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Abstract

This thesis focuses on the study of autonomous aerial robots interacting with the
surrounding environment, and in particular on the design of new control and mo-
tion planning methods for such systems. Nowadays, autonomous aerial vehicles
are extensively employed in many fields of application but mostly as autonomously
moving sensors used only to sense the environment. On the other hand, in the
recent field of aerial physical interaction, the goal is to go beyond sensing-only
applications and to fully exploit aerial robots capabilities in order to interact with
the environment, exchanging forces for pushing/pulling/sliding, and manipulating
objects. However, due to the different nature of the problems, new control methods
are needed. These methods have to preserve the system stability during the inter-
action and to be robust against external disturbances, finally enabling the robot
to perform a given task. Moreover, researchers and engineers need to face other
challenges generated by the high complexity of aerial manipulators, e.g., a large
number of degrees of freedom, strong nonlinearities, and actuation limits. Further-
more, trajectories of the aerial robots have to be carefully computed using motion
planning techniques. To perform the sough task in a safe way, the planned trajec-
tory must avoid obstacles and has to be suitable for the dynamics of the system
and its actuation limits.

With the aim of achieving the previously mentioned general goals, this thesis
considers the analysis of a particular class of aerial robots interacting with the
environment: tethered aerial vehicles. The study of particular systems, still
encapsulating all the challenges of the general problem, helps on acquiring the
knowledge and the expertise for a subsequent development of more general methods
applicable to aerial physical interaction. This work focuses on the thorough formal
analysis of tethered aerial vehicles ranging from control and state estimation to
motion planning. In particular, the differential flatness property of the system is
investigated, finding two possible sets of flat outputs that reveal new capabilities of
such a system. One contains the position of the vehicle and the link internal force
(equivalently the interaction force with the environment), while the second contains
the position and a variable linked to the attitude of the vehicle. This shows new
control and physical interaction capabilities different from standard aerial robots
in free-flight. In particular, the first set of flat outputs allows realizing one of the
first “free-floating” versions of the classical hybrid force-motion control for standard
grounded manipulators.

Based on those results we designed two types of controllers. The first is an easy-
to-implement controller based on a hierarchical approach. Although it shows good
performance in quasi-static conditions, actually the tracking error increases when
tracking a dynamic trajectory. Thus, a second controller more suited for tracking
problems has been designed based on the dynamic feedback linearization technique.
Two observers, for the 3D and 2D environments, respectively, have been designed
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in order to close the control loop using a minimal sensorial setup. We showed that
the tether makes possible to retrieve an estimation of the full state from only an
IMU plus three encoders for the 3D case, while from just an IMU for the 2D case.
Parts of those results were extended to a novel and original multi-robots case as
well. We considered a multi-tethered system composed of two aerial robots linked
to the ground and to each other by two links. The theoretical results on generic
tethered aerial vehicles were finally employed to solve the practical and challenging
problem of landing and takeoff on/from a sloped surface, enhancing the robustness
and reliability of the maneuvers with respect to the free-flight solution.

In addition, moved by the interest on aerial physical interaction from A to Z,
supplementary problems related to the topic have been addressed as:

i) Design of new omnidirectional-thrust aerial vehicles more suited for physical
interaction: we proposed an algorithm to obtain an optimal design that is
omnidirectional-thrust using only fixed unidirectional thrusters. We also de-
signed a controller for such vehicle that respects the unidirectionality of the
thrusters;

ii) Cable suspended load manipulation: we proposed a communication-less control
strategy for a team of two robots manipulating an object that guarantees the
stability and passivity of the system;

iii) Control for unidirectional-thrust aerial manipulators: we proposed a flatness-
based decentralized controller for protocentric unidirectional-thrust aerial ma-
nipulators endowed with any number of articulated arms;

iv) Motion planning for aerial manipulators: we proposed a control-aware motion
planner based on the paradigm of control and planning tied together, for aerial
manipulators in interaction with the environment;

v) Push-and-slide tasks with an aerial manipulator: considering a truly redun-
dant aerial manipulator based on a multidirectional-thrust aerial vehicle, we
designed a controller that, together with the previously mentioned planner,
allows the operation of push-and-slide tasks. Such a complete aerial system,
result of a wise design of the mechanical system and its controller and motion
planner, has been integrated with a sensory suit and used for a real contact-
based inspection of a metallic pipe.

Keywords

Aerial robots – Aerial physical interaction – Tethered aerial vehicles – Control
– Motion planning – Aerial manipulation – Aerial manipulation by cables – Multi-
directional-thrust aerial vehicles



Résumé

Le sujet principal de cette thèse est l’étude des robots aériens autonomes interagis-
sant avec l’environnement. Plus précisement, ce travail porte sur la conception de
nouvelles méthodes de commande et de planification de mouvement pour ces
robots. De nos jours, les véhicules aériens autonomes sont de plus en plus utilisés
dans de nombreux domaines d’application, mais le plus souvent comme des senseurs
mobiles autonomes, cantonnés à l’acquisition de données sur l’environnement. Le
défi majeur dans le domaine de l’interaction physique aérienne, est donc au-
jourd’hui d’aller au-delà de cette application limitée et d’exploiter entièrement les
capacités des robots aériens pour qu’ils puissent réellement interagir avec l’environ-
nement (par exemple avec un échange de forces pour pousser, tirer et manipuler des
objets). Néanmoins, vue la nature différente des problèmes liés à l’interaction phy-
sique aérienne, de nouvelles méthodes de commande sont nécessaires. Elles doivent
assurer la stabilité du système pendant l’interaction, mais aussi être robustes vis-
a-vis de perturbations externes, permettant finalement au robot d’assurer la tâche
qui lui est assignée. De ce fait, ingénieurs et chercheurs doivent faire face à de nou-
veaux défis en raison de la grande complexité des manipulateurs aériens, comme
par exemple le grand nombre de degrés de liberté, les fortes non-linéarités et les
limitations des actionneurs. En outre, les trajectoires des robots aériens doivent
être soigneusement calculées en utilisant des techniques de planification des mou-
vements, afin d’exécuter la tâche souhaitée de façon sûre, en évitant les obstacles
et en tenant compte de la dynamique du système et ses limites d’actionnement.

Pour atteindre les objectifs précédemment mentionnés, cette thèse considère
l’analyse d’une classe spécifique de systèmes aériens interagissant avec l’environne-
ment : les véhicules aériens attachés avec des câbles ou des barres. L’étude
de ces systèmes particuliers, qui englobent tous les défis du problème général, aide
à acquérir les connaissances et l’expertise pour le développement de méthodes plus
générales qui pourront être appliquées à l’interaction physique aérienne. Ce travail
se concentre sur l’analyse formelle et minutieuse des véhicules aériens attachés, de
la commande et de l’estimation d’état à la planification du mouvement. Nous avons
notamment étudié les propriétés de platitude différentielle, trouvant deux sorties
plates possibles qui révèlent de nouvelles capacités de tel systèmes. La première
sortie plate contient la position du véhicule et la force interne du lien, tandis que
la deuxième contient la position et une variable liée à l’attitude du véhicule. Ceci
montre de nouvelles capacités de commande et d’interaction physiques, différentes
de celles des robots aériens en vol libre.

Sur la base de ces résultats, nous avons conçu deux types de contrôleurs. Le
premier est un contrôleur basé sur une approche hiérarchique facile à implémenter. Il
est performant dans des conditions quasi-statiques, mais présente une augmentation
de l’erreur de suivi lorsqu’il suit une trajectoire dynamique. Pour faire face au
problème de suivi nous avons donc conçu un deuxième contrôleur plus adapté,
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basé sur la technique de linéarisation dynamique du feedback. Deux observateurs,
respectivement pour les environnements 3D et 2D, ont été conçus afin de fermer
la boucle de commande avec une configuration sensorielle minimale. Nous avons
montré que le lien physique permet d’obtenir une estimation de l’état du système
en utilisant seulement un IMU(centrale inertielle) et trois encodeurs pour le cas
3D, tandis que, pour le cas 2D, il suffit d’un IMU. Une partie de ces résultats
ont été étendus à un système multi-robot composé par deux robots aériens liés au
sol et entre eux. Les résultats théoriques sur les véhicules aériens attachés par des
câbles ou des barres ont été ensuite employés pour résoudre le problème pratique de
l’atterrissage et du décollage sur/de une surface inclinée, en améliorant la robustesse
et la fiabilité de ces manœuvres par rapport aux conditions en vol libre.

En plus, motivé par l’intérêt pour l’interaction physique aérienne de A à Z, nous
avons abordé des problèmes supplémentaires :

i) Conception de nouveaux véhicules aériens avec poussée omnidirectionelle qui
se révèlent plus adaptés à l’interaction physique : nous avons proposé un algo-
rithme pour obtenir un design optimal présentant des propriétés équivalentes
de poussée omnidirectionnelle en utilisant seulement des propulseurs unidi-
rectionnels fixes. Nous avons aussi conçu un contrôleur pour ces véhicules qui
intègre l’unidirectionnalité des propulseurs ;

ii) la manipulation d’une charge suspendue par des câbles : nous avons proposé
une stratégie de contrôle sans aucune communication explicite entre les robots,
qui garantit la stabilité et la passivité du système ;

iii) La commande de manipulateurs aériens à poussée unidirectionnelle : nous
avons proposé un contrôleur décentralisé basé sur la platitude différentielle
pour un manipulateur aérien à poussée unidirectionnelle et protocentric équipé
d’un certain nombre de bras articulés ;

iv) Planification du mouvement pour des manipulateurs aériens : nous avons pro-
posé un planificateur ‘control-aware’ du mouvement basé sur le paradigme
d’unification de la commande et de la planification, pour des manipulateurs
aériens interagissant avec l’environnement ;

v) tâches de ’push-and-slide’ avec des manipulateurs aériens : pour un manipula-
teur aérien redondant basé sur un véhicule aérien à poussée multidirectionelle,
nous avons développé un contrôleur qui, en combinaison avec le planificateur
de mouvement cité précédemment, permet d’effectuer des opérations ‘push-
and-slide’. Comme résultat de la conception mécanique optimale du contrôleur
et du planificateur de mouvement, le système aérien a été intégré avec un cap-
teur afin de réaliser une inspection réelle d’un tuyau métallique.

Mots Clés

Robots aériens – Interaction physique aérienne – Véhicules aériens attachés par des
câbles – Commande – Planification du mouvement – Manipulation aérienne – Ma-
nipulation aérienne via des câbles – Véhicules aériens à poussée multidirectionnelle
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Chapter 1

Introduction

1.1 Aerial physical interaction

One of the robotic fields in constant growth in the last decade is aerial robotics.
According to [Feron–2008], the definition of aerial robotics can be twofold: i) robotic
flying machines, putting the emphasis on the platform, or ii) robotics that use flying
machines, putting the emphasis on the mission instead. In both cases, the main
goal of aerial robotics is to study and conceive aerial systems that can perform
work fully or partially autonomously. In the related literature, such robotic aerial
platforms are often called Unmanned Aerial Vehicles (UAVs).

Although it is only recently that UAVs gained the interest of a very big and
still increasing community, the study and design of such systems started already
in the early 1900s. These vehicles were firstly used as prototypes to test new air-
craft concepts before being produced and piloted by human pilots, decreasing the
costs and the risks. The design of UAVs continued during the two World Wars
for military purposes. However, the technology level was not enough to produce
aerial robots able to autonomously navigate in a reliable way. It is only relatively
recently, with the advent of lightweight and performing processors, accurate sensors
and global navigation satellite systems, that aerial robots started to progressively
gain better sensing and navigation capabilities. Although firstly employed in the
military area, UAVs got a lot of interest from the civil area as well. Given the expo-
nential appearance of new aerial vehicles and new applicative fields, the Economist
compared the “drone boom” like the one happened to personal computers in the
1980s [Economist–2015].

The motivation of the great popularity of UAVs mainly comes from the down-
scale of the size, weight, and cost of the sensing and computing technology. The
latter made UAVs lighter, much more powerful and less expensive too. In turn,
this allowed UAVs to be accessible by a very wide community, both from the re-
search and industrial areas. The low cost, the theoretically infinite workspace and
the great versatility of those platforms allow employing them for several applica-
tions. In particular, they find their greatest use in dangerous and hazard envi-
ronments, preventing humans from getting harmed. Some examples of application
where UAVs are nowadays employed are agriculture, construction, security, rescue,
response to disasters, entertainment, photography and movie making, archeology
and geographic mapping, wildlife monitoring/poaching, and many others can be
mentioned. Other near-future interesting applications, currently under study, are
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personal and goods transportation (e.g., Volocopter1 and Amazon2, respectively).
Several types of aerial vehicles are available in the market:
1) Rotary wings UAVs, like multirotors, small-scale helicopters, and ducted fan;
2) Convertible UAVs, like tail sitter aircrafts, that combine cruising flight and

Vertical Takeoff and Landing (VTOL) capabilities [Morin–2015];
3) Flapping wings UAVs, inspired by the flight of birds, bats, and insects;
4) Fixed wings UAVs, very popular for their long flight time.

According to the particular application, one could choose the vehicle that better
fits the sought task, finding the best trade-off between flight endurance and maneu-
verability.

Particular attention is given to VTOL vehicles thanks to their high maneuver-
ability and the ability to hover in place and to take off and land from/on confined
spaces, without the need of a runway or other devices. These facts make VTOL
vehicles applicable also in indoor and cluttered environments such as forests, in-
dustrial plants, and urban environments. A brief review of those type of vehicles is
given in Sec. 3.2. Beyond the mentioned nice features of VTOL UAVs, they suffer
from a major drawback. Standard VTOL vehicles, like collinear multirotors, can
produce a total thrust force only along one fixed direction with respect to the body
frame (they can also be called unidirectional-thrust aerial vehicles). This makes
them underactuated. It means that we cannot fully control the vehicle state. In
particular, one cannot control the attitude independently from the position. Start-
ing from a hovering configuration (horizontal attitude), in order to move toward
a certain direction the vehicle has firstly to rotate such that the thrust generates
a horizontal acceleration toward the desired direction. This underactuation intro-
duces several challenges for the stabilization of the system and the tracking of the
desired trajectory. It also implies that an external disturbance cannot be imme-
diately rejected. The platform has firstly to tilt. For those reasons, several works
have been done to design controllers of increasing complexity to improve the perfor-
mance of such vehicles, e.g., in [Hua–2015; Plinval–2014; Faessler–2018; Lee–2010].
Additionally, many state observers have been conceived to close the control loop
to autonomously fly in different conditions and with different sensory setups. For
more details on control, localization and motion planning methods for the navi-
gation of VTOL UAVs, we refer the reader to the main surveys and books in the
literature [Ollero–2004; Valavanis–2015; Mahony–2012; Hua–2013; Hua–2009]

One can notice that in all the application mentioned so far, the robot is used as a
simple remote sensor. The vehicle gathers data, e.g., with a camera, without inter-
acting with the environment. Although the use of UAVs for applications concerning
only the sensing of the environment is already an interesting and challenging topic,
it is actually limited with respect to the real potentiality of those aerial robots. The
ultimate scope of robots is to perform physical work, namely to act and interact
with the environment exchanging forces. Aerial Physical Interaction (APhI) would

1www.volocopter.com
2www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011

www.volocopter.com
www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
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lead to new very interesting applications. Some examples are assistance robotics in
industrial or domestic environments, assembly and construction, decommissioning,
inspection and maintenance by contact, removal of debris after natural disasters,
delivery and transportation, stringing of power lines, and many others. Nowadays,
those tasks are performed by human operators in very dangerous conditions, like
on top of scaffolds or suspended by climbing ropes. The use of aerial robots would
allow reducing the risk for the human operators and, at the same time, to reduce
the cost associated with such operations. Given the relevance of the problem, many
research labs and companies have been attracted to it. As a result, we can find
many European projects with the scope of advancing in the aerial robotic field.
In the following, we list some concluded and ongoing projects with corresponding
goals:
• ARCAS3: conceive aerial robots for assembly and construction of structures;
• AEROARMS4: design and build UAVs with high manipulation capabilities
for industrial inspection and maintenance;
• AEROWORKS5: provide heterogeneous and collaborative aerial robotic work-
ers for inspection and maintenance tasks in infrastructure environments;
• ARCOW 6: design aerial co-workers helping humans in manufacturing pro-
cesses;
• AEROBI 7: conceive aerial vehicles for in-depth structural inspection of con-
crete bridges;
• AIROBOTS8: design aerial robots for remote inspection by contact;
• HYFLIERS9: conceive a robot with hybrid air and ground mobility with a

long-reach hyper-redundant manipulator.
For the aimed goals, aerial vehicles need new manipulation capabilities to safely

and reliably interact with the environment. This opens the door to new challenges
in aerial robotics. An aerial manipulator, being a floating body, has to actively
react to interaction forces with the environment, that have to be carefully taken
into account. Indeed they could eventually destabilize the system. This is different
for a grounded manipulator which passively reacts to interaction forces thanks to
the ground constraint. Furthermore, for grounded manipulators, we can usually
directly and accurately control the torque that each motor applies to the corre-
sponding joint. For an aerial vehicle, we instead control (in first approximation)
the spinning velocity of a rotating propeller that, by the aerodynamic effects, pro-
duces a force. Due to the complexity of the aerodynamic effects and to disturbances,
it is not easy to precisely control those forces. Those actuation errors drastically im-
pact the performance of the robot while interacting with the environment. Finally,
in order to improve the dexterity and the manipulation capability of aerial robots,

3http://www.arcas-project.eu/
4https://aeroarms-project.eu/
5http://www.aeroworks2020.eu/
6http://www.euroc-project.eu/index.php?id=grvc-catec
7http://www.aerobi.eu/
8http://airobots.dei.unibo.it/
9http://www.oulu.fi/hyfliers/

http://www.arcas-project.eu/
https://aeroarms-project.eu/
http://www.aeroworks2020.eu/
http://www.euroc-project.eu/index.php?id=grvc-catec
http://www.aerobi.eu/
http://airobots.dei.unibo.it/
http://www.oulu.fi/hyfliers/
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the latter are usually endowed with interactive tools such as grippers or articulated
arms. The final aerial manipulator results to be a complex system characterized
by a complicated and in general highly nonlinear dynamics. The latter has to be
carefully considered because the couplings between the aerial robot and the inter-
acting tool, if not properly addressed, can easily bring the system into instability.
As a consequence, new control methods have to be conceived considering the full
dynamics of the system, in order to preserve the stability during the interaction
phases as well.

