋ>t (0)Pxt(0) + x>t (0)Sxt(0)− x>t (−h)Sxt(−h)

+h2ẋ>t (0)Rẋt(0)− h
∫ t
t−h ẋ

>(s)Rẋ(s)ds.
(2.21)

The idea is then to rewrite this expression as a quadratic form expressed using all the relevant
information on the state function, corresponding to the “LMIzation” of the expression of V̇ (xt, ẋt).
The relevant information are in this situation composed by xt(0), ẋt(0) and xt(−h). First, we note
that there exists a redundancy in these three vectors by noting that ẋt(0) = Axt(0) + Adxtt(−h), in
the case of a linear delay systems. One can either replace ẋt(0) by its expression or one may also keep
this information and use the descriptor formulation [107] or introduce slack variables [144]. Note
that in the case of constant and know matrices A and Ad, all these approaches lead to equivalent
results (see [129] for more details).

Step 3. Over-approximate the integral terms.
Note that in (2.21), the last integral term cannot be straightforwardly converted in the quadratic

formulation described above. Indeed the problem comes from the last negative integral term−
∫ 0

−h ẋ
>
t (s)Rẋt(s)ds,

which is an impediment to the analysis of the sign of (2.21). Such terms are common in the derivative
of Lyapunov-Krasovskii functionals and they need to be included using over-approximation meth-
ods. This procedure is applied in order to replace the integral terms by more simple expressions, that
can be expressed in a quadratic form to be included in the previous formulation.

In the sequel, we will call this procedure as the use of integral inequalities. Unavoidably, us-
ing such integral inequalities introduces some conservatism in the analysis and consequently in the
resulting stability conditions. In the next section, we will review the existing methods, which have
been employed in the literature.

2.3 Integral inequalities and time-delay systems
Following the discussion on the methodology to derive stability conditions for time-delay systems
and the steps of the procedure described in the previous section, the objective of this section is to
provide generic tools that enable the “LMIzation” process, which consists, again, in transforming
the previous expression in a more appropriate form to obtain an LMI formulation of the stability
conditions. Indeed this step is crucial and, consequently, has to be studied carefully. In the following,
we will consider the problem of providing integral inequalities which deliver a lower bound of an
integral quadratic term of the form∫ 0

−h
x>t (u)Rxt(u)du or

∫ 0

−h
ẋ>t (u)Rẋt(u)du

where h is a positive scalar. In the sequel, a review of existing integral inequalities that have been
recently employed in the context of time-delay systems will be provided.
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Remark 2.2

For simplicity, the next developments will mainly focus on the derivation of lower bounds for
the left-hand side integral of the previous equation. We will also show methods to extend these
first results to the right-hand side integral.

2.3.1 Jensen’s inequality

The first method to treat this problem is based on the Jensen’s inequality formulated below

Lemma 2.1

For a given n× n-matrices R � 0 and for any piecewise continuous function x in [−h, 0]→
Rn, the following inequality holds:∫ 0

−h
x>(u)Rx(u)du ≥ 1

h
Ω>0 (x)RΩ0(x) (2.22)

where Ω0(x) =

∫ 0

−h
x(u)du.

The proof is omitted and can be found in several reference books [135]. Naturally, Jensen’s
inequality is likely to entail some inherent conservatism. Several works have been devoted to the
reduction of associated conservatism using the discretization of the delay interval [40, 131].

In the next section we propose to use an alternative solution to reduce the inherent conservative
of this inequality using two class of well-established inequalities. The first one refers to the so-
called Wirtinger’s inequalities issues from the Fourrier analysis. The second one is a particular
interpretation of the Bessel’s inequality on Hilbert space.

2.3.2 Wirtinger-based integral inequality

Wirtinger inequalities

In the literature [164], Wirtinger’s inequalities refer to inequalities which estimate the integral of
the derivative function with the help of the integral of the function. Wirtinger’s inequality have
already been widely used in Automatic Control. To cite only few works, one may look at [178,
Chapter 15], and at [104] in the context of Distributed Parameter Systems or in [190] for Sampled-
Data Systems. Often proved using Fourier analysis, there exist several versions which depend on the
characteristics or constraints we impose on the function. Let us focus on the following Wirtinger’s
inequality adapted to our purpose.
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Lemma 2.2

Consider a given n × n-matrix R � 0. Then, for all function z in C1([−h, 0] → Rn) which
satisfies z(0) = z(−h) = 0, the following inequality holds∫ 0

−h
ż>(u)Rż(u)du ≥ π2

h2

∫ 0

−h
z>(u)Rz(u)du, (2.23)

Proof : The proof is omitted but can be found in [164]. ♦

It is worth noting that this inequality is not related to the Jensen’s inequality in its essence. Indeed,
the function z has to meet several constraints whereas the function x is assumed to be a continuous
function in the Jensen’s inequality. The next section shows how to create a relation between them.

Application of the Wirtinger’s inequalities: First version [294]

The objective of this section is twofold. On the first hand, we aim at providing new tractable inequal-
ities based on Lemma 2.2, which can be easily implemented into a convex optimization scheme. On
the other hand, we propose an inequality which is proved to be less conservative than Jensen’s one.
Thus a first step consists in defining an appropriate function z such that this integral appears naturally
in the developments. Thus a necessary condition is that the function z has the following form

zW (u) =

∫ u

−h
x(s)ds− y(u), (2.24)

where x is a continuous function in [−h, 0] → Rn as defined in the Jensen’s inequality and y is
a function of u to be defined and are chosen so that the function z meets the different constraints
imposed by Lemma 2.2. Following this idea, the next lemma is provided ([294]).

Lemma 2.3

LetR be a positive definite matrix of Sn. Then, for any continuous function x in [−h, 0]→ Rn

the following inequality holds:∫ 0

−h
x>(u)Rx(u)du ≥ 1

h

[
Ω0(x)
Ω1(x)

]> [
R

π2

4
R

] [
Ω0(x)
Ω1(x)

]
(2.25)

where

Ω0(x) =

∫ 0

−h
x(u)du

Ω1(x) =

∫ 0

−h
x(u)du− 2

h

∫ 0

−h

∫ u

−h
x(s)dsdu

Proof : For any continuous function x from [−h, 0] to Rn, define the function zW1 given by

zW1(u) =

∫ u

−h
x(s)ds− u+ h

h

∫ 0

−h
x(s)ds =

∫ u

−h
x(s)ds− u+ h

h
Ω0(x), ∀u ∈ [−h, 0].

The second term is a polynomial of degree 1 which compensates the first term when u = 0.
By construction, the function zW1(u) meets the conditions of the Wirtinger’s inequality given in
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Lemma 2.2, that is zW1(−h) = zW1(0) = 0. We also note that the function zW1 admits a continuous
derivative with respect to the variable u, which is given by

żW1(u) = x(u)− 1

h
Ω0(x), ∀u ∈ [−h, 0].

This function zW1 has also been defined such that the computation of żW1 makes appear the
original function x as suggested in equation (2.24). The computation of the left-hand-side of the
inequality stated in Lemma 2.2 leads to:∫ 0

−h
ż>W1(u)RżW1(u)du =

∫ 0

−h
x>(u)Rx(u)du− 1

h
Ω>0 (x)RΩ0(x) (2.26)

Remark 2.3

At this step, one can already find an alternative proof of the Jensen’s inequality. Indeed,
since the matrix R is assumed to be symmetric positive definite, the left-hand-side of (2.26) is
positive definite, which ensures the following inequality

0 ≤
∫ 0

−h
ż>W1(u)RżW1(u)du =

∫ 0

−h
x>(u)Rx(u)du− 1

h
Ω>0 (x)RΩ0(x).

We already note that this inequality is exactly the Jensen’s inequality in Lemma 2.1.

Consider the right-hand side of the inequality (2.23). Applying the Jensen’s inequality, we have

π2

h2

∫ 0

−h
z>W1(u)RzW1(u)du ≥ π2

h3

(∫ 0

−h
zW1(u)du

)>
R

(∫ 0

−h
zW1(u)du

)
, (2.27)

where simple calculations show that∫ 0

−h
zW1(u)du =

(∫ 0

−h

∫ u

−h
x(s)dsdu− h

2

∫ 0

−h
x(u)du

)
= −h

2
Ω1(x).

The proof is concluded by application of the Wirtinger’s inequality in Lemma 2.2 which ensures∫ 0

−h
x>(u)Rx(u)du− 1

h
Ω>0 (x)RΩ0(x) ≥ π2

4h
Ω>1 (x)RΩ1(x).

♦

Several comments on this new inequality can already be done. In light of Remark 2.3, the
Wirtinger inequality provides a method to obtain a more accurate lower bound of the integral∫ 0

−h
x>(u)Rx(u)du.

Indeed, since R is positive definite, the term π2

4h
Ω>1 (x)RΩ1(x) is also positive, showing that Lemma

2.3 is less conservative than the Jensen’s inequality. A second comment concerns the introduction
of a new information Ω1(x) which depends on the function x. As shown in [294] (and latter on in
this chapter), a particular attention has to be paid on this term when one wants to use in inequality to
derive stability condition for time-delay systems.
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Application of the Wirtinger’s inequalities: Second version

In this section, we propose to refine and precise this first Wirtinger-based integral inequality. To do
so, we will consider again a function z as defined in (2.24). This will lead to the following Lemma
which was presented in [296].

Lemma 2.4

Consider a given matrix R � 0. Then, for all continuous function x in [−h, 0] → Rn the
following inequality holds:∫ 0

−h
x>(u)Rx(u)du ≥ 1

h

[
Ω0(x)
Ω1(x)

]> [
R

3R

] [
Ω0(x)
Ω1(x)

]
(2.28)

where

Ω0(x) =

∫ 0

−h
x(u)du

Ω1(x) =

∫ 0

−h
x(u)du− 2

h

∫ 0

−h

∫ u

−h
x(s)dsdu

Remark 2.4

This new lemma takes the same formulation as in Lemma 2.3 but only a coefficient in the
right-hand side has been modified. Inded compared to Lemma 2.3, the coefficient π2/4 is
replaced by a greater value, 3. Therefore, the lower bound of the integral provided in this new
version is less conservative.

Proof : Following the proof of Lemma 2.3, we introduce a new function zW2 defined for any
continuous function x, given by define the function z given by

zW2(u) =

∫ u

−h
x(s)ds− u+ h

h
Ω0(x)− u(u+ h)

h2
Θ, ∀u ∈ [−h, 0]. (2.29)

where Θ is a constant vector of Rn to be defined. The difference between z and the one proposed
in [294] appears in the third term. This last term is a polynomial term of degree 2, which becomes
zero when u = −h and u = 0. Again, by construction, the function zW2(u) meets the requirements
conditions of the Wirtinger’s inequality given in Lemma 2.2, that is z(a) = z(b) = 0.

Then following the same procedure as in Lemma 2.4, we first note that the derivative of z with
respect to u is given by

żW2(u) = x(u)− 1

h
Ω0(x)− h+ 2u

h2
Θ, ∀u ∈ [−h, 0].

Then we expand the expression of
∫ 0

−h
ż>W2(u)RżW2(u)du and on the other side we apply the

Jensen inequality to
∫ 0

−h
z>W2(u)RzW2(u)du. After performing several calculations of integral and

integrations by parts (the details can be found in [296]), the following inequality is derived∫ 0

−h
x>(u)Rx(u)du− 1

h
Ω>0 (x)RΩ0(x)− 3

h
Ω>1 (x)RΩ1(x) ≥(

π2−12
36h

)
(Θ− 3Ω1(x))>R(Θ− 3Ω1(x)).
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Since 12 ≥ π2 and R � 0, the right-hand side of the previous inequality is non positive indepen-
dently of the choice of Θ. Hence, its maximum is reached and is zero when selecting Θ = 3Ω1(x),
which concludes the proof. ♦

2.3.3 Extension of the Wirtinger-based inequalities
Compared to the existing contributions within the stability analysis of time-delay systems, the Wirtinger-
based integral inequality can be seen as an alternative solution of the discretization or the partition of
the delay interval. The main interests of this inequality are described below.

• Wirtinger-based inequality instead of Jensen’s inequality: Since the Wirtinger-based inte-
gral inequality has a similar structure as the Jensen’s inequality, it is somehow easy to extend
the analysis of various classes of time-delay systems, for instance, uncertain systems, fuzzy
systems, Lur’e systems, neural networks, systems with input saturations, or various classes of
control problems such as exponential stability, stabilization, optimal control, etc...

• Futher improvements on integral inequalities: The conservatism of stability conditions for
time-delay systems employing the Jensen’s inequality was already pointed out in the 2000’s.
For a long time, the only method to reduce the conservatism of these analysis was to employ a
discretization method, a delay-partitioning approach, to augment the model a state augmenta-
tion or to introduce additional terms in the Lyapunov-Krasovskii functional in a heuristic man-
ner (i.e. ”try and check”). The Wirtinger-based integral inequality provides a new direction
for the reduction of the conservatism. Several researches turn out to provide less conservative
integral inequalities that refines this new results. On a first hand, one may look at the Auxiliary-
function based integral inequality in [244], the free-matrix-based integral inequality in [353],
the Wirtinger-based double integral inequality [240] or in [174, 59] and the Bessel-Legendre
inequality [297, 298, 302, 139]. Details and explanation on the last method will be provided in
the following section, that gives an alternative and more accurate vision of this inequality and
also generalizes its concept.

• Summation inequalities for discrete systems with delays: On the other hand, a summation
version of the Jensen’s inequality has been widely employed in the literature to assess stability
of discrete-time systems with time-delay. Therefore, the Wirtinger-based integral inequality
gave also a motivation to translate this integral inequality into the discrete-time domain. Indeed
new summation inequalities have been derived in [304, 364, 138, 221] or in [58] and have led
to less conservative stability conditions on various class of discrete-time-delay systems.

2.3.4 Bessel-Legendre inequality on Hilbert spaces
In the previous section, we have shown that increasing the degree of the polynomial function in
zW1 allows a reduction of the conservatism of the resulting integral inequality. In this section, we
aim at providing a method that pursues this idea of increasing the degree of the polynomial terms.
However, at this stage, there is no obvious method that allows generalizing this method and to select
in an accurate manner a “good” sequence of polynomials and the right “additional signals”, which
will be denoted as Ωi(x), for i = 2, 3, . . . . In this section, we aim at presenting a method to extend,
in a generic manner, the Wirtinger-based integral inequality and to provide less and less conservative
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integral inequalities. This method is based on the Bessel’s inequality on Hilbert Space and on the
sequence of Legendre polynomials. A motivation of this solution is provided hereafter.

Preliminaries

In this section, we will present an general integral inequality that can be interpreted as the Bessel
inequality on Hilbert spaces. In order to fully understand this vision, let us recall a technical detail
in the proof of the first Wirtinger-based integral inequality presented in Lemma 2.3. In this proof,
a remark on equation (2.26) mentioned that an alternative proof of the Jensen’s inequality than the
usual one. Let us first recall this equation with the particular selection of R = I to simplify the next
developments. After some calculations we obtained the following equation∫ 0

−h
|z0(u)|2du =

∫ 0

−h
|x(u)|2du− 1

h

∣∣∣∣∫ 0

−h
x(u)du

∣∣∣∣2 (2.30)

where z0(u) = x(u) − 1
h

∫ 0

−h x(u)du, ∀u ∈ [−h, 0]. The function z0 can be interpreted as the
difference between the function x under consideration and its average over the interval [−h, 0]. It
can be also rewritten in the following form

z0(u) = x(u)− L∗0(u)

∫ 0

−h
L∗0(u)x(u)du, ∀u ∈ [−h, 0],

where L∗0(u) =

(∫ 0

−h
1ds

)−1/2

= h−1/2 is the constant function of C([−h, 0], which is normalized

with respect to the inner product defined on the set of C([−h, 0],Rn) by 〈f, g〉 :=

∫ 0

−h
f(u)g(u)du

for any continuous functions f and g in C([−h, 0],Rn). In light of this expression, one can see that
the vector z0 represent the difference between the function x and its projection, in the sense of the
integral inner product to the set of constant function. The norm associated to this inner product is
defined by

‖x‖2
C =

∫ 0

−h
x>(s)x(s)ds, ∀x ∈ C([−h, 0],Rn). (2.31)

and we can rewrite (2.30) as follows

‖x− L∗0(u) 〈L∗0, x〉 ‖2
C = ‖z0‖2

C = ‖x‖2
C − 〈L∗0, x〉

2 ≥ 0 (2.32)

with the light abuse of notation consisting in denoting

〈L∗0, x〉 =

∫ 0

−h
L∗0(u)x(u)du =

√
1

h

∫ 0

−h
x(u)du

(
=

√
1

h
Ω0(x)

)

Following this framework, the Jensen’s inequality, which can be summarized as ‖x‖2
C−〈L∗0, x〉

2 ≥
0, can be interpreted in two manners. The first one is related to the Cauchy-Schwartz inequality. An-
other and more interesting interpretation relies on graphical considerations. It consists in noting that
the inequality ‖x‖2

C ≥ 〈L∗0, x〉
2 , means that the norm of the infinite dimensional vector x is greater
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than its projection over the set of constant functions. Let us see how this framework includes the
Wirtinger-based integral inequality. In equation (2.29), we have considered the following function

z1(u) = x(u)− 1

h
Ω0(x)− 3

h

(
h+ 2u

h

)
Ω1(x), ∀u ∈ [−h, 0].

where we already include the fact that the best slection for Θ is Θ = 3Ω1(x). Let us denote L1

the polynomial of degree 1 given by L1(u) = h+2u
h

and its normalized version denoted as L∗1(u) =

L1(u)/
√
〈L1,L1〉 for all u in [−h, 0]. Simple calculations show that 〈L1,L1〉 = h

3
, 〈L1, x〉 = Ω1(x),

and that these two polynomials L∗0 and L∗1 interestingly satisfies the following equalities 〈L∗0,L∗1〉 =
0, 〈L∗0,L∗0〉 = 〈L∗1,L∗1〉 = 1, which means that the functions L∗0 and L∗1 represent an orthonormal
sequence of C([−h, 0],Rn) associated to the inner product 〈·, ·〉. Following the previous discussion,
we can rewrite the Wirtinger-based integral inequality as follows

‖z1‖2
C =

∥∥∥∥∥x−
1∑

k=0

L∗k 〈L∗k, x〉

∥∥∥∥∥
2

C

= ‖x‖2
C −

1∑
k=0

|〈L∗k, x〉|
2 ≥ 0,

which can be interpreted graphically as an inequality relating again the norm of the infinite dimen-
sional function x to its projection over the set of polynomials of degree less than 1. This inequality
can also be interpreted as the Bessel’s inequality on Hilbert space with the sequence of orthonormal
polynomials {L∗0,L∗1}.

This discussion drive us to find a direct solution to the problem stated at the beginning of this
section. Indeed it suffices to design a sequence of orthonormal (or orthogonal) polynomials with
respect to the inner product under consideration and to derive less conservative integral inequalities.
More generally, the problem has become the selection an appropriate orthonormal sequence (or basis)
of the Hilbert space composed by C([−h, 0],Rn) associated to the inner product 〈·, ·〉. Hopefully,
this problem has been widely investigated in Mathematics and there exists many works on orthogonal
basis on this particular Hilbert space. One may look at trigonometric functions or at polynomials
functions such as Legendre’s polynomials among many other functions. As induced by the notation
L0 and L1 to denote the polynomials of degree of 0 and 1, we will exploit, in the next paragraph,
the properties of the Legendre polynomials in order to derive efficient and less conservative integral
inequalities. Latter, we will show how these inequalities can be included in the stability analysis of
time-delay systems.

Basics on Legendre polynomials

In the following, a brief recall of the Legendre polynomials and their relevant properties is proposed.

