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Résumé

L'autonomie est l'une des préoccupations majeures lors du développement de missions spatiales que l'objectif soit scientifique (exploration interplanétaire, observations, etc) ou commercial (service en orbite). Pour le rendez-vous spatial, cette autonomie dépend de la capacité embarquée de contrôle du mouvement relatif entre deux véhicules spatiaux. Dans le contexte du service aux satellites (dépannage, remplissage additionnel d'ergols, correction d'orbite, désorbitation en fin de vie, etc), la faisabilité de telles missions est aussi fortement liée à la capacité des algorithmes de guidage et contrôle à prendre en compte l'ensemble des contraintes opérationnelles (par exemple, saturation des propulseurs ou restrictions sur le positionnement relatif entre les véhicules) tout en maximisant la durée de vie du véhicule (minimisation de la consommation d'ergols). La littérature montre que ce problème a été étudié intensément depuis le début des années 2000. Les algorithmes proposés ne sont pas tout à fait satisfaisants.

Quelques approches, par exemple, dégradent les contraintes afin de pouvoir fonder l'algorithme de contrôle sur un problème d'optimisation efficace. D'autres méthodes, si elles prennent en compte l'ensemble du problème, se montrent trop lourdes pour être embarquées sur de véritables calculateurs existants dans les vaisseaux spatiaux.

Le principal objectif de cette thèse est le développement de nouveaux algorithmes efficaces et validés pour le guidage et le contrôle impulsif des engins spatiaux dans le contexte des phases dites de "hovering" du rendez-vous orbital, i.e. les étapes dans lesquelles un vaisseau secondaire doit maintenir sa position à l'intérieur d'une zone délimitée de l'espace relativement à un autre vaisseau principal. La première contribution présentée dans ce manuscrit utilise une nouvelle formulation mathématique des contraintes d'espace pour le mouvement relatif entre vaisseaux spatiaux pour la conception d'algorithmes de contrôle ayant un traitement calculatoire plus efficace comparativement aux approches traditionnelles. La deuxième et principale contribution est une stratégie de contrôle prédictif qui assure la convergence des trajectoires relatives vers la zone de "hovering", même en présence de perturbations ou de saturation des actionneurs. Un travail spécifique de développement informatique a pu démontrer l'embarquabilité de ces algorithmes de contrôle sur une carte contenant un microprocesseur LEON3 synthétisé sur FPGA certifié pour le vol spatial, reproduisant les performances des dispositifs habituellement utilisés en vol. Finalement, des outils d'approximation rigoureuse de fonctions ont été utilisés pour l'obtention des solutions validées des équations décrivant le mouvement relatif linéarisé, permettant ainsi une propagation certifiée simple des trajectoires relatives via des polynômes et la vérification du respect des contraintes du problème.

Introduction

Spacecraft autonomy has become an important feature in the development of space missions, especially when ground operations are impracticable due to a large number of operations or an elevated communication time. Efficient embedded algorithms dedicated to autonomous decision making and maneuvering have already been used in many space projects, such as: the Soyuz and ATV automated docking systems [37,[START_REF] Hall | Soyuz: a universal spacecraft[END_REF], which are highly sophisticated spacecraft capable of automatically docking to the International Space Station using their own propulsion and navigation systems; and the Japanese Hayabusa asteroid touchdown mission [START_REF] Kubota | Guidance and navigation of hayabusa spacecraft for asteroid exploration and sample return mission[END_REF], during which a spacecraft was supposed to touch the surface of an asteroid with its sample capturing device and then take off again. Indeed, mastering the implementation of efficient embedded algorithms and assessing their performance are crucial for the accomplishment of mission goals, but also open a venue of economical opportunities and allow the feasibility of future space applications. One example in the context of space exploration is the Mars Sample Return (MSR)1 joint mission between ESA and NASA, during which a rover would be deployed on the surface of Mars to collect samples that later would be sent back to Earth using a third orbiter spacecraft (Fig. 1). A trending topic that is currently being studied by several space agencies and private companies is the on-orbit servicing. Two examples can be mentioned to illustrate this appli-cation: the DARPA's Robot Servicing of Geosynchronous Satellites (RSGS) 2 program that seeks to demonstrate the feasibility of a generic robotic servicing vehicle, with the ability of executing a variety of on-orbit missions in different scenarios; and the ESA's e.deorbit 3 active debris removal mission, in which a primary satellite would chase a secondary ESA-owned uncooperative satellite in low orbit, capture it (using a net and the other a robotic arm) and safely burn it up in a controlled atmospheric reentry (Fig. 2). The previously cited missions have at least one phase in which a spacecraft performs a rendezvousing operation. The spacecraft rendezvous consists in a sequence of maneuvers performed by an active follower satellite with the goal of getting closer or even docking to a leader satellite (see Fig. 3). 2 https://www.darpa.mil/program/robotic-servicing-of-geosynchronous-satellites 3 http://www.esa.int/Our_Activities/Space_Engineering_Technology/Clean_Space/e.Deorbit These approaching maneuvers are divided into several phases which are defined according to the inter-satellite distance, communication, visibility and other constraints. One of these phases is the so-called hovering phase [54, 56-58, 71, 72, 74, 105] (see Fig. 4), in which the follower spacecraft is required to remain in a delimited region of the space relatively to the leader, while the mission control awaits for other events to be accomplished (measurements, synchronization, mission control decisions, visibility, etc). Target Follower Sation-keeping One of the main objectives of this dissertation is the conception of autonomous guidance and control algorithms capable of complying with the complex restrictions of the rendezvous hovering phases, such as the time-continuous space constraints describing the hovering zone and the limitations of the thrusters. Moreover, the computation of the control actions must account for the minimization of fuel consumption, reducing the necessary fuel payload, ensuring feasibility and increasing the lifetime of the missions.

Target Earth

Another major concern of this work is to demonstrate that the proposed algorithms can be efficiently executed on devices dedicated to space applications. For this purpose, the control algorithms presented herein have to comply with the performances of a board containing a FPGA-synthesized LEON3 microprocessor. In fact, although this board is certified for space flights, it lacks computational power when compared to generic commercially available devices. The compilation chains and libraries used in the embedding of these algorithms are also provided.

A final and essential feature investigated in this work is mission safety. In order to ensure the successful mission accomplishment, the numerical results obtained during the execution of the proposed guidance and control algorithms must be validated 4 . The final developments of this thesis focus on the application of validation techniques for obtaining validated bounds for the relative trajectories generated by the control actions computed by the proposed algorithms.

In the next section, the organization and main contributions of this work are presented.

Organization and contributions

In Chapter 1, the context and assumptions adopted for the hovering phases of the spacecraft orbital rendezvous missions are described and the mathematical formulation of the problem is established. The concepts of synthesis and simulation models are also introduced. The synthesis model is characterized by a structure which is adapted for the conception of control algorithms and model predictive control strategies thanks to the existence of a formal propagation of the relative trajectories. On the other hand, the simulation model provides a high fidelity description of the physical phenomena involved in the orbital motion and, consequently, a more realistic representation of the spacecraft trajectories, being used to simulate the relative motion under the action of guidance algorithms. A first contribution of this work is the implementation of this simulation model in C and on Matlab R /Simulink R software, which led to the release of the two following simulators (freely available on-line):

1. A Matlab R /Simulink R non-linear simulator for orbital spacecraft rendezvous applications5 [START_REF] Arantes Gilz | A Matlab R /Simulink R non-linear simulator for orbital spacecraft rendezvous applications[END_REF]; 2. A non-linear simulator written in C for orbital spacecraft rendezvous applications 6 [START_REF] Arantes Gilz | A non-linear simulator written in C for orbital spacecraft rendezvous applications[END_REF].

In the end of Chapter 1, the synthesis model is used in the formulation of the fixed-time impulsive optimal guidance problem for relative motion in the context of the rendezvous hovering zone phases.

In Chapter 2, the theoretical aspects of the resolution of the guidance problem formulated in Chapter 1 are discussed. With the goal of producing efficient optimization-based algorithms, three reformulations of the original problem are then proposed. The first reformulation is based on traditional discretization techniques, leading to a linear program (LP). The second one converts the original problem into a semi-definite program (SDP), using the relation between the cone of non-negative univariate polynomials and the cone of semi-definite positive matrices.

The final proposition is an original contribution of this work, which consists in employing a geometrical approach based on the computation of the envelopes of the families of inequalities to describe the set of periodic constrained relative trajectories. This provides a reformulation of the original problem which relies on semi-algebraic functions, leading to a non-smooth optimization problem presented in the article: Numerical methods for solving each of these optimization problems are given and their practical aspects are considered. These optimization methods are then coded in C and embedded on a board certified for space applications containing a FPGA-synthesized LEON3 microprocessor. The details about the employed libraries and compilation chains were published in the following article: 4. Embedding an SDP-based control algorithm for the orbital rendezvous hovering phases [START_REF] Camps | Embedding a sdpbased control algorithm for the orbital rendezvous hovering phases[END_REF], joint work with F. Camps In Chapter 3 a control strategy is proposed to steer the relative motion and keep it periodic and included in a given hovering zone. This strategy consists of a closed-loop model predictive control (MPC) algorithm, which is proven to make the relative movement converge to the hovering zone even when the presence of saturation constraints on controls may make the space window unreachable from the current state. The performance of this proposed control strategy is assessed via processor-in-the-loop simulations: the control computation is executed on a board containing an FPGA-synthesized LEON3 microprocessor and the propagation of the disturbed relative motion under uncertainties is performed on the previously mentioned simulators. These tests highlight the efficiency of the proposed control strategy in terms of control quality, numerical burden and rejection of disturbances. These original developments were presented in:

Stable Model Predictive Strategy for Rendezvous Hovering Phases Allowing for Control

Saturation [START_REF] Arantes Gilz | Stable Model Predictive Strategy for Rendezvous Hovering Phases Allowing for Control Saturation[END_REF], joint work with M. Joldeş, C. Louembet and F. Camps, submitted to the 2018 AIAA Journal of Guidance and Control and Dynamics and currently in revision (JGCD 2018).

Chapter 4 is dedicated to the validation of numerical results obtained from the proposed on-board executed algorithms. In fact, during guidance and control procedures of orbiting spacecraft, the respect of positioning and space constraints is decisive for successful missions achievement. Since result accuracy is essential for these procedures, the prevention and estimation of errors arising from approximations and numerical computations become critical. In this context, a symbolic-numerical method for validating the solutions generated by the guidance and control algorithms is proposed. This approach provides error-bounded polynomial for the solutions of the linear ordinary differential equations (LODE) describing the linearized spacecraft relative motion. These developments led to the article: 6. Validated Semi-Analytical Transition Matrices for Linearized Relative Spacecraft Dynamics via Chebyshev Series Approximations [START_REF] Arantes Gilz | Validated Semi-Analytical Transition Matrices for Linearized Relative Spacecraft Dynamics via Chebyshev Series Approximations[END_REF], joint work with F. Bréhard 

Introduction

In order to study the rendezvous mission context of a leader and a follower spacecraft orbiting a main body (the Earth, hereafter), mathematical models must be adopted to describe the relative motion, the actuators and the technological constraints for different purposes.

Depending on the level of details and on the assumed hypothesis, several mathematical models can be employed in the description of these phenomena. First, the relative motion can be expressed by different state-space representations (e.g., Cartesian coordinates, orbital elements, equinoctial elements), using nonlinear or linearized dynamics. Then, since the object of study consists of mechanical systems, the significant forces acting over them must be inventoried.

Concerning the gravitational forces, for example, the attraction between spacecraft themselves or between the spacecraft and other celestial bodies (Sun, Moon, Jupiter, etc.) can be taken into account or neglected. Other effects such as the Earth's oblateness and non-homogeneous mass distribution, solar pressure or atmospheric drag may be taken into account as intrinsic dynamics or exogenous disturbances to the system. While the follower is usually equipped with thrusters, the leader spacecraft can be considered active or passive depending on the ability of controlling its inertial orbit. Moreover, the thrusters can be modeled in several different ways, depending on the type of employed propulsion engines and their geometrical disposition. Depending on the rendezvous phase, many type of constraints can be accounted for: hovering zone, visibility cone, safety, orientation, control action dates, thrusters saturation and dead-zone, etc. This chapter aims to set the choices and specify the framework of this thesis.

In the sequel, the context and assumptions adopted for the hovering phases of the spacecraft orbital rendezvous missions are described and the mathematical formulation of the problem is established. First, the concepts of simulation and synthesis models are introduced.

The simulation model is more comprehensive with respect to the physical phenomena involved in the orbital motion and, consequently, provides a more realistic representation of the spacecraft trajectories, being used to simulate the relative motion under the action of the conceived guidance algorithms; on the other hand, the synthesis model is less exhaustive and complex and is characterized, in this work, by linearized differential equations, which provides both a formal propagation and a structure adapted to the conception of control algorithms and model predictive control strategies.

The simulation model is obtained by the study of the two-body problem under Keplerian assumptions, which can be described by the Gauss planetary equations [START_REF] Haranas | Gauss planetary equations in a non-singular gravitational potential[END_REF]. The orbital disturbances, that are not accounted in these models, are introduced as exogenous disturbances and a simulator for the non-linear disturbed relative motion developed in C and on Matlab R /Simulink R is presented.

In order to obtain a synthesis model, the non-linear Tschauner-Hempel equations [START_REF] Tschauner | Rendezvous zu einem in elliptischer bahn umlaufenden ziel[END_REF] are linearized [START_REF] Tschauner | Elliptic orbit rendezvous[END_REF][START_REF] Yamanaka | New state transition matrix for relative motion on an arbitrary elliptical orbit[END_REF] and an analysis of the impact of the linearization hypothesis on the evolution of the relative trajectories is carried out. Once a linear true anomaly-varying statespace representation of the relative motion is obtained, a parametrization of the relative trajectories is introduced [START_REF] Deaconu | Constrained periodic spacecraft relative motion using non-negative polynomials[END_REF]. This parametrization allows a straightforward characterization of the periodicity property, which is a very desirable feature from the point of view of fuel saving [START_REF] Gurfil | Relative motion between elliptic orbits: generalized boundedness conditions and optimal formationkeeping[END_REF]. After that, the hovering region is described as a polytopic rectangular cuboid. The nature and geometrical placement of the propellers are discussed and the equations providing a characterization of the control actions and the fuel consumption are also exhibited. To conclude, the fixed-time impulsive optimal guidance problem for relative motion in the context of the rendezvous hovering zone phases is formulated.

Relative motion

The objective of this section is to detail the mathematical models that will be further employed in the description of the relative motion between spacecraft throughout this dissertation. In the next developments, the approach synthesis-simulation models is adopted.

The simulation model is used to separately simulate more realistically the behavior of each spacecraft involved in the rendezvous mission via the Gauss planetary equations (12 degrees of freedom, 6 orbital elements for each spacecraft). This model accounts for the intrinsic non-linearities and disturbances of the orbital motion. The relative motions is obtained by performing the passage from orbital elements to inertial states, then computing the difference between the positions and velocities of the leader and the follower spacecraft.

The synthesis model is obtained by performing a parametrization of the state vector employed in the simplified linearized Tschauner-Hempel equations for the relative motion (6 degrees of freedom, 3 relative position and 3 relative velocity coordinates). This variable change allows the conversion of the current relative state into parameters that are directly related to the shape of the relative orbits. This model is applied in the formulation of the fixed-time impulsive optimal guidance problem for the rendezvous hovering phases. This choice is motivated by the fact that each of the models has advantages that can be exploited separately. The synthesis model is linear and admits a closed-form state-transition matrix that describes the propagation of the relative trajectories departing from a given initial state. This feature is interesting for model predictive control purposes, since it allows the computation of the evolution of the relative trajectory after the application of a control action.

Moreover, the fact that this parametrization is related to the shape of the relative orbits leads to a formal description of the periodic relative orbits included in the hovering zone. The simulation model, even though more complex (since it does not admit a closed-from state transition and requires numerical integration), describes with more verisimilitude the motion and significant disturbances acting over each of the spacecraft separately. It provides, in a certain sense, a way of testing the behavior and robustnesses of the control strategies that are conceived and developed with less comprehensive models.

Simulation model

In this subsection, the simulation model is presented. It is obtained by first deducing the equations describing the movement of a single spacecraft orbiting a massive body in a Keplerian framework. Then, the relevant orbital disturbances (the J 2 effect and the atmospheric drag) are included in these equations as exogenous accelerations. The obtained equations are then employed in the simulation of the dynamics of two spacecraft orbiting the same central body and the relative motion is then obtained by performing the difference between their trajectories. Finally, the obtained model for simulating the relative motion is implemented on C and on Matlab R /Simulink R .

Keplerian hypothesis

Consider two bodies in space with homogeneous mass distribution (m 1 , m 2 ) and suppose that the first body is much more massive than the second m 1 " m 2 (e.g., the Earth and the International Space Station in Fig. 1.1) and that the only forces present in this system are the gravitational attractions (Keplerian motion). In this case, the influence of the second body on the dynamics of the first one is considered negligible. Take an arbitrary inertial frame fixed on the first body F E " pO, I, J, Kq and let R be the position of the second body in this frame. By applying Newton's second law of movement, we obtain:

m 2 d 2 dt 2 Rptq " ´Gm 1 m 2 } Rptq} 3 Rptq ñ d 2 dt 2 Rptq " ´µ } Rptq} 3 Rptq, (1.1)
where G is the universal gravitational constant, µ " Gm 1 is the first body's standard gravitational parameter (e.g., for the Earth, µ C " p398 600.4405 ˘0.001q km 3 s ´2 [START_REF] Ries | Determination of the gravitational coefficient of the earth from near-earth satellites[END_REF]). The general solutions of 1.1 are trajectories that assume the form of conic sections: circles, ellipses, parabolas and hyperbolas (more details in Fig. 1.2 and [START_REF] Battin | An introduction to the mathematics and methods of astrodynamics[END_REF]).
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Figure 1.2 -General solutions of the two body problem.

The following equation describes these general orbits in polar coordinates νptq and Rpνptqq:

Rptq " } Rptq} " p 1 `e cos νptq , e " 0, circular orbit

0 ă e ă 1, elliptical orbit e " 1, parabolic orbit e ą 1, hyperbolic orbit (1.2)
where e is the eccentricity, ν is the true anomaly (position of the spacecraft on its orbit) and p " ap1 ´e2 q the is the so-called semilatus rectum. For the elliptical and circular cases, a corresponds to the semi-major axis of the orbit.

In the sequel, we focus exclusively on the bounded periodic solutions: elliptical (and circular) orbits. In Fig. 1.3 we depict a spacecraft moving in a generic elliptical orbit around Earth.

Orbital plane

Equatorial plane The Earth centered equatorial inertial frame F E " pO, I, J, Kq is such that I is the vector that lies on the equatorial plane and has the direction of the vernal equinox (can be seen as the direction of the vector that goes from the center of the Earth to the center of the Sun when both are located on the equatorial plane), K is a vector perpendicular to the equatorial plane, pointing towards the north pole and J is a vector that lies on the equatorial plane that completes the orthogonal basis. The Earth centered orbital plane inertial frame The parameters describing the configuration of the elliptical orbit with respect to the F E equatorial inertial frame and the position of the spacecraft on its orbit are the so-called classical orbital elements [START_REF] Montenbruck | Satellite orbits: models, methods and applications[END_REF]:

Line of nodes

F O " pO, X, Y , Zq is such that X is equivalent to Ý Ý Ñ OP ,
OE c " " a, e, i, Ω, ω, νptq ı T .
The size and shape of the orbit are given by the semi-major axis a and the eccentricity e.

The line of nodes is given by the intersection between the orbital plane and the equatorial plane. The ascending node is the orbital position that lies on the line of nodes when the satellite enters the north half-space defined by the equatorial plane separation of the space.

The orientation of the orbit with respect to the inertial frame is represented by the longitude of the ascending node Ω (the angle between I and the ascending node), the argument of perigee ω (the angle between the ascending node. and the perigee direction) and the inclination i (the angle between the orbital plane and the equatorial plane). Finally, the position of the satellite on its orbit is given by the true anomaly ν.

In absence of exogenous forces or disturbances, the free evolution of the position of a spacecraft on its elliptical orbit is expressed via the orbital elements by (1.2):

Rptq " } Rptq} " ap1 ´e2 q 1 `e cos νptq ,
where the evolution of the true anomaly is given by the expression of its rate of change (see [37, Chapter 3.2] for further details): dν dt " c µ a 3 p1 ´e2 q 3 p1 `e cos νq 2 .

(1.4)

Evidently, this orbit can also be represented in the F O and F E frames by simply projecting the vector Rptq on the vectors composing their respective bases.

Non-Keplerian hypothesis

The previous obtained equations describe the shape of the spacecraft orbit as being a perfect ellipse (1.2). The speed at which a spacecraft travels on its orbit are given by the second and third Kepler's laws (1.4). However, these equations do not account for all the effects acting over a spacecraft in orbit. Among these effect are:

• the atmospheric drag, which consists in the deceleration of the motion in the sense of the along track velocity provoked by the interaction of the spacecraft external area with the particles present in the atmosphere;

• the Earth's gravitational disturbances provoked by its inhomogeneous mass distribution;

• the gravitational pull of the Sun, the Moon and other planets;

• solar radiation pressure, which is the pressure applied on spacecraft's surface provoked by the exchange of momentum between the object and the incoming radiation beam.

These disturbances are included in the spacecraft orbital dynamics as accelerations provoked by exogenous disturbing forces. The evolution of the spacecraft's orbital elements under these accelerations is given by the Gauss planetary equations [START_REF] Haranas | Gauss planetary equations in a non-singular gravitational potential[END_REF]:

da dt " 2 n ? 1 ´e2 r´γ z e sin ν `p1 `e cos νqγ x s de dt " ? 1 ´e2 n a " ´γz sin ν `ˆcos ν `e `cos ν 1 `e cos ν ˙γx  di dt " ´R cos θ na 2 ? 1 ´e2 γ y dΩ dt " ´R sin θ na 2 ? 1 ´e2 sin i γ y dω dt " ? 1 ´e2 n a e " γ z cos ν `ˆ1 `1 1 `e cos ν sin ν ˙γx  `R sin θ cos i n a 2 ? 1 ´e2 sin i γ y dν dt " n p1 `e cos νq 2 p1 ´e2 q 3{2 `?1 ´e2 n a e " ´cos ν γ z ´2 `e cos ν 1 `e cos ν γ x  , (1.5)
where n " c µ a 3 , θ " ν `ω and γ " rγ x , γ y , γ z s T represents the sum of the accelerations provoked by disturbances in the Local-Vertical/Local-Horizontal frame LV LH " pS l , x, y, zq, depicted in Fig. 1.4. Evidently, if γ " 0, the same motion described by (1.2) and (1.4) is obtained:

da dt " de dt " di dt " dΩ dt " dω dt " 0, dν dt "
c µ a 3 p1 ´e2 q 3 p1 `e cos νq 2 .

Figure 1.4 -LVLH frame: the z-axis points from the spacecraft to the center of the Earth; the y-axis is normal to the orbital plane, negative in the direction of the angular momentum; the x-axis is mutually perpendicular to the y and z-axes.

The classical orbital elements employed in (1.5) may produce singularities (e " 0 or i " 0).

In order to avoid it, a variable change is performed and the classical orbital elements are converted into the following modified equinoctial orbital elements:

OE eq " " p, f, g, h, k, L ı T , ( 1.6) 
which can be obtained from the classical orbital elements via:

p " ap1 ´e2 q

f " e cospΩ `ωq,

g " e sinpΩ `ωq,

h " tanpi{2q cos Ω, k " tanpi{2q sin Ω, L " Ω `ω `ν.
(1.7)

The Gauss planetary equations (1.5) can then be rewritten using the equinoctial orbital elements, which produces the following equations [START_REF] Walker | A set modified equinoctial orbit elements[END_REF]:

dOE eq dt " A eq γ `Beq (1.8)
where:

A eq " c p µ » - - - - - - - - - - - - - - - - - - - - - - - 2p w 0 0 pw `1q cos L `f w gph sin L ´k cos Lq w ´sin L pw `1q sin L `g w ´f ph sin L ´k cos Lq w cos L 0 ´s2 cos L 2w 0 0 ´s2 sin L 2w 0 0 ´h sin L ´k cos L w 0, fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl
(1.9)

B eq " " 0, 0, 0, 0, 0,

w 2 p 2 ? µp  T , (1.10)
where w " 1 `f cos L `g sin L.

In [START_REF] El'iasberg | Introduction to the Theory of Flight of Artificial Earth Satellites (Введение в теорию полета искусственных спутников Земли)[END_REF]Section 16.4], the author demonstrates that for flights at height of a few thousands of kilometers and less above the surface of the Earth, the perturbations related to the Moon and Sun pull are insignificant compared to the gravity anomalies and the second zonal harmonic of the geopotential (the so-called J 2 effect). Also in [START_REF] El'iasberg | Introduction to the Theory of Flight of Artificial Earth Satellites (Введение в теорию полета искусственных спутников Земли)[END_REF]Section 17.3], it is shown that the solar radiation pressure is relevant only for small light-weight satellites orbiting at flight heights above 500 km. For all other satellites the perturbations produced by radiation pressure are small compared to the other disturbing effects. For the simulations performed throughout this dissertation, missions based on the International Space Station orbital parameters are employed [START_REF]ISS Trajectory Data[END_REF] and, given that its flight height is below 500 km1 , only the J 2 effect and the atmospheric drag will be taken into account in the following developments:

• J 2 disturbance: the acceleration provoked by the Earth's flatness is given in the LVLH frame by [START_REF] Arzelier | Étude bibliographique sur la modélisation du mouvement relatif pour le problème du rendezvous[END_REF][START_REF] Kara-Zaitri | Modélisation et guidage robuste et autonome pour le problème du rendez-vous orbital[END_REF]:

γ J 2 " ´3µJ 2 R 2 e 2R 4 » - - - - - - - 8ph sin L ´k cos Lqph cos L `k sin Lq p1 `h2 `k2 q 2 ´4ph sin L ´k cos Lqp1 ´h2 ´k2 q p1 `h2 `k2 q 2 12ph sin L ´k cos Lq 2 p1 `h2 `k2 q 2 ´1 fi ffi ffi ffi ffi ffi ffi fl (1.11)
where J 2 is the second degree term in Earth's gravity potential and R e is the Earth's radius.

• Atmospheric drag: the disturbing acceleration provoked by the atmospheric drag is given in the LVLH frame by [START_REF] Arzelier | Étude bibliographique sur la modélisation du mouvement relatif pour le problème du rendezvous[END_REF][START_REF] Kara-Zaitri | Modélisation et guidage robuste et autonome pour le problème du rendez-vous orbital[END_REF]:

γ d " ´ρpRqSC d 2m µ p a 1 `2pg sin L `f cos Lq `f 2 `g2 » - - - - 1 `f cos L `g sin L 0 ´f sin L `g cos L fi ffi ffi ffi fl , (1.12)
where ρpRq is the atmospheric density and m, S and C d are respectively the mass, the cross sectional area and the drag coefficient of the spacecraft. The atmospheric density is given in function of the distance between the satellite and the center of the Earth by the following equation:

ρpRq " ρ exp ˆRe ´R `400000 46830 ˙, (1.13) 
where ρ is a constant that depends of the solar activity (2.2644 ˆ10 ´12 for low and 3.5475 ˆ10 ´11 for high solar activity).

Relative motion

In order to obtain the relative motion, the differential equations (1.8) are integrated for both leader and follower spacecraft independently, leading to a 12 degree of freedom model. At each integration step, the equinoctial orbital elements can be converted into the Cartesian inertial position and velocity via the following transformation:

x F E " r s 2 pcos L `α2 cos L `2hk sin Lq y F E " r s 2 psin L ´α2 sin L `2hk cos Lq z F E " 2r 
s 2 ph sin L ´k cos Lq 9 x F E " ´1 s 2 c µ p psin L `α2 sin L ´2hk cos L `g ´2f hk `α2 gq 9 y F E " ´1 s 2 c µ p p´cos L `α2 cos L ´2hk sin L ´f `2ghk `α2 f q 9 z F E " 2 s 2 c µ p ph cos L `k sin L `f h `gkq, (1.14) 
where r " p{w, s 2 " 1 `h2 `k2 , and α 2 " h 2 ´k2 .

Then, the vector X " rx, y, z, 9

x, 9 y, 9 zs T representing the difference between the spacecraft's positions and velocities projected on the leader's LVLH frame is given by the following relations:

» - - - - - - - - - - - - - x y z 9 x 9 y 9 z fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl " » - - - - - - - - - - - - - x x l , p F E y ´x y l , p F E y x z l , p F E y x x l , v F E y `9 ν l x z l , p F E y ´x y l , v F E y x z l , v F E y ´9 ν l x x l , p F E y fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl (1.15)
where x¨, ¨y is the dot product in R 3 ,

p F E " px f F E ´xl F E , y f F E ´yl F E , z f F E ´zl F E q
is the difference between the positions of the follower and leader spacecraft in the inertial frame,

v F E " p 9 x f F E ´9 x l F E , 9 y f F E ´9 y l F E , 9 z f F E ´9 z l F E q
is the difference between the velocities of the follower and leader spacecraft in the inertial frame, 9 ν l is the derivative with respect to time of the leader's true anomaly and the unitary vectors x l , y l , z l compose the leader's LVLH frame orthonormal basis and are given by the following expressions:

z l " ´px l F E , y l F E , z l F E q b px l F E q 2 `py l F E q 2 `pz l F E q 2 , x l " V } V } , y l " ´ U } U } ,
where to obtain a dedicated tool for simulating and developing control algorithms for the orbital spacecraft rendezvous in the case where the leader spacecraft is passive and the control applied on follower spacecraft is originally computed on the leader LVLH frame. On the other hand, the C version of the simulator is an original contribution of this work. For a given orbital rendezvous scenario, the output of both simulators is the evolution of the relative position and velocity between the two spacecraft, obtained by the integration of the Gauss equations for the orbital motion under the disturbances provoked by the Earth's flatness (the J 2 effect) and the atmospheric drag. These simulators are available at:

T " p 9 x l F E , 9 y l I , 9 z l F E q b p 9 x l F E q 2 `p 9 y l F E q 2 `p 9 z l F E q 2 U " T ˆ z l V " ´ U ˆ z l (1.
• C version: https://hal.archives-ouvertes.fr/hal-01410075 [START_REF] Arantes Gilz | A non-linear simulator written in C for orbital spacecraft rendezvous applications[END_REF].

• Matlab R /Simulink R : https://hal.archives-ouvertes.fr/hal-01413328 [START_REF] Arantes Gilz | A Matlab R /Simulink R non-linear simulator for orbital spacecraft rendezvous applications[END_REF];

This simulator will be employed in the remainder of this dissertation for assessing the behavior of the proposed control algorithms in a non-linear and disturbed context.

Synthesis model

In this section, the model representing the relative dynamics between spacecraft that will be used throughout this dissertation for the development of control algorithms is presented.

Several representations can be used for this purpose. For example, in the literature the differential orbital elements or modified versions of them are employed in formation flight applications [2,[START_REF] Breger | Gauss's variational equation-based dynamics and control for formation flying spacecraft[END_REF]. Hereafter, the Cartesian local relative coordinates are chosen (6 degrees of freedom, 3 position and 3 velocity coordinates) for the initial study of the relative motion instead of the differential orbital elements. This choice is preferred for modeling problems in which space restriction are present [START_REF] Di Cairano | Model predictive control approach for guidance of spacecraft rendezvous and proximity maneuvering[END_REF][START_REF] Hartley | Model predictive control system design and implementation for spacecraft rendezvous[END_REF][START_REF] Holzinger | Passively safe receding horizon control for satellite proximity operations[END_REF], just as the rendezvous hovering phases problem. Nevertheless, later in this section, a parametrization of these Cartesian coordinates is introduced exhibiting an intrinsic relation between the obtained parameters and the shapes and boundedness of the relative orbits.

In the sequel, the equations describing the evolution of the relative motion between two spacecraft on elliptical orbits are presented (the reader may consult Appendix A for more details about the deduction of these equations). Let be Xptq " rx, y, z, 9

x, 9 y, 9 zs T the state vector containing the relative positions and velocities in the leader's Local-Vertical/Local-Horizontal frame LV LH " pS l , x, y, zq (see Fig. 1.5).

By applying Newton's Second Law of motion to both spacecraft and subtracting the dynamics of the leader from the follower spacecraft, the following system of nonlinear differential equations is obtained [START_REF] Tschauner | Rendezvous zu einem in elliptischer bahn umlaufenden ziel[END_REF]:

: x " 2 9 ν 9 z `: νz `9 ν 2 x ´µx b px 2 `y2 `pR ´zq 2 q 3 : y " ´µy b px 2 `y2 `pR ´zq 2 q 3 : z " ´2 9 ν 9 x ´: νx `9 ν 2 z ´µpz ´Rq b px 2 `y2 `pR ´zq 2 q 3 ´µ R 2 , (NLTH)
These are the so-called nonlinear Tschauner-Hempel equations. Assuming as linearization hypothesis that the distance between spacecraft is much smaller that the distance from the leader spacecraft to the center of the Earth:

a x 2 `y2 `z2 ! R, (1.17)
the linearized Tschauner-Hempel equations are obtained:

: x " 2 9 ν 9 z `: νz `9 ν 2 x ´µ R 3 x : y " ´µ R 3 y : z " ´2 9 ν 9 x ´: νx `9 ν 2 z `2µ R 3 z. (LTH)
Let be Xpνq " rx, ỹ, z, x1 , ỹ1 , z1 s T a new state vector such that:

Xpνq " T pνqXptq, Xptq " T ´1pνq Xpνq, (1. [START_REF] Boyd | Chebyshev and Fourier spectral methods[END_REF] where the similarity transformation T pνq is given by:

T pνq " » - ρ ν I 3 0 3 ´es ν I 3 pk 2 ρ ν q ´1I 3 fi fl .
with k2 " b µ a 3 p1´e 2 q 3 , s ν " sinpνq and ρ ν " p1 `e cos νq. By introducing these new variables in (LTH), the so-called simplified linearized Tschauner-Hempel equations [START_REF] Tschauner | Elliptic orbit rendezvous[END_REF][START_REF] Yamanaka | New state transition matrix for relative motion on an arbitrary elliptical orbit[END_REF] are obtained (for details, see Appendices A.2 and A.3):

x2 " 2z 1 , ỹ2 " ´y, z2 " 3 
ρ ν z ´2x 1 , (SLTH)
where p¨q 1 " dp¨q dν , p¨q 2 " d 2 p¨q dν 2 , dp¨q dt " p¨q 1 9 ν, d 2 p¨q dt 2 " p¨q 2 9 ν 2 `p¨q 1 : ν.

Evaluating the linearization hypothesis

In this section, the validity of the linearization hypothesis (1.17) is assessed. For that, let there be an initial true anomaly ν 0 " 0 ˝and an initial relative state X 0 pnq " r10 n , 10 n , 10 n , 0, 0, 0s. For a " 7 ˆ10 6 , 8 ˆ10 6 ( meters, e " t0.04, 0.1u and n " t1, 2, 3u, the evolution of the relative trajectory is propagated during T sim " t200, 1500u seconds, considering the nonlinear (NLTH) and the linearized (LTH) relative dynamics 2 . The absolute difference between the final states is presented in Table 1.1 .

From Table 1.1 it is possible to remark that the absolute difference between the nonlinear and the linearized dynamics increases as the simulation time, the initial relative distance and the eccentricity increase; on the other hand, higher values of the semi-major axis result in higher distances between the leader spacecraft and the Earth, which makes the linearization hypothesis stronger and results in lower mismatches. For short simulation times (200 s), the committed errors are of the order of the centimeters for all configurations of initial states and eccentricities; however, for longer simulations (1500 s), the error can escalate to values equivalent to the Earth radius (see Fig. 1.6).

As a consequence of this, for certain scenarios, the relative trajectories obtained via linear propagation may present immense discrepancies with respect to those obtained via nonlinear propagation. In order to avoid these inconsistencies, control laws and theoretical studies synthesized using models based on the linearized Tschauner-Hempel equations should also be tested on models based on the nonlinear dynamics. This conclusion corroborates the adopted strategy of using a synthesis model for conception of control algorithms and a simulation model for their "validation".

State-transition matrix

The linear true anomaly-varying system of equations (SLTH) can be expressed under the following state-space representation: Yamanaka and Ankersen propose in [START_REF] Yamanaka | New state transition matrix for relative motion on an arbitrary elliptical orbit[END_REF] a fundamental solution matrix (ϕpνq P R 6ˆ6 non-singular, such that ϕpνq 1 " Ãpνqϕpνq) for this system: where s ν " sin ν and c ν " cos ν, J ν 0 pνq :"

X1 pνq " » - - - - - - - - - - - - - 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 2 0 ´1 0 0 0 0 0 0 3 ρ ν ´2 0 
ϕpνq " » - - - - - - - - - - - - - - 1 0 ´cν p1 `ρν q s ν p1 `ρν q 0 3ρ 2 ν J ν0 pνq 0 c ν 0 0 s ν 0 0 0 s ν ρ ν c ν ρ ν 0 2 ´3es ν ρ ν J ν0 pνq 0 0 2s ν ρ ν 2c ν ρ ν ´e 0 3 ´6es ν ρ ν J ν0 pνq 0 ´sν 0 0 c ν 0 0 0 c ν `
ż ν ν 0 dτ ρpτ q 2 " c µ a 3 t ´t0 p1 ´e2 q 3{2 , (1.21)
and ν 0 is an arbitrary initial true anomaly of reference.

The propagation of an initial trajectory Xpν 0 q can be performed via the state-transition matrix Φpν, ν 0 q " ϕpνqϕ ´1pν 0 q:

Xpνq " Φpν, ν 0 q Xpν 0 q, (1. [START_REF] Brentari | A hybrid control framework for impulsive control of satellite rendezvous[END_REF] where ϕ ´1pν 0 q is given by:

ϕ ´1pν 0 q " » - - - - - - - - - - - - - - - -
1 0 ´3es ν0 p1 `ρν0 q ρ ν0 pe 2 ´1q es ν0 p1 `ρν0 q e 2 ´1 0 ec ν0 ρ ν0 ´2 e 2 ´1 0 c ν0 0 0 ´sν0 0 0 0 3s ν0 pρ ν0 `e2 q ρ ν pe 2 ´1q ´sν0 p1 `ρν0 q e 2 ´1 0 2e ´cν0 ρ ν0 e 2 ´1 0 0 3pe `cν0 q e 2 ´1 ´2c ν0 `ec 

Deaconu's parametrization and periodic relative trajectories

In this section, a transformation allowing the description of the relative state by a vector of parameters is introduced. This parametrization is demonstrated to be in a half-way between the representation of relative trajectories via Cartesian coordinates and via orbital elements, since it provides both a representation of the relative position and velocity between spacecraft and an interpretation of the shape and boundedness of these relative orbits.

In [28, Chapter 2], Deaconu remarked that the term ϕ ´1pν 0 q Xpν 0 q in (1. [START_REF] Brentari | A hybrid control framework for impulsive control of satellite rendezvous[END_REF]) is a constant that only depends on the evaluation of ϕ and X at ν 0 . Inspired by this observation, the author proposed the following variable change: where Dpν 0 q " rd 0 pν 0 q, d 1 pν 0 q, d 2 pν 0 q, d 3 pν 0 q, d 4 pν 0 q, d 5 pν 0 qs T and Cpνq is equivalent to ϕ ´1pνq, but with some lines permuted: 1 Ñ 4, 2 Ñ 5, 4 Ñ 2, 5 Ñ 6 and 6 Ñ 1. Although this variable change may resemble like a mere replacement of the constant term ϕ ´1pν 0 q Xpν 0 q, the parameterization of the trajectories Xpνq by the vector Dpνq brings out many simplifications and advantages on the modeling of the problem:

Dpνq " » - - - - - - - - - - - - - - - - 0 0 ´3 ec ν `e2 `2 e 2 ´1 ρ 2 ν e 2 ´1 0 ´es ν ρ ν e 2 ´1 0 0 3pe `cν q e 2 ´1 ´2c ν `ec 2 ν `e e 2 ´1 0 s ν ρ ν e 2 ´1 0 0 3s ν pρ ν `e2 q ρ ν pe 2 ´1q ´sν p1`ρ ν q e 2 ´1 0 2e ´cν ρ ν e 2 ´1 1 0 ´3 es ν p1`ρ ν q ρ ν pe 2 ´1q es ν p1`ρ ν q e 2 ´1 0 ec ν ρ ν ´2 e 2 ´1 0 c ν 0 0 ´sν 0 0 s ν 0 0 c ν 0 fi ffi ffi
1. The entries of the vector Dpνq describe the shape and size of the trajectory: by replacing ϕ ´1pν 0 q Xpν 0 q by Dpν 0 q in (1.22), the following equations are obtained:

xpνq " p2 `e c ν qpd 1 pν 0 q s ν ´d2 pν 0 q c ν q `d3 pν 0 q `3 p1 `e c ν q 2 d 0 pν 0 q J ν 0 pνq, ỹpνq " d 4 pν 0 q c ν `d5 pν 0 q s ν , zpνq " p1 `e c ν qpd 2 pν 0 q s ν `d1 pν 0 q c ν ´3 e s ν d 0 pν 0 q J ν 0 pνqq `2 d 0 pν 0 q.

(1. [START_REF] Chari | Autonomous orbital rendezvous using angles-only navigation[END_REF] and, as one can remark, the transition of the states xpνq, ỹpνq and zpνq depends linearly on Dpν 0 q.

In Fig 2. A simple way to characterize the periodicity property: although the relative motion between spacecraft is not generally periodic, the periodicity property is interesting from the point of view of fuel consumption minimization [START_REF] Gurfil | Relative motion between elliptic orbits: generalized boundedness conditions and optimal formationkeeping[END_REF]. This is mainly because in the absence of exogenous disturbances, once both spacecraft start to describe a periodic relative motion that respects the mission constraints, no further corrective control actions are required.

Hence, several control algorithms which minimize the fuel consumption require the generated relative trajectories to be periodic [START_REF] Arantes Gilz | Model predictive control for rendezvous hovering phases based on a novel description of constrained trajectories[END_REF][START_REF] Arantes Gilz | Predictive control algorithm for spacecraft rendezvous hovering phases[END_REF][START_REF] Brentari | A hybrid control framework for impulsive control of satellite rendezvous[END_REF][START_REF] Gurfil | Relative motion between elliptic orbits: generalized boundedness conditions and optimal formationkeeping[END_REF]. In order to develop control algorithms that minimize the fuel consumption, the generated relative trajectories are required to be periodic. However, in order to integrate this constraint in the formulation of the control algorithms, a mathematical description is needed.

One can observe that in (1.25), the only non-periodic divergent term in these equations is J ν 0 pνq, which always appears multiplied by the parameter d 0 pνq. Therefore, it is evident that a sufficient condition to obtain a periodic relative trajectory is to have d 0 pνq " 0, for all ν (see Fig. 1.9). However, from (1.26) we observe that, if for some ν, d 0 pνq " 0, then d 0 pνq " 0, for all ν. We conclude then that a relative trajectory is periodic if and only if for some ν the computation of Dpνq " Cpνq Xpνq produces a parameter d 0 " 0.

The state propagation of the vector Dpνq is simpler than the dynamics of

Xpνq: since for all ν, detpCpνqq ‰ 0, for a given ν, any vector Xpνq has a single correspondent Dpνq and vice-versa. This means that in order to study the evolution of the state vector Xpνq, it suffices to analyze the behavior of Dpνq. By manipulating (1. [START_REF] Breger | Gauss's variational equation-based dynamics and control for formation flying spacecraft[END_REF]) and (1.24) (see [28, Chapter 2] for details), we obtain the following dynamical system and state propagation representing the evolution of the vector of parameters:

D 1 pνq " » - - - - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0 0 0 ´3e{ρ 2 ν 0 0 0 0 0 3{ρ 2 ν 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl looooooooooooooooomooooooooooooooooon A D pνq Dpνq, or Dpνq " » - - - - - - - - - - - - - 1 0 0 0 0 0 0 1 0 0 0 0 ´3eJ ν0 pνq 0 1 0 0 0 3J ν0 pνq 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl loooooooooooooooooooomoooooooooooooooooooon Φ D pν,ν0q Dpν 0 q, (1.26) 
and one can notice that the state propagation of Dpνq expressed in (1.26) is straightforward compared to the one corresponding to the vector Xpνq, given by Φpν, ν 0 q " ϕpνqϕ ´1pν 0 q.

Guidance of the relative motion

The guidance problem for the rendezvous missions consists in computing the control actions and the generated relative trajectories that satisfy a set of constraints over the actuators and the trajectories, that are modeled by some system of nonlinear controlled dynamical equations:

d dt Xptq " f pXptq, tq `Bptquptq, (1.27) 
or by some Linear Time-Varying (LTV) system of equations (as in (1.22), for example):

d dt Xptq " AptqXptq `Bptquptq, (1.28) 
for which a linear state-transition is available for the modeling of the dynamics:

Xptq " Φpt, t 0 qXpt 0 q `ż t t 0 Φpt, sqBpsqupsqds (1.29)
where Xptq P R 6 is the relative state and uptq P R 3 is the vector that represents the control actions (the free variable can be chosen as t or ν, since they are in a one-to-one correspondence).

As discussed previously, the dynamics presented in (1.26) are used in the sequel to model the relative dynamics in the phase of conception of control algorithms and the disturbed nonlinear Gauss equations in equinoctial orbital elements (1.8), to simulate and validate the execution of the computed control actions.

So far, the nature of the terms Bptquptq and ş t t 0 Φpt, sqBpsqupsqds have not yet been discussed. In this section, the physical model adopted to represent the spacecraft's propellers, the effect of the application of the control actions on the relative dynamics and the metrics used to measure the fuel consumption is presented. Another subject treated in this section is the set of constraints that must be respected by the control actions and relative trajectories.

The actuator constraints, as well as the space constraints of the rendezvous hovering phases, are also introduced. By the end of this section, all the necessary elements for the formulation of the guidance optimal problem for the rendezvous hovering phases will have been presented: a model for the propagation of the relative controlled dynamics, the fuel consumption that must be minimized, the space constraints describing the hovering zone and the restrictions on the control actions.

Space constraints: describing the hovering region

Several different types of space constraints must be satisfied by the relative motion between spacecraft during the rendezvous missions. Depending on the type of sensors used for the estimation of the relative distance and velocity of the spacecraft, a field of view is imposed to ensure the required conditions for the measurements (see Fig. 1.10). For close-range and proximity operations, a safety radius distance is imposed in order to avoid collisions (see Fig. 1.11). During the transition between checkpoints of the mission, the follower spacecraft must keep station in a delimited zone of the space relative to the leader spacecraft, the so-called hovering zone (see Fig. 1.12, more details in [37]). Hereafter, since the focus of the developments presented in this dissertation are the station-keeping capabilities during the rendezvous hovering phases, only the restrictions constraining the relative motion to be included in a delimited zone of the space relative to the leader spacecraft are considered. This delimited zone, the hovering region, is assumed to be a rectangular cuboid. These space constraints are generally modeled as:

Field of view

g 1 pxpνq, ypνq, zpνq, νq ď 0, g 2 pxpνq, ypνq, zpνq, νq ď 0, . . .

g m pxpνq, ypνq, zpνq, νq ď 0 @ν ě ν 0 , (1.30)
where the functions g i are parametrized by the true anomaly ν and represent the geometrical restrictions that must be satisfied. For instance, the relative trajectories included in a rectangular cuboid hovering zone (see Fig. 1.13) are defined by the following inequalities:

x ď xpνq ď x, y ď ypνq ď y, z ď zpνq ď z, @ν ě ν 0 .

(1.31) These trajectories can be also defined as a function of the vector of parameters. Using the relations (1.18) and (1.25) to replace xpνq, ypνq and zpνq in (1.31), the following inequalities are obtained:

x ď M x pνqDpν 0 q ď x, y ď M y pνqDpν 0 q ď y, z ď M z pνqDpν 0 q ď z, @ν, (1.32) 
where:

M x pνq " " 0, p2 `e c ν qs ν 1 `e c ν , ´p2 `e c ν qc ν 1 `e c ν , 1 1 `e c ν , 0, 0  M y pνq " " 0, 0, 0, 0, c ν 1 `e c ν , s ν 1 `e c ν  M z pνq " " 0, c ν , s ν , 0, 0, 0  (1.33)
The constraints presented in (1.32) can be seen as an infinite number of affine inequalities on the entries of the vector Dpν 0 q parametrized by ν. This class of constraints is hard to be treated in practice [START_REF] López | Semi-infinite programming[END_REF]. In the next chapters, alternative finite formulations for these constraints are presented.

Actuators and fuel consumption

The goal of this section is to provide the mathematical models and assumptions adopted for the actuators embedded on the spacecraft involved in the rendezvous missions. These actuators are mainly characterized by the nature of their propulsion method and by their geometrical configuration. Several propulsion methods can be adopted for spacecraft control, amongst them: mono-propellant rockets, electrostatic ion thrusters, Hall-effect thrusters, field-emission electric propulsion, etc. (see [START_REF] Brown | Spacecraft propulsion[END_REF][START_REF] Czysz | Future spacecraft propulsion systems: enabling technologies for space exploration[END_REF][START_REF] Marcuccio | Experimental performance of field emission microthrusters[END_REF][START_REF] Turner | Rocket and spacecraft propulsion: principles, practice and new developments[END_REF] for more details). Concerning the geometrical configuration of the actuators, the spacecraft may have propellers mounted on each of its axes or be controlled by gimbaling and, for each case, an accurate criterion to measure the fuel consumption must be adopted (see [START_REF] Ross | Space trajectory optimization and l1-optimal control problems[END_REF] and Fig. 1.14 for details).

Defining the fuel consumption cost

In equations (1.27) and (1.29), the control action was presented as uptq. In fact, this variable can be seen as the quotient between the thrust provoking an instantaneous force F ptq and the vehicle mass mptq:

uptq " F ptq mptq .

(1.34)

The usual criterion adopted to measure the fuel consumption [94, Sec. II-III] is the following one:

J puptqq :" ˆż t f t 0 p|u x ptq| `|u y ptq| `|u z ptq|q p dt ˙1 p , (1.35)
where t 0 and t f define the time interval over which the fuel consumption is computed and p is a design parameter associated to the geometrical configuration of the propellers:

(a) if the vehicle is guided by one single gimbaled thruster, p is set to 2;

(b) if multiple ungimbaled thrusters are present, p is set to 1;

(c) if vehicle is guided by one main thruster accompanied by vernier engines, p is set to 8. Throughout this dissertation, the following assumptions are adopted:

These configurations are illustrated in

1. the follower spacecraft is equipped with two identical thrusters symmetrically disposed on each axis, which is equivalent to the configuration (b) presented in Fig. 1.14;

2. the spacecraft uses chemical propulsion, which is characterized by a high magnitude of thrust and small changes in mass and small burn times. Given that, the characteristic time of the dynamics of the propellers can be considered much smaller than the time constant of the periodic relative motion (the interval of propulsion is of the order of the second, while the orbital period is of the order of the hour) and the controlled relative motion can be modeled as an impulsive system [START_REF] Aubin | Impulse differential inclusions: A viability approach to hybrid systems[END_REF][START_REF] Bainov | Impulsive Differential Equations: Periodic Solutions and Applications[END_REF][START_REF] Fraga | Hamilton-jacobi-bellman equation and feedback synthesis for impulsive control[END_REF][START_REF] Haddad | Impulsive and hybrid dynamical systems[END_REF];

3. a finite number N of control actions are applied at a priori fixed dates.

The first assumption indicates that the p " 1 must be used in the definition of the fuel consumption criterion (see Fig. 1.14):

J puptqq :"

ż t f t 0 p|u x ptq| `|u y ptq| `|u z ptq|q dt, (1.36)
The second and third hypothesis provide a first motivation to model the control actions as instantaneous velocity changes applied at specific a priori known dates. In fact, the results presented by Neustadt in [START_REF] Neustadt | Optimization, a moment problem, and nonlinear programming[END_REF] corroborates this idea. The author demonstrates that the optimal controls obtained for the minimum-fuel Keplerian linearized elliptic rendezvous problem are purely impulsive and that the number of impulses is upper-limited by the dimension of the fixed final conditions of the optimal guidance problem. However, the algorithms proposed by Neustadt for generic functions representing the control actions uptq are not capable of accounting for constraints on the relative dynamics or the saturation of the propellers. Based on these results and, with the goal of obtaining a simple optimization problem formulation capable of accounting for the problem constraints, the control actions are modeled as follows:

uptq " N ÿ i"1
∆V pt i q δpt ´ti q, (1.37)

where ∆V ptq " r∆V x ptq, ∆V y ptq, ∆V z ptqs T P R 3 represents the velocity change of a spacecraft and δpt ´ti q is the Dirac delta function representing an instantaneous pulse of magnitude 1 at t i . This choice provides two important assets: the optimization is no longer performed over a space of functions uptq, but over the space of finite-dimension vectors

∆V :" r∆V pt 1 q T , ∆V pt 2 q T , . . . , ∆V pt N ´1q T , ∆V pt N q T s T ,
which is more efficiently tractable from a numerical point of view; moreover, this choice allows a straightforward imposition and tractability of constraints on the relative movement and on the control actions (as will be presented in Chapters 2 and 3).

Remark 1.3.2. The obtained control actions will be validated in Chapter 4 by a technique based on simple computations (evaluation of polynomials and matrix multiplication using interval arithmetics). This technique will also provide an a posteriori validation for the continuous propagation of the relative trajectories.

Under the previous assumptions, the fuel consumption criterion is expressed as a function of the vector ∆V :

J p∆V q :" N ÿ i"1 |∆V x pt i q| `|∆V y pt i q| `|∆V z pt i q|.
(1.38)

Effect of the control actions on the relative dynamics

The evolution of the state Xpνq can be formally described by the following impulsive system:

X1 pνq " Ã1 pνq Xpνq, ν ‰ ν i X`p ν i q " Xpν i q `T pν i qB∆V pν i q, i P N (1.39)
where B " r0 3 I 3 s T , pν i q iPN are the true anomaly instants at which control actions are applied and X`p ν i q " lim tÑν ì Xpν i q represents the state obtained right after the application of an impulse ∆V pν i q.

Performing the variable change Dpνq " Cpνq Xpνq given in (1.24), the parameter vector obtained after the application of an impulse is given by: D `pν i q " Dpν i q `BD pν i q∆V pν i q, (1. [START_REF] Gaias | Angles-only navigation to a noncooperative satellite using relative orbital elements[END_REF] where B D pν i q " Cpν i qT pν i qB. Using the representation given in (1.26), the parameter vector right after a sequence of impulses applied at ν 1 . . . ν N ´1, ν N can be expressed as follows:

D `pν N q " Φ D pν N , ν 1 qDpν 1 q `N ÿ i"1 Φ D pν N , ν i qB D pν i q∆V pν i q.
(1.41)

Saturation of thrusters

Considering that the saturation limit for each propeller is ∆V ą 0, the saturation constraint is formulated as:

|∆V i,x | ď ∆V , |∆V i,x | ď ∆V , |∆V i,x | ď ∆V , i P t1, . . . , N u , ( 1.42) 
where ∆V i,j " ∆V j pt i q.

Optimal guidance problem formulation

At this point, all the relative dynamics, the behavior of the actuators and the saturations and space constraints of the problem have been presented. The fixed-time impulsive optimal guidance problem for the rendezvous hovering phases is then formulated as:

Problem 1.3.1 (Guidance problem). For a given scenario characterized by eccentricity e, semi-major axis a and initial state Dpν 1 q " Cpν 1 qT pν 1 qXpν 1 q P R 6 , given N P N, find N impulsive controls (represented by ∆V P R 3N ) applied at given fixed instants ν 1 , . . . , ν N , such that:

min ∆V J p∆V q s.t. $ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' % D `pν N q " Φ D pν N , ν 1 qDpν 1 q `řN i"1 Φ D pν N , ν i qB D pν i q∆V i , state propagation d 0 pν N q " 0 periodicity |∆V i,j | ď ∆V , @i P t1, . . . , N u @j P tx, y, zu thruster saturation x ď M x pνqD `pν N q ď x y ď M y pνqD `pν N q ď y, @ν ě ν N z ď M z pνqD `pν N q ď z space constraints (GP)

Conclusion

This chapter presents the context and hypotheses adopted to address the rendezvous hovering phases and the respective mathematical models for the relative motion, actuators and space constraints. The study of the two-body problem under Keplerian assumptions leads to the nonlinear Tschauner-Hempel equations. These resulting equations are then linearized and an analysis of the impact of the linearization hypothesis on the evolution of the relative trajectories is carried out. Simulations should account for the nonlinear dynamics in order to avoid discrepancies between the linear predictions and the nonlinear behavior. The Deaconu's parametrization is introduced, simplifying the propagation of the relative trajectory dynamics and bringing out the fact that the first parameter d 0 is a straightforward way to assess the periodicity feature for an arbitrary trajectory. The nature and geometrical placement of the propellers are discussed, as well as the space constraints of the problem. The equations providing a characterization of the control actions and the fuel consumption are exhibited.

Finally, the guidance problem for the relative motion is formulated.

These previously presented developments are the basis for the next chapters: with the goal of obtaining problems that are more straightforward to be solved from a numerical point of view, reformulations of the guidance problem are proposed in Chapter 2. Algorithms for the resolution of these reformulated problems are also proposed therein, and their numerical efficiency is evaluated on a board certified for spatial applications. In Chapter 3, a model predictive control strategy is proposed to allow for the convergence of the relative motion towards the hovering region even under saturation of the propellers and under the presence of disturbances that are not taken into account by the synthesis model. In Chapter 4 a rigorous function approximation technique is employed to produce validated solutions of the simplified linearized Tschauner-Hempel equations, providing certified bounds for the propagated relative trajectory that can be used to assess the violation of the imposed space constraints.

Chapter 2 

Solving

Introduction

In the previous chapter, the mathematical models for the constrained spacecraft relative motion were introduced. These models were employed in the formulation of the fixed-time impulsive optimal guidance problem for the rendezvous hovering phases. In this formulation, the relative trajectory solutions of this problem must satisfy infinitely many affine inequality constraints representing the hovering zone restriction. This makes this problem cumbersome to be solved from a numerical point of view (this type of optimization problems is known as a semi-infinite program (SIP) [START_REF] Betts | Survey of numerical methods for trajectory optimization[END_REF][START_REF] López | Semi-infinite programming[END_REF]). Hence, this formulation is not directly suitable for efficient autonomous control algorithms. For this reason, this chapter is dedicated to providing alternative formulations of the guidance problem GP, allowing for the use of optimization techniques that are efficiently tractable by computing devices usually employed in space applications.

Firstly, the theoretical aspects of the resolution of GP are discussed. We present a brief literature survey of techniques for guiding and maintaining the relative trajectories inside the hovering zone. Then, we discuss the conservativeness of these approaches compared to the ones employing generic periodic constrained relative trajectories, such as in the formulation of GP.

Then, problem GP is reformulated in three different ways, which provide a finite description (i.e. description via a finite number of constraints) of the relative constrained orbits. The first reformulation is obtained by a discretization of the infinitely many constraints of the SIP, leading to a linear program (LP). This is a discretized version of the original problem, while the other two proposed reformulations are completely equivalent to the original one. The second one converts the GP problem into a semi-definite program (SDP), using the relation between the cone of non-negative univariate polynomials and the cone of semi-definite positive matrices.

Finally, our new geometrical approach is based on the computation of the envelopes of the families of inequalities describing the set of periodic constrained relative trajectories. This provides a reformulation which relies on semi-algebraic functions, leading to a non-smooth optimization problem.

Secondly, numerical methods for solving each of these optimization problems are given and their practical aspects are considered. These optimization methods are then coded in C and embedded on a board certified for space applications containing a FPGA-synthesized LEON3 microprocessor. To conclude, the performances of the proposed approaches are assessed and compared for four different rendezvous scenarios.

Hovering zone guidance methods: bibliographic review

Let us briefly discuss the existing approaches for guiding and maintaining the relative trajectories between two spacecraft orbiting a central body inside a hovering zone.

A first series of works is based on the computation of a sequence of impulsive control actions generating segments of trajectories whose initial and final positions are located on the border of the hovering region [54, 56-58, 71, 72, 74, 105]. These control actions must minimize a criterion defined by the ratio between the fuel consumption and the sum of the free-flight durations inside the hovering zone:

Jp∆V q " ˜N ÿ i"1 }∆V } 2 ¸M ˜N ÿ i"1 T i ¸,
where T i represents the amount of time the trajectory remains inside the hovering region before reaching one of its bounds again for the i-th segment of trajectory. One example of this kind of approach is the "teardrop" strategy, which consists in computing an impulsive thrust such that the initial and final relative positions on the bounds of the hovering zone are equal for a given period of flight [START_REF] Irvin | Fuel-optimal maneuvers for constrained relative satellite orbits[END_REF][START_REF] Irvin | An investigation of teardrop relative orbits for circular and elliptical chief satellites[END_REF] (see Fig. 2.1).

1st maneuver 2nd maneuver 3rd maneuver For spacecraft sharing the same circular orbit, another possible strategy is the one based on "football" relative orbits [START_REF] Chari | Autonomous orbital rendezvous using angles-only navigation[END_REF][START_REF] Woffinden | On-orbit satellite inspection: navigation and [Delta] v analysis[END_REF]. This technique is explained in [106, Section 2.2.2] by Woffinden: both vehicles are supposed to be in the same circular orbit with the chaser downrange; an impulsive velocity correction applied in radial direction makes the chaser increase in altitude (this maneuver only changes the direction of the chaser's velocity vector and, consequently, the chaser maintains the same semi-major axis and orbital period. The shape of the orbit, however, is modified -the eccentricity of the chaser's orbit increases, causing apogee to increase and perigee to decrease as shown in Fig 2 .3. Techniques making use of relative orbital parameters, such as those presented by D'Amico and Gaias in [START_REF] D'amico | Noncooperative rendezvous using angles-only optical navigation: system design and flight results[END_REF][START_REF] Gaias | Angles-only navigation to a noncooperative satellite using relative orbital elements[END_REF], are also employed to keep the relative trajectories in restricted zones of the space (see Fig. 2.5). Although these methods provide a straightforward characterization of relative trajectories satisfying the visibility and safety constraints, they are not as adapted Figure 2.5 -Relative trajectories satisfying safety and visibility constraints (source [START_REF] D'amico | Noncooperative rendezvous using angles-only optical navigation: system design and flight results[END_REF], Fig. 3).

as the local relative Cartesian coordinates for the formulation of space constraints such as those describing a generic hovering region, requiring further variable changes.

Compared to the approach considering periodic constrained relative trajectories described in Chapter 1, these previously presented techniques are either harder to be numerically solved on low-performance devices dedicated to space applications or less efficient from the perspective of fuel saving. The "teardrop" and "pogo" strategies are numerically cumbersome, since they are based on nonlinear and non-convex optimization programs. Moreover, they also require the systematic application of impulses to keep the relative trajectory in the hovering zone. The "football" approach requires the vehicles to share the same circular orbit and does not account for all existent sizes and shapes of periodic relative orbits. The methods using relative orbital parameters cannot be directly employed in the formulation of the constraints describing the hovering region.

Proposed methods to solve the guidance problem

The developments presented in [START_REF] Arantes Gilz | Model predictive control for rendezvous hovering phases based on a novel description of constrained trajectories[END_REF][START_REF] Arantes Gilz | Predictive control algorithm for spacecraft rendezvous hovering phases[END_REF][START_REF] Brentari | A hybrid control framework for impulsive control of satellite rendezvous[END_REF][START_REF] Deaconu | Constrained periodic spacecraft relative motion using non-negative polynomials[END_REF][START_REF] Deaconu | Designing continuously constrained spacecraft relative trajectories for proximity operations[END_REF] have employed the naturally periodic relative orbits presented in Sec. 1.2.3 to design hovering control laws, showing the advantage of this approach with respect to the previously mentioned strategies. These periodic relative trajectories were employed in Section 1.3.3 for the formulation of the fixed-time impulsive optimal guidance problem for the rendezvous hovering phases:

Problem 2.3.1 (Guidance problem). For a given scenario characterized by eccentricity e, semi-major axis a and initial state Dpν 1 q " Cpν 1 qT pν 1 qXpν 1 q P R 6 , given N P N, find N impulsive controls (represented by ∆V P R 3N ) applied at given fixed instants ν 1 , . . . , ν N , such that:

min ∆V J p∆V q s.t. $ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' % D `pν N q " Φ D pν N , ν 1 qDpν 1 q `řN i"1 Φ D pν N , ν i qB D pν i q∆V i , state propagation d 0 pν N q " 0 periodicity |∆V i,j | ď ∆V , @i P t1, . . . , N u @j P tx, y, zu thruster saturation x ď M x pνqD `pν N q ď x y ď M y pνqD `pν N q ď y, @ν z ď M z pνqD `pν N q ď z space constraints (GP)
In the following, this optimization problem GP is studied in detail. Several counterparts are proposed. The first one is based on constraint discretization and provides a suboptimal solution of the original problem, while the two others are strictly equivalent reformulations.

Discretization approach

The admissible set, i.e. the set of vectors D corresponding to periodic relative trajectories included in the hovering zone, is described both by the equation d 0 " 0 and by the inequalities in (1.32):

x ď M x pνqDpν 0 q ď x, y ď M y pνqDpν 0 q ď y, z ď M z pνqDpν 0 q ď z, @ν.

Since these inequalities must be satisfied for infinitely many values of ν, they are difficult to be addressed in practice. The traditional approach to take these space restrictions into account is to take finitely many values of ν the interval and evaluate the inequalities only on these values [START_REF] Hartley | Model predictive control system design and implementation for spacecraft rendezvous[END_REF][START_REF] Richards | Plume avoidance maneuver planning using mixed integer linear programming[END_REF][START_REF] Richards | Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming[END_REF]. In this case, the inequalities become:

x ď M x pν i qDpν 0 q ď x, y ď M y pν i qDpν 0 q ď y, z ď M z pν i qDpν 0 q ď z, , ν k P r0, 2πs, @k P t1, . . . , N disc u (2.1)
Using the previously provided discretized description of the admissible set, the (degraded) fixed-time impulsive optimal guidance problem for the rendezvous hovering phases can then be formulated as follows:

Problem 2.3.2 (LP). For a given scenario characterized by eccentricity e, semi-major axis a and initial state Dpν 1 q " Cpν 1 qT pν 1 qXpν 1 q P R 6 , given N P N, find N impulsive controls (represented by ∆V P R 3N ) applied at given fixed instants ν 1 , . . . , ν N , such that:

min ∆V J p∆V q s.t.
$ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' %

Dpν 1 q " Cpν 1 q Xpν 1 q, D `pν N q " Φ D pν N , ν 1 qDpν 1 q `řN i"1 Φ D pν N , ν i qB D pν i q∆V i , d 0 pν N q " 0 |∆V i,j | ď ∆V , @i P t1, . . . , N u @j P tx, y, zu x ď M x pν k qD `pν N q ď x y ď M y pν k qD `pν N q ď y z ď M z pν k qD `pν N q ď z , ν k P r0, 2πs, @k P t1, . . . , N disc u (LP)
The advantage of this approach is that only a finite number of linear inequalities must be satisfied by the vector D, which can be easily treated in practice by the state-of-the-art LP solvers. However, there is no a priori guarantee that the relative trajectory satisfies the original inequalities constraints (1.32) for the values of ν that do not belong to tν i u iPI .

Since this approach produces an outer-approximation of the set of relative trajectories that are enclosed in the hovering region, it leads to systematical violations of the original space constraints. In fact, the solution of a minimization problem containing a convex criterion function over polytopes described by finitely many affine inequalities generally lies on one of its vertices, which does not belong to the original admissible set (see Fig. 

Polynomial non-negativity approach

Another approach to address the infinitely many constraints in (1.32) is to perform a variable change in order to obtain polynomial non-negativity constraints and convert them into linear matrix inequalities (LMIs) using the result presented by Nesterov in [START_REF] Nesterov | Squared functional systems and optimization problems[END_REF]. This procedure produces an exact and finite description of the periodic relative trajectories included in the polytopic hovering region.

First, the tangent of the half-angle (Weierstrass) substitution is performed:

tanpν{2q " w, cospνq " 1 ´w2 @w P R, (2.3) 
where Γ p¨q pDpν 0 q, wq are univariate polynomials in w whose coefficients depend linearly on the vector Dpν 0 q (more details in [START_REF] Deaconu | Constrained periodic spacecraft relative motion using non-negative polynomials[END_REF] and [28, Chapter 3 and Appendix B]).

Then, using the relation between the cone of nonnegative univariate polynomials and the cone of semi-definite positive matrices presented by Nesterov in [81, Theorems 9 and 10],

these constraints can be converted into LMIs:

D Y y , Y y ľ 0 P R 2ˆ2 , Y x , Y x , Y z , Y z ľ 0 P R 3ˆ3 s.t. :
γ x pDpν 0 qq " Λ ˚pY x q, γ x pDpν 0 qq " Λ ˚pY x q, γ y pDpν 0 qq " Λ ˚pY y q, γ y pDpν 0 qq " Λ ˚pY y q, γ z pDpν 0 qq " Λ ˚pY z q, γ z pDpν 0 qq " Λ ˚pY z q,

(2.4)

where γ p¨q pDpν 0 qq is the vector of coefficients of the respective Γ p¨q pDpν 0 q, wq polynomial and the linear operator Λ ˚p¨q is given in Appendix B. The admissible set, here denoted as S p D , can then be defined as:

S D " ! D P R 6 s.t d 0 " 0 ˇˇDY l ľ 0 s.t γ l pDq " Λ ˚pY l q, @l P x, x, y, y, z, z ( ) (2.5)
and the fixed-time impulsive optimal guidance problem for the rendezvous hovering phases can then be formulated as follows:

Problem 2.3.3 (SDP). For a given scenario characterized by eccentricity e, semi-major axis a and initial state Dpν 1 q " Cpν 1 qT pν 1 qXpν 1 q P R 6 , given N P N, find N impulsive controls (represented by ∆V P R 3N ) applied at given fixed instants ν 1 , . . . , ν N , such that:

min ∆V J p∆V q s.t. $ ' ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' ' % Dpν 1 q " Cpν 1 q Xpν 1 q, D `pν N q " Φ D pν N , ν 1 qDpν 1 q `řN i"1 Φ D pν N , ν i qB D pν i q∆V i , d 0 pν N q " 0 |∆V i,j | ď ∆V , @i P t1, . . . , N u @j P tx, y, zu DY l ľ 0 s.t. γ l pD `pν N qq " Λ ˚pY l q, @l P x, x, y, y, z, z ( (SDP)
This new approach replaces the verification of infinitely many inequalities depending on ν by six semi-definite positive matrices of size at most 3 that must satisfy linear equalities constraints involving the coefficients of the polynomials presented above. As well as the discretization approach, this technique produces a finite description of the hovering region, with the advantage of generating a reformulated admissible set which is equivalent to the original admissible set.

Envelopes

An original contribution provided in this thesis is a new finite description of the admissible set different described in [START_REF] Deaconu | Designing continuously constrained spacecraft relative trajectories for proximity operations[END_REF] that only depends on the evaluation of closed-form expressions on the entries of the vector D and on the space constraints. The objective of this new description is to provide an exact formulation that guarantees the non-violation of the constraints and enables an efficient computation on spacecraft compatible devices. Let us first denote by γ w p¨q ď 0 each inequality of (1.32) where the index w P tx, x, y, y, z, zu. One can remark that these inequalities describe a family of surfaces (or lines) parametrized by ν. Moreover, the boundary of the set of points satisfying each of these inequalities is included in the envelope associated to these family of surfaces.

Definition 2.3.1 (Envelopes). Let γpα 1 , . . . , α L , νq " 0 be a family of one-parameter surfaces, with L P N, L ď 3 depending on the parameter ν. Its envelope is the subset of points pα 1 , . . . , α L q Ď R L for which the following system of equations is satisfied:

γpα 1 , . . . , α L , νq " Bγ Bν pα 1 , . . . , α L , νq " 0. (2.6)
For each constraint γ w p¨q, w " tx, x, y, y, z, zu, the resolution of (2.6) provides an implicit equation g w pDq " 0 for which the set of solutions contains a surface in space that separates the points that satisfy the constraint inequality from those that do not.

Thus, a verification method is obtained for checking that the vector D belongs to S D : D P S D ô (d 0 " 0 and @w, g w pDq ď 0).

Solving (2.6) for indices w P ty, y, z, zu and using Sylvester's matrix implicitization method (see [START_REF] Hong | Implicitization of curves parameterized by generalized trigonometric polynomials[END_REF]), the following expressions are obtained for the envelopes g w p¨q on y and z axis:

g y pd 4 , d 5 q " pd 4 ´eyq 2 `d2 5 
´y2 , g y pd 4 , d 5 q " pd 4 ´eyq 2 `d2 5 ´y2 ,

(2.7)

g z pd 1 , d 2 q " d 2 1 `d2 2 ´z2 , g z pd 1 , d 2 q " d 2 1 `d2 2 ´z2 .
(2.8)

Note that (2.7) and (2.8) describe circles in the pd 4 , d 5 q plane and pd 1 , d 2 q plane respectively (see Fig. 2.7(a) and 2.7(b)). For instance the boundary of the admissible set for the constraint γ y is a circle of center pe.y, 0q and radius y.

(a) Contour lines g y " gy " 0 for e " 0.8, y " ´10, y "

(b) Contour lines g z " gz " 0 for e " 0.8, z " ´8, z " 10. Finding an implicit function for the x constraints requires further work. After solving the system of equations from (2.6), a parametric description is obtained in function of ν, d 3 and

x or x:

d 1 " pp2x m ´2d 3 qp1 `ec ν q `e2 x m c 2 ν qs ν p2 `ec ν q 2 , d 2 " ´pp2x m ´2d 3 qp1 `ec ν q `e2 x m c 2 ν qc ν `epd 3 `xm q p2 `ec ν q 2 , ( 2.9) 
where x m stands for x or x.

Using Sylvester's matrix implicitization method, (2.9) produce a multivariate polynomial

in d 1 , d 2 , d 3 : ĝxm pd 1 , d 2 , d 3 q " ř ξPN 3 θ ξ d ξ 1 1 d ξ 2 2 d ξ 3 3 .
(2.10)

As shown in Fig. 2.8, the envelope g x " 0 contains the boundary of the inner-convex set of points satisfying the inequality x for all ν.

This set of solutions can be described by first remarking that the multivariate polynomial (2.10) can be seen as a fourth degree polynomial in d 3 :

ĝxm pd 1 , d 2 , d 3 q " ř 0ďiď4 θi pd 1 , d 2 q d i 3 .
(2.11)

Then, it suffices to choose the root of (2.11) that describes the inner convex set presented in Fig. 2.8. Considering ĝx p¨q, the smallest real root is the one to be selected. Conversely, the largest one is chosen when considering the envelope ĝx p¨q. This is done by choosing the "right" roots of the fourth degree polynomial in d 3 [1], producing the desired g xm functions that describe the set of admissible points with respect to γ xm ď 0:

g x pd 1 , d 2 , d 3 q " r x pd 1 , d 2 , eq ´d3 , g x pd 1 , d 2 , d 3 q " d 3 ´rx pd 1 , d 2 , eq,
(2.12)

where r x pd 2 , d 3 , eq and r x pd 2 , d 3 , eq are the functions that return respectively the greatest real root of ĝx and the lowest real root ĝx (2.11). In Fig. 2.9 an illustration of the geometrical volumes containing the vectors D that respect the x and x restrictions is provided.

Using the functions g x , g x , g y , g y , g z and g z obtained previously, the admissible set can be redefined as:

S D " ! D P R 6 s.t d 0 " 0 ˇˇg w pDq ď 0, @w P x, x, y, y, z, z ( ) , (2.13)
and the fixed-time impulsive optimal guidance problem for the rendezvous hovering phases can then be formulated as follows:

Problem 2.3.4 (ENV). For a given scenario characterized by eccentricity e, semi-major axis Figure 2.9 -Isosurfaces g x " g x max " 0 for e " 0.8, x " ´10, x " 10.

a and initial state Dpν 1 q " Cpν 1 qT pν 1 qXpν 1 q P R 6 , given N P N, find N impulsive controls (represented by ∆V P R 3N ) applied at given fixed instants ν 1 , . . . , ν N , such that:

min ∆V J p∆V q s.t. $ ' ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' ' % Dpν 1 q " Cpν 1 q Xpν 1 q, D `pν N q " Φ ν N ν 1 Dpν 1 q `řN i"1 Φ ν N ν i B D pν i q∆V i , d 0 pν N q " 0 |∆V i,j | ď ∆V ,
@i P t1, . . . , N u @j P tx, y, zu g w pD `pν N qq ď 0, w P x, x, y, y, z, z ( (ENV)

Conclusions

Three distinct reformulations of the problem GP were proposed.

The first one is based on a discretization of the infinitely many constraints describing the hovering zone, consecutively consisting in a degraded version of the original problem.

Although this process leads to a LP problem, which can be efficiently solved by numerical methods, the loss of information provoked by the discretization cannot ensure the continuous satisfaction of the space constraints.

Contrarily to the LP approach, the two other proposed counterparts of GP provide perfectly equivalent reformulations. The SDP version is obtained by converting the infinitely many inequalities present in GP into finitely many LMIs, using the results presented by

Nesterov in [START_REF] Nesterov | Squared functional systems and optimization problems[END_REF]. The numerical resolution of this class of problems requires complex iterative algorithms that have not been extensively tested on space dedicated devices, which motivates the proposition of the last reformulation of problem GP, the ENV approach.

This last approach is an original contribution of this thesis, and relies on a geometrical analysis of the set of periodic relative trajectories included in the hovering region (the admissible set) to provide closed-form "check" functions that indicate the violation or satisfaction of the constraints. One of the advantages of the ENV approach is that the numerical algorithms that can be employed in the resolution of the associated optimization problem are lees cumbersome than those used for the SDP approach, as will be discussed in the sequel.

Embedded algorithms

Hereafter the approach employed to address the optimization problems previously formulated is outlined. The software and hardware environment on which their performances are assessed is also presented. This is a joint work with F. Camps (research engineer, LAAS-CNRS), M. Joldeş and C. Louembet, under the title of Embedding a SDP-based control algorithm for the orbital rendezvous hovering phases [START_REF] Camps | Embedding a sdpbased control algorithm for the orbital rendezvous hovering phases[END_REF], presented in the 2018 25th Saint Petersburg International

Conference on Integrated Navigation Systems (ICINS 2018).

Test environment

The tests were performed on an AEROFLEX GAISLER GR-XC6S board (Fig. 2.10) that contains a synthesized LEON3 microprocessor, which has a SPARC V8 architecture (see [START_REF] Pender | GR-XC6S Development Board -User Manual[END_REF] for further specifications), and supports a IEEE-754 compliant floating-point unit with single and double precision (32-and 64-bit floats), running a Linux 2.6 environment that simulates the performance of devices usually employed in space applications (see [START_REF] Esa | Onboard computer and data handling[END_REF]). The compilation chain and the used libraries are detailed hereafter.

Solving the LP problems

The LP problems are solved using the GLPK library, a linear programming kit intended for solving large-scale linear programming (LP), mixed integer programming (MIP), and other related problems [START_REF] Glpk | GLPK (GNU linear programming kit v4.6)[END_REF]. The technique used for solving the problems is the primal simplex method, with default GLPK parameters and stop criteria.

The GLPK library solves linear programs of the form: max

x c T x A eq x " b eq A in x ď b in (GLPK)
where A eq x " b eq represents a system of equations and A in x ď b in represents a system of inequalities that must be satisfied by the decision variables x.

In order to account for the absolute values appearing in the criterion

J p∆V q " ř N i"1 |∆V i,x | `|∆V i,y | `|∆V i,z
| and in the saturation constraint |∆V i,j | ď ∆V , the saturation constraints are split into two inequalities:

|∆V i,j | ď ∆V ô ´∆V i,j `∆V ě 0 ∆V i,j `∆V ě 0 (2.14)
and the slack variables Z i,j ě 0 are introduced, producing:

Jp∆V q " ř N i"1 |∆V i,x | `|∆V i,y | `|∆V i,z | |∆V i,j | ď ∆V õ JpZq " ř N i"1 Z i,x `Zi,y `Zi,z Z i,j ´∆V i,j ě 0, Z i,j `∆V i,j ě 0, Z i,j ď ∆V (2.15)
which results in 9N affine inequalities to be satisfied.

Each of the inequalities describing the discretized admissible set produce N disc affine inequalities to be satisfied, which results in a total of 6N disc affine inequalities:

x ď M x pν i qDpν 0 q ď x, y ď M y pν i qDpν 0 q ď y, z ď M z pν i qDpν 0 q ď z, , ν k P r0, 2πs, @k P t1, . . . , N disc u

One single equation must be satisfied, the one related to the periodicity constraint:

d 0 pν N q " 0.
In summary, the number of decision variables is 6N , the number of equality constraints is equal to 1 and the number of inequality constraints is equal to 9N `6N disc .

Solving the SDP problems

Even though several libraries and solvers can be employed in the resolution of the SDP problems (SeDuMi [START_REF] Sturm | Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones[END_REF], SDPT3 [START_REF] Toh | Sdpt3-a matlab software package for semidefinite programming, version 1.3[END_REF], SDPA [START_REF] Fujisawa | semidefinite programming algorithm) user's manual-version 6[END_REF], MOSEK [START_REF] Andersen | On implementing a primal-dual interiorpoint method for conic quadratic optimization[END_REF]), the CSDP [START_REF] Borchers | A C library for semidefinite programming[END_REF][START_REF] Borchers | CSDP User's Guide[END_REF] library is used throughout this work. This choice is motivated by the fact that the CSDP library is open-source, available in C and can be cross-compiled for the SPARC V8 architecture of the test environment previously presented in Sec. 2.4.1. This library executes the routines that implement a predictor corrector variant of the interior-point algorithm of Helmberg, Rendl, Vanderbei, and Wolkowicz for semidefinite programming [START_REF] Helmberg | An interiorpoint method for semidefinite programming[END_REF].

The CSDP library solves semidefinite programs of the form: max X trpCX q trpA i X q " α i , @i P t1, . . . , mu

X ľ 0 (CSDP)
where α n P R and all the matrices C, A n , and X are real and symmetric matrices (see [START_REF] Borchers | CSDP User's Guide[END_REF] for details). To write SDP in the form of CSDP, the decision variables must be identified:

Y l x , Y u x , Y l z , Y u z P R 3ˆ3 , Y l y , Y u y P R 2ˆ2 , ∆V P R 3N (2.16)
Since only equalities of the type trpA n X q " α n and semi-definiteness constraints of the type X ľ 0 can be used in CSDP, the variables of SDP must be modified in order to obtain only symmetric semidefinite positive matrices (or positive scalars). The problem is then reformulated as follows: first the saturation constraints are split into two inequalities:

|∆V i,j | ď ∆V ô ´∆V i,j `∆V ě 0 ∆V i,j `∆V ě 0
Then the variables W í,j " maxt0, ´∆V i,j u, W ì,j " maxt0, ∆V i,j u (which will be used instead of ∆V i,j , that will be lately reconstructed via the relation ∆V i,j " ´W í,j `W ì,j ) and the auxiliary variables Z i,j and Zi,j are introduced, producing:

Jp∆V q " ř N i"1 |∆V i,x | `|∆V i,y | `|∆V i,z | ´∆V i,j `∆V ě 0, ∆V i,j `∆V ě 0 õ JpZq " ř N i"1 Z i,x `Zi,y `Zi,z W í,j `W ì,j " Z i,j , Z i,j `Z i,j " ∆V (2.17)
with W í,j , W ì,j , Z i,j , Zi,j ě 0. The variables W í,j and W ì,j play the role of the norm of the negative and the positive part of ∆V i,j , respectively; Z i,j are slack variables that assume the value of |∆V i,j |; Zi,j are the complementary of Z i,j with respect to ∆V (Z i,j `Z i,j " ∆V q.

Now that all the necessary variables have been introduced, X can be structured as a symmetric semidefinite positive block-diagonal matrix:

X " diagpY l x , Y u x , Y l z , Y u z , Y l y , Y u y , W ´, W `, Z, Zq P R p16`12N qˆp16`12N q ,
where W ´" diagpW 1,x , . . . , W Ń,z q and W `, Z, Z are defined analogously. The fact that this matrix is semidefinite positive accounts for the inequality constraints previously presented.

With these presented modifications, the equality constraints can then be written in the form trpA n X q " α n .

In summary, the total number of these constraints adds up to 27 `6N : for each coefficient of the polynomials Γ k j presented in SDP there is one equality constraint γ k j " Λ ˚pY k j q involving a semidefinite positive matrix. The polynomials related to the x and z constraints are of degree 4, with 5 coefficients; the polynomials related to y are of degree 2, with 3 coefficients; each axis has 2 inequality constraints, which results in a subtotal of 2p5 `5 `3q " 26 equality constraints; the periodicity constraint is expressed via one single equality constraint d 0 " 0, which results in a subtotal of 26`1 " 27 equality constraints; there are 3N equality constraints W ì,j `W í,j " Z i,j , which results in a subtotal of 27 `3N constraints; finally, there are 3N equality constraints Z i,j `Z i,j " ∆V , which results in a total of 27 `3N `3N " 27 `6N constraints.

Given that the criterion in CSDP is maximized and that JpZq " ř N i"1 Z i,x `Zi,y `Zi,z has to be minimized, the matrix C will be filled with ´1 in the entries that occupy the same positions as the variables Z i,j in X and with zeros elsewhere.

Embedding the libraries for the LP and SDP methods

The detailed command descriptions for the installation of cross-compilers and libraries used in the resolution of LP and SDP problems are available in Appendix D. Hereafter a brief summary of this procedure is presented:

• Cross-compiler: in order to perform the tests in an environment as close as possible to those employed in space systems, an embedded synthesized LEON3 microprocessor is employed. The architecture of this microprocessor requires a particular X86/SPARC cross-compiler. The first step to use this environment is to install the cross-compilers proposed by AEROFLEX GAISLER 1 , which are then used for the cross-compilation of computation libraries such as LAPACK.

• LAPACK 2 and GLPK : LAPACK is a widely used Linear Algebra PACKage. Since LAPACK is written in Fortran, it requires a Fortran cross compiler.

• CSDP3 : a C Library for Semidefinite Programming, it also uses the LAPACK library.

• Embedding the libraries: The computation libraries must be installed on the board (in the case of a non-static compilation) in the standard directory of the libraries.

Solving the ENV problems

The ENV problems are solved using a combination of a penalty technique and two non-smooth optimization algorithms. The penalty technique consists in adding functions representing the violation of the constraints to the minimization criterion, multiplying them by a big penalty coefficient. The idea is to penalize any intermediary solution that does not satisfy 

D `pν N q " Φ ν N ν 1 Cpν 1 q Xpν 1 q `řN i"1 Φ ν N ν i B D pν i q∆V i and η " 1 (hereafter η is set to 10 8
). As one can remark, the unconstrained problem contains a non-smooth objective function (max, absolute value and the envelope functions g w p¨q). For the resolution of this type of problems, two iterative algorithms with different properties are chosen to be employed: the sub-gradient method proposed by Shor in [START_REF] Shor | Minimization methods for non-differentiable functions[END_REF], a first-order approach that resembles the steepest descent optimization algorithm, but uses sub-gradients instead of gradients (see Appendix E.2); and the BFGS quasi-Newton method proposed by Lewis and Overton in [START_REF] Lewis | Nonsmooth optimization via quasi-newton methods[END_REF], which consists in building local quadratic approximations of the penalized objective function and computing descent steps using the sub-gradients and the inverse Hessian (see Appendix

E.3).

A hybrid method combining both algorithms (see Appendix E.4 for details) is employed in order to take advantage of their distinct strengths:

The quasi-Newton algorithm benefits from a faster decrease of the penalized objective function along the iterations, while only the sub-gradient method has guaranteed convergence, being used to refine the approximated solution obtained in the previous step.

Since this approach does not require particular optimization solvers/libraries to be implemented, it is completely coded using standard C functions (see Algorithm 5 in Appendix E.4). This gives total control of the user interactivity, general behavior and termination conditions of the algorithm (for example, a maximal computing time for solving the optimization problem can be set as termination condition, with the option of allowing further iterations -which is not the usual behavior for generic solvers).

Simulations and results

Hereafter the practical performances of the LP, SDP and ENV approaches are assessed for the resolution of the rendezvous hovering phases problem by carrying out simulations on the space dedicated test environment described in Sec. 2.4.1. These simulations account for four distinct ISS rendezvous missions in which the follower spacecraft is maneuvered from four different initial states X 01 ´X04 to a periodic orbit enclosed by the hovering zone described by Algorithm 1: Solving non-smooth convex optimization problems

Input : ξ 1 -initial point
Υp¨q -non-smooth convex function to minimize gp¨q -oracle that returns one of the sub-gradients of Υp¨q at a given point I qn , I sg -number of iterations σ -coefficient for the sub-gradient steps (set to 1 if not explicitly specified) Output : ξ -solution

ξ best Ð ξ 1 // Quasi-Newton method H 1 " I n ; for k " 1 to I qn do ξ k`1 Ð ξ k ´λk H k gpξ k q, where λ k ą 0 computed by inexact line search; if Υpξ k`1 q ă Υpξ best q then ξ best Ð ξ k`1
end Update H k`1 as positive definite matrix satisfying secant condition H k`1 pgpξ k`1 q ´gpξ k qq " ´λk H k gpξ k`1 q; end ξ 1 Ð ξ best ; // Subgradient method for k " 1 to I sg do

ξ k`1 Ð ξ k ´σ 1 k gpξ k q }gpξ k q} 2 ; if Υpξ k`1 q ă Υpξ best q then ξ best Ð ξ k`1 end end ξ Ð ξ best ;
the bounds given in the "Space constraints" section of Table 2.1. The actual orbital elements obtained from [START_REF]ISS Trajectory Data[END_REF] for the vector time GMT 2018/064/12:00:00.000 (section "Parameters" of Table 2.1) are employed. Initial states [m,m/s] X 01 pν 1 q " r 400, 300, ´40, 0, 0, 0s T X 02 pν 1 q " r ´800, 600, 200, 0, 0, 0s T X 03 pν 1 q " r ´1500, 1300, 150, 0, 0, 0s T X 04 pν 1 q " r 5000, 1300, 500, 0, 0, 0s T

Space constraints [m]

x " 50, x " 150, y " ´25, y " 25, z " ´25, z " 25 ∆ν represents the true anomaly interval between two impulsive velocity corrections.

The C codes and the data files for the resolution of these scenarios are available at http://homepages.laas.fr/fcamps/CSDP/test_files.zip.

In Table 2.2 and 2.3, the total computation time to solve the optimization problems (Time, in seconds), the fuel consumption (Cons., in meters per second) and the maximal violation of the space constraints (Viol., in meters) for a single run of each simulated case are presented (particularly for ENV, the violation of the constraints is evaluated by computing |d 0 | and the maximal value obtained for the envelope functions, presented in Table 2.2). Nine different configurations based on the number of iterations of the BFGS (I qn ) and sub-gradient (I sg ) methods are adopted for the ENV method: I qn " t25, 50, 100u and I sg " t250, 500, 1000u. In Table 2.2, an analysis of the performance of the ENV method, with different choices for I qn and I sg (number of iterations for the BFGS and sub-gradient methods respectively) are presented. One can remark that, as the number of iterations is increased, the violation of the constraints is reduced. For instance, for I qn ě 100 and I sg ě 250, the hybrid algorithm produced |d 0 | ă 10 ´3 and no violation of the space constraints for all four proposed scenarios.

Table 2.3 shows that both LP and SDP methods result in a equivalent fuel consumption up to the third decimal case. The ENV method produces higher fuel consumptions for the three first scenarios. However, for the fourth scenario, a small violation of the periodicity constraint 1.920 1.920 1.921 1.920 1.920 1.920 1.920 1.920 1.920 |d 0 pν N q| 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 max (0 ă |d 0 | ă 10 ´4) produces a lower fuel consumption for the ENV method. This is due to the fact that while attempting to solve the penalized problem, the hybrid optimization algorithm has to account for both the minimization of the fuel consumption and the satisfaction of the constraints (by the minimization of the penalty functions) simultaneously. For the particular case of the resolution of the fourth scenario, the iterations terminated during a phase in which the fuel consumption was prioritized over the periodicity constraint.

w tg w pD `pν N qqu ď 0 ď 0 ď 0 ď 0 ď 0 ď 0 ď 0 ď 0 ď 0
Concerning the computation timings, the time spent on the computation of the solution of the SDP problem is of the same order of magnitude of those of the resolution of the LP problem with 80"120 discrete values of ν. Although the ENV method generally leads to slightly higher fuel consumptions, its timings (for I qn " 100, I sg " 250) are always lower than those obtained for the SDP approach. This indicates that the SDP approach should be employed in missions in which fuel saving has a high priority status, while the ENV approach should be employed whenever the control of the computing time is a more important aspect.

Another important aspect is the fact that while the approaches SDP and ENV with I qn ě 100 and I sg ě 250 produce quasi-exact solutions (very small violation of the constraints), the LP approach systematically produces residual violations of the space constraints, even when a high number of discrete values of ν are employed (this is explained by the phenomenon illustrated in Fig. 2.6). Since these systematical violations are not known a priori and the timings of both SDP and ENV methods are lower those obtained for LP with N disc ě 120, one can conclude that SDP and ENV are more adapted for the resolution of GP.

Conclusions

In this chapter, possible finite reformulations of the space constraints of the fixed-time impulsive optimal guidance problem for the rendezvous hovering phases are presented. These reformulations allow the numerical resolution of the problem via well-known state-of-the-art optimization libraries and algorithms. The procedure to embed these libraries and algorithms a board dedicated to space applications is also exhibited. The performance of the proposed approaches are compared for four different scenarios. During numerical tests the SDP and the ENV approaches showed a computation time of the order of magnitude of those obtained for the LP method, with the advantage of not systematically violating the space constraints.

In the next chapter, a model predictive control strategy based on the optimization techniques previously discussed in this chapter will be proposed, allowing the convergence of the relative trajectories towards the admissible set of periodic constrained trajectories, even under saturation of the propellers. 

Introduction

In the previous chapters, the guidance problem for the rendezvous hovering phases has been introduced, reformulated and treated from a numerical point of view. However, this guidance problem employs the simplified synthesis model for the relative motion, which does not account for many of the disturbances and uncertainties occurring in the relative dynamics between spacecraft. In other words, the open-loop use of the solution obtained by the resolution of the guidance problem is not enough to ensure that the produced relative trajectory is periodic and included in the hovering region.

The goal of this chapter is to propose an original feedback control strategy to control the relative motion and keep it periodic and included in a given hovering zone. This adopted control strategy consists in a closed-loop model predictive control (MPC) algorithm [START_REF] Louembet | Robust rendezvous planning under maneuver execution errors[END_REF][START_REF] Mueller | Collision avoidance maneuver planning with robust optimization[END_REF],

which is proven to make the relative movement converge to the desired target region even when the presence of saturation constraints on controls may make the space window unreachable from the current state. The performance of this proposed control strategy is assessed via simulations that follow the FPGA framework of the tests carried out in [START_REF] Hartley | Predictive control for spacecraft rendezvous in an elliptical orbit using an FPGA[END_REF][START_REF] Hartley | Field programmable gate array based predictive control system for spacecraft rendezvous in elliptical orbits[END_REF], where a processor-in-the-loop is implemented: the control computation is executed on a synthesized FPGA LEON3 board certified for spacecraft usage and the propagation of the disturbed relative motion under uncertainties is performed on an external simulator. These tests highlight the efficiency of the proposed control strategy in terms of control quality, numerical burden and rejection of disturbances. 

Impulsive model predictive control

The MPC strategy employs a certain knowledge about the behavior of a system (for example, a state-space model or a state-transition matrix) to predict its evolution and steer it to a certain desired configuration (see Fig. The idea is to iteratively solve an optimization problem over a fixed number of time instants (the so-called time horizon). The decision variables are control actions and the criterion to be minimized accounts for the difference between the current state and a reference state. At each iteration, control actions are applied, the current state is updated and an instance of the optimization problem is solved, bringing the system closer to the desired reference configuration. This strategy is illustrated in Fig. 3.2.

The first works about this control strategy date back to the 1960s. It was widely used

Reference

Predicted Measured

Past Future for the control of chemical processes during the 1980s and 1990s and, since then, became very popular in many industrial fields and academic research (an overview of the origins and history of MPC is given in [START_REF] Morari | Model predictive control: past, present and future[END_REF]).

For the particular case of impulsive systems, different thematics have been using MPC:

drug/anesthesia administration [START_REF] González | Impulsive zone mpc for type i diabetic patients based on a long-term model[END_REF][START_REF] Rivadeneira | Mpc with state window target control in linear impulsive systems[END_REF], networked multi-agent systems [START_REF] Zhan | Flocking of multi-agent systems via model predictive control based on position-only measurements[END_REF], spacecraft rendezvous [START_REF] Arantes Gilz | Model predictive control for rendezvous hovering phases based on a novel description of constrained trajectories[END_REF][START_REF] Deaconu | On the trajectory design, guidance and control for spacecraft rendezvous and proximity operations[END_REF] and others. For this class of systems, a theoretical study of properties such as invariance and stability related to MPC strategies are present in the literature [START_REF] Pereira | An Optimization-Based Framework for Impulsive Control Systems[END_REF][START_REF] Pereira | Stability for impulsive control systems[END_REF][START_REF] Pereira | Invariance for impulsive control systems[END_REF][START_REF] Sopasakis | Model predictive control for linear impulsive systems[END_REF]].

In the next section, an MPC strategy is proposed for the rendezvous hovering phases.

We prove that the closed-loop system obtained by plugging this control strategy into the system describing the evolution of the relative spacecraft trajectories produces a sequence of relative trajectories that converges to the admissible set. Moreover, it is also proved that for this closed-loop system the hovering region is an invariance set. The proofs are based on the particular structure of the problem (the periodicity and the decoupling of the in and out-of-plane motions) and geometrical arguments.

The proposed model predictive control strategy

In this section, the model predictive control strategy is presented for problem GP, which is recalled for completeness: Problem 3.3.1 (Guidance problem). For a given scenario characterized by eccentricity e, semi-major axis a and initial state Dpν 1 q " Cpν 1 qT pν 1 qXpν 1 q P R 6 , given N P N, find N impulsive controls (represented by ∆V P R 3N ) applied at given fixed instants ν 1 , . . . , ν N , such that:

min ∆V J p∆V q s.t. $ ' ' ' ' ' ' & ' ' ' ' ' ' % D `pν N q " Φ D pν N , ν 1 qDpν 1 q `řN i"1 Φ D pν N , ν i qB D pν i q∆V i , state propagation
|∆V i,j | ď ∆V , @i P t1, . . . , N u @j P tx, y, zu thruster saturation D `pν N q P S D periodicity + space constraints

(GP)
where J p∆V q is the fuel consumption given in (1.38), Φ D pν N , ν 1 q is the state-transition matrix given in (1.41) and

S D " D P R 6 s.t. d 0 " 0 ˇˇx ď M x pνqD ď x, y ď M y pνqD ď y, z ď M z pνqD ď z, @ν (
is the set of admissible trajectories satisfying the periodicity and space constraints.

This controller computes the sequences of impulses generating a sequence of states pD k q kPN that, even under saturation of the actuators, iteratively converges to a state belonging to a given non-empty admissible set S D . Recall that the admissible set also admits the equivalent reformulations given in (2.5) and (2.13):

S D " ! D P R 6 s.t d 0 " 0 ˇˇDY l ľ 0 s.t γ l pDq " Λ ˚pY l q, l P x, x, y, y, z, z ( ) , S D " ! D P R 6 s.t d 0 " 0 ˇˇg w pDq ď 0, @w P x, x, y, y, z, z ( ) .

First, the formal version of the algorithm is presented and commented. In a second moment, the main ideas used for its conception are discussed in more details.

Control algorithm

The proposed control algorithm is presented in Alg. 2. This algorithm takes as input a relative state in the LVLH framework Xpν 1 q, a saturation threshold ∆V , a non-empty admissible set S D described by x, x, y, y, z, z, a sequence of N true anomaly instants ν 1 , . . . , ν N equally spaced by a true anomaly interval τ I , the true anomaly interval between impulses to generate a periodic trajectory τ P and the true anomaly interval between sequences of impulses τ S (these true anomaly intervals are illustrated in Fig. 3.4).

For a given vector of parameters Dpν 1 q and a sequence of impulse dates ν 1 , . . . , ν N , the functions γ xz and γ y provide respectively the in-plane and out-of-plane fuel-optimal sequences of impulses generating admissible periodic relative trajectories. The function γ ∆V scales down Algorithm 2: Model predictive control strategy the vectors of impulses that do not comply with the saturation constraint, keeping their original direction, but changing their magnitude so that their ℓ 8 norm is equivalent to ∆V . These γ-functions will be thoroughly defined and proved consistent in following sections.

Require : Xpν 1 q, ∆V , S D ‰ H, τ S , τ P , τ I P R ą0 s.t. @k P Z ą0 , τ I ‰ kπ, N ě 3, ν 1 , . . . , ν N s.t. ν k`1 " ν k `τI 1 Dpν 1 q Ð Cpν 1 qT pν 1 qXpν 1 q; 2 ∆V xz Ð γ xz pD xz pν 1 q, ν 1 , . . . , ν N q; 3 ∆V ẙ Ð γ y pD y pν 1 q, ν 1 , . . . , ν N q; // If
The main ideas used in the conception of this control strategy are listed hereafter:

• Systematic computation of impulses that produce periodic orbits;

• Exploitation of the stability of the periodic orbits to stop the evolution and consequent drift of the state;

• Once periodic orbits are obtained, the process of convergence to the admissible set is initiated;

• Only feasible optimization problems are solved in the definition of the functions that return the computed control actions γ p , γ xz and γ y ;

• The a posteriori saturation of the computed control actions does not impede the convergence.

Algorithm behavior

The behavior of Algorithm 2 is represented in Figure 3.3 and 3.4. One can observe that two phases appear while converging to the admissible set. First, the state D is steered to the plane d 0 " 0. In fact, recalling the transition matrix for the in-plane motion:

D xz pνq " » - - - - - - - 1 0 0 0 0 1 0 0 ´3eJ ν 0 pνq 0 1 0 3J ν 0 pνq 0 0 1 fi ffi ffi ffi ffi ffi ffi fl loooooooooooooomoooooooooooooon Φ Dxz pν,ν 0 q D xz pν 0 q. (3.1)
one can remark that if d 0 pν 0 q " 0, the state vector D only evolves if d 0 ‰ 0. This evolution is illustrated in Fig. 3.3 by the trajectories beginning at a black star and finishing at a green triangle in the admissible set. In order to eliminate this "drift" effect and keep the distance between the vector of parameters and the admissible set constant, Algorithm 2 first focuses on bringing d 0 to 0, which is illustrated in Fig. 3.3 by the vertical lines linking red circles and red triangles. The reaching of a periodic trajectory is illustrated by the green triangle on the lower left side of the figure (this state does not freely evolve within time, only under control actions). Once periodicity is obtained, the state is steered to the admissible, which is represented in Fig. 3.3 by the sequence of green triangles.

Moreover, the MPC algorithm produces the pattern of impulsive velocity corrections presented in Fig. 3.4, where the true anomaly intervals τ P , τ I and τ S are shown.

Remark 3.3.1. The method requires the iterative application of a sequence of at least 3 impulsive velocity corrections separated by a true anomaly interval that is not a multiple of π. Although for general MPC strategies one single control action is applied by iteration,

this approach is adopted because, once periodicity is achieved, at least 3 impulsive velocity corrections separated by a true anomaly interval τ I ‰ kπ, k P N are sufficient conditions for reaching any state D P R 6 , which can be seen as sufficient controllability conditions of the system over the space of periodic orbits [START_REF] Neustadt | Optimization, a moment problem, and nonlinear programming[END_REF].

Achieving periodicity using the γ p function

For the development of the control strategy, a non-saturated version of the guidance problem GP is used. The idea is to obtain an optimization problem which is always feasible, as long as the admissible set of periodic constrained trajectories is not empty. The ad hoc function γ ∆V will account for these saturation constraints in the further developments. The non-saturated problem is formulated as follows:

Problem 3.3.2 (Non-saturated guidance problem). For a given scenario characterized by eccentricity e, semi-major axis a and initial state Dpν 1 q " Cpν 1 qT pν 1 qXpν 1 q P R 6 , given N P N , find N impulsive controls (represented by ∆V P R 3N ) applied at given fixed instants ν 1 , . . . , ν N , such that:

min ∆V J p∆V q s.t. $ ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' % D `pν N q " Φ D pν N , ν 1 qDpν 1 q `M pν 1 , . . . , ν N q∆V, state propagation d 0 pν N q " 0 periodicity x ď M x pνqD `pν N q ď x y ď M y pνqD `pν N q ď y, @ν z ď M z pνqD `pν N q ď z space constraints (NSGP)
where M pν 1 , . . . , ν N q∆V " ř N i"1 Φ D pν N , ν i qB D pν i q∆V i represents the effect of the control actions on the propagation of the trajectory.

Remark 3.3.2. Problem NSGP is always feasible as long as the admissible set S D ‰ H.

Remark 3.3.3. Problem NSGP accounts for both the in-plane and out-of-plane dynamics,

even though they can be solved separately (these dynamics are split and represented by the functions γ xz and γ y respectively, defined in the sequel).

In the sequel, it is demonstrated that the periodicity equality constraint d 0 pν N q " 0 can be systematically satisfied by considering only the impulsive velocity corrections that produce periodic relative trajectories. This idea is a generalization of the developments presented in [START_REF] Brentari | A hybrid control framework for impulsive control of satellite rendezvous[END_REF] and consists in constructing a basis for the affine subspace to which the vectors of impulsive velocity corrections such that d 0 pν N q " 0 belong.

In order to do so, the first line of the equation D `pν N q " Φ D pν N , ν 1 qDpν 1 q M pν 1 , . . . , ν N q∆V is extracted:

d 0 pν N q " d 0 pν 1 q `řN i"1 1 k 2 pe 2 ´1q " ρ ν ´es ν ı ∆V xz pν i q.
(3.2) By defining the row vector

M 0 pν 1 , . . . , ν N q :" 1 k 2 pe 2 ´1q " ρ ν 1 , ´es ν 1 , . . . ρ ν N , ´es ν N ı ,
the expression given in (3.2) can be rewritten as:

d 0 pν N q " d 0 pν 1 q `M0 pν 1 , . . . , ν N q∆V xz . (3.3)
Then ∆V xz is expressed as:

∆V xz pλq " » - - - - | | v 1 . . . v 2N ´1 | | fi ffi ffi ffi fl loooooooooomoooooooooon M K 0 pν 1 , ..., ν N q λ `∆V 0 , (3.4)
where ∆V 0 P R 2N is an arbitrary sequence of in-plane impulses producing a periodic relative trajectory (in other words, a particular solution of (3.3) with d 0 pν N q " 0) and M K 0 pν 1 , . . . , ν N qλ represents a linear combination of the v i vectors belonging to the kernel of the row vector M 0 pν 1 , . . . , ν N q, given by:

v i :" r 0, . . . 0 looomooon pi´1q zeros , a i`1 , ´ai , 0, . . . 0 looomooon p2N ´1´iq zeros s T , ( 3.5) 
where a i is the i-th entry of M 0 pν 1 , . . . , ν N q.

Now that the periodicity constraint is systematically satisfied, it is demonstrated that there always exist a single optimal impulse generating a periodic relative orbit. This is done by introducing the function γ p and by demonstrating that it is well-defined.

Proposition 3.3.1 (Optimal periodic impulse). Consider the function

γ p : R ˆR Ñ R 2 d 0xz pν 1 q, ν 1 Þ Ñ argmin ∆V 0 }∆V 0 } 1 s.t. d 0xz pν 1 q " d 0xz pν 1 q `M0 pν 1 q∆V 0 pν 1 q " 0 (3.6)
For any set of inputs, the function γ p is well-defined in the sense that the feasible set of the minimization problem is not empty.

Proof. The line vector M 0 pν 1 q has the following expression:

M 0 pν 1 q " pk 2 pe 2 ´1qq ´1 "
1 `e cospν 1 q ´e sinpν 1 q ı and since the term 1 `e cospν 1 q ‰ 0, @ν 1 (because 0 ă e ă 1), it is always possible to set:

∆V 0 " k 2 pe 2 ´1q " ´d0xz pν 1 q 1`e cospν 1 q 0 ı T , satisfying the equation 0 " d 0xz pν 1 q `M0 pν 1 q∆V 0 .

Remark 3.3.4. Since the minimization problem in (3.6) contains ℓ 1 -norm criteria (which are not strictly convex), infinitely many solutions may exist. In order to enforce uniquenesses, the solution with minimal ℓ 2 -norm (which is strictly convex) could have been chosen. However, for the sake of brevity, only one minimum is considered to be arbitrarily chosen in these special cases.

Convergence to the admissible set under the control actions produced by γ xz and γ y

The functions γ xz and γ y are responsible for generating optimal non-saturated in-plane and out-of-plane sequences of impulses that generate periodic relative trajectories. They are defined hereafter: Proposition 3.3.2 (Optimal out-of-plane impulses). Given N ě 3, τ I P R ą0 s.t. @k P Z ą0 , τ I ‰ kπ, and ν 1 , . . . , ν N s.t. ν k`1 " ν k `τI , consider the function:

γ y : R 2 ˆR ˆ. . . ˆR Ñ R N D y pν N q, ν 1 , . . . , ν N Þ Ñ argmin ∆Vy }∆V y } 1 s.t. D ỳ pν N q " D y pν 1 q `My pν 1 , . . . , ν N q∆V y P S Dy (3.7)
The function γ y is well-defined if the feasible set S Dy is not empty. Equivalently,

@D y P R 2 , D ẙ P S Dy ‰ H, D∆V y P R N s.t. D ẙ " D y `My pν 1 , . . . , ν N q∆V y .
Proof. The matrix M y pν 1 , . . . , ν N q has the following expression:

M y pν 1 , . . . , ν N q " k ´2 » - ´sinpν 1 q ρpν 1 q . . . ´sinpν N q ρpν N q cospν 1 q ρpν 1 q . . . cospν N q ρpν N q fi fl .
This matrix has rank 2, since detpM y pν 1 , ν 2 qq " sinpν 2 ´ν1 q ρpν 1 qρpν 2 q ‰ 0 because of the hypothesis on the impulse dates τ I ‰ kπ. Then, @D y , D ẙ P R 2 the vector ∆V y " pM T y M y q ´1M T y pD ẙ ´Dy q is well-defined and satisfies D ẙ " D y `My pν 1 , . . . , ν N q∆V y . This is also particularly true if

D ẙ P S Dy ‰ H.

Proposition 3.3.3 (Optimal in-plane impulses).

Given N ě 3, τ I P R ą0 s.t. @k P Z ą0 , τ I ‰ kπ and ν 1 , . . . , ν N s.t. ν k`1 " ν k `τI , consider the function: Now, it is demonstrated that it is always possible to choose λ that allow the other three entries of D xz ´Dxz to be set to any arbitrary values. Computing M xz M K 0 pν 1 , . . . , ν N q, the following expression is obtained:

γ xz : R 4 ˆR ˆ. . . ˆR Ñ R 2N D xz pν 1 q, ν 1 , . . . , ν N Þ Ñ argmin ∆Vxz }∆V xz } 1 s.t. D xz pν N q " D xz pν 1 q `Mxz
M xz M K 0 pν 1 , . . . , ν N q " 1 k 6 pe 2 ´1q 2 » - - - - - - - 0 0 0 0 0 . . . 0 0 sinpν 1 q ρpν 1 q ‹ sinpν 2 q ρpν 2 q
‹ sinpν 3 q ρpν 3 q . . . ‹ sinpν N q ρpν N q ´cospν 1 q ρpν 1 q ‹ ´cospν 2 q ρpν 2 q ‹ ´cospν 3 q ρpν 3 q . . . ‹ ´cospν N q ρpν N q 1`ρpν 1 q ρpν 1 q ‹ 1`ρpν 2 q ρpν 2 q ‹ 1`ρpν 3 q ρpν 3 q . . . ‹ 1`ρpν N q ρpν N q fi ffi ffi ffi ffi ffi ffi fl

.

and this matrix has rank 3, since:

det ¨» - - - - sinpν 1 q ρpν 1 q sinpν 2 q ρpν 2 q sinpν 3 q ρpν 3 q ´cospν 1 q ρpν 1 q ´cospν 2 q ρpν 2 q ´cospν 3 q ρpν 3 q 1`ρpν 1 q ρpν 1 q 1`ρpν 2 q ρpν 2 q 1`ρpν 3 q ρpν 3 q fi ffi ffi ffi fl ‹ ‹ ‹ ' "
´2 sinpν 2 ´ν1 q `sinpν 3 ´ν2 q ´sinpν 3 ´ν1 q k 18 pe 2 ´1q 6 ρpν 1 qρpν 2 qρpν 3 q Combined with the idea to first reach the periodic orbit set, the convergence of Algorithm 2 is based on the following idea that accounts for eventual saturation that is performed by function γ ∆V :

" ´8 sin ν 2 ´ν1 2 sin ν 3 ´ν2 2 sin ν 3 ´ν1 2 k 18 pe 2 ´1q 6 ρpν 1 qρpν 2 qρpν 3 q ‰ 0, ( 3 

Definition 3.3.1 (Rescaling function). Consider the function

γ ∆V : R n z 0 ( Ñ R n v Þ Ñ ∆V }v} 8 .v, (3.10)
This function is responsible for scaling down the vector of impulses that do not respect the saturation constraint, keeping its direction, but reducing its magnitude so that its norm is equivalent to ∆V . Now, consider an arbitrary periodic relative trajectory parametrized by Dpν 1 q and a sequence of impulses ∆V ˚provided by the functions γ xz and γ y producing a trajectory D ˚pν N q belonging to the admissible set S D :

D ˚pν N q " Φ D pν N , ν 1 qDpν 1 q `M pν 1 , . . . , ν N q∆V ˚P S D .
As previously discussed, since Dpν 1 q is a periodic trajectory, Φ D pν N , ν 1 qD 1 pν 1 q " D 1 pν 1 q, the previous equation can be rewritten as:

D ˚pν N q " Dpν 1 q `M pν 1 , . . . , ν N q∆V ˚.
If this sequence of impulses is scaled by a real number η between 0 and 1 (representing the saturation), it generates a vector of parameters D ˝pν N q, given by:

D ˝pν N q " Dpν 1 q `ηM pν 1 , . . . , ν N q∆V ˚.
This new vector of parameters D ˝pν N q is closer to the admissible trajectory D ˚pν N q than the original Dpν 1 q:

}D ˚pν N q ´D˝p ν N q} 2 ď }D ˚pν N q ´Dpν 1 q} 2 , since D ˚pν N q ´Dpν 1 q " M pν 1 , . . . , ν N q∆V ånd D ˚pν N q ´D˝p ν N q " p1 ´ηqM pν 1 , . . . , ν N q∆V ˚.
This idea basically expresses the fact that iterative application of Algorithm 2 produces a sequence of states D that are closer and closer to the admissible set. In the next section, convergence is proved in details.

Proof of convergence and invariance

In this section, the convergence of the previously described control strategy is proven by demonstrating that the iterative application of the command actions computed in Algorithm 2 produces a sequence of states pD k q kPN that converges to an element of S D . Moreover, the admissible set is proved to be invariant under the action of the proposed controller, which guarantees that the state remains in the admissible set once the convergence is completed.

In Algorithm 2, if saturation constraints are complied, the convergence of the state D to the admissible set S D is trivial (by definition, one single call of γ xz and γ y is necessary to produce an admissible state D). However, for the cases in which the magnitude of the computed impulses goes beyond the saturation threshold, the convergence proof is based on a geometrical property of convex sets: the idea is to prove that for a given convex K Ă R n and any three elements A, A 1 , C P R n such that A P R n zK, C P K and A 1 " C `λpA ´Cq, 0 ă λ ă 1, the distance from A 1 to K is less than the distance from A to K (in the sense of the ℓ 2 norm): 

Proposition 3.3.4. Let K be a convex set in R n , A P R n not in K, C a point in K, B the projection of A onto K, 0 ă λ ă 1, A 1 " C `λpA ´Cq and B 1 the projection of A 1 onto K. Then, dist K pA 1 q " }B 1 ´A1 } 2 ă }B ´A} 2 " dist K pAq.
B 2 ´A1 " λpB ´Aq ñ }B 2 ´A1 } 2 " λ}B ´A} 2 .
But since B 1 is the projection of A 1 onto K:

}B 1 ´A1 } 2 ď }B 2 ´A1 } 2 " λ}B ´A} 2 ñ }B 1 ´A1 } 2 ă }B ´A} 2 .
The proof of convergence is split in two parts: first Algorithm 2 is demonstrated to bring the out-of-plane related entries D y to an element of S Dy ; then, Algorithm 2 is demonstrated to bring the in-plane related entries D xz to an element of S Dxz :

Convergence of the out-of-plane motion:

In the following proposition, the sequence pφ k q kPN represents the iterative application of the control Algorithm 2 on the state D y related to the out-of-plane motion: Proposition 3.3.5 (Convergence of the out-of-plane trajectory). Let be D y P R 2 , ν, τ I , τ S P R ą0 s.t. @k P Z ą0 , τ I ‰ kπ, N ě 3 and S Dy ‰ H. Then, the following sequence:

pφ k q kPN :" $ ' ' ' & ' ' ' % φ 0 " D y , φ k " φ k´1 `My pν p1q k , . . . , ν pN q k q∆V y k , if }∆V y k } 8 ď ∆V φ k " φ k´1 `My pν p1q k , . . . , ν pN q k qγ ∆V p∆V y k q, if }∆V y k } 8 ą ∆V ,
where ν piq k " ν `pi ´1qτ I `pk ´1qτ S and ∆V y k " γ y pφ k´1 , ν p1q k , . . . , ν pN q k q, converges to an element of S Dy .

Proof. From Proposition 3.3.2, the function γ y returns a sequence of impulses that generates an admissible trajectory, i.e. φ k " φ k´1 `My pν p1q k , . . . , ν pN q k q∆V y k P S Dy . Given that, if for some k ˚the impulse ∆V y k ˚respects the saturation constraint, then @k ě k ˚, φ k P S D . However, suppose that the saturation is always violated for any k P N (worst case scenario).

By writing the expressions of φ k considering the non-scaled and the scaled sequence of impulses:

φ k " φ k´1 `My pν p1q k , . . . , ν pN q k q∆V y k φ k " φ k´1 `My pν p1q k , . . . , ν pN q k q∆V y k ∆V {}∆V y k } 8
By manipulating the previous equations, the following expression are obtained:

φ k ´φk " p1 ´∆V {}∆V y k } 8 qpφ k ´φk´1 q
From the saturation hypothesis ∆V ă }∆V y k } 8 and consequently:

}φ k ´φk } 2 " p1 ´∆V {}∆V y k } 8 q}φ k ´φk´1 } 2 ă }φ k ´φk´1 } 2
Since φ k belongs to S Dy , which is a convex set, from Proposition 3.3.4, it is possible to conclude that: dist

S Dy pφ k q ď p1 ´∆V {}∆V y k } 8 q dist S Dy pφ k´1 q ă dist S Dy pφ k´1 q
The following sets are then defined:

P k :" " D P R 2 ˇˇˇd ist S Dy pDq ď dist S Dy pφ k´1 q * , Q k :" ∆V y P R 2 ˇˇD ν P R, DD P P k s.t. ∆V y " γ y pD, ν, . . . , ν `pN ´1qτ I q ( ,
and ∆V ‹ y k :" max

∆VyPQ k
}∆V y } 8 . One can remark that since dist

S Dy pφ k q ă dist S Dy pφ k´1 q, the sets Q k form a sequence of inclusions Q k`1 Ď Q k and, consequently, ∆V ‹ y k`1 ď ∆V ‹ y k .
Consider the following two sequences:

pa k q kPN :" $ ' & ' % a 0 " dist S Dy pφ 0 q, a k " α a k´1
and pb k q kPN :"

$ ' ' & ' ' % b 0 " dist S Dy pφ 0 q b k " dist S Dy pφ k q
where α " p1 ´∆V {∆V ‹ y 1 q. The sequence pa k q kPN has a general term of the form a k " α k a 0 and converges to zero when k tends to infinite: α ă 1 ñ a k Ñ kÑ8 0. The second sequence represents the distance of the terms of the sequence φ k to the admissible set S Dy . Since the saturation is supposed to be violated, the following inequalities hold:

∆V ă }∆V y k } 8 ă ∆V ‹ y k ď ∆V ‹ y 1 , @k P N Then, since dist S Dy pφ k q ď p1´∆V {}∆V y k } 8 q dist S Dy
pφ k´1 q and @k P N, p1´∆V {}∆V y k } 8 q ă α, by comparing the sequences pa k q kPN and pb k q kPN , it is possible to prove that b k Ñ kÑ8 0, which is equivalent to dist

S Dy pφ k q Ñ kÑ8 0.
By demonstrating that the sequence pφ k q kPN converges to a point in the admissible set the MPC strategy is proven to be convergent for the out-of-plane motion.

Convergence of the in-plane motion:

If the initial state D xz is not periodic and Algorithm 2 does not produce a sequence of impulses that respects the saturation threshold, the algorithm is executed until the periodic trajectory is generated. In the following proposition, the sequence pθ k q kPN represents the behavior of the first entry of the state vector D xz during this process: Proposition 3.3.6 (Convergence to a periodic trajectory). Let be

d 0xz P R, ν P R, τ P P R ą0 .
Then, the sequence pθ k q kPN defined by:

pθ k q kPN :" $ ' ' ' & ' ' ' % θ 0 " d 0xz , θ k " θ k´1 `M0 pν k q∆V xz k , if }∆V xz k } 8 ď ∆V θ k " θ k´1 `M0 pν k qγ ∆V p∆V xz k q, if }∆V xz k } 8 ą ∆V ,
where ∆V xz k " γ p pθ k´1 , ν k q and ν k " ν `pk ´1qτ P , converges to 0.

Proof. The proof is mutatis mutandis similar to that presented in Proposition 3.3.5.

By demonstrating that the sequence pθ k q kPN converges to zero, the iterative calls of the MPC strategy is proven to produce a periodic trajectory. Once the trajectory becomes periodic, the behavior of the state D xz under iterative calls of Algorithm 2 can be represented by the sequence pϕ k q kPN introduced in the following proposition: Proposition 3.3.7 (Convergence of the in-plane periodic trajectory to S Dxz ). Let be D xz P R 4 s.t. d 0xz " 0, ν, τ I , τ S P R ą0 s.t. @k P Z ą0 , τ I ‰ kπ, N ě 3 and S Dxz ‰ H. Then, the following sequence:

pϕ k q kPN :" $ ' ' ' & ' ' ' % ϕ 0 " D xz , ϕ k " ϕ k´1 `Mxz pν p1q k , . . . , ν pN q k q∆V xz k , if }∆V y k } 8 ď ∆V ϕ k " ϕ k´1 `Mxz pν p1q k , . . . , ν pN q k qγ ∆V p∆V xz k q, if }∆V xz k } 8 ą ∆V , where ν piq k " ν `pi ´1qτ I `pk ´1qτ S and ∆V xz k " γ xz pϕ k´1 , ν p1q k , . . . , ν pN q k q, converges to an element of S Dxz .
Proof. The proof is mutatis mutandis similar to that presented in Proposition 3.3.5.

By demonstrating that the sequence pϕ k q kPN converges to a point in the admissible set, the MPC strategy is proven to be convergent for the in-plane motion.

Invariance

So far, only the convergence of the vector of parameters to an element of the admissible set has been established. In the following it is demonstrated that once an admissible trajectory is obtained, it is preserved by the proposed model predictive control algorithm. But first, let notice that the S D is naturally invariant as a subset of the invariant set of periodic orbits. Proof. This is evident, since D P S D ñ d 0 " 0 (periodicity), the function γ p is never called; the functions γ y and γ xz compute the fuel-optimal sequence of impulses that generate a trajectory respecting the out-of-plane and the in-plane space constraints respectively. But since D P S D ñ x ď xpνq ď x, y ď ypνq ď y, z ď zpνq ď z, @ν, the functions will return a sequence of null impulses.

Simulations and results

Hereafter the results obtained by employing the proposed MPC algorithm to control the relative motion between spacecraft during the rendezvous hovering phases are presented.

Processor-in-the-loop

The tests are performed in a processor-in-the-loop environment (see Fig. 

Software

Both the SDP and the ENV approaches are adopted to model the fuel-optimal control problem. The SDP problems are solved via the CSDP library [START_REF] Borchers | A C library for semidefinite programming[END_REF], using the standard options and parameters. The envelope problems are solved by a combination of penalty method with iterative optimization algorithms based on sub-gradients: the constraints are weighted by a coefficient equivalent to 10 8 and added to the objective function and the resulting unconstrained problem is solved by performing I qn " 50 iterations of the BFGS method, followed by I qn " 500 iterations of the sub-gradient method (see Section 2.4.5 and Appendix E for details). All embedded programs are coded in C.

Relative motion

Two types of simulator are used: the linear simulations are performed in order to verify the theoretical results about the convergence provided the proposed algorithm. The nonlinear simulations assess the robustness of the proposed algorithm under disturbances and nonlinearities that are not taken into account by the linear model.

1. The linear model representing the relative motion is given by equation (1.41), using the vector of parameters or, equivalently, by equation (SLTH) in Cartesian coordinates; 2. The nonlinear simulator based on the Gauss planetary equations for the relative motion that takes into account the effects of disturbances, such as the atmospheric drag, Earth's oblateness presented in Sec. 1.2.1.

In addition, navigation system uncertainties and errors on the application of control actions are simulated along with the nonlinear simulator. A white noise on position and velocity is added to the integrated relative state (standard deviations: d p " 10 ´2 m, d v " 10 ´5 m/s); control mis-execution consist of errors are considered for the orientation and magnitude of the applied impulsive velocity corrections (a mismatch of ˘1˝i n orientation and ˘1% in magnitude is considered).

Scenarios

In order to compare the obtained results to those presented in [START_REF] Brentari | A hybrid control framework for impulsive control of satellite rendezvous[END_REF], the same scenarios (based on the PRISMA mission [START_REF] Bodin | Prisma: an in-orbit test bed for guidance, navigation, and control experiments[END_REF]) are studied: Earth's gravitational constant: µ " 3.986004418 ˆ10 14 ; leader's orbital parameters: e " 0.004, a " 7011 km, i " 98 ˝, Ω " 0 ˝, ω " 0 ˝; leader's initial true anomaly ν 0 " 0 ˝; number of impulses adopted is N " 3; true anomaly interval between impulses τ I " 120 ˝; true anomaly interval between sequence of impulses τ S " 120 ˝; true anomaly interval to achieve periodicity τ P " 3, 6 ˝; space constraints:

x " 50, x " 150, y " ´25, y " 25, z " ´25, z " 25; propellers saturation threshold: 0.5 m/s; duration of simulation: 10 orbital periods; initial relative state: X 01 " r 400, 300, ´40, 0, 0, 0s T X 02 " r ´800, 600, 200, 0, 0, 0s T X 03 " r ´1500, 1300, 150, 0, 0, 0s T X 04 " r 5000, 1300, 500, 0, 0, 0s T , where the first three components of each vector represent the relative LVLH positions (in meters) and the last three, the relative LVLH velocities (in meters per second).

Convergence definition

To evaluate the convergence, the mismatch ratio η is employed:

ηpνq :" dist S D Dpνq dist S D Dpν 0 q " dist S D CpνqT pνqXpνq dist S D Cpν 0 qT pν 0 qXpν 0 q , ( 3.11) 
This is the ratio between the distance to the admissible set of the current and the initial vector of parameters. For a given δ P r0, 1s the convergence time T c is defined as:

T c pδq P R ą0 s.t. @ν ě T c , ηpνq ď δ. ( 3.12) 
In the sequel, the convergence time is set to the time T c at which δ " 0.05.

Consumption, convergence time and running time

Convergence and hovering are obtained for all performed simulations. Table 3.1, presents the obtained fuel consumption Jp∆V q. From this point of view, the SDP-based controller is the best performing with respect to the ENV-based controller. This is due to the fact that the limited number of iterations of the BFGS and sub-gradient algorithms generate suboptimal solutions of ENV, while the SDP approach always returns the optimal solution of SDP (recalling the numbers of iterations: I qn " 50 iterations of the BFGS method, followed by I qn " 500 iterations of the sub-gradient method). Nevertheless, both approaches engender fuel consumptions that are approximatively half of the lower values produced by any of the three control laws proposed in [START_REF] Brentari | A hybrid control framework for impulsive control of satellite rendezvous[END_REF].

Relative trajectories, impulses and distance to the admissible set

In Figures 3.7 -3.10, the resulting 3D relative trajectories are exhibited (zoom into the hovering region), the computed and applied impulses for the nonlinear simulations and the evolution of the mismatching ratio ηpνq for the initial conditions X 03 and X 04 . By observing the relative trajectories obtained for the linear simulations, one can notice that the relative movement converges to a periodic trajectory included in the hovering zone and, once this trajectory is reached, it remains unchanged -this fact illustrates the convergence and invariance results demonstrated in Prop. 3.3.5 -3.3.8. The same behavior, however, is not observed for nonlinear simulations: due to the presence of disturbances and uncertainties, the control actions are not able to produce perfect periodic orbits. This is also observed in Fig. 3.11(a) where for the nonlinear simulation, the mismatch ratio oscillates close to zero, but never reaches it.

Moreover, although some impulses are saturated (Fig. 3.7(b), 3.8(b), 3.9(b) and 3.10(b)), the convergence is achieved for both linear and nonlinear simulations.

In Fig. 3.11(b) the four initial impulses applied in order to reduce the absolute value of d 0 are shown in details (these impulses are computed via γ p and are separated by true anomaly intervals of τ P , indicated in the figure; for nonlinear simulations, due to the disturbances, the condition d 0 " 0 is never reached, being therefore replaced by another condition |d 0 | ă threshold). In Fig. 3.12 it is demonstrated that after each sequence of N " 3 impulses, the distance to the admissible set decreases (indicated by the dotted lines). Furthermore, during the interval between sequences of impulses (indicated by τ S and the shaded zones), the mismatch ratio remains constant.

Impact of parameters on fuel consumption

Hereafter, the effect of some parameters (eccentricity, number of impulses, initial true anomaly and the three true anomaly intervals τ P , τ I , τ S ) on the total fuel consumption are evaluated.

Linear simulations using the SDP approach for the four initial states X 01 ´X04 are performed; one single parameter varies at time and the others are kept at the same values employed in the previous simulations. The obtained results are presented in Fig. 3.14 -3.18. the initial firing instant ν 0 (Fig. 3.16). In Fig. 3.17, the consumption increases until it reaches its maximum around τ p " 2.4 ˝or 0.042 rad, then starts to decrease; in order to minimize consumption and convergence time, this parameter should be set to the smallest value possible, which is defined by the physical limitations of the spacecraft propellers. The profile of consumption obtained by varying the interval between sequences of impulses does not present a particular shape or behavior and therefore no general conclusion can be obtained from it (Fig. 3.18).

Remark 3.4.1. In Fig. 3. 16 -3.18, for each initial state, the fuel consumptions are normalized between 0 and 1.

Conclusions

In this chapter, an original model predictive control strategy is proposed for the fixed-time impulsive control of the spacecraft rendezvous hovering phases. A theoretical convergence proof is provided, demonstrating that, even when the saturation of the propellers is taken into account, the proposed strategy produces a sequence of control actions generating a periodic relative trajectory included in the hovering region.

Processor-in-the-loop simulations using a LEON3 synthesized microprocessor reveal that although the proposed approach may produce greater convergence times, it is more efficient with respect to fuel consumption than other methods proposed in the literature. Moreover, the timings obtained during these tests bring out the fact that this approach can be efficiently embedded in space dedicated devices. An analysis of the impact of the parameters rendezvous scenarios on the fuel consumption is also presented.

Although robustness is not demonstrated in this dissertation, the results show that, in practice, the proposed control method is capable of providing convergence even under the presence of disturbances. A theoretical evaluation of this robustness property should be carried in future works. 

Introduction

The previous chapters treated the problematic of modeling, simulating and conceiving guidance and control algorithms for the relative motion between spacecraft during the rendezvous hovering phases. Another important aspect is the validation of numerical results obtained from such on-board executed algorithms. In fact, during guidance and control procedures of orbiting spacecraft, the respect of positioning and space constraints is decisive for successful mission achievement. Since result accuracy is essential for these procedures, the prevention and estimation of errors arising from approximations and numerical computations become critical.

In this context, this chapter aims to provide a symbolic-numerical method for validating the solutions generated by the previously presented guidance and control algorithms.

The idea is to use the technique presented in [START_REF] Bréhard | A Newton-like Validation Method for Chebyshev Approximate Solutions of Linear Ordinary Differential Systems[END_REF][START_REF] Bréhard | Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations[END_REF] to provide rigorous polynomial approximations (RPA) for the solutions of the linear ordinary differential equations (LODE) describing the linearized spacecraft relative motion. Specifically, RPA are polynomials together with an error bound accounting for both approximation and rounding errors and can be obtained using Chebyshev series.

This approach is chosen instead of conceiving validated numerical iterative schemes for the integration of the LODE (like Euler or Runge-Kutta), because the number of needed evaluation points used in these schemes can be prohibitive and the discretization error is difficult to estimate precisely. Moreover, for guidance and control laws design purposes, analytical solutions are preferable, since various constraints (such as saturation, restricted space regions, etc.) can be satisfied on continuous time domains and not only on discretization grids.

The choice for Chebyshev expansions instead of any other basis is motivated by recent works that highlight the advantage of using Chebyshev series expansions in orbital mechanics [START_REF] Riccardi | An intrusive approach to uncertainty propagation in orbital mechanics based on Tchebycheff polynomial algebra[END_REF] and by the fact that they started to successfully replace the classical Taylor series expansions based algebra for intrusive approaches, which has already many applications to astrodynamics and optimal control for proximity operations [START_REF] Mauro | Nonlinear control for proximity operations based on differential algebra[END_REF][START_REF] Lizia | Application of high order expansions of two-point boundary value problems to astrodynamics[END_REF][START_REF] Lizia | High order optimal feedback control of space trajectories with bounded control[END_REF] 

Rigorous approximations and Chebyshev polynomials

Hereafter some definitions and concepts are exhibited in order to provide the reader with some mathematical background for the developments that will be presented in the sequel.

The aim is to provide a validation (an error-bounded approximation) of the solutions of a system of linear ordinary differential equations representing the relative motion between spacecraft. In a more generic framework, the following system can be considered:

X prq ptq `Ar´1 ptqX pr´1q ptq `¨¨¨`A 1 ptqX 1 ptq `A0 ptqXptq " Gptq, (d-LODE)
where the time variable belongs to the compact interval rt 0 , t f s, of unknown X : rt 0 , t f s Ñ R d ,

A i : rt 0 , t f s Ñ R dˆd and G : rt 0 , t f s Ñ R d are at least Lipschitz-continuous.
Hereafter, a spectral method is adopted for validating the solutions of d-LODE. This class of methods provide error-bounded approximations for the solutions of LODE over the global time interval (in this case rt 0 , t f s), given as the linear combination of well chosen basis functions, whose coefficients have to be computed [START_REF] Boyd | Chebyshev and Fourier spectral methods[END_REF][START_REF] Gottlieb | Numerical Analysis of Spectral Methods: Theory and Applications[END_REF]. This choice is motivated by the fact that, in situations where functions are smooth enough, spectral methods have the advantage over iterative ones of providing a smooth approximation of the solution over the continuous time range, which can be easily derived or integrated, for example.

For efficiency reasons among others, one often chooses families of polynomials for the basis functions, since addition and multiplication composing them are the basic operations implemented in floating-point units of processors. Besides that, the recent advances in polynomial based optimization methods allowed for very efficient solutions in optimal control problems (see [START_REF] Claeys | Moment LMI approach to LTV impulsive control[END_REF][START_REF] Fahroo | Direct trajectory optimization by a chebyshev pseudospectral method[END_REF]62] and references therein). This polynomial framework is adopted hereafter.

Since a spectral method providing a representation of the approximated solution on a polynomial basis is employed, the term rigorous polynomial approximation (adapted from [START_REF] Joldeş | Rigorous Polynomial Approximations and Applications[END_REF]) is employed in the sequel: The approximation problem that motivates this chapter is then formally formulated as follows:

Problem 4.2.1 (RPAs of d-LODE solutions). Consider the system d-LODE. Let Φpt, t 0 q be its exact state-transition matrix. Then, provide an approximate transition matrix r Φpt, t 0 q P R rdˆrd whose entries are polynomials and rigorous error bounds ǫ ij ě 0

(1 ď i, j ď rd) satisfying:

| r Φ ij pt, t 0 q ´Φij pt, t 0 q| ď ε ij , 1 ď i, j ď d, t P rt 0 , t f s. Each pair p r Φ ij , ǫ ij q is denoted a Rigorous Polynomial Approximation (RPA) of Φ ij .
In this work, the Chebyshev polynomials are chosen. This choice is motivated by the fact that this family of orthogonal polynomials has very convenient algebraic and approximation properties. At first glance, working with polynomials in the standard monomial basis and approximating functions with their Taylor development seems to be a convenient choice. In practice, this method goes along with some shortcomings (approximation of non-smooth functions, limited convergence radius due to complex singularities, numerical instability, etc.).

For these reasons, Chebyshev polynomials are preferable in the general case [START_REF] Boyd | Chebyshev and Fourier spectral methods[END_REF].

Hereafter, some definitions and properties related to Chebyshev polynomials are given: 

f rns " n ÿ i"0 rf s i T i ,
which is simply the orthogonal projection of f onto the finite-dimensional subspace spanned by T 0 , . . . , T n .

Analogously to Fourier series, Chebyshev series have excellent approximation properties [START_REF] Boyd | Chebyshev and Fourier spectral methods[END_REF]. For example, if f is of class C r over r´1, 1s with r ě 1, then f rns uniformly converges to f in Opn ´rq. Moreover, at fixed degree n, the n-th truncated Chebyshev series f rns is a near-best approximation of f among degree n polynomials, with a factor growing relatively slowly, in Oplogpnqq [76].

Using these convergence results, one can easily identify a sufficiently smooth function space with the space of corresponding Chebyshev coefficients. Let Ч 1 be the Banach space of continuous functions with absolutely summable Chebyshev series, and define the associated norm

}f } Ч 1 " ř iě0 |rf s i |.
Then, a Banach algebra structure is obtained, since }f g} Ч 1 ď }f } Ч 1 }g} Ч 1 . Moreover, this norm is a safe overestimation of the supremum norm } ¨}8 over r´1, 1s:

}f } Ч 1 " ÿ iě0 |rf s i | ě sup ´1ďtď1 ÿ iě0 |rf s i T i ptq| ě sup ´1ďtď1 |f ptq| " }f } 8 . (4.1)

The approximation method

Now that a background on RPA and Chebyshev polynomials has been presented, the approximation method employed in this chapter is briefly explained. It is described in detail in [START_REF] Bréhard | A Newton-like Validation Method for Chebyshev Approximate Solutions of Linear Ordinary Differential Systems[END_REF][START_REF] Bréhard | Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations[END_REF] and its experimental C source code is available at http://perso.ens-lyon.fr/ florent.brehard.

For the sake of clarity, the one-dimensional case for Problem 4.2.1 is considered, that is d " 1:

x prq ptq `ar´1 ptqx pr´1q ptq `¨¨¨`a 1 ptqx 1 ptq `a0 ptqxptq " gptq. (4.2) over rt 0 , t f s " r´1, 1s (up to a rescaling of the independent variable, if necessary), together with prescribed initial values at ´1:

xp´1q " v 0 , x 1 p´1q " v 1 , . . . , x pr´1q p´1q " v r´1 , ( 4.3) 
where a i , g : r´1, ´1s Ñ R are functions in Ч 1 approximated by a truncated Chebyshev series, and x : r´1, 1s Ñ R is the unknown function which will be approximated with a truncated Chebyshev series. For this, a common solution is to rephrase the differential equation (4.2) into an equivalent integral equation. For instance, as detailed in [START_REF] Bréhard | A Newton-like Validation Method for Chebyshev Approximate Solutions of Linear Ordinary Differential Systems[END_REF][START_REF] Bréhard | Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations[END_REF], one considers ϕ " x prq as the unknown function and expresses lower-order derivatives of x as integrals of ϕ.

This gives:

ϕ `K ¨ϕ " ψ, where K ¨ϕptq "

ż t ´1 kpt, sqϕpsqds, (4.4) 
where kpt, sq is a bivariate polynomial computed from the polynomials a i ptq and ψptq is a univariate polynomial computed from the second member gptq, the polynomials a i ptq and the initial values v i (details in [START_REF] Bréhard | Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations[END_REF]). A symbolic computation shows that for i P N, K ¨Ti is a polynomial with non-zero Chebyshev coefficients between indices 0 and h (initial coefficients) and between i ´d and i `d (diagonal coefficients), where the bandwidths h and d directly depend on the maximum degree of the a i . Hence, the operator K : Ч 1 Ñ Ч 1 has a so-called almost-banded structure [START_REF] Bréhard | A Newton-like Validation Method for Chebyshev Approximate Solutions of Linear Ordinary Differential Systems[END_REF][START_REF] Bréhard | Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations[END_REF][START_REF] Olver | A fast and well-conditioned spectral method[END_REF] in the Chebyshev basis, which is depicted on Figure 4.1. Following the general scheme of spectral Galerkin methods [START_REF] Boyd | Chebyshev and Fourier spectral methods[END_REF], this problem is projected onto a finite dimensional space by taking the truncated operator K rns " П n ¨K ¨Пn where П n is the orthogonal projection from Ч 1 to the finite-dimensional space spanned by T 0 , . . . , T n . Now, it remains to determine the n `1 first (approximated) Chebyshev coefficients of ϕ by solving the following finite-dimensional problem:

ϕ `Krns ¨ϕ " ψ.

Such an almost-banded system is efficiently solved using the algorithm presented in [START_REF] Olver | A fast and well-conditioned spectral method[END_REF].

The mathematical statements and proofs establishing the uniqueness of the solution and the exponential convergence of the numerical truncated solutions to the exact one are to be found in [START_REF] Bréhard | A Newton-like Validation Method for Chebyshev Approximate Solutions of Linear Ordinary Differential Systems[END_REF][START_REF] Bréhard | Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations[END_REF].

Principles of the validation method

The goal of validating techniques is to provide effective and rigorous error bounds for given approximations. For the proposed method, an a posteriori validation method is employed.

This validation works in two steps: first, the user provides an approximation of the solution, obtained with the procedure of his choice; then, the validation method computes a rigorous error bound without knowing how this approximation was built.

The Hence, designing a fixed-point based validation method for a linear problem of the form F ¨x " y essentially boils down to rephrasing it as a fixed-point equation T ¨x " x for some contracting affine operator T , which has to be explicitly computable (in order to bound }x ´T ¨x} E ) and whose operator norm can be effectively upper-bounded so to obtain a rigorous µ ă 1.

A rather generic way to design such a contracting method is to use an adaptation of Newton's method to find zeros of maps [START_REF] Yamamoto | A numerical verification method for solutions of boundary value problems with local uniqueness by Banach's fixed-point theorem[END_REF], which can be used even for non-linear problems.

Here the idea in the linear case is sketched. Consider the equation F ¨x " y, where F is a linear automorphism. Let A be an approximation of its inverse F ´1. Then the unique solution is also the unique fixed-point of T defined by: T ¨x " x ´A ¨pF ¨x ´yq,

as soon as A is injective. The underlying idea is that if A is sufficiently close to the inverse of F , then T will be contracting.

The remaining work then consists in finding an appropriate A and bounding the linear part of the resulting T . Such techniques are widely advocated in, for example [START_REF] Yamamoto | A numerical verification method for solutions of boundary value problems with local uniqueness by Banach's fixed-point theorem[END_REF], but quite often, technical tools to design such a Newton operator are treated by hand for precise examples. On the contrary, the proposed method is fully algorithmic over the general case of LODEs and implemented into a C library.

Consider again the integral reformulation (4.4) of the problem and choose a truncation index n. The idea is to seek for an approximate inverse A of I `K as an approximation of the finite-dimensional truncated operator I `Krns . In [START_REF] Bréhard | A Newton-like Validation Method for Chebyshev Approximate Solutions of Linear Ordinary Differential Systems[END_REF][START_REF] Bréhard | Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations[END_REF] the possibility to approximate this inverse with an almost-banded matrix itself is discussed.

This A fully determines the Newton-like affine operator T : ϕ Þ Ñ ϕ ´A ¨pϕ `K ¨ϕ ´ψq.

Its linear part I ´A ¨pI `Kq may be bounded using the following decomposition of its operator norm:

}I ´A ¨pI `Kq} Ч 1 ď }I ´A ¨pI `Krns q} Ч 1 `}A ¨pK ´Krns q} Ч 1 . (4.8)
• The first term is the approximation error, since A is only an approximation of pI `Krns q ´1. It boils down to the computation of an n `1 order square matrix using multiplications and additions, which is carried out using interval arithmetics to avoid rounding errors.

• The second part is the truncation error, due to the fact that K rns is only a finitedimensional approximation of K.

The difficulty lies in this second error term, obtained by uniformly bounding }A ¨pK ´Krns q ¨Ti } Ч 1 with respect to i. A method for choosing a sufficiently small value of n such that the Newton-like operator T be contracting, as well as its overall complexity of is given in [START_REF] Bréhard | A Newton-like Validation Method for Chebyshev Approximate Solutions of Linear Ordinary Differential Systems[END_REF][START_REF] Bréhard | Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations[END_REF]. While the worst-case bound of n is exponential with respect to the magnitude of the Chebyshev coefficients of a i , in practice and for a wide range of examples, this method is quite efficient and fully automated.

The sum of these two error terms provides the required Lipschitz constant µ. Next, take ϕ an approximate truncated Chebyshev series for the exact solution ϕ ˚. Obtaining T ¨ϕ and then }ϕ ´T ¨ϕ} Ч 1 only requires arithmetic operations for polynomials in Chebyshev basis, plus a multiplication of a vector of coefficients by the matrix A. The computations are rigorously performed using interval arithmetic. Applying Theorem 4.3.1, we obtain an upper bound for the approximation error ϕ ´ϕ˚, for the Ч 1 -norm, and hence for the uniform norm. Integrating r times ϕ provides approximations of x ˚pjq (0 ď j ď r), where x ˚is the exact solution of (4.2) with initial conditions (4.3), together with rigorous error bounds with respect to the uniform norm.

Finally, to solve Problem 4.2.1 in the one-dimensional case, the above approximation and validation method is applied r times, for the canonical set of initial conditions. Since the initial conditions appear in the integral equation (4.4) only in the right-hand side ψ, operators K and hence T need to be computed and bounded only once for the r validation processes.

Extensions of the method

This method can be extended to the vectorial case, where X, G : r´1, 1s Ñ R d and A i :

r´1, 1s Ñ R dˆd . To see this, first notice that the integral transform can be applied as in the scalar case described above. The resulting operator K : pЧ 1 q d Ñ pЧ 1 q d is made of d ˆd (scalar) integral operators K ij : Ч 1 Ñ Ч 1 , which are similar to the one presented in In many problems, including the spacecraft dynamics studied in this dissertation, the coefficients and right hand side in LODE (4.2) are not polynomials but rational functions, special functions, etc. If they belong to Ч 1 and are given through truncated Chebyshev series with a certified error bound with respect to the Ч 1 -norm, then the exact integral operator K is non-polynomial but well approximated by the polynomial integral operator K P obtained by replacing the exact coefficients by their polynomial approximations. An additional term }A ¨pK ´KP q} Ч 1 appends to the two others in (4.8), but the essential ideas of the method remain unchanged.

Example: the simplified linearized Tschauner-Hempel equations

Hereafter the usage of the approximation method is illustrated by employing it on the in-plane motion described in the simplified linearized Tschauner-Hempel equations:

x2 " 2z 1 , z2 " 3 1 `e cos ν z ´2x 1 (SLTH)
First of all, one can remark that the in-plane motion can be reformulated as follows:

x2 " 2z 1 , z2 " 3 1 `e cospνq z ´2x 1 ñ x1 " 2z `c 2 , z2 `ˆ4 ´3 1 `e cos ν ˙z " c, ( 4.9) 
where c is an arbitrary integration constant. In the sequence, only the validation of a solution for the z coordinate is studied. Before running the method, the interval rν 0 , ν f s to r´1, 1s is rescaled by introducing the independent variable τ P r´1, 1s and letting νpτ q " ν 0 p1 ´τ q{2 `νf p1 `τ q{2 " ωτ `θ with ω " pν f ´ν0 q{2, θ " pν 0 `νf q{2, and Zpτ q " zpνpτ qq. The following equation is then obtained for the z coordinate:

Z 2 pτ q `ω2 ˆ4 ´3 1 `e cos νpτ q ˙Zpτ q " ω 2 c, (4.10)

together with rescaled initial conditions:

Zp´1q " zpν 0 q, Z 1 p´1q " ωz 1 pν 0 q.

In particular, one can observe that the magnitude of the coefficients in (4.10) grows quadrati-cally with the length of the interval rν 0 , ν f s.

Rigorous approximation of the non-polynomial coefficient

Since the coefficient of (4.10) is not polynomial, the first step is to provide a rigorous polynomial approximation for it. The cosine function τ Þ Ñ cos νpτ q is approximated by applying the validation method to the harmonic oscillator differential equation:

ξ 2 pτ q `ω2 ξpτ q " 0, ξp´1q " cos ν 0 , ξ 1 p´1q " ´ω sin ν 0 . (4.11)

From this, a rigorous approximation of τ Þ Ñ 1 `e cos νpτ q is deduced.

Finally, it must be composed with the reciprocal function. Numerical approximations can be obtained using interpolation at Chebyshev nodes, which is a very standard and rather efficient method [START_REF] Boyd | Chebyshev and Fourier spectral methods[END_REF]. Validation is performed through another Newton-like fixed-point method as follows. Let f be a function in Ч 1 , non-zero over r´1, 1s, to be inverted, and g " 1{f the solution function. The functional equation f g ´1 " 0 of unknown g P Ч 1 must be solved (the fact that g " 1{f belongs to Ч 1 comes from Wiener's Tauberian theorem). If g 0 is a polynomial approximation of g satisfying }1´g 0 f } Ч 1 " µ ă 1, then g is the unique fixed-point of the affine operator T defined by T ¨g " g ´g0 pf g ´1q and of Lipschitz constant µ ă 1.

Hence, Theorem 4.3.1 applies and provides an error enclosure for any candidate approximation g of g. Figure 4.3 shows the evolution of the minimal degree p needed to approximate the coefficient τ Þ Ñ ω 2 p4 ´3{p1 `e cos νpτ qqq within a Ч 1 -error less than 1, in function of the eccentricity e and the total time interval rν 0 , ν f s.

Integral transform and numerical solution

Following the integral transform technique described above, consider ϕpτ q " Z 2 pτ q, so that Zpτ q now becomes:

Zpτ q " Zp´1q `pτ `1qZ 1 p´1q `ż τ ´1 ż s ´1 ϕpuqdu " Zp´1q `pτ `1qZ 1 p´1q `ż τ ´1pτ ´sqϕpsqds.
Thus the following integral equation is obtained: ϕpτ q `ż τ ´1 αpτ qpτ ´sqϕpsqds " ω 2 c ´αpτ qpZp´1q `pτ `1qZ 1 p´1qq, where αpτ q " 4 ´3{p1 `e cos νpτ qq. For the numerical solving, replace αpτ q by a polynomial approximation apτ q and proceed as in Section 4.3: truncate the resulting infinite-dimensional equations at a chosen index n and solve the resulting almost-banded system using the algorithm presented in [START_REF] Olver | A fast and well-conditioned spectral method[END_REF] to obtain a degree n polynomial approximation φ of the solution.

Validation

The validation method presented in Section 4.3.1 is fully automated. Hence, in this practical example, it suffices to provide to the implemented procedure the differential equation (4.10)

where αpτ q is given as a polynomial approximation apτ q together with the error bound ε, and the candidate polynomial approximate solution φ obtained above. The procedure will return a rigorous upper bound of the approximation error, with respect to the Ч 1 -norm.

An important remark is that the timings strongly depend on the minimal value for the truncation index that the method finds and which ensures that the obtained operator is contracting. the target reference orbit. We remark that these values only depend on the equation (that is, ν 0 , ν f and e) and not on the degree of the candidate approximate solution φ, since the contracting operator T is completely independent of this approximation. In Figure 4.3 the evolution of the approximation degree p for the coefficient ω 2 p4 ´3{p1 `e cos νpτ qqq and the truncation order n is a function of the eccentricity e and the total time.

Validated guidance algorithm

Hereafter, the validated guidance problem for the hovering phases of the orbital spacecraft rendezvous missions is studied. The idea is to provide a validation of the trajectories generated by the optimization algorithm that steers the follower satellite in a fuel-optimal way to the hovering region.

Validated constrained relative dynamics

Let Φpν f , ν 0 q be the real transition matrix of the simplified linearized Tschauner-Hempel equations (SLTH) from an initial ν 0 to a final ν f . By considering N P N impulsive velocities corrections applied at given fixed ν 1 , . . . , ν N , the propagation of the state for ν ě ν N is formulated as: X`p ν N q " Φpν N , ν 1 q Xpν 1 q `řN k"1 Φpν N , ν k q Bpν k q∆V k , @ν ě ν N . (4.12)

By applying the Chebyshev series approximation method previously presented, one can obtain rigorous polynomial approximations r Φpν, ν 0 q over an arbitrary interval rν 0 , ν f s satisfy- | r Φ ij pν 0 , νq ´Φ ij pν 0 , νq| ď ε ij pν 0 , ν f q, @ν P rν 0 , ν f s. (4.13)

Then, the approximated state propagation is given by:

r Xpνq " r Φpν, ν 1 q Xpν 1 q `řN k"1 r Φpν N , ν k q Bpν k q∆V k , ν P rν N , ν N `∆νs, (4.14) 
where ∆ν depends on the interval over which the approximation r Φpν, ν 1 q is valid.

During the rendezvous hovering phases, the follower spacecraft is required to steer and remain in the interior of a certain limited region of the space. The idea is to compute a sequence of N velocity corrections generating a relative trajectory that remains inside the hovering region during the interval rt N , t N `1s. From Fig. 4.5, one can remark that the computed impulses produce a relative trajectory that enters the hovering region and remains therein for the imposed true anomaly interval. From the figures depicting the evolution of the in-plane x and z coordinates trajectories, one can remark that the increase of the degree of the RPAs produce tighter certificate envelopes (in green) for the errors. This is well illustrated by comparing the detailed views presented in Fig. 4.7: the RPAs of degree 5 produce a certificate of approximatively 5 m for the excursion of the trajectory, while the RPAs of degree 7 produce a much lower excursion certificate of approximatively 25 cm. From Fig. 4.8, it is possible to observe that the certificates for y are tighter than those obtained for the in-plane coordinates x and y (the upper and lower certificates cannot even be distinguished without zooming). This is explained by the fact that the out-of-plane dynamics is described by a simpler harmonic oscillator as previously presented in (4.11), which can be efficiently approximated by low degree polynomials. For instance, both RPAs produce final certificate enclosure of less than 2 cm for the relative trajectory.

Conclusions

An approximation method for obtaining rigorous polynomial approximations of the solutions of LODE via Chebyshev series has been described in this chapter. An extension of this technique for the case of multidimensional LODEs with non-polynomial coefficients was employed to obtain a validated guidance algorithm based on SDP for the rendezvous hovering phases. The use of the obtained RPAs and interval arithmetic allows the validation of the propagation of the relative trajectories, providing an automated a posteriori certification method to certify the computed control actions. Future experiments would assess the tractability of problem P.SDP on devices dedicated to space applications, focusing on the analysis of the relation between the computational burden and the precision of the polynomial approximations.

Conclusion and future works

The main goal of this work is the development of new validated optimization-based guidance and control algorithms for the spacecraft rendezvous hovering phases. These algorithms are both sufficiently comprehensive to account for all the complex constraints of the problem, and efficient to be numerically solved in reasonable time on devices dedicated to space applications (LEON3 microprocessors).

A model predictive control strategy is proposed, ensuring the convergence and stationkeeping of the relative motion inside the hovering region, even when the saturation of the thrusters is taken into account. This control strategy is based on the iterative resolution of an optimal fixed-time guidance problem that employs a simplified linearized synthesis model (described in Chap. 1) to perform the propagation of the spacecraft relative trajectories. In order to obtain efficient algorithms, we focused on several reformulations of this optimal guidance problem. One of them (see Chap. 2) is an original contribution of this work, and consists in a new exact and finite description of the set of admissible periodic relative trajectories that only relies on closed-form expressions depending on the space constraints and on the entries of the state vector. During numerical tests, this new finite approach showed computation times of the order of magnitude of those obtained for traditional discretization methods, with the advantage of not systematically violating the space constraints.

In future works, a further generalization of this optimal guidance problem could consider that the control application dates are not a priori fixed and periodical. In this sense, we proposed a very recent and preliminary result in [START_REF] Louembet | Event-triggered Model predictive control for spacecraft rendezvous[END_REF]. Ideally, in order to reduce even more the conservativeness, the number of control actions and their application dates could be set as decision variables of the problem. This could, however, generate problems that are too cumbersome to be solved in low-performance devices, and a trade-off remains to be found.

To assess the performance of our algorithms, a particular effort was devoted to the construction of a processor-in-the-loop simulator, described in Chap. 3, which replicates the behavior of control algorithms embedded on a real spacecraft. Its operation consists in a loopcommunication between the nonlinear simulator that computes the evolution of the spacecraft relative trajectories and the device that employs the LEON3 microprocessor to compute the control actions. Simulations performed in this processor-in-the-loop framework reveal that although the proposed model predictive approach may produce greater convergence times, it is more efficient with respect to fuel consumption than other methods proposed in the literature.

Moreover, this approach is numerically tractable in reasonable time when embedded in space dedicated devices. The proven convergence (see Chap. 3) of the proposed model predictive control strategy intuitively suggests a certain level of robustness, which is observed in practice during the simulations. An extension of our work will consist in a deeper theoretical study of the properties of the closed-loop system, which should provide an idea of how robust the system is to uncertainties.

Another important aspect treated in this thesis is mission safety. For this purpose, two (ground support) validation strategies for our algorithms are presented: first, a "classical" simulator (described in Chap. 1) relying on the numerical integration of the Gauss planetary equations under disturbances provides a high fidelity reproduction of the (nonlinear, perturbed) relative motion. This is employed to validate via numerical simulations the relative trajectories of the linearized synthesis model.

However, since these simulations contain numerical errors, we also focused on a validation technique which takes both approximation and rounding errors into account. We debuted our study in Chap. 4, with the validation of the relative trajectories generated by the control actions computed at each call of the optimal guidance problem, and provided an automated numerical certification method to inspect the satisfaction of the constraints of the problem. This is based on rigorous polynomial approximations (error-bounded polynomials that approximate functions on a given interval) of the linearized synthesis model and interval arithmetic.

In future works, we intend to develop validation techniques for the solutions of more general differential equations, such as the disturbed nonlinear Tschauner-Hempel equations, which would provide also a certification tool for the general simulation model.

Finally, synchronous programming languages would help to certify the proposed controller codes from the industrial point of view. Then, these controller codes could be embedded on small or end-of-life satellites for the accomplishment of short missions, which would allow the evaluation of the behavior and robustness of the proposed techniques in a real space environment.

relative motion in the ECI frame: For f z px, y, zq we have:

f z p0, 0, 0q " µ R 2 ,
Bf z Bx ˇˇˇp 0,0,0q " 3µxpz ´Rq b px 2 `y2 `pR ´zq 2 q 5 ˇˇˇˇˇp 0,0,0q " 0, Bf z By ˇˇˇp 0,0,0q " 3µypz ´Rq b px 2 `y2 `pR ´zq 2 q 5 ˇˇˇˇˇp 0,0,0q " 0, and the vector of its coefficients q " " 232 196 77 14 1 ı T . Let us verify if there exists R 3ˆ3 Q Y ľ 0 that satisfies q " Λ ˚pY q: The pairs px, yq P R 2 such that f px, yq " 0 are exactly those generating the plot presented in Fig. C.2.

Techniques to compute a sub-gradient for different types of non-smooth functions are presented in the first chapter of [START_REF] Shor | Minimization methods for non-differentiable functions[END_REF]. The sub-gradient method consists in an algorithm that generates a sequence tξ k u 8 k"0 according to the formula ξ k`1 " ξ k ´hk`1 g θ pξ k q (E.2.1) for a given convex function θ defined on E n , the euclidean n-space, and an initial point ξ 0 . 

BFGS method applied to non-smooth functions

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) method is a quasi-Newton optimization method that, for a given continuous and differentiable function f , iteratively employs the known information about its gradients ∇f to build an estimate of its inverse Hessian ∇ 2 f ´1, performing local quadratic approximations of the original function.

Under certain assumptions [START_REF] Powell | Some global convergence properties of a variable metric algorithm for minimization without exact line searches[END_REF], this method produces a sequence of iterations that converges to the minimal value of f . Nevertheless, Lewis and Overton have assessed the behavior of this method when applied to non-smooth functions, showing that convergence rates better than those obtained by the sub-gradient method are generally observed [START_REF] Lewis | Nonsmooth optimization via BFGS[END_REF][START_REF] Lewis | Nonsmooth optimization via quasi-newton methods[END_REF]. The main shortcoming of this method is that it may break down, stagnating at a point at which the function is not differentiable.

In [64, Algorithm 2.1], Lewis and Overton define a quasi-Newton method as follows: "let

x k denote the current point at iteration k " 0, 1, ... The gradient of f at x k is denoted ∇f px k q and abbreviated to ∇f k . We use H k to denote a positive definite matrix which is an estimate of the inverse Hessian ∇ 2 f px k q ´1:" For the BFGS method for non-smooth functions with inexact line search in particular, the update of H is made by: Optimization1 , see [START_REF] Lewis | Nonsmooth optimization via BFGS[END_REF]).

H k`1 " V k H k V T k `tk pp T k y k q ´1p k p T k , where V k " I ´pp T k y k q ´1p k y T k (E.

E.4 BFGS + sub-gradient hybrid method

Hereafter we present an algorithm based on the two optimization methods previously presented that can used to address the problem (P k ). We opt to employ both the algorithms in order to take advantage of their distinct strengths: the quasi-Newton algorithm benefits of a faster decrease of the penalized objective function along the iterations, while only the sub-gradient method has guaranteed convergence, being used to refine the approximated solution obtained in the previous step. A pseudo-code representing the described strategy is given in Algorithm 5.

Algorithm 4: Inexact line search algorithm

Require : Function f and its gradient ∇f , point x, direction p, 0 ă c 1 ă c 2 ă 1 1 α Ð 0 2 β Ð `8 We define the penalized problems as: rx ˚, y ˚sη " argmin |x| `|y| `η . max 0, px ´10q 2 ´y(( (Ex')

The following expression provides one sub-gradient of the penalized objective function at 
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 24 Figure 2.4 -Example of "football" orbit not centered at the target spacecraft (source [106], Fig. 2-7).
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 26 Figure 2.6 -Original admissible set (dashed line) and admissible set obtained after discretization (continuous lines).

  This is a joint work with M. Joldeş, C. Louembet and F. Camps (research engineer, LAAS-CNRS), presented in the 20th IFAC World Congress (IFAC 2017) under the title Model predictive control for rendezvous hovering phases based on a novel description of constrained trajectories [7].
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 210 Figure 2.10 -AEROFLEX GAISLER GR-XC6S board.

Figure 2 .

 2 Figure 2.11 depicts the obtained periodic relative trajectory after the application of the 5 impulsive velocity corrections computed by the SDP algorithm departing from the initial state X 01 .
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 31 Figure 3.1 -Model predictive control feedback scheme.
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 32 Figure 3.2 -Trajectory evolution and control actions.
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 33 Figure 3.3 -Generation of an admissible periodic trajectory.
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 34 Figure 3.4 -Pattern of impulsive velocity corrections along the true anomaly for a number of impulses N " 3.
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 35 Figure 3.5 -Illustration of pointsA, A1 , B, B 2 , C and convex K

Proposition 3 . 3 . 8 (

 338 Invariance). The set S D is invariant under the action of the instructions defined in Algorithm 2.

  3.6): each call of the MPC algorithm is executed on the board dedicated to space applications presented in Section 2.4.1; the computed control actions are sent via a network connection to a computer running the simulation model that integrates the relative motion between spacecraft described in Section 1.2.1.
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 36 Figure 3.6 -Processor-in-the-loop environment: network connection between board and simulator via user datagram protocol.

Fig. 3 .

 3 Fig.3.13 indicates that a small number of impulses should be chosen, since the fuel consumption increases with the growth of this parameter. The increase of the fuel consumption with the eccentricity (Fig.3.14) or with the reduction of the interval between impulses (Fig.3.15) are consistent with results previously presented in the literature (similar behavior was observed in[START_REF] Deaconu | On the trajectory design, guidance and control for spacecraft rendezvous and proximity operations[END_REF] Section 6.4]). Different choices of initial true anomaly produce a sinusoidal profile for the fuel consumption, which implies the existence of a fuel-optimal choice for
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 37 Figure 3.7 -Results for trajectory X 03 (SDP approach).

  Computed and applied impulses during nonlinear simulation. (c) Convergence to admissible set.
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 38 Figure 3.8 -Results for trajectory X 04 (SDP approach).

  Computed and applied impulses during nonlinear simulation. (c) Convergence to admissible set.
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 39 Figure 3.9 -Results for trajectory X 03 (ENV approach).

  Computed and applied impulses during nonlinear simulation. (c) Convergence to admissible set.
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 310 Figure 3.10 -Results for trajectory X 04 (ENV approach).

  (a) Effect of disturbances in nonlinear simulations. (b) Impulses producing a periodic trajectory.
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 311 Figure 3.11 -Details of results obtained for trajectory X 04 (SDP approach).

Figure 3 .

 3 Figure 3.12 -Trajectory X 04 , linear simulation. Decrease of the mismatch ratio after each sequence of 3 impulses (SDP approach).
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 313 Figure 3.13 -Impact of number of impulses on fuel consumption.
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 314 Figure 3.14 -Impact of eccentricity on fuel consumption.
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 315 Figure 3.15 -Impact of true anomaly interval between impulses on fuel consumption.
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 316 Figure 3.16 -Impact of initial true anomaly on fuel consumption.
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 317318431025102511066 Figure3.17 -Impact of true anomaly interval between impulses to generate peridic trajectories on fuel consumption

Definition 4 .rf s 0 " 1 π ż π 0 f pcos ϑqdϑ, rf s n " 2 π ż π 0 f pcos ϑq cospnϑqdϑ pn ě 1q. Definition 4 . 2 . 4 (

 400424 2.2 (Chebyshev polynomials).The polynomials defined by the three-term recurrence T n`2 " 2XT n`1 ´Tn , with initial terms T 0 " 1 and T 1 " X are the so-called Chebyshev polynomials. Definition 4.2.3 (Chebyshev coefficients). Let f be a continuous function over the interval r´1, 1s. Then, its Chebyshev coefficients are given by: Truncated Chebyshev series). Let f be a continuous function over the interval r´1, 1s. Then, a truncated Chebyshev series of f is given by:

Figure 4 . 1 -

 41 Figure 4.1 -Matrix representation of K in Chebyshev basis, truncated at order 20. Almost-banded structure given by initial coefficients (blue) and diagonal ones (green)

Fig. 4 .

 4 Fig. 4.1. By rearranging the basis of pЧ 1 q d from T 0 e 1 , T 1 e 1 , T 2 e 1 , . . . , T 0 e d , T 1 e d , T 2 e d , . . . to T 0 e 1 , . . . , T 0 e d , T 1 e 1 , . . . , T 1 e d , . . . , where pe 1 , . . . , e d q designates the canonical basis of R d , we end up again with an almost-banded structure depicted in Figure 4.2. Hence, the numerical solving essentially works as in the scalar case.

  (a) Block matrix representation of vectorial K (b) Almost-banded structure of vectorial K in the rearranged basis

Figure 4 .

 4 Figure 4.2 -Two representations of vectorial integral operator K

Figure 4 .

 4 Figure 4.3 gives these values in function of the time interval ν f ´ν0 and the eccentricity e of

  Approximation degree p needed to approximate coefficient τ Þ Ñ ω 2 p4 ´3{p1 `e cos νpτ qqq with a Ч 1 -error less than 1 Truncation order n needed to obtain a contracting Newton-like operator for LODE(4.10) 

Figure 4 . 3 -

 43 Figure 4.3 -Parameters evolution during validation of LODE (4.10) in function of eccentricity e and total time rν 0 , ν f s " r0, 2κπs

  XZ projection of obtained trajectory.

Figure 4 . 5 -

 45 Figure 4.5 -Obtained relative trajectory without certification.

  YZ projection of obtained trajectory.

  view of obtained trajectory.
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 45 Figure 4.5 -Obtained relative trajectory without certification.

  X-trajectory, RPAs of degree 7.

Figure 4 . 6 -

 46 Figure 4.6 -X-coordinate in function of true anomaly for RPAs of degrees 5 and 7.

( d )

 d Final uncertainty for x-trajectory, RPAs of degree 7.

Figure 4 . 6 -

 46 Figure 4.6 -X-coordinate in function of true anomaly for RPAs of degrees 5 and 7.

Figure 4 . 7 -

 47 Figure 4.7 -Z-coordinate in function of true anomaly for RPAs of degrees 5 and 7.

Figure 4 . 7 -

 47 Figure 4.7 -Z-coordinate in function of true anomaly for RPAs of degrees 5 and 7.

  Y-trajectory, RPAs of degree 7.

Figure 4 . 8 -

 48 Figure 4.8 -Y-coordinate in function of true anomaly for RPAs of degrees 5 and 7.

d 2 r lf dt 2 `••

 2 ˇˇˇF O " ´µ } r ef } 3 r ef `µ } r el } 3 r el . (A.1.1)The relation between accelerations in the frames F O and F L is given by: ΩF L {F O ˆ´ Ω F L {F O ˆ r lf loooooooooooooooomoooooooooooooooon centrifugal acceleration.Using the expressions of r lf and Ω F L {F O in the LVLH frame:r lf | F L " " x, y, z ı T , (A.1.2) Ω F L {F O ˇˇF L " " 0, 0, ´9 ν ı T ,each component of the acceleration can be computed as follows: The apparent acceleration: The centrifugal acceleration:Ω F L {F O ˆ´ Ω F L {F O ˆ r lf ¯to:f x px, y, zq « f x p0, f y px, y, zq we have:f y p0, 0, 0q " 0, to: f y px, y, zq « f y p0,

Y 11 Y 12 Y 13 Y 12 Y 22 Y 23 Y 13 Y 23 Y 11 Y 12 Y 13 Y 12 Y 22 Y 23 Y 13 Y 23 Y 11 Y 12 Y 13 Y 12 Y 22 Y 23 Y 13 Y 23 Y 11 Y 12 Y 13 Y 12 Y 22 Y 23 Y 13 Y 23 Y 11 Y 12 Y 13 Y 12 Y 22 Y 23 Y 13 Y 23

 11121312222313231112131222231323111213122223132311121312222313231112131222231323 ñ Y 33 " 1 Let us choose Y 13 " 10 and Y 22 " 57 and test the positivity of the leading principal minors of Y :D 1 pY q " 232 ą 0, leading principal minors of Y are positive, we conclude that Y is positive definite and, consequently, Qpwq ě 0, @w P R. determinant of the following Sylvester's Matrix:

  3.1) and the line search algorithm is given by Algorithm 4 [64, Algorithm 4.6]. The Algorithms 3 and 4 are inspired on the implementation of the non-smooth BFGS method with inexact line search in a MATLAB R package called HANSO (Hybrid Algorithm for Non-Smooth

  any arbitrary point px, yq: gpx, yq " » -sgnpxq sgnpyq fi fl `η . 1 tpx´10q 2 ´yě0u px, yq » -2px ´10q ´1 fi fl (E.5.1)

  

  

Chapter 1. Modeling the problem Kara

  -Zaitri in his PhD thesis[START_REF] Kara-Zaitri | Modélisation et guidage robuste et autonome pour le problème du rendez-vous orbital[END_REF] Chapter 4]. Some adjustments were performed in order

	16)
	A simulator for the nonlinear disturbed movement based on the previously presented
	equations (1.8), (1.11), (1.14) and (1.15) was developed on Matlab R /Simulink R and in C.
	The Matlab R /Simulink R simulator is a modified version of the one proposed by Mounir

Table 1

 1 

	.1 -Evaluating the linearization hypothesis: difference between nonlinear and linearized
	Tschauner-Hempel equations.					
	T sim 200 7e`6 0.04 1 1.17e´6 1.19e´6 2.22e´7 1.17e´8 1.22e´8 3.59e´9 a e n |∆x f | |∆y f | |∆z f | |∆ 9 x f | |∆ 9 y f | |∆ 9 z f |
	-		-	-	2 1.17e´4 1.19e´4 2.22e´5 1.17e´6 1.22e´6 3.59e´7
	-		-	-	3 1.17e´2 1.19e´2 2.22e´3 1.17e´4 1.22e´4 3.59e´5
	-		-	0.1 1 1.52e´6 1.59e´6 3.44e´7 1.53e´8 1.69e´8 5.82e´9
	-		-	-	2 1.52e´4 1.59e´4 3.44e´5 1.53e´6 1.69e´6 5.82e´7
	-		-	-	3 1.52e´2 1.59e´2 3.43e´3 1.53e´4 1.69e´4 5.81e´5
	-	8e`6 0.04 1 6.87e´7 6.96e´7 1.03e´7 6.87e´9 7.08e´9 1.63e´9
	-		-	-	2 6.87e´5 6.96e´5 1.03e´5 6.87e´7 7.08e´7 1.63e´7
	-		-	-	3 6.87e´3 6.96e´3 1.03e´3 6.87e´5 7.08e´5 1.63e´5
	-		-	0.1 1 8.91e´7 9.18e´7 1.56e´7 8.96e´9 9.59e´9 2.56e´9
	-		-	-	2 8.91e´5 9.18e´5 1.56e´5 8.96e´7 9.59e´7 2.56e´7
	-		-	-	3 8.92e´3 9.18e´3 1.56e´3 8.96e´5 9.60e´5 2.55e´5
	1500 7e`6 0.04 1 6.77e´2 1.71e´4 1.31e´1 2.51e´3 7.65e´7 1.46e´3
	-		-	-	2 6.67e`0 1.71e´2 1.14e`1 2.51e´1 7.65e´5 1.51e´1
	-		-	-	3 5.43e`2 1.65e`0 1.29e`3 2.48e`1 7.56e´3 2.07e`1
	-		-	0.1 1 1.45e`2 9.09e´3 2.90e`3 1.16e`1 1.19e´4 4.66e`1
	-		-	-	2 3.72e`4 4.79e´1 1.23e`5 2.89e`2 3.83e´3 1.90e`3
	-		-	-	3 1.14e`6 5.01e`1 9.45e`5 5.19e`3 1.50e´1 1.25e`4
	-	8e`6 0.04 1 6.48e´3 7.18e´5 1.55e´2 7.96e´5 4.75e´7 1.76e´5
	-		-	-	2 6.46e´1 7.16e´3 1.55e`0 7.98e´3 4.75e´5 1.69e´3
	-		-	-	3 6.29e`1 6.96e´1 1.56e`2 8.18e´1 4.67e´3 9.78e´2
	-		-	0.1 1 2.57e`1 1.28e´3 9.44e`0 7.70e´1 1.78e´6 2.77e´1
	-		-	-	2 2.30e`3 1.34e´1 5.85e`2 5.77e`1 2.69e´4 2.64e`1
	-		-	-	3 1.53e`5 2.25e`1 5.11e`3 2.20e`3 7.34e´2 5.66e`2
			10 7						10 7
		Relative distance [m]	3.6 3.65 3.7 3.75	Nonlinear Linear			Relative x coordinate [m]	-1.95 -1.9 -1.85 -1.8 -1.75	Nonlinear Linear
			1495	1496	1497	1498	1499			1440	1460	1480	1500
					Time					Time
										10 7
		Relative y coordinate [m]	100 200 300			Nonlinear Linear	Relative z coordinate [m]	-3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2	Nonlinear Linear
			0							
			1200		1300	1400	1500			1475	1480	1485	1490	1495	1500
					Time					Time
	Figure 1.6 -Linear and nonlinear simulations (T

sim " 1500, a " 8e`6, e " 0.1, n " 3).
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  of the problem. This leads to an unconstrained optimization problem (see

	Appendix E.1 for further details):							
	min ∆V	Jp∆V q	`η	˜max |d 0 pν N q|, 0	(	`ÿ i,j	max |∆V i,j | ´∆V , 0	(	`ÿ w	g w pD `pν N qq, 0	( where

1 http://gaisler.com/anonftp/linux/linux-2.6/toolchains/sparc-linux-4.4.2/ sparc-linux-ct-multilib-0.0.7.tar.bz2 2 LAPACK official site: http://www.netlib.org/lapack/, Archives: http://www.netlib.org/lapack/ lapack-3.7.0.tgz the constraints

Table 2

 2 

				.1 -Scenarios	
			Parameters	
	a [m]	e	ν 1 [rad] ∆ν [rad] N ∆V [m/s]
	6777280 0.00039	π	π{2	5	2

Table 2

 2 

				.2 -Results for the ENV method		
		X 01				ENV			
		I qn	25	25	25	50	50	50	100	100	100
		I sg	250	500	1000	250	500	1000	250	500	1000
		Time	2.064	2.900	4.669	2.181	2.562 3.344 2.164 2.578 3.353
		Cons.	0.461	0.461	0.461	0.461	0.461 0.461 0.461 0.461 0.461
	max w	|d 0 pν N q| tg w pD `pν N qqu	0.049 ď 0	0.049 ď 0	0.049 ď 0	0.000 ď 0	0.000 0.000 0.000 0.000 0.000 ď 0 ď 0 ď 0 ď 0 ď 0
		X 02				ENV			
		I qn	25	25	25	50	50	50	100	100	100
		I sg	250	500	1000	250	500	1000	250	500	1000
		Time	2.048	2.466	3.325	2.328	2.865 3.776 2.334 2.862 3.763
		Cons.	1.312	1.314	1.314	1.299	1.299 1.299 1.299 1.299 1.299
	max w	|d 0 pν N q| tg w pD `pν N qqu	1.512 ď 0	0.000 ď 0	0.000 ď 0	0.000 ď 0	0.000 0.000 0.000 0.000 0.000 ď 0 ď 0 ď 0 ď 0 ď 0
		X 03				ENV			
		I qn	25	25	25	50	50	50	100	100	100
		I sg	250	500	1000	250	500	1000	250	500	1000
		Time	2.064	2.957	4.702	2.196	2.695 3.477 2.186 2.696 3.484
		Cons.								

  the saturation is violated by the in-plane impulses4 if }∆V xz } 8 ą ∆V then// If the trajectory is periodic ∆V p∆V xz q // If the trajectory is not periodic∆V xz Ð γ p pd 0xz pν 1 q, ν 1 q; ∆V xz and ∆V ẙ at ν 1 13 ν 1 Ð ν 1 `τP ; //wait τ P before call algorithm again 14 call Algorithm 2 with updated inputs ; // recursive call of the algorithm // If the saturation is violated by the out-of-plane impulses 15 if }∆V ẙ } 8 ą ∆V then ∆V xz and ∆V ẙ at ν 1 . . . ν N 18 ν 1 Ð ν N `τS ; // wait τ S before call algorithm again 19 call Algorithm 2 with updated inputs; // recursive call of the algorithm

	7	else
	8	∆V ẙ Ð 0;
	10	if }∆V xz } 8 ą ∆V then

5 if d 0xz pν 1 q "" 0 then 6 ∆V xz Ð γ 9 11 ∆V xz Ð γ ∆V p∆V xz q; 12 apply impulse 16 ∆V ẙ Ð γ ∆V p∆V ẙ q;

17 apply impulses

  pν 1 , . . . , ν N q∆V xz P S Dxz Then the function γ xz is well-defined if the feasible set S Dxz is not empty. Equivalently, @D xz P R 4 , D xz P S Dxz ‰ H, D∆V xz P R 2N s.t. D xz " D xz `Mxz pν 1 , . . . , ν N q∆V xz . Proof. Consider ∆V xz " M K 0 pν 1 , . . . , ν N qλ `∆V 0 as in (3.4). As demonstrated in Proposition 3.3.1 it is always possible to set d 0xz to 0 with a single impulse. Since M K 0 pν 1 , . . . , ν N qλ has no influence on the first entry of D xz ´Dxz , one can conclude that ∆V 0 can be chosen to set the first entry of D xz ´Dxz to any arbitrary value.

	(3.8)

  .9) because of the hypothesis on ν 1 , . . . , ν N . This implies that @D xz , D xz P R 4 it is possible to chose λ and ∆V 0 in such a manner that ∆V Although only 2 impulses are needed to generate an out-of-plane admissible trajectory, N is set to a number greater or equal to 3 just like for the in-plane case for sake of simplicity. Similarly, in the minimization problems (3.7) and (3.8), one arbitrary minimum is chosen when the problem is not strictly convex.

	Remark 3.3.6.

xz pλq " M K 0 pν 1 , . . . , ν N qλ `∆V 0 satisfies D xz " D xz `Mxz pν 1 , . . . , ν N q∆V xz . This is also particularly true if D xz P S Dxz ‰ H. Remark 3.3.5.

  paradigm of a posteriori validation methods is particularly well suited for spectral methods. Since it was explained in the previous section how to compute approximate solutions for LODE (4.2), it can now be considered that some approximating truncated Chebyshev series is given and focus on the validation method itself. A wide majority of a posteriori validation methods are based on the Banach fixed-point theorem and variations around it. Let pE, } ¨}E q be a Banach space and T : E Ñ E an affine operator whose linear part DT is a bounded linear endomorphism. If T is contracting, that is, if }DT } E " µ ă 1, then it admits a (necessarily unique) fixed point x ˚P E, which is a solution

	This theorem can be stated in this simplified version:			
	Theorem 4.3.1. of the equation:				
		T ¨x " x,			(4.5)
	and for a given x P E, the following enclosure holds for its distance to x ˚:	
	}x ´T ¨x} E 1 `µ	ď }x ´x˚} E ď	}x ´T ¨x} E 1 ´µ	.	(4.6)

  Steering into the hovering region within N velocity correctionsAssuming, as in previous chapters, that this hovering range is a rectangular cuboid:x ď xptq ď x y ď yptq ď y z ď zptq ď z, @t P rt N , t N `1s.

								Initial point
								Impulses
								XY Trajectory
	y						
	-20						
	50 t 1	100 t 3 (a) XY projection of obtained trajectory. 150 200 t 2 t N-1 x t N+1 t N	250
	Figure 4.4 -(4.15)
	Changing the simplified coordinates back to the Cartesian coordinates (1.18):
	" xptq, yptq, zptq ı	"	1 P pνq 1 `e cos ν looooomooooon	"	xpνq, ȳpνq, zpνq ı	.	(4.16)
	Let r P pνq ą 0 be a positive RPA of P pνq on the interval rν N , ν N `1s such that | r P pνq pνq| ă ε P , @ν P rν N , ν N `1s and the polynomials r P x pνq, r P y pνq, r P z pνq defined as:	Ṕ
	" P x pνq r r P y pνq r P z pνq ı T	"	" I 3 O 3	ı	r Xpνq.	(4.17)
	Then, a certified rational polynomial approximation for the LVLH relative positions is given
	by:						
	r xptq " r P x pνq{ r P pνq, r yptq " r P y pνq{ r P pνq, r zptq " r P x pνq{ r P pνq

  Shor presents in[START_REF] Shor | Minimization methods for non-differentiable functions[END_REF] Theorem 2.2] the following theorem providing a method to solve the intermediate problems (P k ): Let θ be a convex function defined on E n which has a bounded set of minimum points I ˚and let a sequence of positive numbers th k u, k " 1, 2, . . . , satisfy the Then for any ξ 0 P E n the sequence tξ k u, k " 1, 2, . . . , generated according to the formulaξ k`1 " ξ k ´hk`1 g θ pξ k q }g θ pξ k q} 2 (E.2.2)has the following property: either an index k exists such that ξ k P I ˚, or

	Theorem E.2.1. conditions:		lim kÑ8	h k " 0,	8 ÿ k"1	h k "	`8
	lim kÑ8	min ξ 1 PI ˚}ξ k	´ξ1 } 2 " 0 and lim

kÑ8 θpξ k q " min ξPEn θpξq " θ E.3

Algorithm 3 :

 3 Quasi-Newton algorithmRequire : x 0 with f differentiable at x 0 , set H 0 to a positive definite matrix and k Ð 0; tolerance ǫ Ð x k `tk p k , where t k ą 0 is chosen by a line search4 if f is not differentiable at x k`1 , or ∇f k`1 " 0, stop 5 set y k Ð ∇f k`1 ´∇f k choose H k`1 to be a positive definite matrix satisfying the secant condition H k`1 y k " t k p k

	1 repeat
	2 3 set x k`1 6 set p k Ð ´Hk ∇f k k Ð k `1

7 until }∇f k`1 } 2 ă ǫ; Output : x k`1

  px `t pq ´f pxq ě c 1 t ∇f pxq T p then px `t pq T p ď c 2 ∇f pxq T p then Hereafter, we assess the optimization methods previously presented by analyzing their performances when applied to the following non-smooth optimization problem: rx ˚, y ˚s " which has rx ˚, y ˚s " r9.50, 0.25s as solution.

	6 7 8	β Ð t else if lim tÑ0 stop, break down f px`t pq´f pxq t	does not exist then
	10 11	α Ð t else	
	12	stop, admissible step found
	13 14 15	if β ă `8 then t Ð pα `βq{2 else	
	16	t Ð 2α	
			$ & %	argmin |x| `|y| s.t. px ´10q 2 ´y ď 0	(Ex)

3 t Ð 1 4 repeat 5 if f 9 else if ∇f 17 end 18 until Maximum number of iterations reached; Output : t E.5 Testing the algorithms

https://www.jpl.nasa.gov/missions/mars-sample-return-msr/

i.e., the accuracy of the results must be verified by an estimation of the committed numerical error.

https://hal.archives-ouvertes.fr/hal-01413328

https://hal.archives-ouvertes.fr/hal-01410075

https://www.heavens-above.com/IssHeight.aspx

The MATLAB R function ode45 is employed, with options RelTol " 10 ´6 and AbsTol " 10 ´6

`w2 , sinpνq "

2w 1 `w2 .(2.2)The inequalities in (1.31) are then reformulated as univariate polynomial non-negativity constraints:Γ x pDpν 0 q, wq ě 0, Γ x pDpν 0 q, wq ě 0, Γ y pDpν 0 q, wq ě 0, Γ y pDpν 0 q, wq ě 0, Γ z pDpν 0 q, wq ě 0, Γ z pDpν 0 q, wq ě 0,

CSDP official site : https://projects.coin-or.org/Csdp/

the sup norm } ¨}8 or the Ч 1 -norm } ¨}Ч 1 defined later in this section in (4.1).

http://www.cs.nyu.edu/overton/software/hanso/
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Convergence times T c for each simulations are reported in Table 3.2. The non linear simulation environment has little impact on convergence performances except for the initial condition X 04 . Comparing with the hybrid controller developed in [START_REF] Brentari | A hybrid control framework for impulsive control of satellite rendezvous[END_REF], the proposed approaches are not generally the best. For instance, for X 01 the control law B in [START_REF] Brentari | A hybrid control framework for impulsive control of satellite rendezvous[END_REF] generates a convergence time equal to 0.34 orbits, while the proposed SDP and ENV approaches take twice as much time to converge. This indicates that the proposed strategy gives more emphasis to reducing the consumption than producing short convergence times. Besides, when the initial condition recedes from the hovering zone, the MPC controller abilities to account for input constraints permit to ensure the convergence and limit the convergence time. On the other hand, the behavior of hybrid controllers is degraded in terms of convergence and consumption due to the presence of the saturation (one of the examples of application of the hybrid controller even diverges). 2.69 1.70 1.67 2.66 Table 3.3 and 3.4 permit one to compare the numerical performance both SDP and ENV based controllers. For both approaches, the average time to compute a sequence of N " 3 impulses is lower than 3.0 seconds and the maximal running time is never longer than 4.0 seconds (this time is negligible when compared to the orbital period T " 2π a a 3 {µ « 5842 seconds). Moreover, the amount of memory allocated by the execution of the binaries are 5056

Kbyte for the SDP approach and 5584 Kbyte for the ENV approach -these are reasonable values compared to the available memory of approximatively 90 Mbyte. 

Fuel-optimal impulsive validated guidance problem

Using the developments presented in the previous section for obtaining a validated description of the constrained relative trajectories, the fuel-optimal impulsive validated guidance problem for the rendezvous hovering phases is formulated as follows:

Problem 4. 

(P.SIP)

This problem is a semi-infinite program (SIP), since the space constraints must be satisfied for infinitely many values of ν. However, the polynomial inequalities in P.SIP can be converted into so-called linear matrix inequalities (LMIs) using the results on the parametrization of non-negative polynomials on the cone of semi-definite positive matrices presented by [81, Theorems 9 and 10], resulting in the semi-definite program (SDP) described in P.SDP (see

Appendix B).

Problem 4.5.2. Consider the scenario: eccentricity e, semi-major axis a, initial state Xpν 1 q P R 6 , number of control actions N P N and final true anomaly ν N `1. Find N impulses ∆V P R 3N applied at given fixed instants ν 1 , . . . , ν N , such that:

where r p w is the vector containing the coefficients of the respective non-negative polynomials in the SIP formulation and Λ ˚is a bilinear operator (more details in [START_REF] Deaconu | On the trajectory design, guidance and control for spacecraft rendezvous and proximity operations[END_REF][START_REF] Deaconu | Constrained periodic spacecraft relative motion using non-negative polynomials[END_REF][START_REF] Nesterov | Squared functional systems and optimization problems[END_REF]).

The advantages of reformulating P.SIP are twofold:

• In the SIP formulation, the space constraints are described by infinitely many constraints on the true anomaly, requiring discretization techniques to efficiently compute a "solution". This solution, however, will systematically violate the constraints of the original problem. On the other hand, the SDP formulation provides a finite and exact description of the constraints;

• In previous works [START_REF] Camps | Embedding a sdpbased control algorithm for the orbital rendezvous hovering phases[END_REF][START_REF] Deaconu | Constrained periodic spacecraft relative motion using non-negative polynomials[END_REF], SDP solvers were employed in the conception of control strategies for the spacecraft rendezvous problems, showing good performances even in environments with limited computational resources, such as devices dedicated to space applications.

Results

Hereafter the results obtained by solving the validated guidance algorithm for the scenario described by the parameters given in Table 4.1 are presented. ∆V " 1 m/s Initial relative state [m, m/s]:

Xpν 1 q " r200, 150, 100, 0, 0, 0s Hovering zone rx, x, y, y, z, zs [m]: r50, 150, ´25, 25, ´25, 25s Degree of RPAs: 5, 7

The RPAs were computed by a C implementation of the Chebyshev approximation method previously presented. The respective SDP problem was formulated in Matlab R via Yalmip [START_REF] Löfberg | YALMIP: A toolbox for modeling and optimization in MATLAB[END_REF] (https://yalmip.github.io/) and solved using the SDPT3 solver [START_REF] Tütüncü | Solving semidefinite-quadratic-linear programs using sdpt3[END_REF] (http://www.math.

nus.edu.sg/~mattohkc/sdpt3.html). The certificate enclosures are evaluated by treating the bounds of the RPAs via arithmetic interval [START_REF] Tucker | Validated numerics: a short introduction to rigorous computations[END_REF] with the help of the b4m interval arithmetic toolbox library [START_REF] Zemke | b4m: A free interval arithmetic toolbox for matlab[END_REF] (http://www.ti3.tu-harburg.de/zemke/b4m/).

In Fig. Let be the vectors r lf " ÝÝÑ S l S f , r el " Ý Ý Ñ OS l and r ef " Ý Ý Ñ OS f . Supposing that the gravitational attraction between the spacecraft is negligible and applying Newton's second law of motion to both of them, we obtain:

By subtracting the second equation from the first one, for the left-hand side we have:

Combining with the right-hand side, we obtain an expression for the dynamics of the These accelerations add up to:

The expression of r el in the LVLH frame is:

where Rptq " } Rptq} " ap1 ´e2 q 1 `e cos νptq .

By replacing (A.1.2), (A.1.3) and (A.1.4) in (A.1.1), we obtain:

the so-called nonlinear Tschauner-Hempel equations.

A.2 Linearized Tschauner-Hempel equations

Assuming that the distance between spacecraft is much smaller that the distance from the leader spacecraft to the center of the Earth:

we perform first order approximations of the nonlinear terms f x px, y, zq " ´µx ? px 2 `y2 `pR´zq 2 q 3 , f y px, y, zq " ´µy ?

px 2 `y2 `pR´zq 2 q 3 and f z px, y, zq " ´µpz´Rq ? px 2 `y2 `pR´zq 2 q 3 around the point px, y, zq " p0, 0, 0q via truncated Taylor series expansions:

For f x px, y, zq we have:

which adds up to:

Replacing (A.2.2), (A.2.3) and (A.2.4) in (NLTH), the linearized Tschauner-Hempel equations are obtained:

(LTH)

A.3 Simplified linearized Tschauner-Hempel equations

In [START_REF] Humi | Fuel-optimal rendezvous in a general central force field[END_REF], Humi performs a sequence of manipulations in order to produce a simplified version of the linearized Tschauner-Hempel equations, in which the true anomaly appears as independent variable. These manipulations are presented step-by-step hereafter:

Step 1: Replace 9 ν " k 2 ρ 2 ν , where k 2 " b µ a 3 p1´e 2 q 3 , and ρ ν " p1 `e cos νq in (LTH):

Step 2: Replace time by true anomaly as independent variable using the following relations:

obtaining the following expressions:

where s ν " sin ν and c ν " cos ν.

Step 3: Substitute 9 ν by k 2 ρ 2 ν :

Step 4: Divide both sides by k 3 ρ 3 ν :

Step 5: Subtract ec ν multiplied by the respective coordinate from each equation:

Step 6: Let be Xptq " rx, y, z, 9

x, 9 y, 9 zs T and Xpνq " rx, ỹ, z, x1 , ỹ1 , z1 s T . such that:

Xpνq " T pνqXptq, Xptq " T ´1pνq Xpνq, (A.3.2)

where T pνq is given by:

This variable change induces the following relations:

x

By introducing these new tilde-variables in (A.3.1), we finally obtain the so-called simplified linearized Tschauner Hempel equations::

Appendix B

Univariate non-negative polynomials

In [81, Theorems 9 and 10], Nesterov presents the conditions that an univariate polynomial must satisfy in order to be non-negativity on finite, semi-infinite or infinite intervals of the reals. These conditions are obtained by exploring the existent relations between the cone of of non-negative polynomials and the cone of positive semi-definite matrices.

In the sequel, we present the linear matrix inequalities that the coefficients of a nonnegative univariate polynomial over the reals must satisfy. The reader is invited to consult Let be an even n P N, the vector p " " p 0 . . . p n ı T P R n`1 and the polynomial P pwq " n ÿ i"0 p i w i , @w P R. Then, the condition for the non-negativity of P pwq is:

where Y P R pn{2`1qˆpn{2`1q is a symmetric matrix and the operator Λ ˚p¨q is given by

H m,k pi, jq " 0, otherwise.

Example B.1:

Consider the polynomial

Qpwq " 232 `196w `77w 2 `14w 3 `w4

Appendix C

Envelopes and implicitization C.1 Envelope definition

Let be X P R n , p P R and F pX, pq an one-parameter function, differentiable with respect to p. Let F pX, pq " 0 be the equation that represents a family of hypersurfaces parametrized by p in the n-dimensional Euclidean space.

Definition C.1.1 (Envelope of a family of hypersurfaces). The hypersurface tangent to each of the hypersurfaces of the p-parametrized family F pX, pq " 0 is called the envelope of F and is given by the set of points E defined by: E :" We remark in Fig. C.1 that the set of points at which two neighbor lines intersect are exactly the circle of radius 1 centered at p0, 0q. In fact, we can prove that this circle corresponds to the envelope of F px, y, pq using Def. C.1.1. In order to do so, it suffices to compute the pairs px, yq for which F px, y, pq " BF Bp px, y, pq " 0 :

' % sin 2 ppqx 2 `2 sinppq cosppq `cos 2 ppqy 2 " 1 cos 2 ppqx 2 ´2 sinppq cosppq `sin 2 ppqy 2 " 0 adding ñ x 2 `y2 " 1 .

Although Ex. C.1 illustrates with simplicity how one can obtain the expression of the envelope of a family of curves, for more general cases these expression are not always straightforward to be computed. In the sequel we present an implicitization method that can be employed for this purpose.

C.2 Implicitization method

After computing F pX, pq " 0 and BF Bp pX, pq " 0, we obtain two equations parametrized by p. In some cases, it is not evident how to proceed in order to obtain an implicit expression for the envelope from these equations. However, if both equalities can be reformulated as polynomial equations with complex coefficients, we can employ Sylvester's Matrix implicitization method in order to do so.

We use the example given in [107, Section 2] to explain how this implicitization method can be employed: In order to obtain polynomial equations with complex coefficients, we perform the following change of variables:

cosppq " exppitq `expp´itq 2 " z `1{z 2 and sinppq " exppitq ´expp´itq 2i " z ´1{z 2i .

Then, multiplying the obtained equalities by z 2 , we obtain the following polynomial equations: Once the makefiles have been modified, a simple run of the Make command is needed to generate the CSDP library.

Embedding the libraries:

The computation libraries must be installed on the board (in the case of a non-static compilation) in the standard directory of the libraries.

The variable LD_LIBRARY_PATH must be modified, for example:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib 3 CSDP official site : https://projects.coin-or.org/Csdp/ Appendix E

Non-smooth optimization methods

Hereafter we present methods to address the following problem:

where φ : R n Þ Ñ R is a convex function and C is a compact set in R n defined by equalities and/or inequalities:

where each function

The proposed problem may have more than one solution: in the case where the constraint set is feasible, there exists one global minimum for the problem (guaranteed by the extreme value theorem, compactness of C and convexity of the objective function) that can possibly be attained at more than one point.

E.1 Penalty method

Luenberger and Ye propose in [START_REF] Luenberger | Linear and nonlinear programming[END_REF] a penalty method to approximate this constrained problem by an unconstrained problem. This method consists on removing the constraints and adding a function multiplied by a constant to the objective function to represent the violation of the constraints, the so-called "penalty function". One example of penalty function proposed in [START_REF] Luenberger | Linear and nonlinear programming[END_REF] is:

and the penalized objective function is defined by: Υpξq " tφpξq `ηΨpξqu , (E.1.2)

where η is a positive multiplicative penalizing constant. The penalized problem is then formulated as follows:

Problem E.1.1 (Penalized problem). Find ξ η P R n such that

The idea is that by making the multiplicative constant η tend to infinity, the solution of the penalized problem converges to a solution for the original problem. [START_REF] Luenberger | Linear and nonlinear programming[END_REF]Chapter 13.1] present the following theorem:

Theorem E.1.1 (Penalty method convergence). Let C be a feasible constraint set in (P 0 ).

Let pη i q iPN be a sequence tending infinity such that for each i, η i ě 0, η i`1 ą η i . Then, any limit point of ξ ηi ( is a solution to the original problem (P 0 ).

Notice that so far we did not present a method to solve (P k ). Although several methods are available to address convex smooth optimization problems, the optimization problems we are interested in are characterized by non-differentiable objective functions and constraints.

In the sequel, two methods that can be applied to this class of problems are presented: the quasi-Newton method proposed by Lewis and Overton in [START_REF] Lewis | Nonsmooth optimization via quasi-newton methods[END_REF], which consists in building local quadratic approximations of the penalized function (E.1.2) and computing descent steps using the sub-gradients and the inverse Hessian; and the sub-gradient method proposed by

Shor in [START_REF] Shor | Minimization methods for non-differentiable functions[END_REF], a first-order approach that resembles the steepest decent optimization algorithm, but uses sub-gradients instead of gradients.

E.2 Sub-gradient method

Before presenting the method, let us first give the formal definition of sub-gradients: Definition E.2.1 (Sub-gradient). Let θ be a convex function with domain I Ă R n and let ξ 0 be an interior point of I. A sub-gradient or a generalized gradient of θ at ξ 0 is any vector gpξ 0 q satisfying θpξq ´θpξ 0 q ě xgpξ 0 q, ξ ´ξ0 y , @ξ P I where x¨, ¨y is the scalar product in R n .

Algorithm 5: Algorithm to solve non-smooth convex optimization problems

Input : ξ 1 -initial point Υp¨q -non-smooth convex function to minimize gp¨q -oracle that returns one of the sub-gradients of Υp¨q at a given point I qn , I sg -number of iterations σ -coefficient for the sub-gradient steps (set to 1 if not explicitly specified) Output : ξ -solution

where sgnp¨q is the signum function and 1 A p¨q is the indicator function defined as

E.5.1 Sub-gradient method

We take rx, ys 0 " r0, 0s as initial point, η " 10 8 as penalty parameter and the sequence th k u " σ{k, and we compute the iterations given in (E.2.2). The We remark that the choice of σ can speed up or retard the convergence and, for the case σ " 10, an oscillatory behavior is observed. However, for all the cases, the distance between the iterations presents a tendency to converge to zero.

E.5.2 BFGS method

Using the BFGS method given by Algorithms 3 and 4, we obtain the evolution presented in We observe that the decrease of the distance to the optimum is much steeper than that presented by the curves in Fig. E.1, which confirms the fact that the quasi-Newton method presents better convergence rates that the sub-gradient method. Nevertheless, even before the 20 first iterations, the decrease of the distance to the optimum stagnates and no further improvements are possible (this is due to the fact that the iterations converge to a point where the function is not differentiable, see Fig. 

E.5.3 BFGS + sub-gradient hybrid method

Using the hybrid method described by the Algorithm 5 with 5 iterations of the BFGS method and 20 iterations of sub-gradient method with σ " 1, we obtain the evolution presented in