The most simple tool that one can use is a rigid tool rigidly attached to the
robot. This allows exchanging forces with the environment, e.g., by pushing or
sliding. Although the tool is very simple in itself, the underactuation of the vehicle
makes the physical interaction very challenging. To address the problem, the works
in [Nguyen–2013; Bartelds–2016; Gioioso–2015] designed a hybrid force/position
control. The tool can be then equipped with a gripper in order to allow pick
and place operations [Mellinger–2011b]. To further increase the manipulation and
the payload capabilities, several aerial robots endowed with a simple rigid link or
a gripper can manipulate an object in a coordinated fashion, as a sort of “flying-
hand” [Mellinger–2010; Gioioso–2014b; Staub–2017].

Another very used and still simple interaction tool is a cable. The use of a
cable allows partially decoupling the rotational dynamics of the vehicle with re-
spect to the one of the load. However, the control authority on the load positioning
is reduced and a particular attention has to be given to undesired load oscilla-
tions that might destabilize the system. Several works addressed the problems
from the control point of view proposing, for example, adaptive controllers [Dai–
2014; Palunko–2012], a hierarchical controller [Bernard–2011], a flatness-based ge-
ometric controller [Sreenath–2013b] and even a reinforcement learning based ap-
proach [Palunko–2013]. Other works instead, addressed the problem from a motion
planning point of view proposing algorithms that generate optimal trajectories that
minimize the load swing [Sreenath–2013c; Foehn–2017]. Also, in this case, the
multi-robot approach can be beneficial to increase the payload of the system and
the control authority on the load [Sreenath–2013a; Tagliabue–2016; Manubens–
2013; Maza–2010]. A more detailed literature review on aerial cable-suspended
load transportation is provided in Chap. 10. Furthermore, cables are not only used
for the transportation of goods but also to tether aerial vehicles to fixed or moving
platforms in order to enhance the flight stability during strong wind conditions or
during dangerous maneuvers like takeoff and landing on moving vehicles [Sandino–
2014a; Lupashin–2013]. A more detailed introduction on the tethered aerial vehicle
is provided in Chap. 4.

Finally, one can endow the aerial vehicle with one or even more articulated
arms. The employ of a so-called aerial manipulator (AM) allows reaching high lev-
els of dexterity. Depending on the number of degrees of freedom, an object can be
locally manipulated independently from the motion of the platform. If the system
is over-actuated, one can exploit the robot redundancy to achieve secondary tasks
or to better compensate for external disturbances or tracking errors of the aerial
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vehicle. Nevertheless, the system results to be very complex and the underactuation
of the vehicle makes its control even more complex. The easiest way to control such
AM is with a decentralized approach. It consists of assuming the aerial vehicle and
the robotic arm as two independent systems, considering the interaction forces as
disturbances that have to be rejected. Indeed, the controller used for both subsys-
tems is often a robust control [Siciliano–2009; Ruggiero–2015]. Those methods can
be also applied to robotic arms with kinematically controlled motors. However, they
best perform only in quasi-static motions, i.e., when the couplings effects between
the aerial vehicle and the articulated arm are practically negligible. As soon as the
motion is more demanding in terms of accelerations, decentralized control methods
fail, or in the best case show large tracking errors. In those cases is more advisable
to use a centralized control method that considers the system as a unique entity. The
centralized controllers proposed in the state of the art are strongly model-based and
consider the full dynamics of the system [Yang–2014; Yüksel–2016b; Mersha–2014].
If the kinematic and dynamic model is very well known, then centralized controllers
can lead to very good performance. However, since they are strongly model based,
as soon as there are some parameter uncertainties, the performance degrades. Fur-
thermore, they often require torque controlled motors that are in general unfeasible
for aerial manipulators due to the limited payload. For a more detailed literature
review on control methods for aerial manipulators, we refer the reader to Chap. 9.
A complete survey on the topic has also been recently published [Ruggiero–2018].

The previously mentioned examples address the aerial physical interaction prob-
lem using underactuated unidirectional-thrust vehicles. As already said this makes
physical interaction tasks very challenging and prone to instability. However, a
very recent and promising trend is to use multidirectional-thrust aerial vehicles in-
stead [Rajappa–2015]. As the name says, those vehicles can produce a thrust force in
many directions with respect to the body frame. This means that they can indepen-
dently control both position and orientation and can react to external disturbances
almost instantaneously, when far from input saturation. These two great features
make multidirectional-thrust aerial vehicles perfectly suited for physical interaction
tasks since they are more robust to interaction forces and have more dexterity as
well [Ryll–2017]. However, such benefit comes with the cost of a higher power
consumption. In order to produce the thrust in several directions, the propellers
are tilted or can be actively turned, toward different directions producing internal
forces that waste energy. On the other hand, unidirectional-aerial vehicles are the
most efficient in terms of energy. That is why it is still interesting to study aerial
physical interaction by means of unidirectional-thrust vehicles. For a more detailed
literature review on multidirectional-thrust aerial vehicles and the particular case
of omnidirectional-thrust aerial vehicles, we refer the reader to Chap. 8.

Another important aspect of aerial physical interaction is related to motion plan-
ning. Even if we can control very well our robot, the trajectory for the execution
of a certain task has to be carefully computed using motion planning techniques.
To perform the task in a safe way, the planned trajectory must avoid obstacles and
has to satisfy the intrinsic constraints of the considered robot. In particular, it
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has to be suitable for the dynamics of the system and its actuation limits. Classi-
cal motion planning methods rely on quasi-static assumptions and are based only
on geometric and kinematic models of the system. Hence they are inadequate to
achieve manipulation tasks involving physical interaction. In fact, when the robot
is in contact with the environment and exchanges forces with it, the dynamics of
the system cannot be neglected. This requires the use of a kinodynamic motion
planning approach (e.g., [Boeuf–2015]). However, kinodynamic planners developed
so far are suitable only for simple systems, characterized by a small number of
degrees of freedom and a relatively simple dynamic model, like car-like vehicles or
quadrotors. Instead, in the context of aerial physical interaction, robots have usu-
ally a large number of degrees of freedom to increase the dexterity of the system.
This, in turn, makes the motion planning problem very challenging, requiring the
design of new kinodynamic motion planning methods. Those have to cope with the
nonlinear dynamics of the robot, its redundancy and the forces exchanged with the
environment during manipulation tasks. Finally, the problem has to be solved very
rapidly in order to use the planner online and to re-plan the trajectory in case of
unforeseen events or moving obstacles. Some attempts to solve the motion planning
problem for some specific cases can be found in [Lee–2016; Fink–2011]

1.2 Contribution

In this section, we provide a global overview of the scientific contribution provided
by this thesis. A even shorter and concise description is provided in Tab. 1.1. This
helps the “busy” reader to have a rapid and global view of the work done without
going into the details. Hopefully, it will also grow the interest for the full manuscript
or some of its parts. However, the reader interested only to a specific topic treated
in this thesis, can skip this section and go directly to the chapter of interest. Still,
for the sake of completeness, we suggest the reading of the full manuscript.

From the previous section, it is clear that the field of aerial robotics is extremely
wide. Although today there are several works addressing problems in the aerial
physical interaction field, there are still numerous open challenges that require a
deep investigation. Among those challenges, we find the mentioned control of teth-
ered aerial vehicles. This is a very recent and interesting topic in the aerial physical
interaction field because it includes most of previously mentioned challenges. We
shall show in Chap. 4 that the addition of the cable constraint can be beneficial
from a technological point of view, e.g., to power the vehicle, but also from a more
“physical” point of view to improve the flight stability during dangerous maneuvers.

For a complete understanding of those type of robotic systems, during this
thesis we performed a deep and thorough theoretical analysis that is the basis for
solving practical problems related to real applications. In particular, we considered
the most generic tethered aerial system, i.e., a generic unidirectional-thrust aerial
vehicle flying in the 3D space and tethered to a freely moving platform by a generic
link (not only by a cable), together with a link actuator able to change its length. For
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List of the main contributions
1) Formal modeling and complete theoretical analysis of tethered aerial vehicles

regarding their dynamics, controllability and observability (Chap. 4). The pro-
posed methodologies and the several results can be extended to any underac-
tuated aerial vehicle in contact with the environment by a passive link;

2) Differential flatness based method to control the position and the interaction
force applied to tethered aerial vehicles (Sec. 4.5.1, 4.6.1 and 4.7.1) and exper-
imentally validated (Sec. 5.2.1). This could represent a “free-floating” version
of the standard hybrid force-position controller of grounded manipulators;

3) Differential flatness based method to control the position and partially the atti-
tude of a tethered aerial vehicle (Sec. 4.5.2, 4.6.2 and 4.7.2) and experimentally
validated (Sec. 5.2.2). This was applied to the general problem of landing and
takeoff on/from a sloped surface validated by real experiments (Chap. 6). This
is practically useful for physical interaction allowing the robot to perch a surface
before starting a manipulation task;

4) Decentralized flatness-based control methods successfully validated by experi-
ments for tethered aerial vehicles (Sec. 4.6) and protocentric aerial manipulators
(Chap. 9). Those methods could be potentially applied to any differentially flat
system;

5) Fundamental investigation of omnidirectional-thrust aerial vehicles that poses
the foundations for the design of new aerial robots with enhanced physical
interaction capabilities (Chap. 8);

6) Design and thorough theoretical analysis of a communication-less method for
the cooperative transportation of a cable suspended load attached to two aerial
robots (Chap. 10). This work poses the bases for following methods for the
manipulation of loads with swarms of aerial agents;

7) General motion planning paradigm combining reactive controllers and local
planner and sampling based methods for global planning. We applied such
general idea for a fully-actuated aerial vehicle in physical interaction conceiving
what we called control-aware motion planner (Chap. 11). Nevertheless, this
idea could be applied to a wider variety of robotic systems;

8) A complete aerial manipulator system integrating control and motion planning
methods, with sufficient physical interaction capabilities to perform push-and-
slide operations on curved surfaces (Chap. 12). We experimentally shown that
such system equipped with an Eddy-Current sensor is able to perform a real
contact-based inspection of a metallic pipe.

Table 1.1 – Concise list of the main contributions of this thesis, with a particular
focus on the future possible impact.
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this system, we carefully investigated its dynamics and its intrinsic properties, such
as the differential flatness. This property is very useful both for control and motion
planning. Indeed the analysis of such property allows understanding which are the
outputs, called flat outputs, that can be independently controlled and which is their
required degree of smoothness. Furthermore, it provides the tools to analytically
compute the nominal state and input required to track a desired trajectory of the flat
output. This turns out to be very helpful in the motion planning phase to simplify
the planning method and to check for the feasibility of the desired trajectory. Our
analysis shows the existence of two sets of flat outputs:

1) The first is a force-related output. It contains the position of the aerial
vehicle with respect to the moving platform, its rotation along the thrust di-
rection, and the internal force along the link (equivalently the force applied
by the vehicle to the other hand of the link). Being able to control the force
on the link, it allows achieving real physical interaction tasks. One can notice
the interesting parallel with hybrid position/force control of grounded manip-
ulators subjected to kinematic constraints [De Luca–1992; Raibert–1981];

2) The second is an attitude-related output. It contains the position of the
aerial vehicle with respect to the moving platform, its rotation along the
thrust direction, and a particular angle related to the attitude of the vehicle
with respect to the link (in Sec. 4.7.2 we will provide the formal definition).
This is an unusual flat output for an unidirectional-thrust aerial vehicle. In
the free-flight configuration the robot attitude is a by-product of the desired
position trajectory, thus cannot be independently controlled.

These results lead us to the design of two controllers for both the proven sets of flat
outputs. The first is based on a standard hierarchical control method, exploiting
the flatness to compute the feed-forward terms. The effectiveness of the method was
validated experimentally. Furthermore, it was used to accomplish the challenging
maneuvers of landing and takeoff on/from a sloped surface. It turns out that this
type of controller is easy to implement but not suited for the tracking of highly
dynamic trajectories.

If a system is differentially flat with respect to a certain output, then it is
feedback linearizable as well. Thus, to solve the problem of precise tracking of
any desired flat output trajectory, we designed a nonlinear controller based on
the dynamic feedback linearization control technique. The superiority of the latter
controller with respect to the first has been numerically shown, also in the presence
of several kinds of uncertainties and real-world conditions.

Finally, we considered the problem of closing the control loop with a minimal set
of sensors, investigating the observability, and designing a global nonlinear observer.
We showed that the system is observable with only the onboard IMU and three
encoders to measure the attitude and length of the link. Based on those measures,
we found some nonlinear transformations that allow applying the nonlinear High
Gain Observer (HGO). Pushed by the interest of finding the minimal sensory setup
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to estimate the state, we found that only the onboard IMU is enough if the system is
constrained on a 2D vertical plane and the link has a constant length. For this case,
a similar High Gain Observer based on the IMU readings only has been designed
to retrieve a state estimation. A more detailed description of our contribution with
respect to the related state of the art is provided in Chap. 4.

The results obtained by the previous theoretical analysis were applied to the
practical problem of takeoff and landing from/on a sloped surface. For a standard
unidirectional-thrust vehicle in a free-flight configuration, this is a very challenging
problem. On the other hand, we theoretically and experimentally showed that the
use of the tether makes the execution of those maneuvers much safer, reliable and
robust to tracking errors and parameters uncertainties. All the details about the
related state of the art and our study are given in Chap. 6.

An interesting multi-tethered aerial system has been considered as well. The
system is composed of two unidirectional-thrust aerial vehicles constrained on a 2D
vertical plane and tethered to each other and to a fixed point on the ground by two
generic links, in a chain-like configuration. It is interesting to notice the similarity
to a two-link planar manipulator. Similarly to the single tethered aerial system, a
theoretical investigation of the differential flatness, controllability, and observability,
have been performed. This shows that the results obtained for the single tethered
case can be extended also for the multi-tethered one. The detailed description of the
performed analysis and proposed methods are provided in Chap. 7. Table 1.2 gath-
ers all the publications and the corresponding contributions, concerning tethered
aerial vehicles.

The complete analysis of tethered aerial vehicles constitutes the main body of
this thesis. However, motivated by the interest for the other several open questions
on aerial physical interaction, during this thesis we worked also on a few additional
topics. In particular, we tried to explore other relevant problems related to aerial
physical interaction along the major axes of design, control and motion planning.
Table 1.3 lists all the publications corresponding to this second part of the thesis.

Previously, we mentioned that multidirectional-thrust aerial vehicles are becom-
ing very popular in the field of aerial physical interaction. A particular subclass of
such type of vehicles is given by the omnidirectional-thrust aerial vehicles. During
this thesis, we formally analyzed those systems that have the capability to gener-
ate a wrench in all the directions. This allows the platform rotating endlessly and
reacting to external forces in all directions. Our fundamental analysis provides the
conditions that a platform has to meet in order to be omnidirectional-thrust when
only unidirectional-thrust propellers are available. Based on those conditions, we
proposed an algorithm to generate an omnidirectional-thrust design given the posi-
tion and the aerodynamic properties of at least seven propellers. For this platform,
we designed a nonlinear controller for the tracking of both position and orienta-
tion that respects the unidirectionality of the propellers. In Chap. 8 we provide a
brief but more detailed discussion of the proposed methods. While for a deep and
exhaustive presentation we refer the interested reader to [Tognon–2018c].

Along the axis of control, we worked on the design of two different strategies
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Part II - Tethered Aerial Vehicles
Publication Contribution
[Tognon–2016a]

Journal
IEEE RA-L

Aerial vehicle in the 3D space tethered to an actuated winch rigidly
attached to an independently moving platform:
• differential flatness w.r.t. relative position, internal-link force and

yaw angle
• dynamic feedback linearization controller
• high gain observer based on inertial sensor and three encoders

[Tognon–2017a]
Journal

IEEE T-RO

Aerial vehicle in the 2D vertical plane tethered by a fixed length link:
• differential flatness w.r.t. elevation and attitude; elevation and

internal-link force,
• dynamic feedback linearization controller for the two set of outputs
• high gain observer based on inertial sensor only

[Tognon–2017c]
Conference

IFAC WC 2017

Aerial vehicle in the 3D space tethered to an passive winch attached
to an independently moving platform:
• differential flatness w.r.t. relative position
• dynamic feedback linearization controller

[Tognon–2015c]
Conference
ICRA 2015

Aerial vehicle in the 2D vertical plane tethered by a fixed length link:
• differential flatness w.r.t. elevation and internal-link force
• dynamic feedback linearization controller
• high gain observer based on inertial sensors only

[Tognon–2016b]
Conference
IROS 2016

Aerial vehicle in the 3D space tethered to a sloped surface for takeoff
and landing:
• definition of general conditions of robust landing
• comparison between free-flight and passive-tethered method
• differential flatness of the system with respect to position and at-

titude
• flatness based hierarchical controller

[Tognon–2017b]
Conference
IMAV 2017

Aerial vehicle in the 3D space tethered to a sloped surface for takeoff
and landing:
• technical description of the experiments

[Tognon–2015b]
Conference
IROS 2015

Two tethered aerial vehicles laying on a 2D vertical plane in a chain-
like configuration:
• high gain observer based on a minimal sensory configuration: iner-

tial sensors and two encoders
[Tognon–2015a]
Conference
ECC 2015

Two tethered aerial vehicles laying on a 2D vertical plane in a chain-
like configuration:
• differential flatness w.r.t. elevation and internal-link force of each

link
• dynamic feedback linearization controller

Table 1.2 – Summary of publications and corresponding contribution on tethered
aerial vehicles.

for the control of an aerial manipulator and for the cooperative manipulation of a
cable-suspended load. It has been proved that an aerial manipulator laying on a
2D vertical plane endowed with any number of arms composed of any number of
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Part III - Supplementary Contribution
Publication Contribution
[Tognon–2018c]

Journal
IEEE RA-L

Omnidirectional-thrust aerial vehicle with unidirectional thrusters:
• properties and necessary conditions
• algorithm to generate an optimal design
• controller for the tracking of position and orientation

[Tognon–2017e]
Conference
ICRA 2017

Protocentric aerial manipulator
• dynamic decentralized controller

[Tognon–2018e]
Journal

IEEE RA-L
Special Issue
on Aerial

Manipulation

Cable-suspended load manipulated by two aerial vehicles without
communication
• thorough equilibria analysis
• stability analysis showing the important role of the internal force

along the bar
• proof of passivity

[Tognon–2018b]
Journal

IEEE RA-L
Special Issue
on Aerial

Manipulation

Motion planning for task constrained aerial manipulation
• planner combining global sampling based method with local con-

troller

[Tognon–2019]
Journal

IEEE RA-L

Aerial manipulator system for push-and-slide operations
• hybrid position/force controller for a redundant aerial manipulator
• integration of design, control and motion planning
• experimental validation with integration of sensory kit for pipe in-

spection

Table 1.3 – Summary of publications and corresponding contribution of works not
concerning tethered aerial vehicles.

joints is differentially flat if the first joint of each arm coincides with the vehicle
center of gravity. The set of flat outputs contains the position of the vehicle center
of mass (or equivalently the position of one of the end-effectors) and the absolute
angle of each joint. In this thesis, we exploited the flatness to design a decentralized
controller that outperforms the ones based on the dynamic separation or on quasi-
static assumptions. A brief description of the method is provided in Chap. 9. For
all the details we refer the reader to [Tognon–2017e].

For the cooperative manipulation problem, we proposed a communication less
approach that, using a leader-follower paradigm, is able to stabilize the load to a
given configuration. We showed that two robots connected to a load by two cables
can coordinate each other without explicit communication, but using only the forces
that they exchange through the load. For this system, together with the proposed
control method, we deeply analyzed all the static equilibria and we characterized
their stability. It turns out that the latter directly depends on the chosen inter-
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nal force along the load. This analysis and the corresponding simulation results
are briefly discussed in Chap. 10. The detailed presentation is instead provided
in [Tognon–2018e].

Along the axis of motion planning, we investigated the problem of generating
trajectories for task-constrained aerial manipulation. For this problem, we proposed
a framework that tights together global motion planning and a local controller. The
so-called proposed control-aware motion planner, not only respects the dynamics of
the system but considers already at the planning level the controller characteristics
as well. The use of an inverse kinematics controller with a dynamic one allows the
planner to search for a trajectory directly in the task space, reducing the dimension
of the search space for redundant systems. The methods and the corresponding
state of the art are shortly discussed in Chap. 11. For the complete counterpart,
we refer the reader to [Tognon–2018b].

Finally, motivated by real and relevant applications like the inspection by con-
tact of industrial plants, we investigated the challenging problem of push-and-slide
with an aerial manipulator. As a demonstration, we considered a real and frequent
industrial application, namely the contact-based inspection of metallic pipes using
Eddy Current sensors in order to detect the presence of welds and to assess their
integrity. For this problem that requires high dexterity and physical interaction ca-
pabilities, we proposed the use of a multidirectional-thrust platform endowed with
a planar articulated arm with two degrees of freedom. This combination constitutes
a truly redundant manipulator that goes beyond standard aerial manipulators with
collinear multirotors. We remark that such a platform and the arm have been de-
signed in previous projects and are not considered as a contribution of this thesis.
For the control of the robot end-effector, we designed a controller based on a mod-
ified PID method inspired by controllers for manipulators with elastic joints. The
so controlled aerial manipulator has been also integrated with the control-aware
motion planner mentioned before. We experimentally showed that the proposed
aerial manipulator system, equipped with an Eddy Current probe, is able to scan a
metallic pipe sliding the sensor over its surface and preserving the contact. From the
acquired data, a weld on the pipe is successfully detected and mapped. To the best
of our knowledge, this is first work in which an aerial manipulator is experimentally
shown to be able to accomplish such a complex task of physical interaction. All the
details about the method and the experimental results are presented in Chap. 12.

Finally, we highly invite the reader to watch the multimedia materials related
to the contributions of this thesis listed at the beginning of this document.

1.3 Organization of the thesis

In this section, we provide a reader’s guide describing the organization of the thesis
and summarizing the content of each chapter. To facilitate the reading of this thesis
we divided it into four parts.

Part I provides the preliminaries to better contextualize this thesis in the field
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of aerial physical interaction, and the mathematical methodologies to better
understand its contributions.

Part II represents the main body of the thesis, namely the complete and exhaus-
tive study of aerial tethered vehicles. This analysis starts with the modeling of
the system and passes through the characterization of its dynamic properties
such as the differential flatness, controllability, and observability using a min-
imal sensory setup. The results of an experimental and simulation campaign
are presented to validate the proposed methods. Those are also used as a
base for solving the more applicative problem of landing and takeoff on/from
a sloped surface. In particular, we shall show that the use of a tether makes the
execution of such dangerous maneuvers much more safe, reliable and robust
to model uncertainties and tracking errors. Finally, a multi-robot extension
is considered for which we performed a thorough theoretical analysis similar
to the one for the single-tethered case. This part gathers the work of several
articles and some unpublished results as well. For this reason, we decided to
present this part in a very detailed way reworking the content of the several
publications for the sake of homogeneity, completeness, and clarity.

Part III schematically provides a brief overview of the additional works done dur-
ing this thesis on aerial physical interaction. Since in this part every chapter
is self-contained and directly associated to one publication, we preferred to
provide a short description of the related contribution, referring to the paper
for the further details. Notice that those papers were mainly the outcome
of fruitful collaborations that allowed to enlarge the spectrum of topics and
methods investigated during this thesis.

Part IV is the last part in which we present some final discussions on the presented
work and the future ones.

In the following, we shall provide a brief description of each chapter. Regarding
Part I:

Chap. 2 recalls in a synthetic way the mathematical methodologies used as back-
ground for the theoretical analysis of tethered aerial vehicles conducted in
Part II. In particular, we revise the two most used modeling methods, i.e.,
Lagrangian and Newton-Euler formalisms, the differential flatness property,
the dynamic feedback linearization control, and the nonlinear high gain ob-
server.

Chap. 3 provides the models of the subsystems, actuators, and sensors composing
the studied generic tethered aerial vehicle. We provide the generic model of an
unidirectional-thrust aerial vehicle in free-flight, the model for its propellers
and onboard sensors. A model of a generic link and of an encoder are also
provided.

Regarding Part II:
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Chap. 4 contains the complete and thorough theoretical study of a single tethered
aerial vehicle. We provide the model of a generic system. For such a system
we investigate the differential flatness and which are the flat outputs. For
the latter, we design a hierarchical controller and another controller based
on dynamic feedback linearization for the tracking of any desired trajectory.
Finally, we investigate the problem of closing the control loop with a minimal
sensory setup.

Chap. 5 presents all the results obtained from an extensive experimental and nu-
merical campaign apt to validate the proposed methods.

Chap. 6 shows the study of the challenging and application-oriented problem of
landing and takeoff on/from a sloped surface. For this problem, we theoret-
ically and experimentally show that the use of the tether is advisable, when
possible. Indeed, it allows executing those maneuvers in a much more robust
and reliable way.

Chap. 7 analyzes an interesting multi-robot extension of the single tethered sys-
tem. This system is similar to a 2-links planar manipulator where the actua-
tors are aerial vehicles connected in a chain-like configuration. For this system,
similarly to the single-robot system, we analyze the differential flatness, the
controllability by dynamic feedback linearization and the observability using
a minimal set of sensors.

Regarding Part III:

Chap. 8 focuses on the formal study of omnidirectional-thrust aerial vehicles with
fixed unidirectional thrusters. In this chapter, we describe an algorithm to
design and a controller for such platforms.

Chap. 9 in this chapter, we present a decentralized controller for a protocentric
aerial manipulator. The controller has been tested experimentally against two
standard control techniques. The results showed its superiority.

Chap. 10 describes the proposed communication-less control method for a team
of two aerial robots manipulating a cable suspended load. In this chapter,
we provide a summary of the analytical study of the equilibria and the corre-
sponding stability.

Chap. 11 briefly describes the control-aware motion planner proposed to face the
challenging problem of motion planning for task-constrained aerial manipula-
tion.

Chap. 12 presents a complete aerial manipulator system integrating design, con-
trol and motion planning for the execution of push-and-slide tasks. Given the
relevance of Non-Destructive Testing in industrial plants, we employed the
system for a real contact-based inspection of a metallic pipe.
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Part I

Part II

Part III

Part IV

Chapter 1
Introduction

Chapter 2
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Chapter 13
Conclusions

Figure 1.1 – Graphical representation of the thesis organization.

Regarding Part IV:

Chap. 13 provides a global overview of the thesis, together with some discussions
about the obtained results. Potential future applications and extensions of
this work are considered as well.

Figure 1.1 graphically shows the organization of this thesis.
Although Part I works as a sort of general introduction for this thesis, in par-

ticular for Part II, the four parts are quite independent to each other. Therefore,
in the case of lack of time, the reader can easily read just one part. Each chapter of
Part III can be also read independently. If the available time does not permit the
reading of the full manuscript, this chapter already provided a complete overview
of the thesis. Hopefully, by now the reader got interested by a particular part or
chapter.
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We highlight the fact that this thesis has been conducted in large part in the
context of the European project AEROARMS10. The goal of AEROARMS is to
conceive aerial robots with high manipulation capabilities in order to make contact-
based measurements on industrial installations. Those measurements require con-
tact between the sensor and the surface of interest. For those inspection operations,
we would like the aerial vehicle been able to plug a permanent sensor on the surface,
to deploy a smaller magnetic crawler robot (developed by one of the AEROARMS
partners), or to directly put the sensor in contact with the surface. Part of the work
performed in this thesis perfectly fits the previous needs. For example, in the case of
a tilted pipe, common in hydropower plants, a tethered aerial vehicle could be used
to easily deliver a sensor or the crawler robot on the surface. However, if the payload
of the vehicle would result too limited, the work on the cooperative aerial manipula-
tion could overcome this limitation. If instead an aerial manipulator has to be used
for its higher dexterity, the proposed decentralized control approach could be used
to improve the tracking performance. Furthermore, we experimentally showed that
our integration work of control and motion planning on a multidirectional-thrust
aerial vehicle endowed with an articulated arm allowed to perform contact-based
measurements on a real metallic pipe using a real Eddy Current sensor. From the
required measured, the robot was able to detect and localize a weld on the pipe.

Finally, we specify that this thesis formally started in June 2015. However,
some works on tethered aerial vehicles were conducted starting from August 2014.
Nevertheless, those works reached a proper maturity only after the formal start of
this PhD, with the publication of two journal articles in 2016 and 2017.

1.4 Publication note

This thesis grounds on five journal publications and eight conference papers pub-
lished on major international congresses on robotics and control research. The list of
the main publications is reported in Tabs. 1.2 and 1.3. Furthermore, few poster con-
tributions were published in [Tognon–2017d; Tognon–2018d; Tognon–2018a]. An
additional conference paper ([SanchezLopez–2017]) about vision-based localization
for aerial robots has been co-authored, but not reported in this thesis.

10https://aeroarms-project.eu/

https://aeroarms-project.eu/


Chapter 2

Theoretical background

In this chapter we provide a brief review of the theoretical methodologies employed
in Part II for the analytical study of tethered aerial vehicles. In particular, this
review covers fundamental methods to i) model the system; ii) analyze its dy-
namic properties; iii) design nonlinear control methods to accomplish the sought
autonomous behavior; and finally iv) design state estimation methods to retrieve
the state from the available sensors to close the control loop.

The theoretical background of the works presented in Part III will be instead
briefly presented in the introduction of each chapter. This because they span a very
wide spectrum of robotic and mathematical methodologies whose recap would result
very long. Therefore, we preferred to give a more detailed recall of the theoretical
background only for the methodologies employed in Part II.

For the modeling of the analyzed tethered aerial systems we used mainly two
equivalent yet different approaches, namely the Lagrangian and the Newton-Euler
formalisms (see Sec. 2.1). The combination of the two allowed us to obtain the best
representation of the dynamics for our control objectives. A particular attention
is given to the modeling of a rigid body. Indeed, most of the aerial vehicles are
modeled as floating rigid bodies. The obtained formal description of the dynamics
was firstly used to determine whether the system is differentially flat or not, and
if yes, with respect to which flat outputs. The analysis of this property results
very useful for both control and motion planning (see Sec. 2.2). Since there exists
a strong relation between differential flatness and feedback linearization [Isidori–
1986], we then applied the latter method, described in Sec. 2.3, to solve the tracking
problem of the flat outputs previously discovered. Finally, in order to practically
implement the control action based on feasible measurements, we investigated the
minimal sensory configuration that makes the state observable. The applicability of
a globally exponentially stable nonlinear High Gain Observer (described in Sec. 2.4)
has been studied.

In order to facilitate the reader understating of the theoretical results of Part II,
in the following, we shall describe the previously mentioned methodologies.

2.1 Modeling

The major two methodologies normally employed to compute the dynamic model of
a mechanical system are the Lagrangian and the Newton-Euler formalisms. The two
methods are equivalent and obviously lead to the same outcome, but the practical
procedure is quite different. Furthermore, they could give different insights about
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the system and its properties.
The first, the Lagrangian formalism, is a systematic and elegant approach to

derive the analytical dynamic equations describing the model of the system, inde-
pendently from the reference frame. In particular, choosing a proper set of general-
ized coordinates and simply computing the kinematics and potential energies, the
Lagrangian formalism allows to compute the dynamic equations, naturally includ-
ing system constraints and reaction forces. Nevertheless, notice that it becomes
unpractical for complex system with many degrees of freedom.

On the other hand, the Newton-Euler method is an efficient and recursive
method, especially suited for manipulators with an open kinematic chain and com-
plex systems. It treats each joint of a robot as an independent part, and then
computes the coupling between them using the so called forward-backward recur-
sive algorithm. However, a particular attention has to be taken for constrained
systems. Indeed one has to explicitly consider reaction forces related to system
constraints.

In the following we recall the basis of the two methods, mostly from a practical
point of view, and the particular remarks and considerations made during this
thesis. Fore more details we refer the interested reader to [Siciliano–2009; Siciliano–
2008; Spong–2006; Lynch–2017].

2.1.1 Lagrange formalism

The fist step consists on choosing a set of independent coordinates q = [q1 . . . qn]> ∈
Rn, called generalized coordinates. Those fully describe the configuration of the
system and its n ∈ N>0 degrees of freedom. Accordingly to the chosen general-
ized coordinates, we can then compute the generalized forces acting on the system.
Consider a set of forces f = [f>1 . . . f>m]> ∈ R3m, where the generic force fi ∈ R3

is applied on the system at point ri ∈ R3, with i = 1, . . . ,m and m ∈ N≥0. We
can then compute the generalized force ξj(f,q) ∈ R w.r.t. the j-th generalized
coordinate qj as:

ξj(f,q) =
m∑
i=1

f>i
∂ri
∂qj

, j = 1, . . . , n. (2.1)

We can now define the Lagrangian function, L(q, q̇), equal to the difference of total
kinetic energy, K(q, q̇), and potential energy, U(q, q̇), i.e., L(q, q̇) = K(q, q̇) −
U(q, q̇). Finally, the equation of motions of the system are given by the following
Lagrange equations:

d

dt

∂L(q, q̇)
∂q̇j

− ∂L(q, q̇)
∂qj

= ξj(f,q), j = 1, . . . , n. (2.2)

For the type of mechanical systems under exam, the potential energy usually
corresponds to the sole gravitational potential energy, and the kinematic energy
can be computed as a quadratic form, K(q, q̇) = 1

2 q̇>M(q)q̇, where M(q) ∈ Rn×n
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is the inertia matrix of the system. The equations of motion in (2.2) can be then
rewritten in the more usual form:

M(q)q̈ + C(q, q̇)q̇ + g(q) = ξ(f,q), (2.3)

where C(q, q̇)q̇ contains the centrifugal and Coriolis terms, while g(q) contains the
gravitational terms, and ξ(f,q) = [ξ1(f,q) . . . ξn(f,q)]> ∈ Rn.

Remark. The inverse dynamics problem consists into computing the generalized
forces ξ(f,q) given a certain motion expressed in terms of q̈, q̇ and q. Considering
the generalized forces as inputs and the motion as output, this problem is equiva-
lent to the control problem, i.e., compute certain inputs to obtain certain desired
outputs. Given the analytic expression of the dynamic model (2.3), the Lagrangian
formalism is often used to solve the inverse dynamics problem, and thus the control
problem.

2.1.2 Newton-Euler formalism

The Newton-Euler formalism is based on two recursive steps: i) forward recursion,
and ii) backward recursion.

The first forward recursion is done to propagate the links velocities and ac-
celerations from the first link to the final one. The translational and rotational
velocities and acceleration of the i-th link are computed based on the one of the
previous (i− 1)-th link and on the i-th joint, according to its type (either prismatic
or revolute). The method is repeated for all the links starting from the base link,
of which we know velocities and accelerations, up to the last one.

The second backward recursion propagates forces and moments from the last
link to the first one. Knowing the force and moment applied to the (i+ 1)-th link,
we compute the one applied to the i-th link resolving the Newton-Euler equations.
Defining fi ∈ R3 and τi ∈ R3 the force and moment acting on the i-th link at
position ri ∈ R3 (analogously for the (i+ 1)-th link), we have to solve the balance
equations of forces and moments at the i-link w.r.t. the i-th link frame:

fi = fi+1 +miai +migi (2.4a)
τi = τi − fi × ri + fi+1 × ri+1 + Jiω̇i + ωi × Jiωi, (2.4b)

where mi ∈ R>0 and Ji ∈ R3×3
>0 are the mass and inertia1 of the i-th link, ai ∈

R3 is its linear acceleration, ωi ∈ R3 and ω̇i ∈ R3 are its angular velocity and
acceleration, respectively, and gi ∈ R3 is the gravity vector. Notice that all the
previous quantities are defined w.r.t. the i-th link frame. The method is repeated
for all the links starting from the final one, whose external forces and moments are
known, back to the first one.

1The notation Rn×n>0 denotes the set of positive-definite real matrices, i.e., Rn×n>0 = {A ∈
Rn×n | x>Ax > 0 ∀ x ∈ Rn}



22 Chapter 2. Theoretical background

Finally one could retrieve a closed form dynamic model, like the one in (2.3),
resolving all together the forward and backward equations. However, doing it an-
alytically might not be an easy task. We skip the detailed equations because of
their complexity. Nevertheless, we refer the interested reader to the well known
books [Siciliano–2009; Siciliano–2008; Spong–2006; Lynch–2017].