Definition 2.1

The Legendre polynomials considered over the interval [−h, 0] are defined by

∀k ∈ N, Lk(u) = (−1)k
k∑
l=0

pkl

(
u+ h

h

)l
with pkl = (−1)l ( kl )

(
k+l
l

)
.
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The sequence of Legendre polynomials {Lk, k ∈ N} forms an orthogonal sequence with respect
to the inner product:

〈f, g〉 =

∫ 0

−h
f(u)g(u)du, ∀f, g ∈ C. (2.33)

These polynomials satisfy the following properties:

Property 2.1

The Legendre polynomials verify the following properties

P1 Orthogonality:

∀(k, l) ∈ N2,

∫ 0

−h
Lk(u)Ll(u)du =

 0, k 6= l,
h

2k + 1
, k = l.

(2.34)

P2 Boundary conditions:

∀k ∈ N, Lk(0) = 1, Lk(−h) = (−1)k.

P3 Differentiation:

d

du
Lk(u) =


0, k = 0,
k−1∑
i=0

(2i+ 1)

h
(1− (−1)k+i)Li(u), k ≥ 1.

Bessel-Legendre inequality

Based on the Legendre polynomials, the following lemma, presented in [297, 298] is derived.

Lemma 2.5

Let x ∈ C([−h, 0],Rn) and R ∈ S+
n and h > 0. Then, the inequality

∫ 0

−h
x>(u)Rx(u)du ≥ 1

h


Ω0(x)
Ω1(x)

...
ΩN(x)


>
R

3R
. . .

(2N + 1)R




Ω0(x)
Ω1(x)

...
ΩN(x)

 (2.35)

holds for all N ∈ N, where Ωk(x) =

∫ 0

−h
Lk(u)x(u)du, k = 0, . . . N .
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Proof : Consider a function x in C([−h, 0],Rn), a matrixR in S+
n and h > 0. Define the function

zN by

zN(u) = x(u)−
N∑
k=0

∫ 0

−h
Lk(u)x(u)du∫ 0

−h
L2
k(u)du

Lk(u) = x(u)−
N∑
k=0

2k + 1

h
Ωk(x)Lk(u)

Clearly, zN is in C([−h, 0],Rn) and represents the approximation error between x and its projec-
tion to the polynomial set {Lk, k = 0, . . . , N} with respect to the inner product (2.31). The integral∫ 0

−h
z>N(u)RzN(u)du exists and the orthogonal property P1 yields

∫ 0

−h
z>N(u)RzN(u)du =

∫ 0

−h
x>(u)Rx(u)du− 2

N∑
k=0

2k + 1

h

(∫ 0

−h
Lk(u)x(u)du

)>
RΩk(x)

+
N∑
k=0

(
2k + 1

h

)2(∫ 0

−h
L2
k(u)du

)
Ω>k (x)RΩk(x).

From their definition, we have Ωk(x) =

∫ 0

−h
Lk(u)x(u)du and

(
2k+1
h

)2
∫ 0

−h
L2
k(u)du =

2k + 1

h
,

which yields∫ 0

−h
z>N(u)RzN(u)du =

∫ 0

−h
x>(u)Rx(u)du−

N∑
k=0

2k + 1

h
Ω>k (x)RΩk(x). (2.36)

Finally, inequality (2.35) is obtained by noting that
∫ 0

−h
z>N(u)RzN(u)du > 0 since R � 0. ♦

Remark 2.5

Considering the BL inequality with N = 0, 1, 2 leads to the celebrated Jensen’s inequality and
the Wirtinger-based inequality [296] and the auxiliary function-based inequality [244].

Remark 2.6

It is well known that the set of polynomials is dense in C([−h, 0],Rn), Therefore the sequence
of polynomial {Lk}k≥0 represents a basis of C([−h, 0],Rn). Then, when N tends to infinity,
the Bessel-Legendre inequality tends to an equality and∫ 0

−h
x>(u)Rx(u)du =

1

h

∞∑
k=0

(2k + 1)Ω>k (x)RΩk(x).

Optimality of the Bessel-Legendre inequality

In the previous lemma, we have used the Legendre polynomials because of their orthogonal proper-
ties with respect to the integral inner product. This choice of polynomials has shown some interests
since the results inequality has a diagonal structure.



2.3. INTEGRAL INEQUALITIES AND TIME-DELAY SYSTEMS 35

The selection of the Legendre polynomials is interesting not only for this diagonal structure.
From the approximation theory, the polynomial

∑N
k=0

2k+1
h

Ωk(x)Lk(u) is the best polynomial ap-
proximation of degree N of the function x in the sense of the inner product, since it minimizes the
distance between x with the set of polynomials of degree less than or equal N . In other words, the
minimization

min
P∈RnN [u]

∫ 0

−h
(x(u)− P (u))>R(x(u)− P (u))du

where Rn
N [u] is the set of polynomials of Rn of degree less than N , is obtained with

P (u) =
N∑
k=0

〈x,Lk〉
〈Lk,Lk〉

Lk(u) =
N∑
k=0

2k + 1

h
Ωk(x)Lk(u).

where we used a light abuse of notation. Therefore, the Bessel-Legendre inequality provided in
Lemma 2.5 is optimal. To see this optimality, let us consider the canonical basis of the polynomials.
Following the same procedure as in the previous lemma, the following lemma is derived

Lemma 2.6

Let x ∈ C([−h, 0],Rn) and R ∈ S+
n and h > 0. Consider a sequence of polynomials

{pk}k=0,...,N representing a basis of the set of polynomials of degree less thanN and a sequence
of real numbers {βk}k=0...,N .
Then, the inequality

∫ 0

−h
x>(u)Rx(u)du ≥


Θ0(x)
Θ1(x)

...
ΘN(x)


>
α00R α01R . . . α0NR

α01R α11R . . .
...

...
... . . . ...

α0NR . . . . . . αNNR




Θ0(x)
Θ1(x)

...
ΘN(x)

 (2.37)

holds for all N ∈ N, where, for i, k = 0, . . . N

αik =


−βkβi

∫ 0

−h
pk(u)pi(u)du, if i 6= k,

2βk − β2
k

∫ 0

−h
p2
k(u)du, if i = k,

and Θk(x) =

∫ 0

−h
pk(u)x(u)du.

Proof : The proof is similar to the one of Lemma 2.5. Consider a function x in C([−h, 0],Rn),
a matrix R in S+

n and h > 0. Define the function zN by

yN(u) = x(u)−
N∑
k=0

βkpk(u)

∫ 0

−h
pk(s)x(s)ds = x(u)−

N∑
k=0

βkpk(u)Θk(x).

The integral
∫ 0

−h
y>N(u)RyN(u)du exists and we have

∫ 0

−h
y>N(u)RyN(u)du =

∫ 0

−h
x>(u)Rx(u)du− 2

N∑
k=0

βk

(∫ 0

−h
pk(u)x(u)du

)>
RΘk(x)

+
N∑
k=0

N∑
i=0

βkβi

∫ 0

−h
pk(s)pi(s)dsΘ

>
k (x)RΘi(x).
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Noting that Θk =

∫ 0

−h
pk(u)x(u)du, it yields

∫ 0

−h
y>N(u)RyN(u)du =

∫ 0

−h
x>(u)Rx(u)du−

N∑
k=0

(2βk − β2
k)Θ

>
k (x)RΘk(x)

+2
N∑
k=1

N∑
i=k+1

βkβi

∫ 0

−h
pk(s)pi(s)dsΘ

>
k (x)RΘi(x).

(2.38)

Finally, inequality (2.37) is obtained by noting that
∫ 0

−h
y>N(u)RyN(u)du > 0 since R � 0. ♦

This lemma presents another integral inequality, which can be used to obtain a new stability
condition. However, on the one hand, the matrix [αik]i,k=0,...,N is not necessarily positive definite.
This means that this new inequality may be really conservative. On a second hand, following the
discussion above, the polynomial

∑N
k=0

2k+1
h

ΩkLk(u) minimizes the distance between the infinite
dimensional function x and the set of polynomials of degree less than N . This means that, the
inequality ∫ 0

−h
y>N(u)RyN(u)du ≥

∫ 0

−h
z>N(u)RzN(u)du

holds and the equality occurs only if yN = zN . Finally, the two expressions provided in (2.36) and
(2.38) implies the following inequality

Θ0

Θ1
...

ΘN


>
α00R α01R . . . α0NR

α01R α11R . . .
...

...
... . . . ...

α0NR . . . . . . αNNR




Θ0

Θ1
...

ΘN

 ≤


Ω0

Ω1
...

ΩN


>
R

3R
. . .

(2N + 1)R




Ω0

Ω1
...

ΩN

 ,
where the argument “(x)” has been omitted for the sake of simplicity.

This demonstrates that the Bessel-Legendre inequality is the less conservative inequality that can
be derived, of course, when one considers the projection of polynomials sets.

Remark 2.7

This results can also be related to the “sum of squares” framework that has been developed
and employed in similar contexts of automatic control in [151, 245, 253, 238, 237, 334]. In
this framework, the objectives often relies on the optimization of the coeffiecients βk, k =
0, . . . , N , that delivers the best inequality. Lemma 2.5 only says that the optimal integral
inequality for this inner product is related to the Legendre polynomials.

Further comments on the approximation of infinite dimensional state function.

Another interesting comments on this framework is related to the interpretation of the function zN
which is recalled for the sake of simplicity

zN(u) = x(u)−
N∑
k=0

2k + 1

h
Ωk(x)Lk(u).
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As we mentioned earlier in this chapter, this function can be interpreted that error of approxi-
mation of the infinite dimensional function x by a finite dimensional polynomial function given by∑N

k=0
2k+1
h

Ωk(x)Lk(u). In other words, we have

x(u) ≈
N∑
k=0

2k + 1

h
Ωk(x)Lk(u) =

1

h

[
L0(u)I L1(u)I . . . LN(u)

]


Ω0(x)
Ω1(x)

...
ΩN(x)

 .

In general, the series
∑N

k=0
2k+1
h

Ωk(x)Lk(u) does not converges point to point to x(u). It only
converge to x in the sense of the norm associated to the inner product. However, if the function x is
infinitely differentiable over the interval (−h, 0), then we have

x(u) =
∞∑
k=0

2k + 1

h
Ωk(x)Lk(u), ∀u ∈ (−h, 0).

Coming back to the Lyapunov analysis and the stability analysis of time-delay systems, the con-
vergence of the projections Ωk(xt), for all k ≥ 0 and where xt is the state of a time-delay system, to
zero implies the convergence of x to zero as well. This will be taken into account in the Lyapunov
analysis developed in the next section. Moreover, we will show that if we can prove the converge to
zero of Ωk(xt), for all k = 0, . . . , N , then the remainder of the projections, Ωk(xt), for all k ≥ N+1,
also converge to zero.

To conclude, the Bessel-Legendre inequality introduces additional information on the delay sys-
tem brought by the projection vectors Ωk(xt), for k = 0, . . . N , where xt is the state of a time-delay
system. The objective, when including these terms in a Lyapunov analysis finally consists in taking
into account more and more information on the system state xt.

A suitable corollary for the stability analysis of time-delay systems

As discussed earlier, the problem is often to derive a lower bound of
∫ 0

−h ẋ
>(u)Rẋ(u)du. The next

corollary addresses this particular problem.



38 CHAPTER 2. TIME-DELAY SYSTEMS

Corollary 2.1

Let x be such that ẋ ∈ C, R ∈ S+
n and h > 0. Then, the integral inequality∫ 0

−h
ẋ>(u)Rẋ(u)du ≥ 1

h
ξ>N

[
N∑
k=0

(2k + 1)ΓN(k)>RΓN(k)

]
ξN , (2.39)

holds for all integer N ∈ N where

ξN =


[x>(0) x>(−h)]>, if N = 0,[
x>(0) x>(−h)

1

h
Ω>0 (x) . . .

1

h
Ω>N−1(x)

]>
, if N > 0,

ΓN(k) =

{ [
I −I

]
, if N = 0,[

I (−1)k+1I γ0
NkI . . . γN−1

Nk I
]
, if N > 0.

γiNk =

{
−(2i+ 1)(1− (−1)k+i), if i ≤ k,
0, if i > k.

and where Ωk is defined in Lemma 2.5.

Proof : Applying Lemma 2.5 to the order N leads to∫ 0

−h
ẋ>(u)Rẋ(u)du ≥ 1

h

N∑
k=0

(2k + 1)Ω>k (ẋ)RΩk(ẋ), (2.40)

where we recall that Ωk(ẋ) =
∫ 0

−h Lk(u)ẋ(u)du, for all k = 0, 1, . . . , N . An integration by parts
ensures that, for all k ≥ 0

Ωk(ẋ) = Lk(0)x(0)− Lk(−h)x(−h)−
∫ 0

−h

(
d

du
Lk(u)

)
x(u)du.

Thanks to properties P2 and P3 of the Legendre polynomials, the following expression is derived

Ωk(ẋ) = x(0)− (−1)kx(−h) +
k−1∑
i=0

γiNk
h

Ωi(x) = ΓN(k)ξN . (2.41)

Replacing Ωk(ẋ) by its expression using Ωi(x), i = 0, . . . , k and the matrices ΓN(k), k =
1, . . . , N leads to (2.39) and concludes the proof. ♦

2.4 Application to linear systems with a constant delay

2.4.1 Stability theorem
In this paragraph, a first stability result for time-delay systems is provided by the use of the Bessel-
Legendre inequality developed in the previous section. We will study the stability of the following
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linear system subject to a constant delay{
ẋ(t) = Ax(t) + Adx(t− h), ∀t ≥ 0,
x(t) = φ(t), ∀t ∈ [−h2, 0],

(2.42)

where x(t) ∈ Rn is the state vector, φ is the initial conditions and A and Ad, are constant matrices.
The following stability theorem, presented in [298], is provided by the use of Corollary 2.1 with an
arbitrary N .

Theorem 2.3

For a given integer N and a constant delay h, assume that there exist a matrix PN ∈ S(N+1)n

and two matrices S,R ∈ S+
n such that the LMI

ΘN(h) =



PN � 0, if N = 0,

PN + 1
h


0

S
. . .

(2N − 1)S

� 0, if N > 0,

ΦN(h) = ΦN0(h)−

 ΓN(0)
...

ΓN(N)


>

R

3R
. . .

(2N + 1)R


 ΓN(0)

...
ΓN(N)

 ≺ 0,

(2.43)
hold, where ΓN(k), for all k = 0, . . . , N , are defined in Corollary 2.1 and

ΦN0(h) = He
(
G>N(h)PHN

)
+ S̃N + h2F>NRFN ,

S̃N = diag{S,−S, 0Nn},
FN =

[
A Ad 0n,nN ,

]
,

GN(h) =

[
I 0n 0n,nN

0nN,n 0nN,n hInN

]
,

HN =
[
F>N Γ>N(0) Γ>N(1) . . . Γ>N(N − 1)

]>
.

Then the time-delay system (2.42) is asymptotically stable for the constant delay h.

Proof : For the sake of simplicity, the proof of this theorem is not presented. It can however be
found in [298]. We only mention that the proof of Theorem 2.3 relies on the Lyapunov-Krasovskii
functional

VN(xt, ẋt) = x̃>N(t)PN x̃N(t) +

∫ t

t−h
x>(s)Sx(s)ds+ h

∫ t

t−h

∫ >
θ

ẋ>(s)Rẋ(s)dsdθ, (2.44)

where, guided by the B-L inequality (2.39) and the signals involved, we have considered the aug-
mented state vector x̃N(t) given by:

x̃N(t) =


xt(0)∫ 0

−h L0(s)xt(s)ds
...∫ 0

−h LN−1(s)xt(s)ds

 =


xt(0)

Ω0(xt)
...

ΩN−1(xt)

 ,
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if N ≥ 1 and x̃0(t) = xt(0), if N = 0. The augmented vector x̃N is composed by the instantaneous
state xt(0) and the projections of the state function xt to the N first Legendre polynomials.

♦

Remark 2.8

Taking N = 0 in Theorem 2.3 allows retrieving one of the most classical delay-dependent
stability conditions based on Jensen’s inequality and LMI [130]. Additionally, choosing N =
1 leads to the stability conditions from [296].

Remark 2.9

An interpretation of the BL inequality and the associated stability analysis is provided in the
context of robust analysis in [127, 128]. In this second paper, we have notably showed that the
same LMI conditions presented in Theorem 2.3 imply

det(sI − A− Ade−hs) 6= 0, ∀s ∈ C, s.t. Re(s) ≥ 0,

which brings the link between this Lyapunov analysis and the frequency analysis of the time-
delay system.

2.4.2 Remark on the choice of the Lyapunov-Krasovskii functional
A comment on the Lyapunov-Krasovskii functional, VN , and its relation with the class of functionals
studied in [134, 248] is highlighted here. Indeed by considering the functional (2.44) and by defining
the polynomial matrix D(s) = diag(0n,L0(s)I, L1(s)I, . . . ,LN(s)I) and the matrices

P̃ =
[

I
0nN,n

]>
PN

[
I

0nN,n

]
, S(s) = S,

Q(s) =
[

I
0nN,n

]>
PND(s), T (s, ξ) = D>(s)PND(ξ).

Therefore, the functional VN can be rewritten as

VN(xt, ẋt) = x>(t)P̃ x(t) + 2x>(t)

∫ 0

−h
Q(s)xt(s)ds+

∫ 0

−h

∫ 0

−h
x>t (s)T (s, ξ)xt(ξ)dsdξ

+

∫ 0

−h
x>t (s)S(s)xt(s)ds+ h

∫ 0

−h

∫ 0

θ

ẋ>t (s)Rẋt(s)dsdθ.

(2.45)
The three first terms of VN are similar to the ones presented in equation (2.17) and employed

in [248] and in [134]. In [248], the degree of freedom comes from the degree of the polynomial
matrices Q(s), S(s) and R(s, ξ), denoted as Dp. In [134], the degree of the polynomial is always 1
but the degree of freedom comes from the degree of discretization, denoted latter on as Dd.

A first difference with respect to these two approaches is that in our setup, the polynomial matrix
S(s) is constant. The consequence is that our method requires less parameters to define the func-
tional when increasing Dp or Dd. Another difference relies on the last integral quadratic term of VN
which depends on ẋt. Finally, the previous theorem does not need to enter into the sum of squares
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framework which generally requires the use of additional decision relaxation variables when testing
the stability conditions.

Remark 2.10

Note that in [297] or in [302], similar theorems were deployed based on the complete repre-
sentation of Lyapunov-Krasovskii functionals, as employed in, for instance, [248] and [134].
It simply consists in a light modification in 2.45 where the last integral term depends on xt
instead of ẋt.

2.4.3 Hierarchy of LMI stability conditions
This section is devoted to proving that the previous stability conditions form a hierarchy of LMI
conditions. This is formulated in the next theorem based on the stability conditions of Theorem 2.3.

Theorem 2.4

For any time-delay system (2.42), define the setHN by

HN :=
{
h ∈ R+ s.t. ΘN(h) � 0, ΦN(h) ≺ 0, PN , S(N) � 0, R(N) � 0

}
Then, it holds

HN ⊂ HN+1, ∀N ≥ 0.

