
HAL Id: tel-01886622
https://laas.hal.science/tel-01886622v1

Submitted on 3 Oct 2018 (v1), last revised 18 Oct 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal control and machine learning for humaoid and
aerial robots
Mathieu Geisert

To cite this version:
Mathieu Geisert. Optimal control and machine learning for humaoid and aerial robots. Automatic.
Institut national des sciences appliquées de Toulouse, 2018. English. �NNT : �. �tel-01886622v1�

https://laas.hal.science/tel-01886622v1
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ FÉDÉRALE
TOULOUSE MIDI-PYRÉNÉES

Délivré par :

l’Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse)

Présentée et soutenue le 23/04/2018 par :
Mathieu GEISERT

OPTIMAL CONTROL AND MACHINE LEARNING FOR
HUMANOID AND AERIAL ROBOTS

JURY
Juan CORTÈS Directeur de Recherche Président du Jury
Karen LIU Assistante Professeur Membre du Jury
Pierre-Yves OUDEYER Directeur de Recherche Membre du Jury
Jonas BUCHLI Professeur Membre du Jury
Stéphane DONCIEUX Professeur des Universités Membre du Jury

École doctorale et spécialité :
EDSYS : Robotique 4200046

Unité de Recherche :
Laboratoire d’Analyse et d’Architecture des Systèmes

Directeur de Thèse :
Nicolas MANSARD

Rapporteurs :
Pierre-Yves Oudeyer et Karen LIU

i

Cette thèse est dédicacée à ma mère et à tous les gens qui m’ont poussé à aller
toujours plus loin.

ii

Remerciements

Je remercie en premier mon directeur de thèse Nicolas Mansard qui m’a suivi tout
au long de cette thèse, qui a su m’orienter, me motiver et m’aider à accomplir ce
travail. Je remercie aussi tout particulièrement Olivier Stasse qui m’a introduit à la
robotique humanoïde, m’a énormément appris et soutenu pendant toute la période
que j’ai passée au LAAS. Je remercie aussi Florent Lamiraux, sans qui je ne serais
probablement pas resté au LAAS et Andrea Del Prete qui a réussi à me montrer
comment être plus rigoureux lors de notre collaboration. Plus généralement, je re-
mercie toute l’équipe Gepetto car le travail de thèse n’est pas un travail solitaire,
c’est un travail d’équipe avec des collaborations scientifiques, du partage de connais-
sance, de logiciel et de tâche. Je remercie Justin Carpentier de m’avoir guidé sur
beaucoup de points scientifiques et techniques, Joseph Mirabelle et Guilhem Saurel
pour tous leurs conseils informatiques, Maximillien Naveau et Mehdi Benallegue
pour toutes ces petites discussions sans buts, mais qui au final permettent de mieux
cerner les problèmes sur lesquels nous travaillons. Je remercie Florent Lamiraux,
Joseph Mirabelle et plus particulièrement Steve Tonneau et Pierre Fernbach pour
l’énorme travail qu’ils font pour développer le logiciel de planification de l’équipe
et les algorithmes associés, et sans qui je n’aurais jamais pu faire une partie de
mon travail sur l’apprentissage automatique. Je remercie aussi toutes les personnes
qui travaillent sur le robot et les logiciels associés, c’est-à-dire Olivier Stasse, An-
drea Del Prete, Thomas Flaviol, Justin Carpentier, Nicolas Mansard, Maximilien
Naveau, Guilhem Saurel, Kévin Giraud, Florent Forget, Rohan Budhiraja, Alexis
Mifsud, Mehdi Benallague car sans eux les tests sur nos plateformes robotiques
seraient impossibles. Je remercie toute l’équipe Gepetto pour sa bonne ambiance
et tous les liens extrêmement forts d’amitié que j’ai eus pendant ces 5 ans et par-
ticulièrement avec Maximilien Naveau et Mylène Campana. Pour finir, je veux
remercier mes colocs, Ellon Paiva Mendes, Petra Mulloreva, Quang Hung Nguyen,
Nassime Blin et Shuai Wang avec qui nous formons une vraie famille et avec qui j’ai
passé de très bons moments ici à Toulouse Un dernier mot pour remercier Philippe
Souères, le LAAS, sa direction et son équipe administrative qui font un travail de
gestion important et qui permet aux étudiants, comme moi de se concentrer sur les
travaux techniques et scientifiques.

Contents

Introduction 1
0.1 Robots and Locomotion . 1

0.1.1 Legged Robots . 2
0.1.2 Humanoid Robots . 3

0.2 Thesis presentations . 4

1 Humanoid Robotics 7
1.1 Humanoid Robotics: what remains to be solved? 7
1.2 Underactuation . 9

1.2.1 Underactuated systems . 9
1.2.2 Control of underactuated systems 10
1.2.3 Underactuation in Humanoid Robotics: predictive approaches 12
1.2.4 Personal contribution: application to aerial robots 13

1.3 Redundancy . 15
1.3.1 Using redundancy to solve multiple tasks 15
1.3.2 Hierarchy of Tasks . 16
1.3.3 The Stack of Tasks . 16

1.4 Underactuation and redundancy . 17
1.4.1 Decoupled approaches . 17
1.4.2 Mixed approaches . 18
1.4.3 Coupled approaches . 19
1.4.4 Personal contribution: Regularized Hierarchical Differential

Dynamic Programming (RHDDP) 21
1.5 Interaction with the environment . 21

1.5.1 Decoupled approach . 22
1.5.2 Coupled approach . 25

1.6 Contributions Summary . 30

2 Trajectory Generation for Quadrotor Based Systems 33

Trajectory Generation using Numerical Optimal Control 35
2.1 Introduction . 35
2.2 Optimal Control . 36

2.2.1 Indirect and Direct Approaches 36
2.2.2 Direct Approaches . 37
2.2.3 Direct Multiple Shooting . 38
2.2.4 Sequential Quadratic Programming (SQP) 39
2.2.5 Model Predictive Control (MPC) 40

2.3 System Dynamics . 41
2.3.1 Quadrotor . 41

iv Contents

2.3.2 Quadrotor with Pendulum . 41
2.3.3 Aerial Manipulator . 43

2.4 Implementation Details . 44
2.4.1 Initial Guess . 44
2.4.2 Obstacle Avoidance . 44
2.4.3 Rotations . 45
2.4.4 Experimental Setup . 45

2.5 Results . 46
2.5.1 Non-Optimal Trajectories . 46
2.5.2 High-dynamic maneuvers . 46
2.5.3 Point-to-point Trajectories Through Obstacles 55
2.5.4 Pick and Place . 61
2.5.5 Manipulation Tasks . 64

2.6 Application: Smart Teleoperation . 64

Warm-starting the Nonlinear Predictive Controller 73
2.7 Warm start in MPC . 73
2.8 Iterative Roadmap Extension and Policy Approximation (IREPA) . 74
2.9 Results . 75

2.9.1 Setup . 76
2.9.2 System dynamics and cost . 76
2.9.3 Approximators . 76
2.9.4 Computational setup . 76
2.9.5 Offline phase . 76
2.9.6 IREPA convergence . 76
2.9.7 Propagation of the PRM . 80
2.9.8 Results of the offline phase 82
2.9.9 Online phase . 82

2.10 Conclusion . 87

3 Regularized Hierarchical Differential Dynamic Programming 89
3.1 Introduction . 89

3.1.1 The Role of Regularization 90
3.1.2 State of the Art . 91
3.1.3 chapter Overview . 92
3.1.4 Notation . 92

3.2 Hierarchical Quadratic Programming (HQP) 93
3.2.1 Problem Statement . 93
3.2.2 Regularizing the Problem . 93
3.2.3 Reformulating the Priority Constraints 94
3.2.4 Solving the Second Minimization 95
3.2.5 Solving the Whole Hierarchy 95
3.2.6 A Simple Example . 95

3.3 Parametric Hierarchical Quadratic Programming (PHQP) 97

Contents v

3.4 Hierarchical Dynamic Programming 98
3.4.1 Problem Statement . 98
3.4.2 Dynamic Programming with Regularization 99
3.4.3 Introducing the Hierarchy . 100
3.4.4 Reformulation of the Regularized Problem 101
3.4.5 Final HDP Formulation . 102

3.5 Hierarchical Differential Dynamic Programming 102
3.5.1 Quadratic Differential Approximation 102
3.5.2 Backward Pass . 103
3.5.3 Regularizing the Optimization 104
3.5.4 Order of the Operations . 104
3.5.5 Forward Pass (Line Search) 105
3.5.6 Improving the algorithm . 106
3.5.7 Algorithm Summary . 108

3.6 Simulations . 108
3.6.1 Test 1: PR2 - Final Cost . 109
3.6.2 Test 2: PR2 - Integral Cost 110
3.6.3 Test 3: Cart-Pole . 113
3.6.4 Test 4: UR5 - Sequential Tasks 115

3.7 Discussion . 119
3.8 Conclusions . 121

4 Pose Learning 123
4.1 Introduction . 123

4.1.1 Feasibility conditions . 123
4.1.2 Stability for biped walkers . 125
4.1.3 State of the art . 126

4.2 Summary of the approach . 126
4.3 Data Generation . 127

4.3.1 What do we want to learn? 127
4.3.2 Sampling space . 128
4.3.3 Implementation of the sampler 133

4.4 Learning . 134
4.4.1 Gaussian Mixture Model . 135
4.4.2 Learning the data . 137

4.5 Results . 137
4.5.1 Implementation details . 137
4.5.2 Offline phase . 138
4.5.3 Stable poses on a simple environment 139
4.5.4 Predicting stable poses . 140
4.5.5 Online query . 145
4.5.6 Integration to a path planner 148

4.6 Conclusion . 150

vi Contents

Conclusion 153

A Quadrotor based Systems 155
A.1 Costs weights and dynamic variables 155

B RHDDP 157

Bibliography 159

Introduction

0.1 Robots and Locomotion

The twentieth and now twenty-first centuries have seen flourish robots almost every-
where. Starting from expensive yet limited robotic arms in industries, robots now
populate the world and evolve on lands, seas and also skies. From fixed-base sys-
tems like the industrial robots solidly screwed to the ground, robots are now given
the ability of locomotion. Robots can evolve in an entire factory as the robots in
the warehouses of Amazon(Fig. 1). The development of safe and robust controllers
allows robots to get out to public environments like shops, metro stations or even
streets (Fig. 2). Moreover, technologies come now at an affordable price so robots
are becoming tools not only used by companies but also by private individuals (Fig.
3). From all those examples of mobile robots we can see a common characteristic.
All those robots are wheeled robots i.e. they use wheels to move in their environ-
ment. Wheeled locomotion is simple and efficient way to move but come at a certain
cost: the floor needs to be even. This limitation can be particularly incapacitat-
ing when moving in wild environments but also in human environments like towns.
Sidewalks or stairs are insurmountable obstacles for wheeled robots. Moreover, in
the cases of natural catastrophes like earthquakes, even wheel-friendly environments
quickly become impracticable for those robots. Improving locomotion capabilities
of robots can be done by changing the physical principle used. Instead of slip-free
rolling principle, locomotion can take advantage of contact transition (i.e. legged
locomotion) or aerodynamics (i.e. aerial locomotion). The main purpose of the
work presented in this thesis is to propose motion generation strategies able to take
advantage of the extended mobility of aerial and legged robots, with an accent on
the latest.

(a) KUKA robots in a car factory (b) Amazon warehouse

Figure 1: Factory/warehouse robots.

2 Contents

(a) The inventory robot of PAL Robotics (b) The cleaning robot of Taski

(c) The autonomous shuttle of Navya

Figure 2: Public-environment robots.

(a) Spider vacuum cleaner (b) Tesla self-driving car

Figure 3: Robots for private individuals.

0.1.1 Legged Robots

Legged robots use articulated kinematic chains to generate contact with the envi-
ronment and exploit reaction and friction forces to move their body. Legged robots
have shown great capabilities to go through uneven terrains but also to climb or
jump if needed (Fig. 4).

0.1. Robots and Locomotion 3

(a) 1-leg robot Salto (b) 4-leg robot HyQ

(c) 6-legs walking tractor of John Deer

Figure 4: Legged robots/machines.

0.1.2 Humanoid Robots

Our world has been reshaped by humans for humans. We have been constructing
our environment following our morphology: floors, doors, stairs, walkways have all
been designed at human scale. Moreover, all tools have also been designed to be
used by humans i.e. for beings with two arms and human hands. While for early
manipulator robots, robots were surrounded with cages to avoid any unplanned
obstacles and railways were installed to ease robot locomotion, we are now able
to adapt robots to the environment instead of the opposite. In a human world,
humanoid robots are intrinsically well designed to evolve in this world. For instance,
dog robots are great to walk outside but would not be able to reach the top drawer
in a kitchen or to use an electric drill although human-shape robots could (Fig.
5). In that sense, we are more specifically interested in biped robots (able to
walk in narrow cumbersome spaces) with advanced bi-arm manipulation capabilities
and perception: humanoid robots! Thanks to the minor environment and tool
adaptations that would need humanoid robots, industries like Airbus start to see
the industrial potential of such robots [Stasse 2014] (Fig. 6).

4 Contents

Figure 5: Gepetto Humanoid Robots: HRP-2, Romeo and Pyrene [Stasse 2017].

Figure 6: Interactive planning for an Airbus project.

0.2 Thesis presentations

In this document we study generic methods to make legged or aerial robots evolve
on uneven and/or cluttered environments. Our claim here is that a combination of
online Model Predictive Control (i.e. direct numerical resolution of Optimal Control
Problems while the robot is moving) and offlineMachine Learning (i.e. construction
of simple models from offline simulations) are key elements to solve such complex
problems in a generic manner. The first chapter of this document introduces the

0.2. Thesis presentations 5

contributions through an analysis of the locomotion problem in humanoid robotics.
We will show that this problem raises several difficulties like underactuation, redun-
dancy or nonconvexity. We analyze the approaches used to solve them and propose
new methods or new applications. Chapter 2 acts as a motivation of our research by
reporting the application of direct numerical optimal control on flying robots. The
first part of this chapter will show how this technique can be used to easily solve
complex tasks like optimal time trajectories or pick and place tasks. Moreover, we
will show that this technique is fast enough to be used online, and could be directly
used to help a teleoperator to navigate in a cluttered environment. The second part
will briefly show how learning methods can be used to improve the computation
times and the efficiency of the results. The rest of the thesis propose modifications
and increment to the nominal Model Predictive Control paradigm. In Chapter 3,
we address the problem of defining more complex tasks, as it typically arises in
humanoid robotics, when multiple terms enter in the cost function and must be
ordered into a strict hierarchy. In Chapter 4, we work on the preliminary planning
phase, needed to start the Model Predictive Control search in the locomotion con-
text. We show how learning techniques can be used to efficiently take into account
geometric or dynamic constraints to choose a path.

6 Contents

ïż£

Chapter 1

Humanoid Robotics

1.1 Humanoid Robotics: what remains to be solved?

Researchers have succeeded in generating very impressive motions with humanoid
robots. As we can see on different videos published by Boston Dynamics, their
robots are able to walk on various terrains such as structured environments (Fig.
1.1a), natural scabrous terrains (Fig. 1.1b) and slippery surfaces (Fig. 1.1c). They
are also able to stay stable after high perturbations (Fig. 1.1d).

(a) Walking inside (b) Walking outside

(c) Walking on slippery terrain (d) Rejecting perturbation

Figure 1.1: c©Boston Dynamics Achievements

However humanoid robotics is one of the most difficult disciplines roboticists are
trying to solve. If we have a look on the last DARPA Robotic Challenge (DRC), we
can see by the number of falls that the problem is still unsolved (Fig. 1.2). Why?

8 Chapter 1. Humanoid Robotics

Figure 1.2: Humanoid robots falling at the DRC.

Because humanoid robotics aggregates a bench of challenges that are already
difficult to solve by themselves:

• High-dimensional systems: most humanoid robots have at least thirty Degrees
of Freedom (DoF) and they all need to be actuated simultaneously to generate
proper motions.

• Nonlinear dynamics: humanoid robots are made of a succession of rotational
joints which introduce nonlinear effects. Thus, any problem involving a cine-
matic chain is likely to be nonconvex.

• Underactuated systems: humanoid robots do not have motors to directly
move their body in the world, they actually are underactuated systems. In
fact, balance is challenging and needs to be precisely controlled to be stabilized
during a movement.

• Motion redundancy: a task like grasping an object involves up to 7 DoF
although humanoid robots achieve it by a coordination of the whole body.

• Robot interaction: humanoid robots move their body in the world by making
contacts with the environment, so they need to manage interactions with the
environment.

• Constrained problems: Among others, joint limits and friction cones must be
respected so the problem is actually a constrained problem.

• Hybrid Systems: To walk, robots also need to change their contacts with
the environment so the problem must respect different dynamics at different
times.

• Discontinuous/non-differentiable/nonconvex problems: humanoid robots
need to choose where they create new contacts and this problem can be dis-
continuous, non-differentiable and/or nonconvex.

• Compliant control: humanoid robots need to support their own weight and
to absorb impacts, so its structure is in comparison lighter and more flexible
than other robots. Then, difficulties can appear to control those flexibilities.

1.2. Underactuation 9

(a) Cart-pole (b) Rotational inverted pendu-
lum

(c) Triple pendulum

Figure 1.3: Examples of experimental underactuated systems.

At the end, we have a nonconvex, high-dimensional, overactuated, redundant, con-
strained, unstable problem with interaction with the environment and a dynamic
that changes. Which is a difficult problem to solve... This chapter introduces the

contributions of this thesis by exploring the challenges of humanoid robotics and
by reviewing the approaches developed by researchers to solve them. Section 1.2
focuses on control of underactuated systems. Next, Section 1.3 describes a method
to control redundant systems and Section 1.4 presents techniques to control sys-
tems with both underactuation and redundancy. Finally, Section 1.5 analyzes how
interactions with the environment (which result in nonconvex problems) can be
managed.

1.2 Underactuation

1.2.1 Underactuated systems

Underactuation is not a problem specific to humanoid robotics. Other experimen-
tal systems such as cart-poles, rotational inverted pendulums or triple pendulums
are underactuated systems (Fig. 1.3). Moreover, they are present in daily life since
segways, cars or planes are also underactuated (Fig. 1.4). A system is said underac-
tuated if it is not able to directly command an arbitrary instantaneous acceleration
of its state. For instance, a cart-pole (on the left picture of Fig. (Fig. 1.3), the sys-
tem is an underactuated system because we cannot control the angular acceleration
of the pole; a car cannot have a lateral acceleration so it is also a underactuated one
(generally a car is said "nonholonom", however a nonholonomic constraint always
results in an underactuated system [Tedrake 2009]).

Designing a controller for a fully-actuated system is easier than for an underac-
tuated one. The trajectory does not need to be taken into account, so a controller
able to reduce the error between the output and the reference will always converge.
The trajectory generated will, of course, change according to the controller param-
eters but any path can still reach the reference. For those systems, a controller can
easily be obtained using feedback linearization [Tedrake 2009]. For underactuated
systems, the system is not able to follow an arbitrary trajectory. Therefore, the

10 Chapter 1. Humanoid Robotics

(a) Segway (b) Cars (c) Planes

Figure 1.4: Examples of well-known underactuated systems.

0 1 2 3 4 5 6 7−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0 1 2 3 4 5 6 7−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 1.5: Examples of trajectory for a cart-pole system. For both trajectories,
the system cannot follow a direct path to the goal position (i.e. the pole always
pointing upward) because the system is underactuated.

controller cannot only take into account the current state of the system and reduce
the error but needs to follow particular trajectories to get to the goal position (Fig.
1.5).

For instance, for a cartpole system, the pole can be regulated to point upward
with a simple state-feedback regulator. However, this regulator cannot directly be
used to make the transition from the pole pointing downward to pointing upward
because it will not select the right trajectory from the starting state to the end state.
To be able to execute this kind of trajectory, the system needs to find a sequence of
controls that sways the pole until it is high enough to be able to stabilize it upward.
So the future states and controls of the system need to be predicted to know which
command needs to be sent right now.

1.2.2 Control of underactuated systems

Different approaches have been proposed to design controllers for underactuated
systems. Lyapunov criterion or Poincaré maps are stability criteria that permit to
mathematically check if a given system can be stabilized. However, there are no
specific ways to obtain a Lyapunov function or to design a controller so this part
is left to the ingenuity of researchers. In this thesis we rather consider optimality
approaches that offer the premise to systematic methods to synthesize controllers.

1.2. Underactuation 11

Optimal Control formulates the control problem as an optimization problem: ob-
jectives, dynamic and system limitations are translated into costs (or rewards) or
into constraints in order to formulate an optimization problem:

minimize
x∈X ,u∈U

∫ T

0
L(x(t),u(t))dt+E(x(T)) (1.1)

subject to
ẋ(t) = f(x(t),u(t)),
h(x(t),u(t))≥ 0, h0(x(0))≥ 0, hT (x(T))≥ 0,
r(x(t),u(t)) = 0, r0(x(0)) = 0, rT (x(T)) = 0,
∀t ∈ [0,T]

(1.2)

where the decision variables are the trajectories in state x : t∈ [0,T]→ x(t)∈X and
in control u : t ∈ [0,T]→ u(t) ∈ U (where X and U are the state and control spaces,
and the underlined symbol is used to differentiate the trajectory from the time
value), L represents the integral (or running) cost, E is the terminal cost, f is the
system dynamics and the h and r functions represent arbitrary constraints. Indirect

Optimal Control uses the Pontryagin’s Maximum Principle or the Hamilton-Jacobi-
Bellman equations to construct a controller. The whole state space is analyzed by
formulating the problem as a set of differential equations. However, in the general
cases the differential equations are too complex to be integrated. Moreover, by an-
alyzing the whole space, those approaches suffer from the curse of dimensionality
i.e. the analysis complexity grows exponentially with the number of dimensions.
Therefore, indirect approaches are mostly used in low-dimensional systems and/or
in systems where the differential equations of indirect problems can be simplified
enough to be integrated. These techniques are designed to find policies (i.e. con-
trollers which give a command according to the current state) without predicting
the future trajectory. Actually, the trajectory prediction is taken into account of-
fline when constructing the policies. They are also the theoretical grounding of the
current trend to end-to-end reinforcement learning, made popular by the recent suc-
cess of deep learning. In these approaches, the policy is approximated offline while
only few computations are needed online. In particular, the trajectory that the
robot is going to follow is not computed explicitly. While this direction of research
is indisputably very ambitious, we do not believe that it is yet realistic to apply on
complex dynamic robots, and definitely before years in humanoid robotics. Alterna-
tively, other approaches work by explicitly computing the trajectory that the robot
is going to follow, which we are calling here planning. A very classical approach
in robotics is named here the decoupled approach. This approach solves problems
in two steps. First a feasible robot trajectory is computed offline (planning stage),
i.e. a valid state trajectory in the sense of the dynamics. Secondly, it finds online
the proper controls to track this trajectory and reject perturbations (control stage).
This approach is decoupled in the sense that the planning and the control problems
are separated into two different stages. In particular, the trajectory is not recom-

12 Chapter 1. Humanoid Robotics

puted (or barely recomputed) online. If it is possible, it seems desirable to compute
at the same time both trajectory and control. Thus, at the control frequency, a
trajectory can be found along with the corresponding controls. This last approach
can be regrouped under the name Predictive Control or Preview Control. To pre-
dict trajectories, a model of the robot (and sometimes of the environment) is used
directly or indirectly (i.e. via a simulator). So preview control is often called Model
Predictive Control (MPC). In most cases, preview control is solved using Direct
Optimal Control. Direct optimal control uses numerical algorithms to find the con-
trol commands. The initial Optimal Control Problem (OCP) is directly discretized
into a finite-dimensional space that computer can handle. Then trajectories and
controls can be found by solving the problem using generic numerical optimization
algorithms. Contrary to indirect methods which consider the entire space, direct
methods only consider at each step a local approximation around a reference trajec-
tory (an initial guess or the result of the previous iteration), and therefore, they do
not suffer from integration difficulties and the curse of dimensionality. In practice,
the limit between coupled and decoupled approaches is blurred and it is adapted
to each application. Due to the relative expensiveness of numerical optimization,
MPC is often solved on simplified dynamic problems (e.g. neglecting the propeller
dynamic in aerial robotics, only considering the centroidal dynamics and the Center
of Mass(CoM)/Center of Pressure(CoP) "cart-table" model in biped locomotion)
and at an intermediate frequency between planning (typically 1Hz or less) and
motor control (typically 200Hz or more). For instance, in the next part we will
focus on some applications of preview control on humanoid locomotion, where the
frequencies of the preview controllers are typically around 10Hz.

1.2.3 Underactuation in Humanoid Robotics: predictive ap-
proaches

Because of unilateralism of contact forces, humanoid robots and legged robots in
general need to manage their balance to stand-up or walk. If the robot maintains
static equilibrium all along its trajectory (i.e. quasi-static walking), the system can
be easily controlled. However if we want to achieve a dynamic walk, the torque at
ground level is highly constrained by the size of the foot: the system is underac-
tuated. Moreover humanoid robots can be subject to a high number of perturba-
tions (e.g. non-flat surfaces, slippery surfaces, errors in dynamic models, external
forces...) that preview control can efficiently reject. Therefore preview control has
been shown an effective tool to generate walking patterns for humanoid robots. To
be executed at a high enough frequency, walking algorithms use dynamic properties
to reduce the number of parameters to control. Those controllers are called Walking
Pattern Generator (WPG) or shortly Pattern Generator (PG). The system is often
reduced to a point mass model and can use different stability concepts such as Zero
Momentum Point (ZMP), Capture Point and/or other N-step capturability crite-
ria [Pratt 2006,Wieber 2002]. A very large literature exists for each criterion so this
section will mainly focus on some ZMP based algorithms. Kajita [Kajita 2003] first

1.2. Underactuation 13

(a) Quadrotor for cinema (b) Quadrotor for crops (c) Quadrotor toy

Figure 1.6: Quadrotor applications

introduced preview control to generate CoM trajectories that allow humanoid robots
to walk dynamically. The system was approximated by a Linear Inverted Pendulum
Model (also called "cart-table" model). The objectives were set as a quadratic cost
function (so the optimization problem is unconstrained). Therefore it could easily
be solved as a Linear Quadratic Regulator (LQR). Herdt [Herdt 2010b] reformu-
lated the problem to automatically calculate the footstep positions. The problem
still used a linear model and a quadratic cost but with additional static variables
for the footsteps. To avoid unreachable footsteps and ensure a sustainable walk-
ing [Wieber 2008], linear constraints were added on the position of successive feet
placements and on the final state. The problem was then explicitly constrained and
could not be directly solved with LQR. It was solved using Quadratic Programming
(QP) instead. Naveau [Naveau 2014] kept the cart-table model but increased dif-
ficulty by adding nonlinear constraints (to handle feet orientations and obstacles)
and therefore used Sequential Quadratic Programming (SQP) to solve its problem.
When working with the entire centroidal dynamics (CoM, angular momentum and
all contact forces), the dynamic becomes bilinear. With such a dynamic, Capentier
developed a WPG [Carpentier 2016] where the problem is formulated as a con-
strained OCP with general nonlinear dynamics model. This problem was solved
using an off-the-shelf Multiple Shooting optimal control solver MUSCOD-II [Hoff-
mann 2011] which uses SQP method at its core. As we have seen, preview control
solves more and more complex problems. This evolution has been possible thanks
to the developments on numerical optimization but also to the improvement of
hardware that allows high computation powers in restricted spaces. In the next
section, we will see that Numerical Optimal Control is a generic method which can
be used easily and efficiently on other underactuated robots such as Unmanned
Aerial Vehicles (UAVs).

1.2.4 Personal contribution: application to aerial robots

Quadrotors have seen a great development during the past decade. It gets from
experimental researches to industrial applications (such as cinema, crops analysis
or rail-road surveillance) and even to mass consumption goods since it is now sold
as a toy for adults and children (see Fig. 1.6). Quadrotors have six DoF (the six

14 Chapter 1. Humanoid Robotics

(a) Quadrotor

(b) Quadrotor with pendulum

(c) Aerial manipulator

Figure 1.7: Quadrotor based systems

components of its free-flyer, i.e. three translations and three rotations) for only
four actuators (the four propellers). Using its dynamic equations, we can show that
quadrotors are fully controllable but are underactuated systems. This underactu-
ation results in constraints, where the horizontal accelerations of the system are
constrained by its orientation. The most common approach used for quadrotors is
a decoupled approach i.e. motion generation is divided into two separate stages, a
trajectory planning stage and a trajectory tracking stage. The dynamic properties
of quadrotors allow us to decouple the planning stage and the tracking stage while
insuring feasibility. Feasibility is insured using the differential flatness of quadro-
tors. A system is called differentially flat if there exists a set of linearly independent
variables (called flat output) such as all the state and control variables of the sys-
tem can be expressed as a function of the flat output and a finite number of its
derivatives. In the case of quadrotors, we can show that this system is differentially
flat and, position and heading can be considered as the flat output [Wang 2012].
The trajectory generation is then greatly facilitated since any smooth trajectory of
the flat output can be followed [Mellinger 2011,Faessler 2018]. However, generally
speaking, the constraints used to compute trajectories (i.e. constraints on the flat
output and its derivatives) do not directly correspond to the original constraints
of the system. Therefore, we over-constrain planning to guarantee complete feasi-
bility. For example, linear constraints on trusts become complex when expressed
as functions of the flat outputs so these constraints are generally approximated by
linear constraints on the flat outputs and its derivatives. While some researchers
try to transfer differential flatness to extended systems (e.g. quadrotors with swing-
ing load) or to develop new geometrical properties, we rather believe that MPC is
an efficient alternative that can easily be applied on different systems without any
analytic development. The first part of Chapter 2 focuses on the usage of preview
control to solve different tasks like optimal time reaching (i.e. find the trajectory
which reach a position in the shortest among of time), obstacle avoidance or pick-
ing; on different aerial robots (see Fig. 1.7). Moreover, we will show that this
approach is fast enough to be used online. As an illustration, we will report the

1.3. Redundancy 15

(a) HRP-2 degrees of freedom (b) example of grasping
task (DRC)

Figure 1.8: HRP-2 redundancy

implementation of a teleoperating system to help an operator to safely navigate in
a cluttered environment.

While quadrotors have only one solution to statically catch an object (i.e. hover
mode over the object), humanoid robots have multiple solutions because they are
redundant. In the next section, we will briefly see how redundant systems can be
controlled.

1.3 Redundancy

Redundancy refers to the capacity of a system to execute a given motion in differ-
ent ways. This arises because robots have more DoF than the minimum strictly
needed to perform a given motion. For instance, grasping needs up to seven degrees
of freedom: six for hand position and orientation and one for the gripper prehen-
sion. Therefore, humanoid robots (which have generally over thirty DoF) can be
considered as redundant for these tasks (see example with HRP-2 on Fig. 1.8).

1.3.1 Using redundancy to solve multiple tasks

Redundancy implies that there exists a large state space that can solve a given task.
Therefore, we can select a particular point in this space to solve another task. This
operation can be repeated to solve any number of tasks until there is no degree of
freedom left. Based on the above-mentioned, the notion of task hierarchy can be
introduced. Let’s consider a humanoid robot trying to pick an object. To this end,
the motion can be organized in terms of task priority as follows:

• The highest priority task is the safety of the robot i.e. avoiding collision and
keeping balance.

• The middle priority task would be the picking task itself.

16 Chapter 1. Humanoid Robotics

• Then keeping the object in sight and minimizing torques can be set as low
priority tasks.

Each task will be optimized while making sure it will not affect tasks of higher
priorities. In this manner, we can make sure that the robot will be safe even
if a lower priority task would drive it toward an unsafe state. In our example,
the object that the robot needs to pick can be unreachable because it is located
too far from the current position of the robot. Thus, the hierarchy will solve at
best the picking task while enforcing balance. Equality-constrained optimization
can be seen as a two-level hierarchical optimization, where constraints are the high-
priority level and cost the low one. However, having a full hierarchy permits to solve
problems which would be considered as infeasible for the constrained optimization.
Therefore the recurrent question "should a task be set as a cost or a constraint?"
is inherently solved. Moreover, if constraints cannot be respected at a certain
iteration, a hierarchy can be seen as a way to select which constraints are going to
be relaxed [Sherikov 2016] and to make the relaxed constraints converge according
to their priority.

1.3.2 Hierarchy of Tasks

The notion of "hierarchy of tasks" was first introduced by [Liegeois 1977] where a
two-level hierarchy was used to control the redundancy of a robotic arm. This
concept was then developed to integrate any number of task [Siciliano 1991,
Baerlocher 1998] and to deal with inequalities [Khatib 1986, Chaumette 2001,
Mansard 2008,Kanoun 2011]. Thanks to its robustness and fast computation time,
this technique has been widely used to control humanoids for many years [Gien-
ger 2005,Sian 2004,Baerlocher 2004,Sentis 2004,Mansard 2007]. Hierarchy can be
obtained at the limit of a multi-objective problem where the relative importance
between the objectives is driven to infinity. Consequently it can be approximated
by solving an optimization problem where the cost corresponds to a weighted sum
of the objective functions. However, when the objectives cannot be solved simul-
taneously, the solution does not satisfy any of the objectives and corresponds to
a trade-off between each of them [Zhao 1994,Faverjon 1987]. Moreover, numerical
ill-conditioning is artificially introduced by the large weight ratio, making it diffi-
cult to solve when more than five objectives are considered simultaneously. Seminal
methods for solving a strict hierarchy are based on pseudo-inverses [Siciliano 1991].
The computation of pseudo-inverse for a task permits to solve the task but also
to get a nullspace projector. This nullspace projector can then be used to get a
space where lower-priority tasks can evolve. Strict hierarchy problems were later
rewritten as a cascade of constrained optimization problems, whose iterative reso-
lutions lead to the hierarchized optimum [De Lasa 2009,Kanoun 2011]. A complete
solver implementing a hierarchized active set based on the lexicographic optimal-
ity conditions obtained from the cascade was proposed in the case of quadratic
costs [Escande 2014]. A generalization to non-quadratic costs remains an open
problem [Wieber 2017].

1.4. Underactuation and redundancy 17

1.3.3 The Stack of Tasks

To walk, humanoid robots need to control the trajectory of their feet but also of
their CoM. If they want to catch an object or control their balance as a high-wire
walker, they also need to control their arms. Moreover, each body of the robot must
not enter in collision with the environment or another body. All those tasks can be
incompatible but must be solved to generate a feasible motion. Therefore, hierarchy
of tasks is a key element to control humanoid robots. Such a hierarchy was imple-
mented several years ago in a control software called the Stack of Tasks (SoT). This
software allows to solve inverse kinematics [Mansard 2009,Escande 2010] or inverse
dynamics [Ramos 2014] as a hierarchy of tasks. SoT has been successfully used on
HPR-2 and Romeo, and is being transferred on Pyrene. It has been shown to be
a reliable tool and is the current whole-body controller used for almost all experi-
ments carried out by the Gepetto team. In spite of the fact that hierarchical inverse

kinematics or inverse dynamics provide good results to generate motion, it does not
use any prediction horizon to anticipate its path. Therefore, algorithms based on
this approach can be inefficient if the path needs to avoid several constraints or if
the system is underactuated. In the next section, we present approaches to control
humanoid robots which are both underactuated and redundant.

1.4 Underactuation and redundancy

As we have seen in previous sections, humanoid robots are underactuated and re-
dundant systems. To walk, a humanoid robot needs to control its whole-body
trajectory to move its feet to different positions but also to control the underac-
tuated part of its dynamics i.e. its center of mass trajectory. To cope with this
problem, different approaches have been proposed in the literature which can be
classified as decoupled, mixed or coupled approaches.

1.4.1 Decoupled approaches

A common approach is to decouple these two problems to solve them separately.
We first solve the problem of finding a trajectory for the CoM (and feet) on a
two-steps time window, using a simplified model like linearized inverted pendu-
lum [Kajita 2003,Herdt 2010b,Morisawa 2005,Nishiwaki 2009a,Naveau 2014] or a
point mass model [Carpentier 2016]. Then, the redundant whole-body problem is
solved with hierarchical inverse kinematics (or dynamics) as seen in the previous
section. This approach is currently the most used since it allows to reduce a nonlin-
ear problem of high dimension to two linear (for most of the cited papers) problems
of smaller dimension. However, several difficulties arise from this decomposition.
The solution found by the simplified model can be unfeasible for the whole-body
geometry. To overcome this difficulty, we can add constraints/cost to the pattern
generator to make sure its result stays in the feasibility set of the whole-body robot.
Herdt [Herdt 2010b] used inverse geometry to compute simple linear constraints on

18 Chapter 1. Humanoid Robotics

t

CoM

q̂

Balance on underactuated part

GIK General problem over the preview

Figure 1.9: Decoupled Approach [Naveau 2016].

successive feet placements. Carpentier [Carpentier 2017a] used random sampling
of configurations to generate a cost function able to reveal feasibility of the CoM
position with respect to each contact. Moreover, the simplified model does not
take into account some part of the dynamics like the orientation of the robot since
this variable needs the inertia of the full robot (so its full configuration) to be in-
tegrated. Kajita [Kajita 2010] avoided this problem by assuming that the angular
momentum was regulated to zero by the whole-body controller. However, it gives
rise to constraints that could limit the robot capabilities and there is no certainty
that the whole-body controller could fully achieve such regulation. Carpentier [Car-
pentier 2016] explicitly took into account the angular momentum but minimized
it expecting that the result stayed feasible. To take into account geometric and
dynamic constraints, Herdt and Perrin [Herdt 2010a] tested a posteriori the results
of the final controller (PG and whole-body controller) for different trajectories and
constructed bounds on foot placements to ensure that the generated motion stayed
in the viability region of their controller. All these techniques are based on the con-
struction of constraints or costs able to reveal feasibility for the complete problem.
This thematic will be discussed more deeply later in Section 1.5.