2.1.3 Rigid body dynamics

In view of the fact that an aerial vehicle is often modeled as a rigid body, it is
convenient here to review the dynamic model of such a basic element. A free
rigid body, i.e., not subjected to constraints, has six degrees of freedom: three
translational and three rotational. Let us assign an inertial word frame, FW with
arbitrary center OW and axes {xW ,yW , zW }, and a body frame, FB, rigidly attached
to the object, with center OB centered on the body center of mass (CoM), and axes
{xB,yB, zB}. It is useful to notice here that xWW = e1 = [1 0 0]>, yWW = e2 =
[0 1 0]> and2 zWW = e3 = [0 0 1]>. The three translational degrees of freedom are
described by the position of OB with respect to FW , in turn described by the vector3

pWB ∈ R3. The description of the remaining three orientation degrees of freedom is
a bit more delicate because there are several possible representations [Corke–2017;
Siciliano–2008; Spong–2006]. The most popular and used are:
• The exponential coordinates are a minimal three-parameter representation of
rotations which define an axis of rotation and the corresponding angle of
rotation. However, combinations of rotations is not straightforward and the
axis of rotation is undetermined when the angle of rotation goes to zero.
• The Euler-angles is another minimal three-parameter representation of rota-
tions. It is also very intuitive, since it is based on three successive rotations
about the main axes of the body frame. One of the most popular convention
in the aeronautic field consists in successive rotations along the moving axes
zB, yB and xB (in this order) about the angles ψ, θ and φ (Yaw-Pitch-Roll)
respectively4. However, this representation has a singularity. To avoid sin-
gularities at the control level, we will use this convention only to represent
rotations in plots.
• The rotation matrix5, RW

B ∈ SO(3), unequivocally describes the rotation of
FB w.r.t. FW . Although this representation has no singularities, it is actually
redundant since nine elements describe only three degrees of freedom. Nev-
ertheless, it eases the operations to rotate vectors and to combine rotations.
These facts together with the absence of singularities make this representation

2More in general, ei ∈ R3 is the canonical vector with 1 in position i-th and zero otherwise.
3In this thesis, the superscript is used to indicate the frame of references. When not present,

FW has to be intended as the reference frame, if not otherwise specified.
4Notice that this representation is equivalent to the classical Roll-Pitch-Yaw representation.

The latter consists in successive rotations along the fixed axes xB , yB and zB (in this order) about
the angles φ, θ and ψ respectively

5SO(3) = {R ∈ R3×3 | R>R = I3} where In is the identity matrix of dimension n. SO(3) is
also called special orthogonal group.
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the preferable for the design of controllers for aerial vehicles. This is why, in
this thesis, we will always describes rotations by rotation matrices.
• The quaternions represent rotations by a normalized four-dimensional vector,
i.e., , four variables subjected to one constraint. In this way, the quaternion
parametrization does not have singularities. This parametrization is also very
popular for it efficiency in terms of computational cost. However, in this thesis
we still prefer rotation matrices for their simplicity. This will clearly appear
in Chap. 4.

Choosing pWB and RW
B to describe the rigid body configuration, we can write

the dynamics as in (2.4), using the Newton-Euler approach:

mp̈WB = −mge3 + f (2.5a)
Jω̇BB = −ωBB × JωBB + τ, (2.5b)

wherem ∈ R>0 and J ∈ R3×3
>0 are the mass and inertia of the rigid body w.r.t. FB,

p̈WB ∈ R3 is its linear acceleration, ωBB ∈ R3 and ω̇BB ∈ R3 are its angular velocity and
acceleration w.r.t. FW expressed in FB, respectively, g ≈ 9.81 is the gravitational
constant, f ∈ R3 and τ ∈ R3 are the sum of forces and moments applied to the
body CoM, respectively. Furthermore we recall the differential kinematic relation
ṘW
B = RW

B ΩB
B, where Ω? is the skew symmetric matrix associated to ω?.

As seen before, when it comes to model a floating vehicle, the use of rotation ma-
trix representation and Newton-Euler method is really convenient. The Lagrange
method would have instead required the use of minimal representation for the ori-
entation. Nevertheless, as previously said, Newton-Euler method is not favorable in
the presence of constraints and reaction forces. Therefore, the approach employed
in this thesis tries to exploit the good features of both Lagrangian and Newton-
Euler methods. In particular, in order to model a tethered aerial vehicle, in Sec. 4.4
we firstly use the Lagrangian formalism to identify the most convenient generalized
coordinates describing the translational dynamics of the vehicle subjected to the
constraint given by the link. We instead used a rotation matrix for the description
of the attitude. Afterwards, we applied the Newton-Euler method to retrieve the
dynamics of the system and the analytical expression of the internal force. Since one
of the control objectives is the precise control of the internal force, the analytical
expression will be useful to design a tracking controller based on dynamic feedback
linearization.

2.2 Differential flatness

For the analysis of nonlinear dynamic systems, one important property to verify is
the differential flatness. This property was firstly introduced by Michel Fliess in
the late 1980’s, and then exploited in many other works for the control of nonlin-
ear systems [Fliess–1995; Murray–1995; Rigatos–2015]. The formal definition of a
differentially flat systems follows:
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Definition 1. A system ẋ = f(x,u) with state vector x ∈ Rn and input vector
u ∈ Rm, where f is a smooth vector field, is differentially flat if it exists an
output vector y ∈ Rm, called flat output, in the form:

y = h(x,u, u̇, . . . ,u(q)) (2.6)

such that

x = gx(y, ẏ, . . . ,y(r)) (2.7)
u = gu(y, ẏ, . . . ,y(r)) (2.8)

where6 h, gx and gu are smooth functions, for some finite r ∈ N≥0.

The previous definition means that for a differentially flat system, we can express
the state and the input vectors as an algebraic function of the flat output vector
and its derivatives, up to a finite order.

The implications of differential flatness are favorable for both motion plan-
ning and control. Thanks to differential flatness, one can simplify trajectory plan-
ning problems both from a theoretical and practical point of view [Rouchon–1993;
Chamseddine–2012; De Luca–2002]. The capacity to obtain the nominal state and
input from the output (and its derivatives) allows to plan directly for the flat out-
put, using simple algebraic methods and efficient algorithm. Indeed, the flat output
equations of motion are simpler, and in the case of bounds and constraints on the
state or input, those can be transformed into constraints on the flat outputs and its
derivatives. Although this might produce complex nonlinear constraints on the flat
output, one can approximate them with simpler functions with the cost of obtaining
a sub-optimal solution, but solving the planning problem in a more efficient way.
For example, this method has been successfully employed for the design of a kin-
odynamic motion planner for an unidirectional-thrust aerial vehicle in a cluttered
environment [Boeuf–2015].

Furthermore, the knowledge of the nominal state and control input required to
follow a certain desired flat output trajectory, can be exploited to design robust con-
trollers [Rigatos–2015; Tang–2011]. For example, we used this approach to design
a decentralized controller for an aerial manipulator [Tognon–2017e] (see Chap. 9)

2.3 Dynamic feedback linearizing control

One very common control method for nonlinear systems to solve tracking control
problem is the feedback linearization [Oriolo–2002; De Luca–1998; Martin–1994].
The concept of this method consists on finding a particular output, called linearizing
output and a control law that linearizes the input-output relation, providing a linear
system equivalent to the original one. A standard linear controller can be then
applied to the latter equivalent linear system in order to track the desired output

6The notation x(r) represents the r-th time derivative of x, i.e., x(r) = drx/dtr
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trajectory. In the following we shall briefly recall how to practically apply this
control method. For more details we refer the reader to more specific books on
nonlinear systems as [Slotine–1991; Khalil–2001; Isidori–1995]

Let us consider the nonlinear system

ẋ = f(x) + g(x)u (2.9a)
y = h(x), (2.9b)

with state vector x ∈ Rn, input vector u ∈ Rm, output vector y = [y1 . . . ym]> ∈
Rm, where f , g and h are smooth functions. From a practical point of view, in
order to feedback linearize the system, one has to differentiate every entry of the
output until the input appears, i.e., until we can write[

y
(r1)
1 . . . y

(rm)
m

]>
= b(x) + E(x)u, (2.10)

where b(x) ∈ Rm collects all the terms that do not depend on the input, and
E ∈ Rm×m is called decoupling matrix. If the decoupling matrix is invertible over a
certain region, the control law

u = E(x)−1(−b(x) + v), (2.11)

where v ∈ Rm is a new virtual input, yields to the simpler linear system[
y

(r1)
1 . . . y

(rm)
m

]>
= v. (2.12)

ri is called the relative degree of the i-th output entry, and we define r =
∑m
i=1 ri

as the total relative degree. If the total relative degree is equal to the dimension of
the system, i.e., r = n, then the system is exactly feedback linearizable, i.e., (2.12) is
equivalent to the original nonlinear system (2.9) and there is no internal dynamics.

Without loss of generality, let us assume that E is always not invertible because
some of its columns are zero7. In particular, let the j-th column of E equal to
zero. In other words, this means that the input uj appears in none output entry.
In these cases, in order to make uj appear, one can apply a dynamic extension to
the other inputs to delay their appearance in the output derivatives. In details, one
can consider the new control input ū ∈ Rm such that ūi = u̇i if i 6= j, and ūi = uj
for i = j. Now the output has to be differentiated one more time to see the input
appear: [

y
(r1+1)
1 . . . y

(rm+1)
m

]>
= b̄(x) + Ē(x)ū. (2.13)

If the new decoupling matrix is invertible and the total relative degree is equal
to the system dimension plus the new controller states, then the system is said

7If E is not invertible one can always apply an invertible, state-dependent, input transformation
that zeroes the maximum number of columns in E.
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dynamic feedback linearizable. If so, ū can be designed similarly to (2.11) to obtain
an equivalent linear dynamics as in (2.12). The original inputs ui can be obtained
by integration of ūi, for i 6= j. Notice that the presence of the integrals makes the
controller “dynamic”.

The tracking of any given desired trajectory, ydi (t) for i = 1, . . . ,m can be
achieved applying any linear control technique to the equivalent linear system (2.12).
E.g., it is sufficient to use as outer loop a simple controller based on the pole placing
technique. Setting the virtual control inputs as

vi = y
d(ri)
i +

ri−1∑
j=0

kijξij , (2.14)

where ξij = y
d(j)
i − y(j)

i . One can set the poles of the error dynamics through the
gains kij ∈ R>0 and for j = 0, . . . , ri and i = 1, . . . ,m to obtain a sufficiently fast
exponentially tracking of the desired trajectories. Notice that an explicit measure-
ment of the output and its derivatives is not needed at all, since they are algebraic
functions of the state and input.

We remark that this method is strongly model based. For this reason, according
to the specific system, it might result not robust to model uncertainties. Never-
theless, the additional linear controller helps in reducing those negative effects.
Furthermore, for some complex systems, the control law (2.11) might result very
complicate to implement due to the inversion of Ē and the possible presence of
dynamic extensions.

2.4 High gain observer

As shown in the previous section, in order to implement the control action, the
knowledge of the state of the system is needed. However, measuring the whole
state x using many sensors is often practically unfeasible due to, e.g., the costs and
payload limitations, in particular for aerial robots. Furthermore, possible sensor
failures call for the ability to still control the platform with a forcedly limited
number of sensors.

In order to solve nonlinear observation problems there are mainly two classes of
methods: approximate nonlinear observers and exact nonlinear observers. The first
class relies on approximating the nonlinearities with linear or almost-linear maps
around the current estimate, the main disadvantage being the local approximative
nature of the methods. The second class of methods consists in nonlinear systems
whose state is analytically proven to converge to the real state of the original system.
Designing such observers is in general much more difficult since it is often hard to
prove the asymptotic stability of a nonlinear system. However the observers of this
class may guarantee (almost) global convergence. This is why in this thesis we
decided to search for an observer in the second class.

In the literature of exact nonlinear observers an important role is played by a
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particular class of systems known as in the canonical form. This is the class of
nonlinear systems (2.9) that can be transformed in a triangular form, as:

ẋ =



0 1 · · · · · · 0
0 0 1 · · · 0
...

...
0 · · · · · · 0 1
0 · · · · · · · · · 0


︸ ︷︷ ︸

A

x +



0
0
...
0
1


︸︷︷︸
B

φ(x,u) + λ(u) (2.15a)

w =
[
1 0 · · · · · · 0

]
︸ ︷︷ ︸

C

x, (2.15b)

where w ∈ R is the measurement and φ : Rn × Rm → R, λ : Rm → Rn are any
nonlinear map. For this class of nonlinear systems, in order to estimate the state
one can use the nonlinear High Gain Observer (HGO) [Khalil–2001]:

˙̂x = Ax̂ + Bφ(x̂,u) + λ(u) + H(w −Cx̂), (2.16)

with H = [α1
ε

α2
ε2 . . . αn

εn ]> and ε ∈ R>0. If αi ∈ R>0 are set such that the roots of
pn +α1p

n−1 + . . .+αn−1p+αn have negative real part, then (2.16) ensures almost
global convergence of the estimated state to the real one.

Furthermore, let us assume that an output feedback controller u = Γ(x,v)
(as (2.11) or its dynamic version) is applied to the system. Then one can show that
there exists ε? > 0 such that, for every 0 < ε < ε?, the closed loop system with
controller u = Γ(x̂,v) and observer (2.16) is exponentially convergent.

However, we recall that, due to the possibly high values of the gains, this ob-
server might suffer from peaking phenomenon during the transient and noise sen-
sitivity. To mitigate those problems, many common practical solutions have been
presented in the literature, see e.g., [Khalil–2001; Ahrens–2009]. For example, to
overcome the peaking phenomenon, it is sufficient to saturate the estimated state
on a bounded region that defines the operative state space bounds for the system in
exam. In the presence of measurement noise, the use of a switching-gain approach
can guarantee a quick convergence to the real state during the first phase while
reducing the noise effects at steady state.
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Chapter 3

Robot systems and models

In Chap. 2 we presented the fundamental methods employed for the analytical
study of tethered aerial vehicles. However, in order to practically apply the pre-
sented control and estimation methods to the real robotic platform, we need a good
understanding of the underlying subsystems, such as actuators and sensors, and the
corresponding mathematical models. Therefore, in the following we shall closely an-
alyze the robotic systems under exam, namely aerial vehicles connected by links,
looking at their subsystems, actuators and sensors. We firstly characterize a generic
link and a generic unidirectional-thrust aerial vehicle in a free-flight condition, de-
riving their dynamic models. Afterwards, looking at the robotic system from an
actuation point of view, we closely analyze the thrusters, composed by brushless
motor plus propeller, and servo/torque motors employed to actively change the
link length. Finally, this time looking at the robotic system from a sensing point
of view, we review the standard sensory setup that one can find on aerial vehicles,
and the additional sensors that we intend to use to measure the configuration of the
link. The following does not claim to be a deep and through discussion on aerial
vehicles and their actuators and sensors. On the contrary, the intent is to introduce
the mathematical models of the subsystems composing a tethered aerial vehicle,
in order to better understand the results presented in Part II. For a more detailed
discussion on aerial vehicles we will refer the reader to appropriate references.

3.1 Tethering link

In Part II we address the control problem of tethered aerial vehicles from the most
generic point of view, deriving general and fundamental theoretical results that can
be then easily applied to several practical cases. For this reason, in Sec. 4.4 we
consider the aerial vehicle tethered to a moving platform by a generic link, either a
cable, a chain, a rope, a bar or a strut. All the considered links can be divided into
three major categories, schematically represented in Fig. 3.1:

(a) Links that can be only stretched, i.e., that can support only tensions. To this
category fall all the types of cable-like link, e.g., a chain, a rope, etc.

(b) Links that can be only compressed, i.e., that can support only compressions.
To this category fall all the types of strut-like link, such as a pneumatic
suspension.

(c) Links that can be both stretched and compressed, i.e., that can support both
tensions and compressions. To this category fall all the types of bar-like link,
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(c) Bar-like link can be compressed (left) and
stretched (right)

Figure 3.1 – Three type of considered link. The red arrows indicate the exter-
nal forces (or reaction forces) that stretch or compress the link, according to the
category.

p2p1 l

d

f1 −f1fL1 = fLd fL2 = −fLd

Figure 3.2 – Schematic representation of a general link and its main variables.

such as a beam, a pole, etc.

The main variables that describe a generic link are: the position of the edges
given by the vectors p1 ∈ R3 and p2 ∈ R3, the unstressed length l0 ∈ R>0 and the
intensity of the internal force fL ∈ R. Other equivalent but still meaningful variables
can be defined: the length of the link l = ‖p1 − p2‖ ∈ R and the normalized axis of
the link d = (p1 − p2)/l ∈ R3. Fig. 3.2 shows the main variables describing a link.

When the link is pulled the internal force is called tension and fL > 0, whereas
when it is compressed the internal force is called compression and fL < 0. When
fL = 0 the link is slack. The easiest way to model the link is as a hybrid system
with two states: slack or non-slack, i.e., taut/compressed. When the link is slack
and fL = 0, the length of the link can be: (a) l ≤ l0 for a cable-like link; (b) l ≥ l0
for a strut-like link; and (c) l = l0 for a bar-like link. In this condition the two ends
of the cable are treated as two independent systems, as done in [Sreenath–2013a;
Sreenath–2013c]. However, we are not interested in this case since we shall design
a controller that will keep away the system from the slack state for the cable and
strut-like link cases.

On the other hand, when the cable is taut or compressed, i.e., fL 6= 0, we assume
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that the length of the link remain constant independently from the internal force,
l = l0. This is equivalent to assume that, in the domain of interest, a non-slack link
is a rigid element whose elasticity and deformations are negligible. This assumption
is very common in the related literature review [Lupashin–2013; Nicotra–2017], and
is valid as soon as the maximum internal force of interest is much smaller than the
stiffness coefficient of the link. Under this assumption we have that the internal force
at the two ends are opposite, and always along the link axis, fL2 = −fL1 = −fLd.

As also commonly done in the related state of the art, we assume negligible
mass and inertia of the link with respect to the one of the aerial vehicle. Also
this assumption is easily met using very lightweight links like kite cables or link
structures based on carbon fiber.

Nevertheless, one could use more complex models to describes all the previously
neglected effects. For example a spring-damper system can be used to better de-
scribe the deformations of the link subjected to external forces. According to the
particular type of link, even more complex and accurate models could be employed.
For example, in the case of a cable-like link, one can use a Standard Linear Solid
model (SLS) [Sandino–2014a; Liu–1976; Zienkiewicz–2005] consisting of a series of
a spring and a parallel of spring-damper. This model better describes the response
delay due to the relatively slow microscopic deformation process acting in the rope
when some external forces are stretching it. Furthermore, in order to also model
flexibility of cables and the bending due to gravity, one could model it by a finite
element approximation [Zienkiewicz–2005]. It consists on modeling the link as a
chain of elements, i.e., as a finite number of smaller links connected in series, as
done in [Lee–2015; Goodarzi–2016].