Proof : The proof is omitted for the sake of simplicity. To get the flavor of it, it suffices to
assume that if there exist symmetric matrices PN , S(N) � 0 and R(N) � 0 such that ΘN(h) � 0
and ΦN(h) ≺ 0, then considering

PN+1 =

[
PN 0
0 0

]
,

{
S(N + 1) = S(N) = S,
R(N + 1) = R(N) = R,

the structural properties of the LMI allows us to conclude the proof. ♦

Theorem 2.4 proves that, the stability conditions provided in Theorem 2.3 at the order N + 1
delivers, at least, the same result the same condition taken at the order N . Since Theorem 2.3
only provides sufficient stability condition, the set HN , for a given N ∈ N represents an inner
approximation of the stability pockets. Moreover, the proof also show that

HN+1

∣∣∣∣PN+1=
[
PN 0
0 0

] = HN ,

where the set on the left-hand-side stands for the restriction of HN+1 to matrices PN+1 of the corre-
sponding form. A brief recursive reasoning allows us to obtain that

HN+1

∣∣∣∣PN+1=
[
P0 0
0 0

] = H0, P0 ∈ Sn

This equality of sets can be interpreted as follows. If one uses the Bessel-Legendre (or the
Wirtinger-based) inequality, without augmenting the size of the matrix PN , or, again, without enrich-
ing the functional by the projection Ωk, with k ≤ N − 1, then the result is strictly equivalent to the
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Theorems hmax number of var. Methods
Theoretical bound 6.1725 - Frequency approach

[130, 144] 4.472 1.5n2 + 1.5n L-K functional + Jensen
[326] 5.02 18n2 + 18n L-K functional + Jensen
[325] 5.30 8.5n2 + 3.5n L-K functional + Jensen
[294] 5.901 3n2 + 2n L-K functional + Wirtinger-based
[170] 6.1107 1.5n2 + 9n+ 9 IQC + filter
[15] 5.120 7n2 + 4n QS + filter

[141], Dd = 2 5.71 4n2 + 2n L-K functional + Jensen + Partition
[141], Dd = 3 5.96 6.5n2 + 2.5n L-K functional + Jensen + Partition
[141], Dd = 4 6.05 10n2 + 3n L-K functional + Jensen + Partition
[134], Dd = 1 6.053 7.5n2 + 3.5n L-K functional + Discretization
[134], Dd = 2 6.165 10.5n2 + 4.5n L-K functional + Discretization
[134], Dd = 3 6.171 14.5n2 + 4.5n L-K functional + Discretization
[248], Dp = 1 5.19 7n2 + 3n L-K functional + SOS
[248], Dp = 2 5.90 12.5n2 + 4.5n L-K functional + SOS
[248], Dp = 3 6.10 21n2 + 6n L-K functional + SOS
Th.2.3, N = 0 4.472 1.5n2 + 1.5n L-K functional + Bessel
Th.2.3, N = 1 6.059 3n2 + 2n L-K functional + Bessel
Th.2.3, N = 2 6.168 5.5n2 + 2.5n L-K functional + Bessel
Th.2.3, N = 3 6.1725 9n2 + 3n L-K functional + Bessel

Table 2.1: Results for Example (2.46) for constant delay h. The degree of discretization Dd and the
degree of the polynomial Dp are defined in Subsection 2.4.2.

one obtained using the Jensen’s inequality (i.e. N = 0). Therefore the augmentation of the size of
the matrix PN is crucial to derive less conservative numerical results.

Finally, Theorem 2.3 provides a hierarchy of LMI conditions for the analysis of time-delay sys-
tems. This means that increasing N potentially helps to reduce the conservatism of the conditions,
and potentially to detect greater and greater stability regions. Nevertheless, Theorem 2.3 does not
prove that the conditions of Theorem 2.3 will converge to the analytical bounds of the delay. In other
words, Theorem 2.3 does not answer to the question

“If the system is asymptotically stable for a given delay h,
does there exist an integer N such that the LMI conditions provided in Theorem 2.3 holds?”

As it will be exposed in the next section, where numerical examples are treated, the conditions of
Theorem 2.3 are very efficient from the numerical point of view and also and its complexity is very
competitive with respect to other stability conditions from the literature. Through these examples,
we have always been able to obtain an encouraging result, even for non trivial systems.

We have not been able to answer to this question yet. However, we strongly believe that the prop-
erties of the Legendre polynomials together with the existence of a complete Lyapunov-Krasovskii
functionals will lead the way to a positive answer.
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2.5 Numerical applications and extensions

2.5.1 Linear systems with a single discrete delay
The purpose of the following section is to illustrate on academic and non trivial examples how the
inequalities given in Section 3 lead to a relevant reduction of conservatism in the stability condition.

Example 1:

Consider the same linear time-delay system (2.42) with the matrices

A =

[
−2 0
0 −0.9

]
, Ad =

[
−1 0
−1 −1

]
. (2.46)

This system is a well-known delay dependent stable system, that is the delay free system is
stable and the maximum allowable delay hmax = 6.1725 can be easily computed by delay sweeping
techniques. The results are reported in Table 2.1. Many recent papers give the same result since they
are intrinsically based on the same Lyapunov-Krasovskii functional and use the same bounding cross
terms technique i.e. Jensen inequality. Some papers [326],[325] which use an augmented Lyapunov,
based on the addition on a triple Integral term on the Lyapunov-Krasovskii functional can go further
but with a numerically increasing burden, compared to our proposal. The partitioning approach
proposed by [141] based on the discrete delay decomposition gives an upper bound which tends to
the analytical value even if the numerical complexity remains important. The robust approach [170]
gives a very good upper-bound with a similar computational complexity than our present result.
The discretized Lyapunov-Krasovskii functional proposed by [134] as well as the sum of square
optimization scheme developed by Peet et al [248] gives a delay upper bound very closed to the
maximum allowable delay with an increasing numerical complexity.

Example 2:

This example is provided to illustrate Theorem 2.4. Note that this system has not been studied in the
literature of time-delay system using the Lyapunov-Krasovskii Theorem and LMI conditions. It is
extracted from the dynamics of machining chatter [359, 318] and is given by{

ẋ(t) = A0x(t) +Bu(t),
y(t) = Cx(t),

with

A0 =


0 0 1 0
0 0 0 1
−10 10 0 0

5 −15 0 −0.25

 , B =


0
0
1
0

 , C =


1
0
0
0


>

. (2.47)

A delayed static output feedback controller is proposed:

u(t) = −K(y(t)− y(t− h)),

where K is the gain of the controller and h is an unknown constant delay. The resulting dynamics is
thus modeled by a time-delay system:

ẋ(t) = A0x(t) + Adx(t− h),
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Figure 2.4: Stability region in the plan (K,h), obtained using Theorem 2.3 for N = 0, . . . , 7. The
instable area, computed through a frequency analysis corresponds to the dark area, which is depicted
with the color associated to N = −1

with A = A0 −BKC and Ad = BKC.
The results are summarized in Figure 2.4 which shows the stability regions in the (K,h) plane.

The blue region represents the instability region which have been calculated using a griding over
K along with the allmargin function of the Control Toolbox of Matlab c©. Then, Theorem 2.3
provides inner approximations of the stability colored regions. The region corresponding to N = 0
perfectly detects the independent of the delay stability region (for K ≤ 0.3) as well as a first delay
dependent stability pocket. It corresponds to the maximal allowable delay when Jensen’s Lemma is
used when establishing the stability criterion. Taking N = 1 allows retrieving the same results as in
[296] which uses Wirtinger’s Lemma. Clearly, increasing N (N = 0, 1, . . . , 7) allows reducing the
pessimism and discovering new stability pockets. This figure illustrates the implication of Theorem
2.4 on the inclusions H0 ⊂ H1 ⊂ · · · ⊂ H7. Another important remark is that increasing N can
improve significantly the inner approximations of the stability region. For instance,H4\H3,H5\H4

or evenH7\H6 are surprisingly large sets.

Example 3:

Consider the system with pointwise delay taken from [94] given by

ẍ(t) +

[
0 1
−1 0

]
ẋ(t− h) +

[
4 0
0 16

]
x(t) = 0
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Figure 2.5: Stability region in the plan (N, h), obtained using Theorem 2.3 (and Remark 2.10) for
Example 4.

The analysis provided in [94] based on a frequency method ensures that this systems has exactly
three stable delay intervals [0.4108, 0.7509], [2.054, 2.252] and [3.697, 3.754]. Figure 2.5 shows
the inner approximations obtained with similar conditions as the ones presented in Theorem 2.3
(according to the modifications explained in Remark 2.10) for several values of N . The first interval
is detected atN = 4 and a good1 estimation of the first stable interval is first obtained atN = 7. First
values of the delay h in the second stable interval are detected with N = 9 and a good estimation of
the whole interval is obtained at N = 11. Delay values in the third and last stable interval, which is
more difficult to detect are found with N = 14 and a good estimation of the interval is provided with
N = 16.
This example shows the efficiency of our method to detect stability intervals even for systems with
discrete delay and with dimension that are not small unlike usual examples. In addition, The example
and Figure 2.5 also illustrate Theorem 2.4. Indeed, Figure 2.5 shows that the stability regions become
larger when N increases. The stability conditions are able to assess stability of the system for all the

1with a precision of 10−4
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Figure 2.6: Stability regions in the plan (h1, h2) obtained in [28] for Example 4.

values of the delay which belongs to the stable intervals.

2.5.2 Linear systems with multiple discrete delays

Through this example we aim at showing that the proposed approach can address the case of linear
systems with multiple delays. The associated analysis is related to the PhD of M. Safi and the
associated publications [28, 266, 267] is omitted here for simplicity. However, and to be short, the
method consists in extending the Lyapunov-Krasoskii functionals to cope with the several delays
using a coupled PDE-ODE systems and a homogeneous delay representation.

Example 4:

Let us consider one of the most classical example of systems with multiple delays, which was studied
in [318], using a frequency domain analysis. This system is governed by

ẋ(t) = −1.3x(t)− x(t− h1)− 0.5x(t− h2)

The conditions proposed in Theorem 2.3 can be extended to the case of multiple delays as pro-
posed in [28] addresses also the stability of systems that may be unstable for a very high speed of
transport as it is illustrated with this example. For this example, Fig. 2.6 gives the stability regions
for different values of h1 and h2. We can remark that increasing N allows us to broaden the stability
region of the coupled system. This example prove also Theorem 2.4 where H1 ⊂ H3 ⊂ ... ⊂ H9

and if we have stability for N = 1 with a given h1 and h2, we ensure stability for the same pair of
transport speed with N > 1.
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Figure 2.7: Stability regions in the plan (a, h) for system (2.49), obtained using Theorem 2.3 for
several values of N .

2.5.3 Linear systems with a distributed delay
In [302], we have extended the analysis, which have led to Theorem 2.3 to the class of distributed
delay systems of the form{

ẋ(t) = Ax(t) + Ad
∫ 0

−h f(θ)x(t+ θ)dθ, ∀t ≥ 0,

x(t) = φ(t), ∀t ∈ [−h, 0],
(2.48)

where x(t) ∈ Rn is the state vector, φ is a continuous function, representing the initial conditions,
A and Ad are constant matrices and f denotes a known continuous function of L2([−h, 0] → R)
and represents the kernel of the distributed delay. The delay h is assumed to be constant. This class
of systems can be seen as a particular case of (2.6), where the most general case of kernel matrix
AD(θ) is replaced by f(θ)Ad. The goal was here to provide a generic analysis which is able to
assess stability of system (2.48) for any continuous scalar kernel f and to derive sufficient stability
conditions based, again on the properties of the Legendre polynomials.

For the sake of simplicity, the detailed analysis will not be presented in this manuscript but the
reader may refer to [302] to have a better understanding of how the Bessel-Legendre inequality is
applied to this problem.

Example 5:

Consider the distributed delay system

ẋ(t) = −ax(t)−
∫ 0

−h
γ(k, α,−θ)x(t+ θ)dθ, (2.49)

where a is a positive scalar and γ the scalar kernel function of the truncated Gamma Distribution
defined by

γ(k, α, θ) =
θk−1e−θ/α

(k − 1)!αk
, ∀(k, α, θ) ∈ N× (0, ∞)× [−h, 0],



and such that
∫ 0

−∞ γ(k, α, θ)dθ = 1. From the theoretical point of view, Gamma distributions are
often considered over the interval (−∞, 0]. Since the kernel γ contains an exponential term, it is
reasonable to consider the truncated interval [−h, 0] because the main contribution to the distributed
term relies on this first interval. Figure 2.7 represents the stability regions obtained by solving The-
orem 2.3 for several values of N when α = 1 and k = 1. The dashed black line represents the
theoretical limits resulting from the eigenvalue analysis issued from [32]. Figure 2.7 shows that from
small values of a in (0, 0.6], Theorem 2.3 with N = 0, 1 delivers good estimations of the stability
regions. However for larger values of a, Figure 2.7 shows that Theorem 2.3 with N = 0, 1 is conser-
vatism since the stability regions do not match with the theoretical limits drawn by the dashed blue
line. However, increasing N in Theorem 2.3 allows reducing this conservatism and one can see that
for N = 4, the estimation of the stability region is very close to the theoretical region. This example
illustrates the potential of our hierarchical approach to reduce the conservatism by increasing the
LMI parameter N , of course at the price of increasing the complexity of the conditions, showing the
tradeoff between conservatism and complexity.

2.6 Conclusions
In this chapter, an overview of stability analysis of time-delay systems related to the Lyapunov-
Krasovskii theorem have been provided. After a brief presentation of time-delay systems model
under consideration, a review of their basic properties and a survey of the main existing methods for
deriving stability conditions in terms of LMI, a focus on the recent interests on integral inequalities is
revealed. Several major results such as the Wirtinger-based integral inequality or its extended version,
the Bessel-Legendre inequality, can be seen as the major contributions of this chapter. It was shown
in this chapter how they can be easily used to derive highly competitive stability conditions with
respect to the literature, both in terms of reduction of conservatism and complexity.

This chapter concentrates on the case of a single constant delays but several extensions have been
provided for a larger class of problems (single or multiple delays, discrete or distributed, constant and
time-varying), Several contributions regarding the case of time varying delays are not presented for
the sake of consistency. The reader may refer to the following contributions where systems subject
to time-varying delays are considered in [296, 295, 303], for Wirtinger-based integral inequality and
related results or in [301, 191, 192, 365] for contributions related to Bessel-Legendre inequality and
also similar inequalities, among many others. Nevertheless, several aspects of systems with time-
varying delays will be presented in the next chapter dealing with the stability analysis of sampled-
data systems. Indeed, there exists a strong connexion between sampled-data systems and systems
subject to time-varying delays. This will be specified in the next chapter.

There are still some open problems related to the stability analysis of time-delay systems. Some
of them will be presented in Chapter 4, where several perspectives will be presented. Finally I would
like to emphasize that the framework of Bessel inequalities is not only applicable to time-delay
systems but on a wider class of infinite dimensional systems, on which 2 PhD students M. Safi and
M. Barreau are currently working. More details on their PhD subject will be provided in Chapter 4.
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3.1 Introduction
In the last decades, a large amount of attention has been devoted to Networked Control Systems
(NCS) (see [153, 352]). Such systems are controlled systems containing several distributed plants
which are connected through a communication network. In such applications, a heavy temporary
load of computation in a processor can corrupt the sampling period of a given controller. Another
phenomenon, which has been widely investigated, concerns stability under packet losses in wireless
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networks, where the communication is not always guaranteed. In such situations, the variations of
the sampling period will affect the stability properties. Thus an important issue is the development
of robust stability conditions with respect to the variations of the sampling period.

Sampled-data systems have been extensively studied in the literature [60, 360, 361] and the refer-
ences therein. The sampling interval can be constant, leading to a periodic sampling, of time-varying,
usually called aperiodic or asynchronous samplings. It is now reasonable to design controllers which
guarantee the robustness of the solutions of the closed-loop system under periodic samplings. How-
ever the case of asynchronous samplings still leads to several open problems. This corresponds to
the realistic situation where the difference between two successive sampling instants is time-varying.
The problem of robust sampled-data control consists in ensuring the stability of a closed-loop sys-
tems subject to external samplings. The sampling effects is seen as a disturbance to the nominal
continuous-time system which has to be evaluated.

The study of aperiodic sampled-data systems has been addressed in several areas of research
in Control Theory. Systems with aperiodic sampling can be seen as particular time-delay systems
[105, 205]. Sampled-and-hold in control and sensor signals can be modelled using hybrid systems
with impulsive dynamics [118, 119]. Aperiodic sampled-data systems have also been studied in
the discrete-time domain [79, 66, 198, 149]. In particular, Linear Time Invariant (LTI) sampled-
data systems with aperiodic sampling have been analyzed ed using discrete-time Linear Parameter
Varying (LPV) models. The effect of sampling can be modelled using operators and the stability
problem can be addressed in the framework of Input/Output interconnections as typically done in
modern Robust Control [113, 168, 167, 166, 233]. While significant advances on this subject have
been presented in the literature, problems related to both the fundamentals of such systems and the
derivation of constructive methods for stability analysis remain open, even for the case of linear
system.

This chapter aims at presenting the motivations for studying aperiodic sampled-data systems and
two methods to assess stability. Both methods are based on a Lyapunov theorem and they give rise
to stability conditions expressed in terms of Linear Matrix Inequalities (LMI).

3.2 Problem formulation and theoretical motivations

3.2.1 System data
Let {tk}k∈N be an increasing sequence of positive scalars such that

⋃
k∈N[tk, tk+1) = [0, +∞), for

which there exist two positive scalars T1 ≤ T2 such that

∀k ∈ N, Tk = tk+1 − tk ∈ [T1, T2]. (3.1)

This sequence represents the sampling instants of the following sampled-data system

∀t ∈ [tk, tk+1), ẋ(t) = Ax(t) +Bu(tk), (3.2)

where x ∈ Rn and u ∈ Rm represent the state and the input vectors. The sequence {tk}k∈N represents
the sampling instants of the controller. The matrices A and B are constant, known and of appropriate
dimension. The control law is a linear state feedback, u = Kx with a given gain K ∈ Rm×n. The
system is governed by

∀t ∈ [tk, tk+1), ẋ(t) = Ax(t) +BKx(tk). (3.3)
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3.2.2 A first stability result
In the situation where matrices A, B, and K are constant and known, and if in addition the sampling
is periodic, meaning that tk+1 − tk is constant for all k ≥ 0 and equal to a positive scalar T , system
(3.3) can be formally integrated over a sampling period leading to the following discrete-time systems

∀k ≥ 0, x(tk+1) = Λ(A,B,K, T )x(tk), (3.4)

where the transition matrix Λ is given by

Λ(A,B,K, T ) = eAT +

∫ T

0

eA(T−s)dsBK, (3.5)

In this situation, the transition matrix Λ can be easily computed so that simple asymptotic stability
conditions can be derived as follows.

Lemma 3.1

For given and known matrices A,B,K and a constant sampling period T , the following state-
ments are equivalent:

(i) System (3.3) is asymptotically stable;

(ii) System (3.4) is asymptotically stable;

(iii) The eigenvalues of Λ(A,B,K, T ) given in (3.5) are inside the unit circle;

(iv) There exists a symmetric matrix P such that

P � 0, ΛT (A,B,K, T )PΛ(A,B,K, T )− P ≺ 0.

The proof is not presented here but can be found in any text book on automatic control.

It is worth to notice that these conditions only apply to the quite restrictive situation description
by the assumptions on the sampling period T , and on the system matrices. Indeed if the matrices
A,B and K are unknown, uncertain or time-varying, several problem arise. First the notion of
transition matrix is much more complicated in the time-varying case. Even in the situation of constant
but uncertain matrices A,B,K, the stability analysis is not an easy task because the uncertainties
propagate through the exponential matrix appearing in the definition of Λ. Only a few work have
considered this problem [116, 115, 234]. It is however still possible to partially extend this lemma to
the case of aperiodic sampling when the matrices A,B and K are constant and known. The reader
may refer to [154, 79, 198, 148, 227, 226] where the authors have developed embedding methods
to encapsulate the uncertain matrix Λ into a polytopic representation so that the fourth item of the
previous lemma using Lyapunov function can still be applied. Partially indeed, since the third item
does not hold anymore.

3.2.3 An illustrative example
In the sequel, a counter example is provided. The objectives of the end this section is to motivate
the theoretical key issues related to this class of systems through a couple of examples. Let us first
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Figure 3.1: Stability region in the plan (T1, T2) of sampled-data system (3.6) with the sampling rule
(3.7). The black areas corresponds to stable behaviors of the sampled-data system (3.6).

consider the following example taken from the literature on time-delay systems. This particular
systems, which can be interpreted as an open-loop unstable oscillatory system given by

ẋ(t) =

[
0 1
−2 0.1

]
x(t) +

[
0
1

]
u(tk)

u(t) =
[
k 0

]
x(t)

(3.6)

This system cannot be controlled through a static output-feedback controller since, whatever the
possible controller gain k, the matrix representing the closed-loop system given by [ 0 1

−2+k 0.1 ] will
always have at least a positive eigenvalue since its trace is equal to 0.1 > 0 for all values of k.
It is then expected that a continuous static output feedback is not able to stabilize such a system.
Nevertheless, it is possible to stabilize the closed-loop system with a sampled version of the control
law u(t), of course if the sampling intervals are selected in an appropriate manner.

To illustrate this issue as well the asynchronous sampling case, let us consider the situation where
this control u(t) with k = 1 is sampled as follows

Tk = tk+1 − tk =

{
T1, if k is odd
T2, otherwise (3.7)

Using an eigenvalue analysis of the transition matrix representing the evolution of the system
state after two successive sampling instants (i.e. |Λ(A,B, T1)Λ(A,B, T2)| < 1) leads to the stability
region depicted in Figure 3.1. This example illustrates the inherent complexity of sampled-data in
the aperiodic case. Indeed, we first can see that there exist stabilizable values of T1 and T2 while
the continuous-time systems (i.e. T1 = T2 = 0) is unstable. Second, the case of periodic sampling
(T = T1 = T2) has several non connexe regions located around T = 1, 3, 6, 7, 11 and 12. Finally
the aperiodic case, represented for instance by the scheduler (3.7) is much more complex and recall
results on on the stability of time-driven switched [186]. For instance, the periodic sampled-data
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systems (3.6)-(3.7) with T1 = T2 = 1.5 and T1 = T2 = 3 are stable, while the aperiodic case
T1 = 1.5 and T2 = 3 leads to instability.

This example also illustrates the necessity to provide efficient and robust stability analysis of
sampled-data systems based on the application of the Lyapunov theorem. In the remainder of this
chapter, two possible solutions for such robust analysis will be provided. The first one is based on
a delay modeling for sampled-data systems while the second one is more related to an equivalence
formulation of the discrete-time stability criteria (iv) but expressed with the continuous-time system
matrices.

3.3 Input delay approach
Modelling of continuous-time systems with digital control in the form of continuous-time systems
with delayed control input was introduced by [205], [20] and further developed by [95]. The digital
control law may be represented as delayed control as follows:

u(t) = ud(tk) = ud(t− (t− tk)) = ud(t− τ(t)), tk ≤ t < tk+1, τ(t) = t− tk, (3.8)

where ud is a discrete-time control signal and the time-varying delay τ(t) = t−tk is piecewise-linear
with derivative τ̇(t) = 1 for t 6= tk. Moreover, τ ≤ tk+1 − tk. Based on such a model, for small
enough sampling intervals tk+1 − tk asymptotic approximations of the trajectory [205] and of the
optimal solution to the sampled-data LQ finite horizon problem [95] were constructed.

3.3.1 Sampled-data systems modeled as fast-varying delay systems
Consider the linear sampled-data system (3.2). We represent a piecewise-constant control law as a
continuous-time control with a time-varying piecewise-continuous (continuous from the right) delay
τ(t) = t − tk as given in (3.8). Substituting the sampled version of the control input u(tk)) (or the
state vector x(tk)) into (3.2), we obtain the following closed-loop system, represented as a linear
system subject to the time varying delay

ẋ(t) = Ax(t) +BKx(t− τ(t)), τ(t) = t− tk, tk ≤ t < tk+1. (3.9)

The constraints on the sampling interval provided in (3.1) are still considered. From these cons-
traints, it follows that the sampling delay τ(t) has a sawtooth form and belongs to the interval [0, T2]
since τ(t) ≤ tk+1 − tk ≤ T2. An example of such time-varying delay is depicted in Figure 3.2.
This figure shows how the impact of this particular delay function when it is applied to a simple sine
function. Indeed, the resulting signal sin(t− τ(t)) = sin(tk), for some arbitrarily selected sampling
instants, can be seen as a sampled-and-hold version of the sine function.

Unlike classical assumptions on delay functions usually considered in the literature of systems
subject to a time-varying delay, this particular sampling delay has two particular features and char-
acteristics, due to its sawtooth shape. The first one is due to the fact that the delay function is reset to
zero at every sampling time. This reset corresponds to the jump of the sampled function at the sam-
pling instant. The second characteristic is related to the derivative of the delay function between two
successive sampling instants. Indeed we note that τ̇(t) = 1 almost at all time except at the sampling
instants. This corresponds to the ”hold” nature of the resulting sampling-and-hold function. Since
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Figure 3.2: Illustration of a periodic sampling delay τ(t).

the delay increase at the same speed as the time variable, the resulting delayed version of the sine
function keep constant in the inter-sampling time.

This two characteristics of the sampling delay function τ(t) requires a particular attention when
one aims at assessing stability of the delay. This sampling delay function is often seen as a particular
class of time-varying delay function, often called fast-varying delays, which include the sawtooth
delay function as a particular case. Therefore, modeling of a sampled-data system by a system subject
to this particular time-varying delay has the merit to allow the derivation of stability conditions issued
by application of the Lyapunov-Krasovskii theorem, which was already presented in the previous
chapter.

In the next developments, an example of stability conditions for sampled-data systems based on
the Lyapunov-Krasovskii theorem is provided. Through this simple formulation, we will present
as in the previous chapter on the stability analysis of time-delay systems a methodology to derive
stability conditions expressed in terms of LMIs. Several comments and remarks allow one to extend
this theorem and to reduce its associated conservatism. Finally a discussion on the limitations and
possible extensions will be discussed hereafter.

3.3.2 Methodology to derive efficient stability conditions
Following the methodology presented in Chapter 2 on the stability analysis of time-delay systems
using Lyapunov-Krasosvkii functionals, there are several steps to follow in order to derive efficient
stability conditions for sampled-data systems. The derivation of stability conditions of sampled-data
systems based on the input delay approach follows typically four steps. These steps are obviously
very similar to the procedure presented in Chapter 2 on the stability of linear systems subject to
constant delays. Nevertheless, an additional technical step is included to this procedure to account
for the variations of the delay function. The procedure follows the four following items.

• Step 1: Selection of the functional;

• Step 2: Differentiation of the functional along the trajectories of the system;

• Step 3: Application of integral inequalities;
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• Step 4: Application of matrix inequalities.

In order to illustrate this methodology, we present one of the simplest theorem, involving only
few matrix variables. This theorem is stated below.

Theorem 3.1

Assume that there exist matrices P , S, R in Sn+, and a matrix X in Rn×n. such that the
following LMIs are satisfied

Φ = Φ0 − (G2 −G3)>R(G2 −G3) ≺ 0, (3.10)

where

Φ0(h) = G>1 PG0 +G>0 PG1 +

S 0 0
∗ 0 0
∗ ∗ −S

+ T2
2G>0 RG0,

G0 =
[
A Ad 0

]
, G1 =

[
I 0 0

]
,

G2 =
[
I −I 0

]
, G3 =

[
0 I −I

]
.

Then, time-delay system (3.9) is asymptotically stable for all delay τ(t) ∈ [0, T2]. As a
direct consequence, sampled-data system (3.3) is also asymptotically stable for all samplings
{tk}k≥0 satisfying (3.1).

In the proof of this theorem, we will point out the main steps of this methodology and provide a
list of references where improvements with respect to this simple version can be found.

Proof : The proof aims at illustrating the procedure for deriving stability conditions for sampled-
data systems using the input delay approach. Throughout this proof, a list of possible extensions is
provided to understand the various ways to refine the resulting conditions.

Step 1: Selection of the functional
One of the simplest case considers the following Lyapunov-Krasovskii functional to be consid-

ered for sampled-data systems is given by

V (xt, ẋt) = x>(t)Px(t) +

∫ t

t−T2
x>(s)Sx(s)ds+ T2

∫ 0

−T2

∫ t

t+θ

ẋ>(s)Rẋ(s)ds. (3.11)

This type of functionals (or similar ones) was first presented in [96, 108] and latter work of E.
Fridman. The potential of this method among the existing ones at that time, it the possibility to
derive delay dependent stability conditions, which are as independent on the derivative of the delay
function, allowing then an extension to sampled-data systems in [105]. This functional is composed
of the sum of three terms, one quadratic term express with the instantaneous state vector x(t) and two
integral quadratic terms depending on the state xt and ẋt considered over the interval [t−T2, t]. The
positive definiteness of this functional is guaranteed by the positive definiteness of the matrices P ,
S and R. Unlike in the time-varying delay case, the particular properties of the delay function τ(t)
make useless the consideration of integral quadratic terms considered over the interval [t− τ(t), t].
For instance, if one considers the integral quadratic term

VQ(xt) =

∫ t

t−τ(t)

x>(s)Qx(s)ds,
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where Q is a positive definite matrix, it is easy to see that

V̇Q(xt) = x>(t)Qx(t)− d

dt
(t− τ(t))x>(t− τ(t))Qx(t− τ(t)) = x>(t)Qx(t) ≥ 0,

is positive definite. Then this term is penalizing and does not help to obtain the negative definiteness
of the functional. It is however possible to enrich the functional with additional and complemen-
tary terms. For instance, [326] introduces triple integral terms, or [13] considered the augmented
state vector [x>(s) ẋ>(s)]>. Another possibility to enrich the first quadratic term by considering an
augmented state[

x>(t)

∫ t

t−T2
x>(s)ds

]>
or

[
x>(t)

∫ t

t−τ(t)

x>(s)ds

∫ t−τ(t)

t−T2
x>(s)ds

]>
,

as in [303]. Note that this state augmentation is closely related to Step 3 on the use of efficient
integral inequalities.

Step 2: Differentiation of the functional along the trajectories of the system
The computation of the derivative of the functional relies in quite standard mathematical and

technical manipulations. However, one particular and crucial goal in this step consists in expressing
the derivative of V as a quadratic term defined with a well suited augmented vector. In our particular
case, the simplest augmented vector ζ is given by

ζ(t) =

 x(t)
x(t− τ(t))
x(t− T2)

 .
Indeed it is easy to see that the vectors x(t) and ẋ(t) can be simply expressed using ζ(t) and the
following relations hold ẋ(t) = G1ζ(t) and x(t) = G0ζ(t). Hence, the computation of the derivative
of the functional along the trajectories of the system leads to

V̇ (xt) = ζ>(t)

G>1 PG0 +G>0 PG1 +

S 0 0
∗ 0 0
∗ ∗ −S

+ T2
2G>0 RG0

 ζ(t)

−T2

∫ t

t−T2
ẋ>(s)Rẋ(s)ds,

(3.12)

where the matrix G0 and G1 are given in the statement of Theorem 3.1. Depending on the purpose
(i.e. robust stability analysis or stabilization), the selection of this augmented vector ζ(t) is not
necessarily the most appropriate. Indeed, in the literature, several contributions have employed the
following modified vector

ζ̄(t) =


x(t)
ẋ(t)

x(t− τ(t))
x(t− T2)

 ,
which, in comparison to ζ also includes the derivative of the instantaneous state vector ẋ(t). Then,
one has to account for the linking condition Ax(t) − ẋ(t) + BKx(t − τ(t)) in the system data.
This method was first considered in the descriptor formulation developed in [96, 108, 97, 108] to
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cite only few. The descriptor approach can somehow be seen as the free-weighting matrix method
[144, 353]. It is worth noting that these two formulation can be interpreted as the application of the
Finsler Lemma [320]. For more details, the reader can refer to [129, 144] for more explanations.

Step 3: Application of integral inequalities
As in the time-delay systems case, the expression of V̇ in (3.12) involves a negative integral

quadratic term which can not be directly included in an LMI formulation. It thus remains to include
this negative contribution into the quadratic term depending on the augmented vector ζ(t). To do so,
we employ the Jensen’s inequality, presented in Chapter 2, but recalled here for consistency.

Lemma 3.2

For a given scalar a < b, a n × n-matrix R � 0 and for any piecewise continuous function x
in [a, b]→ Rn, the following inequality holds:∫ b

a

x>(u)Rx(u)du ≥ 1

b− a
Ω>0 (x)RΩ0(x), (3.13)

where Ω0(x) =

∫ b

a

x(u)du.

Unlike the constant delay case, one has to split the integral term into two parts in order to explic-
itly introduce the time t− τ(t) before applying the integral inequality. This yields

−T2

∫ t

t−T2
ẋ>(s)Rẋ(s)ds = −T2

∫ t

t−τ(t)

ẋ>(s)Rẋ(s)ds− T2

∫ t−τ(t)

t−T2
ẋ>(s)Rẋ(s)ds

≤ − T2

τ(t)
(x(t)− x(t− τ(t)))>R(x(t)− x(t− τ(t)))

− T2

T2−τ(t)
(x(t−τ(t))− x(t−T2))>R(x(t−τ(t))− x(t−T2)).

Using matrices G2 and G3 are given in the statement of Theorem 3.1, the previous inequality can
be rewritten in a more compact form as follows

−T2

∫ t

t−T2
ẋ>(s)Rẋ(s)ds ≤ −ζ>(t)

[
G2

G3

]> [ T2
τ(t)

R 0

∗ T2
T2−τ(t)

R

][
G2

G3

]
ζ(t).

We first note that the previous expression is still valid when τ(t) tends to 0 or T2 since we have

limτ(t)→0
G2ζ(t)
τ(t)

= x(t)−x(t−τ(t))
τ(t)

= ẋ(t),

limτ(t)→T2
G3ζ(t)
T2−τ(t)

= x(t−τ(t))−x(t−T2)
T2−τ(t)

= ẋ(t− T2).

This remark avoids any future discussion on the validity of the upper bound of the integral term
when τ(t) tends to 0 or T2. As for time-delay systems, the use of the Jensen inequality unavoidably
introduces conservatism in the resulting stability conditions. Again, it is possible to replace Lemma
3.2 by other recent and less conservative integral inequalities. Since this discussion was already
considered in Chapter 2, this possibility will not be further developed in this chapter.
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To stay short, possible extension can be done by considering the Wirtinger-based integral in-
equality [296], the auxiliary function-based integral inequality [244], the Bessel-Legendre inequality
[298] or free matrix-based integral inequality [353]. Note, however, that there are additional dif-
ficulties when employing these inequalities for sampled-data systems or systems with fast-varying
delays. Some of the difficulties arises in the derivation of convex LMI stability conditions. There
are however some technical details when employing more involved integral inequalities that require
a lot of attention. This will not be detailed in this manuscript but the reader may refer to [303] and
[192] for more details about these extensions with the Wirtinger-based integral and a limited version
of the Bessel-Legendre inequality, respectively.

Step 4: Application of matrix inequalities
At the end of Step 3, we were able to derive a lower bound of the integral quadratic term and we

have obtain the following upper of the derivative of the functional

V̇ (xt, ẋt) ≤ ζ>(t)

G>1 PG0 +G>0 PG1 +

S 0 0
∗ 0 0
∗ ∗ −S


+T2

2G>0 RG0 −
[
G2

G3

]> [ 1
α
R 0
∗ 1

1−αR

] [
G2

G3

])
ζ(t),

(3.14)

where we use the notation α = τ(t)
T2 for simplicity. In order to guarantee that the derivative of the

functional V̇ is negative definite, one must ensure that the LMI

G>1 PG0 +G>0 PG1 +

S 0 0
∗ 0 0
∗ ∗ −S

+ T2
2G>0 RG0 −

[
G2

G3

]> [ 1
α
R 0
∗ 1

1−αR

] [
G2

G3

]
≺ 0,

holds for all α in the interval (0, 1). This is however not an easy task since the last term of the
previous matrix inequality is not convex with respect to α. Therefore, in order to derive tractable
LMI stability conditions, one has to provide a tractable and convex upper bound of this term, which
is not an easy task, a priori. Among the most popular methods, one may refer to the Moon et al
inequality [211], presented in the following lemma.

Lemma 3.3

For given positive definite matrix R in Sn and matrices G2, G3 in Rn×3n, the inequality[
G2

G3

]> [ 1
α
R 0
0 1

1−αR

] [
G2

G3

]
≥ He

{[
N1

N2

]> [
G2

G3

]}
− αN>1 R−1N1 − (1− α)N>2 R

−1N2,

holds for any matrices N1, N2 ∈ R3n×n and for all α in (0, 1).

Proof : The proof of this lemma results from the expansion of the two following squares

1

α
(RG2−αN1)>R−1(RG2−αN1) +

1

1−α
(RG3−(1−α)N2)>R−1(RG3−(1−α)N2) ≥ 0.

♦
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This lemma has been widely used in the literature in different (and some hidden) forms. It is
numerically efficient but at the price of a notable increase of the number of decision variables, in this
case 6n2.

Recently, an efficient method, called the reciprocally convex combination lemma has been pro-
posed in [243], and has shown its efficiency on stability theorem based on the Jensen’s inequality.
Indeed it allows retrieving the same numerical results as the ones issued from the application of
Lemma 3.3 but with a lower number of decision variables (n2 instead of 6n2. This lemma is stated
below.

Lemma 3.4

Given a matrix R ∈ Sn+, and two matrices G2 and G3 in Rn×3n, then the improved reciprocally
convex combination guarantees that, if there exists a matrix X in Rn×n such that[

R X
X> R

]
� 0,

then, the following matrix inequality holds for all α ∈ (0, 1)[
1
α
R 0
0 1

1−αR

]
�
[
R X
X> R

]
.

Proof : A proof can be found in [243] to consider a larger class of reciprocally convex combina-

tion. A simpler and more dedicated proof is provided here. Define the scalar β =
√

1−α
α

. Then, we
have, by congruence

0 �
[
βI 0
0 −β−1I

] [
R X
X> R

] [
βI 0
0 −β−1I

]
=

[
1−α
α
R −X

−X> α
1−αR

]
=

[
1
α
R 0
0 1

1−αR

]
−
[
R X
X> R

]
,

which concludes the proof. ♦

A slightly modified version of this lemma has the benefit over the two previous lemmas, to not
introduce any additional slack variables. Indeed, no additional slack variables are introduced and,
more generally, the complexity is reduced since no additional LMI needs to be included, which
represents a notable advantage over the previous method.

Lemma 3.5

Given a matrix R ∈ Sn+, then the reduced reciprocally convex combination guarantees that the
following matrix inequality holds for all α ∈ (0, 1)[

1
α
R 0
0 1

1−αR

]
�
[
R −R
−R R

]
.

Proof : The proof can be derived by selected X = −R in Lemma 3.4. ♦

Note that, an interpretation of this lemma has been provided in [305], where the combination
of the Jensen inequality with the reciprocally convex combination lemma has been interpreted as a
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Figure 3.3: Illustration of a sampling delay τ(t) including a communication delay.

discretized version of Jensen’s inequality. While Lemmas 3.3, 3.4 and 3.5 lead to the same level
of conservatism when employing the Jensen inequality and the same functional (3.11), it has been
revealed in [191] that the second and the third one are more conservative than the first one when
employing the Wirtinger-based inequality. Based on this remark, further improvements of Lemma
3.4 have been provided in the literature. The reader may refer to the so-called relaxed reciprocally
convex lemma [356, 357] or to a delay-dependent version of this lemma, which has been provided
in [299, 365]. Nonetheless, all these improvements can be interpreted as particular cases of Moon’s
inequality presented in Lemma 3.3, with a particular structure for the slack matrices N1 and N2 as
discussed in [191, 307].

Let us conclude the proof of asymptotic stability of the sampled-data system (3.3). In order to
obtain the stability conditions from Theorem 3.1, we apply Lemma 3.5 with α = τ(t)/τ2,which
implies that the following inequality holds V̇ (xt, ẋt) ≤ ζ>(t)Φζ(t). Hence, system (3.9) subject to
the uncertain delay τ(t) is asymptotically stable for all delay τ(t) ∈ [0 T2] and for all sequence if the
LMI Φ ≺ 0 is satisfied. As a consequence, sampled-data system (3.3) is also asymptotically stable
for any sampling sequence {tk}k≥0 verifying (3.1). ♦

3.3.3 Extensions & Limitations
The input delay approach has been widely used in the literature since [105]. This method has per-
mitted many researchers working on time-delay systems to develop further stability, stabilization
and observation conditions for sampled-data systems and, more generally, for networked control
systems. In addition to this non exhaustive list of possible applications, the input delay approach
have the particular advantage to be straightforwardly applicable to the situation of mixed sampled-
data and delayed systems where the control input or the output are not only sampled, possibly in
an asynchronous manner, but also to be affected by an additional delay, which is usually interpreted
as a communication delay. The resulting system can still be seen as a delay system but the overall
sawtooth delay function is shifted as presented in Figure 3.3. Eventhough, this method has a major
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drawback, which is already pointed out in the statement of Theorem 3.1. Indeed the stability condi-
tions proposed in this theorem is not only dedicated to the sole class of sampled-data systems but the
more general class of delay systems subject to a fast-varying delay. The particular characteristics of
the sawtooth delay function described above (i.e. τ̇(t) = 1 for almost all t, and the jump at the sam-
pling instants) are not specifically included in the design of the functional. Therefore, the resulting
stability conditions are by nature conservative. A notable extension of this method was provided in
[218, 219, 220]. The main contribution of these papers was to include in the design of the Lyapunov-
Krasovskii functional the hybrid or impulsive nature of sampled-data systems. The main idea is to
consider an additional Lyapunov term of the form

VImp(xt, t) = (Tk − τ(t))(x(t)− x(t− τ(t)))>Q(x(t)− x(t− τ(t))).

where Q > 0 and we recall that Tk = tk+1 − tk. This term allows including more information on
the sampled-data system through the following aspects. First, this term depends explicitly on the
delay function τ(t) (or on the time variable t). Then when computing the derivative of VImp with
respect to time, the constraint τ̇(t) = 1 appears naturally for all t 6= tk. It also allows to include the
additional characteristic of the sampled and hold term x(tk) = x(t− τ(t)). Indeed, when computing
the derivative of VImp with respect to time, the constraint ẋ(tk) = d

dt
x(t − τ(t)) = 0 also appears

naturally. However, one has to note that this term is discontinuous at the sampling instant. It thus
remains to prove that this term behave well at the sampling instants. To do so, we need to ensure

VImp(xtk , tk) ≥ VImp(xt+k
, t+k ) = lim

s→tk, s≥tk
VImp(xs, s), ∀k ≥ 0.

This constraint is guaranteed by noting that, at time t = tk, functional VImp(xt+k , t
+
k ) is zero,

by construction, since x(t+k ) = x(t+k − τ(t+k )) and VImp(xtk , tk) ≥ 0, since matrix Q is positive
definite. The reader may refer to the following notable extension of this impulsive approach in
[100, 188, 189, 277, 278], among many other contributions from the literature.

As a remark, another notable contribution to this impulsive system approach was presented in
[190]. The main idea is based on the construction of a simple discontinuous Lyapunov term whose
positive definiteness relies on the application of Wirtinger inequality. This Lyapunov term is of the
following form

VW (xt) = T 2
2

∫ t

tk

ẋ>(s)Zẋ(s)ds− π2

4

∫ t

tk

(x(s)− x(tk))
>Z(x(s)− x(tk))ds

for a given positive definite matrix Z. More details on this Lyapunov term can be found in [190].
The merits of this approach are twofolds. First, a direct extension allow including an additional
constant communication delay to the sampled-data term x(tk) which would becomes x(tk − η) for
some constant delay η > 0. Second it provides an equivalent Lyapunov analysis of the robust
analysis provided in [209], which also uses an argument issued from the application of the Wirtinger
inequality to derive upper bound of the sampling and hold operator. Note that an analogous version of
this Lyapunov term was provided in [291] to assess stability of discrete-time sampled-data systems.

3.4 Stability analysis using Looped-functionals
In the previous section, a brief review of the input delay approach and of the impulsive systems ap-
proach have been provided. In this section another method is presented and aims at relaxing some
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constraints on the functionals, providing then a real alternative to the application of the Lyapunov-
Krasovskii theorem and, to some extends, to the Hybrid Dynamical Systems employed in the impul-
sive system approach. This method is based on the so-called Looped-functional approach, relying
on the definition of a shifted state function. This approach was motivated by the lack of links in the
literature between the stability analysis issued from the discretized model of a sampled-data systems,
provided in the fourth item of Lemma 3.1 and the input delay approach described in the previous
section.

3.4.1 Basics of the Looped-functionals approach

Consider the sampled-data system still described by dynamics (3.3). Let us defined the shifted state
function χk, defined for all k ≥ 0. This shifted state function corresponds to the trajectory of the
sampled-data system considered during the sampling interval. This new infinite dimensional function
is defined by

χk(τ) = x(tk + τ), ∀τ ∈ [0, Tk] ⊂ [0, T2]. (3.15)

with the particular transition equation x(tk+1) = χk(Tk) = χk+1(0). In the sequel, we say that such
a shifted function belongs to the set Kn := {x : [0, T2]→ Rn}. By integration of sampled-data
systems (3.3), we note that

χk(τ) = Λ(A,B,K, τ)χk(0), ∀τ ∈ [0, Tk] ⊂ [0, T2], (3.16)

where Λ given in (3.5) can be seen as a transition matrix for (3.3) from time t = tk (or τ = 0)
to any time instant t ∈ [tk, tk+1) (or to any τ ∈ [0, Tk)). The dynamics of the shifted state χk is
straightforwardly given by

χ̇k(τ) =
d

dτ
Λ(A,B,K, τ)χk(0) = Aχk(τ) +BKχk(0). (3.17)

Based on the previous definition of the shifted state χk ∈ Kn, we will provide in the next section
a novel stability theorem which allows filling the gap between the discrete stability conditions from
the input delay approach and the discrete-time approaches.

3.4.2 Main result on asymptotic stability of sampled-data systems

Let us present the first theorem considering Looped-functionals. This method presented in [280],
proposes an equivalence between the discrete-time and the continuous-time approaches. It notably
allows a relaxation of the Lyapunov-Krasovskii theorem when assessing stability of the particular
case of sampled-data systems. This result is stated in the following theorem.
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Theorem 3.2

Let 0 < T1 ≤ T2 be two positive scalars and V : Rn → R+ be a differentiable function for
which there exist positive scalars µ1 < µ2 and p such that

∀x ∈ Rn, µ1|x|p ≤ V (x) ≤ µ2|x|p. (3.18)

Then the two following statements are equivalent.

(i) The increment of the Lyapunov function is strictly negative for all k ∈ N and Tk ∈ [T1, T2],
i.e.,

∆0V (k) = V (χk(Tk))− V (χk(0)) < 0;

(ii) There exists a continuous and differentiable functional V0 : [0, T2] × Kn → R which
satisfies the looping condition for all z ∈ K

∀T ∈ [T1, T2] V0(T, z(·)) = V0(0, z(·)) (= 0), (3.19)

and such that, for all (k, Tk, τ) ∈ N× [T1, T2]× [0 Tk],

Ẇ0(τ, χk) =
d

dτ
[V (χk(τ)) + V0(τ, χk)] < 0. (3.20)

Moreover, if one of these two statements is satisfied, then sampled-data system (3.3) is asymp-
totically stable for any sampling sequence {tk}k≥0 satisfying (3.1).

Proof : Let k ∈ N, Tk ∈ [T1, T2] and τ ∈ [0, Tk] as described in (3.1). Assume that (ii) is
satisfied. Integrating Ẇ0 with respect to τ over [0, Tk] and assuming that (3.19) holds, this leads to∫ Tk

0
Ẇ0(τ, χk)dτ = ∆0V (k). Then ∆0V (k) is strictly negative since Ẇ0 is negative over [0, Tk].
Assume now that (i) holds. Let us introduce the functional

V0(τ, χk) =
τ

Tk
[V (χk(Tk))− V (χk(0))]− [V (χk(τ))− V (χk(0))] ,

as in Lemma 2 in [248]. By simple computations, it is easy to see that it satisfies the boundary
conditions (3.19), i.e.

V0(0, χk) = V0(Tk, χk) = 0,

and Ẇ0(τ, χk) = ∆0V (k)/Tk. This proves the equivalence between (i) and (ii).
The function Λ(·) is continuous and consequently bounded over [0, T2]. Then equations (3.15)

and (3.16) proves that x(t) and the continuous Lyapunov function, V , uniformly and asymptotically
tends to zero. ♦

Remark 3.1

In order to guarantee asymptotic stability of (3.3), the transition matrix Λ has to be bounded
over the interval [0, T2]. This represents a crucial step to this proof, which prevents from
extension to general classes of nonlinear systems. Nevertheless, it is still possible to consider
the loop-functional approach to some particular types of nonlinearities. For instance, [293,
306] propose an extension of Theorem 3.2 to linear systems subject to input saturations.
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Figure 3.4: Illustration of Theorem 3.2 with V0(Tk, χk) = V0(0, χk) = 0.

Remark 3.2

It is important to note that the functional V0 has for argument function χk considered over the
whole interval [0, Tk]. In particular, functional V0, which was considered in the previous proof
depends on χk(Tk) = x(tk+1). In a classical Lyapunov approach, such a term is prohibited
because of causality since it represents the future of the current state x(t). Therefore, this
framework of loop functional allows one to consider a wider class of functionals than usually
permitted using the input delay approach together with the Lyapunov-Kravoskii theorem.

A graphical illustration of the proof of Theorem 3.2 is shown in Figure 3.4. This illustration helps
to understand this equivalence by noting that if V (x(tk)) is greater than V (x(tk+1)), then there exists
a continuous strictly decreasing function of time starting from V (x(tk)) at time t = tk, and reaching
V (x(tk+1)) at time t = tk+1. Theorem 3.2 provides the theoretical framework to use such simple
considerations when assessing stability of a linear sampled-data system.

3.4.3 What is a good structure for a looped functional?

Looped-functionals inspired by the input delay and impulsive system approaches

After presenting the main result of this section, the next natural question is to find good candidates
for looped-functionals. It is a priori not clear how to construct such functionals, which satisfy the
looping condition (3.19). The one presented in the proof of Theorem 3.2 is not helpful since it
leads to the equivalent Lyapunov condition resulting from the discretized model of the sampled-data
system, since the conditions ∆0V (k) < 0 leads exactly to Lemma 3.1-(iv). Therefore, selecting this
particular functional does not bring much for assessing asymptotic stability of sampled-data systems
compared to Lemma 3.1-(iv).

On the other side, one may be inspired by the Lyapunov-Krasovskii functionals considered with
the input-delay approach. For instance in [100, 188, 189, 277, 278], functionals issued from the
impulsive systems modeling presented in [220, 219]. These Lyapunov-Krasovskii functionals can be
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presented in the following form

Vd(xt, ẋt) = x>(t)Px(t) + (tk+1 − t)(x(t)− x(tk))
>(S1(x(t)− x(tk)) + 2S2x(tk))

+(tk+1 − t)
∫ t

tk

ẋ>(s)Zẋ(s)ds, ∀t ∈ [tk, tk+1),

for some matrices P = P>, S1 = S>1 , S2 and R = R> of appropriate dimension. In [100, 188, 189,
277, 278], the positive definiteness of the functional Vd is required in order to apply the Lyapunov-
Krasovskii theorem. However, it is worth noting that such a functional has jumps at the sampling
instants and even if it is continuous, the functional is not differentiable at the sampling instants.
Nevertheless, the methodology developed in [100], allows guaranteeing asymptotic or exponential
stability of sampled-data systems.

Inspired from this functional, one may rephrase this analysis in light of the looped functional ap-
proach. Indeed, functional Vd is composed of four terms, whose first, x>(t)Px(t), can be considered
as the Lyapunov function V in (3.18). It remains to show that the last terms can also be reformulated
in the framework of Theorem 3.2. To do so, let us consider the following functional expressed using
the shifted state function χk and defined a functional V0d given by

V0d(τ, χk) = (Tk − τ)(χk(τ)− χk(0))>(S1(χk(τ)− χk(0)) + 2S2χk(0))

+(Tk − τ)

∫ τ

0

χ̇>k (s)Zχ̇k(s)ds+ (Tk − τ)τχ>k (0)Xχk(0), ∀τ ∈ [0, Tk).

First, an additional term, which depends on matrix X = X> ∈ Rn×n has been included. It
is easy to see that such a functional verify the looping condition (3.19), since we trivially have
V0d(0, χk) = V0d(Tk, χk) = 0. Hence, the function V0d can be employed together with the quadratic
Lyapunov function V (x) = x>Px. This leads to the following theorem presented in [280].

Theorem 3.3

Let 0 < T1 ≤ T2 be two positive scalars. Assume that there exist n × n symmetric matrices
P > 0, R > 0, S1 and X in Sn and matrices S2 ∈ Rn×n and N ∈ R2n×n that satisfy

∀i = 1, 2, Ψ1
0(Ti) = Π1 + Ti(Π2 + Π3) < 0,

Ψ2
0(Ti) =

[
Π1 − TiΠ3 TiN
∗ −TiR

]
< 0,

(3.21)

where
Π1 = He{M>

1 PM0 −M>
12(1

2
S1M12 + S2M2 +N>)}

Π2 = M>
0 RM0 + He{M>

0 (S1M12 + S2M2)},
Π3 = M>

2 XM2,
(3.22)

with M0 = [A BK], M1 = [I 0], M2 = [0 I] and M12 = M1 −M2.
Then the system (3.3) is asymptotically stable for any sampling sequence {tk}k≥0 satisfying
(3.1). and, the inequality

Λ>(A,B,K, T )PΛ(A,B,K, T )− P < 0 (3.23)

holds for all T in [T1, T2].

Proof : The proof is not detailed in this manuscript but can be found in [280]. ♦



66 CHAPTER 3. SAMPLED-DATA SYSTEMS

This previous theorem have several advantages over existing results from the literature, which
are described in the following list.

• A conclusion of this theorem is directly related to the Lyapunov stability condition based on
the discretized model (3.4) presented in the fourth item of Lemma 3.1. Indeed, inequality
(3.23) is guaranteed for any T ∈ [T1, T2] without having computed the exponential matrix
Λ(A,B,K, T ). This issue was never pointed out so clearly in the literature of sampled-data
systems using the input delay approach.

• Using the Schur Complement on the first term of Π2, one can see that both conditions in (3.21)
are convex in the system matrices A and B. Therefore, a trivial extension of Theorem 3.3
leads to robust stability conditions with parameter uncertainties. A notable consequence is
that inequality (3.23) is still guaranteed for any T ∈ [T1, T2] and for any matrices [A B] ∈
Coi=1,...,m {[Ai Bi]}, where matrices Ai and Bi, i = 1, . . . ,m, m > 0 defines the polytopic
uncertainties, without having computed the exponential matrix Λ(A,B,K, T ). This can be
seen as the major advantages of the stability analysis based on the discretized model as for
instance in [79, 154, 198]

• As mentioned previously, the looped-functional framework allows us to relax some positivity
constraints on the selection of functionals compared to usual the Lyapunov-Krasovskii func-
tionals. This relaxation leads to remarkable numerical results. For the sake of simplicity, no
numerical results will be presented in this chapter. Note however that Theorem 3.3 assess
stability of the particular sampled-data system (3.6), while the input delay approach does not.

Despite the potential relaxation with respect to the application of the Lyapunov-Krasovskii the-
orem, the previous theorem has a major drawback. One can notice that Theorem 3.2 presents an
equivalence between a discrete and a continuous-time stability conditions for sampled-data systems.
It is important to state that Theorem 3.3 only exposes sufficient stability conditions. The reason why
the necessity part is broken comes from the selection of the looped-functional V0d inspired from the
input delay and the impulsive systems approaches. In order to refine the stability conditions, one
may look at enriched version of V0d, which could for instance take benefits of

• using less conservative integral inequality as in [296], with Wirtinger-based integral inequality;

• including a fragmentation of the sampling interval as in [46];

• or including more information on the shifted state function χk as in [355], where the functional
include χk(TK) as well.

Polynomial looped functionals

In the statement of Theorem 3.2, no particular structure for the looped-functional has been specified.
It is then possible to construct them without following the structures inspired by the input-delay
approach from [105, 100], or the impulsive systems approach [219]. To do so, I have contacted M.M
Peet, a researcher known for his researcher on time-delay systems using the Sum of Squares (SOS)
framework. Together we have proposed a new structure for looped-functional based on a polynomial
formulation. The basic idea consists in defining a symmetric polynomial matrix M in S2n such that
a new looped functional is given by

V0p(τ, Tk, χk) =

[
χk(τ)
χk(0)

]>
M(τ, Tk)

[
χk(τ)
χk(0)

]
. (3.24)
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In this setup, M is a bi-polynomial matrix in τ ∈ [0, Tk] and in Tk ∈ [T1, T2], of arbitrary degree.
This polynomial formulation leads to the following result presented in [308, 309].

Theorem 3.4

For given 0 ≤ T1 < T2 < ∞, if there exist P ∈ Sn, positive definite and a bi-polynomial
matrix M : [0, T2]× [T1, T2]→ S2n such that for all T ∈ [T1, T2],

P � 0,

[
I
I

]T
M(0, T )

[
I
I

]
= 0, M(T, T ) = 0, (3.25)

and such that the following inequality holds for all τ ∈ [0, T ] and all T ∈ [T1, T2]

Ψ̄(τ, T ) = He

{([
P 0
0 0

]
+M(τ, T )

)[
A BK
0 0

]}
+ d

dτ
M(τ, T ) ≺ 0. (3.26)

Then, sampled-data system (3.3) is asymptotically stable for any sampling sequence {tk}k≥0

satisfying (3.1) and moreover, the condition

Λ>(A,B,K, T )PΓ(A,B,K, T )− P < 0

holds for all T ∈ [T1, T2].

Proof : The proof can be found in [303] and is therefore omitted in this manuscript. ♦

At a first sight, conditions (3.25) and (3.26) are more elegant and simpler than the one presented
in Theorem 3.3. Indeed the complexity of the structure of the looped-functional is hidden in the
bi-polynomial matrix M . That being said, the complexity of Theorem 3.4 still exists and arises when
one wants to evaluate the inequality on numerical software. This method requires the use of the Sum
of Squares framework in an SDP formulation [245, 255, 324], which requires a careful attention.

3.5 Extensions and an emphasis to networked control systems
In this section, a brief overview of the contributions extensions of the looped-functional approach is
presented. A more detail focus on an application of sampled-data dynamic output feedback controller
taken from [121] is presented to illustrate the potential of the method.

3.5.1 A brief overview of the latter achievements

The looped-functional approach presents a relevant alternative to assess asymptotic or exponential
stability of sampled-data systems compared to the discretization, the input-delay or the impulsive sys-
tems approaches. It notably puts forward the existing links between those three existing approaches.
Several extensions have been provided in the literature. One can first mention that Theorem 3.4 has
been revisited in order to provided exponential stability with guaranteed decay rate in [280, 309].
Some possible extensions to the case of sampled-data systems subject to additional continuous-time
delay were proposed in [160, 161, 279]. These contributions give an alternative solution for assessing
stability of linear systems subject to the sawtooth delay functions presented in Figure 3.3.
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This method also has the advantage to be applicable to a wider class of systems than the sole
sampled-data systems. As it was pointed out earlier in this chapter, sampled-data systems represents
a particular class of impulsive systems [219]. Indeed, sampled-data system (3.3) can be rewritten as
the extended impulsive system, which follows the hybrid dynamics

d
dt

[
x
z

]
=

[
A B
0 0

] [
x
z

]
, t /∈ {tk}k≥0

[
x
z

]+

=

[
I 0
K 0

] [
x
z

]
, t ∈ {tk}k≥0

(3.27)

Impulsive system (3.27) involves a new state variable z, which is introduced to model the held
value of the control input Kx at the last jump instant. Indeed since ż = 0 during the inter-sampling
interval, variable z stay still until the next sampling instant. System (3.27) finally corresponds to a
particular class of impulsive systems where the impulse instants only depends on time. This class of
system may be represented by the following dynamics{

Ẋ = AX, t /∈ {tk}k≥0,
X+ = JX, t ∈ {tk}k≥0.

(3.28)

Impulsive systems has been widely considered in the literature, which occur in several fields
like epidemiology [51, 323] and sampled-data control as considered previously in this chapter.. The
reader may refer for instance to [22, 54, 55, 118, 119, 152, 346]. We have shown, with Corentin
Briat, that the looped-functional approach also applies to this class of systems. More particularly,
looped-functional inspired from the input delay approach has been proposed in [48]. Alternatively,
polynomial-type of looped-functionals were considered in [47]. The remarkable aspect of these two
contributions relies on the possibility to provide robust stability conditions with respect to aperiodic
impulse instants as well as with respect to uncertainties in both matricesA and J . They are also able
to provide numerically good estimations of minimal and/or maximal dwell times. This method was
also extended to the case of switched systems in [49], and to pseudo-periodic systems in [281, 50].

Another interesting potential of the impulsive system approach is to possibility to model sampled-
data systems subject to input delays using a different philosophy compared to previous work related
to the input delay approach, where the resulting delayed and sampled input is usually presented as
x(tk − h). In [282, 283, 281], we have used this impulsive system representation in order to assess
stability of linear (and possibly uncertain) aperiodic sampled-data systems subject to a so-called
incremental delay h, whose dynamics follows:

ẋ(t) = Ax(t) +BKx(tk−h), ∀t ∈ [tk, tk+1), k ∈ N.

where h is a positive integer. An interesting contribution was presented in [282, 283], where usual
Lyapunov-Krasovskii functional for discrete-time systems, to account for the incremental delay h
has been mixed to a looped-functional to the sampled-data nature of this system.

The question of conservatism of looped-functionals was already discussed earlier in this chapter.
The equivalence between the discrete and continuous-time stability conditions is broken as soon
as a looped-functional is selected a priori. In [50], it was proven that polynomial-type of looped
functional, as presented in Theorem 3.4 for sampled-data systems, or more generally to impulsive
systems (3.28) are asymptotically non conservative. In other words, increasing the degree of the
bi-polynomial matrix M (or Z in [50]), reduces the conservatism and makes the resulting stability
condition converge eventually to a non conservative condition.
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Following the formalism of hybrid dynamical systems [118, 119], sampled-data system (3.3) can
be rewritten as the extended hybrid dynamical system, which follows the hybrid dynamics

ẋ = Ax+Bz,
ż = 0,
τ̇ = 1,

Ṫ = 0,

(x, z, τ, T ) ∈ C = {(x, z, τ, T ) ∈ R2n+2, τ ≤ T}


x+ = x,
z+ = Kx,
τ+ = 0,
T+ ∈ [T1, T2],

(x, z, τ, T ) ∈ D = {(x, z, τ, T ) ∈ R2n+2, τ ≥ T}

(3.29)

The first four equations represent the evolution of the systems when flowing, i.e. a continuous-
time evolution of the system, while the last four equations corresponds to discrete dynamics appear-
ing during jump. The sets C and D are called flow and jump sets, respectively. Again, variable z has
been introduced to model the held value of the control input Kx at the last jump instant.

In this formulation, τ and T appear as variables of hybrid dynamical system and τ increases as
time during flows and is reset to zero during jumps. It represents a timer that measures the time
elapsed since the last jump. From the general Lyapunov theorem provided in [119], a Lyapunov
function for hybrid system (3.29) should depend on all the state variables, including, the timer τ
and the inter-sampling time T . In [41, 44], such a Lyapunov function was considered and has the
following form

VH(x, z, τ, T ) =

[
x
z

]>
P (τ, T )

[
x
z

]
,

where P is a symmetric positive definite matrix function, from [0, T2]× [T1, T2] to Sn+m. Such Lya-
punov function is called clock-dependent function. The equivalence between this Lyapunov function
and the looped-functional approaches was demonstrated in [42] from a theoretical point of view. It
was also mentionned therein that the clock-dependent Lyapunov approach is more efficient from the
numerical point of view, since it involves less decision variables. Several contributions in this direc-
tion have been provided by several researchers in [41, 43, 44, 117, 322] and the references therein.

3.5.2 Application to sampled-data dynamic output-feedback control under
input saturations

Problem formulation:

The motivations of this section is to illustrate the potential of the use of looped-functional in a more
complicated situation than the stability problem of a linear systems controller by a sampled-data
static state feedback. This section presents the main features of our contribution in [121] where we
consider the continuous-time linear plant with saturating inputs described by:{

ẋp(t) = Apxp(t) +Bpsat(ū(t)),

y(t) = Cpxp(t).
(3.30)

where xp ∈ Rnp , ū ∈ Rm and y ∈ Rp represent the state, the input and the output vectors of the plant,
respectively. Matrices Ap, Bp, Cp have appropriate dimensions and are supposed to be constant. We
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assume that the control inputs are sampled possibly in an aperiodic manner and the value of ū is kept
constant (through a zero-order hold) between two successive sampling instants i.e.:

ū(t) = u(tk), ∀t ∈ [tk, tk+1). (3.31)

The sequence of sampling instants {tk}k≥0 verifies (3.1). For output feedback purposes, we
consider that the output y(t) is sampled at the same instants of the control input, i.e. at each sampling
instant tk, sampled y(tk) is generated. Considering a digital implementation, we assume that system
(3.30) is controlled by a linear discrete-time dynamic output feedback controller, described in state
space as follows:

xc(tk+1) = Acxc(tk) +Bcy(tk) + Ecψ(u(tk)),

u(tk) = Ccxc(tk) +Dcy(tk),
(3.32)

where xc ∈ Rnc , y ∈ Rp and u ∈ Rm are the state, the input and the output of the controller, respec-
tively. The matrices Ac, Bc, Cc, Dc, Ec are assumed to be constant and of appropriate dimensions.
ψ(u) is a vector-valued decentralized deadzone nonlinearity defined as follows:

ψ(u) = sat(u)− u. (3.33)

The term Ecψ(u) regards a static anti-windup compensation, which can be appended to the con-
troller to mitigate the saturation effects on performance and stability [125], [126]. In this case, at each
sampling instant, the plant output is sampled and its value is used to instantaneously update both the
controller sate and the control input to be applied to the plant between in the interval [tk tk+1). It
should be noticed that the method used to design the controller (3.32) is out of the scope of the present
work. Our main goal is to provide a method to assess the stability of the sampled-data closed-loop
system defined by the connection between this controller and the continuous plant (3.30). On the
other hand, it is reasonable (and relevant from a practical point of view) to assume that (3.32) has
been designed considering classical techniques based on the discretization of a continuous dynamic
output feedback or on a periodic sampling paradigm, i.e. with Tk = δ, ∀k, and then to analyze the
effects on stability of a possibly aperiodic sampling policy with Tk ∈ [T1, T2]. In this case, we can
assume for instance that matrices Ac, Bc, Cc, Dc, Ec, have been designed considering one of the two
approaches below

1. Discrete-time design. First, an exact discretization of the plant should be performed. Consid-
ering tk+1 − tk = δ, ∀k, this leads to the following discrete-time model:

xp(tk+1) = Ap,dxp(tk) +Bp,dsat(u(tk)),

y(tk) = Cp,dxp(tk)
(3.34)

with Ap,d = eApδ, Cp,d = Cp, Bp,d =
∫ δ

0
eAp(δ−s)dsBp. Thus, based on model (3.34), known

discrete-time results can be applied to design matrices Ac, Bc, Cc and Ec in order to stabilize
(considering periodic sampling) the closed-loop system.

2. Controller discretization. First, a continuous-time stabilizing controller, described by

ẋc(t) = Ācxc(t) + B̄cy(t) + Ēcψ(u(t)),

u(t) = C̄cxc(t) + D̄cy(t),
(3.35)

is designed considering the continuous-time plant model (3.30). Then, assuming a periodic
sampling, a discretization of this controller can be performed using classical Euler or Tustin
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approximations. Alternatively, a discrete-time approximation ensuring that the value of the
output of the continuous and the discrete-time controllers coincide at the sampling instants
tk = kδ can be considered. This leads to a discrete-time controller as in (3.32) with:

Ac = eĀcδ, Cc = C̄c, Dc = D̄c, Bc =

∫ δ

0

eĀc(δ−s)dsB̄c, Ec =

∫ δ

0

eĀc(δ−s)dsĒc

(3.36)

Stability analysis based on looped-functionals

Due to the hybrid nature of the whole interconnected system composed of a linear plant with saturated
input (3.30) and of a discrete-time dynamic output feedback (3.32), a dedicated analysis is required.
Following the methodology of looped functionals together with the lifted state χk(τ) = x(tk + τ)
where x>(t) = [x>p (t) x>c (t)], the following regional stability theorem is provided.

Theorem 3.5

For given positive scalars T1 ≤ T2, assume that there exist symmetric positive definite matrices
P,R, symmetric matrices X , S1, a diagonal positive definite matrix U , matrices G, V , S2 and
N of appropriate dimensions and a positive scalar α, that satisfy, for i = 1, 2, j = 1, · · · ,m

Ψ1(Ti) =

[
Π1 + Ti(Π3 + Π4) TiN

TiN ′ −TiR

]
< 0, (3.37)

Ψ2(Ti) = Π1 + Ti(Π2 − Π3 + Π4) < 0, (3.38)[
P + VMf +M ′

fV
′ [0 Kj −Gj]

′

[0 Kj −Gj] αu2
0j

]
> 0, (3.39)

with
Π1 = M ′

+PM+ −M ′
−PM− +M ′

12S1M12 − 2M ′
5UM5

+He{M ′
12S2M2 +NM12 −M ′

5UG

[
M3

M4

]
}

Π2 = M ′
cRMc + He{M ′

c(S1M12 + S2M2)},

Π3 =

[
M2

M5

]′
X

[
M2

M5

]
,

Π4 = He


 Mc

0
0

′ P
 M1

M3

M4

 ,

(3.40)

where
M1 =

[
I 0 0 0 0

]
, M2 =

[
0 I 0 0 0

]
,

M3 =
[

0 0 I 0 0
]
, M4 =

[
0 0 0 I 0

]
,

M5 =
[

0 0 0 0 I
]
, M12 = M1 −M2,

M+ =

 0 I 0 0 0
0 I 0 0 0
0 0 BcCp Ac Ec

 , M− =

 0 I 0 0 0
0 0 I 0 0
0 0 0 I 0

 ,
Mf =

[
I −I 0

]
,Mc =

[
Ap 0 BpDcCp BpCc Bp

]
,

(3.41)
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Figure 3.5: Simulations results

Then, if χ0(0) ∈ E(P, α) = {χ ∈ Rn ; χ′Pχ ≤ α−1}, then for any aperiodic sampling sat-
isfying (3.1), χk(0) → 0 as k → ∞, i.e. E(P, α) is a RAS for the closed-loop system
(3.30)-(3.32).

Proof : The proof of this theorem can be found in [121] and is therefore ommitted. ♦

Numerical Example

Let us consider the model of an unstable continuous-time balancing pointer system, expressed as in
(3.30) with the following matrices

Ap =

[
−0 1

1 0

]
, Bp =

[
0
−1

]
, Cp =

[
1 1

]
with the saturation level u0 = 5. Note that since Ap is not Hurwitz, in view of the saturation con-
straint, only local asymptotic stability for the closed-loop system with discrete-time (or continuous-
time) control can be guaranteed. We consider a stabilizing continuous-time dynamic controller
(3.35), whose matrices are given by ([329], p.312)

Āc = 0, B̄c = 10, C̄c = 1, D̄c = 2, Ēc = 0. (3.42)

Next, we illustrate the application of our results under different perspectives of analysis.
Influence of δ: Consider a discretized version of the controller obtained from (3.36). Let us first

consider the influence of the discretization period δ. With this aim, we apply the conditions of
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Figure 3.6: Time response of the closed-loop system. Left-hand side: with discretized controller
given by matrices in (3.43) and implemented with a periodic sampling T = 0.1. Right-hand side:
with the continuous-time controller given by matrices in (3.42).

Theorem 1 considering a periodic sampling, i.e. Tk = δ = T1 = T2, ∀k. It follows that no solution
for these conditions can be found for δ larger than 0.08s.

Robustness with respect to aperiodic sampling: Consider now the discretized version of the con-
troller, obtained from (3.36) with δ = 0.02s, given by:

Ac = 1; Bc = 0.2; Cc = 1; Dc = 2. (3.43)

We evaluate now what happens under aperiodic sampling. For this we consider an allowable
intersampling interval Tk ∈ [T1, T2] centered at δ, i.e. T1 = δ − µ and T2 = δ + µ. Considering
Problem P1, the influence of µ on the size of the obtained RAS is shown in Figure 3.5(a). Note that, as
expected, the larger is µ (i.e. the larger is the admissible interval [T1, T2]), the smaller tends to be the
region of stability E(P, α). Moreover, the larger region is obtained with µ = 0, which corresponds
to the periodic sampling case. Note that conditions (3.37), (3.38), (3.39) become unfeasible when µ
becomes larger than ±24%δ = ±40ms.

Robust periodic implementation: Consider now the dynamic discrete-time controller with the ma-
trices given in (3.43), but that the actual periodic sampling period is different from δ = 0.02s. In
other words, we consider T1 = T2 = T 6= 0.02. It can be observed that conditions (3.37), (3.38)
and (3.39) remain feasible when reducing the sampling T much below 0.02, although the size of the
stability domain is significantly degraded. Actually this domain shrinks as T decreases from 0.02.
On the other hand, when T is increased above the value of 0.02, the problem remains feasible until
T = 0.29. This is illustrated in Figure 3.5(b) where it can be observed the influence of the sampling
period T on the size of the stability domain. For comparison purposes, the RAS obtained (from
the application of Proposition 3.1 in [329]) considering the continuous-time implementation of the
controller is also depicted in the figure.

An interesting aspect of this evaluation is that, with T = T1 = T2 larger than δ, initial conditions
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not belonging to the region of attraction corresponding to the continuous-time closed-loop system
(i.e. obtained from the connection between (3.30) and (3.35) with ū(t) = u(t)) belong to the region
of attraction obtained with the discrete-time implementation of the controller. This is illustrated
in Figure 3.6, which compares the time evolution of the closed-loop system with the discrete-time
controller (3.43) implemented with T = 0.1 and that one with the PI continuous-time controller
(3.42), for the initial condition xp(0) = [ −3.3

0 ], xc(0) = 0. In fact, this initial condition belongs to
the RAS obtained for the discrete-time controller, but does not belong to the one associated to the
continuous-time implementation.

3.6 Conclusions
In this chapter, after a brief a presentation of the main motivations and difficulties, two different
approaches to assess stability of sampled-data systems was presented. The first approach concerns
the modeling of sampled-and-hold signal as a continuous functions affected by a sawtooth delay.
Following the same principle and procedure of the design of Lyapunov-Krasovskii functionals as
the ones presented in Chapter 2, an example of stability theorems based on the application of the
Lyapunov-Krasovskii theorem has been presented. Compared to the previous chapter, an emphasis
on the time-varying delay case has been provided. The advantages and drawbacks of this method has
also been discussed. The second method, which relies on the looped-functional theorem presents an
efficient alternative with respect to the first approach. It notably allows to relax some constraints on
the selection of the functionals. Several extensions to impulsive, switched systems have been pointed
out. Finally, an example of problems that can be treated using the looped-functionals framework
has been provided and demonstrates the potential of the approach. Several perspectives of these
contributions will be exposed in Chapter 4.
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4.1 General conclusion
In the previous chapters, a resume of the contributions I have developed during my PhD, post-doc
at Leicester in England and at KTH in Sweden and later as a CNRS Researcher in France both at
GIPSA-Lab, Grenoble and at LAAS, Toulouse, has been presented. These contributions cover a
large range of applications from the fields of Networked Control Systems with an emphasis on time-
delay and sampled-data systems, but also on multi-agents systems and distributed control. The main
achievements are related to time-delay systems and sampled-data systems. As detailed in Chapters
2 and 3, my main contributions are related to the considerations of integral inequality as the main
theoretical tool for the stability analysis of time-delay systems. Indeed Wirtinger-based integral
inequality and the Bessel-Legendre inequality have brought a new sight and a second breeze to the
field, according the number of papers that have been produced since 2013. On the other hand, the
input delay and the looped-functionals approaches represent efficient theoretical tools to address
stability problems for sampled-data systems and have conducted to researches performed by several
researchers of the field. There are several aspects I would like to consider for my future researches.
The basics of my perspectives are obviously strongly related to my previous achievements with the
view of applying these methodologies to a wider class of systems. These perspectives presented in
this chapter are concerned with Cyber-Physical Systems.

Cyber-physical systems represents a wild class of systems which are composed, on one side, of
the interconnection between one or several physical plants and, on the other side, one or several
digital components evolving in different time scales or frequency [341, 21] Since the dawn of the
microprocessor era in the 1970s, embedded computers have been designed into many system types,
but developers have done this work mostly with spit and baling wire. Surprisingly, only small amount
of theory tells us how to design computer-based control systems. Cyber-physical systems theory
attempts to correct this deficiency.

The perspectives aim at addressing various classes of problems related to cyber-physical sys-
tems. More particularly, a focus is proposed on the the class of interconnected systems of het-
erogenous nature. The “cyber” part, which refers control part, invokes the dynamics of algorithms
implemented on computer, chips etc... and, hence, must be tractable. Among possible dynamics,
their are represented by ordinary differential equations. On the other hand, the “physical” parts
might be more complicated. Their dynamics results from physical laws that are or can not be nec-
essarily represented as ordinary differential equations but can also include some dynamics that are
described by partial differential equations. One of the most simple example of such behavior is
related to networked control systems, where, even if the physical part can be modeled by an or-
dinary differential equations, the presence of delays, resulting from a transport partial differential
equations, prevent from the use of a sole ordinary differential equation to model the overall cyber-
physical systems. This is not the only example where the heterogeneity in the cyber-physical systems
arises. There are many applications where the physics of the systems leads to more complicated
systems where the dynamics are described by more general hyperbolic or parabolic equations (see
[69, 70, 75, 104, 179, 178, 203, 254, 336] among many others).
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This last chapter develops several perspectives to the contributions presented in this manuscript,
which have been organized as follows.

1) Further results on sampled-data systems

2) Stability analysis, control and observation of time-delay systems

3) Stability analysis and control of linear infinite dimensional systems

The perspectives related to each of these items will be developed in the next sections.

4.2 Further results on sampled-data systems

4.2.1 Robust sampled-data control
In Chapter 3, several contributions have been provided in the case of asynchronous or aperiodic
samplings. These contributions can be seen as a robust analysis of linear systems with respect to the
effect of samplings and samplings variations. In this context, the samplings instants only depend on
time, meaning that an external operator fixed the sampling and the question is to guarantee robust
stability with respect to the effect of the sampled-and-hold signals. In this direction, there are still
several open problems that I would like to consider in future works.

While the stability analysis has been widely considered in the literature using many techniques,
such as the study of the discretized systems [198, 79, 148], or based on lifting methods, input-delay
systems [105, 100, 101, 277], the impulsive systems [218, 219], the looped-functionals [280, 48,
355, 309], clock-dependent systems [42, 45, 117], or robust analysis [209, 208, 227, 113]. The
reader may look at the recent survey paper [155], which draws a picture of the current activities in
the domain of sampled-data systems. Some theoretical links among the previous methods have been
already noticed in the literature (see for instance between [209] and [190], [100] and [280] and [309]
and [42]). From my point of view, the main methods to assess stability of a sampled-data has been
established. However, there are still some open problem and relevant challenges to be faced in the
near future.

Sampled-data and delayed control input:

Can we find an efficient method to address the problem of sampled-data systems subject to an
additional input delay?

We have shown in Chapter 3 two methods to address robust stability of systems with a
sampled-data input. The input delay approach allows straightforwardly to provide stability
in the case of both input delay and sampled-data effect in the control input. However, as men-
tioned in Chapter 3, the input delay approach is conservative since it also assesses stability
for any kind of bounded delay functions. To be more accurate, one has to include contraints
such as τ̇ = 1 in order to refine the stability conditions as done for instance in the looped-
functionals approach in [160, 283]. Nevertheless this extension is limited and is not able to
capture an unexpected phenomena related to this field. Indeed, for some systems, the maxi-
mal allowable sampling is obtained, in simulation, when the input delay is not zero. In other
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words, increasing or introducing an input delay to a sampled-data system may help to increase
the maximal allowable sampling period. Severals directions to tackle this problem are envi-
sioned. First, we may extend the stability conditions of [160] in light of the Wirtinger-based
integral or Bessel-Legendre inequalities. Second, one may look at a formulation of this class
of systems in the framework of hybrid dynamical systems [118, 119] as briefly introduced in
Chapter 3 or in the next section. One may also look at an ODE-PDE formulation, which will
be detailed latter on in this chapter.

From Stability to Control design:

Can this methodology be applicable to obtain constructive stabilization conditions allowing
then to provide optimal control gains with respect to a predefined objective?

There already exist stability conditions issued from the input delay or the looped-functional
approaches that can be modified and turned out to constructive stability conditions. The reader
may refer to [292, 285, 276, 278] for the input delay approach and [293, 306] for the looped
functional methods. For these two methods, the modification of stability conditions to con-
structive stability conditions requires to perform some manipulations imposing some addi-
tional constraints among the decision variable. Consequently additional conservatism is nec-
essarily introduced to solve the problem. There exists however a less conservative method
provided in some recent works based on clock-dependent Lyapunov function. Indeed, the
method developed in [43, 45] provides a non conservative stabilization condition with respect
to the stability version.

Most of the design methods for aperiodic sampled-data systems addresses the state feedback
control case. The design of dynamic output feedback control is, to the best of my knowledge, still an
open problem. There are two main situations. The first one consists in a dynamic output feedback
controller that evolves in continuous time. The second, instead, would consider a dynamic output
feedback that is constant during the sampling interval and is only updated at the sampling instants
as in [120, 121] and as presented at the end of the previous chapter. This second case represents
a relevant problem, both from the technical and practical point of view. From the practical point
of view, dynamic output feedback and more generally control algorithms are embedded on digital
processors with potentially limited computational power, and limited frequencies. This implies the
discretization of control algorithms, which may lead to a deterioration of performance of the closed-
loop system. While fully continuous or fully discrete cases have been studied in the literature, the
mixed situation has not been regarded to much in the literature, as far as I know. From the applicative
point of view, this framework might be also useful in the context of the control of power converters
(see for instance [3]).

4.2.2 Event-triggered sampled-data control

In the Chapter 3 on sampled-data systems, an hybrid dynamical system modeling of sampled-data
systems was briefly presented. Let us recall that a time-driven sampled-data systems as presented, in
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(a) Time-triggered sampling

 

(b) Event-triggered sampling

Figure 4.1: Sampled-data implementation.

the previous chapter, can be rewritten as follows.
ẋ = Ax+Bz,
ż = 0,
τ̇ = 1,

Ṫ = 0,

(x, z, τ, T ) ∈ C = {(x, z, τ, T ) ∈ Rn+m+2, τ ≤ T}


x+ = x,
z+ = Kx,
τ+ = 0,
T+ ∈ [T1, T2],

(x, z, τ, T ) ∈ D = {(x, z, τ, T ) ∈ Rn+m+2, τ ≥ T}

(4.1)

In this model, the flow and jump sets only depend on the timer τ and on the length of the sampling
interval T , corresponding to the sampled-data implementation depicted in Figure 4.1a). This makes
that the sampling clock-dependent or time-driven. In this situation, as demonstrated in the previous
chapter, the sampling is seen as a perturbation to a nominal system. The objectives are then to
assess robust stability of this perturbed system. However one may also consider another solution
referring to event-triggered or event-driven sampled-data systems. This particular class of sampled-
data systems has been investigated in the late 90’s in [17] but revisited lately in [18, 7, 9, 210, 327].
The basic idea includes the selection of the instants as an additional degree of freedom to the control
as shown in the modified control loop in Figure 4.1b). Several methods have been investigated in
the literature as presented in the introductory paper [147] based on Input-to-State Stability (ISS)
[7, 9, 82, 339], on Lyapunov-based approach [310, 311, 338], on delay modeling [249, 351, 363],
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on passivity arguments [349] and, of course, on a hybrid dynamical systems modeling [118, 119] in
[1, 93, 252, 251].

Various problems and extensions have been investigated in the literature in this direction, such
as output feedback control [1, 2, 78, 314, 349, 349, 363], saturated control [315, 313, 342], periodic
event triggered [146, 145, 250] to avoid Zeno, and multi-agent systems [76, 87, 316, 204]. Of course,
the reference is far from being exhaustive.

In order to understand the main difference with respect to the robust sampled-data case, let us take
a look at the hybrid dynamical system formulation for event-triggered control sampled-data systems.
This class of systems can be modeled efficiently using this framework and results from a light but
relevant modification of (4.1), leading to the following equation.


ẋ = Ax+Bz,
ż = 0,
τ̇ = 1,

(x, z, τ) ∈ C = {(x, z, τ) ∈ Rn+m+1, {τ ≤ T} ∪ F}


x+ = x,
z+ = Kx,
τ+ = 0,

(x, z, τ) ∈ D = {(x, z, τ) ∈ Rn+m+1, {τ ≥ T} ∩ J }

(4.2)

where T is a strictly positive scalar, and F and J are subsets of Rn+m. to be defined.
If one wants to understand the dynamics of such systems, one has to see that the system flows

while (x, z, τ) ∈ C and jumps whenever (x, z, τ) ∈ D. Compared to the robust case, the flow and
jump sets are not only characterized by the timer τ but also by the state variables x and z and an event
finally corresponds to the situation when the state (x, z) reach the jump set J ⊂ D. Therefore, the
design of the subset F and J gives additional degrees of freedom. Usually, for linear systems, these
sets are defined by the sign of a quadratic term. In our recent papers [314, 312], we have provided
the following definition

F =
{

(x, z), s.t. [ xz ]T M [ xz ] ≤ 0
}

J =
{

(x, z), s.t. [ xz ]T M [ xz ] ≥ 0
}

where M is a constant matrix in Sn+m to be designed. This formulation generalizes the usual ISS
formulation. Indeed selecting for instance the following matrix

M =

[
KTK − εIn −KT

−K Im

]
leads to the flowing condition ‖Kx− z‖2 ≤ ε‖x‖2. In other words, the controller will not update the
control input while the quantity Kx − z, which represents the deviation of the continuous artificial
control input Kx with respect to the effective control input z, is lower than a quantity depending on
the norm of the state x.

Note that in (4.2), the timer τ still plays an important role since the system is not allowed to jump
before τ = T . This particular example of event-triggered control formulation is particularly relevant,
from both theoretical and practical points of view since it allows us to avoid Zeno phenomenon.

Again, the novelty with respect to what was presented in Chapter 3 relies on the fact that the
sampling is now viewed as an additional degree of freedom to the control. In other words, one may
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select not only the value of the control input but also the duration of application of the same value.
Following this short presentation on event-triggered control, I would like to rise the next perspectives

From time-driven to event-triggered sampled-data control:

How to extend the methodologies developed over the past years to sampled-data systems
where the sampling instants may not only depend on time but also on state?

There is no doubt about the possibility to extend the methods developed in the context of
robust sampled-data control presented in Chapter 3 to the case of event-triggered control.
Indeed following the idea presented in [363, 351]. The potential of using the looped-functional
methods can be relevant compared to the usual input delay approach as for the robust sampled-
data case.

Tradeoff between communication and performance:

Can we design a cost function, which represents at the same level, the number of control
updates and the control performance?

The major benefit of using event-triggered control over periodic time-triggered control is to
achieve the same level of performances (such as LQ criteria, for instance) with only fewer con-
trol updates. From the networked control point of view, this reduction has a strong impact on
the availability of the communication network since less information needs to be transmitted
to the plant. However and obviously, there is a tradeoff between the amount of information
to be transmitted to the plant and the resulting performance. Indeed, it is expected that reduc-
ing the number of control updates would lead to poor performances while, on the opposite,
increasing them would lead to the best performance at the price of possible congestion of the
communication network. Therefore there is need to find an appropriate tradeoff which gathers
this two performances indexes, which are obviously not of the same nature. As far as I know,
a proper formulation of such a tradeoff has not been provided in the literature.

I have been working on this subject since 2011 in [310, 311]. With Christophe Prieur, Sophie
Tarbouriech and Luca Zaccarian, we have proposed several contributions [313, 315, 312, 330, 331]
to the emulation and co-design problems in the situation of actuator saturations. These contributions
represent a first step for me on this direction. These researches have been encouraged by the visit of
L. Moreira, a PhD Student of UFRGS, Porto Alegre, Brazil, supervised by J.M. Gomes da Silva Jr.
and S. Tarbouriech.

In addition, this recent activity (from my part) on event-triggered systems have allowed me to
familiarize to the framework of Hybrid Dynamical Systems from [118, 119], on which I have dedi-
cated a lot of attention and several applications. This framework is of a particular relevance to model
many applications where the dynamics of a system are characterized by both continuous and dis-
crete evolutions. The potential applications do not resume to the sole sampled-data/event-triggered
systems, but to a much wider class of systems, such as the study case on the distributed control of
servers we have considered in [5], control of power converters [3] among many others. I envision
continuing investigations related to the hybrid dynamical systems framework.
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4.3 Stability analysis and control of time-delay systems

4.3.1 Stability analysis of time-delay systems
In Chapter 2, a description of the novel methodology dedicated to the stability analysis of time-
delay systems was presented. This methodology based on the use of efficient integral inequalities
issued from the theory of inner products on Hilbert space. The resulting Bessel-Legendre inequality
has permitted to extend the well known Jensen’s inequality to a asymptotically none conservative
integral inequality. This method turns out to be very suited to assess stability analysis using the LMI
framework. With my colleagues, we have showed that, indeed, it applies efficiently to various classes
of delay systems, e.g. constant or time-varying, discrete or distributed delays. A notable aspect of
this method is the hierarchical structure of the resulting stability conditions, which seems promising,
according to me.

Interestingly, this functional can be seen as an approximation of the complete Lyapunov-Krasov-
skii functional, which is a necessary and sufficient condition for stability. Hence, I think that the
question of convergence of the LMI stability conditions still needs to be addressed. In other words,
this corresponds to the following question.

Towards necessity:

If we know that the system is asymptotically stable, does an order N∗ exist such that the
truncated stability criterion holds?

This issue corresponds to a challenge for researchers working on the stability analysis of time-
delays systems, i.e. providing necessary and sufficient stability LMI conditions for stability.

Looking back to the framework of Bessel-Legendre inequality, one can see that this formulation
of Bessel inequality together with the Legendre polynomials has been developed following the clas-
sical Lyapunov-Krasovskii functional and to associated inner product on Hilbert space. One may
imagine to select other classes of functionals based on other inner products.

Lyapunov design:

Do other classes of orthogonal functions than Legendre polynomials exist that are suitable for
the analysis?

For instance, one may look at Laguerre or Tchebitchev polynomials or at trigonometric func-
tions among many others possibilities, which would be associated to other inner products than
the standard one used in Chapter 2, and hence to other class of Lyapunov functionals. These
considerations may have an interest over Legendre polynomials regarding the tradeoff between
numerical complexity and performances of the resulting LMI conditions.

4.3.2 Emphasis on time-varying delay systems
The extension of the Bessel-Legendre methodologies to the time-varying delay case has already
been considered in [301]. There are still many activities and improvements that can be done in this
direction. One notable aspect is related to the matrix inequalities to be employed in order to transform
a non convex LMI problem into a tractable one. Several keys to understand the links between those
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inequalities has already been published in [191]. However, this is just a starting point to get a better
understanding of the time-varying delay case and of the source of the conservatism.

Reduction of conservatism:

Can we derive novel matrix inequalities dedicated to the stability analysis and control of sys-
tems subject to time-varying delays which provide an efficient tradeoff between the reduction
of conservatism and the numerical complexity?

The recent activities on free-matrix-based integral inequality [353], reciprocally convex com-
bination lemmas [243, 305, 299, 365], demonstrates the need for further investigations in this
area. Probably a unified formulation exists and still needs to be formalized.

In [300, 301], we have introduced the notion of Allowable Delay Sets. The main motivation is in-
spired from the input delay approach for sampled-data systems, where the construction of Lyapunov-
Krasovskii functionals take advantages of the sawtooth delay function (see [100, 220, 219]). The
main idea is to restrict the stability analysis to delay functions that belong to different sets. More pre-
cisely, in [301, 300], we have noticed that the resulting LMI conditions are multi-affine with respect
to the delay function h and its derivative ḣ. Then, by convexity, the stability conditions need to be
verified at the boundaries of the allowable delay set. The simplest characterization of this set would
consider all values of the delay h ∈ [h1, h2] and of its derivative ḣ ∈ [d1, d2]. This corresponds to the
polytope in [h ḣ]T given by[

h

ḣ

]
∈ H1 = [0, h2]× [d1, d2] = Co

{[
0
d1

]
,

[
0
d2

]
,

[
h2

d2

]
,

[
h2

d1

]}
. (4.3)

and depicted in Figure 4.2(a). Taking a careful attention at the definition of this set, the boundary
points [

h

ḣ

]
=

[
0
d1

]
with d1 < 0,

[
h

ḣ

]
=

[
h2

d2

]
with d2 > 0,

contradict the fact that h1 and h2 are respectively the minimum and maximum values of the delay h.
Therefore, one may replace these two boundary points by another boundary points (h, ḣ) = (h1, 0)
(with d1 < 0) and (h, ḣ) = (h2, 0), leading to some new allowable delay set given for instance by,[

h

ḣ

]
∈ H2 = Co

{[
0
0

]
,

[
0
d2

]
,

[
h2/2
d2

]
,

[
h2

0

]
,

[
h2

d1

]
,

[
h2/2
d1

]}
, (4.4)

or [
h

ḣ

]
∈ H3 = Co

{[
0
0

]
,

[
0
d2

]
,

[
h2

0

]
,

[
h2

d1

]}
, (4.5)

which are depicted in Figure 4.2(b) and (c). These new definitions of the allowable delay sets prevent
from the situation to get the delay h is at its maximum h2 (or minimum h1) as well as its derivative
positive (or negative). This selection reduces notably the size of the polytopes. The preliminary
result in this direction lets us think that the conservatism of the LMI is not only due to the use of
integral and matrix inequalities but also to the selection of the allowable delay set.

This new concept also lets us envision a new direction of investigation on the selection of wider
classes of allowable delay sets for various applications where delays are time-varying but can be
characterized in a more accurate manner. For instance, one may think of allowable delay sets char-
acterized by a level set of a quadratic expression of the delay value h and its derivative dot h. The
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Figure 4.2: Graphical illustration of allowable delay sets.

resulting problem can be reformulated then in the sum of squares framework and easily implemented
on Matlab.

4.3.3 Stabilization and control of time-delay systems
As for sampled-data systems, the natural question that follows would be to address the problem of
stabilization of time-delay systems, which consists in designing controller laws such that the closed-
loop system becomes asymptotically stable. Since our method can be seen as an extended version of
the Jensen’s inequality, for which many existing methods for control design have been provided, it
is expected that the same principle may apply to get constructive stabilization criteria based on the
Bessel-Legendre inequality.

Nevertheless, the design of stabilizing static state feedback controller u(t) = Kx(t), for time-
delay systems is somehow related to the problem of the design of a static output feedback for linear
systems. This problem is known to be non convex. It would be interesting to pursue our prelim-
inary contribution on the design of stabilizing controller already addressed in my PhD [276] and
also considered in a recent conference paper [23] with M. Barreau and F. Gouaisbaut. This can be
summarized in the following question

Design algorithms:

Is it possible to find an efficient method based on the previous stability conditions, which is
able to deliver controller gains for time-delay systems?

As mentioned above, this issue also represents challenging problem in the area of time-delay
systems. A promising result is actually under study in the context of the PhD of M. Barreau.
This problem is also strongly connected to the design of static output feedback controller for
linear systems, which has already attracted many researchers [16, 265, 83].

4.3.4 Finite dimensional controllers and observers for time-delay systems
The problem of observation of time-delay systems has been relatively less addressed in the literature.
It generally consists in the natural extensions of undelayed LTI case. The principle, for instance for
Luenberger observers [196], is to simulate a copy of the real system dynamics, which is fed by the
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measurement outputs. For linear systems with delays, a similar method was applied for instance in
[63, 6, 73, 74, 290, 289]. Nevertheless, this method suffers from a particular drawback arising from
the infinite dimensional nature of time-delay systems. Indeed, an observer for time-delay systems is
meant to estimate the functional state xt(θ), for all θ in [−h, 0]. From the numerical point of view,
this kind of observer cannot be performed properly without using an appropriate approximation
method. Usually, this approximation is performed using a discretization of the delay interval and
only a partial version of the state is constructed as follows : x(t − θi) for some values of θi in
[−h, 0] and i = 0, . . . , Nd, where Nd represents the discretization order. This process corresponds to
a classical way to approximate and simulate the state of time-delay systems and more generally of
infinite dimensional systems. An original idea comes from the recent results presented in Chapter 2
and more particularly on the Bessel-Legendre framework. The main idea relies on the approximation
of the state function xt by a finite dimensional state approximation, denoted as

Ωk(xt) =

∫ 0

−h
Lk(u)xt(u)du, k = 0, . . . , N,

where N is any positive integer representing the order of the approximation. A sketch of our original
methodology is presented below through some basic considerations on polynomial optimization and
some examples.

As mentioned earlier in Chapter 2, there is a strong relationship between the original state func-
tion xt and its projections in the sense of the integral inner product. Indeed, the methodology devel-
oped in Chapter 2 is based on the idea that the finite dimensional terms Ωk, k ≤ N , represent the
coefficients of the unique polynomial that minimizes the distance between xt and the set of polyno-
mials of degree less than N . In other words, we have

xt(u) ≈
N∑
k=0

2k + 1

h
Ωk(xt)Lk(u) =

1

h

[
L0(u)I L1(u)I . . . LN(u)I

]


Ω0(xt)
Ω1(xt)

...
ΩN(xt)

 . (4.6)

Therefore, it would be interesting to investigate and answer to the following questions:

Enlarged control data:

Would it be efficient to not resume the available information to the controller to x(t) or x(t−h)
but to consider also the projections Ω(xt) in the design of static controller for delay systems?

Since the projections Ωk(xk) represents a partial information of the functional state xt, it might
be relevant to understand if a static controller of the form u(t) = Kx(t) + Khx(t − h) +∑N

k=0 KkΩk(xt), for some gains K, Kh and Kk, k = 0, . . . , N , can improve the performances
of the closed-loop systems. One may imagine to consider H∞ or LQR criteria, to evaluate the
possible improvement.

If the answer to the previous question is positive, then, the next natural questions are the following
ones.



86 CHAPTER 4. CONCLUSIONS AND PERSPECTIVES

Finite dimensional observers:

Can we built an observer for the time-delay systems to estimate the projections Ωk(xt) in the
design of static controller for delay systems?

Indeed, as showed in Chapter 2, the dynamics of the projections depends on Ω(xt) and on
x(t) and/or x(t − h). The remaining question would be to understand the observability or
detectability properties of the time-delay system in order to ensure the convergence of the
observer. Moreover in light of the approximation (4.6), this also mean that this new class of
observers for delay systems would represent a finite dimensional observer for delay systems,
which might be relevant for numerical applications.

Model reduction and predictor controllers:

Could the projections Ωk(xt) be employed to make the discretization process of predictor-
based controllers more robust?

The frameworks of model reduction and of predictor-based controllers have been very popular
over the last years (see for instance [202, 201, 178, 179] and the references therein). De-
spite their theoretical efficiency, such a class of controllers are of infinite dimensional nature.
Therefore, the numerical implementation is a key issue when implementing numerically such
controllers. This discretization is often or always performed by dividing the delay interval in
small pieces. One may find in the approximation (4.6) using projections, a better and more
robust way of implementing the controller. As a non negligible counterpart of this method, the
Lyapunov analysis would include the stability of the closed-loop system and the discretization
of the controller, in a single and global manner.

4.4 Stability and control of linear infinite dimensional systems

Infinite dimensional systems are characterized by an infinite-dimensional state function x(t, u) where
t is the time variable and where u is the spatial variable considered over a given interval. In the case
of time-delay systems, the state function may be characterized by x(t, u) = χ(t− (1− u)h), where
h > 0 is the delay and for any u in [0, 1]. It allows representing the past values of the instantaneous
vector over the delay interval [t − h, t]. In the case of 1-dimensional distributed parameter system,
the same interval [0, 1] is generally considered but no direct expression as in the case of time-delay
systems can be obtained. The positions u = 0 and u = 1 represent the boundary positions of the
distributed parameter system. This characteristic represents the major difficulty to extend classical
results obtained in the context of (finite dimensional) linear time-invariant systems to linear infinite
dimensional systems driven by Partial Differential Equations (PDEs).



4.4. STABILITY AND CONTROL OF INFINITE DIMENSIONAL SYSTEMS 87

4.4.1 Stability of coupled linear ODE-PDE systems

There exists strong links between time-delay systems and systems driven by PDEs. For example, let
us consider the following delay systems driven by the linear dynamics

{
ẋ(t) = Ax(t) + Adx(t− h) ∀t ≥ 0,
x(t) = φ(t) ∀t ∈ [−h, 0],

(4.7)

where x(t) is the instantaneous state vector, h > 0 a constant delay and φ the function representing
the initial conditions. In order to show the relationship with distributed parameter systems, we recall
that the time-delay system (4.7) can be rewritten as the interconnection of an LTI system with a
transport PDE (see for instance [101, 135, 159, 222, 261]) given by


ẋ(t) = Ax(t) + Adz(0, t),
∂

∂t
z(t, u) = ν

∂

∂u
z(t, u), ∀u ∈ [0, 1], hν = 1

z(t, 1) = x(t)

(4.8)

where z is the functional state of the transport equation. Following the same framework as in [297],
the sequence of Legendre polynomials allows providing an efficient approximation method of the
infinite-dimensional state. Several questions arise from the previous argumentation.

Control design:

Does this methodology apply for the stability analysis and stabilization of any infinite-
dimensional systems?

We want to derive simple and finite dimensional stability criteria, i.e. Linear Matrix Inequali-
ties, which are easily implemented on Matlab, instead of Linear Operator Inequalities, which
can be only seen as a theoretical tool.

Definition of stability:

While systems (4.7) and (4.8) represent the same dynamic, the notion of stability for both
systems differs notably. Therefore which kind of stability can be guaranteed for the PDE-ODE
system?

Indeed, stability of time-delay system (4.7) can be assessed using the Lyapunov-Krasovskii
theorem, which is related to the supremum norm of the state, i.e. supθ∈[−h, 0] ‖xt(θ)‖. For PDE

systems (4.8), stability is related to the L2 norm of the state, i.e. ‖x(t)‖+
√∫ 1

0
‖z(t)‖2. Both

stability criteria are then different even if the resulting LMI stability conditions are exactly the
same as shown in [28]. Further investigations in this direction need to be undertaken.
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Lyapunov design:

Do other classes of orthogonal functions than Legendre polynomials exist that are suitable for
the analysis depending on the systems under consideration?

For instance, one may look at Laguerre or Tchebitchev polynomials or at trigonometric func-
tions among many others possibilities, which would be associated to other class of inner prod-
ucts, and hence to other class of Lyapunov functionals.

Several contributions in this new and promising direction of research have been already per-
formed during the last year with the PhD students M. Safi and M. Barreau co-supervised with L.
Baudouin and F. Gouaisbaut, respectively. On a first hand we have conducted a stability analysis for
linear transport PDE interconnected to a linear ODE systems as presented in (4.8) in [28, 267, 266].
Even if this system can be rewritten as a time-delay system, it has been relevant to figure out what
were the main differences when establishing asymptotic or exponential stability. As a first sight,
time-delay systems have the particularity of having specialized versions of the Lyapunov Theorem,
namely the Lyapunov Krasovskii and Rhazumikin theorems which does not hold any more for sys-
tem (4.8). When one wants to assess stability of (4.8), one has to specify the norm associated to the
Lyapunov functionals. We have noticed in [267] that stability in the sense of Lyapunov-Krasovskii
implies the stability in the sense of the L2 norm but the reverse is not true. These first contribu-
tions have allowed us to understand the main difficulties arising from infinite dimensional nature of
PDE systems and also helped us to understand several mechanisms that are usually considered in
the time-delay systems theory, which are apparently similar but would deserve more attention. For
instance, the use of terms

∫ 0

−h x
T
t (u)Rxt(u)du does not lead to the same class of stability as the same

terms but with the time-derivative ẋt instead of xt. From a numerical point of view, the second term
leads to less conservative results but stability is ensured over a much restricted set compared to the
first one. This PDE modeling also gives us some inch to understand the link between the discretized
Lyapunov-Krasovskii functional developed by K. Gu in [132, 134] and the one adapted to the use of
the Bessel-Legendre inequality. This issue needs to be formalized in future works.

Further investigations on other classes of PDE systems have been already considered. In our
recent papers [27, 26], we considered the situation of the simplest heat equation interconnected to a
linear ODE systems. The results seem already promising and would deserve more attention. To give
a flavor of the result, in [26], we have considered the interconnected heterogeneous system given by

ẋ(t) = A0x(t) +Bz(0, t),
∂

∂t
z(t, u) = γ

∂2

∂u2
z(t, u), ∀u ∈ [0, 1],

z(t, 1) = KCx(t),
∂

∂u
z(t, 0) = 0,

(4.9)

where x and z are the state of the ODE and the functional state of the heat equation, respectively and
where the matrices A0, B and C are the same as in Example 2 of Chapter 2 presented in equation
(2.47), K is a scalar and γ is the diffusion coefficient. Thanks to a stability analysis issue from the
application of Bessel-Legendre inequality, LMI stability conditions have been obtained, which lead
to the stability map in the plan (K, γ) presented in Figure (4.3) and which demonstrates the potential
of the Bessel-Legendre methodology.
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Figure 4.3: Stability region in the plan (K, γ) for N = 0, . . . , 12.

In the context of the PhD of M. Barreau, we have studied a similar situation but with the string
(or wave) equation instead of the heat equation leading to the contributions of [24]. In both cases,
the key issues are related to the use of Bessel inequality together with the properties of the Legendre
polynomials. The potential of the method relies also on the fact that tractable and efficient stability
tests have been developed in the LMI framework.

We are at the very beginning of this study on wider classes of infinite dimensional systems where
our expertise on time-delay systems was a key. Therefore, similar perspectives on the design of finite
dimensional controller and observers for infinite dimensional systems also hold and would require a
lot of my attention during the following years.

4.4.2 Stabilisation of PDE systems and backstepping methods
If the stability issue is successful, the next step consists naturally in the design of controller for PDE
systems. One may consider two distinct control actions to a PDE equation. Indeed, one may act in
a distributed way in the domain, Ud(t, u), or at the boundaries of the domain Ub(t) as shown in the
following equation, which extends system (4.9) to the case of the stabilization problem

ẋ(t) = A0x(t) +Bz(0, t),
∂

∂t
z(t, u) = γ

∂2

∂u2
z(t, u) +BdUd(t, u), ∀u ∈ [0, 1],

z(t, 1) = KCx(t) +BbUb(t),
∂

∂u
z(t, 0) = 0,

(4.10)

where x and z are the state of the ODE and the functional state of the heat equation. Compared to
the previous system (4.9), the two additional matrices Bd and Bb represent two input matrices of
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appropriate dimensions. The objective becomes to find feedback law Ud and Ub, which stabilize the
closed-loop system. Such a problem has been already addressed in the literature. The reader may
look at [272, 271] for distributed control action (Ud) or boundary control actions [178, 179, 165, 336]
to cite only few. The main idea I envisioned, which is not directly related to the backstepping or
predictive approaches, would be to design feedback laws which depend on the projections of the
infinite dimensional state function z, i.e.

Ωk(t) =

∫ 1

0

Lk(u)z(t, u)du, k = 0, . . . , N,

where N ∈ N is any positive integer. This would lead to state feedback laws of the form

Ud(t, u) =
N∑
k=1

Kk
dΩk(t)Lk(u),

for the distributed control input and

Ub(t) =
N∑
k=1

Kk
b Ωk(t),

for the boundary control input. As for delayed or sampled-data systems, the main challenge would
be to provide constructive stabilization conditions, expressed in terms of LMIs, which, if verified,
deliver the controllers gains Kk

d and Kk
b , for k = 1, . . . , N .

As a comment, we keep in mind that the variables Ωk’s represent the projections of the infinite di-
mensional state function z. Therefore controllerUb can also be rewritten asUb(t) =

∫ 1

0
K(u)z(t, u)du,

where K(u) =
∑N

k=1 K
k
2Lk(u). One may recover the classical structure of boundary controller

resulting from the application of the backstepping method. The similarity with this very popular
method let us think that this proposed control structure is relevant. If we can find such stabilization
conditions, our method may lead to an interesting alternative to the backstepping method.

A major drawback of the control laws presented above is that they require the complete knowl-
edge of the state. If not, one has to introduce an observer to estimate these projections Ωk. This is
also a relevant problem strongly related to the problem of finite dimensional observers for time-delay
systems described earlier in this chapter. It might allow be relevant to design finite-dimensional ob-
servers for a larger class of infinite dimensional systems than the sole class of time-delay systems.
This idea is now new since a similar problem has been already addressed in [65]. However, the
idea of using Bessel-Legendre inequalities together with the use of the associated projections Ωk(z)
represents, according to me, both a challenging problem and a relevant opportunity for future works.

4.4.3 Sampled-data and event-based control of PDE
Finally, after presenting some perspectives on time-delay systems, sampled-data systems and infinite
dimensional systems, the last natural perspective of research would be to consider a mixture of all the
methods to address the problem of sampled-data control of PDE systems. By sampled-data control
of infinite dimensional systems, we may consider the problem of robust sampled-data control, where
the problem is to evaluate the robustness of controller with respect to the perturbation induces by
a periodic or asynchronous sampling or it may also corresponds to the case of event-triggered con-
trol, where, again, the sampling instants are seen as additional degrees of freedom. One of the first
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difficulty that one has to face when considering this problem is the well-posedness of the problem.
Indeed, the existence and unicity of solutions to an infinite dimensional systems subject to discontinu-
ous input has to be considered with precaution. To this end, the works of [85, 142, 167, 181, 235, 254]
have already addressed this issue and will be probably of great help.

Concerning the robust case, there already exists several work in the literature as for instance
in [102, 103, 167, 272]. Once and if the previous perspectives on the stability analysis of infinite-
dimensional systems are feasible, the natural step would consists in applying the methodologies
employed in Chapter 3 on sampled-data control of finite dimensional systems. A relevant question
becomes:

Robust sampled-data control:

It is possible to extend the loop-functional method to the case of infinite dimensional systems?

Answering to this question would allow us to straightforwardly apply the same procedure as
the one presented in Chapter 3. Nevertheless, to do so, the main difficulties, according to me
would be to ensure that the system behaves well during the inter sampling interval.

Concerning the event-triggered control scheme, one can already find several solutions in the lit-
erature. Following the idea of event-triggered control for finite-dimensional systems and, potentially,
the previous item on robust sampled-data analysis of PDE systems, I think it would be relevant to
address this problem. One can already see in the literature several results in this direction. The reader
may refer to [85, 86, 348] for hyperbolic systems and to [270] for distributed parameter systems. The
main question becomes

Event-triggered control:

It is possible to extend the methodologies applied for the finite dimensional case to the infinite
one?

The main direction for the next research would be to understand how the design and co-design
methods provided in my earlier research on finite dimensional systems [312, 315] can be
adapted in an efficient manner to the infinite dimensional case.
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[179] M. Krstic and A. Smyshlyaev. Boundary control of PDEs: A course on backstepping designs, 2008.

[180] Y. Labit, D. Peaucelle, and D. Henrion. SeDuMi interface 1.02: a tool for solving LMI problems with SeDuMi.
In Computer Aided Control System Design, 2002. Proceedings. 2002 IEEE International Symposium on, pages
272–277. IEEE, 2002.

[181] P.-O. Lamare, A. Girard, and C. Prieur. Switching rules for stabilization of linear systems of conservation laws.
SIAM Journal on Control and Optimization, 53(3):1599–1624, 2015.

[182] N.E. Leonard, D.A. Paley, F. Lekien, R. Sepulchre, D.M. Frantatoni, and R.E. Davis. Collective motion, sensor
networks and ocean sampling. Proceedings of the IEEE, 95(1):48–74, 2007.

[183] K. Li and J. Baillieul. Robust quantization for digital finite communication bandwidth (dfcb) control. IEEE Trans.
on Automatic Control, 49(9):1573–1584, 2004.

[184] X. Li and C.-E. de Souza. Criteria for robust stability and stabilization of uncertain linear systems with state delay.
Automatica, 33:1657–1662, 1997.

[185] X. Li, H. Gao, and K. Gu. Delay-independent stability analysis of linear time-delay systems based on frequency
discretization. Automatica, 70:288–294, 2016.

[186] D. Liberzon and A.S. Morse. Basic problems in stability and design of switched systems. IEEE Control systems,
19(5):59–70, 1999.

[187] Z. Lin, B.A. Francis, and M. Maggiore. Necessary and sufficient graphical conditions for formation control of
unicycles. In IEEE Trans. on Automatic Control, 2007.

[188] K. Liu and E. Fridman. Discontinuous Lyapunov functionals for linear systems with sawtooth delays. In Proceed-
ings of the 8th IFAC Workshop on Time-Delay Systems, September 2009.

[189] K. Liu and E. Fridman. Stability analysis of networked control systems: a discontiuous Lyapunov functional ap-
proach. In Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai,
China, 2009.

[190] K. Liu and E. Fridman. Wirtinger’s inequality and Lyapunov-based sampled-data stabilization. Automatica,
48(1):102–108, 2012.

[191] K. Liu and A. Seuret. Comparison of bounding methods for stability analysis of systems with time-varying delays.
Journal of the Franklin Institute, 354(7):2979–2993, 2017.

[192] K. Liu, A. Seuret, and Y. Xia. Stability analysis of systems with time-varying delays via the second-order bessel-
legendre inequality. Automatica, 76(2):138–142, 2017.

[193] J. Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In Computer Aided Control Systems
Design, 2004 IEEE International Symposium on, pages 284–289. IEEE, 2004.

[194] I. Lopez, J.L. Piovesan, C.T. Abdallah, D. Lee, O. M. Palafox, M. Spong, and R. Sandoval. Pratical issues in
networked control systems. In American Control Conference, Minneapolis, US, June, 2006.

[195] J. Louisell. Delay differential systems with time-varying delay: New directions for stability theory. Kybernetika,
37(3):239–251, 2001.

[196] D.G. Luenberger. An introduction to observers. IEEE Trans. on Automatic Control, 16:596 – 602, 1971.

[197] J. Lunze and D. Lehmann. A state-feedback approach to event-based control. Automatica, 46(1):211–215, 2010.

[198] B.G. Marieke, M. Cloosterman, N. Van de Wouw, W.P.M.H. Heemels, and H. Nijmeijer. Stability of networked
control systems with uncertain time-varying delays. IEEE Trans. on Automatic Control, 54(7):1575–1580, 2009.



102 BIBLIOGRAPHY

[199] J.A. Marshall, M.E. Brouck, and B.A. Francis. Formations of vehicles in cyclic pursuit. IEEE Trans. on Automatic
Control, 49(11):1963–1974, 2004.

[200] S. Martı̀nez, J. Cortes, and F. Bullo. Motion coordination with distributed information. IEEE Control Systems
Magazine, 27(4):75–88, 2007.

[201] F. Mazenc, M. Malisoff, and S.-I. Niculescu. Reduction model approach for linear time-varying systems with
delays. IEEE Trans. on Automatic Control, 59(8):2068–2082, 2014.

[202] F. Mazenc, S.-I. Niculescu, and M. Krstic. Lyapunov-Krasovskii functionals and application to input delay com-
pensation for linear time-invariant systems. Automatica, 48(7):1317–1323, 2012.

[203] F. Mazenc and C. Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Math-
ematical Control and Related Fields, 1(2):231–250, 2011.

[204] X. Meng and T. Chen. Event based agreement protocols for multi-agent networks. Automatica, 49(7):2125–2132,
2013.

[205] Y.V. Mikheev, V.A. Sobolev, and E.M. Fridman. Asymptotic analysis of digital control systems. Autom. Remote
Control, 49(9):1175–1180, 1988.

[206] P. Millán, L. Orihuela, C. Vivas, and F.R. Rubio. Distributed consensus-based estimation considering network
induced delays and dropouts. Automatica, 48(10):2726–2729, 2012.

[207] P. Millán, A. Rodrigues del Nozal, L. Zaccarian, L. Orihuela, and A. Seuret. Distributed implementation and
design for state estimation. In IFAC 2017 World Congress The 20th World Congress of the International Federation
of Automatic Control, 2017.

[208] L. Mirkin. Exponential stability of impulsive systems with application to uncertain sampled-data systems. IEEE
Trans. on Automatic Control, 52(6):1109–1112, 2007.

[209] L. Mirkin. Some remarks on the use of time-varying delay to model sample-and-hold circuits. IEEE Trans. on
Automatic Control, 52(6):1009–1112, 2007.

[210] A. Molin and S. Hirche. On the optimality of certainty equivalence for event-triggered control systems. IEEE
Trans. on Automatic Control, 58(2):470–474, 2013.

[211] Y.S. Moon, P.G. Park, W.H. Kwon, and Y.S. Lee. Delay-dependent robust stabilization of uncertain state-delayed
systems. International Journal of Control, 74(14):1447–1455, 2001.

[212] C.-I. Morarescu. Qualitative analysis of distributed delay systems: Methodology and algorithms. PhD thesis, Ph.
D. thesis, University of Bucharest/Université de Technologie de Compiègne, 2006.
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[251] R. Postoyan, A. Anta, D. Nešić, and P. Tabuada. A unifying Lyapunov-based framework for the event-triggered
control of nonlinear systems. In Decision and Control and European Control Conference (CDC-ECC), 2011 50th
IEEE Conference on, pages 2559–2564. IEEE, 2011.
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