1.4.2 Mixed approaches

In general, the whole-body OCP can be rewritten as a sequence of subproblems.
For example, in the case exposed above, the whole problem is decomposed into two
subproblems: i) the generation of the walking pattern (CoM) and ii) the tracking of
the references (CoM/foot trajectories) with the whole body. Constraints to make
sure that the solution of the subproblem is reasonable for the next one in the
sequence are needed. Researchers have developed approaches able to bring closer
each subpart of the sequence. Those approaches can be seen as a mixed between a
fully coupled approaches and decoupled ones.

Sherikov [Sherikov 2014] kept the temporal decomposition of the problem, i.e.
the underactuated part of the dynamic system was solved by using a temporal hori-
zon of two steps and the whole-body part only at the current time. However, both
problems were included together in the same solver. This allowed the algorithm

1.4. Underactuation and redundancy 19

to take into account the current whole-body dynamics to compute the Center of
Mass trajectory. However this approach could only adapt its plan according to
current difficulties of the whole-body and it would not be able to predict any prob-
lem that could arise in the future. Dai [Dai 2014] followed the same philosophy
but constructs almost a fully coupled problem since the whole-body kinematics was
solved over the whole time window. The main difference with the coupled prob-
lem was that the dynamics of all joints were not considered and thus the torque
limits could not be checked. While computations for the previous approaches were
small enough to be executed online on a real robot, for this problem it got closer
to fully coupled approaches since it needed several minutes up to several hours.
Kajita [Kajita 2003], Nishiwaki [Nishiwaki 2009b] or Naveau [Naveau 2014] also
solve the two problems separately but added a Dynamic Filter to take into account
the whole-body dynamics before sending the commands to the whole-body con-
troller. In [Naveau 2014], the pattern generation problem was firstly solved using a
QP algorithm as in [Herdt 2010b], then analytical inverse kinematics was used to
calculate the deviation between simplified model and the whole-body one. Using
a LQR of the form given by [Kajita 2003] (i.e. without feet repositioning), this
deviation was used to generate another CoM trajectory which would be then sent
to the whole-body controller. The Dynamic Filter can be seen as an additional
controller able to merge controls given by the pattern generator and the dynamic
constraints of the whole-body. This work was shown to be very efficient in practice
because it allows to decrease the tracking error of the ZMP while taking only a
small computational time.

1.4.3 Coupled approaches

A fully coupled approach would directly solve the whole-body as a hierarchy of
tasks on the whole preview window. The easiest approach to handle hierarchy
in an optimal control problem is probably to use a weighted sum cost function.
The cost used in the optimization problem corresponds here to a weighted sum of
the cost of each task. In that case the strict hierarchical constraints are relaxed,
the hierarchy is only enforced by the relative weights between tasks and a strict
hierarchy is solved only if the relative weights tend to infinity. This approach was
used in [Al Borno 2012], [Tassa 2012] and [Koenemann 2015] to generate whole-
body motions on humanoids. However this approach needs long hours of weight
tuning and are often restricted to the particular scenarios where weights have been
tuned. For instance, the walking motion generated by Al Borno [Al Borno 2012]
used a weighted sum of six different cost functions. The corresponding weights
needed to be finely tuned to generate the desired movement and to be robust to
several situations. Current algorithms do not have the ability to intuit the possible
effects of each cost function and to characterize the resulting movements. Therefore,
weight tuning is usually done manually with trials and errors. This operation can
be extremely long and difficult because the interaction between each task is complex
and difficult to tune without already having a functional movement.

20 Chapter 1. Humanoid Robotics

By using hierarchies, we can greatly facilitate this step since the hierarchy will
manage interactions between tasks itself. The only operation left is to organize
task priorities. Moreover, hierarchies are more robust to different scenarios. While
a secondary task with small weight but high cost can destabilize a robot controlled
with a weighted sum, it cannot do it with a hierarchy of tasks. A hierarchical
optimal control problem can be mathematically formulated as follows:

g∗j = minimize
x∈X ,u∈U

∫ T

0
Lj(x(t),u(t))dt+Ej(x(T))

subject to
gi(x,u) = g∗i , ∀i < j

and constraints (1.2)

where gi for i = 1..K are the cost functions of the tasks ordered by their priority.
By using the same philosophy as in the SoT (i.e. by using pseudo-inverses and
nullspace projectors), Del Prete [Del Prete 2015] showed it was possible to solve
this problem with strict hierarchical constraints. The next section presents more
precisely the work that has been done to develop this algorithm by exploiting the
temporal sparsity of optimal control problems.

1.4.3.1 Differential Dynamic Programming

Differential Dynamic Programming (DDP) is a single shooting resolution scheme
for optimal control problems. It has been heavily studied and improved during
the recent years because it intrinsically exploits the sparsity of optimal control
problems. It was shown to be a very powerful tool to quickly solve difficult prob-
lems [Tassa 2012,de Crousaz 2015] while the cost of developing the solver remains
reasonable (compared to developing a generic sparse nonlinear solver). Some work
focused on fasting computation of the algorithm by using only a linear approxima-
tion of the dynamic (iLQR) or by exploiting the square-root form [Geoffroy 2014].
Others tried to overcome the limitations of this approach. Tassa [Tassa 2014] and
Xie [Xie 2017] showed that we can modify the DDP algorithm to be able to solve con-
strained problems (equality and inequality constraints). Moreover, Pellegrini [Pel-
legrini 2017] showed that it is possible to modify the algorithm to solve a Multiple
Shooting problem instead of the usual Single Shooting one. Recent works showed it
is also possible to solve hierarchies of tasks, they are presented in the next sections.

1.4.3.2 Hierarchical Differential Dynamic Programming (HDDP)

The work of Romano and Del Prete [Romano 2015] focused on building a sparse
hierarchical algorithm. This algorithm is based on the DDP algorithm and permits
a resolution with a linear complexity with respect to the size of the preview win-
dow (more precisely the number of time steps) and to the number of tasks. The
hierarchy is enforced by adding equality constraints for lower priority tasks using

1.4. Underactuation and redundancy 21

nullspace projectors. They showed that contrary to hierarchies with a weighted-
sum cost, HDDP is able to handle a high number of tasks without suffering from
ill-conditioning. However, this algorithm was not designed to handle constraints
or costs on controls (cost on controls was only usable as the lowest-priority task)
so the algorithm is limited to terminal costs. The next section briefly presents an
extension of HDDP where our main purpose was to design an algorithm able to
manage more complex cost functions.

1.4.4 Personal contribution: Regularized Hierarchical Differential
Dynamic Programming (RHDDP)

Even if hierarchies with integral cost functions were not studied in [Del Prete 2015]
nor [Romano 2015], integral costs are important for MPC. Integral costs permit to
reach objectives without specifying duration. The system will reach the objectives
as fast as possible. And to avoid infinite actuations, we generally add an integral
cost on controls. This additional cost is called task regularization in this work.
Solving a hierarchy of tasks with task regularization using a weighted sum would
raise a problem since the weights cannot be tuned to have at the same time i) dif-
ferent weights for each task to have a hierarchy of tasks ii) the same ratio between
the weights of each task and the one of regularization. Therefore, either the hier-
archy will not be respected or the low-priority tasks will not be achieved because
the regularization is too high for them. Hierarchical algorithms would have a clear
advantage: they could enforce a hierarchy while allowing a proper regularization
for each task. Therefore, we have developed a new version of the HDDP algorithm
called Regularized Hierarchical Dynamic Programming (RHDDP). While regular-
ization is usually an ad hoc feature, RHDDP was designed by explicitly taking
into account the regularization when constructing the problem. A complete study
of this algorithm is given in Chapter 3. In chapter 3, RHDDP is mainly applied

on non-humanoid robots for two reasons. The first one comes from the simulator
used. The simulator used is Mujoco, a physics engine to compute robot dynam-
ics and contacts [Todorov 2014]. The contact model used does not exactly solve
the contacts as hard constraints but uses approximation to quickly and efficiently
get viable results. Even if those small imperfections were completely invisible for
traditional optimal control, those imperfections added to the hard hierarchical con-
straints used in RHDDP were enough to make the system completely constrained
by the first task. Therefore, fine tuning were needed to separate the robot dynamics
and the noises coming from the contact model. The second one comes from the in-
trinsic inability of local optimization to discover new contacts with the model used.
This problem is discussed in detail in the next section.

22 Chapter 1. Humanoid Robotics

1.5 Interaction with the environment

Legged robots move their body by using their legs and/or arms to create reaction
forces with the environment. To move further than their limbs, they need to break
off contacts and create new ones. Each change of contact allows the robot to change
its dynamics to go further. This change in the dynamics generally results in a highly
nonconvex cost function with multiple local minima. If we use local optimization,
it is unlikely that the robot will create new contact because the robot is like blind
and only knows it could push on the ground when its foot is already on it. The next
sections develop two different approaches to solve this nonconvex problem. The first
one relies on a contact planner to solve separately the nonconvex part relative to
contacts, the second one develop different solutions to handle nonconvexity directly
in the optimization problem.

1.5.1 Decoupled approach

While in previous sections, the decoupled approaches were mainly designed to re-
duce computational time, here decoupling comes from the fact that the OCP is
nonconvex and therefore can be difficult to solve with optimal control approaches.
An alternative method is to directly specify the changing dynamics in the optimiza-
tion problem. This approach corresponds to all theWalking Pattern Generator seen
in Section 1.2.3, where gaits are predefined. To be consistent with the dynamics,
we also need to add the contact constraint on foot position and orientation. If the
floor is even, the contact constraint can be integrated in the optimization problem:
the optimization solver is able to choose the optimal foot positions and orientations
on the surface [Herdt 2010b]. If the floor is uneven, the optimal solver will once
again get trapped into local minima and will not be able to select the best contact
surface.

1.5.1.1 Loco3d

The Loco3d project is a project developed in the Gepetto team that aims to build
a full pipeline to generate locomotion movements in a complex environment [Car-
pentier 2017c]. Such pipelines have been also seen in the case of a quadruped robot
for the DARPA Learning Locomotion project [Kalakrishnan 2010,Zucker 2010]. To
overcome the different difficulties of humanoid locomotion, the locomotion prob-
lem is solved following a decoupled approach i.e. by constructing a sequence of
planners/controllers as follows (Fig. 1.10):

• Planning of an approximate path for the center of the robot.

• Planning of the contacts.

• Planning of a precise trajectory for the center of mass.

• Control of all motors.

1.5. Interaction with the environment 23

Figure 1.10: Loco3d pipeline [Carpentier 2017c,Tonneau 2016]

Therefore in the Loco3d project, we use a planning algorithm to select not
only the gaits but also the contact surfaces before using the optimal controller.
The contact planner used was developed by Tonneau [Tonneau 2016] and is able to
quickly find a sequence of poses where the robot is in contact with the environment,
in static equilibrium and without collisions. This problem is very complex if we
directly consider all variables, but the resolution can be simplified by decoupling
it into two stages. The first stage selects a guide trajectory for the center of the
robot, the second one selects gaits and contact points to compute a sequence of
whole-body poses. As we have quickly seen in Section 1.4.1, with a decoupled
approach we need to insure feasibility of the plan computed by the reduced model
on the real one. To do that we can construct intermediate model so-called proxy
[Zaytsev 2015] revealing the feasibility or its probability. In the next sections, we
will see two approaches to integrate these proxy models to high-level controllers:
proxy constraints or proxy costs.

1.5.1.2 Proxy constraints

To ensure feasibility, we can add constraints to the planner so the plan stays in
a feasible region. As we have seen, in his WPG Herdt used inverse kinematics
[Herdt 2010b] or posterior tests [Herdt 2010a] to calculate the feasible region of
footsteps. Constraints were then added to the optimization problem to keep the
center of the foot in the feasible region. The same approach is often used for foot-
step planning. Perrin [Perrin 2012] and Orthey [Orthey 2013] both constructed a
model of collision for step transitions. Then this model could be used to prune
branches of the search tree of an A* algorithm or to validate connections of a
Rapidly-exploring Random Tree (RRT). Tonneau used the same philosophy and set
constraints on the guide trajectory [Tonneau 2015]. To have a feasible trajectory,

24 Chapter 1. Humanoid Robotics

Figure 1.11: Collision space and reachable space [Tonneau 2015].

Figure 1.12: Validation of the guide trajectory [Tonneau 2015].

we want the robot to be close to obstacles to be able to generate contacts, but
not too close to avoid collisions. By sampling configurations for each robot limbs,
Tonneau was able to construct shapes corresponding to the reachable region of each
end-effector. Moreover, a shape surrounding the main body was selected to avoid
collisions (Fig. 1.11). A guide trajectory could then be planned by selecting the
robot positions where obstacles were in collision with the shapes corresponding to
reachability (green shapes, Fig. 1.12), but not in collision with the main body (red
shape, Fig. 1.12).

1.5.1.3 Proxy costs

Reformulating constraints as additional cost terms might be useful in several situ-
ations. Using costs instead of constraints can be useful because it puts a gradation
between feasible and infeasible regions. The extra cost terms can be seen as en-
forcing robust control by pulling the system inside safe regions instead of accepting
solutions on the boundaries of the feasible set. Del Prete [Del Prete 2016a] showed
that using costs instead of hard constraints can be beneficial because it can still
keep the control in a feasible region during a standard walk but it also allows the
control to reach dangerous regions when needed (for instance to get back after a
perturbation). Usually, the wide range of states are not explored to determine fea-
sibility and only an under-approximation is used so even a unfeasible control for the
proxy constraints can actually be feasible under some conditions. Usage of a proxy
cost allows to relax those constraints when needed. Moreover, a proxy cost can give
more information than constraints by giving information on the robustness of the
solution. For instance, Carpentier [Carpentier 2017a] randomly sample configura-

1.5. Interaction with the environment 25

tions to retrieve occupancy measures of the CoM - end-effector relative positions.
This measure allows to get the feasible set (occupancy superior to 0) but also to
avoid regions where self-collisions often occur. Moreover, a region with a high prob-
ability will tend to have a lot of possible limb configurations for the same relative
position. Other examples of proxy costs can be found in the LittleDog Learning
Locomotion Project [Kalakrishnan 2010,Zucker 2010,Kolter 2011]. In those papers,
a small quadruped needed to go through an uneven terrain. They first subdivided
space and scored each part according to the probability of collision and slippage,
using a learned model. Then, they used this scored map to select the less difficult
path.

1.5.1.4 Personal Contribution: learning stable poses

To select the robot path, the current state of Loco3d uses proxy constraints based
on reachability [Tonneau 2016] while several approaches from the LittleDog Learn-
ing Locomotion Project use proxy costs based on learned data. The first one is
used to approximate non-collision with the environment and reachability of the
end-effector to the environment. The second one mainly adds consideration on
granularity of the surface to avoid slippage. Both approaches show great capabili-
ties, however, they are applied on many-contact problems. For the case of humanoid
robots moving with their feet only, the robot creates contacts with the environment
using two end-effectors at the same time at maximum. Therefore, the stability
criterion, which is not considered in those approaches, becomes a highly important
criterion here. The work we have done follows the same philosophy as in [Kalakrish-
nan 2010,Kolter 2011] but tries to focus on the stability criterion to find a walkable
path. Contrary to these works, the balance criterion greatly depends on the posi-
tion of both feet so we cannot decouple each limb to compute the proxy cost. In
this work, we also use the framework of machine learning to get a score for each
position. However the data are not scored using expert demonstrations but using
heuristics like robustness with respect to a particular foot placement or upper body
configuration. A complete description of the algorithm and its results is shown in
Chapter 4. In this part, we have seen how we can construct a cascade of controllers

(and ensure its viability) to solve a nonconvex problem. In the next section, we will
see different approaches to solve a nonconvex problem without decoupling it.

1.5.2 Coupled approach

To solve interaction with the environment along with the whole dynamic problem,
we need to be able to solve a nonconvex OCP. A problem can be considered as
nonconvex for several reasons: if the cost is nonconvex but also if the feasible domain
is nonconvex or if the (equality) constraints are nonlinear. A simple example of
nonconvex problem is the case of environments with obstacles, where deterministic
optimal control will often get stuck in local minimum (Fig. 1.13). And this problem
will occur if obstacles are considered as constraints (resulting in a nonconvex feasible

26 Chapter 1. Humanoid Robotics

(a) (b)

Figure 1.13: Local minima in cluttered environment: examples with a mobile robot.
In both cases, trajectories are only local minima. In 1.13a, the robot is stuck in a
dead end. In 1.13b, the robot is able to reach the goal position but this not the
global optimum since a shorter path exists (on the other side of the obstacle).

set) just as well as costs (resulting in a nonconvex cost function). Direct OCPs using
gradient or Newton based optimization algorithms construct local approximations
of the cost, of the system dynamics and of the constraints, to iteratively decrease
the cost (or increase a reward). By using only local approximation, optimization
does not have any information about the global shape of the function. While in
motion generation most of our problems are nonconvex, the solvers of the state of
the art boil down to convex optimization. Therefore, those algorithms are only able
to find local minima and their convergence rates are slow on nonconvex regions.
The following sections reveal several approaches that can be used to this problem.

1.5.2.1 Global optimizer

Boyd shows in his course on Convex Optimization [Grant 2014] that it is some-
times possible to formulate nonconvex problems as convex ones but that there is
no guaranty that such a transformation always exists. In his book, Boyd wrote
"The art in local optimization is in solving the problem (in the weakened sense
of finding a locally optimal point), once it is formulated. In convex optimization
these are reversed: The art and challenge is in problem formulation; once a prob-
lem is formulated as a convex optimization problem, it is relatively straightforward
to solve it" [Grant 2014]. A generic reformulation is always possible by rewriting
any static optimization problem as a problem over the space of measures, hence
making it linear, hence convex [Lasserre 2001]. However, the cost to pay for this
formulation is to work with a basis in the space of measures, typically moments of
the measure. The matrix of moments should be positive definite to have a proper
measure, which ends up to a semi-definite problem. However, such reformulation
becomes computationally intractable for polynomials of degrees superior to five
and dimensions superior to three. Other ad hoc formulations are always possible.
For example, Deits [Deits 2014] used Mixed-Integer Optimization to solve footstep

1.5. Interaction with the environment 27

planning over a nonconvex feasible set. However, mixed-integer optimization is a
NP-hard problem so its application in real time can be difficult.

1.5.2.2 Stochastic optimizer

When it is impossible to achieve a convex formulation of a given problem, we boil
down using heuristics combined with stochastic sampling [Hamalainen 2015,Don-
cieux 2014]. These algorithms are able to get out from local minima by extending or
modifying a range of candidate trajectories and therefore they can explore a much
larger space. However, optimality conditions can barely be extended further than
second order conditions, like in convex programming. Motion planning relies on
such heuristic-sampling search (often random) with Probabilist RoadMap (PRM) or
Rapidly-exploring Random Tree (RRT) algorithms. With the complexity induced
by robots, it is generally accepted that random search must be achieved, if possible,
on a simplified dynamic (e.g. static) while only considering geometric constraints.
Kinodynamic planning is, yet, too difficult to be of real practical interest.

1.5.2.3 Reshaping the cost function (cost engineering)

Instead of randomly exploring the whole space, we could also drive the optimization
toward a better region. Regularizations or Gauss-Newton approximations change
the local approximations of cost functions to stabilize the algorithms or reduce
computational times. However, we will see here some techniques that change the
global shape of cost functions to make the algorithms converge faster and/or toward
better solutions.

Adding costs To get a more convex problem, we can artificially add some terms
in the cost function. For instance, for a picking task, we often add a cost on the
velocity of the gripper during grasping (see Section 2.5.4). This cost can be seen
as artificial since, even with a cost on position only, the (globally) optimal one is
a solution where the gripper stands still at the goal position. However, the cost
on velocity gives a more convex problem and decreases the number of iterations
needed to find a good solution. Another example is adding a cost between the
configurations (along trajectories) and a reference one. This can be seen as a way
of controlling the degrees of freedom left free but also as a way to select a high
manipulability configuration, away from bounds and therefore less prone to local
minima.

Homotopic methods We can also adjust the cost function during the search.
For instance, the Contact-Invariant Optimization (CIO) [Todorov 2011] which uses
a relaxation of the complementary constraint of contacts [Posa 2016], can be seen as
"a way of reshaping a highly discontinuous and local-minima-prone search space of
movements and contacts, into a slightly larger but much better-behaved and contin-
uous search space that enables optimization strategies to find good solutions" [Mor-

28 Chapter 1. Humanoid Robotics

datch 2012]. In that case, the problem is first augmented and then converges back
to the original problem. This augmentation permits to select the most promising
basin of attraction. When formulating the OCP as a multiple-shooting problem,
the importance of the continuity is often variably adjusted with a similar philos-
ophy [Diehl 2001]. Tassa [Tassa 2012] and Mordatch [Mordatch 2012] both used
this complementary constraint relaxation. The main difference between the two
approaches is how they converge back to the original problem. Mordatch solved
a problem over a fixed time window and its problem converged back by smoothly
reducing the relaxation along iterations. Tassa solved the same problem but on a
receding horizon (i.e. MPC), where controls were computed with the relaxed model
but executed on a stiffer one. Tassa only relied on robustness and adaptiveness of
optimal control to get viable results and therefore had much rougher controls with
high impacts.

1.5.2.4 Initial guess

Correctly initializing the candidate solution optimized by the numerical solver is a
very important task and can lead to very different results: from unfeasible problems,
divergence of the solver or hours of computation, to only few seconds or minutes if
rightly initialized. Moreover, we can find global minima if we directly initialize the
optimal control problem within its basin of attraction [El Khoury 2013].

Initial guess via heuristics In Section 2.5.2.1, we show that in some cases, even
simple heuristics can lead to other optima and therefore a pre-existing knowledge of
the solution can be used to initialize optimization. As we will see in the next chapter,
an advantage of Multiple Shooting methods is that it can be initialized with control
and state, and the trajectory does not need to be consistent. Therefore, simple
heuristics like static or quasi-static trajectories can be used for initialization.

Initial guess via planning A decoupled approach would be to rely on planning
to find a path, which will be then optimized by the optimal control. In that case, the
main objective of the planning algorithm is to select the best topology or basin of
attraction [Bhattacharya 2016] (Fig. 1.14). For instance, [Bouffard 2009] coupled
a planning algorithm and multiple shooting optimal control to find collision-free
trajectories. While in Loco3d the optimization is restrained by the planner choices
(e.g. contact positions), here the optimization is not and can modify the plan
computed by the planner. Since planning algorithms only use a simplify approxi-
mation of the cost, the output of the planning will not necessarily correspond to the
best basin of attraction. The planning algorithm (or the heuristics) usually works
on configurations although optimal control generally works on positions, velocities
and accelerations or forces/torques so the local minima revealed by the derivatives
cannot be treated by the planning part.

1.5. Interaction with the environment 29

Figure 1.14: Finding the best topology: examples with a mobile robot. Examples
of trajectories in the two different topologies of the problem.

Initial guess via learning The experience earned during previous experiments
can be used to directly initialize the optimization close to the optimal solution. We
can use machine learning techniques to store in an efficient way the results obtained
by our optimal control solver at previous experiments. Deep learning has shown the
capability to learn complex motions [Mordatch 2015,DeepMind 2017]. However, the
trajectories generated by the networks are still too "clumsy" to be directly used on a
real robot. Therefore, we believe that machine learning must instead be associated
with a model-based controller. Mansard [Mansard 2018] showed the pertinence of
such approach by using neural networks to initialize a model predictive controller.
The neural network was trained with examples of trajectories generated offline with
the controller itself. Moreover, a sampling-based planning algorithm was used to
generate new trajectories and possibly find global minima. Data generation and
learning were performed in an iterative way: the optimal controller generated the
data that were used to construct a model and this model was then used to improve
the results of the controller.

1.5.2.5 Personal contribution: learning initial guess on aerial robots

From our initial work on quadrotors [Geisert 2016], we tested the approach of
Mansard on different aerial robots. The results are shown in the second part of
Chapter 2. While the approach developed in Section 1.5.1.4 and here are both
based on Machine Learning, the paradigms are quite different. Section 1.5.1.4
uses learning to get a score from the robot state, i.e. learning a function from
a relatively high-dimensional space to the real numbers. Instead, here we learn a
function from a low-dimensional space (initial and final states) to a high-dimensional
space (state/control trajectories). The additional difficulty here is that the output
variables are correlated (i.e. trajectories need to respect the dynamic model) and
therefore even a "good" approximation could lead to inconsistent results that could
destabilize the optimal solver. This is maybe the main reason why we did not
succeed yet to generate walking motions with this approach. This chapter has

introduced the topics developed in this document by studying some of the challenges

30 Chapter 1. Humanoid Robotics

that humanoid robotics is facing. Next chapter shows that the techniques presented
here, i.e. Model Predictive Control and Machine Learning, are versatile and can
easily and efficiently be used on other systems such as aerial robots.

1.6. Contributions Summary 31

1.6 Contributions Summary

Journal

• Regularized Hierarchical Differential Dynamic Programming. M Geisert, A
Del Prete, N Mansard, F Romano, F Nori. IEEE Transactions on Robotics
(TRO 2017).
pdf: https://hal.archives-ouvertes.fr/hal-01356992/file/201604_
hddp.pdf
video: https://www.youtube.com/watch?v=BqAOmDvlB2Q&t=3s

Conference

• Airbus/future of aircraft factory HRP-2 as universal worker proof of concept.
O Stasse, A Orthey, F Morsillo, M Geisert, N Mansard, M Naveau, C
Vassallo. IEEE International Conference on Humanoid Robotics (ICHR
2014).
pdf: https://hal.archives-ouvertes.fr/hal-01122476/file/
14-ichr-airbus.pdf
video: https://www.youtube.com/watch?v=FpMlrfhZCRs

• Trajectory Generation for Quadrotor Based Systems using Numerical Optimal
Control. M Geisert, N Mansard. IEEE International Conference on Robotics
and Automation (ICRA 2016).
pdf: https://hal.archives-ouvertes.fr/hal-01213392/file/root.pdf
video: https://www.youtube.com/watch?v=hcFK32C-bxs

• Multi-contact Locomotion of Legged Robots in Complex Environments – The
Loco3D project. J Carpentier, A Del Prete, S Tonneau, T Flayols, F Forget,
A Mifsud, K Giraud, D Atchuthan, P Fernbach, R Budhiraja, M Geisert, J
Solà, O Stasse, N Mansard. RSS Workshop on Challenges in Dynamic Legged
Locomotion (RSS Workshop 2017).
pdf: https://hal.laas.fr/hal-01543060/file/loco3d.pdf

• Using a Memory of Motion to Efficiently Warm-Start a Nonlinear Predictive
Controller. N Mansard, A Del Prete, M Geisert, S Tonneau, O Stasse. IEEE
International Conference on Robotics and Automation (ICRA 2018).
pdf: https://hal.archives-ouvertes.fr/hal-01213392/file/root.pdf
video: https://www.youtube.com/watch?v=CbyCa7aeC7k

https://hal.archives-ouvertes.fr/hal-01356992/file/201604_hddp.pdf
https://hal.archives-ouvertes.fr/hal-01356992/file/201604_hddp.pdf
https://www.youtube.com/watch?v=BqAOmDvlB2Q&t=3s
https://hal.archives-ouvertes.fr/hal-01122476/file/14-ichr-airbus.pdf
https://hal.archives-ouvertes.fr/hal-01122476/file/14-ichr-airbus.pdf
https://www.youtube.com/watch?v=FpMlrfhZCRs
https://hal.archives-ouvertes.fr/hal-01213392/file/root.pdf
https://www.youtube.com/watch?v=hcFK32C-bxs
https://hal.laas.fr/hal-01543060/file/loco3d.pdf
https://hal.archives-ouvertes.fr/hal-01213392/file/root.pdf
https://www.youtube.com/watch?v=CbyCa7aeC7k

32 Chapter 1. Humanoid Robotics

ïż£

Chapter 2

Trajectory Generation for
Quadrotor Based Systems

The recent works on quadrotors have focused on more and more challenging tasks
with increasingly complex systems. Systems are often augmented with slung loads,
inverted pendulums or arms, and accomplish complex tasks such as going through
a window, grasping, throwing or catching. Quite often, controllers are designed
to accomplish a specific task on a specific system using analytic solutions, so each
application needs long preparations. On the other hand, the direct multiple shooting
approach is able to solve complex problems without any analytic development, by
using off-the-shelf optimization solvers. In this first part of this chapter, we show
that direct multiple shooting is able to solve a wide range of problems relevant
to quadrotor systems, from online trajectory generation for quadrotors, to going
through a window for a quadrotor-and-pendulum system, through manipulation
tasks for an aerial manipulator. In the second part, we show that performances can
be improved by constructing an approximation of the optimal solution and use it
to initialize the optimization solver. The algorithm presented in this part allows to
construct such approximation without any analytic development and rather relies
on automatic methods from optimal control, motion planning and machine learning.

Trajectory Generation using
Numerical Optimal Control

2.1 Introduction

Many works have been proposed to control autonomous quadrotors. We focus on
two subsets of works: with oscillating loads and with manipulation capabilities.
During transportation missions, loads are often carried by means of a cable to
avoid aerodynamic perturbations. Various controllers have been designed for this
under-actuated system. For tasks involving only transportation, a typical approach
is to reduce the energy of the load to limit its swing motion. Swing-free motion can
be found using dynamic programming approach [Palunko 2012,Zameroski 2008] or
reinforcement learning [Faust 2013, Palunko 2013]. In [Sreenath 2013, Tang 2014]
the differential flatness of the system was used to build a cascade of controllers ca-
pable of controlling the load position and attitude. In [de Crousaz 2015], dynamic
programming was used to calculate aggressive trajectories. Using this technique,
authors showed that their method is able to find trajectories to go through a win-
dow with a system quadrotor and slung load. However the problem of finding
how the quadrotor and the load have to pass through the window is solved before-
hand and given to the algorithm in the form of waypoints. In [Brescianini 2013],
trajectory of quadrotors throwing and catching an inverted pendulum were gen-
erated offline using direct optimal control then executed on the real system using
a LQR controller. For tasks such as screwing, assembling or other manipulation
tasks, robotic arms can be mounted on the flying vehicle. In [Orsag 2014], a sim-
ple symmetric manipulator was used so quadrotor and manipulator controllers can
be built separately. When the manipulator becomes more complex, the quadrotor
controller has to take into account movements of the arm [Jimenez-Cano 2013,Gha-
diok 2011,Thomas 2013]. Once controllers are designed, the problem shift to the
trajectory generation. In [Arleo 2013], Inverse Kinematics was used to determine
trajectories of the joints and the quadrotor from the end-effector trajectory. In
most recent works, optimal control was used to generate online picking trajecto-
ries [Garimella 2015]. The algorithm used is able to exploit the full system dy-
namics and generate simultaneous trajectories for the quadrotor and the arm but,
because it uses an algorithm similar to Differential Dynamic Programming (DDP),
it cannot easily handle obstacle constraints. In the expectancy to solve problems
involving more and more complex tasks on aerial systems, we believe that ana-
lytic solutions are too restraining and too difficult to exhibit on a generic
manner. An alternative approach, that has not been extensively explored yet, is
to rather rely on the field of direct optimal control and numerical optimization,
to numerically approximate a valid control sequence, that would then be easily
adapted to changes in both the task to achieve and the dynamics of the robot.

36 Chapter 2. Trajectory Generation for Quadrotor Based Systems

The contribution of this chapter is to show the interest of using one of these
numerical approaches to design versatile and efficient behaviours on complex aerial
vehicles (aerial pendulum and aerial manipulator). We propose a complete formu-
lation to numerically compute an optimal movement. We then report an extensive
benchmark of the capabilities of numerical solvers to discover efficient trajectories
around obstacles and control these trajectories despite model uncertainties. We also
demonstrate that even if these algorithms can look computationally heavy, they can
be used for online trajectory generation i.e. in a Model Predictive Control (MPC)
strategy. Next section presents the optimal control problem and more specifically,
the direct multiple shooting formulation used to solve the problem. Section 2.3 de-
scribes the three robot models used for the benchmarks (i.e quadrotor, quadrotor
with pendulum and quadrotor with robotic arm). Section 2.4 presents the initial
guess, the model of obstacles and the tools used to generate our results. The last
section shows the results obtained in simulation for a wide range of tasks.

2.2 Optimal Control

In this section, we briefly recall the framework of optimal control and define explic-
itly the formulation of the numerical problem that is used for quadrotors. Mean-
while, we justify why we have selected this particular form among all the possibilities
found in the literature.

2.2.1 Indirect and Direct Approaches

In this chapter, trajectories of different quadrotor-based systems are generated using
optimal control solvers. The generic optimal control problem can be expressed as
follows:

minimize
x,u

∫ T

0
L(x(t),u(t))dt+E(x(T))

subject to
ẋ(t) = f(x(t),u(t)),
h(x(t),u(t))≥ 0, h0(x(0))≥ 0, hT (x(T))≥ 0,
r(x(t),u(t)) = 0, r0(x(0)) = 0, rT (x(T)) = 0,
∀t ∈ [0,T]

where the decision variables are the trajectory in state x : t ∈ [0,T]→ x(t) ∈ X and
in control u : t ∈ [0,T]→ u(t) ∈ U (where X and U are the state and control spaces,
and the underlined symbol is used to differentiate the trajectory from the time
value), L represents the integral (or running) cost, E is the terminal cost, f is the
system dynamics and the h and r functions represent arbitrary constraints. Two
very different approaches may be considered to solve this problem: the indirect
one and the direct one. The indirect one changes the problem into an integration
(ODE or DAE) problem using the Pontryagin’s maximum principle or the Hamilton-
Jacobi-Bellman equation. The resulting problem is a differential equation which

2.2. Optimal Control 37

unfortunately is often too complex to be integrated as is. When it is possible, this
approach provides a complete (and often computationally cheap) solution to the
problem. However, this type of approach is usually applied on a specific system
and/or task so the differential equation can be simplified enough to be integrated.
The direct approach directly solves a discretized approximation of the nominal
problem using numerical optimization techniques. It has several advantages: it
works directly on the problem so the problem does not need to be reformulated; it
is solved by generic solvers; and it can often hope to directly adapt a solution to
variations of both the system dynamics and the tasks. The trade off is that the
resulting optimization problem is often nonconvex, hence only a partial solution
can be found. Our work only focuses on the direct optimal control.

2.2.2 Direct Approaches

The discretization of the nominal problem results in a redundant set of decision
variables, x and u, constrained by the system dynamics (redundant in the sense the
x directly arises from u). Three different formulations with different properties are
typically considered to handle this redundancy:

• Single shooting method integrates controls from an initial (known) state to get
the whole trajectory using ODE/DAE solvers and optimizes the cost function
over controls. This formulation is interesting because of its simplicity and,
since the resulting optimization problem has a lower number of degrees of
freedom and no additional constraints, it easily deals with systems of large
dimensions [Tassa 2012].

• In collocation method, the cost function is optimized over both states and
controls. The relation between states and controls, i.e. the dynamic equation,
is discretized and set as constraints for the optimization problem. One state
decision variable is added to each integration node (hence the collocation
name). In practice, those additional constraints force the solver to solve many
inverse dynamic problems, which is costly in general, but allow this method
to be initialized with state trajectories, to have fast convergence and to better
deal with unstable systems [Diehl 2005].

• Multiple shooting combines advantages of collocation and single shooting by
using the same formalism as collocation but with ODE/DAE solvers to inte-
grate the dynamic equation of the system along (longer) time intervals instead
of discretizing it. The variables are then a full control trajectory u along with
a sparse number of state variables x1, ...,xJ called shooting nodes. These
nodes avoid the divergence phenomenon encountered in single shooting, and
despite an increase in the number of decision variables, speed up computa-
tion [Diehl 2005]. The shooting variables x1, ...,xJ

In this work, we consider quadrotor-based systems. As the system keeps a reason-
able state/control dimension (4 to 10 control variables and 12 to 24 state variables),

38 Chapter 2. Trajectory Generation for Quadrotor Based Systems

the resulting optimal control problem has an acceptable dimension. Single shooting
would be able to calculate each step very quickly. However, because of the non-
linearity and the instability of the system, the iterative numerical algorithm would
only be able to progress slowly and risks to diverge. Multiple shooting and coloca-
tion would probably give similar quality results. But thanks to its design where the
problem parametrization and the integration of the dynamic are separated, multiple
shooting is more flexible and much faster (which is essential for Model Predictive
Control). Additionally, the relative stability of quadrotors (compared to rockets or
humanoid robots) allows to have only few shooting nodes although nonlinearities
impose thin steps to integrate the dynamic equations. Therefore, the different tasks
presented in this chapter are solved using the direct multiple shooting approach.

2.2.3 Direct Multiple Shooting

In multiple shooting methods, the system trajectory is cut into small time intervals
that correspond to shooting intervals. A set of N −1 state variables corresponding
to the starting point of each shot is introduced:

x(tj) = {xj}j=1..N , xj ∈ X , j = 0, ...,N −1.

Thus, integration of the dynamic equation ẋ(t) = f(x(t),u(t)) will give a piece-
wise continuous function with discontinuities at each shooting node. We denote it
x(t;xj ,uj) for tj ≤ t < tj+1, where uj are the control time functions over each shoot-
ing interval. Additional constraints are added to force continuity at the shooting
nodes. Similarly to states, constraints are discretized over time:

h(xj ,u(tj))≥ 0,
r(xj ,u(tj)) = 0, j = 0, ...,N −1.

Therefore, the optimal control problem becomes:

minimize
{xj ,uj}j=1..N−1

N−1∑
j=0

lj(xj ,uj) +E(xN)

subject to
xj+1−x(tj+1;xj ,uj) = 0, j = 0, ...,N −1, (2.1)

h(x(tj),u(tj))≥ 0, h0(x(0))≥ 0, hT (x(T))≥ 0,
r(x(tj),u(tj)) = 0, r0(x(0)) = 0, rT (x(T)) = 0.

where
lj(xj ,u) :=

∫ tj+1

tj

L(x(t;xj ,u(t)),u(t))dt

Another advantage of multiple shooting with respect to single shooting can be un-
derstood from this final formulation. By explicitly expressing continuity constraints
(2.1) over certain points, multiple shooting allows the numerical algorithm to relax

2.2. Optimal Control 39

those constraints. One direct implication is that at the beginning of the algorithm,
those constraints can be fully relaxed. Hence the initial guess does not need to be
continuous. Thus, multiple shooting can easily be initialized by other algorithms
which give trajectories in the state space and do not take care of the full dynamic,
like planning algorithms [Bouffard 2009]. This formulation has also been found use-
ful to control unstable systems or to handle terminal constraints, because in both
cases it can be difficult to find a valid initial guess in the control space. The problem
generated using direct multiple shooting method can be condensed [Kirches 2012]
(i.e. transformed from a larger and sparse problem to a smaller but dense problem)1

and then be solved using any NonLinear Programming (NLP) solver.

2.2.4 Sequential Quadratic Programming (SQP)

In this section, we present the Sequential Quadratic Programming algorithm which
is a NLP algorithm commonly used to solve this kind of problem. In this part, we
consider the following standard-form NLP problem:

x? = min
x
f(x) subject to h(x)≥ 0, r(x) = 0.

From this problem, we can introduce the Lagrangian function:

L(x,λ,µ) = f(x)−λTh(x)−µT r(x)

where λ and µ are Lagrangian multipliers. The necessary conditions for x? to be a
local optimum of the NLP are that there exist multipliers λ? and µ?, such that

∇xL(x?,λ?,µ?) = 0,
r(x?) = 0,
h(x?)≥ 0, µ? ≥ 0, h(x?)Tµ? = 0.

At each step of the SQP algorithm, the objective function f is approximated by its
local quadratic approximation and constraints by their local affine approximations

f(x)≈ f(xk) +∇xf(xk)T∆x+ 1
2∆xTHk∆x

h(x)≈ h(xk) +∇xh(xk)T∆x,
r(x)≈ r(xk) +∇xr(xk)T∆x,

where Hk is a Hessian approximation of L(xk,λk,µk), and ∇f(xk), ∇h(xk) and
∇r(xk) are Jacobians. Thus, at each step of the SQP algorithm, we get the following

1Although it is not clear for us that condensation is an indisputable advantage – while sparse
resolution seems an interesting and possibly more efficient alternative – we used it in this work to
follow the main trend of the domain.

40 Chapter 2. Trajectory Generation for Quadrotor Based Systems

QP subproblem
minimize
∆x∈{S,U}

∇xf(xk)T∆x+ 1
2∆xTHk∆x,

subject to
h(xk) +∇xh(xk)T∆x≥ 0,
r(xk) +∇xr(xk)T∆x= 0.

(2.2)

Which is solved using active-set methods. So, starting from an initial guess
(x0,λ0,µ0), SQP solver transforms the NLP into a QP subproblem and iterates:

xk+1 = xk +α∆xQP ,
λk+1 = λk +α∆λQP ,
µk+1 = µk +α∆µQP .

where α can be determined using linesearch methods [Nocedal 2006]. Constraint
linearization can result in unsolvable QP subproblems, so in these cases constraints
have to be relaxed. One technique is to use `1 relaxation where the quadratic
problem is transformed into

minimize
∆x

∇f(xk)T∆x+ 1
2∆xTHk∆x+νu+ν(v+w),

subject to
h(xk) +∇h(xk)T∆x≥−u, (2.3)
r(xk) +∇r(xk)T∆x= v−w. (2.4)

where u, v and w are slack variables and ν is a penalty parameter. The available
SQP solvers can differ in the way the Hessian is approximated, the linesearch is
done, the QP subproblems are solved or the constraints are relaxed. SQP has been
shown to be a powerful tool and due to its superlinear convergence rate and its
ability to deal with nonlinear constraints well.

2.2.5 Model Predictive Control (MPC)

MPC techniques use optimal control framework to solve online trajectory generation
problems. At each activation, MPC solves an optimal control problem over a sliding
time window. In robotics, MPC is usually activated several times per second so
algorithms are the same but their applications differ from the offline trajectory
generation. At each activation, a solution is found using only one iteration of the
NLP solver. Therefore, the solution used will not be an optimal solution but,
by using the previous solution to build the initial guess for the next step, MPC
will at the same time improve the solution and adapt it to the new state of the
system. The faster the algorithm is, the less the previous solution is out-dated
so the more the algorithm will be able to improve it instead of just adapt it to
the new situation. Thus, fast single shooting methods like DDP are often used

2.3. System Dynamics 41

[Garimella 2015]. However, DDP is not directly able to handle constraints, so
constraints like obstacle avoidance are often introduced in the problem using the
cost function and therefore, we cannot be sure that the system will respect those
constraints. In the algorithms used in this paper, the linearized constraints are
checked at each step so in the case of convex obstacles, we are sure that the solutions
given by MPC will always be collision-free (at least at each shooting node).

2.3 System Dynamics

In order to show the abilities of direct optimal control to easily adapt to various
dynamic models, we have performed a benchmark with three different quadrotor-
based robots whose models are given in sections 2.3.1, 2.3.2 and 2.3.3.

2.3.1 Quadrotor

The quadrotor is modeled as a rigid body of mass mq = 0.9[kg] evolving in the 3
dimensional space where effects linked to fluid dynamics are all neglected. Position
and orientation of the quadrotor with respect to the inertial frame are respectively
noted xxxq ∈ R3 and ΘΘΘq ∈ SO(3) (where ΘΘΘq can indistinctly be represented by Euler
angles or quaternions) and its rotation speed in its local frame is represented by
ΩΩΩq ∈ so(3) = R3. Rotor dynamics are neglected so each propeller i produces a
thrust fi = CfV

2
i and a torque around its main axis τzi = (−1)i+1CmV

2
i where

Vi ∈ [Vmin,Vmax] is the motor velocity and Cf , Cm are respectively the lift and drag
constants [Benziane 2015]. By neglecting the rotor dynamics, the control is directly
the rotor accelerations. Thus, the state vector is xxx= [xxxq,ΘΘΘq, ẋxxq,ΩΩΩq,V1, ...,V4]T and
the system control inputs are ui = V̇i ∈ [V̇min, V̇max], i ∈ {1, ...,4}. The dynamic
equations can be written as:

mqẍxxq =

 0
0

−mqg

+RΘΘΘq

 0
0∑

iCfV
2
i

 (2.5)

JqΩ̇ΩΩq + ΩΩΩq× (JqΩΩΩq) =

 dCf (V 2
1 −V 2

3)
dCf (V 2

2 −V 2
4)

Cm(V 2
1 −V 2

2 +V 2
3 −V 2

4)

 (2.6)

where d is the distance between a rotor and the center of mass of the quadrotor and
Jq is the quadrotor inertia matrix, RΘΘΘq is the rotation matrix between the world
frame and the quadrotor frame, g is the gravitational acceleration and × represents
a cross product.

2.3.2 Quadrotor with Pendulum

The second model corresponds to the same quadrotor, carrying a load attached by
a rigid linkage.

42 Chapter 2. Trajectory Generation for Quadrotor Based Systems

2.3.2.1 With a fixed load

We assume that the quadrotor is attached to a load of mass mp with a weightless
rigid bar of length L = 4[m]. The rigid bar and the quadrotor are linked with a
spherical joint (3 degrees of freedom). To calculate the quadrotor position and the
pendulum orientation, the system is modeled as a weightless solid bar with point
masses at each tip. Thus, all forces are applied on the axis of the bar and the inertia
matrix Jp of the pendulum (bar + point masses) respects Jpxx = Jpyy. Moreover
we assume that at the beginning of the trajectory the bar is not rotating around its
main axis so Coriolis effects vanish and the dynamic equation can be simplified to:

JpΩ̇ΩΩp =
∑
i

Ti and ωpz = 0

where ΩΩΩp is the rotation speed of the pendulum with respect to the inertial frame.
Thus, the system state vector is xxx = [xxxq,ΘΘΘq, ẋxxg,ΩΩΩq,ΘΘΘp,ωpx,ωpy,V1, ...,V4]T where
ΘΘΘp is the orientation of the pendulum frame with respect to the inertial frame, ωpx
and ωpy the rotation speeds of the pendulum in its local frame and ẋxxg the velocity
of the center of mass of the whole system.

2.3.2.2 Grasping and releasing a load

The mass at the end of the pendulum changes when grasping and releasing. We
model the load transfer by a smooth variation of mp, to keep the smoothness of the
dynamic formulation (discontinuous transfer would have been possible too, but we
believe that the smooth transfer more adequately models the linkage). We assume
that the velocity of the end-effector with respect to the inertial frame is low at
grasping and releasing time so the part of dynamic equation that corresponds to
the variation of the mass can be neglected (this assumption is typically correct at
the convergence of the direct optimal control solver).

dppp

dt
=mqẍxxq +mpẍxxp+ ṁpẋxxp︸ ︷︷ ︸

≈0

dLLLG
dt

=GQ×mqẍxxq +GP ×mpẍxxp+GP × ṁpẋxxp︸ ︷︷ ︸
≈0

where xxxp is the position of the load; Q, P andG are the center of mass of respectively
the quadrotor, the load and the whole system; ppp is the linear momentum and LLLG is
the angular momentum at the center of mass of the whole system. However, when
mass of the load changes, the center of mass moves along the pendulum so, at each
step, dynamics need to be integrated according to the position/velocity of a new
point:

||G2G1||=
Lmqṁp

(mq +mp)2 + ṁp(mp+mq)
dt

2.3. System Dynamics 43

(a) system quadrotor and pendulum (b) system quadrotor and arm

Figure 2.1: Models of the systems

where G1 is the position of the center of mass at time t and G2 is its position at
time t+dt. Thus, velocity of the center of mass is computed using:

dẋxxG
dt

= G2G1
dt
×ΩΩΩp+

∑
Forces/(mp+mq)

2.3.3 Aerial Manipulator

In that section, we consider that a robotic arm is placed under a quadrotor. The
model of the robot arm used for the tests is the Universal Robot UR5. For sim-
plicity, the model of the arm is kept as it is and the model of the quadrotor is
adapted to correspond to one that could lift this kind of load (see appendix A.1).
Moreover, the quadrotor model is simplified by directly using motor thrusts as con-
trols (fi ∈ [fmin,fmax], τzi = (−1)i+1Cmfi/Cf). The UR5 has 6 degrees of freedom,
its state is the joints positions and velocities while the joint torques are chosen as
controls. Therefore, the overall system composed of the quadrotor and its arm has
state and control vectors of dimension respectively 24 and 10. While the dynamics
of the two previous systems were written algebraically, for the aerial manipulator we
rather used an algorithmic form, which is more condensed to write, more versatile
and correspond better to a realistic use. The dynamic of the whole system is calcu-
lated using Recursive Newton-Euler Algorithm (RNEA) and Composite Rigid Body
Algorithm (CRBA) [Featherstone 2007]. To speed up calculation, we used Pinnoc-
chio [Mansard 2015], a computationally fast implementation of those algorithms.
From those algorithms, we get:

M(q)q̈+ b(q̇, q) +g(q) = τ

44 Chapter 2. Trajectory Generation for Quadrotor Based Systems

where M(q) is the mass matrix (computed by CRBA), b(q̇, q) and g(q) are
the generalized bias and gravitational forces (computed by RNEA) and τ =
[fbase, τbase, τjoints]T is the vector of generalized forces, where fbase = [0,0,

∑
i fi]T ,

τbase are the torques induced by the propellers and τjoints corresponds to the vector
of torques acting on each joint of the arm. To add actuator inertia to this model, a
term Mmot = Jmot ∗K2

red (where Jmot is the motor/reducer inertia and Kred is the
reduction rate of the reducer) is added to the mass matrix:

M =Mcrba+
[
06 06
06 I6

]
Mmot

Then, the mass matrix M is inverted (using a sparse cheap algorithm [Feather-
stone 2007]) to get the direct dynamic needed by the optimal control. Finally,
constraints on positions and controls are added to the optimization to respect joint
limits and maximum torques of the UR5.

2.4 Implementation Details

2.4.1 Initial Guess

Contrary to single shooting methods where states are implicit variables so the ini-
tial guess needs to be specified in the control space, multiple shooting method is
initialized with controls and states. This allows to use simple, noncontinuous but
powerful initial guess like quasi-static or obstacle-free trajectories and that’s why
multiple shooting has been shown to be a very useful tool to connect the planning
and control parts [Bouffard 2009]. In the experiments, the initial guesses used were
mainly quasi-static trajectories between the start and the goal position:

xxxqj = xxxstart+
j

N
(xxxgoal−xxxstart), j = 0, ...,N,

Vi =
√
mg/4Cf , i= 1, ...,4.

And all other variables are set to zero.

2.4.2 Obstacle Avoidance

Contrary to Dynamic Programming where the obstacle avoidance problem is of-
ten treated outside then re-injected in the optimal control problem in the form of
waypoints, direct methods deal easily with constraints on the state space, so the
obstacle avoidance problem can easily be inserted in the optimal control problem by
adding inequalities on the position of the system. To get concave and differentiable
constraints, obstacles are embedded inside ellipsoids. This model allows not only
to keep trajectories outside of obstacles even when constraints are linearized but
also to guide trajectories around obstacles. So in the optimal control problem, the

2.4. Implementation Details 45

constraint for one obstacle is modeled as:

(xxxq−xxxe)TA(xxxq−xxxe)−1 ≥ 0

where xxxq is the quadrotor position, xxxe is the position of the ellipsoid center and
A ∈ R3×3 is a positive definite matrix. For tasks involving obstacles avoidance, a
quasi-static trajectory going through obstacles could be a bad initial guess because
trajectory continuity and obstacle avoidance constraints can be incompatible when
linearized. In that case, constraints are relaxed until the obstacle is thin enough
to be between two nodes where constraints are checked. From this trajectory, at
each step the algorithm will decrease the relaxation term u in (2.3) i.e the obstacle
constraint will grow back. When the constraints have finally converged back, the
result is usually a trajectory where the system goes fast enough to get through the
obstacle when constraints are not checked. Thus, when obstacles are present, the
initial guesses used are obstacle-free trajectories or at least trajectories where the
obstacle constraints do not need to be relaxed.

2.4.3 Rotations

To describe free flying objects, quaternions seem to be a better convention for
rotations since there are no singularities. The quadrotor model was tested with
quaternions, with explicit or implicit (i.e. by continuity) unit constraints. Tests have
shown that in both cases, convergence was much slower than with Euler’s angles.
This is most probably because the unit constraint of quaternions is a nonlinear
constraint that the SQP solver cannot approximate well. Even if this problem
can be invisible in some applications, the trajectories generated here are highly
dynamic with a large range of orientations and large rotational velocities, so poor
approximations result in much slower convergences. Therefore, in all the tests
presented in the next sections, rotations are represented using Euler’s angles. For
the most dynamic trajectories where the system could hit a singularity, the axes
are selected such that the orientation does not get close to a singularity.

2.4.4 Experimental Setup

The multiple shooting algorithm has been implemented by Moritz Diehl et al.
in an open source optimal control software, the ACADO toolkit [Houska 2011].
ACADO solves multiple shooting problems thanks to a Sequential Quadratic Pro-
gramming (SQP) algorithm, together with state-of-the-art techniques to condense,
relax, integrate and differentiate the problem. This tool has already been shown
to be useful to generate complex quadcopter trajectories as throwing and catching
an inverted pendulum [Brescianini 2013]. Trajectories presented in the following
parts have been generated using this toolkit. Problems were solved on a IntelÂő
Xeon(R) CPU E3-1240 v3 @ 3.40GHz with Runge-Kutta 45 integrator and Broyden-
Fletcher-Goldfarb-Shanno (BFGS) Hessian approximation. Moreover, controls are
discretized as a piecewise constant function, constant between each shooting node.

46 Chapter 2. Trajectory Generation for Quadrotor Based Systems

2.5 Results

In this section, we report various examples of the capabilities of the optimal control
problem solver to discover and control complex trajectories with the three models
presented above. The general idea is to give a complete list of the capabilities of
the approach in terms of range of exploration, speed of computation and robustness
to perturbation. For all the reported examples, no external planning method was
used to discover the trajectory (although the aggressive flip trajectory (see section
2.5.2.1) was not found from scratch by the solver due to its symmetry). MPC is
demonstrated in the cases where we were able to set it up. In general, the compu-
tation time is sufficient to enable MPC however, in some cases, we were not able
to obtain a reasonable tradeoff between computation approximation and control
performance (in particular for the quadrotor with pendulum). The complete imple-
mentation of MPC in all the demonstrated examples along with its application on
real quadrotors is left for future works. Tests presented in this section can be seen in
a video available online (see https://www.youtube.com/watch?v=hcFK32C-bxs).

2.5.1 Non-Optimal Trajectories

In the case where the task is simple enough, we can encode it using only constraints.
Starting with an initial guess which does not respect the system dynamic but re-
spects the initial and final constraints (quasi-static trajectory), the algorithm is able
to find a valid trajectory after few iterations (convergence criteria : KKT conditions
under 10−12). Tab. 2.1 shows the computation times for trajectories of 20 shooting
nodes over 8 seconds.

2.5.2 High-dynamic maneuvers

2.5.2.1 Time optimal trajectories with the quadrotor alone

Direct methods allow to add parameters to the optimization. In this case, resolution
of the optimization will be over the controls and parameters state space. These
parameters can be used to modify dynamics, cost or constraints. So by adding the
final time T as a parameter to optimize and setting it as the cost, the algorithm
will try to find a time optimal trajectory respecting the initial and final constraints.
Even if the final time T changed over the SQP iterations, the number of nodes of the
multiple shooting remains constant. Therefore, variation of the final time is taken
into account when dynamic is computed i.e. by the integrator. Fig. 2.2, 2.3 shows
the result obtained for position reaching tasks (6 meters lateral displacement with
static terminal constraints) in minimum time with the quadrotor system alone. As
we can see, commands calculated by the optimal control are bang-null-bang as we
can expect for a time optimal control. However, the more the algorithm converges
to the optimal solution, the more it hits constraints so the longer the QP resolutions
are and the smaller the steps are. Therefore, complete convergence is obtained after

https://www.youtube.com/watch?v=hcFK32C-bxs

2.5. Results 47

System Task Time [s] (SQP it-
erations)

Quadrotor
alone

Horizontal displacement of
10[m]

0.35 (4)

Horizontal displacement of
30[m]

0.46 (5)

Vertical displacement of 10[m]
+ obstacles avoidance

0.51 (6)

Quadrotor
+
pendulum

Pendulum stabilization after
a perturbation (ωpx initial =
2[rad/s])

0.78 (4)

Horizontal displacement of
10[m] with inverted pendulum

0.76 (4)

From pendulum ψp initial = 0
to inverted pendulum
ψpfinal = π

1.99 (7)

Quadrotor + arm Reaching a position with the
end-effector (distance 5[m])

6.74 (6)

Table 2.1: Computation times for non-optimal trajectories.

Figure 2.2: Time optimal trajectory for the quadrotor.

48 Chapter 2. Trajectory Generation for Quadrotor Based Systems

Figure
2.3:

V
ideo

screen
shots:

the
tim

e
optim

altrajectory
for

the
quadrotor.

2.5. Results 49

57 seconds (373 SQP iterations) although a solution as T = 1.05Toptimal is obtained
after only 12.7 seconds (105 SQP iterations).

When the quadrotor is performing a vertical displacement going up, from a
certain distance, the optimal time trajectory is a trajectory where the quadrotor
is flipping over at the end of the trajectory and use its propellers to slow down
(Fig. 2.4). In [Ritz 2011], authors showed that an indirect optimal control was
able to find those trajectories. Here, the algorithm used is a local algorithm, so
it is not able to jump between valid areas of a non-continuous constraint and is
only able to find a local optimum. In this case, the end constraint that the system
must be static, is a non-continuous constraint which constrained the final roll and
pitch angles to [φf ,θf] = [2kπ,2lπ], [k, l] ∈ N2 where [k, l] is actually determined
by the initial guess. So, with initial guess used (quasi-static with roll φ = 0 and
pitch θ = 0), the algorithm is only able to find trajectories where the quadrotor
does half a turn in one way then another in the other way instead of a whole turn.
Moreover, because of the system symmetry, when the trajectory is strictly vertical,
the local optimum is always the trajectory without flip. To find a trajectory with
flip, the initial guess needs to be perturbed enough to exit the basin of attraction
of the solution without flip. The size of the perturbation depends on the length of
the trajectory: for a 40 meters high trajectory, setting a lateral displacement of 1
meter in the initial guess is enough to find the flipping trajectory; for fewer than 20
meters high, a simplified flip needs to be encoded in the initial guess (for instance,
for a 20 shooting nodes trajectory, the roll angle is set as φi = π for i= {16,17,18}
and φi = 0 otherwise).

2.5.2.2 Time optimal trajectories with systems quadrotor with pendu-
lum or arm

Optimal time trajectories for the tasks presented in Tab. 2.1 are visible on Fig. 2.5,
2.6, 2.7, 2.8.

2.5.2.3 Model Predictive Control (MPC)

To speed up calculation when using the algorithm as MPC, the cost function is
simply set as: ∫ T

0
(xxxq−xxxgoal)TC1(xxxq−xxxgoal) + ΩΩΩT

q C2ΩΩΩq

where the term ΩΩΩT
q C2ΩΩΩq is used for stabilization of the trajectory and C1, C2 are

weighting matrices. For this test, each 0.2 second a new control is found using
the first iteration of a SQP, solving a multiple shooting problem of 20 nodes over
a 8 seconds sliding time window. The time used to perform one SQP iteration is
variable according to the number of QP iterations, but here each SQP iteration took
about 0.1 second. This delay is not taken into account in the simulation but on a
real application, MPC can use techniques like delay compensation [Diehl 2009] to
compensate delays between measures of state and computation of controls. On Fig.

50 Chapter 2. Trajectory Generation for Quadrotor Based Systems

Figure
2.4:

V
ideo

screen
shots:

tim
e
optim

alverticaltrajectory
w
ith

the
quadrotor.

2.5. Results 51

Fi
gu

re
2.
5:

V
id
eo

sc
re
en

sh
ot
s:

tim
e
op

tim
al

tr
aj
ec
to
ry

fo
r
th
e
qu

ad
ro
to
r
w
ith

pe
nd

ul
um

–
Fr
om

pe
nd

ul
um

to
in
ve
rt
ed

pe
nd

ul
um

.

52 Chapter 2. Trajectory Generation for Quadrotor Based Systems

Figure
2.6:

V
ideo

screen
shots:

tim
e
optim

altrajectory
for

the
quadrotor

w
ith

pendulum
–
inverted

pendulum
.

2.5. Results 53

Fi
gu

re
2.
7:

V
id
eo

sc
re
en

sh
ot
s:

tim
e
op

tim
al

tr
aj
ec
to
ry

fo
r
th
e
qu

ad
ro
to
r
w
ith

pe
nd

ul
um

–
pe

nd
ul
um

st
ab

ili
za
tio

n
af
te
r
a
pe

rt
ur
-

ba
tio

n.

54 Chapter 2. Trajectory Generation for Quadrotor Based Systems

Figure
2.8:

V
ideo

screen
shots:

tim
e
optim

altrajectory
for

the
aerialm

anipulator
–
R
eaching

a
position

w
ith

the
end-effector.

2.5. Results 55

Figure 2.9: Video screen shots: MPC with the quadrotor – wind perturbation.

2.9, MPC stability is tested with wind gusts (wind gusts are modeled as a constant
piecewise force acting on the quadrotor and no estimation of the perturbation is
inserted into the model).

2.5.3 Point-to-point Trajectories Through Obstacles

2.5.3.1 Time optimal trajectories through obstacles

Fig. 2.10, 2.11 and 2.12 show optimal time trajectories with obstacle avoidance
for the three systems. To simplify the obstacles constraints aerial manipulator, we
suppose that the distance between the obstacle and its constraints is always greater
than the length of the arm. Therefore the obstacle constraints are only applied on
the center of the robot.

56 Chapter 2. Trajectory Generation for Quadrotor Based Systems

Figure
2.10:

V
ideo

screen
shots:

tim
e
optim

altrajectory
w
ith

obstacles
for

the
quadrotor.

2.5. Results 57

Fi
gu

re
2.
11

:
V
id
eo

sc
re
en

sh
ot
s:

tim
e
op

tim
al

tr
aj
ec
to
ry

w
ith

ob
st
ac
le
s
fo
r
th
e
qu

ad
ro
to
r
w
ith

pe
nd

ul
um

.

58 Chapter 2. Trajectory Generation for Quadrotor Based Systems

Figure 2.12: Video screen shots: time optimal trajectory with obstacles for the
aerial manipulator.

2.5. Results 59

Figure 2.13: Trajectory of the quadrotor using MPC formulation. The blue ellipses
represent the obstacle avoidance constraints.

2.5.3.2 MPC

By using simple ellipsoidal constraints for the obstacles, checking those constraints
is fast enough to be done online. Fig. 2.13 and 2.14 show an example of MPC with
obstacle avoidance for the quadrotor.

2.5.3.3 Going through a window

In this experiment, we ask the quadrotor with pendulum system to go through
a window while carrying a load (mp = 0.45[kg]). Since the window height (2[m])
is smaller than the pendulum length (4[m]), the quadrotor has to find a solution
where it swings up the pendulum to get through. The window is supposed infinitely
large so only the top and bottom part are modeled as obstacles i.e using ellipsoid
constraints. No initial guesses are used (the initial guesses are static trajectories at
the initial position) so the algorithm is free to find the best solution according to
the cost function. The trajectory needs to be able to spread through the window, so
no terminal constraints are set on the pendulum state and the terminal constraint
that the system should be static is only applied on the quadrotor.

In this test, the cost function corresponds to the squared distance between the
goal position (which is at the other side of the window) and the quadrotor final
position E(x) = C3||xq(T)− xgoal||2. In this case, the quadrotor starts to move
back and forth until the pendulum swings high enough to get through the window
(see Fig. 2.15, 2.16, computation time : 10.3 seconds).∫ T

0
(xxxq−xxxgoal)TC1(xxxq−xxxgoal) + ΩΩΩT

q C2ΩΩΩq

60 Chapter 2. Trajectory Generation for Quadrotor Based Systems

Figure 2.14: Video screen shots of MPC with obstacles contraints for the quadrotor.

2.5. Results 61

Figure 2.15: Trajectories for the quadrotor with pendulum (mq = 0.45[kg]) while
going through a window with terminal cost.

In the second test, a running cost is added L(x,u) =
∫ T

0 C4||xxxq(t)−xxxgoal||2dt. Here,
moving backward at the beginning of the trajectory is costly so instead of moving
back and forth, the algorithm is able to find a solution where the quadcopter is
moving from left to right to swing the pendulum up (see Fig. 2.17). This kind of
behaviour would not be possible if we were using waypoints as in [de Crousaz 2015]
because it would restrict the solution to the one encoded by the waypoints.

2.5.4 Pick and Place

In this part, system starts and ends at chosen positions and, on its way, has to
pick an object at a certain position then place it to another one. No obstacles are
added to the problem so the object is considered as flying. The task is encoded
as follows: the initial and final states are set using initial and final constraints and
picking/placing tasks are encoded using the cost function:

L(x,u) = ρ√
2π
e−

ρ2(t−Tpick)2

2 (∆xxxTpickC5∆xxxpick + ẋxxTeeC6ẋxxee) (2.7)

+ ρ√
2π
e−

ρ2(t−Tplace)2

2 (∆xxxTplaceC7∆xxxplace+ ẋxxTeeC8ẋxxee) (2.8)

∆xxxpick = (xxxee−xxxpick)
∆xxxplace = (xxxee−xxxplace)

where xxxee is the position of the end-effector, xxxpick and xxxplace are respectively the
positions where the system needs to take and leave the object and Ci are weighing
matrices. ρ allows to manage the duration during which the end-effector needs to

62 Chapter 2. Trajectory Generation for Quadrotor Based Systems

Figure 2.16: Video screen shots: going through a window for the quadrotor with
pendulum (mq = 0.05[kg]).

Figure 2.17: Influence of the cost function on going through a window trajectory for
the quadrotor with pendulum. In red, the trajectory using terminal cost function,
in blue the one with integral cost function.

2.5. Results 63

Figure 2.18: Trajectory of the quadrotor and the pendulum for picking task.

be at the picking/placing positions and Tpick, Tplace are parameters that correspond
to the time when object is picked/placed. Terms ẋxxeeCiẋxxee are used to stabilize the
end-effector on the desired position instead of moving around.

For the quadrotor with pendulum, we suppose that the object which needs to
be moved has a mass mo = 0.55[kg]. Therefore, the mass at the bottom of the
pendulum will increase from mq = 0.05[kg] to mq = 0.6[kg] when picking then back
to mq = 0.05[kg] after releasing the object. So mass is set as a trapezoidal function
where the slop lasts one interval of the time grid. Fig. 2.19 shows the trajectory of
the system when picking the object : by swinging the pendulum then drawing an arc
of circle around the object position, the quadrotor is able to keep the bottom of the
pendulum around the same place even if its mass changes. To get a nice behavior
like this with a under actuated system, the optimization needs to have enough
degrees of freedom so the time grid is set as 60 nodes over a 8 seconds trajectory.
For the quadrotor with arm, we consider that the object has a weight which is light
enough to be neglected. Therefore, the system keeps the same dynamic during the
whole trajectory and Tpick and Tplace can easily be included in the optimization, so
they are set as free parameters with constraints that 0< Tpick < Tplace < T and will
be optimized by the algorithm. This system has much more actuated degrees of
freedom than the last one, thus the algorithm is able to find a end-effector position
with a much smaller error (Fig. 2.21) even with a rougher time grid i.e 20 nodes
over a 8 seconds trajectory. Fig. 2.22 and 2.23 show that the algorithm is able to
exploit the full dynamic of the system: when performing the picking/placing, the
arm is able to compensate for the motion of the quadrotor so it does not need to

64 Chapter 2. Trajectory Generation for Quadrotor Based Systems

Figure 2.19: Trajectories of the pendulum for picking and placing task.

be in hovering state. For those tests, the algorithm does not only solve a task of
placing the end-effector at certain positions, at certain times but also tries to keep
it as close as possible, as long as possible. Therefore, the shape of the cost function
is much more complex and the algorithm needs a lot of iterations to converge a
suitable solution (250 SQP iterations so about 7 minutes for both systems).

2.5.5 Manipulation Tasks

In the Pick and Place experiment, time varying functions (2.7) and (2.8) are used to
specify waypoints for the end-effector. For more complex manipulation tasks, the
cost function can be used to set a complete reference trajectory for the end-effector.
As in Pick and Place, the optimization needs several minutes to converge to an
acceptable solution but allows to exploit the full system dynamic. Fig. 2.24 and
2.25 show trajectories where the aerial manipulator is used to drag an object or to
turn a crank handle.

2.6 Application: Smart Teleoperation

Flying quadrotor through a remote control is not a easy task and demand training
for the pilot. Moreover, this task can be particularly difficult when evolving in
a cluttered environment like a forest (Fig. 2.26), a plant or close to obstacles
(e.g for taking pictures of a bridge or an airplane wing for careful inspections).
This difficulty yet prevents the implementation of useful applications that might
otherwise be performed using a drone.

2.6. Application: Smart Teleoperation 65

Figure 2.20: Video screen shots: pick and place task for the quadrotor with pendu-
lum.

66 Chapter 2. Trajectory Generation for Quadrotor Based Systems

Figure 2.21: Error between picking/placing position and the end-effector position.
At the top, error for the quadrotor with pendulum, at the bottom, error for the
aerial manipulator. Time scale is centered on the picking/placing time.

Figure 2.22: End-effector and quadrotor trajectories for the aerial manipulator
solving the "pick and place" task.

2.6. Application: Smart Teleoperation 67

Figure 2.23: Video screen shots: pick and place task with the aerial manipulator.

68 Chapter 2. Trajectory Generation for Quadrotor Based Systems

Figure 2.24: Video screen shots: dragging with the aerial manipulator.

2.6. Application: Smart Teleoperation 69

Figure 2.25: Video screen shots: turn a crank handle with the aerial manipulator.

70 Chapter 2. Trajectory Generation for Quadrotor Based Systems

Figure 2.27: Smart teleoperation: the algorithm is able to modify the trajectory to
avoid obstacles. The yellow cylinders are obstacles; the red cylinder represents the
input velocity commanded by the user; positions of the quadrotor along time are
displayed in green.

Figure 2.26: NCS Challenge 2014

We propose to build a "smart"teleoperating system to make this task easier and
insure safe movements. This system takes the inputs given by the operator through
a remote control as a reference velocity and computes the controls of each propeller
using MPC formulation. For this application the cost function is set as:∫ T

0
(ẋxxq− ẋxxref)TC9(ẋxxq− ẋxxref) + ΩΩΩT

q C10ΩΩΩq

where ẋxxref is the reference velocity given with the operator. As in the previous
sections, obstacle avoidance is done by adding ellipsoidal constraints in the opti-
mization problem. Therefore, if the teleoperator drives the quadrotor toward an
obstacle, the teleoperating system will either stop the quadrotor or drive it around
to avoid the obstacle (see Fig. 2.27, video https://www.youtube.com/watch?v=
q4qaJmK3RzY). Tests on simulation show that the computation time is acceptable

https://www.youtube.com/watch?v=q4qaJmK3RzY
https://www.youtube.com/watch?v=q4qaJmK3RzY

2.6. Application: Smart Teleoperation 71

(around 35 ms for a preview window of 15 nodes over 1.5 s). The controller is able
to correctly control the system even without delay compensation and only starts to
show unstable behaviors when the delay becomes greater than twice the computa-
tion time. With the current implementation, the algorithm is computationally too
expensive to be implemented on a small quadrotor. However, it can easily be inte-
grated in a ground station. A dedicated implementation of the solver, engineered
to fit the capabilities of the on-board computer, should also (in our opinion) make
it possible without a ground station. In the first part this chapter, we used simple

heuristics (static or quasi-static) or the previous solution (in the case of MPC) to
initialize our nonlinear solver. However, the results and the convergence speeds
obtained can be improved by using a more efficient initial guess. In the next part,
we show that we can also use an automatic method to generate an initial guess
already close to the optimal solution.

Warm-starting the Nonlinear
Predictive Controller

2.7 Warm start in MPC

As explained in the first part of this chapter, nonlinear MPC boils down to the
iterative solution of a nonlinear, often nonconvex, optimization problem. To achieve
quick convergence to a good local optimum, we must rely on a good initial candidate
for the solver search. This is called a warm start (by opposition to a cold start, where
a trivial initial guess – e.g. constant zero control – is provided). When controlling
the robot through MPC, the optimization problems only marginally varies when the
horizon recedes. Between two control cycles of the robot, the two main variations of
the optimization problems are: i) the need to adapt the solution to the new initial
state (typically estimated from the sensors) and ii) the new piece of horizon added
at the end of the trajectory. In general, there is not enough time to achieve several
optimization steps between two control cycles. As soon as the solver get a feasible
solution, it is sent to the motor and the horizon recedes. At each new control
cycle, the optimization process must also reduce the cost that was only partially
optimized in the previous control cycles. If the system is subject to perturbations,
the solution found at the previous control cycle needs to be adapted to the new
situation. Obviously in that case, the trajectory found in the previous control cycle
cannot meet the new optimality conditions. This approach is working well on a
system whose dynamics does not vary too much, and where the receding horizon
does not imply a big change in the optimum (either because the model is excellent,
or because the control frequency – hence the resolution speed of the MPC solver –
is quick compared to the dynamic perturbation). If large perturbations occur, this
strategy becomes less efficient. In particular, the active set of the underlying QP
subproblem (2.2.4) will be badly initialized and will need several (possibly many)
iterations to converge. The QP may also become unsolvable, which implies that
a relaxation phase is then needed. In both cases, computation time will increase.
Thus the control frequency will be reduced and the effects of the perturbations will
increase. This could lead to unstable behaviors that also worsen the situation and
can typically make the control diverge. Therefore, when the system is subject to
disturbances or to changes in the environment, we could need a better initial guess
than the previous solution. In this section, we propose to use offline computations
to build an approximation of optimal trajectories. This approximation is then used
online to initialize our nonlinear solver. The approximation of optimal trajectories
is built according to the Iterative Roadmap Extension and Policy Approximation
algorithm [Mansard 2018].

74 Chapter 2. Trajectory Generation for Quadrotor Based Systems

2.8 Iterative Roadmap Extension and Policy Approxi-
mation (IREPA)

The IREPA algorithm aims at building an approximation of the optimal state and
control trajectories that can be provided to the MPC solver as warm start. It pro-
ceeds by systematically solve many variations of the MPC problem offline in simu-
lation for several initial and final conditions. This dataset of example trajectories
is approximated by a neural network. The IREPA algorithm efficiently combines
three different approaches to construct a model of the optimal solutions: optimal
control, sampling-based planning and machine learning. The main idea of the al-
gorithm is to build concurrently a kinodynamic roadmap and an approximation of
the edges of the roadmap, by developing the roadmap using a better approximation
and by improving the approximation using the extended roadmap. The roadmap
is composed of sampled robot states (i.e. position and velocity, typically randomly
sampled) and trajectories to connect some pairs of states. The roadmap edges are
computed using the MPC solver, which acts as a steering method [Boeuf 2015]. In
the first iteration of the IREPA, the MPC is cold started (a trivial initial guess is
provided), which results in many connection failures, and also in some suboptimal
edges (either the MPC solver does not converge, and when it converges, it may be
to a poor local optimum). Empirically, we observe that only the pairs of states
with a small distance (in the state space) can be properly connected in the first
iteration. Then three neural networks are optimized from the roadmap edges. The
two first networks are built to predict the state and control trajectories connecting
two states. The third network is built to predict the value function, i.e. the optimal
cost to go from one state to the other. The training is done by achieving a classical
regression, while the example dataset is composed of the edges and subtrajectories
of the edges. As explained above, the dataset contains some optimal trajectories,
but also wrong examples with trajectories that are far to be optimal. The last step
of an IREPA iteration is to remove from the dataset these outliers, i.e. edges of
the roadmap that are far from the network predictions. In the later IREPA iter-
ations, the MPC solver is warm-started using the network prediction, which are
approximations of the optimal trajectory. Although, the roadmap is preferentially
extended following the value-function approximation as a metric of the state space.
At each new iteration of the IREPA, the roadmap is extended using the learned ap-
proximation, and the approximation is refined using the extension. The algorithm
is summarized in Alg. 1.

We empirically observed that IREPA is a very efficient solution to drive the
MPC to the optimal trajectory. This good behavior is reasonable, considering the
complementarity of the pieces that build the algorithm. As we have seen, optimal
control can quickly find optimal solutions but it needs to be correctly initialized
(otherwise the solver could diverge) and can get trapped into local minima. On the
other hand, sampling-based planning generate a high number of trajectories and
can explore a large space to connect initial and goal states with (global) optimal

2.9. Results 75

Algorithm 1 Iterative Roadmap Expansion and Policy Approximation (IREPA)
1: Initialize PRM with a given number of state samples
2: repeat
3: Expand PRM
4: stop ← True if PRM is fully connected else False
5: Optimize approximator RMS
6: for every edge EPRM in the graph do
7: (x0,x1) ← getStartAndEndNodes(EPRM)
8: Enew ← approximator(x0,x1)
9: if Enew ≤ EPRM then

10: Replace EPRM by Enew
11: stop ← False
12: until stop

trajectories. However, the algorithms need a steering method to compute trajec-
tories connecting pairs of nodes and an optimal solution can only be found with
an infinite number of samples. Machine learning is able to automatically construct
a model that interpolate data but needs a high number of examples spread over
the whole space and they need to correspond to the right set of data (i.e. optimal
trajectories here). Thus, drawbacks of each approach can be compensated by the
others:

• Sampling-base planning can use optimal control as steering method to connect
nodes that are close with locally optimal trajectories.

• Machine learning can use the roadmap generated by the sampling-based plan-
ning to generate an approximator of (global) optimal trajectories.

• Optimal control can use the approximator generated with machine learning
to be correctly initialized in the basin of attraction of the global optimum.

The IREPA results of a collaborative work, where our main contribution is
experimental. We therefore refer the interested reader to the original paper
[Mansard 2018], where more details are available.

2.9 Results

In this section, we mainly report the results obtained with a planar UAV with
two propellers. Trajectories obtained with other dynamic systems are shown in a
video (see https://www.youtube.com/watch?v=CbyCa7aeC7k). The system has 3
degrees of freedom and 2 control inputs. The small dimension allows us to more
easily plot the behavior of the algorithms and the resulting trajectories of the sys-
tem. We start by reporting the technical details of our tests. Then we present
the main results divided in offline phase (IREPA algorithm) first, and online phase
(warm start) last.

https://www.youtube.com/watch?v=CbyCa7aeC7k

76 Chapter 2. Trajectory Generation for Quadrotor Based Systems

2.9.1 Setup

2.9.2 System dynamics and cost

The UAV is modeled by a state of dimension 6: two translations x,z, one rotation
θ, and the corresponding velocities ẋ, ż, θ̇. The control inputs are the forces f1,f2
applied by the propellers, which must be positive and bounded. The dynamics is:

ẍ=− 1
m

(f1 +f2)sinθ (2.9)

ÿ = 1
m

(f1 +f2)cosθ−g (2.10)

θ̈ = l

I
(f1−f2) (2.11)

where m and I are mass and inertia of the UAV, g is gravity and l is the lever
arm of the propeller. We set m = 2.5kg, I = 1.2kgm2, l = 0.5m, following the
dimension of the AscTec Falcon. The propellers are limited to 25N , without con-
tinuity constraints. We consider minimum-time trajectory, i.e. the cost function is
the trajectory duration. Similar results are obtained with minimum-norm running
costs.

2.9.3 Approximators

We used a neural network to implement the approximator function (Value, pol-
icy, trajectories). All networks are implemented with 2 hidden layers with ELU
activation function. The output layer of the Value approximator is also activated
by ELU, while policy and trajectories output layers are hyperbolic tangent (scaled
within range limits).

2.9.4 Computational setup

The optimal control solver and neural-network stochastic gradient de-
scent [Kingma 2014] are implemented in C++. The rest of the application (planner,
IREPA algorithm, etc) is implemented in Python. The tests were run on a single
process on an Intel Xeon E5-2620 (2.1GHz). The algorithm would be easy to par-
allelize: most of the CPU time is consumed by the steering method, which can be
run independently on several cores.

2.9.5 Offline phase

We first empirically validate the convergence of IREPA and its efficiency compared
to a kinodynamic PRM.

2.9.6 IREPA convergence

To better visualize the IREPA converge, we first work with a fixed number of nodes
in the PRM (30). Fig. 2.28 shows several quantities during IREPA convergence.

2.9. Results 77

0 1 2 3 4 5 6 7 8 91.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05

M
ea

n
PR

M
 c

os
t

0 1 2 3 4 5 6 7 8 9
IREPA iterations

0.0

0.5

1.0

1.5

2.0

R
M

S

V*100
Pi
X*5

0 1 2 3 4 5 6 7 8 9
IREPA iterations

0

100

200

300

400

500

600

700

of

 c
on

ne
ct

io
ns

Figure 2.28: Evolution of the PRM and the approximators during the IREPA it-
erations. Top: decrease of the PRM mean edge cost (on a constant subset of 140
edges) and approximator RMS error. Bottom: number of connections between 30
reference nodes.

78 Chapter 2. Trajectory Generation for Quadrotor Based Systems

0 500 1000 1500 2000 2500 3000

of steering tentative
100

200

300

400

500

600

700

800

900

of

 c
on

ne
ct

io
ns

IREPA
PRM

0 500 1000 1500 2000 2500 3000

of steering tentatives
1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05

M
ea

n
ed

ge
 c

os
ts

IREPA
PRM

Figure 2.29: Comparison of the progress of IREPA versus PRM algorithms. Top:
IREPA requires less evaluation of its (improved) steering method to establish more
connections between distant nodes. Bottom: the connections computed by IREPA
also have lower costs.

2.9. Results 79

1.0 0.8 0.6 0.4 0.2

0.5

1.0

1.5

PRM

1.0 0.8 0.6 0.4 0.2

0.5

1.0

1.5

Net

1.0 0.8 0.6 0.4 0.2

0.5

1.0

1.5

Acado

0.6 0.4 0.2 0.0 0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.6 0.4 0.2 0.0 0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.6 0.4 0.2 0.0 0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

1.5 1.0 0.5 0.0 0.5 1.00.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

1.5 1.0 0.5 0.0 0.5 1.00.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

1.5 1.0 0.5 0.0 0.5 1.00.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0 Acado

Figure 2.30: Typical examples of the trajectories stored in the PRM (left), in
the approximators (middle) and computed by the steering method (right). The
trajectories computed in the early IREPA iterations are in light gray, while dark gray
is used for the trajectory computed in the last iterations. PRM and approximator
trajectories tend to converge toward a same optimum, that the trajectory optimizer
will easily optimize.

80 Chapter 2. Trajectory Generation for Quadrotor Based Systems

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.81.0

0.5

0.0

0.5

1.0 Approximate trajectories

1.0 0.8 0.6 0.4 0.20.0 0.2 0.4 0.6 0.81.5

1.0

0.5

0.0

0.5

1.0 Refined trajectories

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 2.31: Bundle of trajectories (left) stored in the approximators, and (right)
refined by the predictive controller. Each point of the plane corresponds to an initial
configuration of the UAV (with 0 initial angle and 0 initial velocity), while the goal
state is 0. The trajectories stored in the approximators do not exactly respect the
boundary conditions. The refined trajectories are smoother, dynamically consistent
and respect all the constraints. The color depicts the cost of each trajectory.

The mean cost on a fixed number of edges (the ones computed in the first iteration)
decreases, while better local optimum are computed for the edges thanks to the
improved approximators. Reciprocally, we plot the RMS along with the stochastic
gradient descent: the RMS error converges to a local minimum at each IREPA
iteration. Then, when new and better edges are computed at the next IREPA
iteration, the RMS error can leave its local minimum. The number of connections
in the PRM constantly grows and converges toward the maximum (830) in 15
iterations.

2.9.7 Propagation of the PRM

Then we compare the propagation of the roadmap when IREPA is used, or when
a standard kinodynamic PRM is used. We compare the progress of the algorithms
with respect to the number of evaluations of the steering method. Clearly, many
evaluations of this local controller fail because the nodes that we try to connect
may be out of the visibility range of the method. Once more, we fix the number
of nodes in IREPA (only edges are added), while both nodes and edges are added
by the PRM. Fig. 2.29 summarizes the results. IREPA is much faster at creating
new connections, as the steering method increases its visibility range when the ap-
proximators converge. On the contrary, the poor metrics and the constant visibility
range of the steering method used in the PRM lead to many connection failures.
We also observe the mean cost to connect the 30 nodes initially sampled together.

2.9. Results 81

Value function

Policy function

Figure 2.32: Scatter plot of the value (top) and policy (bottom) functions along
IREPA iterations. The axes correspond to X and Z axis of the UAV, while the
angle θ and velocities are null. The desired state is the origin (i.e. we plot
V ([x,z,θ = 0,v = 03],06) and similarly for π). Both functions converge toward
symmetric solutions. The policy is bang-bang, as expected.

82 Chapter 2. Trajectory Generation for Quadrotor Based Systems

In IREPA, this cost decreases as lower-cost edges are found. In the standard PRM
the cost only decreases when a new path in the graph more efficiently connects two
nodes. In conclusion, with respect to a standard PRM, IREPA converges much
faster, and to better trajectories.

2.9.8 Results of the offline phase

We display in Fig. 2.30, 2.31 and 2.32 the trajectories computed and stored in the
PRM and the approximators. Fig. 2.31 shows the evolution of both the PRM edges
and the approximator. In the first IREPA iterations, suboptimal edges are com-
puted as the steering method is cold started. This results in some inconsistency
between the trajectories stored in the PRM, hence large RMS errors and poor qual-
ity of the trajectory approximators. Consequently, the steering method often fails
to converge to a good optimum. Along the IREPA iterations, the trajectories both
in the PRM and in the approximators tend to converge toward similar solutions,
which are more consistent and closer to optimal. Consequently, the steering method
is initialized with a good initial guess, and quickly converges toward an low-cost
trajectory. Fig. 2.31 shows a set of trajectories for various initial conditions, stored
in the approximator and refined by the predictive controller, at the end of the
training phase. Fig. 2.32 shows a 2d projection of the Value function and the policy
function. We know that the optimum should be symmetric and the policy function
should saturate the controller. We can see that these properties are satisfied when
IREPA converges. We also see that the RMS error of the HJB equation is small
after convergence.

2.9.9 Online phase

The objective of the IREPA algorithm is to build the initial guess needed to warm
start the predictive controller. We now empirically validate that this warm-start is
useful and compare the two solutions proposed in the paper.

2.9.9.1 Warm-start

We compare the performances of the predictive controller without any initial guess
(cold start), against its performances when warm-started with either the policy
approximation (using a roll-out) or using the trajectory approximation. First of
all, the predictive controller may often fail to find a admissible trajectory when no
initial guess is used (cold start). Rates of success is displayed in Table 2.2. Cold-
start results in 60% failures. On the opposite, any of the two warm-start results
in between 90% and 95% of success (additional failures after 10 iterations are due
to implementation problems). In the meantime, warm-start also results in more
efficient trajectories. An important difference clearly appears in Fig. 2.33. The
optimizer converges more quickly to the true optimum when initialized with the
trajectory approximator X̂∗ rather than by a roll-out of the policy π̂. While the
roll-out enforces the dynamic consistency, it also brings some convolution effects

2.9. Results 83

50 100 150

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
os

t

After 2 OCP iteration

50 100 150

0.5

1.0

1.5

2.0

2.5

3.0

3.5 After 10 OCP iteration

50 100 150

0.5

1.0

1.5

2.0

2.5

3.0

3.5 After 50 OCP iteration
Ground truth
Policy approx
Trajectory approx
Cold start

Figure 2.33: Convergence of the predictive controller initialized either by the policy
roll-out or by the trajectory approximation. We consider a fixed set of 200 initial
points, for which the (global) optimal Value is known. The points are ordered by
cost. We plot the cost obtained from the two approximations after 2, 10 and 50
iterations of the predictive controller. Initializing with the trajectory approxima-
tion, the solver quickly converges toward the optimal trajectory. Initializing with
the policy rollout also leads the solver to a good solution, although 50 iterations
are needed. In practice, when controlling a robot, we cannot afford more than 5
iterations.

84 Chapter 2. Trajectory Generation for Quadrotor Based Systems

t=0.5s t=0.7s t=1.1s t=1.5s

t=1.5s t=1.9s t=2.4s t=2.9s

Figure 2.34: snapshots of an example trajectory obtained with the predictive con-
troller. At time 1.29s, the UAV is impacted by an object which suddenly modifies
its state. Using the initial guess, the predictive controller quickly rejects the dis-
turbance and converges to the desired equilibrium.

Table 2.2: Success rate (%) of the steering method and average cost (± standard de-
viation) of the computed trajectories for different warm-start techniques (U: warm
start from policy roll-out, J: warm start from state-control trajectory) and at dif-
ferent iterations (It.) of the algorithm.

U J Cold start
It. % Cost % Cost % Cost
2 90 0.47±0.18 88.5 0.07±0.07 31 2.05±1.85
5 90.5 0.34±0.10 93.5 0.07±0.08 45.5 0.37±0.36
50 85.5 0.04±0.09 85.0 0.03±0.07 42.0 0.06±0.10

due to the dynamic instability, that tends to confuse the solver, at least during the
first iterations. After a large number of iterations, both warm starts converge to
the same optimum, with similar rates of failure. The critical point with predictive
control is to be able to quickly find an admissible trajectory. This is the case with
both initial guess. However, on the robot, it is not possible to iterate more than 2 to
5 times. Under this assumption, the initialization by the trajectory approximator
is much more efficient.

2.9.9.2 Predictive control

We use the initial guess in a predictive controller. An example of the resulting
trajectory is displayed in Fig. 2.34. The robot has to reach a desired steady state.
During the movement, it is hit by an object: this impact instantaneously changes
its velocity. A new trajectory is first approximated then optimized, leading the
robot to reject the disturbance and to reach its final position. Other trajectories are
shown in the video (see https://youtu.be/CbyCa7aeC7k) with a double pendulum,
a birotor, a quadrotor in various situations and a quadrotor with swinging load.
Snapshots from the videos are displayed in Figs. 2.35 to 2.38.

https://youtu.be/CbyCa7aeC7k

2.9. Results 85

Figure 2.35: Swings of a double pendulum to reach a desired upright position.

Figure 2.36: Quadcopter trajectory from steady state to steady state. The controller
is disturbed by an impact at the middle of the trajectory.

Figure 2.37: Quadcopter trajectory from steady state to a waypoint with tilted
angle (π/2) and nonzero velocity, then to a terminal steady state. The obstacle is
not explicitly modeled in the control law.

Figure 2.38: Quadcopter trajectory with a swinging load. The robot moves from
steady state to steady state.

86 Chapter 2. Trajectory Generation for Quadrotor Based Systems

Table 2.3: Number of iteration before T < 1.1Topt

initializer initial T [s] iteration
IREPA approximator 1.635 (given by the approximator) 2

static 8.0 41
7.0 38
6.0 34
5.0 33
4.0 31
3.0 44
2.5 51
2.0 95
1.5 154

2.9.9.3 Characterization of the optimum

The previous results are convincing about the capability of IREPA to drive the
MPC solver to feasible solution. We want now to characterize whether the resulting
trajectory is indeed the (global) optimum of the problem and compare the number
of iterations needed by the nonlinear solver to converge to the optimal solution. We
chose a setup where the optimal trajectory is known and experimentally observed
how the MPC solver is able to obtain this solution depending on the provided
warm start. For this test, we used the 3D quadrotor model presented in Section
2.3.1. The neural network is trained following the same procedure, over 15 IREPA
iterations. We consider the quadrotor in hover state subject to a perturbation
that instantaneously changes its lateral velocity from 0m/s to 5m/s. The system
is controlled to come back to its initial position as fast as possible. As we have
seen in Section 2.5.2.1, complete convergence to the optimal solution can be very
long. Instead, we consider here that the solution is found if T < 1.1Topt, where
T is the trajectory duration and Topt = 1.899s is the minimal duration found on
this example. The results are compared to a static initial guess (which would be
the initial guess found by a MPC controller since the perturbation is considered
instantaneous) and with different initial guess for the T parameter. The results
are summarized in Tab. 2.3. They show that the initial guess generated by our
approximator allows a convergence at least 15 times quicker than a static initial
guess.

2.10. Conclusion 87

2.10 Conclusion

The purpose of this chapter was to introduce MPC as an efficient theoretical frame-
work able to generate various kinds of movements for various robot dynamics and
task contexts. The main interest of this approach is that the theoretical work and
technological implementation do not have to change when the robot, the environ-
ment or the task change. We empirically demonstrated that this approach is well
suited to address several typical problems of UAVs such as generating and achiev-
ing high-dynamic maneuvers, generating oscillatory patterns with a hanging load,
dynamically moving through an obstacle field and generating in-contact movements
with an aerial manipulator. On the motion-generation side, this study led to scale
the computational load using a prototype implementation (around a few seconds of
computations to compute a trajectory from scratch, a tenth of a second to update a
trajectory in MPC). These performances are sufficient to allow the implementation
of the approach on the real robot. Despite the interest of the MPC framework,
some open scientific questions remain open before we can simply apply it on real
robots. The open questions are a motivation for the next two chapters. A first
scientific lock is around the need to engineer the cost function to obtain a good
robot behavior. Although the premise of optimal control is that it is enough to
choose a simple cost function that encodes the task to be achieved by the robot,
defining the cost function is a little bit more complex in practice. The cost function
should indeed also regularize the system movements (in particular when closing the
loop in a MPC fashion), while we generally have to setup more aggressive cost for
exploration (i.e. when using the optimal-control formulation in a planning fashion).
Adjusting the relative importance of the several terms that are composing the cost
function may quickly become tricky. A practical consequence is that, although the
computation costs are very satisfactory, we were not able to set up MPC in a generic
manner, apart on the quadrotor alone. In the next chapter we will focus on the
construction of cost function more suitable for MPC along with their implemen-
tation on physical robots, using a hierarchical strategy. Another important open
question is the prior information that is given to the optimizer, to warm-start the
search. For cyberphysic systems with a slow or repetitive dynamics (e.g. chemical
tanks, tanks), warm-starting the search with the solution of the previous control
cycle is most of the time sufficient to ensure a good behavior of the controller. It
is, once more, trickier for versatile robots in changing environments, where dynam-
ics, tasks and obstacles quickly evolve and make deprecated the previous solution.
Many works available in the literature relies on heuristic solution to build a warm
start at run time. We rather believe that quickly building good approximations to
warm start the search might be done by combining motion planning and machine
learning, based on offline exploration of the robot motion capabilities. In this chap-
ter, we reported a collaborative research action that led to storing the initial guess
inside a neural network. Although the approach is interesting, we are not yet able
to generalize it on systems whose dynamics are more complex, like legged robots. In
the last chapter, we will investigate more deeply this direction, in order to quickly

88 Chapter 2. Trajectory Generation for Quadrotor Based Systems

generate complex locomotion plans using a motion planner, whose internal model
results from an offline exploration phase.

Chapter 3

Regularized Hierarchical
Differential Dynamic

Programming

In the previous chapter, we reported how a classical optimal control method can be
applied to a real robotic problem. This chapter presents a new algorithm for optimal
control (OC) of nonlinear dynamical systems. The main feature of this algorithm is
that it allows the specification of the control objectives as a hierarchy of tasks, each
task representing an action that the robot should perform. Each task is described
by a cost function that the algorithm tries to minimize, while not affecting the
tasks of higher priority. The concept of strict priority allows for an easier and more
robust specification of the control objectives, without hand-tuning of task weights.
The hierarchy also makes it possible to properly regularize the behavior of each task
independently. For the first time, we properly define the problem of regularizing
the task cost functions in the presence of a hierarchy and propose an algorithm to
compute an approximate solution. Several simulated scenarios with different robots
compare our solution with other state-of-the-art methods, validating the interest of
the hierarchy in OC and empirically demonstrating the importance of regularization
to generate feasible behaviors.

3.1 Introduction

Optimal control algorithms allow the user to generate motion for arbitrary systems
by specifying a cost function to minimize. Exact methods for solving optimal con-
trol rely on optimality principles by either Bellman or Pontryagin. While solving
an optimal control problem using these approaches is intractable in most realistic
cases, algorithms exist that compute approximate local optima, which are often
good enough in practice [Von Stryk 1993, Mombaur 2005]. However, as shown
in the previous chapter, designing a cost function that results in the desired be-
havior is much more complex than it may look like. Especially for systems with
many degrees of freedom (DoFs) a cost function is typically a weighted sum of
several elementary costs, each one representing a task that the robot should per-
form [Tassa 2012,Koenemann 2015]. For instance, to make a humanoid robot walk,
we can control the trajectory of its center of mass and its swinging foot, its angular
momentum and its whole-body posture. If we also add manipulation objectives, it
is clear that the number of tasks rapidly grows. In such cases, finding the right

90
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

weights for the different terms of the cost function may be extremely time con-
suming. Moreover, weights are typically not robust to task variations, e.g. the
weights used for walking may be very different from the weights needed for run-
ning. Often, rather than using weights, it is simpler to specify strict
priorities between tasks. This means that in case of conflict between two tasks,
we might require the most important task to be achieved at the expense of the
other. For instance, the task of avoiding collisions has clearly higher priority than
the task of minimizing the motor commands. The concept of strict priorities is
indeed widespread in robotics for inverse-kinematics [Escande 2010,Siciliano 1991]
and inverse-dynamics [Saab 2013, Del Prete 2015] controllers. In optimal control
strict priorities are typically approximated using much larger weights for the high-
priority tasks. However this approach does not scale well when the number of
priority levels grows because it can lead to poor numerical conditioning. This mo-
tivated our first work on Hierarchical Optimal Control (HOC) [Del Prete 2014], in
which we introduced strict priorities in the optimal control problem formulation.
Later [Romano 2015], we proposed another algorithm to solve the HOC problem,
Hierarchical Differential Dynamic Programming (HDDP). In this chapter we pro-
pose an improved version of HDDP, which properly handles the regularization of
the tasks. While the problem of regularizing the cost function is often overlooked
in the literature, we show that it is actually paramount when using strict priorities.

3.1.1 The Role of Regularization

The problem of regularization (or damping) is well-known in robotics [Chi-
averini 1994,Decré 2013] and optimization [Dimitrov 2015], but for different reasons.
Optimization problems are regularized to avoid poor numerical conditioning, which
leads to large numerical errors due to computer arithmetic of finite precision. In
this context, the regularization parameters typically take very small values (e.g.
10−9). This regularization, which we refer to as algorithm regularization, modifies
the original problem, thus introducing a small error in the resulting solution. This
error is however largely compensated for by the improved behavior of the numerical
solver.

In inverse-dynamics/inverse-kinematics control instead, regularization is used
to prevent large motor commands, which occur e.g. in the neighborhood of kine-
matic singularities [Chiaverini 1994]. In this context, regularization parameters
take much larger values (e.g. 10−3). This regularization, which we refer to as task
regularization, is a core part of the cost functions describing the tasks—rather than
a parameter of the algorithm. Task regularization is even more critical in optimal
control: without regularization the resulting control would overexploit the robot ac-
tuation capabilities (e.g. saturating the motor limits). This behavior is undesirable
in most situations in autonomous robots.

The difference between task regularization and algorithm regularization is part
of the know-how, but yet not well defined in robotics. This is because in inverse-
kinematics/dynamics they are both implemented through the damping factor of the

3.1. Introduction 91

pseudo-inverses [Chiaverini 1994].
Despite its importance, the problem of task regularization is often not explicitly

mentioned, or relegated to a small paragraph towards the end of the chapter. This is
because typically task regularization does not affect the mathematical developments
that are the subject of the publication. However, this is no longer the case when con-
sidering a hierarchical (or lexicographic) optimization [Tazaki 2014,Isermann 1982].
Indeed we will show that the hierarchical minimization of least-squares functions—
which has been extensively studied in robotics [Dimitrov 2015,Escande 2014] and
is at the core of our algorithm—becomes nonconvex when introducing task regu-
larization. Moreover, while the unregularized hierarchical problem can be defined
as the limit of the weighted problem for the ratio of the weights going to infinity,
this is no longer the case if we introduce regularization. This implies that the solu-
tion of the regularized hierarchical problem cannot be approximated with a classic
optimization using large weights. These two properties highlight the fact that task
regularization should be taken into account from the very beginning when dealing
with hierarchical optimization. The contribution of this chapter goes thus in this
direction, by introducing a regularized version of HDDP, called Regularized HDDP
(RHDDP).

3.1.2 State of the Art

The problem of hierarchical trajectory optimization has been rarely discussed in the
literature. Recently, hierarchical linear model predictive control has been used to
generate safe walking motion for a biped robot walking in a crowd [Sherikov 2016].
A similar formulation has been used to solve the minimum-time control problem
for industrial robots [Homsi 2016]. In both cases, nonlinear constraints have been
linearized, leading to classic hierarchical least-squares problems.

To the best of our knowledge, only one work in the literature dealt with nonlinear
hierarchical trajectory optimization [Tazaki 2014]. With respect to our approach we
can find several differences. The main advantage of their algorithm [Tazaki 2014]
is that it can handle inequality constraints. However, this prevented them from
exploiting the sparsity of the optimal control problem, which we do thanks to the
Differential Dynamic Programming (DDP) formulation. Moreover, they did not
deal with the problem of task regularization, which is the main focus of this chapter.

This work is based on two previous conference publications [Del Prete 2014,Ro-
mano 2015]. In our first work [Del Prete 2014] we introduced strict task prior-
itization in the optimal control formulation. This algorithm did not exploit the
intrinsic sparsity of the optimal control problem, which can lead to a reduction of
the computational complexity from cubic to linear in the number of time steps. In
our second work [Romano 2015] we addressed this problem by extending the DDP
algorithm to account for strict priorities between the cost functions. In this chapter
we present an improved version of the HDDP algorithm, together with extensive
simulations with several robotic systems to validate our approach.

92
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

3.1.3 chapter Overview

This chapter has three contributions. First, we propose the first well-founded def-
inition and resolution of a hierarchy of quadratic objectives with regularization.
Second, we use this solution to derive the first algorithm to solve HOC with reg-
ularization, while exploiting the sparsity of the problem. Finally, we demonstrate
the importance of our approach by several case studies on various simulated robot
models.

Before discussing about HOC, Section 3.2 treats the problem of Hierarchical
Quadratic Programming (HQP), which is strongly related to HDDP. The subject
of Hierarchical Least-Squares Programming (HLSP, a special case of HQP) is well-
known in robotics and has been extensively studied [Dimitrov 2014,Escande 2014,
Escande 2010] and applied [Herzog 2016] in recent years. However, the problem
of task regularization has never been properly addressed. In particular, we show
that the regularized HLSP problem is not convex in general—while HLSP always is.
We then propose a convex relaxation of regularized HQP, which gives a (possibly)
suboptimal solution that is guaranteed to satisfy the priority constraints.

Section 3.3 introduces the problem of Parametric HQP (PHQP), which consists
in minimizing a set of quadratic cost functions with respect to (w.r.t.) a subset of
their variables, treating the other variables as problem parameters. This is exactly
what happens in the DDP algorithm, where the optimization is performed w.r.t.
the control variables, while the state variables are treated as problem parameters.
This allows DDP to compute feedback control laws rather than open-loop control
trajectories.

Then, Section 3.4 and 3.5 present the Regularized HDDP algorithm, exploiting
the results already presented for PHQP. Section 3.6 reports numerical simulations
on different robotic systems, comparing RHDDP with HDDP and DDP. Finally,
Section 3.7 discusses the results and Section 3.8 draws the conclusions.

3.1.4 Notation

The following notation is used throughout the chapter:

• (A,B) is a short form for
[
A> B>

]>
.

• N (A) is the null-space projector of the matrix A.

• A† is the Moore-Penrose pseudo-inverse of the matrix A.

• ∂yg is the partial derivative of a multivariable function g(·) with respect to
one of its variables y; ∂yzg is the partial second-order derivative with respect
to y and z.

• y is a generic variable while x and u are respectively the state and control
variable in an optimal control problem. We also denote by X and U the state
and control sequences (i.e. X = (x0 . . .xN)).

3.2. Hierarchical Quadratic Programming (HQP) 93

• the symbol .̂ is used for all quantities related to the regularized costs (e.g. the
regularized control law û).

• the symbol .̃ is used for the hybrid control law.

• the symbol .∗ is used for the optimal values.

• the symbol .̄ is used for the cumulative quantities, i.e. quantities that are
associated to a set of tasks (rather than a single task).

3.2 Hierarchical Quadratic Programming (HQP)

We first recall the Hierarchical Quadratic Programming problem without regular-
ization, as it is typically presented in the literature [Escande 2014]. For applications
in robot control, most of the time this problem is not interesting because it results
in large/discontinuous motor commands. For this reason, we present then the reg-
ularized HQP problem, which does not suffer from this issue, and we discuss its
properties.

3.2.1 Problem Statement

Suppose having nl quadratic functions:

g(l)(y) = 1
2 y
>H(l)y+h(l)>y, l = 1, . . . ,nl

which we want to minimize in a hierarchical way:

g(l)∗ =minimize
y

g(l)(y)

subject to g(j)(y) = g(j)∗ ∀j < l
(3.1)

Clearly, we can expect the Hessians of all the functions g(j)(y) to be singular—
except for the last one. If that was not the case, all the functions of priority lower
than a function with a full-rank Hessian could not be optimized at all. In this
form, the priority constraints are quadratic, which make problem (3.1) nonconvex.
However, it is well-known that, for the least-squares case, we can replace them with
linear constraints (as we will recall in Section 3.2.3), making (3.1) convex. We will
show that this is no longer the case if we introduce regularization.

3.2.2 Regularizing the Problem

Suppose having a regularized version of each objective function:

ĝ(j)(y) = 1
2 y
>Ĥ(j)y+ ĥ(j)>y, j = 1, . . . ,nl

We assume that the regularized Hessians are positive-definite. A typical case
of regularization consists in adding a scaled identify matrix to the Hessians, i.e.

94
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

Ĥ(j) =H(j) +λI, while leaving the gradients unvaried, i.e. ĥ(j) = h(j). The regu-
larized HQP problem is then:

ŷ(l)∗ =argmin
y

ĝ(l)(y)

subject to g(j)(y) = g(j)(ŷ(j)∗) ∀j < l
(3.2)

Note that we do not use the regularized functions in the priority constraints because
that would leave no null space to optimize the secondary objectives. Again, because
of the quadratic equality constraints, problem (3.2) is not convex. We show now
how to replace them with linear constraints that are sufficient (but not necessary)
to guarantee the satisfaction of the original quadratic constraints, resulting thus in
a convex relaxation of (3.2).

3.2.3 Reformulating the Priority Constraints

Let us use the first two objectives of the hierarchy to illustrate this technique, which
can be then easily generalized to the following objectives. The minimization of the
first objective is unconstrained, so we can compute ŷ(1)∗ as:

ŷ(1)∗ =−(Ĥ(1))−1ĥ(1)

The priority constraint for the optimization of the second objective is then:

1
2 y
>H(1)y+h(1)>y = g(1)(ŷ(1)∗)

We introduce now a simple change of variable to simplify the derivation: y= ŷ(1)∗+
y(2). This leads us to:

1
2 y

(2)>H(1)y(2) + ŷ(1)∗>H(1)y(2) +h(1)>y(2) = 0 (3.3)

When the HQP problem is unregularized and the functions g(l)(y) are least-squares
functions we can replace (3.3) with an equivalent linear constraint, which makes
the HQP convex:

1
2 y

(2)>H(1)y(2) = 0 ⇐⇒ y(2) =N (H(1))z,

where z is an arbitrary variable, and we exploited the fact that for an unregular-
ized HQP ŷ(1) =−(H(1))†h(1) and that for least-squares functions h(1)>N (H(1)) = 0.
However, this is not the case for the regularized HQP, which is in general nonconvex.
We suggest to replace the quadratic priority constraints (3.3) with linear constraints
that are sufficient but not necessary to ensure (3.3). By doing so we get a convex
optimization problem whose solution is in general suboptimal for the original prob-
lem, but it is guaranteed to satisfy the priority constraints. A sufficient condition
for (3.3) to hold is to select y(2) in the null space of H(1) (to nullify the first two

3.2. Hierarchical Quadratic Programming (HQP) 95

terms) and h(1)> (to nullify the last term), that is:

y(2) =N ((H(1),h(1)>))z =N (1)z, (3.4)

Note that for a hierarchy of least-squares functions being in the null space of H(1)

would be sufficient [Escande 2014] (but still not necessary) because the gradient
would always be zero in the null space of the Hessian, i.e. h(1)>N (H(1)) = 0.

3.2.4 Solving the Second Minimization

The minimization of the second objective is then a QP:

minimize
y,z

ĝ(2)(y)

subject to y = ŷ(1)∗+N (1)z

Eliminating the constraints and setting the gradient of the cost to zero we get:

ŷ(2)∗ = ŷ(1)∗− (N (1)Ĥ(2)N (1))†(ĥ(2) + Ĥ(2)ŷ(1)∗)

3.2.5 Solving the Whole Hierarchy

Generalizing this to an arbitrary number of functions nl, we get the following re-
cursive solution:

ŷ(l)∗ = ŷ(l−1)∗− H̄(l)†h̄(l),

where:
H̄(l) ,N (l−1)Ĥ(l)N (l−1)

h̄(l) , ĥ(l) + Ĥ(l)ŷ(l−1)∗

N (l) ,N (l−1)N ((H(l),h(l)>)N (l−1)),

The recursion is initialized with N (0) = I and ŷ(0)∗ = 0.

3.2.6 A Simple Example

We can look at a simple example to give some insights about the proposed convex
relaxation of the regularized HQP problem. Let us minimize in a hierarchical way
two quadratic functions g(1) and g(2) of the 3-dimensional variable y = (y1,y2,y3).
The function g(1) depends only on y1 and y2, and its Hessian has rank 2. The
function g(2) instead has a full-rank Hessian. The regularized versions of g(1) and
g(2) differ only for their Hessians, which are regularized in this way: Ĥ(l) =H(l) +λI.

In this case, the set of solutions of the priority constraint for the second level
(i.e. g(1)(y) = g(1)(ŷ(1)∗)) is described by the surface of a 3d cylinder (see Fig. 3.1).
This cylinder has an axis that is parallel to y3, and passes through the minimizer of
g(1). The diameter of the cylinder is proportional to the regularization parameter
λ. For λ = 0 the cylinder collapses to a line, and hence the priority constraint

96
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

y1

y2

y3

g(1)(y) = g(1)(ŷ(1))

ŷ(1)

ŷ(1) + N (1)z

Figure 3.1: 3D example depicting the difference between the nonconvex priority
constraints of the regularized HQP problem (red cylinder) and their convex relax-
ation (blue line) proposed in this chapter.

becomes linear, making the HQP convex. For λ > 0 the problem is not convex
because the constraint of lying over the surface of a cylinder is clearly nonlinear.
Rather than looking for the minimizer of ĝ(2) over the surface of this cylinder, our
convex relaxation looks only over a line, which is parallel to y3 and passes through
ŷ(1).

In general, it is difficult to quantify the suboptimality of the resulting solu-
tion. Depending on the problem data we could find the global optimum, or we
may be significantly suboptimal. Another approach to solve the regularized HQP
could be to linearize the quadratic priority constraints and use Sequential Quadratic
Programming [Wright 1999]. However, the linear approximation of the quadratic
constraints is in general rather poor, and leads the algorithm to take very small
steps, slowing down convergence1. Alternatively, we could consider the interior of
the nonconvex set defined by the priority constraints (which is a convex set) and
use an Interior-Point method [Wright 1999]. However, even this approach would
require solving several QPs for each level of the hierarchy. Our convex relaxation
instead allows us to compute an approximate solution by solving a single QP for
each hierarchy level.

1We performed some simple tests, which showed that the SQP algorithm can find better solu-
tions than our convex relaxation, but it usually takes tens of iterations just to find a solution of
the same quality. Since this is not the main focus of the chapter, for the sake of conciseness we do
not report these results here.

3.3. Parametric Hierarchical Quadratic Programming (PHQP) 97

3.3 Parametric Hierarchical Quadratic Programming
(PHQP)

The problem of HQP becomes more complex if we are not optimizing w.r.t. all the
decision variables, but only w.r.t. a subset of them (as it happens in DDP). Let us
split the decision variables into two subsets y = (x,u):

g(l)(x,u) = 1
2 x
>H(l)

xxx+ 1
2 u
>H(l)

uuu+x>H(l)
xuu+

h(l)>
x x+h(l)>

u u, j = 1, . . . ,nl

We also have a regularized version of each cost function:

ĝ(l)(x,u) = 1
2 x
>Ĥ(l)

xxx+ 1
2 u
>Ĥ(l)

uuu+x>Ĥ(l)
xuu+

ĥ(l)>
x x+ ĥ(l)>

u u, j = 1, . . . ,nl

Rather than optimizing w.r.t. y, we want to optimize w.r.t. u only, treating x as a
problem parameter:

û(l)∗(x) =argmin
u

ĝ(l)(x,u)

subjectto g(j)(x,u) = g(j)(x, û(j)∗) ∀j < l
(3.5)

3.3.0.1 Solving the First Minimization

For the first objective we have an unconstrained optimization, which we can solve
by computing the cost gradient and setting it equal to zero:

û(1)∗ =−(Ĥ(1)
uu)−1ĥ(1)

u︸ ︷︷ ︸
k̂(1)

− (Ĥ(1)
uu)−1Ĥ(1)

ux︸ ︷︷ ︸
K̂(1)

x

3.3.0.2 Solving the Second Minimization

The priority constraint for the optimization of the second objective is then:

g(1)(x,u) = g(1)(x, û(1)∗)

As before, we introduce a change of variable to simplify the derivation: u= û(1)∗+
u(2). This leads us to:

1
2 u

(2)>H(1)
uu u

(2) + (û(1)∗>H(1)
uu +x>H(1)

xu +h(1)>
u)u(2) = 0 (3.6)

Similarly to HQP, if the problem were unregularized and the cost functions were
least-squares, we could replace this quadratic constraint with an equivalent linear
constraint (as we did in [Romano 2015]). Contrary to the regularized HQP, selecting
u(2) in the null space of H(1)

uu and h(1)>
u is not sufficient to ensure the satisfaction of

98
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

(3.6), because of the term x>H
(1)
xu u(2). A sufficient condition is to select u(2) to be

also in the null space of H(1)
xu :

u(2) =N ((H(1)
uu ,h

(1)>
u ,H(1)

xu))z =N (1)z (3.7)

This new constraint is linear and it is a sufficient condition for the original quadratic
constraint. We propose to relax problem (3.5) by replacing (3.6) with (3.7). The
solution of the second objective minimization is then:

û(2)∗ =−(H̄(2)
uu)†h̄(2)

u − (H̄(2)
uu)†H̄(2)

ux x,

where:
H̄(2)
uu ,N (1)Ĥ(2)

uuN
(1)

h̄(2)
u , ĥ(2)

u + Ĥ(2)
uu k̂

(1)

H̄(2)
ux , Ĥ(2)

ux − Ĥ(2)
uu K̂

(1)

Note that for least-squares functions, being in the null space of Huu would still be
sufficient.

3.3.0.3 Solving the Whole Hierarchy

Generalizing this to an arbitrary number of functions nl, we get the following solu-
tion:

û∗ = k̄− K̄x,

which can be computed using Algorithm 2.

Algorithm 2 Parametric Hierarchical Quadratic Programming

function PHQP({H(l)
uu,H

(l)
xu ,h

(l)
u , Ĥ

(l)
uu, Ĥ

(l)
xu , ĥ

(l)
u }l)

2: N ← I, k̄← 0, K̄← 0
for l=1:nl do

4: k̄← k̄− (NĤ(l)
uuN)†(ĥ(l)

u + Ĥ
(l)
uuk̄)

K̄← K̄+ (NĤ(l)
uuN)†(Ĥ(l)

ux− Ĥ(l)
uuK̄)

6: N ←NN ((H(l)
uu,h

(l)>
u ,H

(l)
xu)N)

return (k̄, K̄)

3.4 Hierarchical Dynamic Programming

3.4.1 Problem Statement

Let us consider a discrete-time nonlinear dynamical system:

xi+1 = f(xi,ui), for i= 0, . . . ,N −1, (3.8)

3.4. Hierarchical Dynamic Programming 99

where f(·) : Rn×Rm 7→ Rn is the dynamics function, xi ∈ Rn is the state at time
step i, and ui ∈ Rm is the control at time step i. Assume that we want the system
to perform nl tasks, with task 1 having the highest priority, and task nl the lowest.
The l-th task is represented by an arbitrary cost function:

c(l)(X,U) :=
N−1∑
i=0

φ
(l)
i (xi,ui) +φ

(l)
N (xN) , (3.9)

where φ(l)
i is the running cost and φ(l)

N is the final cost. We also have a regularized
version of the cost functions:

ĉ(l)(X,U) :=
N−1∑
i=0

φ
(l)
i (xi,ui) + λ(l)

2 ||ui||
2︸ ︷︷ ︸

φ̂
(l)
i (xi,ui)

+φ(l)
N (xN) ,

where λ(l) ∈ R is a regularization parameter. Other regularizations may be used if
needed, as long as the Hessian of the regularization function with respect to U is
positive definite. Our problem consists in finding the control and state sequences
(U∗,X∗) that solve the following hierarchical optimal control problem, denoted as
HOC(l):

minimize
X,U

ĉ(l)(X,U)

subject to xi+1 = f(xi,ui), for i= 0, . . . ,N −1
x0 fixed
c(j)(X,U) = c(j)(X(j)∗,U (j)∗) ∀j < l ,

(3.10)

for l= 1 to nl, where (X(j)∗,U (j)∗) is the optimum obtained by solving the HOC(j).

3.4.2 Dynamic Programming with Regularization

We tackle problem (3.10) by applying the dynamic programming algo-
rithm [Kirk 1970]. The principle of dynamic programming states that optimizing
over the whole trajectory is equivalent to performing a sequence of optimizations
over a single time step, starting from the end of the horizon and moving backwards
in time. In other words, dynamic programming exploits the sparsity of the OC
problem to reformulate it into a sequence of smaller problems (one for each time
step). As a consequence, the complexity of the resolution is linear in the number
of time steps (while it would be cubic with a nonsparse solver).

Let us start by defining the regularized and unregularized cost-to-go at step i

100
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

for task l as:

c
(l)
i (xi,Ui) ,

N−1∑
j=i

φ
(l)
j (xj ,uj) +φ

(l)
N (xN)

ĉ
(l)
i (xi,Ui) ,

N−1∑
j=i

φ̂
(l)
j (xj ,uj) +φ

(l)
N (xN)

The total cost corresponds to the cost-to-go for i= 0.

3.4.2.1 First Task

For task 1, we define the value function (i.e. the optimal cost-to-go), for the regu-
larized and unregularized cost:

V
(1)
i (xi) , minimize

Ui
c

(1)
i (xi,Ui)

V̂
(1)
i (xi) , minimize

Ûi

ĉ
(1)
i (xi, Ûi)

We call U (1)
i (xi) and Û

(1)
i (xi) the optimal control laws resulting from these mini-

mizations, and X̂(1) the state sequence resulting from applying Û (1)
0 (x0). By ap-

plying Bellman’s principle of optimality [Bellman 2015] we can reformulate these
minimizations over the whole future control sequence into minimizations over a
single control:

V
(1)
i (xi) = minimize

ui

V(1)
i (xi,ui)︷ ︸︸ ︷

φ
(1)
i (xi,ui) +V

(1)
i+1(f(xi,ui)) (3.11)

V̂
(1)
i (xi) = minimize

ûi
φ̂

(1)
i (xi, ûi) + V̂

(1)
i+1(f(xi, ûi))︸ ︷︷ ︸

V̂(1)
i (xi,ûi)

(3.12)

We call u(1)
i (xi) and û(1)

i (xi) the optimal control laws resulting from this minimiza-
tion.

3.4.3 Introducing the Hierarchy

For a task l > 1, we define the unregularized value function as the minimum cost-
to-go, subject to the constraint of not affecting the cost-to-go of the higher-priority
tasks:

V
(l)
i (xi) ,minimize

Ui
c

(l)
i (xi,Ui)

subjectto c(j)
i (xi,Ui) = c

(j)
i (xi,U (j)

i) ∀j < l

3.4. Hierarchical Dynamic Programming 101

Again, applying Bellman’s principle of optimality we can reformulate this optimiza-
tion as:

V
(l)
i (xi) =minimize

ui
V(l)
i (xi,ui)

subjectto V(j)
i (xi,ui) = V

(j)
i (xi) ∀j < l

(3.13)

The regularized value function is instead the minimum regularized cost-to-go, sub-
ject to the constraint of not affecting the cost-to-go of the higher-priority tasks:

V̂
(l)
i (xi) ,minimize

Ûi

ĉ
(l)
i (xi, Ûi)

subjectto c(j)
i (xi, Ûi) = c

(j)
i (x̂(j)

i , Û
(j)
i) ∀j < l

(3.14)

Note the difference w.r.t. the constraints of the unregularized value function: here
the desired cost-to-go is a function of the optimal state x̂(j)

i rather than the current
state xi. This is due to the fact that U (j)

i is the minimizer of c(j)
i , whereas Û (j)

i is
not. In particular, using xi instead of x̂(j)

i in (3.14) would prevent the secondary
tasks from modifying the state sequence found by the first task, that is X̂(1). This
is because the control law Û (1) minimizes the regularized cost, so applying it from
a state that does not belong to X̂(1) would result in a different value of the unreg-
ularized cost c(1)

i . This difference prevents us to directly apply the same reduction
as in (3.13).

3.4.4 Reformulation of the Regularized Problem

In order to apply Bellman’s principle to reformulate (3.14) as a problem of a single
control input, we need to introduce another control law. This control law tries to
maintain the unregularized cost-to-go at the same value given by the regularized
control law:

Ũ
(l)
i (xi) , findUi s.t. c

(l)
i (xi,Ui) = c

(l)
i (x̂(l)

i , Û
(l)
i)

Intuitively, Ũ (l) should behave like the regularized control law in feedforward, but
like the unregularized control law in feedback. As long as the state sequence follows
X̂(l) we have Ũ (l) = Û (l). However, if the state sequence is modified by other tasks,
Ũ (l) uses the feedback action to maintain the same value of the unregularized cost-
to-go. By definition, this new control law allows us to reformulate (3.14) as:

V̂
(l)
i (xi) ,minimize

Ûi

ĉ
(l)
i (xi, Ûi)

subjectto c(j)
i (xi, Ûi) = c

(j)
i (x(j)

i , Ũ
(j)
i) ∀j < l

Now we can apply Bellman’s principle of optimality to reformulate the minimization
of the cost function over the whole control sequence as a cascade of minimizations
over a single control input. However, we can not do the same for the priority
constraints: since Ũ (j)

i is not the minimizer of c(j)
i the principle of optimality does

102
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

not apply. This prevents us from directly reformulating the priority constraints as
functions of a single control input.

3.4.5 Final HDP Formulation

We propose then to replace the priority constraints with stricter constraints that are
functions of a single control input so as to benefit from the computational efficiency
of dynamic programming. The new constraints state that the cost-to-go of the
higher-priority tasks at each time step must stay the same—which is sufficient but
not necessary to guarantee that the total cost stay the same:

V̂
(l)
i (xi) ,minimize

ûi
V̂(l)
i (xi, ûi)

subjectto Ṽ(j)
i (xi, ûi) = Ṽ

(j)
i (xi) ∀j < l,

(3.15)

where Ṽ (j)
i (xi) is the value function associated to the new control law (i.e. Ṽ (j)

i (xi) =
c

(j)
i (x(j)

i , Ũ
(j)
i)), and:

Ṽ(l)
i (xi,ui) = φ

(l)
i (xi,ui) + Ṽ

(l)
i+1(f(xi,ui))

Solving this sequence of optimization problems for l = 1, . . . ,nl and for
i=N −1, . . . ,0, initialized with V̂ (l)

N (xN) := φ
(l)
N (xN), we could solve (3.10).

3.5 Hierarchical Differential Dynamic Programming

The previous section derived the optimality conditions along samples of the tra-
jectory, resulting in several difficult (typically nonconvex) optimization problems.
We devised a discretized version of the conditions to improve the chapter clarity,
however they could be quite directly extended to the continuous case as differential
conditions. This section proposes a complete algorithm to compute the solution
satisfying conditions (3.15). Direct resolution is not tractable in general. We rather
follow the route proposed initially by the DDP approach [Jacobson 1970]. We build
at each time step a quadratic approximation of the condition, which we can then
solve using the proposed PHQP algorithm. The presentation of our method is self
contained, but is best understood if the reader has in mind the classic DDP formu-
lation. A concise and modern presentation of it can be found e.g. in [Tassa 2012].

3.5.1 Quadratic Differential Approximation

We start by considering a nominal control sequence Ū , (ū0, · · · , ūN−1) and the cor-
responding state sequence X̄ , (x̄1, · · · , x̄N) resulting by applying the former control
to the system (3.8). We introduce the new variables of our optimization problem,
which are the variation of control and state with respect to their nominal values:
δui , ui− ūi and δxi , xi− x̄i. We can now approximate V(l)

i , V̂(l)
i and Ṽ(l)

i with
their second-order Taylor expansions and optimize the resulting quadratic functions

3.5. Hierarchical Differential Dynamic Programming 103

with the PHQP algorithm. Let us define the local least-squares approximation of
V̂(l)
i :

V̂(l)
i (xi,ui)≈V̂(l)

i (x̄i, ūi) + 1
2 ||Â

(l)>
x,i δxi+ Â

(l)>
u,i δui+ âi||2

In the following, for coherence with our previous works [Romano 2015, Del
Prete 2014] and the standard DDP algorithm [Tassa 2012], we prefer to represent
the local approximation of V̂(l)

i with a quadratic form2:

V̂(l)
i (xi,ui)≈V̂(l)

i (x̄i, ūi) +
[
Q̂

(l)>
x,i Q̂

(l)>
u,i

][δxi
δui

]
+

1
2
[
δx>i δu>i

][Q̂(l)
xx,i Q̂

(l)
xu,i

Q̂
(l)
ux,i Q̂

(l)
uu,i

][
δxi
δui

] (3.16)

The coefficients of the quadratic approximation of V̂(l)
i can be recursively computed

as:
Q̂

(l)
x,i , ∂xφ

(l)
i +∂xf

>∂xV̂
(l)
i+1

Q̂
(l)
u,i , ∂uφ

(l)
i +∂uf

>∂xV̂
(l)
i+1 +λ(l)ūi

Q̂
(l)
xx,i , ∂xxφ

(l)
i +∂xf

>∂xxV̂
(l)
i+1∂xf +∂xV̂

(l)
i+1∂xxf

Q̂
(l)
uu,i , ∂uuφ

(l)
i +∂uf

>∂xxV̂
(l)
i+1∂uf +∂xV̂

(l)
i+1∂uuf +λ(l)I

Q̂
(l)
xu,i , ∂xuφ

(l)
i +∂xf

>∂xxV̂
(l)
i+1∂uf +∂xV̂

(l)
i+1∂xuf

(3.17)

The local quadratic approximation of V(l)
i and Ṽ(l)

i are defined similarly, removing
the symbolˆ or replacing it with the symbol˜ (respectively) and setting λ(l) to zero.
All the derivatives in (3.17) are computed for xi = x̄i and ui = ūi.

3.5.2 Backward Pass

The computation of (3.17) is initialized with V̂ (l)
N (xN) = φ

(l)
N (xN). Then we can min-

imize our quadratic model of V̂(l)
i using PHQP, which gives us the locally-optimal

feedforward and feedback terms for task l at time i (starting from i=N −1). Fi-
nally, to compute the solution for time step i− 1 we need to compute V̂ (l)

i (δxi)
to update our quadratic approximation of V̂(l)

i−1. We can do it by substituting the
locally-optimal control δû(l)

i = k̂
(l)
i − K̂

(l)
i δxi into (3.16), which gives us:

V̂
(l)
i (δxi)≈ V̂ (l)

s,i + V̂
(l)>
x,i δxi+

1
2 δx

>
i V̂

(l)
xx,iδxi ,

2We derive the algorithm without exploiting the least-squares structure, so that all the devel-
opments are still valid for a general quadratic approximation. The only exception is the hybrid
control law (see Appendix), which we derive only for the least-squares case.

104
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

where3:
V̂

(l)
x,i = Q̂

(l)
x,i− K̂

(l)>
i Q̂

(l)
u,i− K̂

(l)>
i Q̂

(l)
uu,ik̂

(l)
i + Q̂

(l)
xu,ik̂

(l)
i

V̂
(l)
xx,i = Q̂

(l)
xx,i+ K̂

(l)>
i Q̂

(l)
uu,iK̂

(l)
i − Q̂

(l)
xu,iK̂

(l)
i − K̂

(l)>
i Q̂

(l)
ux,i

(3.18)

For the unregularized value function V (l)
i we have exactly the same equations, but

using the unregularized control law rather than the regularized one. For the hy-
brid value function Ṽ (l)

i we need to use the following control law (see proof in the
Appendix):

δũ
(l)
i = k̂

(l)
i − K̂

(l)
i δx̂

(l)
i −K

(l)
i (δxi− δx̂(l)

i) (3.19)

The feedback term of this control law is the same as for the unregularized control
law, whereas its feedforward term is:

k̃
(l)
i = k̂

(l)
i + (K(l)

i − K̂
(l)
i)δx̂(l)

i

In our tests, to speed-up the algorithm, we neglected the terms depending on
the second-order derivatives of the dynamics. This is the same approximation
that distinguishes the iterative LQR algorithm [Todorov 2005, Tassa 2012] from
DDP [Mayne 1966]. This allows us also to avoid the computation of some terms,
since we have: Ṽ (l)

xx,i = V
(l)
xx,i, Q̃

(l)
uu,i =Q

(l)
uu,i, Q̃

(l)
ux,i =Q

(l)
ux,i, Q̃

(l)
xx,i =Q

(l)
xx,i.

3.5.3 Regularizing the Optimization

So far we extensively discussed the issue of regularizing the cost functions describ-
ing the robot tasks, which we refer to as task regularization. The main goal of this
regularization is to prevent the use of large control inputs. However, algorithm reg-
ularization remains necessary in general for a number of reasons that we describe
now. The backward pass operates on a local approximation of the original prob-
lem (3.10). This model is only valid in the neighborhood of the current solution, so
we must avoid taking too large steps. The regularization has a damping effect on
near-singular directions, which tends to limit unreasonable step lengths. Moreover
the Hessian Quu may become nonpositive, because the initial problem is nonconvex
or because of propagation of numerical errors along the backward pass. Algorithm
regularization ensures the soundness of the inversion of the Hessian.

We can achieve all of these goals by adding to all Q̂(l)
uu,i’s the identity matrix

scaled by a sufficiently large scalar parameter µ(l). Initial values for µ(l) are given
by the user (and may affect a lot the speed of convergence, as shown in our tests).
At each iteration the algorithm decides whether to increase or decrease the current
value of µ(l) depending on the eigenvalues of Q̂(l)

uu (after projection in the null space
of previous tasks, see Algorithm 3) and the line-search parameters (more details
on this in Section 3.5.5). The null-space projectors must be computed with the
unregularized pseudo-inverses to ensure the proper hierarchy propagation.

3We do not report here the value of V̂ (l)
s,i because it does not affect the computation.

3.5. Hierarchical Differential Dynamic Programming 105

3.5.4 Order of the Operations

Now that we have defined the backward propagation of the value functions, we need
to decide how to use them. In particular, we have two options:

1. Solve task l (starting from l= 1) for i=N−1, . . . ,0 and then move on to task
l+ 1.

2. Solve all tasks for time step i (starting from i=N −1) and then move on to
time step i−1.

We decided to use the first option. To understand the reason behind this choice
we need to look at what happens after the backward pass, that is the forward
pass. During the forward pass we simulate the system forward in time using the
locally-optimal control policy; if needed, we gradually reduce the magnitude of
the feedforward control term until the associated cost does not improve. This is
equivalent to the line-search procedure used in Sequential Quadratic Programming
for nonlinear optimization [Wright 1999]. During the backward pass of task l+ 1
we assume that the feedforward term of task l will be completely applied, while this
may not be the case because of the potential reduction occurring in the forward
pass. It could be then beneficial to perform the forward pass of task l before the
backward pass of task l+ 1, so that we could account for this reduction. This is
only possible if we select the first one of the two options mentioned above.

Following this choice, Algorithm 3 summarizes the backward pass. Its inputs
are: the derivatives of the dynamics and the cost function ∂.f,{∂.φi}i; the null-space
projector, feedforward and feedback terms of the previous tasks {Ni, k̄i, K̄i}i; the
task regularization parameter λ; the nominal control sequence Ū and the Hessian
regularization parameter µ (see Section 3.5.3). The central part of the algorithm
(i.e. lines 6, 9, 10, 14, 15, 16) is identical to the PHQP algorithm presented in
Section 3.3.

3.5.5 Forward Pass (Line Search)

As usual, the forward pass consists in a forward simulation of the system using the
locally-optimal control policy computed in the backward pass. It is used as a line
search, i.e. at the end of the forward simulation we check whether the cost of all
tasks decreases in a lexicographic order, i.e. a decrease of the cost of task l must
not lead to an increase of the cost of any task j < l. In practice, we allow for a small
increase of the higher-priority costs to speed-up convergence: a step is validated if
it leads to a decrease of the current cost that is much larger than the increase of
the higher-priority costs. A user-defined parameter defines how much larger this
improvement should be (we used 103 for all our tests).

If this is not the case we reduce the magnitude of the feedforward term of the
control policy and repeat again. This is the control policy used during the forward

106
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

Algorithm 3 Regularized HDDP: Backward Pass
function BackPass(∂.f,{∂.φi,Ni, k̄i, K̄i}i, λ,Ū ,µ)

2: Initialize V (l)
x,N , V

(l)
xx,N , V̂

(l)
x,N , V̂

(l)
xx,N

for i=N −1 to 0 do
4: . Compute regularized control law

(Q̂(l)
x,i, Q̂

(l)
u,i, Q̂

(l)
xx,i, Q̂

(l)
uu,i, Q̂

(l)
xu,i)← (3.17)

6: Q̄uu←Ni(Q̂(l)
uu,i+µI)Ni

if min(eigenvalues(Q̄uu,i))< 0 then
8: Increase µ and repeat from line 2

k̂i←−Q̄†uu(Q̂(l)
u,i+ Q̂

(l)
uu,ik̄i)

10: K̂i← Q̄†uu(Q̂(l)
ux,i− Q̂

(l)
uu,iK̄i)

(V̂ (l)
x,i , V̂

(l)
xx,i)← (3.18) with k̄i+ k̂i and K̄i+ K̂i

12: . Compute unregularized control law
(Q(l)

x,i, Q
(l)
u,i, Q

(l)
xx,i, Q

(l)
uu,i, Q

(l)
xu,i)← (3.17)

14: Q̄uu←NiQ
(l)
uu,iNi

ki←−Q̄†uu(Q(l)
u,i+Q

(l)
uu,ik̄i)

16: Ki← Q̄†uu(Q(l)
ux,i−Q

(l)
uu,iK̄i)

(V (l)
x,i ,V

(l)
xx,i)← (3.18) with k̄i+ki and K̄i+Ki

return {k̂i, K̂i,Ki,µ}i

pass of task j:
δû

(l)
i =δû(l−1)

i +ν(l)k̂
(l)
i − K̂

(l)
i (xi− x̄i)

− K̄(l−1)
i (xi− x̄i− δx̂(l−1)

i),

where δû(0)
i = 0, ν(l) is the line-search parameter of task l and δx̂(l−1) is the state

deviation corresponding to the control deviation δû(l−1). The term δx̂(l−1) for the
feedback of the higher-priority tasks comes from the hybrid control law (3.19).
In this way, the unregularized feedback gains of all higher-priority tasks help not
modifying the associated unregularized costs. Note that, by doing so, if k̂(l)

i and
K̂

(l)
i are void we get exactly δû(l)

i = δû
(l−1)
i . We always initialize ν(l) = 1 and we

decrease it with an exponential update rule:

ν(l) := alν(l),

where a∈ [0,1] is a parameter of the algorithm and l is the current iteration number
of the line-search procedure. If the line-search does not converge after a predefined
number of iterations, we increase the regularization parameters µ(l) and repeat
the backward pass. The pseudo-code to compute one complete step of RHDDP is
reported in Algorithm 4.

3.5. Hierarchical Differential Dynamic Programming 107

Algorithm 4 Regularized Hierarchical Differential Dynamic Programming: 1 Step
1: function RHDDP(x0, Ū ,f(.),{Ū (l), c(l)(.),λ(l),µ(l)}l)
2: N ← I, k̄← 0, K̄← 0, δû← 0, δx̂← 0, Ū (l)← Ū
3: X̄ ← FordwardDynamics(x0, Ū , K̄)
4: for l = 1 to nl do
5: ({k̂i, K̂i,Ki}i,µ(l))←BackPass(∂.f,{∂.φ(l)

i ,Ni, k̄i, K̄i}i,λ(l), Ū (l),µ(l))
6: (δûi, δx̂i,ν)← LineSearch({δûi, k̂i, K̂i, K̄i, δx̂i}i)
7: if ν = 0 then
8: Increase µ(l) and go back to line 5
9: if ν < νthr then
10: Increase µ(l)

11: else if ν = 1 then
12: Decrease µ(l)

13: for i= 0 to N −1 do
14: k̄i← δûi+Kiδx̂i
15: K̄i← K̄i+Ki

16: Ū
(l)
i ← Ū

(l)
i + δûi

17: Initialize Ṽ (l)
x,N

18: for i=N −1 to 0 do
19: (Q̃(l)

x,i, Q̃
(l)
u,i)← (3.17)

20: (Ṽ (l)
x,i)← (3.18) with k̄i and K̄i

21: Ni←NiN ((Q(l)
uu,i, Q̃

(l)>
u,i ,Qxu,i)Ni)

22: Ū ← Ū + δû
23: X̄ ← X̄+ δx̂
24: return (Ū , X̄,{Ū (l),µ(l)}k)

108
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

3.5.6 Improving the algorithm

Because of the regularization, all tasks try to reduce the control inputs while not
affecting the higher-priority tasks. This means that each task is likely to undo the
action taken by the lower-priority tasks at the previous iteration of the algorithm
(assuming that this action increased the control inputs). This effect should not
disturb the convergence because in the backward pass each task can “see” what has
been done by the higher-priority tasks, and compensate for it if that does not affect
their unregularized costs. However, whenever the line search of a task converges to
a small value of ν (e.g. < 0.1), its control action is drastically reduced, and so this
compensation is not completely applied. In practice, the result of this phenomenon
is that the low-priority tasks converge very slowly.

To avoid this effect, we modify the regularization term in the cost functions.
Rather than minimizing the norm of all the control inputs, each task only minimizes
the norm of the control inputs computed by itself and the higher-priority tasks. This
is exactly the content of the variable Ū (l) in Algorithm 4, which is updated in line
16.

3.5.7 Algorithm Summary

We now summarize the proposed algorithm. Each iteration is composed of the
following phases:

1. Problem approximation.

2. Local control computation, or backward pass.

3. Line search, or forward pass.

4. Computation of the null space

Convergence is tested at the end of each iteration. The convergence criteria consists
in an absolute criterion and a relative one. We assume that the algorithm has
converged if the cost is lower than the absolute tolerance value. Alternatively,
the relative improvement between two successive iterations must be smaller than a
relative tolerance value.

3.6 Simulations

This section presents several simulations on different robotic systems to validate
the proposed algorithm (RHDDP) and compare it to the classic DDP algorithm
and to the previous version of HDDP [Romano 2015]. In all tests we use weights
to approximate strict priorities with the DDP algorithm and we compare this ap-
proximation with our method. The main result is that obtaining a sound hierarchy
behavior with optimal control is nearly impossible with weighted DDP, while it
is straightforward with RHDDP. The accompanying video collects all the results

3.6. Simulations 109

of the simulations presented in this section, plus an additional simulation on the
humanoid robot HRP-2.

Section 3.6.1 presents simulations with the PR2 robot that stress the difficulty
of tuning the cost weights with DDP. Moreover it analyzes the convergence of the
RHDDP algorithm. Section 3.6.2 (always with PR2) shows that without a hierarchy
we cannot properly regularize the tasks: either regularization is too large and takes
over the low-priority task, or regularization is not enough and so commands are too
large. In Section 3.6.3 we use a simple cart-pole system to highlight again—but in
a different way—the benefits of the hierarchy when regularizing the tasks. Finally,
Section 3.6.4 presents a more complex set of simulations with the UR5 robot, which
is asked to execute a sequence of tasks distributed in time. RHDDP allows us to
trade-off accuracy and efficiency by using the regularization without compromising
the hierarchy (i.e. low-priority tasks deteriorate first when regularization increases).
In this test we also show that RHDDP is capable of faster convergence with respect
to the old version of the algorithm (HDDP [Romano 2015]).

In all tests we used dynamics models for the robots, which take motor torques as
control inputs and the number of samples along the temporal horizon is arbitrarily
set to N = 100.

The tests have been executed on a computer with two processors Intel Xeon
CPU E5-2620V2 (6 cores 2.10GHz) and 64GB of RAM. The tested algorithms were
coded in Matlab (v2013b) but the simulation of the systems is computed thanks to
the C++ dynamic engine MuJoCo [Todorov 2012].

3.6.1 Test 1: PR2 - Final Cost

This simulation compared RHDDP and DDP in a grasping task with the PR2 robot
(state dimension 36, control dimension 18). The goal was to perform the following
four tasks (in order of priority):

0. have zero joint velocity at final time i=N

1. grasp left (red) ball with left gripper (final cost only)

2. grasp right (orange) ball with right gripper (final cost only)

3. minimize 2-norm of control trajectory

In this test we did not need to use any regularization for the tasks because they
used only a final cost—the robot was not asked to reach the goal as fast as possible.
Results are summarized by Fig. 3.2 to 3.4 and Table 3.1.

When using DDP we used the following weights to approximate strict priorities:
106,103,1,10−6. First we set the two balls slightly too far away from each other
to be reached at the same time (see Fig. 3.2a). In this scenario both RHDDP and
DDP managed to reach the first ball and to minimize the distance to the second ball
(see Fig. 3.2b). Then we moved the second ball 100 meters away from the robot. In
this case DDP did not manage to reach the first ball (see Fig. 3.2c), while RHDDP

110
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

(a) Initial state. (b) Final state with both algorithms.

(c) Final state with DDP and second ball
100 m away.

(d) Final state with RHDDP and second ball
100 m away.

Figure 3.2: Test 1: snapshots of the simulations when both balls are close to the
robot (top row) and when one of the balls is far away (bottom row).

Table 3.1: Test 1: cost function values.

Algorithm Scenario Task 2 Task 3 Effort
DDP Balls close 1.23 10−7 1.01 10−1 3.51 104

RHDDP Balls close 3.65 10−13 1.12 10−1 2.84 104

DDP Balls far 6.03 10−3 5.03 103 2.64 104

RHDDP Balls far 2.39 10−10 5.04 103 2.73 104

did (see Fig. 3.2d). This clearly shows that weights are task dependent, and using
strict priorities provides more robust behaviors. Table 3.1 shows the values of the
cost functions with RHDDP and DDP.

3.6.1.1 Convergence of the Algorithm

Fig. 3.3 shows the value of the cost functions throughout the iterations of RHDDP
and DDP. Fig. 3.4 instead shows the values taken by the regularization parame-
ters µ(l). With RHDDP the regularization quickly converged to its minimum value
(10−8) for the first two tasks, which allows a fast convergence to a good approximate
solution. On the other hand, DDP convergence is delayed by the algorithm regular-
ization, which never reaches its minimum value due to the artificial ill conditioning
introduced by the weight scaling. Convergence of DDP is somehow sequential:
low-priority tasks improve only after high-priority tasks have converged (e.g. see

3.6. Simulations 111

0 10 20 30 40 50
Iterations

−12

−10

−8

−6

−4

−2

0

C
os

ts
:

Lo
g 1

0
Ta

sk
1

DDP
RHDDP

(a) Cost of task 1.

0 10 20 30 40 50
Iterations

−16

−14

−12

−10

−8

−6

−4

−2

0

C
os

ts
:

Lo
g 1

0
Ta

sk
2

DDP
RHDDP

(b) Cost of task 2.

0 10 20 30 40 50
Iterations

5020

5040

5060

5080

5100

5120

5140

C
os

ts
:

Ta
sk

3

DDP
RHDDP

(c) Cost of task 3.

0 10 20 30 40 50
Iterations

0

5

10

15

20

25

30

35
C

os
ts

:
Ta

sk
4

DDP
RHDDP

(d) Cost of task 4.

Figure 3.3: Test 1: cost of the different tasks over the iterations of the algorithm
when second ball is 100 m away from the robot.

0 10 20 30 40 50
Iterations

−8

−6

−4

−2

0

Lo
g 1

0
R

eg
ul

ar
iz

at
io

n

DDP
RHDDP-T1
RHDDP-T2
RHDDP-T3
RHDDP-T4

Figure 3.4: Test 1: value of the regularization parameters throughout the iterations
of the RHDDP (one value for each task) and DDP algorithm.

112
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

Table 3.2: Test 2: cost function values.

Algorithm Regularization Task 1 Task 2 Effort Max
DDP 10−5 3.46 45.3 238
DDP 10−8 0.881 13.5 3325

RHDDP 10−5 3.45 12.2 319

0 50 100 150 200 250
Iterations

−0.5

0.0

0.5

1.0

1.5

2.0

Lo
g 1

0
C

os
ts

:
Ta

sk
1

RHDDP
DDP1
DDP2

(a) Cost of task 1.

0 50 100 150 200 250
Iterations

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Lo
g 1

0
C

os
ts

:
Ta

sk
2

RHDDP
DDP1
DDP2

(b) Cost of task 2.

0 50 100 150 200 250
Iterations

−4

−3

−2

−1

0

1

2

Lo
g 1

0
C

on
tro

ls

RHDDP
DDP1
DDP2

(c) Cost of task 3.

Figure 3.5: Test 2: cost of the different tasks over the iterations of the algorithm.
In the legend, DDP1 is DDP with wr = 10−5, while DDP2 is DDP with wr = 10−8.

Fig. 3.3b and 3.3c). This effect slows down the convergence of the algorithm, which
we study in more details in Test 4.

3.6.2 Test 2: PR2 - Integral Cost

This test is based on the same scenario of the previous test (with the second ball
almost reachable). These are the tasks in order of priority:

1. grasp left (red) ball with left gripper (integral cost)

2. grasp right (orange) ball with right gripper (integral cost)

3. minimize 2-norm of control trajectory

3.6. Simulations 113

(a) Initial state. (b) Goal state.

Figure 3.6: Test 3: initial and goal state of the cart-pole.

Since we are using integral costs, we need to regularize the tasks to avoid too
large commands. For DDP we used w1 = 1 (weight of the first task), w2 = 10−3

(weight of the second task) and we tried two different values of wr (weight of the
regularization, i.e. minimum-effort task). Results are summarized by Fig. 3.5 and
Table 3.2. In brief, it was not possible to find a correct value of wr for DDP, while
it was immediate for RHDDP.

Using wr = 10−5 was enough to avoid too large control inputs, but resulted
in a large cost for the second task. Using wr = 10−8 allowed us to improve the
execution of the second task, but resulted in large control inputs. With RHDDP we
used wr = 10−5 for the regularization—keeping in mind that regularization is here
applied on each priority level—which was large enough to avoid large commands; at
the same time, also the second task was executed at its best. This is thanks to the
fact that RHDDP allows us to keep the same ratio between task and regularization
weights, which is not the case for DDP. With DDP, when using wr = 10−5, the
ratio between w2 and wr was only 10−2, so the performance of the second task was
negatively affected.

RHDDP and DDP with wr = 10−5 resulted in almost identical costs for task
1 and 3 (see Table 3.2), but RHDDP performed better at task 2. Increasing w2
would improve task 2, but at the expense of task 1 and 3. Increasing w1 and w2 is
equivalent to decreasing wr and would worsen task 3. This suggests that RHDDP
allowed us to get a behavior that we could not achieve by using DDP, no matter
the values of w1, w2 and wr.

3.6.3 Test 3: Cart-Pole

In this simulation we tested RHDDP and DDP with a simple underactuated system:
the cart-pole (state dimension 4, control dimension 1). In order of priority, the tasks
to perform were:

1. keep the pole high (integral cost between 0.7N and N)

2. reach a goal position with the cart (integral cost between 0.7N and N)

114
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

10 20 30
Iterations

0

1

2

3

4

5

C
os

ts
:

Ta
sk

1
-p

ol
e

po
si

tio
n

100 200 300

RHDDP
DDP1
DDP2
DDP3
DDP4

(a) Cost of task 1. After iteration 30 the
scale of the x axis changes.

10 20 30
Iterations

0

50

100

150

200

C
os

ts
:

Ta
sk

2
-c

ar
tp

os
iti

on

100 200 300

5

10

15

20
RHDDP
DDP1
DDP2
DDP3
DDP4

(b) Cost of task 2. After iteration 30 the
scale of the x and y axes changes.

Figure 3.7: Test 3: value of the cost functions throughout the iterations of the
algorithm. In the legends, DDP1 to DDP4 represent DDP with w2 = 1 to 10−3,
respectively.

0 1 2 3 4 5 6 7−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(a) RHDDP.
0 1 2 3 4 5 6 7−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(b) DDP with w2 = 1.

0 1 2 3 4 5 6 7−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(c) DDP with w2 = 0.1.
0 1 2 3 4 5 6 7−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(d) DDP with w2 = 0.01.

Figure 3.8: Test 3: trajectory of the cart-pole system obtained with the different
algorithms. The cart start at position 0 and should move to position 6.

3.6. Simulations 115

Table 3.3: Test 3: cost function values.

Algorithm w2 wr Task 1 Task 2 Effort
RHDDP N.A. 0 1 10−5 5 10−5 4.55 102

RHDDP N.A 10−2 3.65 10−4 5.93 10−1 1.60 102

DDP 1 10−2 1.84 10−1 6.66 10−2 1.11 102

DDP 10−1 10−2 2.55 10−4 6.88 1.60 101

DDP 10−2 10−2 3.77 10−6 1.25 102 7.83 10−2

DDP 10−3 10−2 1.25 10−7 1.41 102 1.25 10−3

Table 3.4: Test 4: cost function values with the RHDDP algorithm.

wr Task 1 Task 2 Task 3 Task 4 Task 5 Effort
5 10−5 1.4 10−8 3.3 10−6 4.4 10−6 8.3 10−5 1.1 10−4 2.8 10−1

5 10−4 4.7 10−12 7.5 10−7 1.7 10−5 1.0 10−2 4.6 10−3 3.6 10−1

5 10−3 2.2 10−9 3.7 10−4 4.6 10−3 9.8 10−1 2.8 10−1 2.7 10−1

5 10−2 1.4 10−9 6.5 10−2 3.7 10−2 26.5 16.1 8.0 10−2

The two tasks are compatible only if we allow the system to use large control
inputs (see first line of Table 3.3). With DDP, we kept constant w1 = 1 (weight of
the first task) and wr = 10−2 (weight of the regularization), whereas we varied w2
(weight of the second task). Using w2 = 10−1 or less, only task 1 was achieved (see
corresponding lines in Table 3.3) because wr was too large w.r.t. w2. Using w2 = 1
allowed the system to execute the second task, but it deteriorated the performance
of the first task (see third line of Table 3.3). With RHDDP we used wr = 10−2

as well, but the hierarchy allowed for the execution of the second task while not
deteriorating the first task (see second line of Table 3.3). Fig. 3.8 depicts some of
the trajectories found by DDP and RHDDP.

3.6.4 Test 4: UR5 - Sequential Tasks

In this test we used a mobile version of the UR5 robot (state dimension 16, control
dimension 8) to reach two balls, one after the other. The two reaching tasks are
compatible because they are executed one after the other. However, they become
conflicting if we introduce regularization, which does not allow the system to use
large control inputs. The first goal of this test is to show how, with RHDDP,
increasing the regularization affects first the low-priority tasks. In order of priority,
the tasks to perform were:

1. have zero velocity at time step N

2. reach second ball at time step N (see Fig. 3.9c)

3. have zero velocity for the gripper between 0.9N and N

4. reach first ball at time step 0.45N (see Fig. 3.9b)

116
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

(a) Initial state. (b) Task 4: reach ball at time step i= 0.45N .

(c) Task 2: reach ball at time step i=N .

Figure 3.9: Test 4: snapshots of the simulation.

−5 −4 −3 −2 −1 0
Log10 Regularization

−5

−4

−3

−2

−1

0

1

2

3

Lo
g 1

0
C

os
ts

Task1
Task2
Task3
Task4
Task5

Figure 3.10: Test 4: values of the cost functions obtained by using different values
of the regularization parameter wr.

3.6. Simulations 117

0 20 40 60 80 100 120
Iterations

−6
−5
−4
−3
−2
−1

0
1
2
3

C
os

ts
:

Lo
g 1

0
Ta

sk
1

RHDDP
HDDP

(a) Task 1.

0 20 40 60 80 100 120
Iterations

−6
−5
−4
−3
−2
−1

0
1
2
3

C
os

ts
:

Lo
g 1

0
Ta

sk
2

RHDDP
HDDP

(b) Task 2.

0 20 40 60 80 100 120
Iterations

−6
−5
−4
−3
−2
−1

0
1
2
3

C
os

ts
:

Lo
g 1

0
Ta

sk
3

RHDDP
HDDP

(c) Task 3.

0 20 40 60 80 100 120
Iterations

−6
−5
−4
−3
−2
−1

0
1
2
3

C
os

ts
:

Lo
g 1

0
Ta

sk
4

RHDDP
HDDP

(d) Task 4.

0 20 40 60 80 100 120
Iterations

−6
−5
−4
−3
−2
−1

0
1
2
3

C
os

ts
:

Lo
g 1

0
Ta

sk
5

RHDDP
HDDP

(e) Task 5.

0 5 10 15 20
Iterations

−6

−4

−2

0

2

4

Lo
g 1

0
Ta

sk
2

/R
eg

Ta
sk

1 RHDDP-T2
RHDDP-regT1
HDDP-T2
HDDP-regT1

(f) Cost of task 2 and algorithm regulariza-
tion parameter of task 1.

Figure 3.11: Test 4: convergence of the cost functions using the algorithm presented
in this chapter (RHDDP) and its previous version (HDDP [Romano 2015]).

5. have zero velocity for the gripper between 0.4N and 0.5N

Table 3.4 and Fig. 3.10 summarize the results. We observed that wr can be increased
to force the system to use smaller control inputs, and it progressively deteriorates
the low-priority tasks.

118
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

Table 3.5: Test 4: convergence of DDP/HDDP/RHDDP. Time is expressed in
seconds.

µinit DDP0 DDP2 DDP3 HDDP RHDDP
It. Time It. Time It. Time It. Time It. Time

10−6 7 2.8 9 3.8 65 28 245 299 157 197
10−4 7 2.9 35 14.3 >500 >250 83 105 58 77
10−2 8 3.4 259 116 >500 >250 98 130 58 77
100 12 5.3 393 179 >500 >250 100 129 63 82.3
102 14 5.8 >500 >250 >500 >250 113 141 89 111
104 16 6.7 >500 >250 >500 >250 116 146 72 90.8
106 21 9.0 >500 >250 >500 >250 118 148 70 88

3.6.4.1 Comparison with HDDP

We also solved this problem with the previous version of our algorithm (HDDP [Ro-
mano 2015]), but without using any task regularization because this was not allowed
by HDDP. Fig. 3.11 shows that, thanks to the improvements proposed in this chap-
ter, convergence is faster with RHDDP. Moreover, Fig. 3.11f shows that HDDP
starts decreasing the cost of task 2 only after the algorithm regularization of task 1
has decreased. This is due to an incorrect handling of the algorithmic regularization
in HDDP, which has been addressed in RHDDP. As a result, RHDDP is capable of
decreasing the cost of task 2 while optimizing task 1.

3.6.4.2 Comparison with DDP

Finally, we solved the same problem also with DDP, trying three different sets
of values for the task weights and different initial values of the algorithmic reg-
ularization parameter µ. Due to the lack of task regularization all the tasks are
compatible, so the choice of the weights does not affect the final results, but it
affects the convergence of the algorithm. Table 3.5 summarizes the results.

Let us define the weight distance ∆w as the ratio between the weights of the
neighbor tasks, e.g. w1/w2. When ∆w = 1 (DDP0) the algorithm converged
quickly regardless of the value of µinit. With ∆w = 102 (DDP2), the artificial
ill-conditioning introduced by the weights slows down the convergence, especially
for large values of µinit. With ∆w = 103 (DDP3) the ill-conditioning has an even
stronger effect on the convergence, which is much slower for all values of µinit. More
in details, the reason why DDP2 and DDP3 converged faster for small values of µinit
lies in the line search. For instance, with DDP3 task 5 has a weight of 10−6, so
starting with µinit = 10−2 the regularization has a much larger weight than task
5. The result is that, during the first steps, the other tasks converge to a local
minimum (because compared to them, the regularization is not so large) and µ

reduces until task 5 can be solved. At this point, the algorithm needs to reduce c(5)

without worsening the other costs, e.g. for a step that reduces c(5) of 1, c(1) should
increase no more than 10−12 (because task 1 has a weight of 106). This is almost

3.7. Discussion 119

impossible because of the nonlinearity of the problem, so the algorithm can only
take little steps to reduce the last tasks, which leads to a slow convergence. On
the contrary, using a smaller value of µinit, all tasks can converge during the first
iterations. Since task 1 decreases, even if task 5 affects a bit task 1, it is tolerated
as long as the weighted sum of the costs decreases.

RHDDP and HDDP seem more robust to variations of µinit. The reason behind
this is that the line search of (R)HDDP is not negatively affected by the scaling
introduced by the weights. In our tests, (R)HDDP validates a step if it leads to
an improvement of the current cost that is 103 times larger than the deterioration
of the higher-priority costs (see Section 3.5.5). Moreover, as expected, RHDDP
converges always in less iterations than HDDP.

Table 3.5 also shows that one iteration of DDP takes on average about 0.4 s,
whereas one iteration of RHDDP takes about 1.3 s. This larger computation time
is justified by the RHDDP algorithm, which has to perform a backward propa-
gation and a line search for each task. DDP instead performs a single backward
propagation and a single line search for all tasks at once.

3.7 Discussion

There are several benefits of the proposed approach with respect to non-hierarchical
trajectory optimization. First, fixing priorities is usually much easier when setting
the program than finding good weights. It also results in more robust behaviors
(i.e. weights may need to be tuned again if the task is modified, as shown in
Section 3.6.1). Second, RHDDP allows us to properly regularize the tasks: as
shown in Section 3.6.2 and 3.6.3 we can arbitrarily increase regularization while
still executing the secondary tasks and satisfying the priority constraints. Also
compared to other hierarchical trajectory optimization methods [Tazaki 2014], our
approach presents some benefits. In particular, it exploits the sparsity of the HOC
problem and it properly handles the task regularization.

One limitation of our approach is that, in order to get a low computational cost
for each iteration, we replaced some constraints with constraints that approximate
the original one in a stricter way. This allows us to guarantee the satisfaction of the
original constraints, at the expense of restricting the space of solutions explored by
our algorithm. Let us illustrate this with a simple 1-dimensional dynamical system:

xi+1 = xi+ δtui

Suppose that the system starts at x0 = 0 and its first task is to minimize the cost
(xN − 5)2. If we regularize the task, the system will not reach exactly 5, but it
will stop before, e.g. at xN = 4.7. Now let us introduce a second task, of lower
priority, which consists in minimizing the cost (xN/2− 10)2. Again, due to the
task regularization, the system will not reach x = 10, but will stop before, e.g. at
xN/2 = 9. Starting from xN/2 = 9, the best thing to do to preserve the same cost of
task 1 (i.e. (4.7− 5)2) would be to reach xN = 5.3. However, RHDDP is not able

120
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

0 5 10 15 20
Time step

0

1

2

3

4

5

6

7

x

Figure 3.12: Example of trajectory redundancy: these three state sequences result
in the same value of the cost function:

∑N
i=0(xi−5)2.

to do that, and will still reach xN = 4.7, thus using larger control inputs to obtain
the same cost. This limitation is due to the relaxation of the priority constraints
that we proposed in Section 3.2.3. One way to overcome this issue would be to use
inequalities to express the priority constraints as:

g(j)(y)≤ g(j)(ŷ(j))

This would also preserve the convexity of the regularized HQP problem, but it
would increase the computational cost of the algorithm due to the need of handling
the inequalities (e.g. by using an interior-point method [Wright 1999]).

Nonetheless, our relaxation of the priority constraints leads the method to scale
well with the number of tasks. In other words, regardless of the number of low-
priority tasks, RHDDP would still achieve the first task similarly well. This is
because we use a stricter version of the priority constraints, which is a sufficient
(but not necessary) condition for the original constraints.

Let us now consider another example using the same simple dynamical system.
Suppose that the first task consists in minimizing

∑N
i=0(xi−5)2. Given that the task

is regularized, the resulting state sequence is depicted by the blue continuous line in
Fig. 3.12, which results in a cost of task 1 of about 34.8. Clearly, there exist infinitely
many other state sequences that result in the same cost of task 1, e.g. the other
two lines in Fig. 3.12. However, RHDDP cannot exploit this redundancy to achieve
secondary tasks because of the relaxation introduced in Section 3.4.2. Rather than
constraining the total cost of the higher-priority tasks, RHDDP constrains their
cost-to-go at each time step, which removes part of the redundancy in case of integral
costs. To overcome this issue we should abandon dynamic programming and study
another algorithm to exploit the sparse structure of the HOC problem. Even if
the computational complexity may be similar to RHDDP, the resulting algorithm

3.8. Conclusions 121

would be harder to implement. DDP also directly provides the feedback gains for
free, which makes closed-loop trajectory execution possible. This advantage would
be lost with another approach.

3.8 Conclusions

This chapter presented a novel algorithm for motion generation of nonlinear dynam-
ical systems. The motion is generated by performing a hierarchical minimization of
a number of functions of the system state and control trajectories. Each function
describes a task that the robot should achieve, and its position in the hierarchy
defines its priority level w.r.t. the other tasks. This concept of strict priorities,
as opposed to the soft priorities obtained by using a weighted sum, allows for an
easier and more robust specification of the motion objectives. In particular, no
weight tuning is necessary and numerical ill conditioning is avoided. Moreover, the
proposed algorithm properly handles the issue of regularizing the tasks. Our tests
clearly show the benefit of the hierarchy, which allows us to properly regularize
the problem while preserving the strict priorities. This was not possible with soft
priorities.

Another contribution of this chapter deals with the regularization of a hierarchy
of quadratic functions (HQP), the optimization problem that is at the core of our
algorithm. Even if the use of regularization is ubiquitous in robotics optimization
problems, we are the first to define the regularized HQP problem and to show
that it is nonconvex. We then proposed a convex relaxation of this nonconvex
problem, which allows us to get an approximate solution in a single iteration. We
also showed the importance of both the hierarchy and the regularization to generate
feasible behavior with autonomous robots in simulation.

In most cases, MPC boils down to minimum time trajectories (through a integral
cost) or trajectory tracking. In both cases, the cost function is formulated as an
integral cost and regularization needs to be added to ensure smooth and limited
controls. Thus, regularization is a key part for MPC. The special care taken here
on regularization would allows to directly use RHDDP as MPC controller. With
a proper implementation of the algorithm, we could consider a real application
on HRP-2 as in [Koenemann 2015]. Even if the computation per time step (of
the preview windows) is increased compare to a soft hierarchy, we might hope
that the hierarchical constraints stabilize the system and therefore allow to reduce
the preview window (i.e. the number of time steps) and the total computation
time. Moreover, if we proceed to some adjustments (increasing the algorithmic
regularization to avoid a linesearch), each task can easily be parallelized with a
shift of one time step thus reducing the computation time of the algorithm from
o(NK) to o(N +K).

An important question that still remains is warm-starting. While IREPA gave
good results to initialize multiple shooting, it can be more complex for a single shoot-
ing algorithm as RHDDP. Dynamic consistency is enforced by the single shooting

122
Chapter 3. Regularized Hierarchical Differential Dynamic

Programming

scheme and therefore the results should be closer to a roll-out of the policy.
Another question is the pertinence of hierarchies when the algorithm is inserted

in a cascade of controllers. While the hierarchy simplifies the construction of the
cost function, it forces to have properly defined tasks. The hierarchy will make
the robot follow the given task even if this will make it fall. Therefore, we need a
strong confidence on the tasks given to the algorithm, e.g. on the trajectories given
by the higher-level controller in a cascade. To construct proper trajectories with
higher-level controller, we need to take into account the dynamic capabilities of the
robot although the model used must stay simple. To do that, we need to construct
methods that allow to reveal feasibility of the solution. In the next chapter, we will
develop a method to construct a feasibility estimator allowing to plan a path for a
biped robot on uneven environment without explicitly computing contacts.

Chapter 4

Pose Learning

In the two previous chapters, we have shown that the maturity of direct optimal
control makes it an indisputable methodology for controlling a robot with an effi-
cient and versatile manner. This is suitable for robots whose dynamics are neither
too complex nor too fast. However, for legged robots, optimal control cannot (yet)
be applied in a standalone manner. We will need a planner to guide the optimal
control solver with an initial solution candidate. While we have shown in Chapter
2 a preliminary method to generate this warm start from data science, it is not
yet mature for legged robots. In this chapter, we rather focus on the team’s ap-
proach that we are collaboratively developing in Gepetto, based on the initial work
of Tonneau [Tonneau 2015] and that we refer as Loco3d. As explained in Chapter
1, this approach is to divide the locomotion problem into a cascade of simpler prob-
lems, whose iterative resolution leads to a proper whole-body initial guess to warm
start the optimal control solver. A bottleneck of this approach is the generation of
"proxy" constraints, i.e. constraints to be handled at any level N of the cascade to
make sure the level N + 1 is feasible. In this chapter, we explore a generic method
to approximate such a proxy, with an approach based on offline data generation
and machine learning.

4.1 Introduction

In this chapter, we are considering a bipedal robot going through an uneven environ-
ment made from multiple plane surfaces (Fig. 4.1). This problem is non-convex and
high-dimensional, and it is unlikely that a solution to the full problem can be found
quickly. As explained in the first chapter, we believe that an efficient approach is
to use a cascade of planners to find the solution. Intermediate plans are computed
with low-dimensional models then use as initial guesses or guide trajectories for the
lower-level planners.

4.1.1 Feasibility conditions

Now, each level of the cascade should take into account the feasibility constraints
of the next levels. This is made difficult because each level typically works with
a subset of the robot whole state and thus cannot directly express constraints of
the other part of the robot state. However, it is important to check the feasibility
(or at least a simple approximation of it), otherwise infeasible plans due to lack of
constraints in the early cascade levels result in failures in the later levels, hence in

124 Chapter 4. Pose Learning

costly iterations in the cascade. In the current state of Loco3d, the first controller
plans the path of the robot using the reachability and non-collision conditions al-
ready introduced in section 1.5.1.2. However, these criteria do not reveal feasibility
with respect to the robot stability. In this chapter, we focus on the feasibility
condition used in the highest controller of our cascade (see Section 1.5.1.1). This
planner computes a guide trajectory for the main body of the robot. As an explicit
computation of contacts is too costly at this stage, we rather generate the guide
trajectory using a feasibility condition. The feasibility condition initially imple-
mented in the cascade is based on the intuition of the human behind the planner:
we name it the Reachability Condition [Tonneau 2015]. As explained in Section
1.5.1.2, the reachability condition is a constraint based on two volumes: one repre-
sents the minimum space the robot needs to avoid collisions (Fig. 4.2, red shapes),
the other one represents the reachable spaces for each end-effector i.e. spaces where
the end-effectors can create contacts with the environment (Fig. 4.2, green shapes).
A main body placement is valid for the reachability condition if the environment is
not colliding with the "minimum space" but colliding with the reachable spaces of
at least N end-effectors (where N is predefined by the user). This approach is com-
putationally efficient because it allows us to have a feasibility condition that can be
verified with only few collision checkings. While efficient, this criterion also leads to
infeasible trajectories and must be used jointly with ad hoc constraints in practice
(e.g. at least one leg must be in contact). The objective of the work presented in
this chapter is to establish an automatic method to design a similar condition based
on offline sampling of the robot motion capabilities in random environments. We
expect that this would make the approach more generic, less based on intuition but
also more accurate as it would capture more adequately the robot capabilities.

Figure 4.1: Uneven environment made from plane surfaces.

4.1. Introduction 125

Figure 4.2: Reachability condition for HRP-2: the red shapes represent the mini-
mum space to avoid collisions between the robot and the environment, the green
shapes represent the spaces reachable by each end-effectors.

4.1.2 Stability for biped walkers

In the Loco3d cascade, a static sequence of key postures is first computed then
the first elements of the dynamics are calculated using a preview controller on the
centroidal dynamics of the robot. Let us first see what are the implications of the
feasibility of this MPC on the planner that computes the sequence of key postures.
To reduce the computation time and therefore allow to quickly start a movement
and to adapt it to perturbations, preview controllers use small prediction windows
(usually 2 steps). This window can be extended but the computation time will grow
at least linearly (linearly for sparse algorithms like DDP, more otherwise) with the
length of the prediction window (assuming that the time between each control is
constant). Therefore, if we want the robot to quickly adapt its control if a pertur-
bation occurs, we cannot directly compute the whole movement. To ensure that
the robot will not fall, we need to ensure that the robot can reach a stable pose at
the end of the prediction horizon [Wieber 2008]. Therefore, even if the environment
is uneven, we need to have surfaces that allows stable position along the trajectory.
The "distance" (in terms of steps) between two consecutive stable poses should be
smaller than the length of the time window used. While Quadruped and multi-
contact locomotion can have three or more contacts and many possible transitions,
biped locomotion is intrinsically more constrained by the stability of the system.
As a result, we need stronger guarantees that the movement can achieve stable
poses. The feasibility condition currently used in our cascade is computationally
efficient but suffers from several drawbacks: the approach does not consider the
surface orientations so the surfaces can be too steep to generate a contact (due to
the kinematics constraints of the limb); and there is no information on the stability

126 Chapter 4. Pose Learning

of the robot. For instance, the robot placement shown in Fig. 4.2 validate the
reachability condition but it is unlikely that the robot would be able to generate a
stable pose. The feasibility condition that will be constructed in this chapter has
been aimed toward biped walking. The condition should render capabilities of the
robot to generate stable poses.

4.1.3 State of the art

To rapidly search for stable poses in the environment, we will use an approach
based on offline generation (for exploration) and machine learning (for encoding).
Such approaches were already used to navigate in uneven terrain. Yang [Yang 2016]
and Kang [Kang 2017] used learning techniques to construct reachability and oc-
cupancy estimators. However, these estimators do not take into account static
or dynamic feasibility so their application on complex walk is limited to collision
detection. Kalakrishnan [Kalakrishnan 2010] and Kolter [Kolter 2011] used demon-
stration from experts to recognize walkable terrains. These works were based on
the quadruped LittleDog and therefore the stability criteria does not play such a
key role. They rather analyze the terrain to choose a collision-free path and ensure
non-slippage of the feet. Lin [Lin 2017] used Support Vector Regression to learn
traversability over uneven terrains. However, they place themselves in the context
of multicontact where stability is, once more, a lesser issue. Zucker [Zucker 2010]
explicitly took into account stability of LittleDog by constructing a pose cost: for
each set of contacts, a cost representing stability and non-collision is computed. Al-
though a terrain cost was learned as in [Kalakrishnan 2010,Kolter 2011], the pose
cost was explicitly calculated for each footstep and needed several steps of inverse
kinematics. Therefore, computation was too expensive to analyze a large number
of candidate poses.

In the next sections, we propose an original approach able to predict if a path
is feasible. The prediction relies on a scoring estimation (built from data) that also
makes it possible to quantify the difficulty of a path, hence to select a path among
several possibilities. For instance, if the robot needs to go through the environment
shown in Fig. 4.1, we would like the algorithm to analyze not only whether a path
is possible, but also to be capable of selecting the most traversable one, i.e. the one
using the green surfaces. The algorithm must be fast enough to analyze the whole
environment while the results must reveal the capabilities of the robot.

4.2 Summary of the approach

The initial idea is that we already have existing tools to properly quantify the
stability of the system, or the feasibility of a path in a 3D scene (e.g. using brute-
force sampling and projections of contact configurations). However, even if more
efficient, these methods are too slow to be called on the fly, in particular when
replanning a path in response to new stimuli or new tasks.

4.3. Data Generation 127

We rather propose to sample stable configurations in random environments of-
fline, to generate a "catalogue" of acceptable contact configurations. As the resulting
dataset is too large for naive storage and access, we then propose to encode it using
Machine Learning techniques, while trying to generalize across unexplored situa-
tions and despite marginal inconsistency due to the brute-force exploration. Once
the encoding is achieved, the resulting knowledge corpus can be used to quickly
predict and score stable situations, while computing a path in an environment map
(typically using sampling-based motion planners) without having to explicitly com-
pute the contact configurations. Such approach would allow to quickly search on an
uneven terrain, the regions that the robot is likely capable of going through. The
learned condition can be directly used instead of the heuristic-based reachability
condition. We will also show that our approach provides a quality measure that can
be used to select the best path among a set of feasible path, e.g. using A∗ search The
next section introduces several approaches that can be used to generate the data
from which our stability estimator is learned. We show that the different approaches
can lead to different results so data generation needs to be designed according to
the application. Section 4.4 presents the model used to encode the dataset. Section
4.5 gathers the results of the learning as well as multiple applicative tests to show
the pertinence of the methodology.

4.3 Data Generation

In this work, generating and encoding the data is done offline. Even if encoding
the data seems a challenging task, our experience is that building the proper set of
data is a key part that needs to be deeply thought. In this section we will explain
more precisely which data we need to generate and how. In the following sections :

• X =Xm×Xr×Xl where Xm, Xr and Xl are respectively the sets of main-body
placements (positions and orientations), right-foot placements and left-foot
placements. Elements of X are denoted by xxx.

• Ω is the set of parameters describing the environment and corresponds here
to surface placements. Elements of Ω are denoted ωωω.

• Q is the configuration space of the robot, whose elements are qqq ∈Q.

Any xxx ∈ X can be obtained as the image of one or several qqq ∈ Q. The idea is to
measure "how many" qqq are indeed mapped to each x, in each environment ωωω ∈ Ω.
Then at runtime, we can make a query knowing ωωω only (i.e. marginalizing over xxx
and qqq) giving us an estimate of how likely a qqq (hence an xxx) exists for this ωωω. Let
us now develop the details of this idea.

128 Chapter 4. Pose Learning

4.3.1 What do we want to learn?

4.3.1.1 Occupancy Measure

We use occupancy measures to approximate our probability of finding stable poses
[Carpentier 2017b]. Occupancy measures will give information about the size of the
set of valid solutions. Carpentier defines the occupancy measure as follows:

µo(x̃xx) ,
∫
qqq s.t. γ(qqq)=x̃xx

dqqq =
∫
Q
1γ(qqq)=x̃xxdµQ (4.1)

where 1a is an indicator function (i.e. 1 is a is true, 0 otherwise), and in his
case x̃xx ∈ X̃ represents the position of the center of mass in the end-effector frame.
Occupancy measures quantify the "volume" of configurations qqq that are flattened
(due to projection γ in space X̃). From random samples, the occupancy measure will
correspond to the local density of data points. Choosing an element with maximum
occupancy measure will lead to a state with more possible configurations so more
chance to get a valid one for the complete model.

4.3.1.2 Adding robot constraints

The indicator function 1γ is used to select the configurations to integrate. How-
ever they can also be used for other criteria like collisions with the environment,
maximum torques in each joint or stability. For example, Carpentier uses the for-
ward centroidal projection to construct its indicator function [Carpentier 2017b].
However, by sampling over the set of valid configurations Q, he implicitly adds two
other criteria on the configurations: no self-collision and joint positions between
their bounds. In this work, we want to render the feasibility of generating a static
pose, so a criterion on the stability of the robot is also added. For more clarity, we
explicit all the criteria:

µo(xxx) ,
∫
Q
1γ(qqq)=xxx1β(qqq)>01qqqlll≤qqq≤qqquuu 1α(qqq)>0 dµQ (4.2)

where β(qqq) is the vector of distances between each link (so β(qqq)> 0 corresponds to
no self-collision), qqqlll and qqquuu are respectively the lower and upper bounds on qqq, and
α(qqq) represents stability and is positive if the robot is stable. The stability criterion
is computed using a linear (inner) approximation of the friction cone so the problem
can be solved as a linear problem over the contact forces [Del Prete 2016b].

4.3.2 Sampling space

4.3.2.1 Sampling in Q

Several approaches can be used to generate the data. The idea of the occupancy
measure is to have an image of the uniform distribution in Q×Ω. However uniform
sampling in Ω is not trivial to define, hence uniform distribution over Q×Ω seems

4.3. Data Generation 129

not achievable. A direct approximation is to uniformly sample Q (easy) and con-
struct a ωωω ∈ Ω from qqq ∈ Q afterwards. In [Carpentier 2017b], the relative position
of the center of mass and the end-effectors is learned as a probability function. To
generate the data, they generate random configurations using uniform probability
on the position of each joint. This approach facilitates the data generation since the
only computation needed to check if a data point is valid is the self-collision check-
ing. Moreover it somehow reveals the system redundancies: if several configurations
lead to the same position, the calculated probability will be higher.

Effects of the forward kinematics on the distribution. Transforming a
probability from the configuration space to the Cartesian space also leads to un-
wanted effects. For instance, if we generate this data for a system rotational and
prismatic joints, even if there is no redundancy, transformation from a cylindri-
cal space to a Cartesian space will lead to higher density so a higher occupancy
measure near the center of rotation (Fig. 4.3a). Moreover, this behavior can drive
the system toward singularities. For a double-pendulum system, all non-singular
points can be reached with two configurations. However, if we generate the data
using random configurations, we can see that we get higher densities near the singu-
larities (Fig. 4.3b). If we use this measure, we will favor positions where a change
in the configuration space will only result in small change in the Cartesian space.
This behavior can be bad when considering constraints in the Cartesian space. In
our case, a small change in the position of a contact surface would lead to a large
modification of the configuration and therefore can more likely result in non-valid
solutions (for instance because of a collision). This effect can be counterbalanced
when there are redundancies. In [Carpentier 2017b], the relative position between
the end-effectors and the CoM is considered as decoupled for each limb. Moreover,
the CoM is a point so no relative orientation is taken into account. Each limb has
6 degrees of freedom, so if we consider the CoM as a fixed point in the root frame
(and the torso and waist joints as fixed) then, for each position, occupation can be
seen as the size of the set of possible root orientations. The occupation measures
found by Carpentier show that in this case, redundancy drives the high occupation
regions away from singularities (and joint bounds). For Carpentier’s pattern gener-
ator, the contact points are already known and the lower controller is directly the
whole-body controller so it is judicious to look for large whole-body solution sets. In
our case, contact points are actually selected at the next step, so it is more relevant
to maximize the set of possible contact points instead. Moreover, if we consider the
root position/orientation as in the reachability-based planner, there is almost no
redundancy left so the phenomenon explained earlier will have an important effect.

4.3.2.2 Sampling in Xm×Ω

An intuitive approach is to directly sample constraints (xxxm,ωωω) ∈ Xm×Ω and use
inverse kinematics to get a corresponding configuration. Let qqqγ be the configuration
obtained by applying inverse kinematics on a random configuration to generate

130 Chapter 4. Pose Learning

(a) rotational then prismatic joints (θ = [0,2π], l = [0.1,1]m)

(b) double pendulum (l1 = l2 = 0.5m, θ1,θ2 ∈ [0,2π])

Figure 4.3: Distribution from random configurations: each point represents the
end-effector position after applying forward kinematics on a random configuration.
Each configuration is generated from a uniform probability. The kinematic orga-
nization biases the Cartesian distribution and would push the resulting planner
toward singular configurations.

4.3. Data Generation 131

X

XX

X

X

X

X
X

X

X
X

X

X X

X

X

X
XX

X

X

XX

X

X X

X
X X

X

X

X

X

(a) Data points generated from a uniform
sampling.

X

XX

X

X

X

X X

X
XX

X

X
X

X
X

X
XX

X

X

XX

X

X X

X X
X
X

X
X

X

X XX X X X XXX X XXXXXX

XXXXXXXXXXX

(b) Data points after projection.

Figure 4.4: Deformation of the occupancy measure after a nonlinear projection.
The dashed line represents the image set of a nonlinear projection. The projection
biases the resulting sampling toward the borders.

contacts on ωωω.
qqqγ = γ−1

µQ(xxxm,ωωω) (4.3)

µo(xxx) ,
∫
Q
1∃qqqγ 1γ(qqqγ)=xxx1β(qqqγ)>01qqqlll≤qqqγ≤qqquuu 1α(qqqγ)>0 dµQ (4.4)

where 1∃qqqγ return 1 if the inverse kinematics converges and 0 otherwise.

Effects of the inverse kinematics on the distribution. Inverse kinematics
can be seen as a nonlinear projection. Each point outside of the set (i.e. not in
contact) is moved to the set. Therefore, if the projection can modify a variable
of the occupancy measure, the projection of a uniform density will result in a
non-uniform density. There will be a higher density on the borders because the
points outside the set are projected to its border. Thus, it will drive the system
to choose non-robust solutions (Fig. 4.4). If a variable is integrated to construct
the occupancy measure, projection will not reveal the size of the set but only the
probability of success of the projection. Moreover, if a criterion is checked, a smaller
set can actually increase the probability to validate it. If the set of the projection is
included in the valid set of the criteria, all points will be considered as valid and we
will have a high density although the set is small. For instance, if we check stability
of the robot when considering only the vertical position and the roll angle of the
root and projecting the feet to a horizontal ground, we get the data repartition of
Fig. 4.5. In that case, the higher the root is, the smaller the set of possible foot
position is. However, the set is restrained to an area under the root so it will most
likely results in a stable position (Fig. 4.6). This effect will also result in a non-
smooth occupancy measure that an approximator will have difficulty to learn and
therefore there is a good chance the approximation will overestimate the infeasible
positions which are near these sharp boundaries.

132 Chapter 4. Pose Learning

Figure 4.5: Data repartition after projecting the feet on a flat ground and rejecting
non-valid configurations (i.e. unstable or in collision). The horizontal axis repre-
sents the roll angle of the main body θm and the vertical axis represents the distance
between the main body and the ground zm. Initially, (zm,θm) were uniformly sam-
pled. The resulting data repartition favors positions distant to the ground although
the set of possible feet positions is very restrained. Once more, this bias would lead
a resulting planner toward singular configurations (stretch legs).

(a) Robot configurations. (b) Top view of the sets.

Figure 4.6: Left foot projection on different ground levels z1 and z2. R represents the
reachability set and S the set of foot positions where the robot is stable (considering
only a single contact).

4.3. Data Generation 133

4.3.2.3 Sampling in X

Since inverse kinematics can bias the distribution, it will not be used to directly
sample valid xxx points (i.e. by projecting it if not valid) but only as a criterion to
know if a specific point is reachable or not:

qqqγ = γ−1
µq (xxx) (4.5)

µo(xxx) ,
∫
Q
1∃qqqγ 1γ(qqqγ)=xxx1β(qqqγ)>01qqqlll≤qqqγ≤qqquuu 1α(qqqγ)>0 dµQ (4.6)

Then, we can marginalize over some variables to get the desired distribution. For
instance, for a given main-body placement xxxm and environment ωωω, we can get the
"number" of feet position resulting in stable poses by marginalization:

µo(xxxm,ωωω) ,
∫
Q,Xl,Xr

1∃qqqγ 1γ(qqqγ)=xxx1β(qqqγ)>01qqqlll≤qqqγ≤qqquuu 1α(qqqγ)>0 dµQdµXldµXr (4.7)

where µXl and µXr are uniform distribution on the contacts surfaces.

4.3.3 Implementation of the sampler

In this section we will define more precisely the variables of the problem and how
they are considered. Following the reachability-based planner, we take into account
the main body and want to determine the reachability and stability of the system
on different surfaces. To do that, we need to compute the possible foot positions.
Therefore, the variables considered here are: the orientation of the main body
with respect to the acceleration axis (here we limit our study to stable pose so
the acceleration axis is the gravitation axis); the orientation of the feet and the
relative position of the feet and the main body. The variables of the upper body
are considered as unknown and are uniformly sampled in the configuration space.
If we directly consider all the geometric variables of the problem, the space to
sample is a 14-dimension space, which is difficult to sample with a good resolution.
Therefore, as a first approach, we will reduce the number of dimensions. Here, we
consider only the rotation along the x-axis of the robot (backward-forward axis), for
the main body and the feet. The rotations along the y-axis of the robot (right-left
axis) are set to zero for the main body and the feet. Moreover, the orientation of
the foot on the surface is left as unknown and is not sampled.

At the end, the sampled space is reduced to a 9-dimension space such as xxx =
(θm,xxxr,θr,xxxl,θl), where θm, θr and θr are the roll angle of respectively the main
body, the right foot and the left foot; xxxr and xxxl are the relative position between
the main body and the right/left foot.

4.3.3.1 Chosen frame

To easily take into account different position of the feet on surfaces and easily
marginalized-out variables, the axis are aligned with the orientations of the surface

134 Chapter 4. Pose Learning

X

Figure 4.7: Frame used for the relative positions of the feet with respect to the
main body.

(Fig. 4.7). xxxi = xi,yi,zi with i= {r, l}, where zi is the distance between the surface
and the main body and, (xi,yi) is the positions of the foot on this surface (the
closest point to the main body is taken as origin).

4.3.3.2 From foot position to surfaces position

Until now, the generated data corresponds only to the possible state of the robot. At
this stage, we would like to integrate the fact that we are not directly planning the
foot position but we want to select the surfaces used for contacts. For now, the sizes
of the surfaces are still unknown so we will only consider that the contact point needs
to be close to the center of the surface. Thus, we assume that the distance between
the contact point and the center of the surface respect a Gaussian distribution.
Under this hypothesis, the generated data can be modified to correspond to the
center of surface just by adding a Gaussian noise on the position of the feet. Since
the chosen frames are aligned with the surfaces, the Gaussian noises can be directly
added on (xl,yl) and (xr,yr).

4.4 Learning

At this step, we have a set of valid points. We can now evaluate a score for each
state by computing the density of data points in its neighborhood. To estimate
this density, we use Kernel Density Estimator with Gaussian kernels [Parzen 1962].
This estimator associates a Gaussian distribution to each data point. Then a score
can be computed by summing the contribution of all the distributions. However,
this computation becomes expensive when the number of data points increases.
Let’s take a numerical example to motivate the fact that directly applying classic
estimation algorithm might not scale to the size of our problem. For Carpentier’s

4.4. Learning 135

problem (3 dimensions, 10000 samples), the computation time for a single Gaussian
is around 10ns so a score is computed in 100µs. In our case, the dimension of the
problem is higher so computing a single Gaussian distribution takes longer and
we need more samples to cover the whole space. For instance, for a 9-dimension
problem with 500000 samples, computing a score takes around 50ms. In both cases,
the computation is too long for their applications so the complexity of the estimator
needs to be reduced. In the following, we first recall the basics in Gaussian Mixtures
then we present how we design the learning scheme adequate for our context.

4.4.1 Gaussian Mixture Model

To reduce the complexity, we use a Gaussian Mixture Model (GMM) to approximate
the KDE estimation. A Gaussian mixture distribution can be written as:

p(x) =
K∑
k=1

πkN (x|µk,Σk) (4.8)

with

πk ∈R,∀k (4.9)
K∑
k=1

πk = 1 (4.10)

where K is the number of components and N (x|µk,Σk) is a Gaussian distribution of
mean µk and covariance Σk. πk is called the mixing coefficient. Therefore, instead
of having N isotropic Gaussian distributions, where N is the number of samples, we
will set K Gaussian distributions (with K <<N) and optimize their parameters to
fit to the density estimation. Gaussian Mixture Model as several advantages: the
parameter estimation can be done with theK-means and Expectation-Maximization
algorithms which can handle a high number of data points; marginal and condi-
tional probabilities can easily be obtained from the joint probability; the resulting
distribution can still be used as a sampler instead of a scoring system.

4.4.1.1 K-means clustering and Expectation-Maximization

In this section, we briefly recall the two algorithms used to fit the GMM to the
generated data. The K-means algorithm is used to initialize the Expectation-
Maximization (EM) algorithm. K-means algorithm partitions data points into K
clusters by adjusting the cluster centers. Then, the EM algorithm optimizes the
GMM parameters using the K clusters as an initial guess for the parameters of
the K Gaussian distributions. The two algorithms are based on the same princi-
ple: they optimize their model using an iterative procedure in which each iteration
can be divided into two phases, namely expectation and maximization. Each phase
corresponds to an optimization with respect to a subset of the variables. For the K-

136 Chapter 4. Pose Learning

means algorithm, the expectation phase corresponds to assigning each data points
to the closest cluster center. Then, the maximization phase optimize the cluster
centers taking the data assignment as fixed. This operation corresponds to setting
the cluster centers as the means of all the data points assigned to the cluster. The
EM algorithm follows the same philosophy. However during the expectation phase,
instead of assigning each point to a single component (i.e cluster forK-means, Gaus-
sian distribution here), each point xn are assigned to all components but weighted
by their relative responsibilities rnk:

rnk = πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

, (4.11)

with k = {1..K}. Then, during the maximization phase the responsibilities are
supposed fixed. The maximization phase maximize for each component the likeli-
hood function lnp(X|πk,µk,Σk) with respect to the means, the covariances and the
mixing coefficients:

µk = 1
Nk

N∑
n=1

rnkxn,

Σk = 1
Nk

N∑
n=1

rnk(xn−µk)(xn−µk)T ,

πk = Nk

N
,

with

Nk =
N∑
n=1

rnk,

where N is the number of data points.

4.4.1.2 Conditional and marginal distributions

During the planning phase, some variables are known and fixed like the surface
placements. Others are not considered yet and we only want to maximize the set
of valid solutions. For instance, we can marginalized-out the main body placement
and only score pairs of surfaces. To do that, we need to get the conditional and/or
marginal probabilities of our distribution. GMM allows to easily derive the marginal
and conditional distributions from the joint probability [Bishop 2007]. From the
joint probability of the following GMM:

p(x1,x2) =
∑
k

πkN (x1,x2|µk,Σk),

4.5. Results 137

where
µk =

[
µk1
µk2

]
, Σk =

[
Σk11 Σk12
Σk21 Σk22

]
,

the marginal probability simply is:

p(x1) =
∑
k

πkN (x1|µk1,Σk11), (4.12)

and the conditional probability is:

p(x1|x2) =
∑
k

πk1|2N (x1|µk1|2,Σk1|2), (4.13)

with

πk1|2 = πkN (x2|µk2,Σk22)∑
kN (x2|µk2,Σk22) ,

µk1|2 = µk1 + Σk12Σ−1
k22(x2−µk2),

Σk1|2 = Σk22−ΣT
k12Σ−1

k11Σk12.

Thus, instead of learning a marginal probability as in (4.7), we can learn the joint
probability and marginalized it a posteriori.

4.4.2 Learning the data

The number of componentsK is a hyper-parameter that can be chosen by successive
trials. The criterion used to select this number is a Monte Carlo estimate of the
Kullback-Leibler (KL) divergence between the KDE taken as ground truth and the
generated GMM [Hershey 2007]. This estimate is defined as:

DKL(pKDE ||pGMM) = 1
I

I∑
i=1

log pKDE(xi)
pGMM (xi)

, (4.14)

where xi is a point sampled from the KDE distribution.

4.5 Results

In this section, we report the results obtained with the model of the humanoid robot
HRP-2. We start by reporting the procedure used to generate the data points and
show the results of the learning phase. Then we demonstrate on simple examples
of environment that the data generated and the estimator learned allow to predict
capabilities of the robot. The results are compared with the results obtained with
the configuration-sampling strategy presented in Section 4.3.2.1. We also show that
the estimator can be used to optimize the probability of generating a contact on
a given environment. The last part shows a real application of the estimator in a

138 Chapter 4. Pose Learning

motion planner.

4.5.1 Implementation details

In the next sections, the contact planner used is hpp-rbprm, a part of the open
software Humanoid Path Planner HPP [Mirabel 2016] (implemented in C++) spe-
cialized in contact planning. GMMs are learned and used with the python library
scikit-learn while the KDE are used with a C++ implementation to speed up com-
putations. All computations are done on an Intel Xeon(R) CPU E3-1240 v3 @
3.40GHz (4 cores), 16GB RAM.

4.5.2 Offline phase

4.5.2.1 Generating the data

The data points are generated using HPP, a software developed in the Gepetto team.
This software is built as a toolbox and implements all the basic functionalities for
sampled-based motion planning. In particular it allows the user to easily define
constraints on the movement to achieve. Points are generated using the following
procedure:

• A point xxx= (θm,xxxr,θr,xxxl,θl) is sampled from a uniform probability.

• A configuration q0 is sampled from a uniform probability.

• The configuration q0 is projected (using numerical optimization implemented
in HPP) onto the space {q ∈Q|γ(qqq) = xxx, qqqlll ≤ qqq ≤ qqquuu} using HPP.

• Self collision is checked with HPP again (this part uses the Fast Collision
Library – FCL [Pan 2012]).

• The stability criterion is checked by solving a linear problem where the contact
forces are optimized within cone constraints [Del Prete 2016b].

If the projection does not converge or results in a self-collision or in an unstable
configuration, the point xxx is rejected and a new point is sampled. This opera-
tion is repeated until we get a sufficient number of samples. Data are generated
over a large range of states. Following the procedure, we generated over 1 mil-
lion valid points (success rate of 0.04%). All Datasets are available on https:
//github.com/Mathieu-Geisert/StablePose-Dataset.git). However, we will
see in section 4.5.4.2 that a KDE with 200000 data points gives already good re-
sults. The generation of data took about one week on a desktop computer. However,
this task can be easily reduced by parallelizing computation over several processors
and/or by using prior knowledge on the valid set (reachability or stability) to reject
invalid points without computing the inverse kinematics.

https://github.com/Mathieu-Geisert/StablePose-Dataset.git
https://github.com/Mathieu-Geisert/StablePose-Dataset.git

4.5. Results 139

Figure 4.8: Evolution of the KL divergence with the number of components (4-200).

4.5.2.2 Selecting the number of GMM components

In this section, we select the number of components in the GMM by comparing
the KL divergence with respect to the KDE taken as ground truth. To speed up
computations, only a subset of 500000 samples is used. Fig. 4.8 shows the evolution
of the estimated KL divergence (with respect to a KDE of one million data points)
according to the number of components. After 80 components, the divergence is
almost stable. Therefore, we choose this value for the tests presented in the next
sections. Fitting this model to one million data points takes only 62 iteration of
the EM algorithm but the whole process takes 28 minutes. GMMs and KDEs
can easily be sampled regardless the number of components, however computing
the probability associated to a sample depends linearly with this number. The
transformation from a KDE of one million data points to an 80-component GMM
allows to reduce the computation time of this probability from 167ms to 8µs.

4.5.3 Stable poses on a simple environment

While it is quite easy to compare the learned approximation and the ground truth
in small dimensions, it is rather difficult here to visualize the quality of the approx-
imation. In this section, we test on simple but relevant examples of environment if
the approximation obtained can indeed be used to predict capabilities of the robot.
Environments are generated with only two square surfaces of 30 centimeters, ran-

140 Chapter 4. Pose Learning

Figure 4.9: Stable poses in two-random-surface environments.

domly placed (see Fig. 4.9). The two surfaces are placed with the following rules:

θsi = (−1)iU(−0.4,1.2), (4.15)
∆x= U(−0.4,0.4), ∆y = U(0.1,0.5), ∆z = U(−0.2,0.2), (4.16)

xxxsi = (−1)i
∆x

∆y
∆z

 (4.17)

for i= {1,2}. θsi are the roll angles of the surfaces, xxxsi their positions and U(a,b)
is a value uniformly sampled between a and b. The purpose here is to see if we
can use the information learned to predict and find stable poses on these simple
environments. The results presented in the next sections use or are compared with
a simple heuristic which place the main body as follows:

xxxm = xxxs1 +xxxs2
2 +Lzzz

θm = 0
(4.18)

where zzz is a unit vertical vector and L is the parameter setting the vertical position
of the main body. xxxm and θm are respectively the position and roll angle of the
main body.

4.5.4 Predicting stable poses

4.5.4.1 predicting the result of the contact planner

In this section we use learned information to predict if the robot is able to generate a
stable contact knowing the main body position and the surface placements. Even if
the contact planner is biased (due to the heuristics used to speed up computations),
we use its results as ground truth. A random environment is generated and the main
body is placed using the heuristic with L= 0.45m. Then we score the situation with

4.5. Results 141

the GMM and ask the contact planner to find a stable pose. Fig. 4.10 shows the
results. For comparison, we also show the results for the case where the learned
data was generated from random configuration as in [Carpentier 2017a]. We can
see that for both approaches, upon a certain score the planner mostly found stable
poses. However, the results from random configurations are much more difficult to
segregate. Fig. 4.11 shows the Receiver Operating Characteristic (ROC) diagrams
for both strategies. It shows that sampling directly the state space gives a much
better prediction rate (+5% up to +20%) for any false positive rate. Moreover, we
believe the difference between the two strategies would be even bigger if L varies
since the configuration-sampling strategy favor contacts close to the main body.
Since the reachability condition does take into account neither surface orientations
nor stability, its predictions can hardly be used. On the same tests, the true and
false positive rates were respectively 0.56 and 0.46.

4.5.4.2 Set of foot positions

If we look back to the definition of the occupancy measure (4.7), with a given
environment, the score does not correspond to the most stable main body position.
It actually corresponds to the one maximizing to the number of foot positions
resulting in stable poses. Therefore, if we randomly sample contact points on the
surfaces, the success rate of finding a stable pose must correspond to the GMM
scores (up to a regularization factor). We tested it on four environments and a
large number of main body positions. For each main body position, the success
rate is computed from 100 tests. Results are shown on Fig. 4.12. Fig. 4.13 and
4.15 show respectively the score given before the learning phase (i.e. generated by
the KDE) and after (i.e. generated by the GMM). Fig. 4.16 show the score that
would be obtained if we had sampled configurations instead of states. As expected,
sampling configuration favor positions where the main body is close to the feet. For
comparison, we also plot the results for a KDE (for the state-sampling strategy)
with a larger dataset: 1000000 data points for Fig. 4.14 instead of 200000 data
points for Fig. 4.13. Although the number of points seems small compared to the
size of the space to explore, we can see that both distributions give similar results.
This encourages us to push forward and to rely on the capacity of generalization
of the method to apply it to larger space without exponentially increasing the size
of the data set. Following these results, we tested the correspondence between
the success rates and the GMM/KDE scores for the many random environments
and main body positions. Fig. 4.17 shows a comparison of the results for the two
strategies before any learning (i.e. scored from the KDEs). The results show that
the configuration-sampling is unable to predict the success rate although the state-
sampling strategy reveals a linear correlation between the two results. Fig. 4.18
shows the results for the state-sampling strategy after learning (i.e. scored with the
GMM). Even if the variance of the results is quite high, the mean score follows the
expected behaviors.

142 Chapter 4. Pose Learning

(a) state-sampling strategy

(b) configuration-sampling strategy

Figure 4.10: Stability prediction: the vertical axis represents the score given by the
GMM, the horizontal axis is the test number (1 to 1000). The color represents the
result of the contact planner: blue for stable poses - red for unstable ones. The
distribution leads to better results (better separation of the data set) when using
the state-sampling strategy.

4.5. Results 143

Figure 4.11: Stability prediction: ROC diagram. The horizontal axis represents the
false positive rate and the vertical axis represents the true positive rate. The blue
and green lines respectively correspond to the state-sampling and configuration-
sampling strategies. Once more, the state-sampling strategy produces better results.

Figure 4.12: Main body positions: success rate obtained with random contact points
on the surfaces. The red lines represent the contact surfaces.

144 Chapter 4. Pose Learning

Figure 4.13: Main body positions: scores given before the learning phase (KDE
200000 data points).

Figure 4.14: Main body positions: scores given before the learning phase (KDE
1000000 data points).

4.5. Results 145

Figure 4.15: Main body positions: scores given after the learning phase, i.e. the
GMM.

Figure 4.16: Main body positions: score given before the learning phase (KDE
200000 data points), with the random-configuration strategy.

146 Chapter 4. Pose Learning

Figure 4.17: Set of foot positions: test on 1000 random environments and main
body positions. The horizontal axis corresponds to the success rate with contact
points uniformly sampled on the surfaces. The vertical axis corresponds to the
KDE score. The red color represents scores from the state-sampling strategy and
the blue represents the ones from the configuration-sampling strategy. Both KDE
are generated from 200000 data points.

Figure 4.18: Set of foot positions: test on 10000 random environments and main
body positions. The horizontal axis corresponds to the success rate with contact
points uniformly sampled on the surfaces. The vertical axis corresponds to the
GMM scores (with a scaling factor of 0.222).

4.5. Results 147

4.5.5 Online query

We will develop here two situations where the results given by our learned model
can be beneficial to find stable poses: selecting the main body position and selecting
the contact point.

4.5.5.1 Choosing the contact points

Considering a given environment and a predefined main body position (i.e. Eq.
(4.18) with L = 0.45), we want to generate (brute force and heuristics) a stable
pose. The algorithm currently used in the reachability-based planner follows the
following procedures:

1. The first foot defined in the model (here the left one) is projected to the
surface. The initial configuration of the leg to project is selected from a set
of random samples sorted with heuristics [Tonneau 2015]. If the projection
fails, a new initial configuration is chosen from the set and the projection
is repeated. If all samples fail, the surface is unreachable so the system is
considered as unstable.

2. The same procedure is used to project the second foot (here the right one).

3. Then, the system stability is checked. If the system is stable the algorithm
stops, otherwise a new initial configuration for the second leg is picked and
step 2 and 3 are repeated.

4. If no stable pose was found for all the samples of the second leg, the system
is considered as unstable.

Contacts are solved sequentially. Therefore, if the contact position of the first leg
is misplaced, it can be impossible to find a contact position for the second leg
resulting to a stable pose. Finding a better heuristic to choose the first contact
position can seem a fake problem since when walking we already know one of the
contact positions. However if we try to predict the stability after two steps, no
contact position is defined yet. Moreover, if we are using jumps to move as in
[Campana 2016] both contacts need to be chosen. We rather propose to use the
GMM to select the best placement for the first foot. The procedure used is the same
but instead of choosing the contact point for the first leg using simple heuristics, we
discretize the surface and choose the contact point with the highest score given by
the GMM. The results on 9400 random environments are shown in Tab. 4.1. They
show that the contact position given by the GMM is not always the best one since
the heuristic can find stable poses that were not found with the GMM. However,
the learned model permits to increase the number of stable poses found of 11%.

4.5.5.2 Main body placement

In this section, we use the GMM to select the main body position. The best position
is chosen by sampling positions over the vertical and the left-right axes and keeping

148 Chapter 4. Pose Learning

Table 4.1: Contact positions: stable positions over 9400 environments.
XXXXXXXXXXXGMM

Heuristic stable unstable total

stable 4649 684 5333
unstable 149 3918 4067
total 4798 4602 9400

Table 4.2: Stable positions over 1000 environments with L= 0.55m.
XXXXXXXXXXXGMM

Heuristic stable unstable total

stable 369 247 616
unstable 31 353 384
total 400 600 1000

Table 4.3: Stable positions over 1000 environments with L= 0.55m. With only the
situations where the reachability condition is valid.

Heuristic GMM
stable 223 380

unstable 275 221
rate 0.45 0.63

only the one with the highest score. The results are compared with the heuristic
given in (4.18). In both cases, we project the feet to the surfaces with the same
heuristics and check the stability of the system. In a first test, the value of L is
chosen by selecting the highest marginal probability of the GMM on a flat ground,
i.e. L= 0.55m. The results are summarized in Tab. 4.2. They show that the GMM
can find good positions for the main body since the success rate grows from 40% to
61.6%. Some environments can be unreachable using the current heuristic, so to be
fair, we also compare the success rates taking into account only the environments
which validate the reachability condition. Tab. 4.3 shows that there is no real
difference, the success rate still grows from 45% to 63%. Fig. 4.19 shows that
sometimes the robot just needs a slight modification of its main body position
to generate the contacts. In a second test, the vertical position L used for the
heuristics is reduced to L = 0.45m to increase the reachability of the feet. The
vertical distance between the surfaces is also decreased (∆z = U(−0.15,0.15)) to
avoid generating unreachable surfaces for the heuristics. The results are shown in
Tab. 4.4. The results are less impressive here but GMM still increases the success
rate from 54.7% to 67.9%.

4.5. Results 149

(a) Environment 1: heuristic (b) Environment 1: GMM

(c) Environment 2: heuristic (d) Environment 2: GMM

Figure 4.19: Stable pose found by the GMM but not by the heuristic.

Table 4.4: Stable positions over 1000 environments with L= 0.45m.
XXXXXXXXXXXGMM

Heuristic stable unstable total

stable 530 149 679
unstable 17 304 321
total 547 453 1000

150 Chapter 4. Pose Learning

4.5.6 Integration to a path planner

In this section we test our approximator directly in a motion planner. The learned
information can be used in several manners:

• to reject positions if its score is too low.

• to score position then use an A* algorithm to select the best path.

• to sample points directly using the learned distribution.

• to optimize the score at each stage.

• or a mixed of some/all those approaches.

Moreover, we can use this tool at several steps of the planning:

• we can marginalized out the main body position/orientation to select pairs of
surfaces that maximize the possible root positions.

• we can use it to select main body position that maximizes the possible foot
positions.

• we can use it to select the best foot positions.

The integration of this work to the Humanoid Path Planner is still under process
and will be reported in a future paper.

4.6 Conclusion

In this chapter, we used the machine learning framework to learn the capability of
the robot to generate static poses. We showed that the data needs to be generated
in such a way the sampling spaces and the projections do not bias the results. GMM
is then used to reduce the complexity of the model. We exhibited versatility of the
model: GMM can be used to score a pose but also as a random generator biased
toward feasible poses; it can quickly compute marginal or conditional probability
so can be used to solve various problems. Finally, we empirically demonstrated
that the model learned can efficiently be used to predict the feasibility of static
poses. Moreover, we are currently working to evaluate whether this model can be
incorporated in a motion planner to improve the path of the robot and the selection
of contact surfaces. The next step is to increase the number of variable to take into
account rotations around the lateral axis. In addition, we could add criteria to take
into account dynamic constraints to reach the static poses. This would be a first
step toward integrating kinetic constraints to the reachability proxy. A direct way,
that should not trigger the use of dynamics, is to sample robot state and velocity
and validate them using an approximation of 0-step capturability such as the one
introduced in [Del Prete 2017]. This work is a first step toward the construction
of a general methodology to represent proxy constraints using machine learning.

4.6. Conclusion 151

A more challenging problem is open by the following stage of the cascade, where
contact postures are computed. Here, a proxy should be defined to predict if the
transition between two contacts is feasible. However, the space to sample is much
larger and may involve more advanced machine learning methods. It would also
be interesting to introduce, in the dataset, data coming from physical trial and to
extend the learning procedure to online learning, in order to more properly adapt the
planner exploration to the robot contact capabilities, imposed by the environment,
in particular in outdoor scenarios.

152 Chapter 4. Pose Learning

ïż£

Conclusion

In Chapter 2, we showed the capabilities of Direct Optimal Control to generate
complex behaviors. One advantage of this technique is that it does not need any
analytical development and therefore can easily and quickly be adapted to different
systems. Instead of relying on human intelligence, we rely on algorithmic intel-
ligence to design efficient controllers. In Chapter 3, we extended this notion by
developing a "smarter" algorithm. Even if optimal control permits to simplify the
development of controllers, an important task that still relies on the designer is to
adjust the parameters of the cost function. Therefore, we have developed a new
algorithm capable of simplifying this task by solving the problem as a hierarchy.
Instead of tuning the parameters associated with each subtask, the designer only
needs to sort them by order of priority. Moreover, we showed that this new algo-
rithm is able to generate useful behaviors that previous algorithms were incapable
of. Another aspect of this document is the notion of memory. Even most genius
humans strongly rely on knowledge learned from books or conferences, i.e. taught
knowledge. Moreover, they improve because they are also able to explore new things
and learn from those experiences. Therefore, storing and organizing knowledge is a
key part of what we call intelligence. In Chapter 4, we made the robot learn its own
capabilities. The robot generated a set of random samples revealing its kinematics
capacity and stability, then efficiently stored the information to be able to quickly
reuse it. We carefully designed the way the samples were picked and saved to reveal
the size of the solution set. More specifically, in our case we wanted to be able to
plan a path for the robot without explicitly computing each contact. Therefore, we
generated samples revealing the "number" of feet positions. The acquired knowl-
edge allows the robot to quickly analyze the difficulties of the terrain with respect
to its own capabilities. Then it could use this analysis to select the best path for
itself. The second part of Chapter 2 focused deeper into the concept of "intelligent"
algorithms since the algorithm used was designed to explore and learn from its own
experiences. It combines the capabilities of optimal control (to generate relevant
solutions), sampling-based methods (to explore new areas) and machine learning
(to accumulate knowledge). We showed that this algorithm is capable of generat-
ing more pertinent trajectories and in a faster way than optimal control or machine
learning could do alone. In conclusion, machine learning has the capacity to quickly
retrieve an approximate solution from previous experiences while optimal control
can easily adapt it online to specific situations. The combination of those two ap-
proaches can solve complex problems that robotics is facing nowadays while staying
generic. In terms of dynamic systems and tasks to accomplish. Machine learning
and optimal control are now mature for real applications. As Pablo Picasso once
said "Computers are useless. They can only give you answers". The challenge now is
not to find the answer ("intelligent" algorithms do it for you), but to ask the correct
question, i.e. to correctly formulate the problem and choose the right algorithms to

154 Chapter 4. Pose Learning

solve it. While Boston Dynamics (most probably) uses simple algorithms but a lot
of manpower (and spare parts) to precisely tune each parameter, we rather study
the topology of the problem and use the right set of powerful algorithms to solve
it. Loco3d is a good example of such an approach, where the locomotion problem is
studied and decoupled to solve each part of the problem with the appropriate tools.
A direct application of the work presented in this thesis is the development of new

controllers for UAVs. As we showed in Chapter 2, the algorithms used were capable
of generating highly dynamic trajectories while ensuring the safety of the vehicle.
Even if the computation time can appear very slow compared to the dynamics of
quadrotors, a feedback controller can easily be obtained from the optimal solver
and/or from the neural network. The main remaining tasks are the implementation
of an efficient solver on the real hardware and the integration with the right set of
tools to estimate the quadrotor state and its environment. The approach explored
in this thesis, i.e. the combination of data-based and model-based approaches, is
going to be studied more deeply thanks to the Memory of Motion (MEMMO) Eu-
ropean project that just started in 2018. This project gathers 9 research partners
including several industrial groups and aims at innovative applications: humanoid
robots performing advanced locomotion and industrial tooling tasks in an aircraft
assembly; advanced exoskeletons for paraplegic patients demonstrating dynamic
walking; quadruped robots performing inspection tasks in a construction site. An
interesting research direction that could be pushed further is an even more intimate
intricacy of data-based and model-based approaches. In the IREPA algorithm, the
optimal solver and the neural network are trained together but are built separately.
Moreover, one only uses the output of the other. So could we build a more efficient
structure to learn and/or to generate more precise results? For instance, could we
use the neural network output as a cost function for the optimal solver? That way,
the neural network could be used to automatically adapt the cost function along
iteration and make the solver converge toward global minima. Also, could a neural
network be improved by adding the robot model? We already have fast tools to
compute the complete dynamics of the robot (e.g. Pinocchio [Mansard 2015]) so
could we improve the results of a neural network by coupling the two of them? For
instance, a neural network is unlikely able to approximate the space of rotations
SO(3) well. Thus, could we help it by inserting blocks that properly compute rota-
tions? The more general question here is can we couple the knowledge of humans
and machines?

Appendix A

Quadrotor based Systems

A.1 Costs weights and dynamic variables

Quadrotor (values are taken from measures on our own model): mq =
0.9[kg], distance between center of mass and rotor d = 0.25[m], Inertia
Jq = diag(0.018,0.018,0.026)[kg.m2], Cf = 6.6× 10−5, Cm = 1× 10−6, Vmoti ∈
[50,300][rad.s−1], V̇moti ∈ [−314,314][rad.s−1]. Quadrotor with pendulum : mp =
0.05[kg], L = 4[m]. Aerial manipulator : mq = 40[kg], Jq = diag(10,10,20)[kg.m2],
distance rotor to center of mass d= 1[m], fi ∈ [0,200][N], UR5 model taken from its
official urdf file, Jmot = 5.10−6[kg.m2], Kred = 250. Window : height h= 2[m]. Cost
functions : C1 = 10−3, C2 = 10−2, C3 = 10−1, C4 = 10−2, C5 =C7 = 10, C6 =C8 = 1,
ρ= 2

Appendix B

RHDDP

Hybrid Control Law

Here we prove the soundness of the hybrid control law (3.19). Recalling the defini-
tion given in Section 3.4.4, the hybrid control law Ũ

(k)
i must satisfy this equation:

c
(l)
i (xi, Ũ (l)

i) = c
(l)
i (x̂(l)

i , Û
(l)
i)

As usual, we can reformulate this as a constraint on the single control input ũ(l)
i :

Ṽ(l)
i (xi, ũ(l)

i) = Ṽ(l)
i (x̂(l)

i , û
(l)
i)

Using the least-squares approximation of Ṽ and dropping the indexes i and l for
the sake of simplicity we get:

1
2 y
>A>Ay+h>y = 1

2 ŷ
>A>Aŷ+h>ŷ,

where A =
[
Ax Au

]
, y = (δx,δũ) and ŷ = (δx̂,δû). Let us perform a change of

variable y = ŷ+ ∆y, where ∆y = (∆x,∆u):

1
2 ∆y>A>A∆y+ ŷ>A>A∆y+a>A∆y = 0

Suppose now that ∆u=−K∆x:(1
2 ∆x>

[
I −K>

]
A>+ ŷ>A>+a>

)
A

[
I

−K

]
∆x= 0

A sufficient condition to satisfy this equation for any value of ∆x is:

A

[
I

−K

]
= 0

Ax−AuK = 0
K =A†uAx

K = (A>uAu)†A>uAx
K =Q†uuQux

158 Appendix B. RHDDP

This gives us the hybrid control law (3.19):

δũ= δû−Q†uuQux(δx− δx̂)

Bibliography

[Al Borno 2012] Mazen Al Borno, Martin de Lasa and Aaron Hertzmann. Trajec-
tory Optimization for Full-Body Movements with Complex Contacts. IEEE
transactions on visualization and computer graphics, pages 1–11, dec 2012.
(Cited in page 19.)

[Arleo 2013] G. Arleo, F. Caccavale, G. Muscio and F. Pierri. Control of quadrotor
aerial vehicles equipped with a robotic arm. In Mediterranean Conference on
Control Automation (MED), pages 1174–1180, Jun 2013. (Cited in page 35.)

[Baerlocher 1998] Paolo Baerlocher and R Boulic. Task-priority formulations for
the kinematic control of highly redundant articulated structures. Intelligent
Robots and Systems, no. 2, 1998. (Cited in page 16.)

[Baerlocher 2004] Paolo Baerlocher and Ronan Boulic. An inverse kinematics ar-
chitecture enforcing an arbitrary number of strict priority levels. The Visual
Computer, vol. 20, no. 6, jun 2004. (Cited in page 16.)

[Bellman 2015] RE Bellman and SE Dreyfus. Applied dynamic programming.
Princeton university press, 2015. (Cited in page 100.)

[Benziane 2015] L. Benziane. Attitude estimation and control of autonomous aerial
vehicles. PhD thesis, Jun 2015. (Cited in page 41.)

[Bhattacharya 2016] Subhrajit Bhattacharya. Topological Motion Planning. In
IEEE International Conference on Robotics and Automation (ICRA Work-
shop 2016), 2016. (Cited in page 28.)

[Bishop 2007] Christopher M. Bishop. Pattern recognition and machine learning.
Springer, New York, 2007. (Cited in page 136.)

[Boeuf 2015] Alexandre Boeuf, Juan Cortés, Rachid Alami and Thierry Siméon.
Enhancing sampling-based kinodynamic motion planning for quadrotors. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Hamburg, Germany, Sep 2015. (Cited in page 74.)

[Bouffard 2009] P. Bouffard and S. Waslander. A Hybrid RandomizedNonlinear
Programming Technique For Small Aerial Vehicle Trajectory Planning in
3D. In IEEE/RJS International Conference on Intelligent Robots and Sys-
tems (IROS), 3rd Workshop on Planning, Perception and Navigation for
Intelligent Vehicles (PPNIV), pages 63–68, Oct 2009. (Cited in pages 28,
39, and 44.)

[Brescianini 2013] D. Brescianini, M. Hehn and R. D’Andrea. Quadrocopter pole
acrobatics. In IEEE/RJS International Conference on Intelligent Robots and
Systems (IROS), pages 3472–3479, Nov 2013. (Cited in pages 35 and 45.)

160 Bibliography

[Campana 2016] Mylène Campana, Pierre Fernbach, Steve Tonneau, Michel Taïx
and Jean-Paul Laumond. Ballistic motion planning for jumping superheroes.
In Motion in Games Conference, Burlingame, CA, United States, Oct 2016.
(Cited in page 147.)

[Carpentier 2016] Justin Carpentier, Steve Tonneau, Maximilien Naveau, Olivier
Stasse and Nicolas Mansard. A Versatile and Efficient Pattern Generator
for Generalized Legged Locomotion. Robotics and Automation (ICRA), 2016
IEEE International Conference on, 2016. (Cited in pages 13, 17, and 18.)

[Carpentier 2017a] Justin Carpentier, Rohan Budhiraja and Nicolas Mansard.
Learning Feasibility Constraints for Multi-contact Locomotion of Legged
Robots. In Robotics: Science and Systems, volume Porceedings of Robotics
Science and Systems, page 9p., Cambridge, MA, United States, Jul 2017.
(Cited in pages 17, 24, and 140.)

[Carpentier 2017b] Justin Carpentier and Nicolas Mansard. Multi-contact Locomo-
tion of Legged Robots. Submitted to IEEE Transaction on Robotics, May
2017. (Cited in pages 127, 128, and 129.)

[Carpentier 2017c] Justin Carpentier, Andrea Prete, Steve Tonneau, Thomas Flay-
ols, Alexis Mifsud, Kevin Giraud, Dinesh Atchuthan, Pierre Fernbach, Ro-
han Budhiraja, Justin Carpentier, Andrea Prete, Steve Tonneau, Thomas
Flayols and Florent Forget. Multi-contact Locomotion of Legged Robots in
Complex Environments âĂŞ The Loco3D project. In Robotics: Science and
Systems Workshop, 2017. (Cited in pages 22 and 23.)

[Chaumette 2001] F. Chaumette and E. Marchand. A redundancy-based iterative
approach for avoiding joint limits: application to visual servoing. IEEE
Transactions on Robotics and Automation, vol. 17, no. 5, pages 719–730,
Oct 2001. (Cited in page 16.)

[Chiaverini 1994] Stefano Chiaverini, Bruno Siciliano and Olav Egeland. Review
of the Damped Least-Squares Inverse Kinematics with Experiments on an
Industrial Robot Manipulator. Control Systems Technology, IEEE Transac-
tions on, vol. 2, no. 2, pages 123–134, 1994. (Cited in page 90.)

[Dai 2014] Hongkai Dai, Andres Valenzuela and Russ Tedrake. Whole-body Motion
Planning with Simple Dynamics and Full Kinematics. International Con-
ference on Humanoid Robots, no. JANUARY 2014, pages 295–302, 2014.
(Cited in page 18.)

[de Crousaz 2015] C. de Crousaz, F. Farshidian, M. Neunert and J. Buchli. Unified
Motion Control for Dynamic Quadrotor Maneuvers Demonstrated on Slung
Load and Rotor Failure Tasks. In IEEE International Conference on Robotics
and Automation (ICRA), pages 2223–2229, May 2015. (Cited in pages 20,
35, and 61.)

Bibliography 161

[De Lasa 2009] Martin De Lasa and Aaron Hertzmann. Prioritized optimization
for task-space control. In Intelligent Robots and Systems, IEEE/RSJ Inter-
national Conference on, volume 3, pages 5755–5762. Ieee, oct 2009. (Cited
in page 16.)

[Decré 2013] Wilm Decré, Herman Bruyninckx and Joris De Schutter. Extending
the iTaSC Constraint-based Robot Task Specification Framework to Time-
Independent Trajectories and User-Configurable Task Horizons. In Robotics
and Automation (ICRA), IEEE International Conference on, pages 1933–
1940, 2013. (Cited in page 90.)

[DeepMind 2017] DeepMind. Producing flexible behaviours in simulated environ-
ments, 2017. https://deepmind.com/blog/producing-flexible-behaviours-
simulated-environments/. (Cited in page 29.)

[Deits 2014] Robin Deits and Russ Tedrake. Footstep Planning on Uneven Ter-
rain with Mixed-Integer Convex Optimization. Groups.Csail.Mit.Edu, 2014.
(Cited in page 26.)

[Del Prete 2014] Andrea Del Prete, Francesco Romano, Lorenzo Natale, Giorgio
Metta, Giulio Sandini and Francesco Nori. Prioritized Optimal Control. In
Robotics and Automation (ICRA), IEEE International Conference on, 2014.
(Cited in pages 90, 91, and 103.)

[Del Prete 2015] Andrea Del Prete, Francesco Nori, Giorgio Metta and Lorenzo Na-
tale. Prioritized Motion-Force Control of Constrained Fully-Actuated Robots:
"Task Space Inverse Dynamics". Robotics and Autonomous Systems, vol. 63,
pages 150–157, 2015. (Cited in pages 20, 21, and 90.)

[Del Prete 2016a] Andrea Del Prete and Nicolas Mansard. Robustness to Joint-
Torque Tracking Errors in Task-Space Inverse Dynamics. IEEE Transaction
on Robotics, vol. 32, no. 5, pages 1091 – 1105, 2016. (Cited in page 24.)

[Del Prete 2016b] Andrea Del Prete, Steve Tonneau and Nicolas Mansard. Fast
Algorithms to Test Robust Static Equilibrium for Legged Robots. In Robotics
and Automation (ICRA), 2016 IEEE International Conference on, 2016.
(Cited in pages 128 and 138.)

[Del Prete 2017] Andrea Del Prete, Steve Tonneau and Nicolas Mansard. Zero
Step Capturability for Legged Robots in Multi Contact. working paper or
preprint, Dec 2017. (Cited in page 150.)

[Diehl 2001] Moritz Diehl. Real-Time Optimization for Large Scale Nonlinear Pro-
cesses. PhD thesis, 2001. (Cited in page 27.)

[Diehl 2005] M. Diehl, H.G. Bock, H. Diedam and P.-B. Wieber. Fast Direct Mul-
tiple Shooting Algorithms for Optimal Robot Control. In Fast Motions in

162 Bibliography

Biomechanics and Robotics, volume 340, pages 65–93, 2005. (Cited in
page 37.)

[Diehl 2009] M. Diehl, H.J. Ferreau and N. Haverbeke. Efficient Numerical Methods
for Nonlinear MPC and Moving Horizon Estimation. In Nonlinear Model
Predictive Control, volume 384, pages 391–417, 2009. (Cited in page 49.)

[Dimitrov 2014] Dimitar Dimitrov, Pierre-Brice Wieber and Adrien Escande. Multi-
Objective Control of Robots. Journal of the Robotics Society of Japan,
vol. 32, no. 6, pages 512–518, 2014. (Cited in page 92.)

[Dimitrov 2015] Dimitar Dimitrov, Alexander Sherikov and Pierre-Brice Wieber.
Efficient resolution of potentially conflicting linear constraints in robotics.
IEEE Transaction on Robotics (under review), 2015. (Cited in pages 90
and 91.)

[Doncieux 2014] S. Doncieux and J.-B. Mouret. Beyond black-box optimization: a
review of selective pressures for evolutionary robotics. Evolutionary Intelli-
gence, vol. 7, no. 2, pages 71–93, 2014. (Cited in page 26.)

[El Khoury 2013] Antonio El Khoury. Planning Optimal Motions for Anthropo-
morphic Systems. Theses, Université Paul Sabatier - Toulouse III, Jun 2013.
(Cited in page 28.)

[Escande 2010] Adrien Escande, Nicolas Mansard and Pierre-Brice Wieber. Fast
resolution of hierarchized inverse kinematics with inequality constraints. In
Robotics and Automation (ICRA), IEEE International Conference on, num-
ber 4, pages 3733–3738. IEEE, 2010. (Cited in pages 17, 90, and 92.)

[Escande 2014] Adrien Escande, Nicolas Mansard and Pierre-Brice Wieber. Hierar-
chical Quadratic Programming: Fast Online Humanoid-Robot Motion Gen-
eration. International Journal of Robotics Research, vol. 33, no. 7, pages
1006–1028, 2014. (Cited in pages 16, 91, 92, 93, and 95.)

[Faessler 2018] Matthias Faessler, Antonio Franchi and Davide Scaramuzza. Differ-
ential Flatness of Quadrotor Dynamics Subject to Rotor Drag for Accurate,
High-Speed Trajectory Tracking. IEEE Robot. Autom. Lett., vol. 3, no. 2,
pages 620–626, apr 2018. (Cited in page 14.)

[Faust 2013] A. Faust, I. Palunko, P. Cruz, R. Fierro and L. Tapia. Learning Swing-
free Trajectories for UAVs with a Suspended Load. In IEEE International
Conference on Robotics and Automation (ICRA), pages 4902–4909, May
2013. (Cited in page 35.)

[Faverjon 1987] Bernard Faverjon and Pierre Tournassoud. The Mixed Approach
for Motion Planning: Learning Global Strategies from a Local Planner. In
IJCAI, 1987. (Cited in page 16.)

Bibliography 163

[Featherstone 2007] R. Featherstone. Rigid body dynamics algorithms. 2007.
(Cited in pages 43 and 44.)

[Garimella 2015] G. Garimella and M. Kobilarov. Towards model-predictive control
for aerial pick-and-place. In IEEE International Conference on Robotics
and Automation (ICRA), pages 4692–4697, May 2015. (Cited in pages 35
and 40.)

[Geisert 2016] Mathieu Geisert and Nicolas Mansard. Trajectory Generation for
Quadrotor Based Systems using Numerical Optimal Control. In Interna-
tional Conference on Robotics and Automation (ICRA 2016), pages pp.
2958–2964, Stockholm, Sweden, May 2016. IEEE. (Cited in page 29.)

[Geoffroy 2014] Perle Geoffroy, Nicolas Mansard and M Raison. From Inverse Kine-
matics to Optimal Control. . . . in Robot Kinematics, pages 1–8, 2014. (Cited
in page 20.)

[Ghadiok 2011] V. Ghadiok, J. Goldin and W. Ren. Autonomous indoor aerial
gripping using a quadrotor. In IEEE/RJS International Conference on In-
telligent Robots and Systems (IROS), pages 4645–4651, Sep 2011. (Cited in
page 35.)

[Gienger 2005] M. Gienger, H. Janssen and C. Goerick. Task-oriented whole body
motion for humanoid robots. In 5th IEEE-RAS International Conference on
Humanoid Robots, 2005., pages 238–244, Dec 2005. (Cited in page 16.)

[Grant 2014] Michael Grant and Stephen Boyd. CVX: Matlab software for disci-
plined convex programming, version 2.1. http://cvxr.com/cvx, 2014. (Cited
in page 26.)

[Hamalainen 2015] Perttu Hamalainen, Joose Rajamaki and C. Karen Liu. Online
Control of Simulated Humanoids Using Particle Belief Propagation. ACM
Transactions on Graphics, pages 1–13, 2015. (Cited in page 26.)

[Herdt 2010a] a Herdt, N Perrin and Pierre-Brice Wieber. Walking without thinking
about it. 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 190–195, oct 2010. (Cited in pages 18 and 23.)

[Herdt 2010b] Andrei Herdt, Holger Diedam, Pierre-brice Wieber, Dimitar Dim-
itrov, Katja Mombaur and Moritz Diehl. Online Walking Motion Generation
with Automatic Foot Step Placement. Advanced Robotics, vol. 24, no. 5-6,
2010. (Cited in pages 13, 17, 19, 22, and 23.)

[Hershey 2007] J. R. Hershey and P. A. Olsen. Approximating the Kullback Leibler
Divergence Between Gaussian Mixture Models. In 2007 IEEE International
Conference on Acoustics, Speech and Signal Processing - ICASSP ’07, vol-
ume 4, pages IV–317–IV–320, April 2007. (Cited in page 137.)

164 Bibliography

[Herzog 2016] Alexander Herzog, Nicholas Rotella, Sean Mason, Felix Grimminger,
Stefan Schaal and Ludovic Righetti. Momentum control with hierarchical
inverse dynamics on a torque-controlled humanoid. Autonomous Robots,
vol. 40, no. 3, pages 473–491, 2016. (Cited in page 92.)

[Hoffmann 2011] Christian Hoffmann, Christian Kirches, Andreas Potschka,
Sebastian Sager and Leonard Wirsching. Muscod User Manual, 2011.
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/muscod_
manual.pdf. (Cited in page 13.)

[Homsi 2016] Saed Al Homsi, Alexander Sherikov, Dimitar Dimitrov and Pierre-
Brice Wieber. A hierarchical approach to minimum-time control of industrial
robots. In Robotics and Automation (ICRA), IEEE International Conference
on, pages 2368–2374, 2016. (Cited in page 91.)

[Houska 2011] B. Houska, H.J. Ferreau and M. Diehl. ACADO Toolkit – An Open
Source Framework for Automatic Control and Dynamic Optimization. In
Optimal Control Applications and Methods, volume 32, pages 298–312,
2011. (Cited in page 45.)

[Isermann 1982] H. Isermann. Linear lexicographic optimization. OR Spektrum,
vol. 4, no. 4, pages 223–228, dec 1982. (Cited in page 91.)

[Jacobson 1970] D Jacobson and D Mayne. Differential dynamic programming.
Elsevier, New York, 1970. (Cited in page 102.)

[Jimenez-Cano 2013] A.E Jimenez-Cano, J. Martin, G. Heredia, A. Ollero and
R. Cano. Control of an aerial robot with multi-link arm for assembly tasks.
In IEEE International Conference on Robotics and Automation (ICRA),
pages 4916–4921, May 2013. (Cited in page 35.)

[Kajita 2003] Shuuji Kajita and F. Kanehiro. Biped walking pattern generation by
using preview control of zero-moment point. In Robotics and Automation
(ICRA), 2003 IEEE International Conference on, 2003. (Cited in pages 12,
17, and 19.)

[Kajita 2010] S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada,
K. Kaneko, F. Kanehiro and K. Yokoi. Biped walking stabilization based on
linear inverted pendulum tracking. In 2010 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 4489–4496, Oct 2010. (Cited
in page 18.)

[Kalakrishnan 2010] Mrinal Kalakrishnan, Jonas Buchli, Peter Pastor, Michael
Mistry and Stefan Schaal. Learning, planning, and control for quadruped
locomotion over challenging terrain. The International Journal of Robotics
Research, vol. 30, no. 2, pages 236–258, nov 2010. (Cited in pages 22, 24,
25, and 126.)

http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/muscod_manual.pdf
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/muscod_manual.pdf

Bibliography 165

[Kang 2017] Changgu Kang and Sung-Hee Lee. Multi-Contact Locomotion Using
a Contact Graph with Feasibility Predictors. ACM Trans. Graph., vol. 36,
no. 2, apr 2017. (Cited in page 126.)

[Kanoun 2011] Oussama Kanoun. Kinematic Control of Redundant Manipulators:
Generalizing the Task-Priority Framework to Inequality Task. . . . , IEEE
Transactions on, pages 1–9, 2011. (Cited in page 16.)

[Khatib 1986] Oussama Khatib. Real-Time Obstacle Avoidance for Manipulators
and Mobile Robots. The International Journal of Robotics Research, vol. 5,
no. 1, 1986. (Cited in page 16.)

[Kingma 2014] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014. (Cited in page 76.)

[Kirches 2012] C. Kirches, H.G. Bock, J.P. Schlöder and S. Sager. Complementary
Condensing for the Direct Multiple Shooting Method. In Modeling, Simula-
tion, and Optimization of Complex Processes, pages 195–206, 2012. (Cited
in page 39.)

[Kirk 1970] Donald E Kirk. Optimal control theory: an introduction. Courier
Dover Publications, 1970. (Cited in page 99.)

[Koenemann 2015] Jonas Koenemann, Andrea Del Prete, Yuval Tassa, Emanuel
Todorov, Olivier Stasse, Maren Bennewitz and Nicolas Mansard. Whole-body
Model-Predictive Control applied to the HRP-2 Humanoid. In Intelligent
Robots and Systems (IROS 2015), IEEE International Conference on, 2015.
(Cited in pages 19, 89, and 122.)

[Kolter 2011] J. Zico Kolter and Andrew Y Ng. The Stanford LittleDog: A learning
and rapid replanning approach to quadruped locomotion. The International
Journal of Robotics Research, vol. 30, no. 2, pages 150–174, 2011. (Cited in
pages 24, 25, and 126.)

[Lasserre 2001] Jean B. Lasserre. Global Optimization with Polynomials and the
Problem of Moments. SIAM Journal on Optimization, vol. 11, pages 796–
817, 2001. (Cited in page 26.)

[Liegeois 1977] A Liegeois. Automatic supervisory control of the configuration and
behavior of multibody mechanisms. IEEE Transactions on Systems, Man,
and Cybernetics, no. 12, pages 868–871, 1977. (Cited in page 16.)

[Lin 2017] Yu-Chi Lin and Dmitry Berenson. Humanoid navigation in uneven
terrain using learned estimates of traversability. In 17th IEEE-RAS In-
ternational Conference on Humanoid Robotics, Humanoids 2017, Birming-
ham, United Kingdom, November 15-17, 2017, pages 9–16, 2017. (Cited in
page 126.)

166 Bibliography

[Mansard 2007] N. Mansard, O. Stasse, F. Chaumette and K. Yokoi. Visually-
Guided Grasping while Walking on a Humanoid Robot. In Proceedings 2007
IEEE International Conference on Robotics and Automation, pages 3041–
3047, April 2007. (Cited in page 16.)

[Mansard 2008] Nicolas Mansard and Oussama Khatib. Continuous Control Law
from Unilateral Constraints Application to Reactive Obstacle Avoidance in
Operational Space. In International Conference on Robotics and Automa-
tion, pages 3359–3364, 2008. (Cited in page 16.)

[Mansard 2009] Nicolas Mansard, Olivier Stasse, Paul Evrard and Abderrahmane
Kheddar. A versatile generalized inverted kinematics implementation for
collaborative working humanoid robots: the Stack of Tasks. In ICAR’09: In-
ternational Conference on Advanced Robotics, pages 1–6, Munich, Germany,
Jun 2009. (Cited in page 17.)

[Mansard 2015] N. Mansard, J. Carpentier, F. Valenzaet al. Pinocchio : Dy-
namic computations using Spatial Algebra, 2015. https://github.com/stack-
of-tasks/pinocchio. (Cited in pages 43 and 154.)

[Mansard 2018] Nicolas Mansard, Andrea Del Prete, Mathieu Geisert, Steve Ton-
neau and Olivier Stasse. Using a Memory of Motion to Efficiently Warm-
Start a Nonlinear Predictive Controller. In International Conference on
Robotics and Automation (ICRA 2018), Brisbane, Australia, May 2018.
IEEE. (Cited in pages 29, 73, and 75.)

[Mayne 1966] D Mayne. A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems. International Journal of
Control, vol. 3, page 8595, 1966. (Cited in page 104.)

[Mellinger 2011] D. Mellinger and V. Kumar. Minimum snap trajectory genera-
tion and control for quadrotors. In 2011 IEEE International Conference on
Robotics and Automation, pages 2520–2525, May 2011. (Cited in page 14.)

[Mirabel 2016] Joseph Mirabel, Steve Tonneau, Pierre Fernbach, Anna-Kaarina
Seppälä, Mylène Campana, Nicolas Mansard and Florent Lamiraux. HPP: a
new software for constrained motion planning. In International Conference
on Intelligent Robots and Systems (IROS 2016), Daejeon, South Korea, Oct
2016. (Cited in page 137.)

[Mombaur 2005] Katja Mombaur, Richard Longman, Hans Georg Bock and Jo-
hannes Schlöder. Open-loop stable running. Robotica, vol. 23, no. 1, pages
21–33, jan 2005. (Cited in page 89.)

[Mordatch 2012] Igor Mordatch, Emanuel Todorov and Zoran Popović. Discovery
of complex behaviors through contact-invariant optimization. ACM Trans-
actions on Graphics, vol. 31, no. 4, pages 1–8, jul 2012. (Cited in page 27.)

Bibliography 167

[Mordatch 2015] Igor Mordatch and Emanuel Todorov Kendall Lowrey, Galen An-
drew, Zoran Popovic. Interactive Control of Diverse Complex Characters
with Neural Networks. Nips, pages 1–8, 2015. (Cited in page 29.)

[Morisawa 2005] Mituharu Morisawa, Shuuji Kajita, Kensuke Harada and Kiyoshi
Fujiwara. Emergency Stop Algorithm for Walking Humanoid Robots. Proc.
{IEEE}/{RSJ} Intl. Conf. Intell. Robots & Systems ({IROS}), vol. 2, pages
2109–2115, 2005. (Cited in page 17.)

[Naveau 2014] M Naveau, J Carpentier, S Barthelemy, O Stasse and P Soueres.
METAPOD - Template META-PrOgramming applied to Dynamics: CoP-
CoM trajectories filtering. In IEEE/RAS International Conference on Hu-
manoid Robot (ICHR), 2014. (Cited in pages 13, 17, and 19.)

[Naveau 2016] Maximilien Naveau. Advanced human inspired walking strategies for
humanoid robots. Theses, Université Paul Sabatier - Toulouse III, Sep 2016.
(Cited in page 18.)

[Nishiwaki 2009a] K. Nishiwaki and S. Kagami. Online Walking Control System
For Humanoids With Short Cycle Pattern Generation. The International
Journal of Robotics Research, vol. 28, no. 6, pages 729–742, 2009. (Cited in
page 17.)

[Nishiwaki 2009b] K. Nishiwaki and S. Kagami. Online Walking Control System for
Humanoids with Short Cycle Pattern Generation. The International Journal
of Robotics Research, vol. 28, no. 6, pages 729–742, may 2009. (Cited in
page 19.)

[Nocedal 2006] J. Nocedal and S. J. Wright. Numerical optimization. Springer, 2nd
edition, 2006. (Cited in page 40.)

[Orsag 2014] M. Orsag, C. Korpela, S. Bogdan and P. Oh. Valve turning using
a dual-arm aerial manipulator. In International Conference on Unmanned
Aircraft Systems (ICUAS)„ pages 836–841, May 2014. (Cited in page 35.)

[Orthey 2013] Andreas Orthey and Olivier Stasse. Towards Reactive Whole-Body
Motion Planning in Cluttered Environments by Precomputing Feasible Mo-
tion Spaces. In Humanoid Robots, 2013 13th IEEE-RAS International Con-
ference on, 2013. (Cited in page 23.)

[Palunko 2012] I. Palunko, R. Fierro and P. Cruz. Trajectory generation for swing-
free maneuvers of a quadrotor with suspended payload: A dynamic program-
ming approach. In IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 2691–2697, May 2012. (Cited in page 35.)

[Palunko 2013] I. Palunko, A. Faust, P. Cruz, L. Tapia and R. Fierro. A reinforce-
ment learning approach towards autonomous suspended load manipulation

168 Bibliography

using aerial robots. In IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4896–4901, May 2013. (Cited in page 35.)

[Pan 2012] Jia Pan, Sachin Chitta and Dinesh Manocha. FCL: A general purpose
library for collision and proximity queries. In 2012 IEEE International Con-
ference on Robotics and Automation, ICRA 2012, pages 3859–3866, 2012.
(Cited in page 138.)

[Parzen 1962] Emanuel Parzen. On Estimation of a Probability Density Function
and Mode. Ann. Math. Statist., vol. 33, no. 3, pages 1065–1076, 09 1962.
(Cited in page 134.)

[Pellegrini 2017] Etienne Pellegrini. Multiple-shooting differential dynamic pro-
gramming with applications to spacecraft trajectory optimization, 2017.
(Cited in page 20.)

[Perrin 2012] Nicolas Perrin, Olivier Stasse, Léo Baudouin, Florent Lamiraux and
Eiichi Yoshida. Fast humanoid robot collision-free footstep planning using
swept volume approximations. IEEE Transactions on Robotics, vol. 28, no. 2,
pages p.427–439, Mar 2012. (Cited in page 23.)

[Posa 2016] M. Posa, M. Tobenkin and R. Tedrake. Stability Analysis and Control
of Rigid-Body Systems With Impacts and Friction. IEEE Transactions on
Automatic Control, vol. 61, no. 6, pages 1423–1437, June 2016. (Cited in
page 27.)

[Pratt 2006] Jerry Pratt, J. Carff, S. Drakunov and Ambarish Goswami. Capture
Point: A Step toward Humanoid Push Recovery. 2006 6th IEEE-RAS Inter-
national Conference on Humanoid Robots, 2006. (Cited in page 12.)

[Ramos 2014] Oscar E. Ramos, Nicolas Mansard, Olivier Stasse, Jean-bernard
Hayet and Philippe Soueres. Towards reactive vision-guided walking on rough
terrain: an inverse-dynamics based approach. International Journal of Hu-
manoid Robotics, vol. 11, no. 2, page 1441004, 2014. (Cited in page 17.)

[Ritz 2011] R. Ritz, M. Hehn, S. Lupashin and R. D’Andrea. Quadcopter per-
formance benchmarking using optimal control. In IEEE/RJS International
Conference on Intelligent Robots and Systems (IROS), pages 5179–5186, Sep
2011. (Cited in page 49.)

[Romano 2015] Francesco Romano, Andrea Del Prete, Nicolas Mansard and
Francesco Nori. Prioritized Optimal Control: a Hierarchical Differential Dy-
namic Programming approach. In Robotics and Automation (ICRA), IEEE
International Conference on, 2015. (Cited in pages 20, 21, 90, 91, 97, 103,
108, 109, 117, and 118.)

[Saab 2013] Layale Saab, Oscar E. Ramos, Nicolas Mansard, Philippe Soueres and
Jean-yves Fourquet. Dynamic Whole-Body Motion Generation under Rigid

Bibliography 169

Contacts and other Unilateral Constraints. IEEE Transactions on Robotics,
vol. 29, no. 2, pages 346–362, 2013. (Cited in page 90.)

[Sentis 2004] Luis Sentis and Oussama Khatib. Task-oriented control of humanoid
robots through prioritization. International Journal of Humanoid Robotics,
pages 1–16, 2004. (Cited in page 16.)

[Sherikov 2014] Alexander Sherikov, Dimitar Dimitrov and Pierre-brice Wieber.
Whole body motion controller with long-term balance constraints. In Hu-
manoid Robots (Humanoids), 2014 14th IEEE-RAS International Confer-
ence on, 2014. (Cited in page 18.)

[Sherikov 2016] Alexander Sherikov, Dimitar Dimitrov and Pierre-brice Wieber.
Safe navigation strategies for a biped robot walking in a crowd. In IEEE-
RAS International Conference on Humanoid Robots (Humanoids), volume 2,
2016. (Cited in pages 16 and 91.)

[Sian 2004] Neo Ee Sian, K. Yokoi, S. Kajita and K. Tanie. A framework for remote
execution of whole body motions for humanoid robots. In 4th IEEE/RAS
International Conference on Humanoid Robots, 2004., volume 2, pages 608–
626, Nov 2004. (Cited in page 16.)

[Siciliano 1991] Bruno Siciliano and J. J. E. Slotine. A general framework for
managing multiple tasks in highly redundant robotic systems. In Advanced
Robotics, ’Robots in Unstructured Environments’, 91 ICAR, Fifth Inter-
national Conference on, pages 1211–1216. IEEE, 1991. (Cited in pages 16
and 90.)

[Sreenath 2013] K. Sreenath, N. Michael and V. Kumar. Trajectory Generation and
Control of a Quadrotor with a Cable-Suspended Load – A Differentially-
Flat Hybrid System. In IEEE International Conference on Robotics and
Automation (ICRA), pages 4888–4895, May 2013. (Cited in page 35.)

[Stasse 2014] Olivier Stasse, Andreas Orthey, Francesco Morsillo, Mathieu Geisert,
Nicolas Mansard, Maximilien Naveau and Christian Vassallo. Airbus/future
of aircraft factory HRP-2 as universal worker proof of concept. In Interna-
tional Conference on Humanoid Robotics, Madrid, Spain, Nov 2014. (Cited
in page 3.)

[Stasse 2017] Olivier Stasse, Thomas Flayols, Rohan Budhiraja, Kevin Giraud-
Esclasse, Justin Carpentier, Andrea Del Prete, Philippe Souères, Nicolas
Mansard, Florent Lamiraux, Jean-Paul Laumond, Luca Marchionni, Hilario
Tome and Francesco Ferro. TALOS: A new humanoid research platform tar-
geted for industrial applications. In International Conference on Humanoid
Robotics, ICHR, Birmingham 2017, Birmingham, United Kingdom, Nov
2017. (Cited in page 4.)

170 Bibliography

[Tang 2014] S. Tang, K. Sreenath and V. Kumar. Aggressive maneuvering of a
quadrotor with a cable-suspended payload. In Robotics: Science and Systems,
Workshop on Women in Robotics, Jul 2014. (Cited in page 35.)

[Tassa 2012] Yuval Tassa, Tom Erez and Emanuel Todorov. Synthesis and sta-
bilization of complex behaviors through online trajectory optimization. In
Intelligent Robots and Systems (IROS), IEEE/RSJ International Confer-
ence on, pages 4906–4913, 2012. (Cited in pages 19, 20, 27, 37, 89, 102, 103,
and 104.)

[Tassa 2014] Yuval Tassa, Nicolas Mansard and Emanuel Todorov. Control-Limited
Differential Dynamic Programming. 2014. (Cited in page 20.)

[Tazaki 2014] Y Tazaki and T Suzuki. Constraint-Based Prioritized Trajectory
Planning for Multibody Systems. IEEE Transactions on Robotics, vol. 30,
no. 5, pages 1227–1234, 2014. (Cited in pages 91 and 119.)

[Tedrake 2009] Russ Tedrake. Underactuated Robotics: Algorithms for
Walking, Running, Swimming, Flying, and Manipulation. Course
Notes for MIT 6.832), 2009. Downloaded on 10/10/2017 from
http://underactuated.mit.edu/. (Cited in page 9.)

[Thomas 2013] J. Thomas, J. Polin, K. Sreenath and V. Kumar. Avian-Inspired
Grasping for Quadrotor Micro UAVs. In ASME International Design Engi-
neering Technical Conference (IDETC), Aug 2013. (Cited in page 35.)

[Todorov 2005] Emanuel Todorov and Weiwei Li. A generalized iterative LQG
method for locally-optimal feedback control of constrained nonlinear stochas-
tic systems. In Proceedings of the 2005, American Control Conference, 2005.
(Cited in page 104.)

[Todorov 2011] Emanuel Todorov. A convex, smooth and invertible contact model
for trajectory optimization. In Robotics and Automation (ICRA), 2011
IEEE, 2011. (Cited in page 27.)

[Todorov 2012] Emanuel Todorov, Tom Erez and Yuval Tassa. MuJoCo: A physics
engine for model-based control. In Intelligent Robots and Systems (IROS),
IEEE/RSJ International Conference on, 2012. (Cited in page 109.)

[Todorov 2014] Emanuel Todorov. Analytically-invertible dynamics with
contacts and constraints: Theory and implementation in MuJoCo.
homes.cs.washington.edu, 2014. (Cited in page 21.)

[Tonneau 2015] S Tonneau, N Mansard, C Park, D Manocha, F Multon and J Pettr.
A Reachability-based planner for sequences of acyclic contacts in cluttered
environments. In ISRR, 2015. (Cited in pages 23, 24, 123, 124, and 145.)

Bibliography 171

[Tonneau 2016] Steve Tonneau, Andrea Del Prete, Julien Pettre, Chonhyon Park,
Dinesh Manocha and Nicolas Mansard. A fast and efficient acyclic contact
planner for multiped robots. International Journal of Robotics Research
(under review), 2016. (Cited in pages 22, 23, and 25.)

[Von Stryk 1993] Dipl Math Oskar Von Stryk. Numerical solution of optimal con-
trol problems by direct collocation. In Optimal Control, pages 129–143.
Springer, 1993. (Cited in page 89.)

[Wang 2012] Jing Wang, Islam Boussaada, Arben Cela, Hugues Mounier and Silviu-
Iulian Niculescu. Analysis and control of quadrotor via a Normal Form
approach. no. 206, 2012. (Cited in page 14.)

[Wieber 2002] Pierre-Brice Wieber. On the stability of walking systems. In Pro-
ceedings of the International Workshop on Humanoid and Human Friendly
Robotics, pages 1–7, 2002. (Cited in page 12.)

[Wieber 2008] Pierre-Brice Wieber. Viability and predictive control for safe loco-
motion. Intelligent Robots and Systems, 2008. IROS 2008. . . . , 2008. (Cited
in pages 13 and 125.)

[Wieber 2017] Pierre-Brice Wieber, Adrien Escande, Dimitar Dimitrov and Alexan-
der Sherikov. Geometric and numerical aspects of redundancy. In Geometric
and Numerical Foundations of Movements. JPL, 2017. (Cited in page 16.)

[Wright 1999] SJ Wright and J Nocedal. Numerical optimization. Springer Science,
1999. (Cited in pages 96, 105, and 120.)

[Xie 2017] Z. Xie, C. K. Liu and K. Hauser. Differential dynamic programming with
nonlinear constraints. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 695–702, May 2017. (Cited in page 20.)

[Yang 2016] Yiming Yang, Vladimir Ivan, Zhibin Li, Maurice Fallon and Sethu
Vijayakumar. iDRM: Humanoid Motion Planning with Real-Time End-Pose
Selection in Complex Environments. 2016. (Cited in page 126.)

[Zameroski 2008] D. Zameroski, G. Starr, J. Wood and R. Lumia. Rapid swing-
free transport of nonlinear payloads using dynamic programming. In Journal
of Dynamic Systems, Measurement and Control, volume 130, page 041001,
2008. (Cited in page 35.)

[Zaytsev 2015] Petr Zaytsev. Using Controllability Of Simple Models To Generate
Maximally Robust Walking-Robot Controllers. PhD thesis, Cornell Univer-
sity, 2015. (Cited in page 22.)

[Zhao 1994] Jianmin Zhao and Norman I. Badler. Inverse Kinematics Positioning
Using Nonlinear Programming for Highly Articulated Figures. ACM Trans.
Graph., vol. 13, no. 4, pages 313–336, oct 1994. (Cited in page 16.)

172 Bibliography

[Zucker 2010] M. Zucker, J. Andrew Bagnell, C. G. Atkeson and J. Kuffner. An
optimization approach to rough terrain locomotion. In 2010 IEEE Interna-
tional Conference on Robotics and Automation, pages 3589–3595, May 2010.
(Cited in pages 22, 24, and 126.)

174 Bibliography

Résumé: Depuis plusieurs années, la robotique s’est fortement dévelop-
pée dans l’industrie et les transports. Ces robots se limitent bien souvent
à des robots solidement fixés au sol ou à des robots mobiles mais à roues,
ce qui limite grandement leur capacité à évoluer dans des environnements
industriels complexes. Dans cette thèse, nous explorerons des méthodes per-
mettant à des robots à mobilités plus avancées (robots aériens ou à pattes)
d’évoluer et d’agir dans de tels environnements. En commençant par iden-
tifier les difficultés liées à la locomotion des robots humanoïdes, cette thèse
montre comment le contrôle optimal et l’apprentissage automatique peuvent
être developpés et utilisés de manière polyvalente et versatile pour effectuer
des tâches complexes tel que la saisie, la dépose et la manipulation d’objet ou
de charge, la réalisation de manoeuvres avec une dynamique élevée ou le dé-
placement en environnement encombré et/ou irrégulier. Cette thèse se divise
ensuite en 3 parties distinctes.

La première partie s’intéresse à l’application du contrôle optimal dit "di-
rect" (c’est-à-dire par résolution d’un problème d’optimisation statique, dis-
crétisé, approximant le problème de contrôle initial) pour contrôler des robots
aeriens. Nous montrons ici que le contrôle optimal direct permet de générer
des trajectoires complexes et s’adapte facilement à differents systèmes dy-
namiques (véhicule aérien sans ou avec charge ballante, manipulateur aérien)
ou tâches. Les capacités de l’algorithme sont alors utilisées pour construire
un système de téléopération permettant à un opérateur de contrôler en toute
sûreté et en temps réel, un véhicule aérien évoluant dans un environnement
encombré. Parmi les limites connues de cette approche, il y a la facilité qu’a
ce type d’algorithme de contrôle à être piégé dans des minima locaux ainsi
qu’un temps de calcul relativement long. Nous montrons alors qu’un algo-
rithme d’apprentissage automatique peut être couplé au contrôle optimal afin
d’initialiser efficacement le problème et ainsi d’éviter les minimums locaux et
d’améliorer les temps de calcul.

Bibliography 175

La seconde partie s’intéresse à la gestion de la redondance des robots. Les
robots humanoïdes ont un grand nombre de degrés de liberté qui peuvent
être utilisés pour résoudre simultanément plusieurs tâches. L’utilisation de
"Hiérarchie de Tâches" est déjà courante sur les robots humanoïdes, mais se
limite pour l’instant à des contrôleurs fondés sur une linéarisation instantanée.
L’utilisation de hiérarchies pour l’optimisation de trajectoire a été peu étudiée.
Cette partie s’intéresse donc à développer un nouveau type d’algorithme de
contrôle optimal permettant de gèrer de manière efficace une hiérarchie de
tâches mais aussi de gérer le compromis entre efficacité des tâches et puissance
des commandes. Nous montrons alors que ce nouvel algorithme permet de
faire émerger des comportements qui n’étaient pas possibles d’obtenir avec les
algoritmes précédents et donc de correctement résoudre des hiérarchies avec
des tâches séquentielles et/ou des tâches avec des fonctions de coût intégrales.

La troisième partie s’intéresse à la plannification de mouvement sur terrains
irréguliers pour robots à pattes. Contrairement à la marche de quadrupèdes
ou à la locomotion utilisant tous les membres, le critère de stabilité de la
marche bipède contraint fortement les trajectoires possibles. Utiliser l’inverse
cinématique pour vérifier la faisabilité d’un contact et calculer la stabilité du
système sont des calculs coûteux qui ne peuvent pas directement être utilisés
pour analyser tout l’espace. Nous utilisons ici les techniques d’apprentissage
afin d’entrainer hors ligne un oracle permettant de prédire rapidement les
capacités d’équilibre du robot. Cet oracle peut alors être utilisé pour analyser
rapidement le terrain et sélectionner le chemin permettant de le franchir le
plus facilement. On montre alors comment cet oracle peut être utilisé pour
étendre les propriétés dites "d’atteignabilité" utilisés dans les plannificateurs
de contact de l’équipe Gepetto.

176 Bibliography

Plus généralement, cette thèse montre que les approches basées modèles
(contrôle optimal et plannification de mouvement) et les approches basées
données (apprentissage automatique) peuvent être combinées afin de profiter
des avantages de chacune des approches. L’utilisation de l’apprentissage au-
tomatique pour construire la solution initiale du contrôleur optimal permet
gagner du temps de calcul par rapport à une approche uniquement basée
modèles, mais permet aussi d’avoir de meilleurs résultats (optimalité et re-
spect des contraintes) par rapport à une approche uniquement basée données.
L’utilisation de l’apprentissage permet aussi de construire des modèles réduits
des robots, et ainsi de gagner du temps de calcul avec les approches basées
modèles, tout en gardant un indicateur sur la probabilité de faisabilité pour
le modèle complet. De plus, l’utilisation des approches basées modèles peu-
vent être utilisées pour générer la base donnée utilisé par les approches basées
données mais aussi les aider à apprendre plus facilement en les guidant. Au fi-
nal, nous pouvons construire des algorithmes où ces deux differentes approches
sont complètement entrelacées et ainsi obtenir des controleurs à la fois simples
à mettre en place et rapides.

Bibliography 177

Résumé: Quelle sont les points communs entre un robot humanoïde et
un quadrimoteur ? Et bien, pas grand-chose... Cette thèse s’intéresse donc
au développement d’algorithmes permettant de contrôler un robot de manière
dynamique tout en restant générique par rapport au model du robot et à la
tâche que l’on cherche à résoudre. Le contrôle optimal numérique est pour
cela un bon candidat. Cependant il souffre de plusieurs difficultés comme un
nombre important de paramètres à ajuster et des temps de calcul relativement
élevés. Cette thèse présente alors plusieurs améliorations permettant dâĂŹat-
ténuer ces difficultés. D’un côté, l’ordonnancement des différentes tâches sous
la forme d’une hiérarchie et sa résolution avec un algorithme adapté permet
de réduire le nombre de paramètres à ajuster. D’un autre côté, l’utilisation
de l’apprentissage automatique afin d’initialiser l’algorithme d’optimisation
ou de générer un modèle simplifié du robot permet de fortement diminuer les
temps de calcul.

Mots clés : Contrôle Optimal, Contrôle Hiérarchique, Apprentissage
Automatique, Plannification de Mouvement, Robots Humanoïdes, Robots
Aériens.

Abstract: What are the common characteristics of humanoid robots and
quadrotors? Well, not many... Therefore, this document is focused on the de-
velopment of algorithms allowing to dynamically control a robot while staying
generic with respect to the model of the robot and the task that needs to be
solved. Numerical optimal control is good candidate to achieve such objec-
tive. However, it suffers from several difficulties such as a high number of
parameters to tune and a relatively important computation time. This doc-
ument presents several ameliorations allowing to reduce these problems. On
one hand, the tasks can be ordered according to a hierarchy and solved with
an appropriate algorithm to lower the number of parameters to tune. On the
other hand, machine learning can be used to initialize the optimization solver
or to generate a simplified model of the robot, and therefore can be used to
decrease the computation time.

Keywords: Optimal Control, Hierarchical Control, Machine Learning,
Motion Planning, Humanoid Robots, Aerial Robots.

	Introduction
	Robots and Locomotion
	Legged Robots
	Humanoid Robots

	Thesis presentations

	Humanoid Robotics
	Humanoid Robotics: what remains to be solved?
	Underactuation
	Underactuated systems
	Control of underactuated systems
	Underactuation in Humanoid Robotics: predictive approaches
	Personal contribution: application to aerial robots

	Redundancy
	Using redundancy to solve multiple tasks
	Hierarchy of Tasks
	The Stack of Tasks

	Underactuation and redundancy
	Decoupled approaches
	Mixed approaches
	Coupled approaches
	Personal contribution: Regularized Hierarchical Differential Dynamic Programming (RHDDP)

	Interaction with the environment
	Decoupled approach
	Coupled approach

	Contributions Summary

	Trajectory Generation for Quadrotor Based Systems
	Trajectory Generation using Numerical Optimal Control
	Introduction
	Optimal Control
	Indirect and Direct Approaches
	Direct Approaches
	Direct Multiple Shooting
	Sequential Quadratic Programming (SQP)
	Model Predictive Control (MPC)

	System Dynamics
	Quadrotor
	Quadrotor with Pendulum
	Aerial Manipulator

	Implementation Details
	Initial Guess
	Obstacle Avoidance
	Rotations
	Experimental Setup

	Results
	Non-Optimal Trajectories
	High-dynamic maneuvers
	Point-to-point Trajectories Through Obstacles
	Pick and Place
	Manipulation Tasks

	Application: Smart Teleoperation

	Warm-starting the Nonlinear Predictive Controller
	Warm start in MPC
	Iterative Roadmap Extension and Policy Approximation (IREPA)
	Results
	Setup
	System dynamics and cost
	Approximators
	Computational setup
	Offline phase
	IREPA convergence
	Propagation of the PRM
	Results of the offline phase
	Online phase

	Conclusion

	Regularized Hierarchical Differential Dynamic Programming
	Introduction
	The Role of Regularization
	State of the Art
	chapter Overview
	Notation

	Hierarchical Quadratic Programming (HQP)
	Problem Statement
	Regularizing the Problem
	Reformulating the Priority Constraints
	Solving the Second Minimization
	Solving the Whole Hierarchy
	A Simple Example

	Parametric Hierarchical Quadratic Programming (PHQP)
	Hierarchical Dynamic Programming
	Problem Statement
	Dynamic Programming with Regularization
	Introducing the Hierarchy
	Reformulation of the Regularized Problem
	Final HDP Formulation

	Hierarchical Differential Dynamic Programming
	Quadratic Differential Approximation
	Backward Pass
	Regularizing the Optimization
	Order of the Operations
	Forward Pass (Line Search)
	Improving the algorithm
	Algorithm Summary

	Simulations
	Test 1: PR2 - Final Cost
	Test 2: PR2 - Integral Cost
	Test 3: Cart-Pole
	Test 4: UR5 - Sequential Tasks

	Discussion
	Conclusions

	Pose Learning
	Introduction
	Feasibility conditions
	Stability for biped walkers
	State of the art

	Summary of the approach
	Data Generation
	What do we want to learn?
	Sampling space
	Implementation of the sampler

	Learning
	Gaussian Mixture Model
	Learning the data

	Results
	Implementation details
	Offline phase
	Stable poses on a simple environment
	Predicting stable poses
	Online query
	Integration to a path planner

	Conclusion

	Conclusion
	Quadrotor based Systems
	Costs weights and dynamic variables

	RHDDP
	Bibliography