Although the previously mentioned models better describe the real behaviors
of the considered links, actually, the effects that they additionally describe with
respect to the simple mass-less rigid body model, are negligible in the domain of
interest. Furthermore, they are specific only for certain type of links. On the
other hand, the mass-less rigid body model is a general model that can be applied
to the several classes of link previously presented. Thus it is more suitable for the
aimed control objectives. This is why, for the sake of designing control and observer
methods, we choose this model to derive the equations of motion of the considered
tethered aerial vehicle (see Sec. 4.4). Nevertheless, in Sec. 5.4.2 we shall show that
the proposed methods based on the mass-less rigid body model are robust enough
also considering more accurate non-ideal models.

3.2 Unidirectional thrust vehicles

As usual, we start by defining an inertial world frame FW = {OW ,xW ,yW , zW }
where OW is its origin, placed arbitrarily, and (xW ,yW , zW ) are the orthogonal
unit vectors. We consider zW parallel and opposite to the gravity vector. Then we
define the body frame FR = {OR,xR,yR, zR} rigidly attached to the vehicle and
centered in OR, the vehicle CoM. We consider zR parallel and opposite to the total
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Figure 3.3 – Schematic representation of a collinear multirotor and its main quan-
titites. Although the vehicle is represented as a quadrotor, actually it can be any
collinear multirotor, such as an hexarotor, octorotor, etc.

thrust vector. The position of OR and orientation of FR w.r.t. FW are described
by the vector pR ∈ R3 and the rotation matrix RR ∈ SO(3), respectively. Then we
denote by the vector ωR ∈ R3 the angular velocity of FR w.r.t. FW and expressed
in FR. The variables describing the vehicle are depicted in Fig. 3.3.

As already announced in Sec. 2.1.3, the vehicle is modeled as a rigid body with
mass mR ∈ R>0 and moment of inertia about OR, defined w.r.t. FR, described by
the positive definite matrix JR ∈ R3×3

>0 [Mahony–2012; Hua–2009]. The motion of
the vehicle is controlled by the coordinated action of four control inputs: i) fR ∈ R≥0
is the intensity of the total thrust applied in OR such that fR = −fRzR, which
generates translational motion, and ii) τR = [τRx τRy τRz]> ∈ R3 is the total
moment applied to FR and expressed in FR, which generates rotational motion.

Similarly to Sec. 2.1.3, the dynamics of the system is computed applying the
Newton-Euler equations, thus obtaining ṘR = RRΩR, and

mRp̈R = −mRge3 − fRRRe3 (3.1a)
JRω̇R = −ωR × JRωR + τR. (3.1b)

This model is general and well describes the dynamics of the majority of unidi-
rectional thrust aerial vehicles as ducted fan and multirotors vehicles with four or
more rotors. Indeed, (3.1) encapsulates all the nonlinearities and the underactua-
tion of unidirectional-thrust aerial vehicles. One can notice how, in order to apply a
certain acceleration, the vehicle has to be oriented such that the total thrust vector
is oriented such to ensure an acceleration that is equal to the given acceleration
plus the gravity compensation. This shows the coupling between translational and
rotational dynamics.

Thanks to its generality, we will use this model to describe the dynamics of the
aerial vehicles considered in Part II. However, how to practically generate the total
thrust and the torque will be treated in the following section.
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3.3 Actuators

3.3.1 Thrusters

In this thesis we consider a particular class of unidirectional-thrust aerial vehicles.
We consider aerial vehicles that generate the total thrust and torque by the aero-
dynamic forces and moments in turn generated by multiple collinear propellers. In
practice, a model for those systems is needed to map total thrust and torque into
the real control inputs.

Let us assume that the vehicle is endowed with n ∈ N≥4 thrusters. The generic
i-th thruster is rigidly attached to the main frame oriented as −zR, and its posi-
tion is given by the vector bi ∈ R3 with respect to FR. It is composed by a pair
of brushless-motor plus propeller. Making the propeller spin at a certain veloc-
ity wi ∈ R≥0, it can produce a force fizR, whose intensity is equal to fi = cfw

2
i ,

where cf ∈ R>0 is called lift factor and depends on the aerodynamic properties
of the propeller blades [Mahony–2012; Hamel–2002; Pounds–2010; Valavanis–2007;
Pucci–2013]. When a propeller is spinning, the resistance of the air generates some
horizontal forces on the blade, as well. Those drag forces, multiplied by the momen-
tum arm and integrated over the rotor, generate a moment about the rotor shaft,
that in the aerial robotics community is normally called drag moment. A reaction
torque acts on the rotor in the opposite direction of rotation of the propeller. The
latter in turn generates a torque on the main frame of the vehicle that results to
be proportional to the square of the propeller angular velocity, i.e., τi = cicτw

2
i e3,

where i) ci = 1 (ci = −1) if the i-th propeller angular velocity vector has the same
direction of zR (−zR), i.e., the propeller spins CCW (CW) when watched from its
top; ii) cτ ∈ R>0 also depends on the aerodynamic properties of the propeller.

Finally the total thrust and torque applied to the vehicle frame are given by:

fR =
n∑
i=1

cfw
2
i (3.2a)

τR =
n∑
i=1

(cfbi × e3 + cicτe3)w2
i . (3.2b)

In particular, for a quadrotor-like vehicle where, n = 4, bi = b[cαi sαi 0]> with
b ∈ R>0 and α = (i− 1)π/2, ci = (−1)i and i = 1, . . . , 4, we have that

fR
τR

 =


cf cf cf cf

0 −cfb 0 cfb

cfb 0 −cfb 0
−cτ cτ −cτ cτ


︸ ︷︷ ︸

F


w2

1

w2
2

w2
3

w2
4

 . (3.3)

Notice that the allocation matrix F is square and full rank, thus always invertible.
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Once the desired total thrust and torque are computed, we can compute the spinning
velocity of each propeller that should be actuated to generate the desired control
action just by inverting (3.3).

In particular conditions such as strong wind or at a very high speed, other gy-
roscopic and aerodynamic effects such as drag and blade flapping should be consid-
ered [Hamel–2002; Mahony–2012; Faessler–2018]. Additional aerodynamic effects
are the ground and ceiling effects that arise whenever the vehicle flies close to a
surface. However, as normally done in the related literature, we do not consider
those effects since they are negligible in the domain of interest.

Furthermore, notice that the actuation model presented in (3.2) assumes that
the motors can actuate the desired spinning velocity instantaneously. Nevertheless,
changing the spinning velocity instantaneously would require an infinite torque that
is obviously practically unfeasible. One should instead add to (3.2) the dynamics
of the motor, both from a mechanic and electronic point of view [Bangura–2017],
together with the dynamics of the electronic speed controller (ESC). A system iden-
tification of the overall closed loop system can be done to estimate the model param-
eters. Nevertheless, for control design purposes, we can assume that the spinning
velocity variations are limited in the domain of interest. Under this assumption and
thanks to the employed brushless controller [Franchi–2017] that guarantees minimal
response times, model (3.2) results a good approximation of the real behavior. On
the other hand, more complex and realistic models, such as the ones mentioned
before, can be used for the validation of the theoretical results in a more realistic
condition (see Chap. 5). Although not done in the limited time of this thesis, we
believe that the theoretical results proposed in Part II can be extended also to
systems that consider more complex actuation models.

3.3.2 Link actuator

In this thesis the link actuator is modeled as a cylinder that transform the rotational
motion of a motor to a translational motion, namely the variation of the link length.
In particular, in the case of a cable-like link, the cable is rolled on the cylinder, while
in the case of a bar-like link, the cylinder is a gear mechanism that moves back and
forward the link changing its length. The cylinder is moved by a motor that exerts
an input torque τW ∈ R about the longitudinal axis of the cylinder. We assume
that the rotational inertia and radius of the link actuator, denoted by JW ∈ R>0
and rW ∈ R>0, respectively, are constant in the domain of interest. The dynamic
of the link actuator is

JW ϑ̈W = τW + fLrW , (3.4)

where ϑ̈W is the angular acceleration of the actuator. Since we are more interested
in the dynamics of the link length, we can easily describe it from 3.4. Assuming no
backlash we can write l = rWϑW , thus

J̄W l̈ = τ̄W + fL, (3.5)
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where J̄W = JW /r
2
W and τ̄W = τW /rW .

According to the real implementation some assumptions, like the constant iner-
tia and radius might not hold anymore. However the model can be easily changed
accordingly.

3.4 Sensory setup

To control the previous modeled aerial vehicles the knowledge of the state is needed
in most of the cases. In other words, the position, the linear velocity, the attitude
and the angular velocity of the vehicle have to be estimated from the available
sensors, in order to then compute the control action.

The most basic sensor available on practically all vehicles is the inertial measure-
ment unit (IMU) [Ahmad–2013; Martin–2010; Mahony–2012]. It normally consists
of an 3-axes accelerometer and a 3-axes gyroscope. The first measures the so call
“specific acceleration”, namely the acceleration of the vehicle with respect to the
body frame minus the gravity vector. Defining wacc ∈ R3 the measure coming from
the accelerometer, and assuming that the IMU is calibrated, centered at OR and
its axes are aligned with the ones of FR, we have that:

wacc = R>R(p̈R + ge3). (3.6)

On the other hand, the gyroscope, whose measurements are defined by the vector
wgyr ∈ R3, directly measures, under the same assumptions, the angular velocity of
FR with respect to FW expressed in FR:

wgyr = ωR. (3.7)

These two quantities are not enough to estimate the full time-varying attitude,
because the rotation along zR, is not observable in hovering conditions [Leishman–
2014; Mahony–2012]. This is why the IMU is often equipped with a magnetomer
that measures the ambient magnetic field with respect to the body frame. In the
absence of disturbances, the latter corresponds to the known Earth’s magnetic
field defined by the vector hW ∈ R3. Under this assumption, the magnetometer
measurement, wmag ∈ R3, is equal to:

wmag = R>RhW . (3.8)

The combination of the previous three sensors is in principle sufficient to esti-
mate the rotational part of the state [Mahony–2008; Kraft–2003; Scandaroli–2011a;
Scandaroli–2011b], i.e., the attitude and the angular velocity.

For estimating the rest of the state, i.e., the position and the translational
velocity, some other exteroceptive sensors are usually needed. Some examples are
motion capture system (MoCap) for precise indoor localization, GPS and differential
GPS for outdoor environments, and various type of cameras for outdoor GPS-denied
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environments. Since the design of new localization methods using those kind of
exteroceptive sensors is not the focus of this thesis, we will model them as a direct
measurement of the configuration of the robot. Thus, defining wext the output
measurement, we have that:

wext = (pR,RR). (3.9)

The authors of [Mahony–2012] present the most popular methods to fuse all the
mentioned sensors in order to finally obtain a precise estimation of the full state.

However, in Part II (see Sec. 4.8 and Sec. 4.9) we shall show that for a tethered
aerial vehicle, those exteroceptive sensors are not needed to estimate the full state
of the system. Indeed, we found that, thanks to the link constraint, in a 2D en-
vironment only an IMU is enough to retrieve an estimation of the fulls state (see
Sec. 4.9). On the other hand, in the 3D environment, we found that the mini-
mal sensory setup consists of a standard IMU and magnetometer, plus only some
encoders to measure the attitude of the link and its length (if not constant).

In order to model the measurement of an encoder let us define two frames
F1 = {O1,x1,y1, z1} and F2 = {O2,x2,y2, z2} such that O1 = O2 and x1 = x2.
Then we have that:

wenc = θ, (3.10)

where θ ∈ R is the angle to make F2 coincide with F1 rotating it about y1.
The models presented so far are the ideal ones and they will be used in Part II to

design deterministic and almost globally convergent nonlinear observers. However,
in practice every sensor is affected by noise and biases. We will then rely on the
proven robustness of the designed observer to deal with those non-idealities (see
Chap. 5). Another approach would be to design a stochastic estimators that deals
with noisy measurements. However they are normally based on linear approxima-
tion of the models and therefore they are not globally convergent.
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Tethered Aerial Vehicles





Chapter 4

Single vehicle: fundamentals

4.1 Motivations

In the vast domain of UAVs, cables are not only used for single and cooperative
transportation of goods. They are also used to tether the aerial vehicle to a ground
station. Especially in the industrial sector, the link is mainly used as an umbilical
device to provide power to the robot [Choi–2014], and a high bandwidth commu-
nication channel with the base station. The possibility to power the robot directly
from the ground station makes the aerial vehicle flight time theoretically infinite,
overcoming one of the major limits of aerial robots. As a result, tethered aerial ve-
hicles becomes suitable for many applications that require long operation time like
monitoring [Muttin–2011], surveillance, aerial photography, communication rein-
forcement [Pinkney–1996] and so on. The time flight provided by a single on-board
battery would not be enough to fully accomplish the previous mentioned tasks. The
great potentials of tethered aerial systems and their obtained big interest, is proven
by the increasing number of private companies appeared in the market proposing
tethered UAVs or power tether systems for standard commercial UAVs. Figure 4.1
gathers some of the many examples that one can find on-line.

Another interesting use of the tether is to bring to the robot some sort of fluid for
various type of applications, e.g., cleaning, painting or applying chemical products.
Indeed, often there is the need of cleaning some part of a civil or industrial structure

(a) Atlanta Instrumenta-
tion and Measurement,
www.aimatlanta.com

(b) Drone Aviation Corp, www.
droneaviationcorp.com

(c) Elistair
www.elistair.com

Figure 4.1 – Examples of companies proposing tethered aerial robots for long flight
time operations.

www.aimatlanta.com
www.droneaviationcorp.com
www.droneaviationcorp.com
www.elistair.com
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(a) Apellix, http:
//www.apellix.com/

(b) Aerones, www.aerones.com

Figure 4.2 – Examples of tethered aerial robots for cleaning applications.

at high altitude, e.g. the windows of a skyscraper, the blades of a wind turbine,
or the chimney of a refinery. Normally, those operations are conducted by human
operators reaching the working spot by the use of climbing cords or by bulky and
expensive scaffolds. Firstly, the use of an aerial robot in those applications would
allow to perform the operation in an fully or semi autonomous mode reducing the
risks for the human operators. Secondly, it would decrease the time and the costs
related to the construction and deployment of scaffolds or climbing gears. However,
due to the limited payload of standard aerial vehicles, it is practically unfeasible to
carry on-board all the tools needed for those kind of tasks, e.g., a spying tool and a
tank of detergent liquid. On the other hand, the tether could be made such that to
provide to the robot not only the power to fly indefinitely, but the cleaning liquid
as well. Figure 4.2 shows the tethered aerial vehicles proposed by two companies
for the cleaning of a facade of an industrial structure, and the blades of a wind
turbine, respectively.

In the previous mentioned cases, the cable is slack, i.e., there is not tension along
the link. Therefore, except for its weight and inertia, the cable does not influence
the motion of the aerial vehicle. In those cases, complex control strategy are not
really needed and a standard position controller (or a tele-operation framework)
can be used to perform the sought task.

The case in which the cable is taut is definitely more interesting from a sci-
entific point of view. In this case there is a clear physical interaction between
the aerial vehicle, the link itself, and the other end of the link. A taut cable can
provide advantages that go beyond the ones already mentioned, such as: i) im-
proved flight stability and reliability, especially during dangerous maneuver or
in the presence of strong wind [Sandino–2014a], ii) physical interaction with a
ground object and iii) stabilization with a minimal set of sensors, even in a GP-
S-denied environment [Sandino–2014b; Lupashin–2013]. Examples of application
fields related to this kind of robotic systems exploiting the tautness of the cable are
landing/taking-off from/on moving or sloped platforms [Tognon–2016a; Tognon–

http://www.apellix.com/
http://www.apellix.com/
www.aerones.com
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2016b; Oh–2006; Sandino–2014a], inspection in GPS-denied environments, human-
robot interaction [Lupashin–2013] and stringing of power transmission lines (see
Fig. 4.3 for some examples).

Notice that, since the link is taut, the dynamics of the aerial vehicles changes.
Indeed the interaction force consisting in the internal force along the link has to
be considered. Control and estimation for an aerial system that is connected by a
taut cable to the ground is not an easy task. In fact, standard flight-control and
estimation methods either cannot be applied straightforwardly to this case or, if
applicable, provide only sub-optimal performance, because they do not exploit the
full dynamics and capabilities available to the new interconnected system. There-
fore, the only way to cope with the difficulties of the new robotic system and to

(a) EC-SAFEMOBIL [ECSAFEMOBIL–]. (b) FotoKite, www.fotokite.com.

(c) Sharper Shape, www.sharpershape.com.

Figure 4.3 – Examples of applications of tethered aerial vehicles when the cable
is taut. In particular, starting from the top-left image, landing/takeoff on/from
a moving platform, inspection in indoor environments and stringing of a power
transmission line on the right.

www.fotokite.com
www.sharpershape.com
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exploit at best its capabilities is to design new control and estimation methods that
consider the new system as whole. However this is hard to accomplish, due to the
nonlinear dynamics and the dynamic coupling between the aerial vehicle and the
link.

4.2 Related works and problem statement

Driven by the relevance of this topic, several control and estimation schemes have
been presented in the robotic literature. For the case in which the aerial vehicle is
an helicopter, the authors of [Oh–2006] presented a method to land it on the deck
of a ship in rough sea using a cable. The controller is based on a time-scale separa-
tion technique between the rotational and translational dynamics. In the context
of [ECSAFEMOBIL–], the authors of [Sandino–2014a] presented a control scheme
based on a PID scheme together with partial model inversion, to stabilize the flight
to a constant vertical elevation with the goal of both improving hovering in windy
conditions and land on a mobile platform. Notice that a force sensor (load cell) is
used to measure the tension along the cable and to compensate its effect on the vehi-
cle. The latter work has been then extended to a tether aerial vehicle together with a
winch, in order to perform the landing of a small unmanned helicopter, without the
use of GPS sensors but relying on simpler magnetic encoders [Sandino–2014b]. Fur-
thermore, in [Sandino–2015] the authors proposed a square-root unscented Kalman
filter for the estimation of the attitude and the relative position of the vehicle with
respect to the ground anchoring point.

For the case of cable-tethered underactuated multi-rotor system moving on a
restricted 2D vertical plane, [Lupashin–2013] presents a controller that, under a
quasi-static assumption, stabilizes the elevation (angle) of the cable to a constant
value using only inertial onboard sensors. In particular, the controller is based on
the separation of the translational and rotational dynamics, and on a partial inver-
sion of the elevation dynamics where they fix the total thrust to a value sufficiently
high to preserve the tautness of the cable. The state estimator is instead based on a
UKF. The authors of [Nicotra–2014; Nicotra–2017] also present a controller to sta-
bilize the elevation of a tethered multi-rotor to a constant value while also ensuring
the positivity of the cable tension. The controller is based on the combination of
a hierarchical cascade approach to stabilize the system and a reference governor to
ensure a positive internal tension.

The presented approaches provide a good basis for observation and control of
such systems. However, to improve those methods, overcoming some of their draw-
backs, and to extends the results to a more general system, some problems have to
to be addressed:

i) study a more generic system in order to enlarge the validity of the results.
In particular one could think about three extensions of the classical tethered
aerial vehicle: i) Develop a method that can cope with any kind of link (i.e.,
a cable, a strut or a bar), differently from the state-of-the-art methods, which
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have been designed only for cable links. Indeed the use of rigid link can be
beneficial for, e.g., sustain part of the platform weight, or allow a full-bilat-
eral physical interaction with a ground object. ii) Furthermore, instead of
considering a static anchoring point, one could consider a generic platform
moving in the 3D environment, without particular constraints. This allows to
consider a very wide class of possible vehicles. iii) Finally one could consider
a link actuator in order to be able to also change the length of the link, thus
controlling the full 3D position of the aerial vehicle with respect to the moving
platform.

ii) track a time varying trajectory. While the methods in the literature are based
on a quasi-static assumption aiming to a stabilization problem, in many prac-
tical cases it is important to track a time-varying trajectory to, e.g., let the
aerial robot track a moving target.

iii) track a desired link force profile. In many cases it is important to precisely
regulate the force link to any desired value, possibly including negative link
force (pushing) if the link is a bar. For example, if the link is a cable one
may want to keep it always taut while at the same time avoiding peaks on the
tension that can damage the cable or its attaching mechanisms. If the link
is a bar, then one may want to push against it with an appropriate force to
perform physical interaction with the environment. However, the methods in
the literature are able, in the best case [Nicotra–2014], to keep the force link
positive, but not at a prescribed value, possibly time-varying.

iv) observe the state from a minimal set of sensors in any dynamic condition.
Instead, in the state-of-the-art this is done at best in a quasi-static assumption
or with a linearized method [Sandino–2014b; Lupashin–2013].

Table 4.1 shows the features of the methods proposed in the state of the art and of
the ones proposed in this thesis.

In order to achieve the previous objectives, a throughly analysis of the system
from a theoretical point of view is needed. This is why, one of the goal of this thesis
is to provide a fundamental study of the tethered aerial vehicle system, in order to
have a clear understanding of its dynamics and the corresponding properties related
to control, planning and estimation. Our formal analysis is focused on three main
objectives along the axes of control, planning and localization:

1) Find the output for which it is possible to compute analytically and offline the
state of the system while exactly tracking the desired output trajectory, and
the nominal inputs required to do so. This option is very useful for control, to
compute the feed-forward terms, and in a possible pre-planning strategy. To
achieve this objective we investigate which are the flat outputs and we explicit
the algebraic relations that demonstrate the differential flatness of the system
(see Sec. 4.5).
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[Sandino–2014a]
[Sandino–2014b]
[Sandino–2015]

[Lupashin–2013] [Nicotra–2014]
[Nicotra–2017]

This thesis

Stabilization of
the position

X X X X

Taut cable
ensured

X X

Control of
tension and
compression

X

Independent
tracking of
position and
internal force

X

Independent
tracking of
position and

partial attitude

X

2D state
estimation with

IMU only

X X

3D state
estimation with

IMU plus
encoders

X X

Global state
estimation

X

Table 4.1 – Features of the methods proposed by the state of the art and of the
ones proposed in this thesis.

2) For each of the found set of flat outputs, given any desired sufficiently smooth
trajectory, we aim to design a control strategy to obtain the exact trajectory
tracking (see Sec. 4.7). The control method will be based on the static or
dynamic (if needed) feedback linearization method presented in Sec. 2.3.

3) Provide the mathematical tools to implement the control strategy in a real
world using a minimal set of typically available on-board sensors. For this
goal, we propose a minimal standard sensory equipment and we show how
to design an almost global nonlinear observer in order to estimate the state
from the available measurements only. This enables the possibility to close
the control loop with standard and minimal measurements (see Sec. 4.8 and
Sec. 4.9).

Based on these results, practical problems coming from applicative scenarios
can be solved more easily. An example can be found in Chap. 6 where we exploited
the theoretical results to solve the practical but challenging problem of landing and
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takeoff on/from highly sloped surfaces.

4.3 Contribution

This part of the thesis provides a thorough analysis of a generic tethered system
in which we formally study the dynamics of the system and its intrinsic properties,
along the three major axes of control, planning and estimation.

Firstly we consider a much more generic tethered system that extends the pre-
viously considered system by four major points. Indeed, we analyze a system firstly
composed by an unidirectional-thrust aerial vehicle flying in the 3D space (not only
in a 2D plane as some of the related publications). The vehicle is attached by a
generic link to an independently moving platform. Differently from the state of the
art where only the cable case is considered, here the generic link can be either a
cable, a strut or a bar. In this way we can consider links that can be:

i) only stretched, like cables, that allow only positive internal forces called ten-
sions;

ii) only compressed, like strut, that allow only negative internal forces called
compression;

iii) both compressed and stretched, like bars, that allow both positive and nega-
tive internal forces.

At the other end, the link is attached to a platform that can independently move
in the 3D space. Differently from the related literature where the link is anchored
to a fixed point, in this thesis we consider a much generic case in which the link
could be attached to a car, a sheep, another aircraft, or even to a human operator.

Finally, for the sake of generality, we consider that a link actuator is capable of
changing the length of the link applying a certain controllable force. This device
can be a winch in the case of a cable-link, or an actuated telescopic mechanism in
the case of a bar-link. The modeling of this generic system is provided in Sec. 4.4.

We started our analysis with the investigation of the differential flatness prop-
erty, looking for the sets of flat outputs (if more then one). We proved that the
system is differentially flat with respect to two outputs ya and yb.

a) ya is a force-related output. It contains the position of the vehicle with
respect to the moving platform (expressed in spherical coordinates), the in-
ternal force along the link, and the rotation of the vehicle along the thrust
axis (see Sec. 4.7.1). This shows that the position and the internal force
along the link can be controlled independently. Notice the parallel with hy-
brid motion/force control of ground manipulators in the presence of kinematic
constraints [Siciliano–2008].

b) yb is an attitude-related output. It contains the position of the vehicle with
respect to the moving platform, a particular angle related to the attitude of
the vehicle with respect to the one of the link, and the rotation of the vehicle
along the thrust axis (see Sec. 4.7.2). This shows that the position and this
particularly defined angle can be controlled independently.
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Those are in turn flat outputs for the system. This property fulfills the planning
related objective, and allows to know in advance the nominal state and inputs while
exactly tracking a desired output trajectory.

For the two sets of flat outputs we then designed a hierarchical controller based
on the separation between the rotational and translational dynamics controllers
(see Sec. 4.6). We designed this controller with the aim of stabilizing the flat
outputs to a desired value, keeping it simple to implement also for commercially
available aerial vehicle for which one can control only the attitude or, at best, the
angular velocity. However, after the experimental validation, we noticed that this
controller cannot provide good tracking performance when the desired trajectory
requires high velocities and acceleration. In particular, this is due the separation
assumption between translational and rotation dynamics.

To fulfill the tracking control objective, we then studied the feedback lineariz-
ability of the system with respect to ya and yb. Once we proved that ya and yb
are flat output for the considered system, we know that they are also feedback
linearizing outputs. Indeed, it exists a feedback control law that linearizes the rela-
tion input-output. Then a controller based on the Dynamic Feedback Linearization
(DFL) method has been conceived for the tracking of the two sets of outputs, high-
lighting the related singularities, extended relative degree and the required dynamic
extension . Notice that the works in the state of the art considered only the problem
of regulating the position of the vehicle (mostly in the 2D case), at most ensuring
the positivity of the internal force. On the other hand, in this work we derived
a control for the precise tracking of any time-varying desired position and inter-
nal force trajectories. Furthermore, we also designed a controller for the precise
tracking of a different and never considered output: position plus attitude-related
variable.

Finally, for the estimation objective, we showed that if the motion of the mov-
ing platform is known, then the state of the system can be estimated using only
the on-board IMU and three encoders placed at the other end of the link in order
to measure its attitude and length. We then found some nonlinear measurements
transformations that allowed us to employ the nonlinear High Gain Observer (pre-
sented in Sec. 2.4) to get an estimation of the state and close the control loop
preserving the stability of the overall system (see Sec. 4.8).

This theoretical and fundamental results have been extensively validated either
experimentally or through numerical simulations. The first implemented hierarchi-
cal controller has been validated experimentally and employed for the execution of
landing and takeoff on/from a sloped surface as well. The corresponding results are
presented in Chap. 5.

The rest of the theoretical results has been instead validated by a deep sim-
ulation campaign. We also analyzed the limits of the methods under non ideal
conditions such as noisy measurements, parameter uncertainties, etc. Only the dy-
namic feedback linearizing controller for the output yb has not been validated yet.
Indeed, we proved the feedback linearizability of the system with respect to yb only
very recently, without having the possibility to conduct a validating campaign. This
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will be done in the near future. For the same reason, notice that this results has
not been published neither. On the other hand, all the other results related to the
control of ya and the state estimation problems has been published in [Tognon–
2016a]. The proof of the differential flatness with respect to yb and the design of a
hierarchical control to track a desired trajectory of yb have been partially presented
in [Tognon–2016b].

All the previous mentioned results are obviously still valid if there is not a link
actuator and the link length is fixed, if the platform is still, and even if the system
motion is constrained on a 2D vertical plane. On the other hand, in this particular
constrained case, we proved a very interesting result. We showed that only the
on-board IMU is needed to retrieve the estimation of the state. Also in this case,
we found some non linear measurements and state transformations that bring the
system in a canonical form for which the High Gain Observer can be applied. These
results have been published in [Tognon–2017a; Tognon–2015c].

We also considered another interesting particular case, i.e., when the link actu-
ator is not active but passive. In this case the force produced by the link actuator
is constant and cannot be controlled. One could made this mechanism with sim-
ple springs, like in a retractable leash. This solution simplifies the complexity of
the system and reduces the weight as well, thus its could be preferable in some
cases, e.g., to make the system easily portable by a human operator. The only
controllable actuation is then given by the orientable thrust generated by the un-
deractuated aerial vehicle. Having one controllable actuator less, it appears that
the internal force along the link is not controllable anymore, and the attitude angle
neither. We proved that only the output yc, containing the position of the vehicle
and its rotation about the thrust axis, is a differentially flat/dynamic feedback lin-
earizable output (see Sec. 4.5.3 and Sec. 4.7.3). These results have been published
in [Tognon–2017c].

All the previous theoretical results constitute the base to solve practical and
more application oriented problems. With a good understanding of the system in
exam, one can then better exploit its properties for the accomplishment of particular
tasks related to a specific applications. For example, considering the challenging
problem of landing and takeoff on/from a sloped surface, e.g., in mountains for
sear and rescue operations, we showed that a tethered aerial vehicle could be very
useful to accomplish the task in a very robust and reliable way. In Chap. 6 we
theoretically and experimentally show how we exploited the theoretical results, and
in particular the ones related to the controllability of yb, to solve the problem in a
more robust way with respect to the case of a free-flying vehicle. The corresponding
methods and results have been published in [Tognon–2016b; Tognon–2017b]. For
a more detailed introduction and state of the art relative to the problem, we refer
the reader to Chap. 6.

Finally, starting from the results obtained on control and state estimation of a
single tethered aerial vehicle, we performed the same type of rigorous analysis on
a multi-robot system (see Chap. 7). Indeed, since the single tethered aerial vehicle
is constrained to fly around the anchoring point, the working space (a simple circle
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in the planar case) can result very limited for some applications, such as pick and
place or inspection in cluttered environments. One possible solution is given by
adding a second vehicle attached to the first by a second link. In particular, we
considered a system composed by two aerial vehicles laying on a vertical 2D plane,
where the first one is attached to the ground and to the second one by two links,
in the way of forming a chain of two elements. Considering the second robot as
an end-effector, the system appears similar to a two-link planar manipulator where
the aerial vehicles are the actuators. It is then clear the increased dexterity of the
system. Although it might appear not feasible from a practical point of view using
cable-links, actually, it could be easily implemented using bar-links. Furthermore,
due to the peculiarity of the system, the control of such a system is a very in-
teresting and challenging theoretical problem. As for the single tethered case, we
proved that the output composed by the elevation and the internal force of the two
links is differential flat/dynamic feedback linearizable. Thus we designed a non-
linear controller based on the dynamic feedback linearization technique to achieve
the independent tracking of the output entries [Tognon–2015a]. Furthermore, we
proved that the IMU on-board of the two vehicles together with two encoders, one
at the base and one on the first vehicle, measuring the relative link angles, are
enough to make the state observable. We then found some nonlinear measurement
transformations to bring the system in the canonical form that allows to apply the
High Gain Observer [Tognon–2015b]. The validity of the method has been proven
by numerical simulations. For all the related results we refer the reader to Chap. 7.

Table 4.2 schematically gathers all the contributions of this thesis on the field of
tethered aerial vehicles. For each contribution we report the corresponding chapter
or section and the manuscript in which the results have been published.

4.4 Modeling

In this section we provide the model of a generic tethered aerial system consisting
of an unidirectional-thrust aerial vehicle that is tethered by a generic link (e.g., a
cable, a rope, a chain, a bar or a strut) whose length can be changed by an active
link actuator. If the link is a cable-like link, then the link actuator is a winch that
can roll up or unroll the link. On the other hand, if the link is a telescopic bar-like
link, then the link actuator is a prismatic actuator that can extend or shorten the
bar. A brief modeling of the link and of the link actuator was presented in Sects. 3.1
and 3.3.2, respectively. Although the bar-link case is not very common, it is still
mechanically feasible and allows us to derive a very general model for which we can
consider both positive and negative link internal forces (tensions and compressions,
respectively). Doing so we expand the validity of the theoretical results. The link
actuator is in turn fixed on a moving platform by a passive 3D spherical joint.
The platform moves generically in the 3D space and can be, e.g., a ground vehicle
moving on any kind of terrain, a marine vessel, or even another aerial vehicle.
Fig. 4.4 depicts the systems and its main definitions.
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System 3D environment Only 2D env.
One link - Active
link actuator

General modeling,
State estimation
with IMU plus
three encoders,
[Tognon–2016a],
Sects. 4.4 and 4.8

Differential flatness
and DFL w.r.t. ya,
[Tognon–2016a],
Sec. 4.7.1, and
Differential flat-
ness w.r.t. yb
[Tognon–2016b],
DFL w.r.t. yb
(not published),
Sec. 4.7.2

State estimation
with IMU only,
[Tognon–2017a;
Tognon–2015c],
Sec. 4.9

One link - Passive
link actuator

DFL and differen-
tial flatness w.r.t.
yc, Sec. 4.7.3,
[Tognon–2017c]

Application to the
problem of landing
and takeoff on/from
a sloped surface

Problem formulation, condition for ro-
bust landing, comparison between free-
flight and tethered solutions, Chap. 6,
[Tognon–2016b; Tognon–2017b]

Trajectory planning
for robust maneu-
vers, Sec. 6.5, (not
published)

Multi robot exten-
sion: two linked
robots in a chain
configuration

Differential flatness
and DFL w.r.t. ya2 ,
Sec. 7.3 [Tognon–
2015a], state esti-
mation with IMUs
plus two encoders,
Sec. 7.4, [Tognon–
2015b]

Table 4.2 – Summary of the contributions on tethered aerial vehicles.

Consider a fixed world frame, FW with axes {xW ,yW , zW } and origin OW . In
particular, zW is opposite to the gravity vector. Two body frames, FC and FR with
axes {xC ,yC , zC} and {xR,yR, zR}, and origins OC and OR, are rigidly attached
to the platform and to the aerial vehicle, respectively. The position of OC in FW
is described by the vector pWC = [xC yC zC ]> ∈ R3. Similarly, OR is set on
the CoM of the aerial vehicle, whose position in FW is described by the vector
pWR = [xR yR zR]> ∈ R3.

Although already done in Sec. 3.2, we recall one more time the main model-
ing assumptions and definitions for a generic aerial vehicle. The aerial vehicle is
modeled as a rigid body with mass mR ∈ R>0 and positive definite diagonal inertia
matrix JR ∈ R3×3

>0 expressed in FR and relative to OR. The angular velocity of FR
with respect to FW , expressed in FR, is denoted by ωR ∈ R3. The aerial vehicle
configuration is fully described by pWR and by the rotation matrix RR ∈ SO(3), rep-
resenting the position and orientation of FR w.r.t. FW . The aerial vehicle motion
can be controlled acting on four inputs: fR ∈ R and τR = [τRx τRy τRz]> ∈ R3,
where fR is the magnitude of the thrust force1 fR = −fRzR applied at OR and

1For generality we consider both positive and negative thrust. Although aerial vehicles can
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Figure 4.4 – Left: representation of the system and its main variables. Top right
corner: parametrization of the unit vector dC . The red line shows the singularities
of the parametrization, avoidable in the planning phase.

parallel to zR, and τR is the control moment vector expressed in FR.
The moving platform configuration is described by pWC and RC ∈ SO(3), rep-

resenting the rotation from FC to FW . The angular velocity of FC w.r.t. FW ,
expressed in FC , is denoted by ωC ∈ R3. The platform is an independent sub-
system whose motion i) is not influenced by the aerial vehicle dynamics and ii) can
only be measured online. In this way, the results can be applied to a broader class
of moving platforms including, e.g., human controlled vehicles.

The link connects the aerial vehicle to the moving platform. One end of the link
is attached to the aerial vehicle at OR through a passive 3D spherical joint and the
other end is attached to the platform at OC , through a second passive 3D spherical
joint. Having the link directly attached to the CoM of the aerial vehicle allows
to decouple the rotational dynamics to the translational one. This assumption is
very common in the literature of aerial physical interaction, and is practically easy
to meet. Indeed, with a wise mechanical design one can minimize the distance
between the CoM and the link attaching point. As explained in Sec. 3.1, we assume
negligible link mass and inertia with respect to the ones of the aerial vehicle and
negligible deformations and elasticity.

The direction of the link is described by the unit vector2 dC ∈ S2 expressed
in FC thus allowing to express the aerial vehicle position relative to the moving

usually provide only positive thrust, actually, the variable pitch solution can provide negative
thrust as well. However, if only positive thrust is allowed, our controller is still valid, since this
constraint can be meet in the planning phase as explained later in the paper.

2S2 = {v ∈ R3| ‖v‖ = 1}
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platform3. Nevertheless, known pWC and RC , one can still control pWR by inverse
kinematics. The unit vector dC can be parametrized with the elevation angle,
ϕ ∈ [0, 2π], and the azimuth angle, δ ∈ [−π

2 ,
π
2 ], as

dC =
[
cos δ cosϕ − sin δ cos δ sinϕ

]>
, (4.1)

where δ is the angle between dC and the vertical plane {xC , zC}, whereas ϕ is the
angle between the projection of dC on {xC , zC} and xC , see Fig. 4.4. This particular
choice lets the singularity of the parametrization correspond to the points along yC ,
whereas the classical spherical parametrization has the singularity along zC , which
corresponds to the common vertical link orientation (when, e.g., the vehicle has to
fly above the moving platform).

The link length and the intensity of the internal force are denoted by l ∈ R≥0
and fL ∈ R≥0, respectively. The link actuator is fixed to the moving platform in
the proximity of OC and is used to control l and fL in a coordinated action with the
aerial vehicle thrust force. We recall from Sec. 3.3.2 that the link actuator exerts an
input torque τW ∈ R that controls the link length. The constant rotational inertia
and constant radius of the link actuator are denoted by JW ∈ R>0 and rW ∈ R>0,
respectively.

Since the link is attached to the aerial vehicle center of mass by a passive
rotational joint, the aerial vehicle rotational dynamics is independent from the
translational dynamics and it is equal to the one derived in Sec. 3.2:

ṘR = RRΩR (4.2)
JRω̇R = JRωR × ωR + τR. (4.3)

The linear velocity of the aerial vehicle is obtained differentiating pWR = pWC +
lRCdC :

ṗWR = RC

(
ṗCC + lΩCdC + l̇dC + lḋC

)
. (4.4)

To derive the dynamic equations of the generalized coordinates q = [l ϕ δ]> we use
the Newton-Euler approach4, solving the balance of the forces acting on OR in FW ,
and the balance of momenta about the axis of the link actuator (see Sec. 3.3.2):

mRp̈WR = −fLRCdC − fRzWR −mRgzWW (4.5)
J̄W l̈ = τ̄W + fL, (4.6)

where J̄W = JW /r
2
W , τ̄W = τW /rW . The acceleration p̈WR is obtained by further

3We express the link orientation in FC because the goal is to control the aerial vehicle position
relative to the moving platform rather than to FW .

4Since one of our goal is the one of controlling the internal force along the link, it results helpful
to have its analytical expression. Newton-Euler is then the proper method to use as explained in
Sec. 2.1. Indeed, using the Lagrangian formalism, we would not have obtained the sought internal
force expression.



52 Chapter 4. Single vehicle: fundamentals

differentiating (4.4), i.e.,

p̈WR = RC [āx + Jqq̈], (4.7)

where āx = ΩC(ṗCC + lΩCdC + 2Jqq̇) + p̈CC + lΩ̇CdC + J̇qq̇ and

Jq =


cos δ cosϕ −l cos δ sinϕ −l cosϕ sin δ
− sin δ 0 −l cos δ

cos δ sinϕ l cos δ cosϕ −l sin δ sinϕ

 . (4.8)

Replacing (4.7) into (4.5) and after some algebra we get

mRJqq̈ + fLdC = −mRāx︸ ︷︷ ︸
ax
−mRgR>Ce3︸ ︷︷ ︸

ag
− fRR>CRRe3︸ ︷︷ ︸

afR

, (4.9)

Finally, gathering (4.9) and (4.6) we obtain a square systemmRJq dC

JWq −1


︸ ︷︷ ︸

W

 q̈
fL

 =

−ax − ag
0


︸ ︷︷ ︸

a

+

−afR
τ̄W


︸ ︷︷ ︸

au

, (4.10)

where JWq = [J̄W 0 0] ∈ R1×3 and W ∈ R4×4 is invertible if and only if l 6= 0 and
δ 6= ±π/2, that correspond to the singularities of the pseudo-spherical coordinates
of OR. Inverting equation (4.10) out of these singularities, we obtain

q̈ =
[
I3 03×1

]
W−1(a + au) = σ(x,X2

C ,u) (4.11)

fL =
[
01×3 1

]
W−1(a + au), (4.12)

where x = (q, q̇,RR,ωR) is the system state, u = [fR τ>R τ̄W ]> = [u1 u2 u3 u4 u5]>
is the vector of inputs, and

Xj
C = (x0

C ,x1
C , . . . ,x

j
C) for j ∈ N>0, (4.13)

with

xiC = (vCC
(i−1)

,ω
(i−1)
C ) for i = 1, 2, . . .

x0
C = (pWC ,RC)

(4.14)

where vCC = R>C
dpC
dt . Xj

C in (4.13) gathers the terms related to the motion of the
platform.

Gathering equations (4.2), (4.3) and (4.11) we have a complete description of
the system dynamics:

q̈ =
[
I3 03×1

]
W−1(a + au) = σ(x,X2

C ,u) (4.15a)
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ṘR = RRΩR (4.15b)
JRω̇R = JRωR × ωR + τR. (4.15c)

In the following we show some results that apply to simpler and yet relevant
cases of the generic system considered so far. It is then useful to show how we can
particularize (4.15) for those cases:

• Fixed platform: one can simply set xiC = (pC(i)
C ,ω

(i−1)
C ) = (0,0) for all

i ≥ 1.
• Fixed link length: this represents the case in which there is no link actuator

and the aerial vehicle is tethered directly to the platform by a link with a
constant length, l. The model can be easily adapted considering all the time
derivatives of l equal to zero, i.e., l̇ = l̈ = . . . = 0. In this case l becomes
a parameter and the generalized coordinates reduce to q = [ϕ δ]>. The
dynamics can be easily derived from (4.10) considering only the first three
row and l̈ = 0. The last row is always verified since τ̄W represents the reaction
force of the anchoring point.
• Passive link actuator: The link actuator is considered passive because a
non-controllable constant torque τ ′W ∈ R is applied along the longitudinal
axis of the cylinder (τW (t) = τ ′W for all t ∈ R≥0), e.g., generated by a simple
constant torque spring. The length l can be then controlled only by the
action of the thrust provided by the aerial vehicle. The choice of a passive
link actuator instead of a controllable one makes the system simpler and
easily portable by a human operator. On the other hand, as it will be clear in
Sec. 4.7.3, the price to pay will be a reduced control authority on the variables
of the system. In particular, the internal force of the link cannot be regulated
to an arbitrary value while following a position trajectory. However it can be
maintained within a desired bound, if the desired trajectory is well planned.
For the sake of studying the feedback linearizability it is convenient to rewrite
the model of the system (4.15) in the following Lagrangian form:

Mq̈ + c + g + n + w = QuR, (4.16)

where, uR = [u1 u>2 ]> = [fR τ>R ]> ∈ R4 is the reduce input vector, M(q) ∈
R3×3 is the positive definite inertia matrix, c(q, q̇, ṗCC ,ωC) ∈ R3 contains all
the centrifugal/Coriolis terms, g(q,RC) ∈ R3 contains all the gravity terms,
n(q, p̈CC , ω̇C) ∈ R3 contains the terms depending on the acceleration of the
moving platform, w(τW ) ∈ R3 contains the terms depending on the constant
torque winch, and Q(q,RR,RC) ∈ R3×4 is related to the generalized forces,
referred as au, performing work on q, such that

au = Q(q,RR,RC)u = [−J>q R>CRRe3 03×3]uR, (4.17)

For sake of brevity we do not report here the full expression of each term.
Notice that in Lagrangian representation of the dynamics the internal force
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Particular cases Dynamics
Static platform (4.15) with xiC = (pC(i)

C ,ω
(i−1)
C ) = (0,0) for all i ≥ 1

No link actuator (4.10) with l̇ = l̈ = . . . = 0 and τ̄W = fL

Passive link actuator (4.15) with τW = τ ′W constantly
Reduced model (4.18) with q′ = [ϕ θ]> and u′ = [u1 u3]> = [fR τRy]>

Table 4.3 – Particular cases of the general tethered aerial system and corresponding
dynamics.

of the link does not appear, differently from (4.11) and (4.12). This is useful
since, as it will be clear in Sec. 4.7.3, the internal force along the link is not
part of the differential flat/feedback linearizing output for the tethered system
with passive link actuator.
• Reduced model: in the following Sec. 4.9 we shall show some particular

results proven only in the particular case in which the link length and the
ground platform are fixed, and the vehicle is restricted to move on a 2D
vertical plane (for simplicity let us consider the plane (xW , zW )). To write
the dynamics of the system in this particular conditions starting from the
previous model, we first parametrize the vehicle attitude by the Euler-angles
roll, pitch and yaw, (φ, θ, ψ), being the angles of rotation about the major axes
(xR,yR, zR). We then impose φ, ψ = 0 that implies yR = yW . Furthermore
we can consider the azimuth constantly to zero, i.e., δ = δ̇ = δ̈ = 0. Under
this conditions the system degrees of freedom reduce to two, described by the
new vector q′ = [ϕ θ]> ∈ R2, actuated by the total thrust and the torque
about yR, u′ = [u1 u3]> = [fR τRy]> ∈ R2. Under those assumptions and
definitions, we can rewrite (4.15) as:

M′(q′)q̈′ + g′(q′) = Q′(q′)u′, (4.18)

where

M′ =

mRl
2 0

0 JR22

 , g′ =

mRlgd⊥ · e3

0

 ,
Q′ =

−lRRe3 · d⊥ 0
0 1

 , u′ =

 fR
τRy

 =

u1

u3

 ,
and JRkm with k,m ∈ {1, 2, 3} corresponds to the element of the matrix JR
in position k,m, d = [cos (ϕ) 0 sin (ϕ)]>, d⊥ = [− sin (ϕ) 0 cos (ϕ)]>.

Table 4.3 gathers all the previous particular cases and the corresponding dynamics.
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4.5 Differential flatness

We recall from Sec. 2.2 that a system is differentially flat when it exists (at least)
an output, called flat output, such that the states and the inputs can be expressed
as an algebraic function of the flat output and its derivatives, up to a finite or-
der [Fliess–1995]. Thus the flatness property would fulfill our first objective, i.e.,
compute analytically and offline the nominal state and input of the system required
to exactly track a desired output trajectory. In fact, this property is commonly used
for control to compute the feed-forward terms, and for planning and optimization
to generate feasible trajectories, especially for nonholonomic and underactuated
systems, considering the input limitations. Furthermore, the differential flatness
property tells a lot about which are the independently controllable outputs and
which is the required degree of smoothness for the corresponding desired trajecto-
ries.

For an unidirectional-thrust aerial vehicle, it is well known that the position
of its CoM, pR, and the rotation along the zR axis, ψ, (called yaw angle when
using the Euler-angles parametrization, see Sec. 2.1.3) are differentially flat out-
puts5 [Mellinger–2011a; Faessler–2018].

If we tether the aerial vehicle to a fixed point by a link with constant length,
the link constraints the vehicle to fly on a sphere. Intuitively, the vehicle can still
control the position on the sphere (two d.o.f.) and the yaw angle, but not the
position along the longitudinal axis of the link. Indeed, every force component
applied along this axis will not produce motion due to the kinematic constraint.
On the other hand, it will stretch or compress the link, according to its direction.
In other words, the vehicle cannot change the distance from the anchoring point
but it can control the intensity of the internal force along the link. If then the link
length is actuated, the link actuator can control its length and in thus the distance
of the vehicle from the anchoring point. This intuition tell us that the output
ya = [ya1 ya2 ya3 ya4 ya5 ]> = [l ϕ δ fL ηi]> ∈ R5, where ηi is a more “generalized”
yaw angle (see the following) is a differentially flat output. We shall prove this
result in Sec. 4.5.1.

Furthermore, let us consider for simplicity the system constrained to move on
a 2D vertical plane. It is easy to notice that the link internal force and the angle
between the thrust and the horizon, defined by ϑA ∈ R (see later for the formal
definition), are directly connected. Indeed the higher the internal force, the more the
thrust tends to be parallel to the link axis, i.e., ϑA tends to ϕ. This second intuition
makes us believe that the output yb = [yb1 yb2 yb3 yb4 yb5]> = [l ϕ δ ϑA ηi]> ∈ R5 is
a differentially flat output as well. We shall prove this result in Sec. 4.5.2.

To prove the differential flatness we show how to express x and u as function
of ya or yb and some of their relative derivatives, in the standard case in which ηi
is the yaw angle. We recall that the state consists of the parametrization of dC , its
velocity, the attitude of the aerial vehicle and its angular velocity, while the inputs

5And thus also dynamic feedback linearizing outputs.
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are the thrust, the total torque provided by the robot and the winch torque. As we
already said, we suppose X0

C and its derivatives known (see (4.13)).

4.5.1 Stress-related flat output

Let us define ya1 = [ya1 ya2 ya3 ]> = [l ϕ δ]> such that ya = [ya1> ya4 ya5 ]> =
[q> fL ηi]>. We have directly that

q = ya1, q̇ = ẏa1. (4.19)

Then, from (4.6) we obtain the expression of τ̄W

τ̄W = J̄W ÿ
a
1 − ya4 = f1(ÿa1 , ya4). (4.20)

In order to find the expression of the missing states and inputs, one can notice that
from (4.7) the linear acceleration of the aerial vehicle can be written as function of
ya1, ẏa1, ÿa1, the linear velocity of the platform, its rotation and their time derivatives,
i.e., p̈WR = p̈WR (ya1, ẏa1, ÿa1,X2

C). Then, from (4.5), we can write the thrust vector as
function of only the outputs, their derivatives and known quantities related to the
trajectory of the moving platform, indeed:

fRRRe3 = −mRp̈WR (ya1, ẏa1, ÿa1,X2
C)− y4RCdC(y1)−mRge3

= f2(ya1, ẏa1, ÿa1, y4,X2
C).

(4.21)

Then, exploiting y5, one can apply the same method presented in [Faessler–2018] in
order to obtain the attitude of the aerial vehicle, its angular velocity and the total
provided torque. For the sake of brevity we omit here the full re-derivation of all
these functions.

Proposition 1. The model (4.15), is differentially flat with respect to the flat out-
put ya = [l ϕ δ fL ηi]> where ηi is the yaw angle of RR. In other words, the state
and the inputs can be written as algebraic function of ya and a finite number of its
derivatives:

x = fax(ya, . . . ,ya(4),X2
C) (4.22)

u = fau(ya, . . . ,ya(4),X2
C). (4.23)

4.5.2 Attitude-related flat output

Firstly, we have to properly define ϑA in the 3D environment. Let us define a new
reference frame, FL centered in pC and with axes {xL,yL, zL} such that:

zL = zW , yL = zL × d
‖zL × d‖ , xL = yL × zL. (4.24)

If d is parallel to zW , one can choose any arbitrary yL. For example, if the aerial
vehicle is moving such that d is parallel to zW at a certain time ti, during that
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Figure 4.5 – Visual description of the angle ϑA.

instant we can simply keep yL constant. Practically, starting from a non singular
condition, one would define a certain threshold ε ∈ R>0 such that if ‖zW × d‖ < ε,
yL is kept constant. In particular we can define the vertical plane PL that includes
d, i.e., PL = {v ∈ R3 | ∃λ1, λ2 ∈ R : v = λ1xL +λ2zL}; and the projection of −zR
into PL defined by:

α = [α1 α2 α3]> = −PLzR, (4.25)

where PL = [xL 0 zL]> ∈ R3×3 is the projector on PL, with respect to FL. Finally
we define ϑA as the angle between α and zL:

ϑA = atan2 (α1, α3) = atan2
(
−e>1 PLzR,−e>3 PLzR

)
. (4.26)

Figure 4.5 shows how ϑA is graphically defined.
In order to demonstrate that yb is also a flat output we show that there exists a

bijective map between yb and ya. Considering X2
C (see 4.13) as a known input, the

map from ya to yb and their derivatives, i.e., (yb, . . . ,yb(4)) = gb(ya, . . . ,ya(4),X2
C)

is simply given by the flatness of the system w.r.t. ya. In fact, given ya and its
derivatives, one can compute the nominal state and inputs with (4.22) and (4.23).
Then, from equation (4.26), it is easy to compute yb and the relative derivatives.

Regarding the opposite sense of the map, i.e., from yb to ya:

(ya, . . . ,ya(4)) = ga(yb, . . . ,yb
(4)
,X2

C), (4.27)
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the map is immediate for q and ψ. Let us define yb1 = [yb1 yb2 yb3]> = [l ϕ δ]>
such that yb = [yb1> yb4 yb5]> = [q> ϑA ηi]>. We have that ya1 = yb1 and ya5 = yb5.
Then we can retrieve fL, and so ya4 , from yb and its derivatives projecting both
sides of (4.5) on the plane PL. Not considering the second equations (always zero),
after some algebra we can obtain:

ya4 = fL = −mR[0 1]>T−1[e1 e3]>PL(p̈R + gzW ), (4.28)

where T(yb) = [e1 e3]>[PLzR PLd] is invertible if and only if zR 6⊥ PL and PLzR 6‖
PLd. Finally, to retrieve the derivatives of fL one can simply differentiate (4.28)
w.r.t. time. This proves that between ya and yb, and their derivatives, there is a
bijective map.

Combining (4.22), (4.23) and (4.27), state and inputs of the system can be
written as an algebraic function of yb its derivatives, and the known quantity X2

C ,
proving that yb is a flat output:

x = fax(ga(yb, . . . ,yb
(4)
,X2

C),X2
C) = f bx(yb, . . . ,yb(4)

,X2
C) (4.29)

u = fau(ga(yb, . . . ,yb
(4)
,X2

C),X2
C) = f bu(yb, . . . ,yb(4)

,X2
C). (4.30)

Proposition 2. The model (4.15), is differentially flat with respect to the flat out-
put yb = [l ϕ δ ϑA ηi]> where ηi is the yaw angle of RR. In other words, the state
and the inputs can be written as algebraic function of yb and a finite number of its
derivatives, i.e., equations (4.29) and (4.30).

4.5.3 Differential flatness for passive link actuator

Let us define yc = [yc1> yc4]> = [q> ηi]> ∈ R4. Part of the state is directly given
by yc1, i.e., q = yc1, q̇ = ẏc1. Only the part of the state related to the rotational
dynamics and the inputs have still to be derived. From (4.6) we can write the
internal force as function of ÿc1:

fL = J̄W l̈ − τ̄W = fL(ÿc1). (4.31)

Then, it is exactly the same procedure as in Sec. 4.5.1. One can write ya1 = yc1,
ya4 = fL(ÿc1), ya5 = yc5, and then use (4.22) and (4.23) to compute nominal state and
input.

Proposition 3. The model (4.2), (4.3) and (4.16), is differentially flat with respect
to the flat output yc = [l ϕ δ ηi]> where ηi is the yaw angle of RR. In other words
the state and the inputs can be written as algebraic function of yc and a finite
number of its derivatives.

x = f cx(yc, . . . ,yc(4),X2
C) (4.32)

u = f cu(yc, . . . ,yc(4),X2
C). (4.33)
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4.5.4 Discussion on link internal force regulation

We already remarked that, differently from the active link actuator case, the internal
force along the link is not part of the flat output for this system. This means
that its value cannot be directly controlled. On the contrary, from (4.31), it is a
byproduct of the desired output trajectory, and in particular of the desired link
length acceleration. Nevertheless, in order to keep the internal force always within
a desired bound BfL = [fL, fL] where fL, fL ∈ R, we can exploit the flatness
of the system to design suitable desired trajectories of yc. In particular, from
equation (4.31) we have that fL ∈ BfL if and only if l̈ ∈ Bl̈ = [l̈, l̈] where l̈ =
(τ̄ ′W +fL)/J̄W and l̈ = (τ̄ ′W +fL)/J̄W . In other words the constraint on the internal
force can be translated using the flatness into a constraint on the desired trajectory
of l.

Notice that the steady configuration, l̈ = 0, belongs to Bl̈ if and only if l̈ ≤ 0 ≤ l̈
that in turn means −fL ≤ τ̄ ′W ≤ −fL. In particular, if for l̈ = 0 we want a desired
internal force value fL? ∈ BfL , we have to design the passive link actuator such
that τ̄ ′W = τ ′W /rW = −fL?. Another parameter of the link actuator that can be
optimized is its inertia J̄W . Indeed it affects how BfL is mapped on Bl̈, e.g., if we
make J̄W small enough, big variations of l̈ imply small variations of the internal
force and thus an almost constant internal force, fL ≈ fL?.

4.6 Hierarchical control

In this section we exploit the previously proven flatness in order to design a con-
troller based on a hierarchical method. This is very common for the control of
aerial vehicles because it allows to separate the control of the attitude from the one
of the translational dynamics. This is convenient especially for commercial avail-
able platforms for which one cannot directly control the spinning velocity of the
propellers. Often, one can only control the angular velocity or the attitude of the
vehicle, sending the desired Euler angles. Then, internally to the platform, a closed
low level controller track the desired references.

To cope with these problems, we propose a simpler control strategy, based on
hierarchical techniques, that can be easily implemented in every platform. Indeed,
thanks to the separation between outer loop (normally position control) and inner
loop (attitude control) controls, one can easily adapt the proposed controller to the
specific platform functionalities. Similar techniques were successfully implemented
and tested in, e.g., [Sandino–2015; Lupashin–2013], to only stabilize the position
of the vehicle. However, those methods cannot be directly applied to solve our
problem because they are designed for different systems, although similar.

The validity of the method has been proven experimentally. The related results
are shown in Sec. 5.2.
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4.6.1 Force-related hierarchical control

In the following we design a hierarchical controller for controlling the output ya,
namely the position of the aerial vehicle and the internal force along the link.
The controller is based on the cascaded structure between the translational and
rotational dynamics.

Given a desired position trajectory pCR(t), defined in terms of the generalized
coordinates ya1d(t) = q(t)d we define

q̈? = q̈d + KD
q (q̇d − q̇) + KP

q (q̇d − q̇), (4.34)

where KP
q ,KD

q ∈ R3×3
>0 are diagonal matrices. The vector q̈? could be seen as

the desired acceleration that lets q follow the desired trajectory qd(t) using a PD
strategy. In case of model uncertainties or disturbances one can add an integral
term as well.

Then, given a desired trajectory for the internal force of the link ya4 = fL(t)d,
and inverting the balance of momenta on the link actuator (4.6), we compute the
link actuator torque as

τ̄W = J̄W l̈
? − fLd. (4.35)

To finally implement q̈? we compute the desired thrust vector inverting the
balance force equation on OR (4.5), like for the flatness computation in (4.21)

f?R = fRR?
Re3 = RC(−ax − ag − fLddC −mRJqq̈?). (4.36)

From the desired thrust vector we derive the input fR as

fR =
∥∥∥−ax − ag − fLddC −mRJqq̈?

∥∥∥ , (4.37)

and the desired z-axis of FR, i.e., z?R = R?
Re3 = f?R/fR.

The desired yaw angle ψd together with z?R define the desired attitude of the ve-
hicle described by R?

R. In fact, given ψd we define x′R = Rz(ψd)e1 where Rz(ψd) is
the rotation matrix describing the rotation of ψd around zW . The axis x′R represents
the desired heading of the aerial vehicle. The desired attitude is computed creating
an orthonormal basis using the vectors x′R and z?R that is given by R?

R = [x?R y?R z?R]
where,

y?R = z?R × x′R
‖z?R × x′R‖

, x?R = y?R × zR?
‖y?R × zR?‖

. (4.38)

This concludes the design of the outer loop control. Given the tracking error it
computes the desired link actuator torque τ̄W , the desired thrust intensity fR and
the desired attitude R?

R.
If the considered platform accept as input the desired attitude and thrust, we can

simply send the previous quantities as control commands. If instead the platform is
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controlled in thrust/angular velocity or thrust/torque, we shall show the design of
an inner loop control that computes the desired angular velocity, ω?R, or the desired
torque, τR, respectively, in order to track the desired attitude computed by the
outer loop control.

Let us define the attitude error [Bullo–2004] by the vector eR ∈ R3, computed
as

[eR]× = −1
2(R?

R
>RR −R>RR?

R), (4.39)

where [eR]× corresponds to the skew symmetric matrix relative to eR. In order
to steer eR to zero, if the vehicle is controlled in angular velocity, we compute the
desired angular velocity based on a P controller,

ω?R = ωdR + KP
ω eR, (4.40)

where KP
ω ∈ R3×3

>0 is a diagonal matrix. If instead the vehicle is controlled in torque
we first define the desired angular acceleration based on a PD controller,

ω̇?R = ω̇dR + KD
ω (ωdR − ωR) + KP

ω eR, (4.41)

where KD
ω ∈ R3×3

>0 is a diagonal matrix, and ωdR and ω̇dR are the nominal angular
velocity and acceleration, respectively, computed by the flatness from the desired
output trajectory as in Sec. 4.5.1. Inverting the rotational dynamics we can finally
find the input torque τR,

τR = −JRωR × ωR + JRω̇?R. (4.42)

If the inner loop is sufficiently faster than the outer loop, the asymptotic con-
vergence of q to qd is guaranteed. Figure 4.6a shows a schematic representation of
the controller u = ΓaHC(x,X2

C ,yad(t)) given by (4.35), (4.37) and (4.42).
Notice that it is easy to rewrite the controller ΓaHC for the particular cases

mentioned in Sec. 4.4. For the case of a passive link actuator one can use the same
controller once the nominal internal force is computed by (4.31).

4.6.2 Attitude-related hierarchical control

For the control of yb we exploit the bijection function between yb and ya, and the
previously presented hierarchical controller for the tracking of ya. In particular,
from the desired trajectory ybd(t), we can compute the equivalent trajectory of
ya, i.e., (yad, . . . ,yad(4)) = ga(ybd, . . . ,ybd(4),X2

C). Then we apply the hierarchical
controller shown before to effectively track yad(t). The hierarchical controller to
track ybd(t) defined by ΓbHC, is equal to:

u = ΓbHC(x,X2
C ,ybd(t)) = ΓaHC(x,X2

C ,ga(ybd(t),X2
C)). (4.43)
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Figure 4.6 – Schematic representation of the two hierarchical controllers.

Thanks to the fact that ga and gb are bijective maps, if the closed loop system is
able to track yad(t), it will implicitly track ybd(t). Figure 4.6b shows a schematic
representation of the controller.

4.7 Dynamic feedback linearization

From the theory we know that a flat output is also an exactly dynamical feedback
linearizing output on an open and dense set of the state space [Murray–1995]. In
this section we shall design a controller based on the dynamic feedback linearization
technique the problem of the exact tracking of the outputs ya, yb, and yc. For the
problem of the exact tracking of such output we will design a controller based
on the dynamic feedback linearization technique. We recall that in the following
x = (q, q̇,RR,ωR) is the system state, u = [fR τ>R τ̄W ]> = [u1 u2 u3 u4 u5]> is
the input vector and the outputs are

i) ya = [ya1 ya2 ya3 ya4 ya5 ]> = [l ϕ δ fL ηi]> ∈ R5,

ii) yb = [yb1 yb2 yb3 yb4 yb5]> = [l ϕ δ ϑA ηi]> ∈ R5 and

iii) yc = [yc1 yc2 yc3 yc4]> = [l ϕ δ ηi]> ∈ R4.

4.7.1 Force-related feedback linearizing output

In the previous sections we considered ηi as the yaw angle when the rotation of
FR is parametrized by the Euler angles. However, in the following we consider any
generic parametrization η = [η1 η3 η3]> ∈ R3 of RR, such that RR = RR(η) and
η̇ = TηωR where Tη(η) ∈ R3×3 is given by the particular parametrization [Murray–
1994]. From (4.3) the dynamics of η is
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η̈ = ṪηωR + TηJ−1
R (JRωR × ωR)︸ ︷︷ ︸

bη(η, η̇)

+ [ 03×1 TηJ−1
R 03×1 ]︸ ︷︷ ︸

Eη(η)

u. (4.44)

Then we consider ηi as any entry of η such that, in the domain of interest, it holds

eηi = ∂η̈i
∂τRz

= e>i TηJ−1
R e3 6= 0. (4.45)

For example, taking η = [φ θ ψ]> as the classical Roll-Pitch-Yaw parametrization
of RR and ηi = ψ, we have that

Tη(η) =


1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

 and eηi = 1
JR33

cosφ sec θ, (4.46)

Notice that for this choice (4.45) holds always except for φ = π/2 and θ = π/2.
Intuitively, only τ̄W and fR play a role in the control of l, ϕ, δ and fL (see (4.10))

and they are not affected by τRz. Indeed fR is not influenced by rotations along
zR and therefore not even by the torque τRz acting about it. Then it is necessary
to complete the set of outputs with a quantity dynamically dependent on τRz to
have a well-posed tracking problem. Thus, we recall that the output of interest is
ya = [ya1 ya2 ya3 ya4 ya5 ]> = [l ϕ δ fL ηi]> ∈ R5

Applying the feedback linearization technique (see Sec. 2.3), and recalling equa-
tions (4.10) and (4.44), we immediately see that (ya1 , ya2 , ya3) have to be differentiated
twice until fR and τ̄W appear. Also ya5 has to be differentiated twice until τR ap-
pears, while ya4 directly depends on fR and τ̄W . Defining ȳa1 = [ÿa1 ÿa2 ÿa3 ya4 ]> and
rearranging (4.10) and (4.44), we can writeȳa1

ÿa5

 =

W̄a
bηi

+

W̄U
eηi

u = b(x,X2
C) + E(x,X0

C)u, (4.47)

where W̄ = W−1, bηi = e>i bη, eηi = e>i Eη, the vector b(x,X2
C) gathers all the

terms that do not depend on the inputs and

U =

−R>CRRe3 03×3 03×1

0 01×3 1


4×5

(4.48)

E =

 W̄ 04×1

01×4 1



−R>CRRe3 03×3 03×1

0 01×3 1
0 e>i TηJ−1

R 0


5×5

. (4.49)

We recall that Rearranging the rows of the decoupling matrix E one can notice that
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it is clearly singular because τR does not appear in the expression of ȳa1.
As explained in Sec. 2.3, to obtain a full rank matrix we insert a dynamic

compensator considering as new input ū = [ü1 u2 u3 u4 ü5]>, where ü1 and ü5
are the second derivative of fR and τ̄W , respectively. Under this definition ȳa1 and
ya5 have to be differentiated twice to see the new inputs appear:ȳa1

ÿa5

 =

 ¨̄W(a + au) + 2 ˙̄W(ȧ + ȧu) + W̄(ä + äu)
bi + eηiū

 , (4.50)

where äu, after replacing the system dynamics, results:

äu = ¯̈au +

−u1R>CRR

[
J−1
R τR

]
×

e3 − ü1R>CRRe3

ü5

 . (4.51)

Since JR is diagonal, i.e., JRkm = 0 for k 6= m and k,m ∈ {1, 2, 3}, writing the skew
symmetric matrix relative to J−1

R τR and doing some algebra we obtain[
J−1
R τR

]
×

e3 =
[
− e2
JR11

e1
JR22

03×1
]
τR. (4.52)

Replacing equations (4.52) and (4.51) into (4.50) we obtain[
¨̄ya1
ÿa5

]
=
[ ¨̄W(a + au) + 2 ˙̄W(ȧ + ȧu) + W̄(ä + ¯̈au)

bi

]
︸ ︷︷ ︸

b̄(x̄,X4
C)

+
[
W̄Ū
eηi

]
︸ ︷︷ ︸

Ē(x̄,X0
C)

ū,
(4.53)

where Ū =
[
−R>CRRT 03×1

01×4 1

]
, x̄ = (q, q̇,RR,ωR, fR, ˙fR, τ̄W , ˙̄τW ) is the extended

state, and T = [e3 − u1
JR11

e2
u1
JR22

e1 03×1] ∈ R3×4. Changing the order of the inputs

as in ũ = [u1 u2 u3 u5 u4]>, the decoupling matrix becomes Ẽ =

Ẽ1 01×3

ẽ3 eηi

,
where Ẽ1 = W̄

 Ũ1 03×1

01×3 1

, ẽ3 =
[
0 e>i TηJ−1

R e1 e>i TηJ−1
R e2 0

]
,

Ũ1 = −R>CRR

[
e3 − u1

JR11
e2

u1
JR22

e1

]
= −R>CRRT̃.

The original decoupling matrix Ē is invertible if Ẽ is invertible, or equivalently,
due to its canonical form, if Ẽ1 is invertible and eηi is nonzero. Since the matrices
RC , RR and W̄ are always full rank (except in the model singularities, i.e., l = 0
and δ = ±π/2), then Ũ1 is invertible whenever T̃ is full rank, i.e., if u1 6= 0, indeed
det(T̃) = u2

1/(JR11JR22).
In the cases in which the thrust u1 is not zero and with the opportune parametriza-

tion of RR, using the control law

ū = Ē(x̄,X0
C)−1

[
−b̄(x̄,X4

C) + va
]
, (4.54)
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Figure 4.7 – Block diagram representation of the control strategy.

where va = [va1 va2 va3 va4 va5 ]> ∈ R5 are virtual inputs, we obtain

ya1
(4) = va1 , ya2

(4) = va2 , ya3
(4) = va3 , ya4

(2) = va4 , ya5
(2) = va5 . (4.55)

Furthermore, the total relative degree with respect to ya is ra = 16 that cor-
responds to the dimension of the extended state x̄ that is n̄ = 16. Indeed it is
composed by x (of dimension 12) plus the four states of the dynamic compensator.
Therefore the system is exactly dynamic feedback linearizable and the linearized
system (4.55) does not have an internal dynamics [Khalil–2001].

Outer linear controller In the following we will omit the subscript ·a since the
same outer-loop control can be applied to track both ya and yb, after the application
of the opportune linearizing control law.

The tracking of any given desired trajectory, ydi (t) ∈ C3 for i = 1, 2, 3 and
ydj (t) ∈ C1 for j = 4, 5 can be achieved applying any linear control technique to the
equivalent linear system (4.55), as depicted in Fig. 4.7. As explained in Sec. 2.3,
it is sufficient to use as outer loop a simple controller based on the pole placing
technique. Setting the virtual control inputs as

vi = y
d(4)
i + k>i ξi, vj = y

d(2)
j + k>j ξj , (4.56)

where ξi = [ξ(3)
i ξ̈i ξ̇i ξi]> ∈ R4, ξj = [ξ̇j ξj ]> ∈ R2, ξi = ydi − yi and ξj = ydj − yj

are the tracking errors, one can set the poles of the error dynamics through the
gains ki ∈ R4

>0 and kj ∈ R2
>0, for i = 1, 2, 3 and j = 4, 5, to obtain a sufficiently

fast exponentially tracking of the desired trajectories.
All the previous results are summarized in the following

Proposition 4. For the analyzed system it exists at least one parametrization η of
RR and one of its elements ηi such that ya = [l ϕ δ fL ηi]> is an exact feedback
linearizing output for each state, except if l = 0, δ = ±π/2 and u1 = 0 (zero thrust
case). Furthermore, considering as input ū = [ü1 u2 u3 u4 ü5]>, the control law
ū = ΓaDFL(x̄,X4

C ,yad(t)) defined by (4.54) and (4.56) exponentially steers ya along
the desired trajectories yai d(t) ∈ C3 for i = 1, 2, 3, and yaj d(t) ∈ C1 for j = 4, 5.
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Remark. In order to implement the exact tracking control laws (4.54)–(4.56) the
only needed quantities are
• the desired output trajectory and its derivatives y?di , ẏ?di , ÿ?di ,

...
y ?di ,

....
y ?d
i for

i = 1, 2, 3, and y?dj , ẏ?dj , ÿdj for j = 4, 5, where y?i is either yai or ybi
• a measurement of system state, i.e., x = (q, q̇,RR,ωR)
• the internal state of the compensators fR, ˙fR, τ̄W , ˙̄τW
• the position and orientation of the moving platform and their derivatives X4

C .

We recall that an explicit measurement of the output and its derivatives is not
needed at all, since they are algebraic functions of the state and input.

4.7.2 Attitude-related feedback linearizing output

Now we are ready to show that yb = [yb1 yb2 yb3 yb4 yb5]> = [l ϕ δ ϑA ηi]> ∈ R5 is a
feedback linearizing output. Similarly to Sec. 4.5.2, we firstly show that yb and its
derivatives can be written as a function of ya and its derivatives, and Xi

C with i > 0.
In particular, we shall show that [yb1

(4)
ÿb4 ÿb5]>, linearly depends on [ya1(4) ÿa4 ÿa5 ]>,

i.e., there exists the functions byb(ya1, . . . ,ya1(3),X4
C) and Eyb(ya1,X0

C) such that


yb1

(4)

ÿb4

ÿb5

 = byb(ya1, . . . ,ya1(3),X4
C) + Eyb(ya1,X0

C)


ya1(4)

ÿa4

ÿa5

 . (4.57)

Let us first extract fR from (4.9), and differentiate it twice, showing the depen-
dence on ya and its derivatives:

fR = −RC(ax + ag)︸ ