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Introduction

Motion planning is the field of computer science that aims at developing algorithmic techniques allowing the automatic computation of trajectories for a mechanical system. The nature of such a system will vary according to the fields of application. In computer animation for instance this system could be a humanoid avatar. In molecular biology it could be a protein. The field of application of this work being robotics, the system is here a robot. We define a robot as a mechanical agent controlled by a computer program. The modern meaning of the word seems to come from the English translation of the 1920 play R.U.R. (Rossum's Universal Robots), by Karel Capek, from Czech, robotnik (slave) derived from robota (forced labor). As for the term robotics (the science of robots), it was first used by Isaac Asimov in the 1941 short story Liar! The main feature of a robot is its ability to interact with its environment through motion. Being able to efficiently plan its movements is therefore a fundamental component of any robotic system.

More specifically we will focus here on aerial robotics, i.e. flying robots. Historically the first term used to refer to a remotely operated aircraft was drone (male bee). According to the military historian Steven Zaloga it was the American Commander Delmer Fahrney that first used it in homage to the British remote-control bi-plan DH 82B Queen Bee. However, since a flying robot is not necessarily remotely controlled, we will use in this work the term UAV (Unmanned Aerial Vehicles). Also note that not all UAVs are robots since a UAV could very well be remotely controlled by a human operator instead of a computer program. Aerial robotics has a wild range of applications. Apart from the sadly famous military ones, we can cite photography and video, inspection, surveillance, search and rescue, and even aerial manipulation as we will see later. For these civilian applications a class of devices is more and more used because of its scalability, agility, and robustness: the multi-rotor helicopters. In this work we will focus on the four-rotor kind called quadrotor or sometimes quadcopter.

The classic motion planning problem consists in computing a series of motions that brings the system from a given initial configuration to a desired final configuration without generating collisions with its environment, most of the time known in advance. Usual methods typically explore the system's configuration space regardless of its dynamics. By construction the thrust force that allows a quadrotor to fly is tangential to its attitude which implies that not every motion can be performed. This could, for example, be compared to the fact that a car can not move sideways. Furthermore, the magnitude of this thrust force is limited by the physical capabilities of the engines operating the propellers. Therefore the same applies to the linear acceleration of the robot. For all these reasons, not only position and orientation must be planned, higher derivatives must be planned also if the motion is to be executed. When this is the case we talk of kinodynamic motion planning.

Contents

In motion planning a distinction is usually made between the local planner and the global planner. The former is in charge of producing a valid trajectory between two configurations (or states) of the system without necessarily taking collisions into account. The later is the overall algorithmic process that is in charge of solving the motion planning problem by exploring the configuration space (or the state space) of the system. It relies on multiple calls to the local planner. The first contribution of this thesis is to propose a local planner that interpolates two states consisting of an arbitrary number of degrees of freedom (dof) and their first and second derivatives. Given a set of bounds on the dof derivatives up to the fourth order (snap), it quickly produces a near-optimal minimum time trajectory that respects those bounds. Although in the context of this thesis this local planner is applied to the quadrotor system which state is considered to be its flat outputs (the 3D position of the center of mass and the yaw angle) together with their first and second derivatives, it can more generally be applied to any system with either uncoupled dynamics or that is differentially flat.

In most of modern global motion planning algorithms, the exploration is guided by a distance function (or metric) and some of these algorithms are very sensible to it. The best choice is often to use the cost-to-go, i.e. the cost associated to the local method. For instance if the configuration space is an Euclidean space and the local method is the linear interpolation then the best metric is the Euclidean distance since it is also the cost-to-go. But in the context of kinodynamic motion planning, the cost-to-go is often the duration of the minimal-time trajectory. The problem in this case is that computing the cost-to-go is as hard (and thus as costly) as computing the optimal trajectory itself. The second contribution of this thesis is to propose the use of a specific metric that is a good approximation of the cost-to-go but which computation is far less time consuming.

The dominant paradigm in motion planning nowadays is sampling-based motion planning. This class of algorithms relies on random sampling of the configuration space (or state space) in order to quickly explore it. Several different strategies can be considered. A common sampling strategy is for instance uniform sampling. However, for some types of constrained problems this choice may not be the most efficient. It appears that in our context uniform sampling is in fact a rather poor strategy. We will indeed see that a great majority of uniformly sampled states can not be interpolated. The third contribution of this thesis is an incremental sampling strategy that significantly decreases the probability of this happening.

Please note that this work has been realized in the context of the European funded project ARCAS (Aerial Robotics Cooperative Assembly System) that has been conducted between the years 2012 and 2016 and that proposed the development and experimental validation of the first cooperative free-flying robot system for assembly and structure construction. It paved the way for a large number of applications including the building of platforms for evacuation of people or landing aircrafts, the inspection and maintenance of facilities and the construction of structures in inaccessible sites and in space. The fourth contribution of this thesis is, through this project, the demonstration that an interface between symbolic and geometric planning, previously developed at LAAS-CNRS, can successfully be applied to aerial manipulation. This document is organized as follows:

In Chapter 1 we introduce the general concepts used in motion planning along with a state of the art of there applications to robotics. We then do the same with kinodynamic motion planning. We finally provide an overview of the state of the art of motion planning in the context of aerial robotics.

The focus of Chapter 2 is the quadrotor system itself. We first give a model of its dynamics which in a second time allows us, after a brief introduction to the general principles of control theory, to define its control space and its state space. Its physical constraints in the control space are then discussed. We finally see that the system is differentially flat, which is having an impact on planning.

In Chapter 3 we focus on our proposition of steering method for a quadrotor. We first present the corresponding two-point boundary value problem. A method to solve it, that can be used as a local planner, is then proposed. It is a near time-optimal spline-based approach for which we will discuss the optimality of the computed solutions. We finally see how this method can be applied to more general systems.

In Chapter 4 we present the global approaches on which we have focused to solve the kinodynamic motion planning problem for a quadrotor. We show in particular how our local planner can be integrated into those global methods. We first present a decoupled approach together with a local optimization method of the global solution trajectory. We then focus on direct approaches. In that perspective we begin by addressing the problem of the metric in the state space. Follows the description of an incremental sampling strategy in the state space. We finally present two global direct approaches to kinodynamic motion planning and discuss the influence of both the metric and the sampling strategy on both of them.

The goal of Chapter 5 is to show that the trajectories that we plan using the methods described in Chapters 3 and 4 can actually be executed on a real physical system. We first present the controller we have chosen to track our trajectories. We then give an overview of our testbed: its different components, both in terms of hardware and software, and how they interconnect. We finally present the conducted experiments together with some of their results.

In Chapter 6 we detail the integration of our works into the ARCAS project in the context of which they were conducted. We first present the project itself, its objectives, its different partners, its subsystems and the general framework in which they are integrated. We then focus on the motion planning system and finally detail the link between symbolic and geometric planning.

Chapter 1

Motion planning: main concepts and state of the art of trajectories for a mechanical system. The classical way of modeling such a system is to use a kinematic chain. It consists of a set of rigid bodies called links. A rigid body is a closed subset B of the workspace W, i.e. the space where motion takes place. Usually the workspace is the three dimensional Euclidean space R 3 . Links can be connected to each others. These connections are called joints. They are modeled as ideal movements between links such as relative rotations and translations. Note that any joint can be modeled as a set of rotations and translations. For example the so called free-flying joint which represents the unconstrained motion of a rigid body in the three dimensional Euclidean space R 3 with respect to a given inertial frame is modeled by three translations and three rotations. Note that this is the case for a quadrotor when not considering differential constraints on the motion. This formalism provides a natural parametrization of a kinematic chain. Indeed, if every numerical value of the angles of rotation and displacements in translation are known then the geometrical state of the system in the workspace is entirely defined. A given set of such values, represented by a tuple of real numbers, is called a configuration, often noted q. One element of the tuple is called a degree of freedom (dof) and therefore the number of parameters (the length of the tuple) is referred to as the number of dof of the kinematic chain. The next section gives the formulation of the motion planning problem in this context.

Problem formulation and configuration space

The classic formulation of the motion planning problem is known as the piano movers' problem [Schwartz 1983]. It can be stated as follows: "Given a kinematic chain and a set of rigid bodies considered as obstacles which positions and orientations are known, is there a continuous collision-free motion that will take the kinematic chain from a given initial collision-free configuration to a desired final collision-free configuration?". Note that the original formulation was actually given for a system composed of only a single free-flying body. This more complete formulation is known as the generalized mover's problem [Reif 1979].

In 1983, Tomas Lozano-Péres introduced the use in robotics of the previously known notion of configuration space [Lozano-Pérez 1983], often noted C. It is defined as the set of all possible configurations of a kinematic chain. Its topological nature and dimension depends on the system. For example the configuration space of a free-flying rigid body is the special Euclidean group of dimension three, SE(3). An other classic example is the double pendulum which configuration space is the 2torus, C = S 1 ×S 1 = T 2 (see Figure 1.1). In any case, C is a n-dimensional manifold, with n the number of dof of the chain. Given a kinematic chain and a set of obstacles in W, we can define the subset C obst ⊆ C as the set of configurations in collision. We then define the free space and note C f ree = C \ C obst its complementary subset in C, i.e. the set of collision-free configurations. This representation has the advantage of reducing the motion planning problem to the search of a continuous path for a point in C f ree . Formally the problem becomes the one of finding a continuous application τ : [0 1] → C f ree such that τ (0) = q init and τ (1) = q f inal , where q init and q f inal are the initial and final configurations of the system respectively. Solving the problem with this formulation consists in studying the connectivity of the free space. Indeed, a solution exists if and only if q init and q f inal are in the same connected component of C f ree . In the next section we present the main approaches that have been developed to tackle this problem.

Figure 1.1: The double pendulum and its configuration space the 2-torus.

The planning methods

Even if the earliest works on motion planning date back from the late 60's [Nilsson 1969], most of the algorithmic works started in the early 80's. Numerous approaches have been developed over this last three decades. One can classify them into two main subsets: the complete methods and the other ones. A method is said to be complete when it is able not only to find a solution if one exists but also to determine the (non-)existence of solutions. These methods often rely on an explicit representation of C f ree which is a problem that has been shown to be polynomial in the number of obstacles but exponential in the number of degrees of freedom (i.e. the dimension of the problem) [Reif 1979]. And this is indeed the complexity of the most efficient of them [Canny 1988a]. This practical inability to scale to real-life applications is the reason why these methods are bound to only have a theoretical interest.

Exploring the connectivity of C f ree without having to explicitly represent it has been a motivation for the development of other methods. Some of them rely on a comprehensive discretization of C f ree [START_REF] Faverjon | Obstacle avoidance using an octree in the configuration space of a manipulator[END_REF], Lozano-Perez 1987] using cells or grids. They are said to be resolution complete. This means that if a solution exists, then there is a discretization resolution for which these methods are able to find it. Because the higher the problem's dimension goes the finer the required resolution becomes, the number of cells or grids tends to rapidly become quite big. These methods are therefore also unable to perform in reasonable time in high dimension.

Other classes of methods are using the potential field approach [Khatib 1986[START_REF] Koren | [END_REF]]. The idea is to define a potential field other the configuration space which is the sum of an attractive field generated by the goal configuration and repulsing fields generated by the obstacles (i.e. the elements of C obst ). An optimization process based on gradient descent techniques is then performed other this field. These techniques have good performances even in high dimension and are particularly well suited to tackle reactive obstacle avoidance problems. They however have a week spot which is their tendency to quickly get trapped into local minima of the potential field. The use of random walks [START_REF] Barraquand | [END_REF][START_REF] Barraquand | [END_REF] has been introduced to overcome this limitation, thus opening the way to samplingbased motion planning, which is the focus of our next section. Note that a more extensive overview of all these motion planning techniques can be found in Latombe's book [Latombe 2012].

Sampling-based motion planning 1.2.1 Overview

In the potential field method, the introduction of random walks as a tool to escape local minima opened the way to the use of sampling-based approaches in motion planning. But randomness here only plays its part when the main process gets stuck. What if exploration of the connectivity of C f ree could be achieved mainly through the use of randomness? This idea, inherited from the Monte Carlo method [START_REF] Metropolis | The monte carlo method[END_REF]], is behind sampling-based motion planning. The general principle consists in randomly sampling configurations in C and dismiss the ones in C obst with collision checking algorithms. This way, we get a discretization of C f ree without having to explicitly represent it. If the sampling is uniform then as the number of samples increases the discretization itself becomes more and more uniform. This technique provides an efficient way to explore C f ree but not its connectivity. To do that, the sampled configuration have to be linked inside a network of valid transitions between them. And this is the heart of sampling-based motion planning: what strategies should be used to try and link the sampled collision-free configurations? Many different approaches have been developed over the years, which can be divided into two main families: the probabilistic networks and the diffusion-based methods. See Figure1.2 for an illustration of typical behaviors of these methods. All these techniques have in common the fact that they are probabilistically complete, meaning that if a solution exists then it can be found given enough computing time. This section provides a presentation of the main components of these methods along with a description of some of the existing variants for each two main families. We will also introduce the concept of sampling-based kinodynamic planning needed to tackle the differential constraints imposed by some systems such as the quadrotor. Note that a more comprehensive overview of sampling-based motion planning 

Main components

Sampling-based motion planning explores the connectivity of C f ree by sampling random configurations and trying to connect them within a feasible transition network. Thus to represent this underlying network a data structure is needed. A natural candidate is the graph structure often called a roadmap. A node represents a configuration and an edge represents a valid transition between two configurations. Several things have to be noted here.

We assumed up to now that the configuration sampling was uniform. This is not necessarily the case. Uniform sampling is actually only one sampling strategy among many other possibilities. As we will see in sections 1.2.3 and 4.2.2, the sampling strategy can have a significant influence on the overall performances of a motion planning algorithm.

We say that an edge represents a valid transition between configurations. What is the nature of this transition, how is it computed and what does valid means in this context? When we talk of a transition between two configurations q i and q j , we actually refer to a continuous path in C which end points are these configurations. It is called a local path, as opposition to the global solution of the motion planning problem. It is computed by the steering method (also called the local planner). Formally, this method can be thought as a deterministic application

SM : C 2 → C 0 ([0 1], C) (q i , q j ) → SM ij s.t. SM ij (0) = q i SM ij (1) = q j (1.1)
where C 0 ([0 1], C) is the set of continuous applications from [0 1] to C. The simplest (and therefore most commonly used) steering method is linear interpolation:

∀(q i , q j ) ∈ C 2 , ∀u ∈ [0 1], SM ij (u) = (1 -u).q i + u.q j
Note that in this case SM is symmetric, meaning that:

∀(q i , q j ) ∈ C 2 , ∀u ∈ [0 1], SM ij (u) = SM ji (1 -u) (1.2)
When this is the case the underlying graph is undirected. But a steering method is not necessarily symmetric as we will see in chapter 3, in which case the graph has to be directed.

As for what valid means, in the classic formulation of the piano movers' problem for instance it stands for collision-free. Note that the local path does not indeed necessarily lie in C f ree . This has to be a posteriori verified by the collision checking module. But collisions are not always the only constraints. For some robots, not every path in the free space can be executed. For example a car-like robot is not able to move sideways. Thus the local paths produced by the steering method also have to be feasible to be valid. In the example of the car-like robot, the system is said to be non holonomic. It means that the equations of motion are non integrable differential equations involving the time derivatives of the configuration variables. This is often the case when the system has less controls than configuration variables. For instance a car-like robot has two controls (linear and angular velocity) while its configuration space is of dimension three (position and orientation in the plane). Planning for non holonomic systems can sometimes be treated by carefully choosing a specifically designed steering method [START_REF] Lester | On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents[END_REF]. A more comprehensive discussion on the subject can be found in [START_REF] Laumond | [END_REF]]. Non holonomy thus implies kinematic constraints arising from the underlying dynamics of the system. But an other type of constraints can arise from dynamics. A system can be submitted for example to maximum velocity or acceleration because of its physical limitations. More generally a differential constraint is a bound on the modulus of the time derivatives of the degrees of freedom of the system. Planning collision-free trajectories for such systems implies to take into account both the kinematic constraints (collisions and possibly non holonomy) and the dynamics constraints. This is called the kinodynamic motion planning problem [Canny 1988b[START_REF] Donald | [END_REF]. Kinodynamic motion planning will be detailed in section 1.3.

We still have to mention a crucial component. When a new collision-free configuration is sampled the way it is tried to be linked to the current graph is called the connection strategy. It is the algorithmic core specific to each method and responsible for managing calls to the steering method. Designing such a strategy mainly consists in choosing what connections are to be tested and in which order. The following sections present two main families of connection strategies and their variants.

At that stage, either to increase efficiency in probabilistic roadmaps, or to guide the exploration towards empty regions in diffusion-based methods, a nearest neighbours search is often performed in order to select candidate nodes in the current graph and the order in which they should be considered. In this case, the definition of a metric (or distance function) on the configuration space is needed. It is an application M : C 2 → R + such that:

∀(q i , q j , q k ) ∈ C 3 ,     
M (q i , q j ) = 0 =⇒ q i = q j : coincidence M (q i , q j ) = M (q j , q i ) : symmetry M (q i , q k ) ≤ M (q i , q j ) + M (q j , q k ) : triangle inequality The most commonly used metric is the Euclidean metric M E (q i , q j ) = q i -q j 2 . But this is not always the case. For car-like robots for intense the metric has to be related to the steering method, or even induced by it (see for instance [START_REF] Laumond | [END_REF][START_REF] Giordano | [END_REF]). Note that as discussed by [START_REF] Lavalle | [END_REF]] the ideal metric is the cost-to-go, i.e. for a given cost function the cost of bringing the system from q i to q j . The problem is that finding the cost-to-go is often as hard as solving the planning problem. It is therefore often important to find a good and computationally efficient approximation. Also note that if the cost-to-go is not symmetric neither is the ideal distance function. The ideal metric would then be a quasi-metric, which has the same properties of a metric, symmetry excepted. A more comprehensive discussion on this issue will be conducted in section 4.2.1. The next section presents a family of connection strategies known as the probabilistic roadmaps.

Probabilistic roadmaps

The first version of this connection strategy was first introduced by [Kavraki 1996] under the name Probabilistic Roadmap Method (PRM). It since gave birth to many variants. This strategy consists in two phases: a learning phase and a query phase. During the learning phase the connectivity of the free space is explored and stored in a graph as explained in the previous section. Note that this method was the first to use the idea of capturing the connectivity of the free space in a graph. The query phase consists in connecting the initial and final configurations to the graph and then perform a shortest path search.

During the learning phase described in Algorithm 1, the undirected graph G is stored in a set N of nodes and a set E of edges both initially empty. At each iteration a random configuration q is sampled. If q is not in collision then it is added to N and a set N q of nearest neighbors of q in N is selected according to a given metric M and a threshold (possibly infinite, i.e. N q = N ). For each node n in N q , and if n and q are not already connected in G (i.e. if n and q are not in the same connected component of G), the local path SM (q, n) is computed and tested for collisions. If it is collision free then the edge (q, n) is added to E and the connected components of G are updated. The algorithm runs until a chosen learning time has passed.

For an initial configuration q i and a final configuration q f , the query phase consists in finding two nodes n i and n f in N such that n i and n f are in the same Algorithm 1: PRM learning phase

N ← ∅; E ← ∅; G ← {N, E}; while time < learning time do q ← random configuration; if q ∈ C f ree then N ← N ∪ {q}; N q ← NearestNeighbors(q, N ); foreach n ∈N q in increasing order of M (q, n) do if n and q not in same connected component then if SM (q, n) is valid then E ← E ∪ {(q, n)}; UpdateConnectedComponents(G) ; end end end end end Return G;
connected component of G and both SM (q i , n i ) and SM (q f , n f ) are collision free. This is done the same way a new random configuration is added at each step of the learning phase. The query fails if no such nodes can be found. In this case an other learning phase if performed. Otherwise a shortest path search is conducted in G between q i and q f using for examples either a A * or Dijkstra algorithm.

Learning the connectivity of the free space before making a planning query and then keeping this information between each next query is the reason why this method is particularly well suited for multiple planning queries for the same system in the same static environment. The class of methods inspired by PRM are thus often called multiple queries methods. Note however that this approach can be used in a single query mode. It is for example possible to initialize the node set with N = {q i } (instead of N = ∅) and choose q f as the first configuration to add (instead of a random one). In this case the algorithm stops when q i and q f are in the same connected component of G (or when a given amount of time has passed). Many variants of this method have been proposed since in order to try and increase the overall efficiency of the planning process. Some of them are targeting one well established drawback that is the difficulty of finding connections going through the thiner regions of the free space. This is known as the narrow passage problem. It is a consequence of the uniform sampling strategy of the configuration space. In regions where C obst is dense, a poor coverage of the free space is indeed obtained when using uniform sampling. Therefore some approaches are using different sam-pling strategies. A class of methods is increasing the probability of finding samples in C f ree by targeting the border of C obst . One possibility is to allow some of the samples to lie in C obst and then try to "push" them towards C f ree [START_REF] Hsu | [END_REF]]. In the Obstacle-Based PRM approach [START_REF] Amato | [END_REF]], the opposite strategy is implemented: samples lying in C f ree are "pushed" towards C obst . In the Gaussian sampling strategy [START_REF] Boor | [END_REF]] couples of close configurations are sampled and disregarded if one of them does not lie in C obst while the other lies in C f ree . A different class of methods are adopting the opposite approach, namely trying to generate samples as far away from C obst as possible by sampling the generalized Voronoi diagram of C f ree (also called the medial-axis) [START_REF] Steven A Wilmarth | MAPRM: A probabilistic roadmap planner with sampling on the medial axis of the free space[END_REF], Lien 2003].

Note that as announced in section 1.2.2 we can see that different sampling strategies can be used and that they have a significant impact on the overall performances of a motion planning algorithm. In section 4.2.2 we propose a sampling strategy of our own designed to increase the efficiency of motion planning for a quadrotor.

Another drawback of random sampling is that it is not trivial to estimate the coverage quality of the free space. In the Visibility-PRM algorithm [Nissoux 1999[START_REF] Siméon | [END_REF]], a simple on-line estimation of the proportion of the hyper-volume of the free space covered by the roadmap is proposed. With this information one can design a better stop condition for the learning phase than a maximum number of iteration or computing time. In this approach a sample is added to the roadmap only if it can be used to merge together two connected components or is not "visible" by any other node. The coverage estimation is then a function of the number of consecutive unsuitable sampled configurations. This approach has also the advantage of generating a roadmap containing fewer nodes, thus decreasing the number of local paths to be computed and therefore speeding up each iteration. Note that it also tackles very well the narrow passage problem. Some methods are trying to increase efficiency by decreasing the number of calls to the collision checking module. Collision detection is indeed by far the most time consuming process of a classic PRM algorithm (about 90% of computing time [START_REF] Van Geem | [END_REF]). In the Lazy-PRM algorithm [Bohlin 2000] the learning phase is performed without taking into account any of the obstacles. All calls to the collision checking module are done during the query phase, eliminating invalid local paths during the shortest path search. In the Fuzzy-PRM variant [START_REF] Nielsen | [END_REF]], collision detection is performed with an incremental resolution which is leading to an overall decrease of the number of calls to the collision checking module.

Finally, some methods focus on optimality. Up to now we did not mention optimality because it was not relevant when considering the generalized mover's problem. Efficiently finding a solution if one exists was the only concern. However, aforementioned methods often produce low quality solutions. It has indeed been proven by [START_REF] Karaman | [END_REF]] that a standard PRM does not converge towards the optimal solution. Optimality is relative to a given cost function. For example, length of the global solution path is often considered but some other criteria such as clearance to the obstacles can be used. Whatever the considered cost function, a low quality solution can be problematic when trying to execute it on the physical system. A classic way to deal with this issue is to post-process the low quality solutions by means of an optimization method, also called a smoothing method. Examples are numerous but since it is not our point we won't give any of them here. Note that we will however give an example of smoothing method in section 4.1.2. An other way of dealing with optimality is to consider it while planning. This is is the case of a simplified version of PRM called sPRM, proposed in [Kavraki 1998], which converges towards the optimal. A more efficient proposition called PRM * was since made by [START_REF] Karaman | [END_REF]]. The next section presents a family of connection strategies known as the diffusion-based methods.

Diffusion-based methods

In this class of methods the underlying structure that is used to explore the free space is a special kind of graph: a tree, i.e. a graph with no cycles in it. More generally the structure is actually a forest, a set of trees. The idea here is to incrementally build this structure starting from either the initial configuration q init , the final configuration q end or both. The two main differences with the PRM-based methods is that no learning phase is required and not all C f ree is explored. The search is indeed usually biased to solve one specific motion planning problem. This class of methods is thus often called single queries methods. A distinction is usually made between unidirectional and multi-directional methods. In the former a single tree is constructed with either q init or q end as its root until the other configuration is reached. In the latter several trees are constructed. In a bidirectional method in particular, two trees with roots q init and q end respectively are iteratively constructed until the two trees meet. These methods are particularly well suited to problems where either or both the initial and final configurations are in a highly constrained region of the free space as it is for example the case in the context of assembly maintainability [START_REF][END_REF]. Choosing between an unidirectional and a bidirectional method usually depends on whether only one of the end configuration is constrained or both.

We have briefly mentioned the Randomized Path Planner (RPP) [START_REF] Barraquand | [END_REF]] already as being the first randomized motion planning algorithm. By its use of the concept of random walks, it is also the first approach to diffusion-based methods.

Another approach called the Ariadne's Clew Algorithm (ACA) was proposed by [START_REF] Bessiere | [END_REF]. A genetic algorithm is used to generate a tree rooted at q init while trying to optimize the distribution of its nodes other C f ree . In a second phase the goal configuration is tried to be linked to the tree.

In the bidirectional approach called Expansive-Space Tree (EST) and proposed by [Hsu 1997, Hsu 2000], the algorithm iteratively executes two steps labeled as expansion and connection respectively. During the expansion step a node is selected in one of the two trees with a probability inversely proportional to the number of nodes lying in its neighborhood (according to a given metric and threshold). A given number of configurations are then sampled in this given neighborhood of the selected node and tried to be linked to it. The connection step consists in trying to link the newly added nodes to nearby nodes of the other tree.

Nowadays, the most popular diffusion-based method is without a doubt the Rapidly-exploring Random Tree (RRT) algorithm introduced by [Lavalle 1998]. Although initially thought as a tool to solve non-holonomic and kinodynamic motion planning problems (see next section) this approach has since been successfully adapted to problems without differential constraints [Kuffner 2000[START_REF] Lavalle | [END_REF]]. This method can be used either as unidirectional or bidirectional (or even multidirectional as we will see later). As in EST a construction phase and a connection phase are alternated but both the way the node to be expanded is selected in the tree and the way this expansion is made differ. At each iteration a random configuration, q rand , is sampled in C. Its nearest configuration in the tree, q near , is then selected (according to a chosen metric). Given a steering method SM , as defined in (1.1), the local path LP = SM (q near , q rand ) is generated. A node expansion process is then applied to generate a new configuration, q new , in two possible ways according to the chosen version of the algorithm. For that, a fixed value ε ∈ ]0 1] has been previously set as a parameter of the algorithm. In the classic variant (usually referred to as RRT-Extend) the new configuration is q new = LP (ε). In the variant called RRT-Connect [Kuffner 2000] the expansion process is iterated as long as q new is collision free. The expansion process (that we call Expand) is described in Algorithm 2 and illustrated in Figure 1.3 for the Extend version.

Algorithm 2: Node expansion of the RRT algorithm (Expand) LP ← SM (q near , q rand );

q new ← LP (ε); if RRT-Connect then k ← 2; while kε ≤ 1 and LP (kε) ∈ C f ree do q new ← LP (kε); k ← k + 1; end end Return q new ;
If q new is collision free, the local path SM (q near , q new ) is tested for validity. If it is valid, both the node and the edge are added to the tree. The connection phase is then applied. In the unidirectional version the local path SM (q new , q end ) is tested for validity (alternatively SM (q new , q init ) if the tree is rooted at q end ). If it is valid the algorithm stops. In the bidirectional version (that we refer to as Bi-RRT) q new is tried to be linked to nearby nodes in the other tree (as in EST). If one of the attempted connections is successful the algorithms stops. Note that in this bidirectional version each tree is alternatively expanded (as in EST). In a variant referred to as balanced the trees are kept with the same number of nodes. These steps are iterated until a maximum number of iteration has been reached. The unidirectional version of the algorithm is described in Algorithm 3 for a tree rooted at q init . Algorithm 3: Unidirectional RRT

N ← {q init }; E ← ∅; T ← {N, E}; k ← 0; while k < K do
q rand ← random configuration; q near ← NearestNeighbor(q rand , N ); q new ← Expand(q near , q rand ); if q new ∈ C f ree and SM (q near , q new ) is valid then

N ← N ∪ {q new }; E ← E ∪ {(q near , q new )}; if SM (q new , q end ) is valid then N ← N ∪ {q end }; E ← E ∪ {(q near , q end )}; Return T ; end end k ← k + 1; end Return T ;
A fundamental property of RRT is the Voronoi biasing. The probability that a node is selected for expansion is proportional of the volume of its Voronoi region. This implies that the algorithm rapidly explore the free space because it favors diffusion towards unexplored regions. Figure 1.4 shows the evolution of a tree constructed by the RRT algorithm and covering the free space. This method has since gave birth to many variants. For instance a lazy bidirectional version is proposed by [Sánchez 2003]. Similarly to PRM-based methods, some variants are targeting the sampling strategy. A obstacle-based variant tackling the narrow passage problem is proposed by [START_REF] Rodriguez | [END_REF]] while a different approach avoiding the dense regions in proposed by [START_REF] Khanmohammadi | [END_REF]]. In the Dynamic-Domain RRT [Yershova 2005] and its adaptive version [Jaillet 2005], the notion of visibility is used to better refined the sampling domain. Another approach based on dimension reduction uses principal component analysis techniques to better guide the exploration inside narrow passages [START_REF] Dalibard | [END_REF]].

The Exploring/Exploiting Tree algorithm (EET) proposed by [START_REF] Rickert | [END_REF]] is a combination between a potential field approach and a RRT-based approach. Information about the connectivity of the workspace gathered during exploration is exploited to compute a navigation function that defines a potential field. The planner gradually switches to a diffusion-based exploration when the exploitation method fails.

Quality of the solutions is also a concern for the diffusion-based methods. Optimality is asymptotically achieved by the algorithm RRT * proposed by [START_REF] Karaman | [END_REF]. In this version the tree is locally reorganized each time a new node is added. More generally, generating high-quality paths with respect to a cost functional have been investigated by several authors. As previously mentioned, a cost function can assess the quality of a path but it is also possible to define the cost of a configuration. When such a functional is defined other the configuration space, authors often talk about the cost space of the system. Motion planning in a cost space is therefore referred to as cost-space path planning. In this context, the Threshold-based RRT (RRT obst ) was proposed by [Ettlin 2006b] for rough terrain navigation. The idea is to decide whether to accept or reject a new configuration generated by the RRT expansion step according to its cost. A multi-directional version (where more than two trees are constructed) can be found in [Ettlin 2006a]. In the Transition-based RRT (T-RRT) algorithm proposed by [START_REF] Jaillet | [END_REF]], the idea is generalized to any cost function defined on C. The transition test is based on the Metropolis test. A bidirectional version is proposed by [START_REF] Devaurs | [END_REF]] and a multi-tree variant can be found in [START_REF] Devaurs | [END_REF]]. Finally, optimally is asymptotically achieved in two variants called T-RRT * and Anytime T-RRT [START_REF] Devaurs | [END_REF]].

In the next section we address the kinodynamic motion planning problem.

Kinodynamic motion planning

In section 1.2.2, a brief definition of the kinodynamic motion planning problem has been given. In this section we give a more precise formulation of the problem and a state of the art of the literature on the subject.

Problem formulation

We define the state of a system as

x =       q q . . . q (p)       ∈ X
with q ∈ C the configuration, p ≥ 1 and X the state space of the system (also sometimes the phase space). Note that in the classic formulation p = 1 [Canny 1988b[START_REF] Donald | [END_REF], meaning that only position and velocity of the system are considered. For a configuration space of dimension n, the state space is therefore of dimension n(p + 1).

A mechanical system is typically controlled by a set of actuators. In the case of a robotic arm for example, these are the motors acting on the joints. This set of controls is modeled as a time-dependent vector of real values called the control variables. In the case of an arm it could be for example the tensions applied to each motor at a given time. This vector u(t) ∈ U ⊂ R m is called the control (or the command) and U is the control space. The future state of the system thus depends on its current state and the applied control. The set of differential equations modeling this dependency is referred to as the equations of motion of the system:

ẋ(t) = f (t, x(t), u(t))
where the function f is specific to the dynamics of the system. Given a specified control u(.) and initial conditions x(t 0 ) = x 0 , a solution x [t 0 ,x 0 ,u] (.) to the equations of motion is called a response to the control u(.) for the initial conditions x 0 at t 0 .

The control is typically restricted to a certain control region, meaning that U R m . Furthermore a piecewise continuous control u(.) defined on some time interval t 0 < t < t F with range on the control region U is called an admissible control on [t 0 t F ]. Note that an admissible control is necessarily bounded.

A system can also be submitted to physical constraints arising from its dynamics. These are functional equalities and/or inequalities restricting the range of values that can be assumed by control and/or state variables. Finally an admissible control on [t 0 t F ] is said to be feasible if and only if a response x [t 0 ,x 0 ,u] (.) exists and is defined for each t ∈ [t 0 t F ], and both u(.) and x [t 0 ,x 0 ,u] (.) satisfy all the physical constraints. We will note U [x 0 ,t 0 ,t F ] the set of feasible controls on [t 0 t F ] for the initial state x 0 . A similar definition of C f ree can be given for the state space. We note X unvalid the set of states that are either in collision or not satisfying the physical constraints, and we note X valid = X \ X unvalid .

Given an initial state x 0 at t 0 and a final state x F both in X valid , the kinodynamic motion planning problem is then the one of finding both t F > t 0 and u ∈ U [x 0 ,t 0 ,t F ] such that:

     ∀t ∈ [t 0 t F ], x [t 0 ,x 0 ,u] (t) ∈ X valid x [t 0 ,x 0 ,u] (t 0 ) = x 0 x [t 0 ,x 0 ,u] (t F ) = x F
We mentioned earlier in section 1.2.3 that some variants of the methods proposed to solve the generalized mover's problem were focusing on the quality of the solutions. This is even more the case for the kinodynamic motion planning problem since the earliest formulations were looking for the minimum-time solution. This is often still considered to be a relevant quality criterion for the kinodynamic motion planning problem (like path length is for the holonomic case) although other cost-functions can be considered.

In the next subsections we present the methods that have been proposed to solve the kinodynamic motion planning problem.

Decoupled approach

A classical way to approach the kinodynamic motion planning problem is to decompose it into two simpler subproblems: (1) planning a geometric path that respects kinematic constraints (collisions and possibly non-holonomy) and (2) planning the derivatives of the configuration variables along the path with respect to physical constraints. The first subproblem (often called the path planning problem) is exactly the one we described in section 1.1.2 and can thus be treated with one of the previously presented approaches. In the context of kinodynamic planning, a solution to the path planning problem is called a quasi-static solution because it can be seen as a trajectory in which each state has a zero velocity and therefore can be executed at very low velocity. The second subproblem is sometimes referred to as the velocity planning problem and the whole two steps approach as the path-velocity decomposition [START_REF] Kant | Toward efficient trajectory planning: The path-velocity decomposition[END_REF]]. Velocity however is not always the only derivative that has to be considered and this is why we rather use the more general term: decoupled approach.

Solving the velocity planning problem implies finding a suitable time parametrization of the precomputed path. Usually, methods used to achieve this depend on the system. For manipulators for instance, the minimumtime solution is found by solving an optimal control problem in one dimension [Bobrow 1985[START_REF] Shin | Minimum-time control of robotic manipulators with geometric path constraints[END_REF]]. It has indeed been shown that torques of the actuators and there bounds can be written in function of position, velocity and acceleration of the end effector along the specified path. See [Shiller 1991] for an example of usage in a global motion planner. For other systems such as car-like robots, a feasible path can be "smoothed" (with a smoothing method that can be derived from a steering method) into a feasible trajectory ( [START_REF] Fleury | [END_REF][START_REF] Lamiraux | [END_REF]] and [START_REF] Lamiraux | [END_REF]] for a car-like robot towing a trailer). For other mobile robots specific optimization procedures can be used, such as the one based on quintic Bézier splines proposed by [START_REF] Lau | [END_REF]]. We finally can fine decoupled approaches used in the context of motion planning for aerial robots, see for instance [START_REF] Richter | [END_REF] (more examples in section 1.4). This approach is also very useful for planning in a dynamic environment, i.e. moving obstacles [START_REF] Fraichard | Trajectory planning in a dynamic workspace: a'state-time space'approach[END_REF]] and/or multiple robots [Peng 2005].

Decoupled approaches can be very efficient tools but they have two major drawbacks. First, obtaining good quality paths is challenging since the considered costfunction may not even be defined in the configuration space. Minimum time is a good example. Since time is not considered during path planning it is hard to judge the quality of a solution path. One could argue that the shortest path could be a good bet but it is often the case that the fastest path is actually not the shortest one. Second, although a kinodynamic motion planning problem can have solutions, a decoupled approach could fail to find them. Indeed, if the problem has no quasistatic solution then the path planning step will fail. This is for example the case for a quadrotor that has to be tilted in order to go through a narrow slot-shaped passage (see section 4.2.4). In this instance, the planning process has to take place directly in the control space or the state space. This is often referred to as direct planning.

Direct planning

A direct planning method searches solutions directly in the control space or the state space rather than in the configuration space. Several options have been investigated. We will subdivide those into two main families: the deterministic approaches and the sampling-based methods.

Deterministic approaches

This family of methods of direct planning does not use randomness.

Optimal control:

If the system is simple enough, optimal control can be applied [START_REF] Brockett | [END_REF][START_REF] Lewis | [END_REF]]. The problem is that it does not scale well and closed form solutions are only available for point mass systems in one [Ó' Dúnlaing 1987] or two dimensions [Canny 1990]. Plus, taking into account the kinematic constraints arising from the obstacles is not easy.

Numerical optimization:

An other possibility is to use numerical optimization techniques [START_REF] Fernandes | [END_REF][START_REF] Betts | [END_REF], Ostrowski 2000].

Problems are that these can be computationally expensive when applied to global trajectory planning and that they often get trapped in local minima. Although this particular drawback have been recently addressed [START_REF] Zucker | [END_REF], Schulman 2014], highly dynamical problems are still a challenge to these methods.

Grid search:

One of the earliest algorithm for kinodynamic motion planning [START_REF] Sahar | [END_REF]] proposed to tessellate the joint space in order to find minimum-time trajectories for a robot arm. A best first graph search is performed other the tessellated joint space by using a dynamic scaling algorithm to determine velocity at each node in function of previous position and velocity.

In [Canny 1988b[START_REF] Donald | [END_REF]] a breath-first search is performed on a discretized state space. To expand one state in the grid all possible combinations of saturated and null controls are applied during a fixed time step. This technique is applied to a point mass under Newtonian mechanics with velocity and acceleration bounds in 2D or 3D. This is the first provably good approximation of a solution to the minimum-time trajectory problem that is running in polynomial time. The approach has then been extended to more complicated systems [Donald 1995a, Donald 1995b, Heinzinger 1990[START_REF] Reif | [END_REF]]. This method has also been used by [START_REF] Fraichard | [END_REF]] to solve the highway problem in near-optimal time.

The problem here is the same as in the holonomic case. Although resolution complete, these methods suffer from the curse of dimensionality. Complexity is indeed exponential in the resolution and since the higher dimension goes the finer resolution has to get, these approaches do not scale well.

Sampling-based methods

The same idea of sampling-based planning used in the holonomic case can be applied to kinodynamic motion planning. One difference though is that X valid takes the role of C f ree , meaning that valid states are sampled instead of collision free configurations. Another big difference is the steering method.

Steering-methods:

In order to adapt sampling-based planning methods to the kinodynamic case one has to rethink the steering method. Connecting two states by a valid trajectory in the absence of obstacles is a well known problem called a two-point boundary value problem (BVP). It involves solving the equations of motions with both initial an final conditions and possibly under constraints on the state. This is not easy in general and can be computationally quite heavy. But for specific systems a closed form solution to the BVP exists and in this case it can be used as a steering method in the state space.

In the context of optimal kinodynamic motion planning for instance, the RRT * algorithm has been adapted to the kinodynamic case by [Karaman 2010]. Sufficient conditions on the controllability of the system are provided for optimality. The method uses a steering method specific to the system. In this example the Dublins' vehicle, the double integrator and a combination of both, used as a simple 3D airplane model, are considered.

Linearizing the dynamics

When the system dynamics are linear, it may be possible to solve the BVP efficiently in closed form. Furthermore, it is possible to apply this approach to nonlinear systems by linearizing the dynamics about an operating point. This approach has for instance been investigated by [Perez 2012] by proposing the LQR-RRT * algorithm. Linear quadratic regulation (LQR) is used within a RRT * algorithm both as a metric and a steering method. This approach has since been extended by [Goretkin 2013] to samples in the state-time space and to deal with quadratic cost functions.

Motion primitives:

A possible way of avoiding the difficulties of solving the BVP is to use motion primitives, i.e. precomputed solutions to the BVP. For instance a Maneuver Automaton is used by [Frazzoli 2000] as a steering method within a RRT-based algorithm. The states of the automaton are steady stable trajectories called trim trajectories and the transitions are maneuvers. In this work the authors are using a non linear controller in order to generate the primitives. The approach is demonstrated on a small autonomous helicopter. State lattice motion primitives are used by [Pivtoraiko 2011] in both deterministic (A * and D * ) and probabilistic global planners (PRM and RRT). Motion primitives are generated with a BVP solver by sampling the state space. In the probabilistic case, the same state sampling strategy used off-line to generate the lattice is used on-line during the exploration. This approach is therefore resolution complete. Similarly an off-line learning phase is performed by [Allen 2015]. During this phase a set of states are sampled in the free state space and the BVP problem is numerically solved between either some randomly chosen couples or all of them. A lookup table of the costs of the generated primitives is generated to be used as a steering method during the on-line phase. Machine learning techniques are also used to learn the reachability set of the samples. This information plays the part of the metric. The on-line step consists in a adaptation of the Fast Marching Trees (FMT) algorithm proposed by [Janson 2015] called kino-FMT. The approach is applied to both a fixed-wing UAV and a gravity-free spacecraft.

Forward propagation:

Finally, the most investigated approach that is also avoiding the BVP is forward propagation of the dynamics. In these methods new states are not generated through sampling but by applying a feasible control to an already generated state during a given period of time. This is done by integrating the equations of motion using your favorite ODE solver (e.g. fourth-order Runge-Kutta integrator). Computationally speaking this is way cheaper than trying to numerically solve the BVP. There is thus no need here for a steering method. In fact, because there is no steering method, this approach cannot be used within a probabilistic roadmap and is therefore only suitable for diffusion-based methods.

For instance it was first used within a RRT by [START_REF] Lavalle | [END_REF]. At each iteration a new state x rand is sampled in X valid . According to some metric (weighted Euclidean here) the nearest state in the tree x near is selected. Given a time T (either randomly chosen or arbitrarily fixed), a random constant control u rand is sampled in U and applied to x near in order to generate a new state x new = x [0,xnear,u rand ] (T ). An alternative is to chose among several randomly generated controls the one that brings the system the closer to x rand (according to the metric). If the resulting trajectory x [0,xnear,u rand ] (.) (the response) is valid it is added to the tree together with x new . In the unidirectional version, the algorithm stops if x new is close enough to the goal, and if it is close enough to the closest state in the other tree in a bidirectional version. This same idea of forward propagation of the dynamics can also be used as is into the EST algorithm. This has been done by [Kindel 2000[START_REF] Hsu | [END_REF]] with however a difference introduced by the fact that moving obstacles are considered. Sampling takes place in the state-time space witch is the state space augmented of the time dimension (notion introduced by [START_REF] Fraichard | Trajectory planning in a dynamic workspace: a'state-time space'approach[END_REF]).

These methods are using a metric in the state space in order to select the state to be propagated and thus to guide the search toward unexplored regions. The problem is that finding a good metric in the state space is not easy. In fact the best metric would be the optimal cost-to-go but finding it is usually as hard as solving the BVP (see [START_REF] Lavalle | [END_REF]). Plus, by applying a random control there is no reason that the system would be propagated in the direction of the sampled state and even if the best control is chosen among several tries this choice is based on the metric. In order to reduce the impact of the metric on the overall performances of the planner several approaches have been proposed.

For instance, an affine quadratic regulator (AQR) design has been used by [Glassman 2010] to approximate the exact minimum-time distance pseudo-metric at a reasonable computational cost.

The notions of constraint violation frequency and exploration information (success or failure of a control applied to a state) have been used by [START_REF] Cheng | [END_REF]] for node selection in order to reduce the metric influence. The problem is that, as is, the algorithm is only complete for a certain class of problem. With the addition of a discretization of the state space, in order to exclude repeating states, resolution completeness has been obtained by [START_REF] Cheng | [END_REF].

A different approach called the Path Directed Subdivision Tree (PDST) has been proposed by [START_REF] Ladd | [END_REF]]. The tree structure here is not the same: the nodes represent valid trajectories and edges are branch states (the first sate of a trajectory). The selection schedule is deterministic, greedy and the metric plays no part in it. It is based on a weighted priority of the nodes that doubles each time a trajectory is selected (lowest priority nodes are selected first). Information about coverage and exploration efficiency is maintained thanks to an adaptive subdivision scheme of the state space. The overall algorithm remains probabilistic though since that in order to expand a node, a random state is selected in the trajectory and a random control is applied to it thus generating a new trajectory (i.e. a new node). This approach has then been adapted by [Bekris 2007] in the context of re-planning using sensor information in the Greedy Incremental Path-directed planner (GRIP).

The Discrete Search Leading continuous eXploration (DSLX) planner proposed by [START_REF] Plaku | [END_REF]] does not require a metric in the state space at all. It is still a sampling-based diffusion method forward propagating a tree in the state space but it uses a coarse-grained decomposition of the work space into regions and the projections of the states in the tree onto those regions in order to guide the search. The partition of the work space is associated with its adjacency graph in which an edge e ij represents the fact that the two regions R i and R j are adjacent. These edges are weighted according to the frequency of exploration of regions at both ends and the average increase of coverage obtained by the previous exploration of those regions. At each iteration, a sequence of adjacent regions (called a lead) going from the start to the goal region is selected in the graph with a probability partly based on the edges weights. Non empty regions (i.e. containing at least one projected of state from the tree) are then selected in this lead with a probability based on their closeness to the goal (in terms of graph distance, no metric required) and their frequency of exploration. A selected region is then explored by selecting in it the less selected state so far and applying a random control to it for several fixed durations until a collision occurs. Actually, the applied control, selected among several random tries, is the one that brings the system the closest to the next region in the lead. No need here for a metric in the state space, the Euclidean metric in the work space is used on the projections of the generate states. Weights are then updated and the algorithm loops until a solution is found (or maximum time as passed).

The Informed Subdivision Tree (IST) algorithm proposed by [START_REF] Bekris | [END_REF]] first computes a roadmap that captures the connectivity of the configuration space using an approach such as PRM. IST then uses information from the roadmap to bias the tree expansion towards the goal in the state space. To avoid getting stuck in local minima induced by state space constraints, which is the risk of a greedy approach based on configuration space biases, IST employs the adaptive subdivision scheme from PDST and an edge penalization scheme.

The Reachability-Guided RRT (RG-RRT) algorithm proposed by [Shkolnik 2009] builds and maintains a standard RRT. The primary differences lie in the use of a node's reachable set to focus sampling on regions of the state space that are most likely to promote expansion under the differential constraints. By use of this adaptive sampling strategy the algorithm alleviates the sensitivity of randomized sampling for systems with differential constraints to the metric that is employed to expand the tree. It indeed utilizes the metric only for regions of the state space for which it is valid.

In the Kinodynamic Planning by Interior-Exterior Cell Exploration (KPIECE)

proposed by [Şucan 2009, Şucan 2012] ideas from PDST and DSLX are combined. A chosen projection space E(X ) of the state space X (e.g. the configuration space, the work space, etc.) is decomposed into a multi-level cell discretization such that each level is a partition of the previous one, the first level being the one with the finest resolution. Like in PDST, nodes in the exploration tree are motions represented by an initial state, a control and a duration. Formally it is a triple (x 0 , u, T ). A node is considered to be inside a cell if at least one of its state (i.e. x [0,x 0 ,u] (t) with t ≤ T ) is in the cell once projected onto E(X ). When a motion is added to the tree it is subdivided so that each node added to the tree belongs inside exactly on cell at each level. This allows to identify each node to a unique sequence of cells from each level, one cell in the sequence being contained in the next one. This is called a cell chain. At each iteration of the algorithm, a cell chain is deterministically chosen by incrementally choosing at each level (starting from the last, i.e. the coarser) a cell according to its coverage (number of non empty cells of the previous level contained in it), frequency of selection and whether it is an interior or an exterior cell (based on the number of non-empty neighboring cells). A node (x 0 , u, T ) is then chosen in the last cell of the chain according to a half-normal distribution. A time parameter t is uniformly sampled in [0 T ] and a new motion is generated by applying a random control during a random period of time to the state x [0,x 0 ,u] (t). Note that in this algorithm no metric at all is required in any of the considered spaces.

Principal Component Analysis (PCA) has been used by [START_REF] Li | [END_REF]] in order to counter undesirable biases introduced by the dynamics. During an offline training phase, PCA is executed on the coordinates of the nodes of a tree grown in the state space using RRT-Connect in order to learn the biases introduced by the dynamics. During the online planning phase the exploration procedure is modified so as to promote the propagation of the search tree towards the direction of the least significant components.

The Stable Sparse RRT (SST) algorithm proposed by [START_REF] Li | [END_REF]] is using a classic selection/propagation scheme but with some modifications. The selection procedure called Best First Selection selects in a neighborhood (based on Euclidean metric) of a uniformly sampled node x rand the node x BestN ear with the best path cost to the root. The propagation procedure called MonteCarlo-Prop selects a random constant control u rand and applies it to x BestN ear for a random period of time T rand chosen in a predetermined interval. Follows a pruning step that allows sparsity of the data structure. A set of witness states is maintained during the exploration. Given a predefined distance δ, a node newly added to the tree is tagged as witness if and only if it is at a distance (Euclidean metric) greater than δ from all the other witnesses. This way each node in the tree can be associated to exactly one witness from which it is at distance lesser than δ. This defines a neighborhood for each node: the set of nodes sharing the same witness. After the propagation step, if the response path x [0,x BestN ear ,u rand ] (.) is collision free and if its end state x new = x [0,x BestN ear ,u rand ] (T rand ) has the best path cost in its neighborhood, all child-less nodes in the neighborhood with higher path cost are removed from the tree. In addition all remaining nodes in the neighborhood are tagged as inactive while x new is tagged as active. This is useful for the selection step because this way only active nodes have to be considered. While SST is asymptotically near-optimal the authors proposed in the same work an anytime variant called SST * that is asymptotically optimal.

Motion planning for aerial robots

In this section we give an overview of the literature on motion planning for aerial robots. Some of the references bellow can be found in a more comprehensive review done by [START_REF] Goerzen | [END_REF]].

Trajectory generation

In motion planning, a distinction is usually made between global and local planning. Classically the global planning problem is divided into several local planning problems. Up to now we referred to the local planner as the steering method. In the context of aerial robotics, it consists in producing flyable trajectories between configurations or states of the UAV without taking obstacles into account. It is often referred as to the trajectory generation problem (also sometimes trajectory planning in the context of control theory). It is usually the case that authors propose trajectory planners specifically designed for a particular system.

We give here some examples of trajectory generation for quadrotors. Model predictive control has been used by [START_REF] Singh | [END_REF]] to generate trajectories interpolating a given set of way-points. It has been proposed by [START_REF] Cowling | [END_REF]] to minimize a cost function for one polynomial for each flat output (see section 2.4). This polynomials could be classically parametrized or either Laguerre or Chebyshev polynomials could be used. Real-time generation of minimum snap trajectories (actually minimum integral of squared snap) passing through a sequence of 3-D positions and yaw angles (key-frames), while ensuring safe passage through specified corridors and satisfying constraints on velocities, accelerations and inputs have been proposed by [START_REF] Mellinger | [END_REF]]. Trajectory generation under constraints for a quadrotor from any state to hovering state has been proposed by [START_REF] Hehn | [END_REF]]. The three degrees of freedom are decoupled, and time-optimal jerk trajectories are planned for each of them separately. The feasibility of the planned trajectories is then checked. If it is found to be infeasible, it is re-planned with reduced jerk constraints, which eventually guarantees feasibility. Similarly, optimal control theory principles have been used by [Mueller 2013] to generate in real-time smooth trajectories between non-hovering states. Each axis x, y and z is treated as a triple integrator with jerk as control input. The BVP is then independently solved for each axis, without constraints on the state and for a given time. The method is very fast but does not guaranty feasibility, i.e. respect of the physical bounds of the system. A very fast feasibility test is provided that allows to filter invalid trajectories. Finally, we can mention [Spica 2012b] that uses circular arc primitives in order to plan a trajectory that connects two arbitrary states while allowing the UAV to grasp a moving target at some intermediate time.

For other systems such as fixed-wing UAVs, the feasibility constraints are not the same. Here, maximum curvature of the path is the limiting factor. A solution to simultaneous arrival of multiple UAVs has been proposed by [Shanmugavel 2006] using Pythagorean hodograph curves. Later, Dubins path with clothoid arcs have been used by [START_REF] Shanmugavel | [END_REF]].

Planning in the workspace

A simplified version of the motion planning problem for aerial robots is to plan a trajectory for the center of mass of the UAV and assume that the control algorithms will be able to follow it. Workspace and configuration space are in this particular case the same. Therefore some authors have proposed to plan directly in the workspace or at least a discretized version of it. For instance LADAR data is used by [START_REF] Vandapel | [END_REF]] to create a roadmap of free-space balls in the 3D Euclidean workspace of a UAV. Planning is done using graph search techniques in this roadmap. The differential flatness of a quadrotor implies planning smooth and correctly bounded trajectories for linear position and yaw angle (see section 2.4). In this spirit, mixed-integer programming techniques have been used by [START_REF] Deits | [END_REF]] to generate such trajectories. The idea is to use a discretization of the free workspace into convex free regions. Each region is associated with a parametrized polynomial which takes values entirely in the region. A mixed-integer optimization problem that consists in selecting the sequence of regions and parameters of the polynomials such that their concatenation is a smooth, collision free and flyable trajectory from start to goal while minimizing either acceleration, jerk (first derivative of acceleration) or snap (second derivative of acceleration) is then solved.

Decoupled approach

The decoupled approach presented in section 1.3.2 being a simple an intuitive way of solving the kinodynamic motion planning problem, it has naturally often been applied to aerial robots. A Voronoi-based planner followed by spline smoothing for trajectory formation has been proposed by [Judd 2001]. The A * algorithm followed by direct optimization of the trajectory using an RTABU search has been used by [Suzuki 2005]. A multi level architecture has been used by [START_REF] Scherer | [END_REF]]: an evidence grid with a Laplacian-based potential method as the outer loop, a reactive planner (dodger) to enforce soundness, a speed controller to convert the path into a trajectory, and an inner loop flight controller. The design and characterization of the inner-loop control law used in such a multi-level decoupled controller for an unmanned rotorcraft based on two types of path planners (quasi-3d implementations of an A* and a Voronoi-based planner) is covered by [START_REF] Takahashi | [END_REF]]. The implementation of a two path planner modules is described by [START_REF] Howlett | [END_REF]]. Model predictive control is used by [START_REF] Singh | [END_REF]] to both generate and follow trajectories interpolating a given set of way-points. Cubic curves are used by [START_REF] Wzorek | [END_REF]] to smooth paths generated by either a PRM or a RRT algorithm using linear interpolation as a steering method. The RRT * algorithm was used by [START_REF] Richter | [END_REF]] to find a collision-free piece-wise linear path through the environment for the flat outputs (x, y, z, yaw) of a quadrotor (see section 2.4 for more details), initially considering only the kinematics of the vehicle and ignoring the dynamics. That path is then pruned to a minimal set of way-points, and a sequence of polynomial segments is jointly optimized to join those way-points into a smooth minimum-snap trajectory from start to goal. Utilizing a differentially flat model of the quadrotor and the associated control techniques, these paths can precisely be followed.

Finite-State Motion Model: The Maneuver Automaton

Motion primitives have also been used in the context of aerial robots. A set of solutions to the two-endpoint boundary value problem as a motion primitive set is stored by [Yakimenko 2000], but the approach does not deal with obstacles. We already cited the maneuver automaton used by [Frazzoli 2000] as a steering method within a RRT-based algorithm. The concept of a maneuver automaton for human piloted acrobatic flight has been investigated by [START_REF] Piedmonte | [END_REF][START_REF] Gavrilets | [END_REF]]. The concept of the maneuver automaton within a receding horizon optimization framework has been used by [START_REF] Schouwenaars | [END_REF]]. The focus of this chapter is the quadrotor system. We will first give a model of its dynamics. This will allow us, after a brief introduction to the general principles of control theory, to define its control space and its state space. Its physical constraints in the control space will then be discussed. Finally, we will see that the system is differentially flat, which is having an impact on planning. Thanks to differential flatness we will indeed show that planning can be done in the space of the flat outputs rather than in the state space.

Quadrotor dynamics model

We present in this section our chosen model of a quadrotor system, represented in Figure 2.1. It consists of four propellers located at points P i such that {P 1 , P 2 , P 3 , P 4 } is a square centered in G, the center of mass of the system. We choose an orthonormal inertial reference frame I = {O, i 1 , i 2 , i 3 } and we note:

d = --→ GP i i=1..4 , b 1 = --→ GP 1 d , b 2 = --→ GP 4 d , b 3 = b 1 × b 2 ,
We thus defined an orthonormal body-fixed frame 

B = {G, b 1 , b 2 , b 3 }. We finally note r = --→ OG = [x y z] T the
f i = -f i b 3 ∈ R 3 applied at P i .
Note that this thrust is proportional to the square of the angular speed of the propeller: 

f i = c f ω ω 2 i ∈ R. This rotation is also generating a torque τ i = ±c τ f f i ∈ R
M 1 = d(f 3 -f 4 ). Similarly, forces f 1 and f 2 are generating a moment about the b 2 axis M 2 = d(f 1 -f 2 ). Finally torques τ i are resulting in a moment about the b 3 axis M 3 = i τ i . We note M = [M 1 M 2 M 3 ] T the
total moment in the body-fixed frame and we have:

f M = Γ      f 1 f 2 f 3 f 4      , with Γ =      1 1 1 1 0 0 d -d d -d 0 0 c τ f c τ f -c τ f -c τ f     
We finally note: 

Ω = [Ω x Ω y Ω z ] T ∈ R 3 the angular velocity in B m ∈ R the total mass J ∈ R 3×3
b 3 ] hence f = -f b 3 = -f Re 3 .
The first equation of motion which describes the linear dynamics of the system can thus be written as follows:

mr = mge 3 -f Re 3 (2.1)
Direct writing of the Euler's rotation equations gives the second equation of motion which describes the angular dynamics of the system:

J Ω + Ω × JΩ = M (2.2)

Motion control of a quadrotor

In this section we give some insights about the motion control of a quadrotor i.e. how a given planned trajectory can actually be executed by the physical system. In 1.3.1 we introduced the fact that the future state of the system at a given time t depends on its current state x(t) and the applied control u(t). We recall that the set of differential equations modeling this dependency is referred to as the equations of motion of the system: ẋ(t) = f (t, x(t), u(t)), where the function f is specific to its dynamics. We gave those equations for our model in the previous section. The field of study which is concerned with the way of influencing the behavior of such systems is called control theory. It is not the focus of this thesis but in order to plan a flyable trajectory for a quadrotor it is important to understand some of its general principles.

A brief introduction to control theory

The objects being considered here are dynamical systems. Formally a dynamical system is a time-invariant "rule" that describes the evolution over time of a point in its ambient space. More specifically, such a system outputs (its state) are a deterministic function of its inputs (the control). Control theory studies how to influence its behavior. Roughly put, we seek to gain control of the outputs by carefully choosing the inputs.

Several different strategies have been devised to try and do this. For instance when the outputs of the system are not taken into account to compute its inputs we talk of an open-loop control strategy. This would be the only strategy available for a "blind" system (i.e. deprived of any sort of sensors) since information about the state would not be available. One can see how this is not really an interesting control strategy (if it is actually one to begin with) since not knowing (or ignoring) the outputs seems to be rather problematic when it comes to try and control them.

We talk of closed-loop control or feedback control when the inputs of the system are computed by using its outputs. In such a control strategy the system is typically given a reference, which is the desired state to be attained. A measure of the current state is obtained via a set of sensors. An error is then computed by taking into account both the reference and the measure. It can be seen as a metric on the ambient space. This error is given to the controller that is in charge of computing the best set of inputs in order to keep the error both stable and close to zero. This so called feedback loop is illustrated by a diagram in Figure 2.2. If we want the quadrotor to hover at a fixed point then the reference remains constant. But for a quadrotor to follow a given trajectory the reference necessarily has to change over time. At each time step, a desired state x(t) is retrieved from the desired trajectory and considered as reference. The current state x(t) of the system is measured by the sensors which provide a measure x(t). From x(t) and x(t) the error e(t) is computed and fed to the controller which in turn computes the control u(t) that is given to the system. Some components in particular must be carefully chosen or designed in any control strategy. First, it must be decided what should be considered both as inputs and outputs. We will see that for the quadrotor for instance several different sets of inputs can be considered. This will obviously influence the way the error is computed, which is also a choice that has to be well thought. But the heart of control theory is indubitably the design of the controller itself. We will present what controller we have chosen to test the validity of our trajectories in Chapter 5.

Control space and state space of a quadrotor

The actuators of a quadrotor are its propellers. For each one, we control the electrical tension given to the motor, therefore its angular velocity and therefore (as explained in section 2.1) the generated thrust force. The inputs of the system could thus either be the four electrical tensions, angular velocities or thrust forces. But when considering the equations of motion, it seems more natural to use the net thrust and the total moment since they directly appear in those equations. We

then have u = [f M 1 M 2 M 3 ] T = [u i ] i=1..4 .
Note that this choice of inputs is not directly related to planning since we propose to plan for the flat outputs rather than for the controls. It is instead related to the choice of controller we made and that will be presented in Chapter 5. Those inputs are indeed the set of values that are the outputs of this controller and the inputs given to the system.

As for the state, we can directly consider the couple (position of the center of mass, rotation matrix) and write x = [r R ṙ Ṙ]. We can also locally parametrize the rotational matrix R using Euler angles roll, pitch and yaw noted φ, θ and ψ respectively (alternatively and more accurately also known as the Tait-Bryan angles, the Cardan angles or the nautical angles) as illustrated in Figure 2.3:

R =    c ψ c θ -c θ s ψ s θ c φ s ψ + c ψ s φ s θ c φ c ψ -s φ s ψ s θ -c θ s φ s φ s ψ -c φ c ψ s θ c ψ s φ + c φ s ψ s θ c φ c θ    with c x = cos(x) s x = sin(x)
In this case we have

x = [x y z φ θ ψ ẋ ẏ ż Ω x Ω y Ω z ] T = [x i ] i=1.
.12 . Note however that such a parametrization yields to singularities and thus using the rotation matrix is generally a better choice in practice. It is only introduced here because it will be used in the demonstration of the differential flatness of the system in section 2.4.

Physical constraints

In section 1.3 we stated that a system can be submitted to physical constraints arising from its dynamics. In this section we present what are those constraints for a quadrotor system.

In the space of the thrust forces amplitudes

In section 2.1 we defined the amplitudes f i of the thrust forces f i applied at points P i . These positive quantities are linearly proportional to the square of the angular velocities ω i of the propellers. Since that for each propeller, angular velocity is limited to a maximum value ω max (that depends on the system), the thrust amplitudes are submitted to the following inequality constraints: ∀i, 0

≤ f i ≤ f max where f max = c f ω ω 2
max is the maximum amount of thrust available per propeller. In other words the region of admissible thrusts is the hypercube [0 f max ] 4 .

In the control space

For simplification we note from now on c = c τ f . As a first approximation we could simply use the expressions of the input variables u i written as functions of the amplitudes f i of the thrust forces and the fact that ∀i, 0 ≤ f i ≤ f max to establish that:

         0 ≤ u 1 ≤ 4f max -df max ≤ u 2 ≤ df max -df max ≤ u 3 ≤ df max -2cf max ≤ u 4 ≤ 2cf max
This gives us an upper bound of the admissible control region but since the input variables are correlated we will see that it is actually not precise enough. Let us express the forces amplitudes as a function of the command.

     f 1 f 2 f 3 f 4      = Γ -1 u ⇐⇒ 4cd      f 1 f 2 f 3 f 4      =      cdu 1 + 2cu 3 + du 4 cdu 1 -2cu 3 + du 4 cdu 1 + 2cu 2 -du 4 cdu 1 -2cu 2 -du 4     
Since ∀i, 0 ≤ f i ≤ f max , these four equalities become eight inequalities. We divide those into two groups of four noted A for the inequalities of the type 0 ≤ f i and B for the inequalities of the type f i ≤ f max :

A :          0 ≤ cdu 1 + 2cu 3 + du 4 0 ≤ cdu 1 -2cu 3 + du 4 0 ≤ cdu 1 + 2cu 2 -du 4 0 ≤ cdu 1 -2cu 2 -du 4 and B :          0 ≤ 4cdf max -cdu 1 -2cu 3 -du 4 0 ≤ 4cdf max -cdu 1 + 2cu 3 -du 4 0 ≤ 4cdf max -cdu 1 -2cu 2 + du 4 0 ≤ 4cdf max -cdu 1 + 2cu 2 + du 4
Each inequality defines an hyper-plan in the control space that divides it in half. The region of admissible controls is the intersection of those eight half spaces.

The intersection of half spaces defined by hyper-plans in four dimensions is hardly an easy thing to visualize. Let us drop one dimension by studying what happens for a fixed value of u 1 . In other words we want to determine the region of admissible moments M for a given value of the net thrust f and we note this region M(f ). We have already established that:

M(f ) ⊂ [-df max df max ] 2 × [-2cf max 2cf max ] = B ⊂ R 3
Let us go a little further. The group of inequalities noted A defines four half spaces which intersection is a tetrahedron that we note T A (f ) and which vertices are:

T A (f ) =      V A1 (f ) V A2 (f ) V A3 (f ) V A4 (f )      =      -df 0 -cf df 0 -cf 0 -df cf 0 df cf     
Similarly the group of inequalities noted B defines four half spaces which intersection is a tetrahedron that we note T B (f ) and which vertices are:

T B (f ) =      V B1 (f ) V B2 (f ) V B3 (f ) V B4 (f )      =      -d(f -4f max) 0 -c(f -4f max) d(f -4f max) 0 -c(f -4f max) 0 -d(f -4f max) c(f -4f max) 0 d(f -4f max) c(f -4f max)     
In section 5.2.1 we present a quadrotor system for which some of the key values are:

f max = 4.70 N d = 2.50 × 10 -1 m c = 1.54 × 10 -2 m
Using those values we represent in Figure 2.4 both the tetrahedrons T A (f ) and

T B (f ) for f ∈ f max 2 , 3f max 2 , 2f max , 5f max 2 , 7f max 2
, alongside with the rectangular cuboid B.

We thus have ∀f ∈ 

[0 4f max ], M(f ) = T A (f ) ∩ T B (f ). Note that for f = 0 and f = 4f max , M(f ) = {[0 0 0]}.

Also note that for

f ≤ f max , T A (f ) ⊂ T B (f ) which implies M(f ) = T A (f ). Similarly for 3f max ≤ f , T B (f ) ⊂ T A (f ) which implies M(f ) = T B (f ). For f max < f < 3f max , M(f ) is a truncated tetrahedron.
One exception though: M(2f max ) is an octahedron. All those cases are illustrated in Figure 2.5.

Differential flatness

Differential flatness was originally introduced by [Fliess 1992]. One possible definition of a flat system is that a set of outputs of the same size as the set of inputs can be found such that both the state and the inputs can be expressed as a function of these outputs and a finite number of their derivatives. More precisely let us consider the system S described by:

ẋ = f (x, u) x ∈ R n , u ∈ R m
where x is the state and u the inputs. Then S is differentially flat if we can find z ∈ R m of the form z = z(x, u, u, . . . , u (k) )

such that x = x(z, ż, . . . , z (k) ) u = u(z, ż, . . . , z (k) ) We call z the flat outputs of the system.

We would like here to recall the definition of the hat operator . : R 3 → SO(3) such that xy = x × y for all x, y ∈ R 3 . Its inverse operator is called the vee operator . ∨ : SO(3) → R 3 . In motion kinematics, it is well-known that Ṙ = R Ω (see for example [Hamano 2013]). This means that angular velocity is directly related to Euler angles and their derivatives. Note that this shows that the equations of motion of the quadrotor given in section 2.1 are indeed written as ẋ = f (x, u).

We will show here that the quadrotor system is differentially flat for the outputs z = [x y z ψ] T = [z i ] i=1..4 . A slightly different version of the following proof can be found in [START_REF] Mellinger | [END_REF]]. Let us first show that the state is a function of z and its derivatives. Obviously, position and linear velocity of the center of mass are functions of the outputs and their derivatives. Let us show that it is also the case for the rotational matrix R. We can first see that by definition b 3 = Re 3 . Hence, from the first equation of motion (2.1), we have:

b 3 = m f t, with t =    -ẍ -ÿ g - z    =    -z 1 -z 2 g -z3    Then b 3 = m f t = 1 which implies that f = u 1 = m t .
We have here expressed the first input variable as a function of the second derivatives of the first three flat outputs. As a consequence we also see that:

b 3 = t t
Let us then consider an intermediate orthonormal frame J = {j 1 , j 2 , j 3 = i 3 } rotated from I of an angle ψ = z 4 about the i 3 axis (see Figure 2.3). We have j 2 = [-sin z 4 , cos z 4 , 0] T . Then b 1 and b 2 can be expressed as follows:

b 1 = j 2 × b 3 j 2 × b 3 and b 2 = b 3 × b 1
The rotational matrix R = [b 1 b 2 b 3 ] can thus be expressed almost everywhere (singularities when j 2 and b 3 are collinear) as a function of z and its derivatives.

We recall that Ṙ = R Ω thus Ω = (R T Ṙ) ∨ and so angular velocity is also a function of z and its derivatives. Therefore, from the second equation of motion (2.2), we see that this is also the case for momentum. Hence the three last input variables are also a function of the flat outputs and their derivatives.

As we have just seen, the inputs can be expressed as a function of the flat outputs and their derivatives. These expressions are called the flat transformations. Note that although we took a shortcut in the demonstration above by not explicitly expressing momentum as a function of a flat outputs, it is of course entirely possible. See [START_REF] Mellinger | [END_REF]] for instance for an expression of angular velocity. Differential flatness might only seems to be a theoretical property of a dynamical system but in practice it allows to move the trajectory generation problem from the state space to the space of the flat outputs. A smooth enough trajectory in the space of the flat outputs can indeed be translated as a trajectory in the control space using the flat transformations. To see why this is interesting in our case let us consider the second equation of motion (2.2). From it we can see that if we wanted to plan a trajectory in the state space we could not plan for each angular velocity component independently because of the coupled dynamics introduced by the vectorial product. As we will see in the next chapter this is not the case in the space of the flat outputs: we can plan each independently. Planning is therefore made easier.

In section 2.3.2 we expressed the set of admissible inputs. We want to plan a trajectory in the space of the flat outputs that, when translated into the control space, remains inside this admissible set. Or in other worlds, we want to plan an admissible trajectory. This proved to always be possible provided that the derivatives of the flat outputs are small enough. This comes from the fact that the flat transformations are smooth and that the input vector u tends to [mg 0 0 0] T (which is an admissible control) as the derivatives of the flat outputs tends to zero in norm. See [Spica 2012a] for instance for a more detailed explanation. As for actually expressing the limits on the derivatives in function of, for example, the maximum thrust f max , it remains to our knowledge an open problem. In the remaining of this thesis we will however use those limits and give them numerical values in various experiments. Please keep in mind that since the link between the physical limits of the system and the bounds on the derivatives of its flat outputs is not known to us, those values are bound to be empirical.

To summarize, we have to plan a smooth enough trajectory in the space of the flat outputs with bounds on the derivatives. The next chapter will be addressing this problem exactly. We saw in section 2.4 that thanks to the differentially flatness of the system we can plan for a trajectory in the space of the flat outputs and their derivatives rather than in the state space. We saw that the flat outputs are z = [r T , ψ] T and that the steering method should plan for x = [z, ż, z] T , that we abusively call the state of the quadrotor. In this chapter we focus on the steering method (or local planner), i.e. the way a local path is produced between two states. We first present the corresponding two-point boundary value problem. A method to solve it, that can be used as a steering method for a quadrotor, is then proposed. It is a near time-optimal spline-based approach for which we will discuss the optimality of the computed solutions. We will finally see how this method can be applied to more general systems.

A two-point boundary value problem

In this section we first define the general two-point boundary value problem in four dimensions and then see how it can be redefined as a collection of problems in one dimension.

Definition of the full problem

We recall that the flat outputs of a quadrotor are

z =      x y z ψ      = [z i ] i=1..4 ∈ P ⊂ R 4
with P the space of the flat outputs. We can consider its state to be

x =    z ż z    = [x i ] i=1..12 ∈ X ⊂ R 12
From now on we will abusively call X the state space.

The steering method has to produce a trajectory S in P. Let us note T ∈ R + its (unknown) total duration. Because the trajectory has to be continuous in P, and in order to guaranty continuity of the angular velocity, S has to be of class C 3 at least: S ∈ C 3 ([0 T ], P). This is due to the relationship between attitude and linear acceleration imposed by the equations of motion. In addition, since these (local) trajectories will be the elements of the solution provided by the (global) motion planner, we want to ensure continuity of the jerk (first derivative of acceleration) between two consecutive trajectories. The jerk is not part of the state as we choose to define it and is therefore not sampled. We thus have to impose an arbitrary value for it at the end-points. Zero seems to be the easiest and most natural choice. Thus, another constraint has to be imposed: ...

S (0) = ... S (T ) = 0
The physical limitations of the system are imposing bounds on acceleration and jerk. For security reasons we will also consider bounds on velocity. Furthermore, since we want a continuous and bounded jerk, snap (second derivative of acceleration) has to be bounded too. We are also concerned by optimality: we want the minimal time solutions. This is important if we want to be able to use this method as local planner in algorithms such as RRT * or PRM * . Thus for a given couple of states (x 0 , x F ) the steering method has to provide a solution to the problem:

                                                 min T ∈ R + s.t. S ∈ C 3 ([0 T ], P) S(0) Ṡ(0) S(0) = x 0 ∈ X S(T ) Ṡ(T ) S(T ) = x F ∈ X ... S (0) = ... S (T ) = 0 ∀t ∈ [0, T ]          Ṡ(t) ∈ V S(t) ∈ A ... S (t) ∈ J .... S (t) ∈ S (3.1)
where V, A, J and S are zero centred intervals of R 4 . Note that X = P × V × A.

Independence of the outputs

In the full problem we can see that the outputs are two-by-two independent. This means that, with the exception of the total duration T of the trajectory, they have no parameters in common. We therefore can solve the problem independently for each output. Any given state x k ∈ X can be written as:

x k =    z k żk zk    =           z k i i=1..4 żk i i=1..4 zk i i=1..4          
We can also write:

                         V = 4 i=1 [-v i , v i ] A = 4 i=1 [-a i , a i ] J = 4 i=1 [-j i , j i ] S = 4 i=1 [-s i , s i ] with (v i a i j i s i ) ∈ R 4 + .
Given a couple of states (x 0 , x F ), solving the problem independently for each output is then finding solutions S i to the problem

                                                 min T ∈ R + s.t. ∀i = 1..4,                                          S i ∈ C 3 ([0 T ], R) S i (0) Ṡi (0) Si (0) ... S i (0) = z 0 i ż0 i z0 i 0 S i (T ) Ṡi (T ) Si (T ) ... S i (T ) = z T i żT i zT i 0 ∀t ∈ [0, T ]          | Ṡi (t)| ≤ v i | Si (t)| ≤ a i | ... S i (t)| ≤ j i | .... S i (t)| ≤ s i
Note that in this formulation the total time of motion T is the same for each subproblem. We propose to relax this constraint by allowing us to find a different T i for each problem. This will simplify their resolution and therefore speed-up the overall process as we will illustrate in section 3.3.3. One issue though is that the solutions will not to be synchronized together. We will see later how to solve this. In order to simplify the notations we will now write for a given output of index i:

(v i a i j i s i ) = (v max a max j max s max ) z 0 i ż0 i z0 i = [x 0 v 0 a 0 ] z T i żT i zT i = [x F v F a F ]
Thus the problem in one dimension that has to be solved independently for each output can finally be written as:

                                                 min T i ∈ R + s.t. S i ∈ C 3 ([0 T i ], R) S i (0) Ṡi (0) Si (0) ... S i (0) = [x 0 v 0 a 0 0] S i (T i ) Ṡi (T i ) Si (T i ) ... S i (T i ) = [x F v F a F 0] ∀t ∈ [0, T i ]          | Ṡi (t)| ≤ v max | Si (t)| ≤ a max | ... S i (t)| ≤ j max | .... S i (t)| ≤ s max (3.2)

A near time-optimal spline-based approach

In this section we present a near time-optimal spline-based approach to solving the BVP. We will first present the proposed closed-form solution. Then in the following sub-sections we will further detail the resolution. We will finally discuss the optimality of the computed solutions.

Closed-form solution

The BVP described by equation (3.2) can be seen as a classical optimal control problem. It is indeed a fourth order integrator. In this formulation, the state of the system is X(t) = S(t) Ṡ(t) S(t) ...

S (t)

T and the control input is u(t) = .... S (t) ∈ [-s max s max ]. We can then write:

Ẋ(t) =      0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0      X(t) +      0 0 0 1      u(t)
Pontryagin maximum principle (see for example [START_REF] Bertsekas | [END_REF]) states that, without constraints on the state, the optimal control u * for the minimum time problem is necessarily saturated meaning that ∀t ∈ [0 T i ], u * (t) ∈ {-s max , s max } with at most three control commutations. Thus finding the optimal control in this case is finding these control commutations. Depending on the order of the integrator this can be done analytically and therefore within reasonable computing time. This type of command is called a bang-bang solution.

In our case, the state is also constrained. In this case the optimal command is a so-called bang-singular-bang solution where ∀t ∈ [0 T i ], u * (t) ∈ {-s max , 0, s max }. Finding it is not trivial and usually requires computationally expensive numerical approaches. This is not well suited for integration in sampling-based motion planners since they make extensive use of the steering method (usually thousands of calls to solve constrained planning problems). Furthermore, solving independently the BVP in one dimension for each output will provide four different durations T i . In order to produce a coherent trajectory these solutions have to be "synchronized" meaning that their durations have to matched to a single common duration. It is not trivial to see how to do that. We therefore propose a method to compute a trajectory with an imposed shape inspired by the bang-singular-bang solution that approaches the optimal. This will allow us to both quickly compute good solutions to the BVPs in one dimension and facilitate their synchronization.

The mathematical justification of the shape of the optimal bang-singular-bang solution is quite complicated. We propose here a more intuitive explanation. The motion is divided into several main phases illustrated with an example in Figure In order to minimize T i , maximum velocity has to be reached as soon as possible and maintained as long as possible. Let the letter D refer to this phase of constant velocity and let v D ∈ [-v max v max ] be the value of velocity during this phase. Time spent to reach this maximum velocity is also to be minimized meaning that the durations of the phases of velocity transitions from v 0 to v D and from v D to v F have to be as short as possible. Hence time spent at maximum acceleration during those two phases has to be maximized. This implies to minimize the durations of acceleration variation phases. Let B refer to the phase of constant acceleration during the first phase of velocity variation and a B ∈ [-a max a max ] be the value of this constant acceleration. Let G be the phase of constant acceleration during the second phase of velocity variation and a G ∈ [-a max a max ] be the value of this constant acceleration. The phase in which acceleration varies from a 0 to a B is noted A, and C is used to refer to the phase in which acceleration varies from a B to zero. The phases where acceleration varies from zero to a G and from a G to a F are noted E and H respectively. This principle holds for higher derivatives. Time spent at maximum jerk during acceleration variations has to be maximized and durations of jerk variation phases have to be minimized. This implies to maximize time spent at maximum snap during a jerk variation phase and to minimize the durations of snap variation phases. This very last part is easy since, following our approach, snap can be discontinuous: a snap variation phase is actually a snap commutation of duration zero (∀t ∈ [0, T i ], .... S i (t) ∈ {-s max , 0, s max }). In other words, .... S i is a piecewise constant function, which implies that S i is a piecewise polynomial function (a spline) of the fourth order.

In the discussion above, we have mentioned seven main phases in the (local) trajectory. For three of them (B, D, G), acceleration is zero and hence snap is also zero. The four others (A, C, E, H) are divided into three sub-phases (1, 2, 3). Phases 1 and 3 correspond to jerk variations and hence for which | .... S i (t)| = s max . In phase 2, jerk is constant hence snap is zero. The sign of the snap is opposed during phases 1 and 3, which have the same duration. Table 3.1 presents the notation used for the durations of the phases and the expressions of the snap as functions of a B and a G . 

sign(a B -a 0 ).s max t A,1 A 2 0 t A,2 A 3 sign(a 0 -a B ).s max t A,1 B 0 t B C 1 -sign(a B ).s max t C,1 C 2 0 t C,2 C 3 sign(a B ).s max t C,1 D 0 t D E 1 sign(a G ).s max t E,1 E 2 0 t E,2 E 3 -sign(a G ).s max t E,1 G 0 t G H 1 sign(a F -a G ).s max t H,1 H 2 0 t H,2 H 3 sign(a G -a F ).s max t H,1
The expression of the snap during phase A 1 is explained as follows: if a B > a 0 , Si has to be increasing, which implies that ... S i has to be positive. Since ... S i (0) = 0, ... S i has to be increasing during phase A 1 , and thus .... S i (t) = +s max . Following the same reasoning, .... S i (t) = -s max if a B < a 0 . If a B = a 0 , then phase A is not needed, and thus .... S i (t) = 0. A similar reasoning can be applied to understand the expressions for phases C, E and H.

Note the simplifying choices we have made. We impose both jerk and acceleration to go through zero during phase B, which implies that velocity reaches its maximum value v D very smoothly. This is indeed the case for the optimal trajectory if velocity is saturating. In fact each time a component of the state is saturating, the optimal trajectory goes through a singular arc, meaning that the command is zero (here the snap). But for trajectories for which there is no velocity saturation, going from a B to a G can be done more efficiently. We will see that this choice allows a simpler computation of the trajectory and is also useful during the synchronization process. However this necessarily leads to the computation of a sub-optimal solution. We will quantify this sub-optimality in section 3.3. From now on, both optimal time and optimal velocity are to be read as: with respect to our closed-form solution.

Duration of the phases

At this point, the local trajectory for one output (i.e its corresponding spline) is parametrized by a B , a G and the durations of all phases. This subsection explains how it can be parametrized using a single parameter: v D . First, t A,1 , t A,2 , t C,1 and t C,2 can be expressed as functions of a B , a 0 , j max and s max . The same goes for t H,1 , t H,2 , t E,1 and t E,2 as functions of a G , a F , j max and s max . We provide next explanations only for t A,1 and t A,2 but the same principles are applied to all durations mentioned above. More details are provided in Appendix A. Let us define δ B0 =sign(a B -a 0 ). From Table 3.1 and equation (3.2), we can write: 

a B = δ B0 .s max .t 2 A,1 + δ B0 .s max .t A,
s max .t 2 A,1 ≤ j 2 max s max = a lim (3.4)
Phase A 2 is only needed when phases A 1 and A 3 are not enough to reach a B . If there is no phase A 2 , then t A,2 = 0. In this case, using equations (3.3) and (3.4), we can write:

|a B -a 0 | = s max .t 2 A,1 ≤ a lim
If |a B -a 0 | > a lim , then t A,2 = 0 (i.e. phase A 2 is needed) and t A,1 = j max s max , its maximum value. In that case,

t A,2 = |a B -a 0 | j max - j max s max If t A,2 = 0, then t A,1 = |a B -a 0 | s max
The principle is the same for phases 

= V B (-a max , 0) and v max B = V B (a max , 0). For all v D in [v min B , v max B ], there is a unique a B ∈ ([-a max , min(0, a 0 )]∪ [max(0, a 0 ), a max ]) such that V B (a B , 0) = v D (see Appendix A for more details). If v D < v min
B , then a B = -a max and phase B is needed. Its duration is simply

t B = |v D -v min B |/a max . If v D > v min B , then a B = a max and t B = |v D -v max B |/a max .
Hence, as previously announced (a B , t B ) can be expressed as a function of v D . The same goes for (a G , t G ).

At this point the spline is parametrized by (v D , t D ). Let t C be the value of the time parameter at the end of phase C, and t E its value at the beginning of phase E. As explained previously, these two values can be expressed as a function of v D . This is also the case for S i (t C ) and S i (t E ). Let ∆ S be the function

v D → S i (t E ) -S i (t C ). If v D = 0, then t D = ∆ S (v D )/v D .
Therefore, the spline is completely parametrized by the sole value of v D . Note that, necessarily:

v D .∆ S (v D ) ≤ 0 (3.5)

Optimal velocity

The spline is now parametrized by v D only. This section explains how to compute the optimal value v opt that minimizes T i (v D ). Let V valid be the set of values of v D that meet the constraint given by equation (3.5) and let us note V 0 = [min(0, v opt ), max(0, v opt )]. For synchronization purposes, it is necessary that V 0 ⊂ V valid , which implies:

∀v ∈ V 0 , v.∆ S (0) ≤ 0 (3.6)
Let us note δ 0 =sign(∆ S (0)). Since minimizing T i requires maximizing |v D |, equation (3.6) implies that, if ∆ S has zeros between v = 0 and v = δ 0 .v max , then v opt is the one of lowest absolute value. If not, v opt = δ 0 .v max .

Synchronization

The trajectory generation problem is now solved for each output independently. Hence, we have four different values T i for i = 1..4. This subsection explains how to synchronize together these one-dimensional trajectories. Solving each problem provides a couple (T i , v opt,i ) and the associated interval V 0,i . The purpose of the definition of v opt provided in the previous subsection is to guaranty that the application v D → T i (v D ) is continuously strictly monotonic on V 0,i . Furthermore, lim

v D →0
T i (v D ) = +∞. This implies that, for any t in [T i , +∞[, there is a unique v ∈ V 0,i such that T i (v) = t. This property is used to synchronize the components. The slowest component of index j is identified and and we note T = T j . For each i = j a simple dichotomous search is used to find the unique v D ∈ V 0,i such that T i (v D ) = T for the three other components. As a result, all the components have the same final time T . All outputs are synchronized.

Generalization to other robotic systems

In the context of this work we apply this method to the quadrotor system. This means solving the BVP in three dimensions if yaw is kept constant or in four dimensions otherwise. But really, any differentially flat system or for that matter any robotic system with uncoupled dynamics can be treated using this method, whatever the dimension. We therefore implemented it for any such system as a standalone C++ library named KDTP (for KinoDynamic Trajectory Planner).

A git repository is available at: git://git.openrobots.org/robots/libkdtp.git

Discussion on optimality

In section 3.2.1 we explained the simplifying choices we have made in order to establish a closed-form solution to the BVP in one dimension that allows both an easier computation and synchronization of the outputs. We stated that our solutions are necessarily sub-optimal. In this section we will first explain why this is the case in further details and then quantify this sub-optimality. For that we will focus first on the solutions to the BVP in one dimension an then study the solutions to the problem in three dimensions.

Optimality and velocity saturation

In our proposed closed-form solution to the BVP in one dimension, acceleration necessarily goes smoothly to zero at one time in the trajectory, meaning that we chose to set a zero snap (and jerk) at some point during this phase. For the optimal solution, this is only the case if velocity is saturating. During a saturation phase velocity is indeed constant and therefore higher derivatives are nil. If this is the case then our method computes the optimal solution. But if there is no velocity saturation then our method will compute a sub-optimal solution because in the optimal trajectory there is no need for the acceleration to smoothly go to zero. This is illustrated on two examples in Figure 3.2.

Figure 3.2: Left: velocity is saturating, our method therefore computes the optimal solution. Right: no velocity saturation. In blue, our sub-optimal solution. In red, the optimal solution. The length of the black dashed segment is the absolute error between the two solutions.

In one dimension

The goal of this section is to give an idea of the quality of our proposed closed-form solution to the BVP described by Equation (3.2). By that we mean comparing the time T i computed by our method (that we here simply note T ) to the actual optimal time T * . We propose to do so by uniformly sampling a total of 10 4 couples of "states" ([

x 0 v 0 a 0 ], [x F v F a F ]) in [-5 5]×[-v max v max ]×[-a max a max ],
solve the problem with our method and compare the duration T of the result to the duration T * of the optimal solution. In this experiment we use the following values:

v max = 5 m.s -1 a max = 10 m.s -2 j max = 20 m.s -3 s max = 50 m.s -4
In order to compute the optimal time T * we use ACADO Toolkit. It is a software environment and algorithm collection for automatic control and dynamic optimization implemented as self-contained C++ code (see http://acado.github.io). In our implementation, it treats the optimal control problem by formulating it as a multiple shooting problem that is solved using an SQP algorithm (Sequential Quadratic Programming). We use 20 nodes along the trajectory and the initial guess is a linear interpolation for each state and command variables. The KKT tolerance parameter is set to 10 -12 .

To compare T and T * we compute the relative error between them as follows:

E rel = T -T * Max(T, T * )
In total we actually sampled 17, 251 couples of states but disregarded 7, 251 of them (42.03%). One possible reason for it is that the BVP does not always have a solution. It is for example possible that velocity at one end is too high so that it is not possible, given the constraints on higher derivatives, to reduce it in time to avoid violating the velocity constraint. This will be explained in more details in section 4.2.2. In this case the ACADO algorithm will not converge. In our experiment this happened for 6, 409 couples of "states" (37.15%). The other reason for disregarding a sample is that we obtain E rel < -0.01. In those cases we consider that the ACADO algorithm has converged poorly and therefore that the test is inconclusive. This happened for 842 samples (4.88%).

Among the 10 4 successful tries:

• For 22.60% of them we have |E rel | < 0.01. This means that our method gives the same result as the ACADO algorithm within a 1% margin. We therefore consider that our method provides a trajectory with optimal duration.

• For the remaining 77.40%, we have 0.01 ≤ E rel , meaning that our method provides a sub-optimal result. We propose to study the distribution of the relative error for those cases. An histogram and a box plot are represented in Figure 3.3. We also provide key statistical values in Table 3.2.

Figure 3.3: For the BVP in one dimension: the histogram of the distribution of the relative error for the 7, 740 sub-optimal cases alongside with its box plot. In the later, the ends of the whiskers are the extremal values, the red squares are the 10th and 90th percentiles, the edges of the blue box are the first and third quartiles and the red segment inside the box is the median.

In summary, among the 10 4 conclusive tests, 22.60% are optimal and among the remaining 77.40% the mean relative error is 8.84% with 90% of them having a relative error below 21.65%. In total, the mean relative error is therefore 6.85%.

At this point one can wonder why using a sub-optimal method when we do have the numerical tools to compute the optimal solution. The answer lies in the computing time needed to run those numerical methods. Lets compare the CPU times for the 10 4 conclusive tests. Those times are for a C++ implementation run on a single core of an Intel Xeon W3520 processor at 2.67GHz. For the ACADO algorithm the mean running time is 132.36 milliseconds (with a standard deviation of 32.42 milliseconds) whereas the mean running time for our method is 0.21 milliseconds (with a standard deviation of 0.50 milliseconds). Histograms of the distribution of the CPU times for both methods are represented in Figure 3.4. Figure 3.4: For the BVP in one dimension: the histograms of the distribution of the CPU times in milliseconds for both methods. On the left: the ACADO algorithm. On the right: the proposed method.

For being 6.85% sub-optimal in average we gain three orders of magnitude in mean running time.

In three dimensions

We focus here on a simplified version of the problem described by Equation (3.1). Without loss a generality we chose to keep the yaw angle constant. We therefore study the solutions of the BVP in three dimensions. The experimental setup is very similar to the one on the previous section. We sample 10 4 couples of states in [-5 5] 3 × [-v max v max ] 3 × [-a max a max ] 3 , solve the problem with our method and compare the duration T of the result to the duration T * of the optimal solution. We use the same values as before for the bounds on the derivatives v max , a max , j max and s max . Here again we use ACADO Toolkit to compute the optimal solution.

We sampled a total of 45, 474 couples of states and disregarded 35, 474 of them (78.01%). For 3, 010 samples (6.62%) the ACADO algorithm did not converge properly. For the remaining 32, 464 samples (71.39%), it did not converge at all. The increased number of failures is explained by the dimension of the problem. It is enough that at least one component out of three of one of the two states is ill sampled (meaning that the interpolation under constraints for this component has no solution) for the all problem to have no solution.

Among the 10 4 successful tries, 41.41% have optimal duration. The mean relative error of the remaining 58.59% sub-optimal cases is 6.08% and 90% of them have a relative error below 8.84%. In total, the mean relative error is therefore 3.56%. We provide an histogram and a box plot of the distribution of the relative error for the 5, 859 sub-optimal cases in Figure 3.5 and key statistical values in Table 3.3. Figure 3.5: For the BVP in three dimensions: the histogram of the distribution of the relative error for the 5, 859 sub-optimal cases alongside with its box plot. In the later, the ends of the whiskers are the extremal values, the red squares are the 10th and 90th percentiles, the edges of the blue box are the first and third quartiles and the red segment inside the box is the median.

The increased accuracy of the method is also explained by the dimension of the problem. The probability of velocity saturation is increased by the fact that each sample in three dimensions is equivalent to three samples in one dimension. Hence the increased percentage of optimal solutions computed by our method. As expected the distribution of relative error for the sub-optimal cases is similar to the problem in one dimension.

Let us compare the CPU times. For the ACADO algorithm the mean running time is 601.30 milliseconds (with a standard deviation of 481.082 milliseconds) whereas the mean running time for our method is 0.61 milliseconds (with a standard In this chapter we present the global approaches on which we have focused to solve the kinodynamic motion planning problem for a quadrotor. In particular we will show how the spline-based steering method that we described in the previous chapter can be integrated into those global methods. We first present a decoupled approach together with a local optimization method of the global solution trajectory. We then focus on direct approaches. In that perspective we begin by addressing the problem of the metric in the state space. Follows the description of an incremental sampling strategy in the state space. We finally present two global direct approaches to kinodynamic motion planning and discuss the influence of both the metric and the sampling strategy on both of them.

A decoupled approach

This section explains how the spline-based steering method presented in Chapter 3 can be used in a decoupled approach to kinodynamic motion planning. Our implementation of the decoupled approach consists of two stages: 1) planning a geometrically valid path in R 3 for the center of mass of the quadrotor using its minimum bounding sphere for collision detection; 2) transforming this path into a trajectory in X . Since we use the minimum bounding sphere for collision detection, planning the yaw angle profile seems a bit artificial and has little interest. We therefore chose here to keep it constant. It is always possible if need be to chose a different yaw profile afterwards. We note r = [x y z] ∈ R 3 the position of the center of mass. In our current implementation, a classic sampling-based motion planning technique such as those described in section 1.2 is applied to explore R 3 (typically either a bi-RRT or a classic PRM). Linear interpolation is used to connect sampled positions. The resulting path is thus a concatenation of n collision-free straight line segments in R 3 : {(r i , r i+1 )} i=1..n . The next subsection explains how this geometrical path in R 3 is transformed into a trajectory in X .

From path to trajectory

A straightforward way of turning the geometrical path into a well defined trajectory is to apply our spline-based steering method to each pair of hovering states ([r i 0 0], [r i+1 0 0]) along the path. By construction the local trajectories thus obtained are smoothly connected one to the next so that their concatenation is indeed a well defined and admissible trajectory (in terms on the bounds on the derivatives). Their is however a major problem with this approach. The result trajectory might not be collision-free anymore. The reason why is that our steering method, called between two hovering states, does not compute a straight line segment in R 3 . This is due to the fact that although the straight line segment is the optimal solution in terms of distance it is not the time-optimal solution.

In order to assure that the trajectory is collision-free we thus have to keep the previously computed straight line segments in R 3 for the center of mass of the quadrotor. For a line segment of index i in the path, let us note:

l i = r i+1 -r i its length and u i = r i+1 -r i l i its unit direction vector
We apply our steering method in one dimension to the couple ([0 0 0], [l i 0 0]) which gives us:

a duration T i ∈ R a distance profile (D i : [0 T i ] → R) a velocity profile (V i : [0 T i ] → R) = Ḋi an acceleration profile (A i : [0 T i ] → R) = Vi
We can now define the local trajectory of index i by:

∀t ∈ [0 T i ],      r(t) = r i + D i (t).u i ṙ(t) = V i (t).u i r(t) = A i (t).u i
The local trajectories are now well defined, collision-free and admissible, therefore so is the global trajectory. However the latter is far from being time-optimal because of the imposed stops at the ends of each local trajectories. We will see in the next vers, such as the one illustrated in the right hand side of Figure 4.6. The approach is also unsuitable to solve problems involving the transportation of a rigidly-attached large object and for which the bounding sphere is a too large approximation of the geometry of the system. To address these kinds of problems we need to use direct approaches.

Direct kinodynamic planning

In this section we focus on direct approaches on kinodynamic motion planning for a quadrotor. We first address the problem of the metric in the state space. Follows the description of an incremental sampling strategy in the state space. We finally present two global direct approaches to kinodynamic motion planning and discuss the influence of both the metric and the sampling strategy on both of them.

Quasi-metric in the state space

The efficiency of the state-space exploration using randomized kinodynamic motion planning algorithms relies on a good distance metric. However, as discussed in [LaValle 2001], computing the actual distance between two states is as hard (and thus as costly) as solving the corresponding optimal control problem. Our steering method provides a deterministic sub-optimal solution to such a control problem. Therefore, it defines a quasi-metric2 M * SM : (x 0 , x T ) → T on the state space. Because of the dynamics of the system, a trajectory in the state space from x 0 to x T is indeed necessarily different from a trajectory from x T to x 0 , and thus M * SM is not symmetric. Although this steering method is computationally fast, it is still too costly to be used for nearest neighbor search inside a sampling-based planner. This section presents a method to approximate the quasi-metric M * SM at a very low computational cost, and presents results that show its relevance.

Approximate quasi-metric

The complexity of the problem 3.1 defined in Chapter 3 is mainly due to its order (four) and to the inequality constraints on the derivatives. We propose to solve a simpler time optimal control problem for the third order (i.e. by considering the jerk as the control input), in one dimension and without constraints other than the bounds on the control input. The problem is then to find for each output of index i the couple (S i , T i ) such that:

                       min T i ∈ R + s.t. [S i (0) Ṡi (0) Si (0)] = [x 0 v 0 a 0 ] ∈ R 3 [S i (T i ) Ṡi (T i ) Si (T i )] = [x T i v T i a T i ] ∈ R 3 ∀t ∈ [0, T i ], | ... S i (t)| ≤ j max ∈ R + (4.1)
For this simple integrator of the third order without constraints on the state, Pontryagin maximum principle (see for example [START_REF] Bertsekas | [END_REF]) says that the optimal control is necessarily saturated, i.e.:

∀t ∈ [0, T i ], ... S i (t) ∈ {-j max , j max }
with at most two control commutations. Solving (4.1) implies to find T i and these (at most) two commutation times, which requires to solve polynomial equations of maximum degree four.

For a coordinate of index i ∈ {1, 2, 3}, let u(t) = ... S i (t) be the control function and u its initial value: u = u(0) = ±j max . Let t 1 be the duration of the first phase (during which u(t) = u), t 2 the duration of the second phase (during which u(t) = -u) and finally t 3 the duration of the third phase (during which u(t) = u). Note that T i = t 1 + t 2 + t 3 . In case of no control commutation, t 2 = t 3 = 0 and in case of one control commutation, t 3 = 0. Let us also note a k (t), v k (t) and x k (t) respectively the acceleration, velocity and position during the phase of index k ∈ {1, 2, 3}. For example during phase k = 1, i.e. t ∈ [0, t 1 ]:

                 a 1 (t) = ut + a 0 v 1 (t) = u 2 t 2 + a 0 t + v 0 v 1 (t) = u 6 t 3 + a 0 2 t 2 + v 0 t + x 0
The expressions for phases k = 2 and k = 3 are similar. Note however that a 2 (t) = a 2 (t, t 1 ) and a 3 (t) = a 3 (t, t 1 , t 2 ) (the same goes for v and x).

In case of no control commutation, T i is solution of (4.1) if and only if:

           T i ≥ 0 a 1 (T i ) = a F ⇐⇒ T i = a F -a 0 u v 1 (T i ) = v F x 1 (T i ) = x F
The candidate T i is tested for u = sign(a F -a 0 )j max .

In case of one control commutation, (T i , t 1 ) is solution of (4.1) if and only if:

           T i > t 1 > 0 a 2 (T i , t 1 ) = a F ⇐⇒ T i = 2t 1 + a 0 -a F u (eq 1 ) v 2 (T i , t 1 ) = v F (eq 2 ) x 2 (T i , t 1 ) = x F (eq 3 )
Once T i expressed as a function of t 1 by (eq 1 ), solving (eq 2 ) is solving a second order polynomial equation in t 1 . Positive solutions for u = ±j max are reported in (eq 3 ) to be tested as candidates.

In case of two control commutations, (T i , t 1 , t 2 ) is solution of (4.1) if and only if:

           t 1 > 0, t 2 > 0, T i > t 1 + t 2 a 3 (T i , t 1 , t 2 ) = a F ⇐⇒ T i = 2t 2 + a F -a 0 u (eq 4 ) v 3 (T i , t 1 , t 2 ) = v F (eq 5 ) x 3 (T i , t 1 , t 2 ) = x F (eq 6 )
Once T i expressed as a function of t 2 by (eq 4 ), (eq 5 ) provides an expression of the form:

t 1 = At 2 + B t 2 + C
Then solving (eq 6 ) is solving t 2 [x 3 (T i , t 1 , t 2 ) -x F ] = 0 which is a fourth order polynomial equation in t 2 . The unique solution of (4.1) is the minimum of all valid computed candidates.

The proposed quasi-metric is then defined as:

M SM : (x 0 , x T ) → max i=1..4 T i

Results

Here we present results of an experimental test to validate the proposed approximate quasi-metric. 10 4 pairs of kinodynamic states were randomly sampled in -20, 20] 3 and S = [-50, 50] 3 . Note that, without loss of generality and for simplification purposes, we consider here a constant yaw. For each pair (x 1 , x 2 ), we computed the value M * SM (x 1 , x 2 ) of the quasi-metric induced by our steering method, the value M SM (x 1 , x 2 ) given by the proposed approximation, and the value ED(x 1 , x 2 ) of the euclidean distance in R 3 considering only the position of the center of mass. We study the distribution of the relative error between M * SM and M SM , i.e. the quantity:

X = [-5, 5] 3 × [-5, 5] 3 × [-10, 10] 3 , considering J = [
RE M SM (x 1 , x 2 ) = 1 - M SM (x 1 , x 2 ) M * SM (x 1 , x 2 )
For comparison, we also provide the relative error RE ED between M * SM and ED. Figure 4.2 shows histograms of the distributions of these errors, Table 4.1 shows key statistical values of these distributions and Table 4.2 gives mean CPU times in milliseconds for a single core of an Intel Xeon W3520 processor at 2.67GHz. The low standard deviation of the distribution of the relative error for the proposed quasi-metric is a measure of the quality of the approximation. These results also provide empirical evidence that M SM and M * SM are equivalent since for all pairs (x 1 , x 2 ), 0.16396

≤ RE M SM (x 1 , x 2 ) ≤ 0.85540 which implies 1 10 .M * SM (x 1 , x 2 ) < M SM (x 1 , x 2 ) < 10.M * SM (x 1 , x 2 )
This means that M SM and M * SM are inducing the same topology on X which means that the cost-to-go defined by our steering method is correctly evaluated by M SM . This is clearly not the case for ED.

Sampling strategy

In many motion planning problems the workspace is bounded. In most of them it is a simple box in R 3 . Trajectories generated by the steering method presented in Chapter 3 do not guarantee respect to any bounds on the position of the center of mass of the robot. Such constraints are then typically violated when samples are close to the boundary of the workspace and the velocity is high, so that it is not possible to decelerate to avoid crossing this positional limit. In a similar way, bounds on velocity can also be violated. If acceleration is too high and velocity is close to the limit, produced trajectories will be invalid because velocity can not be reduced in time to meet the constraints. Note however that the imposed shape for the trajectories produced by our steering method guarantees that bounds on acceleration are respected. This section presents an incremental state-space sampling technique that increases the probability of generating connectible states. The definition of such states is first presented. Then the different steps of the method are explained. Finally some results are provided.

State connectibility

In this section we will use the notations and concepts defined in section 1.3.1. We also introduce the set X phys ⊇ X valid that contains all the states that satisfy the physical constraints. We recall that given a state x 0 ∈ X phys , a control u admissible on [t 0 t F ], is said to be feasible if and only if the associated response is such that

∀t ∈ [t 0 t F ], x [t 0 ,x 0 ,u] (t) ∈ X phys . The set of such controls is noted U [x 0 ],t 0 ,t F Provided a time t 0 , we say that a state x 0 ∈ X phys is forward-connectible if and only if U [x 0 ,t 0 ,+∞] = ∅
This means that for a state that is not forward-connectible every admissible control is unfeasible, or in other terms that whatever admissible control is applied to the system, the physical constraints will be violated at some time in the future. This definition is similar to that of the inevitable collision states proposed by [Fraichard 2004]. Similarly, we say that a state x 0 ∈ X phys is backward-connectible if and only if U [x 0 ,-∞,t 0 ] = ∅. A state that is both forward-connectible and backward-connectible is said to be connectible. A state that is either not forwardconnectible or not backward-connectible is said to be non-connectible. The idea is coarsely illustrated on No solution to a kinodynamic motion planning problem can pass through a nonconnectible state since that if it were the case the solution would not be feasible. Such states are therefore always useless and should not be sampled. In case of uniform sampling though, non-connectible states can be generated. The local paths computed to connect those states have then to be discarded a posteriori by the planner. This is rather inefficient since generating and testing a local path for validity is a costly operation. The goal of the sampling technique proposed below is to notably reduce the probability of generating non-connectible states, and hence to improve the performance of planning algorithms.

Proposed approach

The sampling technique proceeds in a decoupled and incremental way. First, acceleration is uniformly sampled. The idea is then to compute a set of velocity values for which the state is known to be non-connectible. Velocity is then uniformly sampled outside this set. Finally, given this couple (velocity, acceleration) a set of position values for which the state is known to be non-connectible is computed, and the position is then uniformly sampled outside this set.

Sampling velocity

This subsection explains how to compute the set of velocity values for which the state is known to be non-connectible, given a uniformly sampled acceleration value a s . Explanations are given for one output. Figure 4.4 illustrates this explanation. Let us denote v max and a max as the bounds on the absolute value of velocity and acceleration respectively. We study acceleration a(t) and velocity v 0 (t) on a neighborhood around t = 0 for a(0) = a s and v 0 (0) = 0. The idea is to apply a saturated acceleration variation and determine the extrema of v 0 (t) in this neighborhood. Using them, we can compute the limits on velocity v s such that v(t) = v 0 (t) + v s lies in [-v max , v max ]. We use notations defined in section 3.2.1. For t > 0, phase A of our steering method is applied. Phase H is applied for t < 0. The sampled value a s locally imposes a direction of variation of v 0 (t) on phases A and H. We want to reverse this direction of variation in minimum time. This is equivalent to driving a(t) to zero in minimum time. For that, we set a B = a G = -sign(a s ).a max . This corresponds to the highest acceleration variation achievable by our steering method. Note that, by construction, acceleration is symmetric during phases A and H (i.e a(-t) = a(t)) and v 0 (t) is anti-symmetric (i.e v 0 (-t) = -v 0 (t)). Since a(t) is a second order spline strictly monotonic on phase A, it is straightforward to compute the unique t 0 > 0 such that a(t 0 ) = 0. The value v bound = v max -|v 0 (t 0 )| is then the upper bound on the absolute value of v s . This means that if |v s | > v bound then v(t) = v 0 (t) + v s will violate the constraints on velocity. A velocity value v s is then uniformly sampled in [-v bound , v bound ].

Figure 4.4: Acceleration and velocity (blue curves) around t = 0. Saturated acceleration variation is applied in order to determine the limits on initial velocity (red triangles). Red curves are velocities for these limits.

Sampling position

Given a couple (v s , a s ) for one output, this subsection explains how to compute the set of position values for which the state is known to be non-connectible. Figure 4.5 illustrates this explanation. The principle is similar to the one in the previous subsection. Velocity v(t) and position x 0 (t) are studied around t = 0 for a(0) = a s , v(0) = v s and x 0 (t) = 0. We apply a saturated velocity variation and determine the extrema of x 0 (t) in this neighborhood. Using them, we can compute the limits on position x s such that x(t) = x 0 (t) + x s lies in [-x max , x max ] (bounds on position). For t > 0, phases A to C of our steering method are applied. Phases E to H are applied for t < 0. We want to reverse the direction of variation of the position imposed by v s as fast as possible. This is equivalent to driving v(t) to zero in minimum time. For that, we set v D = -sign(v s ).v max for both phases A to C and E to H. This corresponds to the highest velocity variation achievable by our steering method. The only difference here is that neither v(t) nor x 0 (t) have symmetry proprieties. We compute t + > 0 such that v(t + ) = 0 and t

-< 0 such that v(t -) = 0. If v s ≥ 0 then x + = x max -x 0 (t + ) and x -= -x max -x 0 (t -) else x + = x max -x 0 (t -) and x -= -x max -x 0 (t + ). A position value x s is then uniformly sampled in [x -, x + ].

Results

We provide here some results concerning the sampling strategy. The conducted experiment consisted in testing the validity of local paths computed between uniformly sampled pairs of states in X = [-5, 5] 3 × [-5, 5] 3 × [-10, 10] 3 , with J = [-20, 20] 3 and S = [-50, 50] 3 . Yaw was kept constant. We measured the percentage of valid paths (i.e. which lies entirely in X ) over 10 4 calls. We then repeated this operation using our sampling technique. With uniform sampling only 11.53% of the produced paths were valid. With our sampling technique 95.58% of the paths were valid. Moreover, we can test for a given state if each output is respecting the constraints defined by our sampling technique, i.e. if velocity lies in [-v bound , v bound ] and if position lies in [x -, x + ]. When this is not the case we consider that the state is not connectible. Our sampling technique is obviously generating connectible states every time whereas with uniform sampling about 90% of the generated states are not connectible (with respect to this criteria).

Global methods for kinodynamic planning

This section describes variants of RRT and PRM algorithms, to deal with a nonsymmetric steering method, and provides some results on the influence of both the proposed quasi-metric and the sampling strategy on them. These algorithms are well known, but had to be adapted to the non-symmetry of the steering method and the associated quasi-metric. Because of this non-symmetry, the underlying graph is directed. We first present a directed bi-RRT then a directed PRM using the forest method and we finally show and discuss some results.

Directed Bi-RRT

In the well known undirected version of the Bi-RRT algorithm (see section 1.2.4), two trees T S and T G are constructed in parallel. T S grows from the start configuration and T G from the goal configuration. Each iteration for one of the trees consists of sampling a configuration q rand , finding its nearest neighbor q near in the tree (according to a defined metric), and extending it toward q rand (using a steering method) to create a new configuration q new . Each time an expansion is successful for one of the trees, a direct connection is attempted between q new and its nearest neighbor in the other tree. The algorithm ends if this local path is valid (i.e. when the trees are connected).

In our directed version, both the steering method and the quasi-metric M SM are non-symmetric, and thus have to be called taking care of the order of the two states.

The nearest neighbors N S (x) and N G (x) of a state x in T S and T G respectively are defined as such:

     N S (x) = arg min x∈T S M SM (x, x) N G (x) = arg min x∈T G M SM (x, x)
For an expansion of T S , we test the local path N S (x rand ), x new for validity. In case of success, the algorithm ends if the local path x new , N G (x new ) is valid. For an expansion of T G , the local path x new , N G (x rand ) is tested for validity, and the algorithm ends in case of validity of the local path N S (x new ), x new .

Directed PRM

At each iteration of the undirected version of the PRM algorithm (see section 1.2.3), a collision free configuration q is sampled and added to the graph G. For every connected component G i of G, connections are attempted between q and each node of G i in increasing order of distance from q until one is successful. A threshold on this distance can be considered with the aim to reduce computational cost. In our directed version, we consider the strongly connected components G i of G. Moreover, we maintain during the execution the adjacency matrix A G of the transitive closure of the graph of the strongly connected components of G. This square matrix, whose dimension is the number of strongly connected components, is defined by

A G [i][j] = 1 if a path in G exists from every node of G i to every node of G j and A G [i][j] = 0 otherwise. If A G [i][j] = 1 we say that G i is connected to G j . Note that A G [i][j] = A G [j][i] = 1 if and only if i = j.
At each iteration, a valid state x is sampled and added to G (which has n strongly connected components). Its strongly connected component G n+1 = {x} is added to the matrix A G . For every connected component G i of G (i = 1..n), if G i is not connected to G n+1 , connections from every node x j of G i to x are attempted in increasing order of M SM (x j , x) until one is valid. As for the undirected version, a threshold on the value of M SM can be considered here. A G is updated if neecessary. Then, if G n+1 is not connected to G i , connections from x to every node x j of G i are attempted in increasing order of M SM (x, x j ) until one is valid.

If used in single query mode, the algorithm ends when the strongly connected component of the initial state is connected to the strongly connected component of the goal state.

Experimental results

Results presented below show the influence of the quasi-metric and the sampling technique on the two previously presented motion planners. Experiments have been conducted on two different environments shown in Figure 4.6 and for the constant. The first environment, referred to as boxes, is a cube with side length of 10 meters filled with box shaped-obstacles of different sizes. The second environment, referred to as slots, is also a cube with side length of 10 meters but divided in two halves by a series of aligned obstacles separated by 0.40 meters (hence smaller than the robot diameter). This problem is particularly challenging since going across these obstacles requires to find a path in a very narrow passage in the state-space. Every combination of environment, algorithm, metric and sampling strategy has been tested. Results are provided in Tab. 4.3 for CPU and flying times in seconds, number of nodes (and iterations for the RRT) and percentage of not connectible nodes (with respect to the criteria defined in section 4.2.2.5). Each experiment is designated by an acronym whose meaning is explained in the caption. Results are averaged over 100 runs and are for an implementation in C, integrated in our motion planning software Move3D [Siméon 2001], and run on a single core of an Intel Xeon W3520 processor at 2.67GHz.

Results show a significant improvement of the performance of both algorithms thanks to the integrations of the proposed techniques. However, one can clearly see that the metric and the sampling technique have a more notable effect on one or the other planner. Results for the PRM algorithm shows that the sampling method has a great influence on its performance. Its integration indeed improves CPU time by two orders of magnitude for both environments. On the other hand, one can see that for the slots environment CPU times are slighlty worse with the use of the metric. This can be explained by the difference of computing time between our quasi-metric and the euclidean distance. This is also observed in one case for the RRT algorithm (SRMU vs. SREU). For the RRT algorithm, results show that the influence of the metric is more important. This was to be expected since RRT-based algorithms are known to be very sensitive to the metric. One can see that the number of iterations is significantly reduced, meaning that the search is better guided. The improvement produced by the sampling technique is also very significant for the slots environment but less noticeable for the boxes environment. This can be explained by the fact that, in RRT-based algorithms, the sampled states are not tested for connections but used to define a direction for extension. A new state is then generated according to that direction. One can see that, for the boxes environment, about half of these states are not connectible regardless of the sampling method. Finally note that flying times are given for the raw, non-smoothed trajectories, which explains the rather large difference of path quality between PRM and RRT results. The goal of this chapter is to show that the trajectories that we plan using the methods described in the two previous chapters can actually be executed on a real physical system. We first present the controller we have chosen to track our trajectories. We then give an overview of our testbed: its different components, both in terms of hardware and software, and how they interconnect. We finally present the conducted experimentation together with some of its results.

Geometric tracking controller on SE(3)

In section 2.2.1 we have briefly introduced some general notions about control theory and have explained in section 2.2.2 what are the control space and the state space of a quadrotor. We also recall that in section 2.4 we have defined its flat outputs for which we plan our trajectories rather than doing it for the actual state. In this section we present the controller that we have chosen in order to follow our planned trajectories. It is a geometric tracking controller on SE(3) proposed by [START_REF] Lee | [END_REF]].

A comprehensive presentation of it can obviously be found in the referenced article, but we would like to summarize here its main characteristics.

Overview

In addition to the notations defined in Chapter 2 we will need some new ones. We consider a nominal trajectory z. The over line notation . indicates that we are dealing with a nominal quantity (or reference) as defined in section 2.2.1, whereas the over tilde notation . indicates a measurement (or estimation).

z : [0 T ] → P t → [x(t) y(t) z(t) ψ(t)] T , with
T ∈ R + * P the space of the flat outputs Note that this trajectory in the space of the flat outputs is the result of the planning methods presented in the two previous chapters and therefore we also have access to both ż and z. For the sake of convenience we will omit to write from now on the time parameter and simply write r = [x y z] T the desired position of the center of mass at any given time. Therefore we simply have z = [r ψ] T .

In section 2.4 we saw that from r and ψ we can define the first nominal body axis b 1 . The inputs of this controller are r, ṙ, r, b 1 , the nominal angular velocity Ω expressed in the body-fixed frame and the nominal angular acceleration Ω. Its outputs are f the desired net thrust and M the desired total moment expressed in the body-fixed frame. In order to close the loop it also relies on the estimated values of the rotational matrix R, the position of the center of mass r, its velocity ṙ and the angular velocity Ω The overall structure is as follows. As a first step both the desired net thrust and f and a desired third body axis b 3 d different from the nominal b 3 are computed. As a second step a desired rotational matrix R d different from the nominal R is defined and used to compute the desired total moment M. The first step is referred to as trajectory tracking whereas the second step is referred to as attitude tracking.

Trajectory tracking

First, the tracking errors are defined as follows: e r = rr the error in position e v = ṙṙ the error in velocity Then for some positive quantities k r and k v , the vector t that is in the direction of the desired thrust is defined as follows:

t = -k r e r -k v e v -mge 3 + mr,
where m is the total mass, g the Earth gravitational acceleration and e 3 = [0 0 1] T .

From it, both the third desired body axis and the desired net thrust are defined as follows:

b

3 d = - t t and f = -t • Re 3 ,
where the operator • is the dot product.

Attitude tracking

At that step, a desired rotational matrix R d different from the nominal R is computed. Its third axis b 3 d has already been defined in the previous step. Its second axis is defined as follows:

b 2 d = b 3 d × b 1 b 3 d × b 1
In order for R d to be orthonormal, the first axis cannot be the nominal b 1 . Instead, b 1 is projected onto the plane normal to b 3 d , which simply put corresponds to compute b

1 d = b 2 d × b 3 d . The tracking errors can now be defined from R d = [b 1 d b 2 d b 3 d ] as follows: e R = 1 2 R T d R -R T R d ∨ the rotational error e Ω = Ω -R T R d Ω the angular velocity error
where . ∨ is the vee operator defined in section 2.4.

For some positive quantities k R and k Ω , the desired moment is then computed as follows:

M = -k R e R -k Ω e Ω + Ω × J Ω -J ˆ Ω R T R d Ω -R T R d Ω ,
where J is the inertia matrix and . is the hat operator defined in section 2.4.

In our current implementation though we simplify this expression and only keep:

M = -k R e R -k Ω e Ω
The reason is that we do not have the inertia matrix and using an approximation of it would do more harm than good.

ART: the Aerial Robotics Testbed

In this section we provide an overview of our set-up.

Hardware

The Aerial Robotics Testbed (ART) serves as an experimental benchmarking tool to test and validate the planning, control, and estimation algorithms on aerial robotics developed by the researchers at LAAS. It consists of a safety net surrounding an indoor flight volume with a ground area of 6 meters by 3 meters covered with protective mattresses for a height of 4 meters. It is monitored by several cameras from OptiTrack (see http://optitrack.com) that are able to provide a 6DoF tracking of any object equipped with reflective markers at a frequency from 30 Hz up to 200 Hz.

We use a quadrotor from MikroKopter (see http://www.mikrokopter.de) that we assembled ourself. It is equipped with an accelerometer and a gyroscope. On board is running a brush-less controller developed at LAAS-CNRS that takes the four nominal angular velocities of the propeller as control inputs. See Figure 5.1. 

Software

On this section we present the different pieces of software used in the ART and explain how they interconnect. A work flow diagram is represented in Figure 5.2.

Kinodynamic motion planning

In Chapter 3 we presented a spline-based steering method that has been implemented as a standalone C++ library named KDTP (for KinoDynamic Trajectory . At the planning level it is used as a local planner by our software Move3D [Siméon 2001] in which the global planning methods presented in Chapter 4 are implemented. Both the environment and the system are described in a file that is loaded at initialization. A trajectory is represented by a concatenation of local trajectories produced by libkdtp. Once a trajectory has been planned, it is exported into a file as a list of waypoints that are the end states of the local trajectories, one per line. Since we impose both zero angular velocity and zero angular acceleration for those states, the exported format is: x y z ψ ẋ ẏ ż ẍ ÿ z Sources: KDTP: https://git.openrobots.org/projects/libkdtp (author: Alexandre Boeuf) Move3D: https://redmine.laas.fr/projects/move3d (author: RIS team)

Middleware

The Generator of Modules GenoM is a tool to design real-time software architectures. It encapsulates software functions inside independent components. GenoM is more specifically dedicated to complex on-board systems, such as autonomous mobile robots or satellites, that require:

• The integration of heterogeneous functions with different real-time constraints and algorithm complexities (control of sensors and actuators, data processing, task planning, etc.).

• An homogeneous integration of these functions in a control architecture which requires coherent and predictable behaviors (starting, ending, error handling), and standard interfaces (configuration, control flow, data flow).

• The management of parallelization, physical distribution and portability of the functions.

• Simple procedures to add, modify or (re)use the functions by non-specialists.

GenoM generates the source code of components by using:

• A generic template, common for all components. This guarantees that all components share the same consistent behavior. The template itself is not part of GenoM, so that different template kind can be developed easily.

• A formal description of the components interface. This description is based on a simple language using OMG IDL for data types definitions and a custom syntax for the description of a more detailed component model.

The project is released under an open-source, BSD-like license. See the project page https://git.openrobots.org/projects/genom3

In addition, we use the genomix HTTP server that is a generic interface between clients and genom components (using the generic genom C client template). Control is done by the mean of specific HTTP GET requests. See the project page https://git.openrobots.org/projects/genomix

Supervision

The tcl-genomix component provides a TCL package that interacts with the genomix HTTP server and can control GenoM3 components. It can prompt interactively for arguments of services. Services can be invoked synchronously or asynchronously and callbacks can be triggered whenever services complete. It is used in combination with eltclsh (editline tcl shell) that is an interactive shell for the TCL programming language. It provides command line editing, history browsing as well as variables and command completion thanks to editline features. The completion engine is programmable in a way similar to tcsh, and comes with an intelligent completion for the full tcl language by default. In our current implementation, routines handling the retrieval of waypoints in a file and the writing of the position of the obstacles in the description file are written in a tcl script and can be called from eltclsh. At initialization, this script is also in charge of setting up several parameters like the gyroscope and accelerometer calibration of the UAV and the maximum values of the flat output derivatives for KDTP and of connecting all GenoM3 components together. Sources: tcl-genomix: https://git.openrobots.org/projects/tcl-genomix (author: Anthony Mallet) eltclsh: https://git.openrobots.org/projects/tcl-genomix (author: Anthony Mallet)

Trajectory generation

This component called maneuver-genom3 is in charge of both handling simple maneuvers like vertical take-off/landing or goto and waypoint-based trajectories. It relies on libkdtp for local trajectory planing between waypoints and is controlled via commands entered on the eltclsh shell. For instance a specific command will add all the waypoints from a given file so that they can be interpolated on the run by libkdtp. Its outputs are the nominal position of the center of mass r, the nominal velocity of the center of mass ṙ, the nominal acceleration of the center of mass r and the nominal matrix of rotation R.

Sources: https://git.openrobots.org/projects/maneuver-genom3 (author: Anthony Mallet)

Controller

In section 5.1 we presented the geometric tracking controller that we are using. It has been implemented and encapsulated in a component called nhfc-gemom3. NHFC stands for Near-Hovering Flight Controller. This name refers to a previous version of the controller and is now outdated. Because Lee's controller does not guarantee that the computed command is admissible, a saturation step has been implemented. It first checks if f ≤ 4f max . If not f is set to 4f max and M to [0 0 0] T . Otherwise the desired moment is checked. The four desired thrust forces are computed (see section 2.1):

     f 1 f 2 f 3 f 4      = Γ -1 f M If one of them is outside the interval [0, f max ] the maximum λ such that Γ -1 f λM ∈ [0, f max ] 4
is searched by dichotomy on the interval [0, 1[. The new saturated desired moment is set to λM. This corresponds to projecting the desired moment onto the frontier of the admissible moments M(f ) illustrated in section 2.3.2 in the direction of the origin.

Sources: https://git.openrobots.org/projects/nhfc-genom3 (author: Marco Tognon) Note that the description on the web page is outdated.

Hardware driver

This 

Position fusion

This component called pom-genom3 collects measurements from other components, and generate a fused state estimation from these sources. Sources: https://git.openrobots.org/projects/pom-genom3 (author: Anthony Mallet)

Experimentation

In this section we present an simple experiment that we conducted in order to show that a planned trajectory can be followed.

Set-up

The experimental set-up is as follows. Three cylindrical obstacles of length 1.35 m and diameter 9.56 cm are hanging from the ceiling at mid-hight 1.20 m from the ground. They are placed at (x; y) positions relative to the origin of our testbed (-0.94 m; 0.36 m), (0.06 m; -0.32 m) and (1.02 m; -0.32 m) respectively. The 3D model we use for collision detection is a sphere of diameter 50 cm centred at the origin of the quadrotor's body frame. At the planning level both the altitude and the yaw angle are kept constant at 1.2 m and 0 • respectively. We plan a trajectory going from the initial hovering position (-2.0 m, 0.0 m, 1.2 m) to the final hovering position (2.0 m, 0.0 m, 1.2 m). The planning method is the decoupled approach with a bi-directional RRT algorithm. In the next section we give the results for two runs with different maximum velocities. In the first one we set v max = 1 m.s -1 and in the second v max = 2 m.s -1 . The other bounds are a max = 5 m.s -2 , j max = 20 m.s -3 and s max = 50 m.s -4 . See Figure 5.3 for a photography of our experimental set-up and Figure 5.4 for a 3D representation with an example of planned trajectory. 

Results

In this section we show the results of the experiments for v max = 1 m.s -1 in Figure 5.5 and v max = 2 m.s -1 in Figure 5.6. The X axis is the time in seconds. In the upper part of each figure, the Y axis is the positions in meters. The red color is for the x component an the green color for the y component. Since both z and the yaw angle were kept constant, we did not represent them. The dashed curves are For the case v max = 1 m.s -1 the tracking error in kept under 5 centimeters, and under 10 centimeters for for the case v max = 2 m.s -1 . ment and experimental validation of the first cooperative free-flying robot system for assembly and structure construction. It paved the way for a large number of applications including the building of platforms for evacuation of people or landing aircrafts, the inspection and maintenance of facilities and the construction of structures in inaccessible sites and in space.

The ARCAS project had three main axis: structure assembly by a team of ARMs (Aerial Robot with Manipulator), industrial inspection and space manipulation. The latter was a side-part of the project and primarily involved the control community. The industrial inspection consisted in using UAVs either to visually inspect industrial plants or carry a smaller wheeled robot that sticks to pipes for finer inspections. Finally the structure assembly was the part combining work on assembly sequence planning, task planning, motion planning and execution architecture (control, collision avoidance, and so on). The system developed can work with different ARMs, the three platform used are presented in Figure 6.1.

To have simple yet interesting structures to assemble the project focused on structures made of bars. Some examples can be seen in Figure 6.2. The simplicity comes from the clipping mechanism: when two pieces are brought together they clip ensuring a strong link. On the other hand the complexity comes from the need for cooperative transport of certain long bars requiring two (or more) ARMs to strongly cooperate. Moreover the robots are using manipulators which must be compliant to avoid any problems. To carry out the assembly of the structures, the complete system must exhibit a set of properties: multi-robot plans, cooperative transport, perception and localization and visual servoing.

Consortium

This European funded project involved a consortium of eight partners and two third parties: • FADA-CATEC (Center for Advanced Aerospace Technologies), Spain, project coordinator.

• DLR (German Aerospace Center), Germany.

• UNINA (Università degli Studi di Napoli Federico II), Italy.

• LAAS-CNRS (Laboratory for Analysis and Architecture of Systems), France.

• USE (Universidad de Sevilla), Spain.

• UPC (Universitat Politècnica de Catalunya), Spain.

• STI (Spacetech GmbH), Germany.

• AIR (ALSTOM Inspection Robotics, GE Inspection Robotics since 2015), Switzerland.

Third parties:

• UNIBAS (Università degli Studi della Basilicat), Italy.

• UNICAS (Università degli Studi di Cassino), Italy.

Objectives

The detailed scientific and technological objectives were:

• New methods for motion control of a free-flying robot with mounted manipulator (or ARM for Aerial Robot with Manipulator) in contact with a grasped object as well as for coordinated control of multiple cooperating ARMs in contact with the same object (e.g. for precise placement or joint manipulation).

• New flying robot perception methods to model, identify and recognize the scenario and to be used for the guidance in the assembly operation, including fast generation of 3D models, aerial 3D SLAM (Simultaneous Location And Mapping), 3D tracking and cooperative perception.

• New methods for the cooperative assembly planning and structure construction by means of multiple flying robots with application to inspection and maintenance activities.

• Strategies for operator assistance, including visual and force feedback, in manipulation tasks involving multiple cooperating flying robots.

The ARCAS system

The project was subdivided into three main subsystems. These are illustrated in a schematic of the hight level architecture of the ARCAS system in Figure 6.3.

The perception system was in charge of all computer vision related tasks in the system. These include SLAM, inspection and task monitoring functions like for instance providing feedback to the ARMs in order to achieve an assembly task by visual servoing.

The modeling and control system was in charge of developing all the needed control methods. These include, for a single ARM, not only trajectory tracking during navigation tasks (including while carrying an object) but also autonomous grasping and insertion of an object into a structure. Not to forget the coordinated control of several ARMs performing those same tasks in cooperation.

Finally the system in which this work has been integrated is the cooperative assembly planning system. Its inputs are:

• The geometry of the (supposed static) environment (a 3D model of it).

• The available resources both in terms of flying robots and assembly parts.

• The "blueprint" and location of the desired structure (i.e. the precise location of each part of the final assembly).

Its goal is then to produce a complete plan to assemble the structure.

This subsystem is itself modular since it involves three main modules. The first one, called the assembly planner, consists in finding a suitable assembly plan, which Figure 6.3: Hight level ARCAS architecture means finding a coherent order in which the parts will be inserted. This has to take into account the structural integrity of the structure during its assembly. This assembly plan is then given to the symbolic planner that is in charge of finding an efficient ordered set of assignments for the ARMs: which ones will perform which tasks an when. This step is often also called task planning. The symbolic planner used within the ARCAS system is called MATP (Multi Aerial-robots Task Planner). It is an HTN based planner (see [Ghallab 2004] for more details) developed at LAAS-CNRS.

Each symbolic task computed by it has to be turned into an actual motion plan which usually involves several requests to the motion planner. This is performed by a piece of software developed at LAAS-CNRS and called GTP (Geometric Task Planner). It will be further detailed in section 6.3. GTP is an interface between MATP and the lower level that is the motion planning system described in the next section. The output of the complete planning level is then used by an execution architecture that supervises the execution of the tasks and ensure that there won't be collisions or any other problems.

At the beginning of the project we linked the three planners in a linear workflow: the output of a planner was the input of the next. Later, when the integration between HATP and GTP was ready we used a combined planner as illustrated in Figure 6.4. It allows to test the feasibility of a symbolic task during the symbolic planning rather than after a complete plan is produced. This allows to earlier detect when a symbolic valid solution is in fact not feasible because of geometry. Figure 6.4: The assembly planning system in ARCAS. The assembly plan in given as a dependency tree listing the operation to assemble the structure. From it, HATP produces a symbolic plan and allocate the actions to the agents. During this process GTP is called to assess the feasibility of the actions which it does by calling the motion planner. The computed valid trajectories are kept along with the actions of the symbolic plan.

The motion planning system

In this section we present the motion planning system which turns the symbolic requests of GTP into a set of motion plans. We focus here on the three basic tasks which are navigation, transportation and coordinated transportation and manipulation. More complicated tasks such as grasping and insertion of an object along with the combination of the twos (pick and place) will be treated in the next section.

Navigation

This tasks consists, for a single ARM without payload, in navigating among a set of static obstacles which positions and orientations are known. Both initial and final states are here chosen to be at hovering. For simplification purposes we do not plan for the motion of the manipulator and set its configuration to be fixed along the trajectory. Because in this case the smallest bounding sphere is judged to be a good enough approximation of the geometrical shape of the system, this motion panning problem can be solved very efficiently using the decoupled approach presented in section 4.1. Figure 6.5 illustrates a result of this approach on a simple navigation problem for one quadrotor with no payload. 

Transportation for a single ARM

The task is here nearly the same. The ARM still has to navigate among known obstacles, both initial and final states are at hovering and the configuration of the manipulator remains fixed during the motion. But the ARM is now grasping an object, meaning that the geometry of the system has changed. The smallest bounding sphere might not be a good enough approximation of the shape of the system anymore and thus a decoupled approach might fail to find a geometric path to begin with. A direct approach to kinodynamic motion planning such as one of the twos presented in section 4.2.3 is therefore used here.

Coordinated transportation and manipulation

Once again the setup is almost identical. The only difference here is that not only one ARM is grasping an object but two or more are grasping the same object. We chose to treat this case with a centralized quasi-static approach. Quasi-static means that we do not compute trajectories but geometric paths that do not contain any information about dynamics. As for centralized, it means that we do not plan independently for each ARM but do consider the set of ARMs plus the object as a unique system, i.e. a single kinematic chain. Since dynamics are not involved here we can also plan for the motion of the manipulators for manipulation tasks.

Manipulating an object with several robots imposes important constraints that have to be treated at the motion planning level. More precisely, several robots that simultaneously grasp an object form a closed kinematic chain, whose motion is restricted to a sub-manifold of the configuration-space of the unconstrained multirobot system. This sub-manifold cannot be represented and parameterized in the same way as the configuration-space of a serial (open-chain) robots. Therefore, motion planning for closed-chain mechanisms is a difficult problem that requires specific methods.

The method applied here builds on previous work carried out at LAAS-CNRS by [START_REF] Cortés | [END_REF]] on the extension of sampling-based motion planning algorithms for closed-chain mechanisms. The basic principle is to separate configuration variables into two sets: independent variables and dependent variables. The planner directly acts on the independent variables, while the values of dependent variables are obtained by solving loop-closure equations. A suitable decomposition of the mobile system into a set of kinematic chains involving independent or dependent variables is essential for a good performance of the planner. From now on, kinematic chains involving independent parameters will be called active subchains and those involving dependent parameters will be called passive subchains, since they follow the motions computed for the active ones. Each passive subchain should correspond with a non-redundant mechanism whose end-frame can span full-rank subsets of the workspace. In general, this requires three joint variables for a planar mechanism and six for a spatial mechanism. Closed-form inverse kinematics methods are usually available for such mechanisms.

Once the system decomposition is defined, configurations of complex closedchain mechanisms can be sampled using an algorithm called RLG [START_REF] Cortes | [END_REF]]. RLG performs a geometrically-guided random sampling for the active subchains that notably increases the probability of obtaining real solutions for passive subchains when solving the loop-closure equations. Local paths connecting samples are computed by interpolating the configuration of active subchains and solving inverse kinematics for the passive subchains at each intermediate point along the path. Following this approach, sampling-based planners, such as PRM or RRT, see section 1.2, can be extended to deal with closed-chain mechanisms.

An example of decomposition into active/passive subchains is illustrated in Figure 6.6 for a system composed of two quadrotors equipped with planar 3R manipulators cooperatively transporting a bar. The bar is considered as a free-flying object, with 6 degrees of freedom. The relative location of each quadrotor with respect to the bar is defined by two variables {x, z} that define the position of the center of mass on a plane perpendicular to the bar, and one rotation R y around an axis parallel to the bar. Note that only these 3 relative degrees of freedom are possible because of the motion constraints imposed by the planar manipulator. Then, the spatial configuration of each arm is defined from a reference frame attached to each quadrotor and the values of the joint variables. Since the bar is grasped by the arms, kinematic loop-closure constraint have to be imposed to the system. For motion planning using the aforementioned approach, the independent variables are those defining the absolute location of the bar and the relative location of the quadrotors with respect to the bar, whereas the dependent variables are the degrees of freedom of the arms.

A similar decomposition approach can be applied to other types of flying robots equipped with other types of arms. Figure 6.7 shows an example involving two helicopters with 7-DoF Kuka LWR arms. Extracting the object from the hole is a geometrically-constrained problem that requires simultaneous translation and rotation. Solving this problem with an RRT-like algorithm extended to closed kinematic chains requires about 3 seconds of CPU time on a single processor in are current implementation.

Symbolic-Geometric planning to ensure plan feasibility

This section describes the interface between symbolic and geometric planning. The piece of software implementing this interface is called GTP (Geometric Task Planner) and was developed at LAAS-CNRS. We first present an overview together with our motivations. We then describe more specifically its implementation.

Figure 6.7: Coordinated manipulation using two helicopters with 7-DoF Kuka LWR arms.

Geometric Task Planner

As previously mentioned, MATP produces plans that consist of sequences of symbolic tasks. The problem is that there is no guarantee that these tasks can actually be carried out at the geometric level. For instance a task involving a motion can be geometrically unfeasible because there is no collision free trajectory of the system what implements it. In order to ensure feasibility of produced plans, each task has to be tested for geometric feasibility. This is the main role of GTP.

A motion planning problem consists in finding in a given environment a collision free path between two given configurations of a robotic system. Hence for a motion planner the symbolic representation bears no meaning. For instance the task described by the sentence, go pick this object and bring it over there, does not fit the description of a motion planning problem. This is actually a sequence of three motion planning problems: go, pick and bring for configurations to be determined. When given such a task GTP is in charge of doing this decomposition by first finding which are these configurations and then calling the motion planner in order to solve the different motion planning problems which solutions are trajectories of the system.

Geometry of the environment is obviously time dependent since carrying out a task modifies it. GTP is also in charge of maintaining this geometric knowledge over time. We call world context a set of robots configurations, grasping informations and positions of objects and obstacles. MATP is actually providing a task to be carried out together with its parent task (i.e. the task that directly precedes it). This way GTP is able to associate to each task its initial and final world contexts, the initial world context of a task being the final world context of its parent task. This means that GTP is maintaining the geometric equivalent of the symbolic data structure that MATP builds.

Tasks: decomposition and implementation

Given a world context, GTP has to decompose a task into a sequence of motion planning problems. This decomposition depends on the nature of the task and hence have to be provided by the user the same way the symbolic domain (i.e. the set of possible symbolic tasks) is. In this subsection we provide an example of decomposition for a symbolic task called pick, which consists for a given robot in picking up a given object. Two other tasks called place and pickAndPlace are then described. The advantage of using the task pickAndPlace instead of the tasks pick then place is then discussed.

We decompose the symbolic task pick into four motion planning problems, as illustrated in Figure 6.8. From its current hovering configuration Q1 the system (without payload) has first to reach a safe hovering configuration Q2 in the proximity of the object to pick. The manipulator configurations are the same for both Q1 and Q2. This is exactly the navigation problem described in section 6.2.1. A decoupled approach is therefore used. From Q2 the system has to reach an approach configuration Q3 that prepares it for the grasping motion. It involves modifying both the configuration of the manipulator and the pose of the UAV. We use here a classical geometric approach corresponding to a quasi-static motion. From Q3 the system has to reach the grasping configuration Q4 and then extract the object in order to reach an extraction configuration Q5. These two motions are actually controlled by visual servoing during execution, but the planner has to verify feasibility by ensuring that collision free trajectories can be found. This is why here we simply use linear interpolations. 

navigation problem Q 1 → Q 2 , a quasi-static approach Q 2 → Q 3 , a grasping motion Q 3 → Q 4 and an extraction motion Q 4 → Q 5 .
Initial configuration excepted, all intermediate configurations are computed according to the grasping configuration Q4. Hence this configuration is the first computed by GTP by way of random sampling. If the sampled grasping configuration Q4 is collision free then both Q3 and Q5 and the corresponding motions are computed and tested for collisions. In case of success, Q2 is computed and tested, along with the motion Q 2 → Q 3 . Finally the motion Q 1 → Q 2 is generated. In case of failure of any of these steps, a new grasping configuration Q4 is generated. The planner considers the task as not being feasible after a predefined number of unsuccessful attempts (provided by the user) has been reached.

The decomposition of the task place, which consists, for an ARM carrying an object, in inserting it in a given slot, is very similar to the decomposition of the task pick. The main configuration (corresponding to Q4 in the previous description) to be sampled here is the insertion configuration. Other configurations corresponding to Q2, Q3 and Q5 are generated according to it. The main difference is that the navigation problem can not be solved for a bounding sphere because of the payload. We use here a direct kinodynamic approach, as discussed in section 6.2.2.

The task pickAndPlace is a combination of the tasks pick and place. A first approach for MATP was first to call pick then place. Problem is that the grasping configuration generated for the picking task may lead to the non feasibility of the placing task and thus to a loss of efficiency. We proposed to treat this problem by using a different approach. We have implemented a specific decomposition of the task pickAndPlace. The idea is to generate the insertion configuration in function of a sampled grasping configuration. Motion problems are then solved in the same order as for the pick and place tasks, the two navigation problems being solved last. Experimental results for several runs on various scenarios have shown that this approach leads to an improvement of about 30% of the average CPU time needed to solve the problem.

Conclusion

We presented the quadrotor system: its dynamics model, its inputs and its outputs. We defined its physical constraints and saw how they translate into the input space. We showed that the system is differentially flat and therefore that any smooth enough trajectory in the space of the flat outputs can be executed provided that the derivatives are correctly bounded. We however did not explicitly defined those bounds.

We formulated the kinodynamic motion planning problem and saw that in order to solve it, the state space has to be explored in place of the configuration space. We saw that this can be done by sampling inputs and forwarding the dynamics rather than sampling states directly. This is however not the kind of techniques we chose to study here. Instead, we tried to see how the classic methods used in sampling-based motion planning have to be adapted when sampling the state space.

First, we proposed a local planning method able to interpolate any two states defined by position, velocity and acceleration. It generates a fourth-order spline that respects a given set of bounds on its derivatives up to snap. We discussed the quality of such solutions and saw that in our test run the mean sub-optimality is of 6.85% but that it also comes with a decreased running time of three orders of magnitude when compared to a SQP algorithm. Because it quickly produces smooth enough trajectories which derivatives can be bounded at will, when applied to the flat outputs of a quadrotor this method can be used as a steering method for this system.

We shown that this local planner can be used in a decoupled approach to solving the kinodynamic motion planning for a quadrotor. A geometric path is first generated for the quadrotor's bounding sphere. The path is then transformed into a trajectory by using the local planner. The trajectory is finally locally optimized with a random short cut algorithm that also uses the local planner. This method is very efficient but will not solve more constrained problems for which there is no quasi-static solution, which is the reason why we next studied the direct approaches.

In that perspective, we first discussed the problem of the metric in the state space. We stated that the ideal metric is the cost-to-go, i.e. the duration of the minimum time trajectory. Because computing it is as hard and thus as costly as computing the minimum time trajectory itself, many approaches to kinodynamic motion planning tend to avoid this problem by adapting the algorithms so that they do not rely on the metric to guide the search. We proposed instead to use a metric that correctly estimates the cost-to-go but that do not require as much computing time. We provided empirical evidence that the two metrics are equivalent.

We then addressed the issue of the sampling strategy. We noticed that, in a PRM like algorithm for instance, more than 90% of the attempted connections were failing. When investigating into the reasons why, we discovered that the culprit was the sampling strategy. It is indeed the case that uniform sampling tends to generate states that can be neither the starting point nor the end point of any valid trajectory. We qualified those states as non-connectible. We then proposed an incremental sampling strategy which goal is to decrease the probability of generating a non-connectible state.

Finally, two well known methods that are the Bi-RRT algorithm and the classic PRM were adapted for a directed graph. Using them, we studied the influence of the proposed metric and proposed sampling strategy on two different motion planning problems. Results show a significant improvement of the performance of both algorithms thanks to the integrations of the proposed techniques.

In order to show that the planned trajectories can actually be executed, we set up some experimentation. We first described our test-bed, both in terms of hardware and software. We then presented the experimental set-up and some results.

We devoted the last part of this thesis to the presentation of the ARCAS project in the context of which these works were conducted. We first gave an overview of the project itself: its objectives, its different partners, its subsystems and the general framework in which they are integrated. We then focused on the motion planning system. We explained in particular how each different type of motion planning problem, such as navigation for a single UAV with payload, without payload or coordinated transportation of a payload by two or more UAVs, is solved by a different method. We finally detailed the link between symbolic and geometric planning by for instance giving an example of task decomposition.

Limitations and future works

In this thesis, we have assumed that any smooth-enough trajectory in the space of the flat outputs can be executed provided that the derivatives are correctly bounded. A major limitation of this approach is that it is not straightforward to actually compute these bounds. To our knowledge, this is still an open problem. A possible strategy inspired by [Mueller 2013] could be to solve the BVP without constraints but with an imposed flight duration. A feasibility test can then be performed to check if the trajectory corresponds to admissible inputs. The idea would be to numerically find the minimum flight duration such that the trajectory is admissible (possibly with a simple search by dichotomy). An other possibility is to try and compute the bounds on the derivatives of the flat outputs either in closed form or numerically.

In this thesis, we only studied the influence of both the proposed metric and sampling strategy on a directed Bi-RRT and a directed PRM. It would be interesting to see how it would influences the performances of other algorithms. It could also be interesting to see how the sub-optimality of the proposed steering method affects the solutions to the RRT * and PRM * algorithm. Secondly, since our focus here was the quadrotor system, we did not apply our approach to problems in higher dimension. A study on how it would perform in this case should definitively be conducted. Moreover it would be interesting to check if as expected the computing time of the steering method linearly increases with dimension. Finally we did not compare our approach to the methods with forward propagation of the dynamics. A bench-marking of the state of art including our proposal remains to be performed.

Concerning our proposed approach to solving the BVP, it was recently brought to our attention that similar works were conducted in the context of online trajectory generation both for reactive behaviours to unforeseen events ( [START_REF] Kröger | [END_REF], Kröger 2011]) and from a control perspective ( [Bianco 2014, Bianco 2011, Bianco 2003]). For lack of time we unfortunately could not provide a review of these works and therefore position our own propositions against those. This will have to done in future works.

Our sampling strategy takes into account the bounding box of the workspace and the velocity constraints. It could be interesting to keep the same incremental decoupled scheme and also take the obstacles into account. In other worlds it could be beneficial to try and develop a sampling strategy that avoids generating inevitable collision states as defined by [Fraichard 2004]. It is however not straightforward to see how the decoupled scheme could adapt to obstacles of generic shape, i.e. that are not axis-oriented rectangular cuboids.

Finally, our experimental chapter is quite modest and the tracking errors are still rather large at high velocity. This is mainly due to the fact that our test-bed is relatively recent and not yet fully mature. We are planning to improve this in the very near future and hopefully be then able to execute more agile maneuvers.

The phases X 1 and X 3 have the same duration t X,1 The phase X 2 has a duration of t X,2 Therefore t X = 2.t X,1 + t X,2 .

Let s A ∈ {-1, 0, 1} be the sign of the snap during phase A 1 . Let s C ∈ {-1, 0, 1} be the sign of the snap during phase C 1 .

Let s E ∈ {-1, 0, 1} be the sign of the snap during phase E 1 . Let s H ∈ {-1, 0, 1} be the sign of the snap during phase H 1 .

A.2 Expression of the spline

Using all these notations we can now give the expression of the solution spline S i in the form of Algorithm 4. For a given t ∈ [0, T i ], the return value is S i (t), Ṡi (t), Si (t), ... S i (t), .... S i (t) . Let be (t cur , x cur , v cur , a cur , j cur ) a set of variables we will use to store at the end of each phase the values of the previous one. The tabs T S and T D respectively contains the values of the snaps and durations of all fifteen phases. They are the result of a previous computation that we detail later.

A.3 Durations of the phases

In this section we detail the expression of the durations of all phases.

Let us start with t A,1 . We recall that j A is the value of the jerk during phase A 2 . Using the expression of the spline we have: j A = s A .s max .t In brief :

if |a B -a 0 | > j 2 max s max then            t A,1 = j max s max t A,2 = |a B -a 0 | j max - j max s max else          t A,1 = |a B -a 0 | s max t A,2 = 0
Using the same line of reasoning for phases C, E and H we get :

if |a B | > j 2 max s max then            t C,1 = j max s max t C,2 = |a B | j max - j max s max else          t C,1 = |a B | s max t C,2 = 0 if |a G | > j 2 max s max then            t E,1 = j max s max t E,2 = |a G | j max - j max s max else          t E,1 = |a G | s max t E,2 = 0 if |a G -a F | > j 2 max s max then            t H,1 = j max s max t H,2 = |a G -a F | j max - j max s max else          t H,1 = |a G -a 0 | s max t H,2 = 0
Even thought there are in theory 3 × 3 × 2 × 2 = 36 possible cases, in reality we will only use eight of them: , 201, 210, 211, 2000, 2001, 2010, 2011} This comes from the fact that we will not treat the cases where s A = 0 or s C = 0 which eliminates all the cases of the form 1xxx and x1xx (20 cases). Those cases corresponds to a B = a 0 and a B = 0, they can be handled in a much simpler way. We will not treat the cases of the form 00xx and 22xx either (8 cases). Those cases corresponds to s A = s C = 0, which means |a B | < |a 0 |. In this case it makes more sens to set a B = a 0 (and then t A,1 = t A,2 = 0). We now have a function V B : a B → V B (a B ) = v D . With the same line of reasoning, and using an expression of the spline coming from an other algorithm where the exploration starts from q F , we also have the function

case AC ∈ {200
case AC = 200 =⇒ v D = v 0 -a B .
V G : a G → V G (a G ) = v D .
What we actually want is V -1 B and V -1 G . With those functions the spline is entirely defined by the choice of v D . Indeed, from v D comes a B = V -1 B (v D ) and then s A , s C , t A,1 , t A,2 , t C,1 and t C,2 . And we will see that the implementation of V -1 B will even give us t B . In the same way, a G = V -1 G (v D ) gives s E , s H , t E,1 , t E,2 , t G , t H,1 and t H,2 .

The problem here is that given v D ∈ [-v max , v max ] we can not directly decide in which case we are. We have first to map the different cases (which are in facts different intervals of a B ) to the corresponding intervals of v D . This is possible because V B is bijective on [-a max , 0]∪[a 0 , a max ] if a 0 > 0, (on [-a max , a 0 ]∪[0, a max ] if a 0 < 0). When this is done, each time we need to compute V -1 B (v D ) we find in which interval v D is and we apply the corresponding expression to get a B . It is possible that we do not find the good interval because v D is not reachable with t B = 0. In this case we set a B to ±a max according to the situation. We then simply have:

t B = v D -V B (a B ) a B
We now have everything but t D . Let us note x C the value of S(t) at the end of phase C and x E its value at the beginning of phase E. These values depends from v D and can be calculated using the same set of principles described above. Let us note ∆ x the quantity x E -x C . We can now give the expression of t D :

t D = ∆ x v D
Note that t D > 0 =⇒ sign(∆x) = sign(v D ). Actually the sign of v D is given by the sign of ∆ x for v D = 0 (let us not that sign s ∆0 ).

The last thing to do now is to find the value of v D that will minimize T i . As expected, the highest |v D | is, the lowest is T i . We search for the zeros of ∆ x on [-v max , 0] if s ∆0 = -1, on [0, v max ] otherwise. This is done numerically with a simple secant method. If there are no zeros on the interval then v D = ±v max , else v D is set to the zero with the lowest absolute value. The actual optimal is the zero with the highest absolute value but this is done for synchronization purposes. Let us note v opt the calculated v D . The profiles of T i (v D ) and ∆ x (v D ) can be seen on a example on Figure A.2. Figure A.2: The profiles of T i and ∆ x as functions of v D on a example. On the X axis is v D . On the Y axis is ∆ x . The blue curve is ∆ x (v D ). The red curve is T i (v D ) put to scale. The value of T i is set to an arbitrary high value when v D .∆ x (v D ) < 0. The value of v opt on this example is represented by a the red square on the X axis. a trait au développement de techniques algorithmiques permettant la génération automatique de trajectoires pour un système mécanique. La nature d'un tel système varie selon les champs d'application. En animation par ordinateur il peut s'agir d'un avatar humanoïde. En biologie moléculaire cela peut être une protéine. Le domaine d'application de ces travaux étant la robotique aérienne, le système est ici un UAV (Unmanned Aerial Vehicle: véhicule aérien sans pilote) à quatre hélices appelé quadrirotor. Le problème de planification de mouvements consiste à calculer une série de mouvements qui amène le système d'une configuration initiale donnée à une configuration finale souhaitée sans générer de collisions avec son environnement, la plupart du temps connu à l'avance. Les méthodes habituelles explorent l'espace des configurations du système sans tenir compte de sa dynamique. Cependant, la force de poussée qui permet à un quadrirotor de voler est par construction parallèle aux axes de rotation des hélices, ce qui implique que certains mouvements ne peuvent pas être effectués. De plus, l'intensité de cette force de poussée, et donc l'accélération linéaire du centre de masse, sont limitées par les capacités physiques du robot. Pour toutes ces raisons, non seulement la position et l'orientation doivent être planifiées, mais les dérivées plus élevées doivent l'être également si l'on veut que le système physique soit en mesure de réellement exécuter le mouvement. Lorsque c'est le cas, on parle de planification kinodynamique de mouvements. Une distinction est faite entre le planificateur local et le planificateur global. Le premier est chargé de produire une trajectoire valide entre deux états du système sans nécessairement tenir compte des collisions. Le second est l'algorithme principal qui est chargé de résoudre le problème de planification de mouvement en explorant l'espace d'état du système. Il fait appel au planificateur local. Nous présentons un planificateur local qui interpole deux états comprenant un nombre arbitraire de degrés de liberté ainsi que leurs dérivées premières et secondes. Compte tenu d'un ensemble de limites sur les dérivées des degrés de liberté jusqu'au quatrième ordre (snap), il produit rapidement une trajectoire en temps minimal quasi-optimale qui respecte ces limites. Dans la plupart des algorithmes modernes de planification de mouvements, l'exploration est guidée par une fonction de distance (ou métrique). Le meilleur choix pour celle-ci est le cost-to-go, c.a.d. le coût associé à la méthode locale. Dans le contexte de la planification kinodynamique de mouvements, il correspond à la durée de la trajectoire en temps minimal. Le problème dans ce cas est que calculer le cost-to-go est aussi difficile (et donc aussi coûteux) que de calculer la trajectoire optimale elle-même. Nous présentons une métrique qui est une bonne approximation du cost-to-go, mais dont le calcul est beaucoup moins coûteux. Le paradigme dominant en planification de mouvements aujourd'hui est l'échantillonnage aléatoire. Cette classe d'algorithmes repose sur un échantillonnage aléatoire de l'espace d'état afin de l'explorer rapidement. Une stratégie commune est l'échantillonnage uniforme. Il semble toutefois que, dans notre contexte, ce soit un choix assez médiocre. En effet, une grande majorité des états uniformément échantillonnés ne peuvent pas être interpolés. Nous présentons une stratégie d'échantillonnage incrémentale qui diminue considérablement la probabilité que cela ne se produise.

Mots clefs :

Planification kinodynamique de mouvement, robotique aérienne, quadrirotor Abstract: Motion planning is the field of computer science that aims at developing algorithmic techniques allowing the automatic computation of trajectories for a mechanical system. The nature of such a system vary according to the fields of application. In computer animation it could be a humanoid avatar. In molecular biology it could be a protein. The field of application of this work being aerial robotics, the system is here a four-rotor UAV (Unmanned Aerial Vehicle) called quadrotor. The motion planning problem consists in computing a series of motions that brings the system from a given initial configuration to a desired final configuration without generating collisions with its environment, most of the time known in advance. Usual methods explore the system's configuration space regardless of its dynamics. By construction the thrust force that allows a quadrotor to fly is tangential to its attitude which implies that not every motion can be performed. Furthermore, the magnitude of this thrust force and hence the linear acceleration of the center of mass are limited by the physical capabilities of the robot. For all these reasons, not only position and orientation must be planned, higher derivatives must be planned also if the motion is to be executed. When this is the case we talk of kinodynamic motion planning. A distinction is made between the local planner and the global planner. The former is in charge of producing a valid trajectory between two states of the system without necessarily taking collisions into account. The later is the overall algorithmic process that is in charge of solving the motion planning problem by exploring the state space of the system. It relies on multiple calls to the local planner. We present a local planner that interpolates two states consisting of an arbitrary number of degrees of freedom (dof) and their first and second derivatives. Given a set of bounds on the dof derivatives up to the fourth order (snap), it quickly produces a near-optimal minimum time trajectory that respects those bounds. In most of modern global motion planning algorithms, the exploration is guided by a distance function (or metric). The best choice is the cost-to-go, i.e. the cost associated to the local method. In the context of kinodynamic motion planning, it is the duration of the minimal-time trajectory. The problem in this case is that computing the cost-to-go is as hard (and thus as costly) as computing the optimal trajectory itself. We present a metric that is a good approximation of the cost-to-go but which computation is far less time consuming. The dominant paradigm nowadays is sampling-based motion planning. This class of algorithms relies on random sampling of the state space in order to quickly explore it. A common strategy is uniform sampling. It however appears that, in our context, it is a rather poor choice. Indeed, a great majority of uniformly sampled states cannot be interpolated. We present an incremental sampling strategy that significantly decreases the probability of this happening.

Key words: Kynodynamic motion planning, aerial robotics, quadrotor

  techniques can be found in LaValle's book[LaValle 2006].
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 12 Figure 1.2: An illustration of typical behaviors of a probabilistic roadmap method (a) compared to a diffusion-based approach (b)
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 13 Figure 1.3: One expansion step of the RRT algorithm for the Extend version.
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 14 Figure 1.4: Evolution of a tree constructed by the RRT algorithm and covering the free space.

  position of the center of mass in I and R ∈ SO(3) the rotational matrix from B to I.
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 2 Figure 2.1: Quadrotor model

  about the b 3 axis. The sign of τ i depends on the orientation of the rotation (clockwise or counterclockwise). According to the orientations represented in Figure 2.1 we have τ 1,2 = +c τ f f 1,2 and τ 3,4 = -c τ f f 3,4 . The constants c f ω and c τ f depends on the geometrical properties of the propellers. Thrust forces are resulting in a total thrust force f = -f b 3 applied at G, with f = i f i . Forces f 3 and f 4 are generating a moment about the b 1 axis

  the inertia matrix with respect to B g ∈ R the Earth gravitational acceleration e 3 = [0 0 1] T Newton's second law of motion states that mr = W + f with W = mge 3 the weight force. Note that by definition R = [b 1 b 2
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 2 Figure 2.2: Diagram of a feedback loop in a closed-loop control strategy along with our notations in the case of a quadrotor.
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 2 Figure 2.3: Nautical angles roll (φ), pitch (θ) and yaw (ψ)
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 2 Figure 2.4: In red the tetrahedron T A (f ). In blue the tetrahedron T B (f ). In black the rectangular cuboid B. The different values of the net thrust f are expressed as a percentage of the maximum net thrust 4f max . The M 3 axis has been scaled ten times.
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 25 Figure 2.5: In blue the region of admissible moments M(f ) for several representative values of the net thrust f expressed as a percentage of the maximum net thrust 4f max . The M 3 axis has been scaled ten times.
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 31 Figure 3.1: Example of trajectory provided by the steering method for one flat output. The bounds of each derivative are represented by pink dashed lines. Red and green dashed lines represent initial and final values, respectively. Note that, in order to show all the phases, |v D | = v max and |a B | = |a D | = a max in this example. In a general case, some phases can have zero duration.
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 42 Figure 4.2: Histograms of the distributions of the relative errors. Left: our steering method. Right: the Euclidean distance.
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 4 Figure 4.3: Examples of non-connectible states in two dimensions. Red squares are positions and red arrows are velocity vectors. Blue curves are examples of trajectories. Bounds on position are represented in black. The state on the left is not backward-connectible. The state on the right is not forward-connectible.
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 45 Figure 4.5: Velocity and position (blue curves) around t = 0. Saturated velocity variation is applied in order to determine the limits on initial positions (red triangles). Red curves are positions for these limits.
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  Figure 5.1: A MikroKopter quadrotor
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 52 Figure 5.2: Work flow diagram of the ART software architecture
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 53 Figure 5.3: Our experimental set-up: the three cylindrical obstacles equipped with reflective markers and the MikroKopter quadrotor.
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 5 Figure 5.4: 3D representation of our experimental set-up in Move3D with an example of planned trajectory
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 55 Figure 5.5: Results for v max = 1 m.s -1
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 61 Figure 6.1: The three platforms used in the ARCAS project. Both ARMs from (a) and (b) are quadrotors with eight propellers while the one from (c) is a Flettner helicopter (bi-rotor helicopter).
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 62 Figure 6.2: Examples of structures from the ARCAS project. In (a) there are 12 parts composing a cube, but there also exist a variant with four additional diagonal bars for a total of 16 parts. In (b) the last part to assemble is the long bar linking the two supports together.
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 6 Figure 6.5: A result of the decoupled approach for one quadrotor with no payload. Left: geometric path obtained in the first stage. Right: smoothed trajectory.
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 66 Figure 6.6: Illustration of the decomposition into active/passive subchains for a system composed of two quadrotors with planar 3R manipulators transporting a bar. Top: Image of the system. Bottom: The corresponding kinematic diagram, with active and passive subchains colored in red and blue, respectively.
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 68 Figure 6.8: The symbolic task pick decomposed into four motion planning problems:a navigation problem Q 1 → Q 2 , a quasi-static approach Q 2 → Q 3 , a grasping motion Q 3 → Q 4 and an extraction motion Q 4 → Q 5 .

  

  

  

  

  

  

  

  

  

  

  An A * -based planner (graph search) using motion primitives to connect (x, y, z, yaw) states has been used by[MacAllister 2013]. Control space and state space of a quadrotor . . . . . . . . .
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Table 3 .

 3 1: Value of the snap and duration of each phase of the spline

	Phase	Value of the Snap	Duration
	A 1		

  Both couples (a B , t B ) and (a G , t G ) can actually be expressed as a function of v D . Using Table3.1 and equation (3.2), v D can be expressed as a function of (a B , t A,1 , t A,2 , t B , t C,1 , t C,2 ) and hence as a function of (a B , t B ). Let us note V B : (a B , t B ) → v D this function. Let us also define v min B

C, E and H. For phase C, |a B -a 0 | is replaced by |a B |, by |a G | in phase E and by |a G -a F | in phase H. Complete expressions are provided in Appendix A. The spline is now parametrized by (a B , a G , t B , t D , t G ).

Table 3 .

 3 2: For the BVP in one dimension: key statistical values for the distribution of the relative error for the 7, 740 sub-optimal cases.

	Minimum	0.01002
	10th percentile	0.02889
	First quartile	0.04721
	Median	0.06351
	Third quartile	0.08748
	90th percentile	0.21653
	Maximum	0.73342
	Mean	0.08844
	Standard deviation 0.07743

Table 3 .

 3 3: For the BVP in three dimensions: key statistical values for the distribution of the relative error for the 5, 859 sub-optimal cases.

	Minimum	0.01000
	10th percentile	0.02365
	First quartile	0.04030
	Median	0.05394
	Third quartile	0.06636
	90th percentile	0.08838
	Maximum	0.46108
	Mean	0.06083
	Standard deviation 0.04298
	deviation of 0.80 milliseconds).	

Contents 4.1 A decoupled approach . . . . . . . . . . . . . . . . . . . . . . 59 4.1.1 From path to trajectory . . . . . . . . . . . . . . . . . . . . . 60 4.1.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Direct kinodynamic planning . . . . . . . . . . . . . . . . . . 62 4.2.1 Quasi-metric in the state space . . . . . . . . . . . . . . . . . 62 4.2.2 Sampling strategy . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.3 Global methods for kinodynamic planning . . . . . . . . . . . 69 4.2.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 71

Table 4

 4 

	.1: Distributions of the relative errors
	Metric	M SM	ED
	Minimum	0.16396 -4.67050
	Maximum	0.85540	0.94781
	Mean	0.35918 -0.59440
	Median	0.32806 -0.52272
	Standard deviation 0.10308	0.69674
	Table 4.2: Mean CPU times in milliseconds
	M * SM 1.23 × 10 -1 5.81 × 10 -3 1.10 × 10 -4 M SM ED

Table 4 .

 4 3: B: boxes, S: slots, P: PRM, R: RRT, M: proposed metric, E: euclidean metric, I: incremental sampling, U: uniform sampling

	Experiment	BPMI	BPEI	BPMU	BPEU
	CPU time (s)	0.05648 0.07884	3.284	4.409
	Flying time (s)	8.180	8.772	8.000	8.126
	Number of nodes	12.11	13.77	78.64	88.33
	% of not connectible nodes	0	0	82.53	84.38
	Experiment	BRMI	BREI	BRMU	BREU
	CPU time (s)	0.02780 0.04088 0.04144 0.05612
	Flying time (s)	9.674	10.84	9.365	10.09
	Number of nodes	8.79	8.84	9.18	10.77
	Number of iterations	26.45	45.04	45.58	65.02
	% of not connectible nodes	50.34	54.94	51.51	59.85
	Experiment	SPMI	SPEI	SPMU	SPEU
	CPU time (s)	1.505	1.220	578.5	444.2
	Flying time (s)	9.074	8.979	8.615	8.387
	Number of nodes	71.93	61.59	767.9	725.8
	% of not connectible nodes	0	0	82.53	84.38
	Experiment	SRMI	SREI	SRMU	SREU
	CPU time (s)	2.165	2.466	558.8	512.9
	Flying time (s)	25.42	34.72	33.96	55.98
	Number of nodes	334.5	565.6	4429.4	8813.0
	Number of iterations	982.9	2502.9 30253.7 196233.3
	% of not connectible nodes	25.60	34.86	79.41	82.48

  component called mikrokopter-genom3 is a low level hardware controller for MikroKopter quadrotors. It takes the nominal net thrust f and the nominal moment vector in body frame M as control inputs and computes the propellers velocities (ω i ) i=1..4 accordingly. Those are then sent to the UAV.

	Sources:	
	https://git.openrobots.org/projects/mikrokopter-genom3 (author:	Anthony
	Mallet)	
	Motion capture	
	This component called optitrack-genom3 is in charge of exporting motion capture
	data from an OptiTrack system.	
	Sources:	
	https://git.openrobots.org/projects/optitrack-genom3 (author: Anthony Mallet)

return error code

  A,1As |j A | = s max .t A,1 ≤ j max , we have:We also have:a B = s A .s max .t 2 A,1 + s A .s max .t A,1 .t A,2 + a 0 Phase A 2 isonly needed when phases A 1 and A 3 are not enough to reach a B . If we do not have a phase A 2 , i.e. if t A,2 = 0, then:a B = s A .s max .t 2A,1 + a 0 Expression of the spline if t < 0 or t > T i then return error code endt cur ← 0 x cur ← x 0 v cur ← v 0 a cur ← a 0 j cur ← 0 T S ← s max . [s A , 0, -s A , 0, s C , 0, -s C , 0, s E , 0, -s E , 0, s H , 0, -s H ] T D ← [t A,1 , t A,2 , t A,1 , t B , t C,1 , t C,2 , t C,1 , t D , t E,1 , t E,2 , t E,1 , t G , t H,1 , t H,2 , t H,1 ] D [k] 2 + v cur .T D [k] + x cur D [k] 2 + a cur .T D [k] + v cur a cur ← T S [k] 2 .T D [k] 2 + j cur .T D [k] + a cur j cur ← T S [k].T D [k] + j cur endThen we can see that: A .j max .t A,2 + a 0

	t A,1 ≤ rel + .t 3 j cur j max s max 2 .t 2 rel + a cur .t rel + v cur ⇐⇒ s max .t 2 A,1 ≤ .t 4 rel + j cur 6 j cur .t 3 rel + a cur 2 .t 2 .T D [k] 4 + T S [k] Algorithm 4: v ← 6 x ← T S [k] 24 x cur ← T S [k] 24 j cur 6 .T D [k] 3 + a cur 2 .T v cur ← T S [k] 6 .T D [k] 3 + j cur 2             s A = 1 =⇒ s A .s max .t 2 A,1 ≤ j 2 max s max =⇒ a B -a 0 = |a B -a 0 | ≤ j 2 max s max s A = -1 =⇒ s A .s max .t 2 A,1 ≥ -j 2 max s max =⇒ a B -a 0 = -|a B -a 0 | ≥ -j 2 max s max So we have : |a B -a 0 | > j 2 max s max =⇒ t A,2 = 0 In this case we have : .T  t A,1 = j max s max =⇒ a B = s A .j 2 max s max + s =⇒ t A,2 = |a B -a 0 | j max j max -s max	j 2 max s max
	  ⇐⇒ t A,1 =	|a B -a 0 | s max	 

for k ∈ 1, 15 do if t cur ≤ t ≤ t cur + T D [k] then t rel ← t -t cur j ← T S [k].t rel + j cur a ← T S [k] 2 .t 2 rel + j cur .t rel + a cur rel + v cur .t rel + x cur return [x, v, a, j, T S [k]] end t cur ← t cur + T D [k]

  a B s max + (a 0 + a B ). a 0 -a B s max case AC = 201 =⇒ v D = v 0 -a 2 B 2.j max + (a 0 + a B ). a 0 -a B s max + a B .j max 2.s max case AC = 210 =⇒ v D = v 0 + j max .(a 0 + a B ) -2.a B . max + j max .(a 0 + 2.a B ) 2.s max case AC = 2000 =⇒ v D = v 0 + 2.(a 0 + a B ). √ a B -a 0 + 2.a B . AC = 2010 =⇒ v D = v 0 + j max .(a 0 + a B ) + 2.a B .√ s max .a B

					2.s max	√ -s max .a B	+	a 2 0 -a 2 B 2.j max
	case AC = 211 =⇒ v D = v 0 +	a 2 0 -2.a 2 B 2.j √ a B 2. √ s max
	case AC = 2001 =⇒ v D = v 0 +	a 2 B 2.j max	+ (a 0 + a B ).	a B -a 0 s max	+	a B .j max 2.s max
					2.s max		-	a 2 0 -a 2 B 2.j max
	case AC = 2011 =⇒ v D = v 0 +	2.a 2 B -a 2 0 2.j max	+	j max .(a 0 + 2.a B ) 2.s max

case

Note that the portion of the initial trajectory between xA and x1 (idem for x2 and xB) is different to the local trajectory generated by a new call to the steering method, because zero jerk is imposed on x1 (and on x2) when splitting the trajectory.

A quasi-metric has all the properties of a metric, symmetry excepted.

sub-section how to address this.

Optimization

A trajectory optimization method can be applied to improve the time-optimality of the previously obtained solution. We have implemented a simple but efficient method based on the random shortcut algorithm [Geraerts 2007]. This iterative, anytime algorithm works as follows: at each iteration, two states, x 1 and x 2 , are randomly selected from the overall trajectory. Let us call x A the initial state of the local trajectory in which x 1 lies, and x B the final state of the local trajectory in which x 2 lies. The steering method is then applied to generate three new local trajectories between (x A , x 1 ), (x 1 , x 2 ) and (x 2 , x B ) 1 . If they are collision-free, the cost of the trajectory x A → x 1 → x 2 → x B is computed, the cost here being the overall flying time. If this cost is lower than the one of x A → ... → x B , this portion of the overall trajectory is replaced by the new one. This step is repeated until a given execution time, a given number of iterations or a given gain of the cost is reached. A example of result is illustrated in This decoupled approach is computationally very efficient. It quickly returns high-velocity, agile trajectories in cluttered environments. It is however incomplete, in the sense that it will succeed only if a quasi-static solution exists for the bounding sphere. It will for example fail to solve some problems involving aggressive maneu- In this chapter we detail the integration of our works into the ARCAS project in the context of which they were conducted. We first present the project itself, its objectives, its different partners, its subsystems and the general framework in which they are integrated. We then focus on the motion planning system and finally detail the link between symbolic and geometric planning.

The ARCAS project

For a more detailed presentation of the project consult its website:

www.arcas-project.eu

Overview

ARCAS (Aerial Robotics Cooperative Assembly System) was a European funded project conducted between the years 2012 and 2016 that proposed the develop-

Calculation details of the steering method

In this appendix we provide calculation details on certain aspects of the steering method presented in Chapter 3. 

A.1 Reminders

In this section we would like to recall the goal of our steering-method and update certain notations. Because we were specifically treating the quadrotor system in Chapter 3 we considered its flat outputs z = [z i ] T i=1..4 . Let us consider here a more general configuration q = [q i ] T i=1..n and its associated state x = [q q q]. We recall that we solve the BVP independently for each degree of freedom of index i. We can therefore omit the index notation for the sake of simplicity. For the bounds on the derivatives we note:

Similarly for the values to be interpolated we note:

We solve for each degree of freedom of index i:

We also recall the notations of the different phases of the proposed solution as it is illustrated in Figure A.1.

A is the phase of the first acceleration variation from Si (t) = a 0 to Si (t) = a B . B is the first phase of constant acceleration Si (t) = a B . C is the phase of the second acceleration variation from Si (t) = a B to Si (t) = 0. ABC is the phase of the first velocity variation from Ṡi (t) = v 0 to Ṡi (t) = v D . D : the phase of constant velocity Ṡi (t) = v D .

E is the phase of the third acceleration variation from Si (t) = 0 to Si (t) = a G . G is the second phase of constant acceleration Si (t) = a G . H is the phase of the fourth acceleration variation from Si (t) = a G to Si (t) = a F . EHG is the phase of the second velocity variation from Ṡi

Each phase noted X of acceleration variation (X ∈ {A, C, E, H}) is divided in three sub-phases: X 1 is the phase of the first jerk variation from ... S i (t) = 0 to ... S i (t) = j X X 2 is the phase of constant saturated jerk ... S i (t) = j X X 3 is the phase of the second jerk variation from ... S i (t) = j X to ... S i (t) = 0

We now have to compute t B , t D and t G . Let us start by giving the expression of v D . Using the expression of the spline we have: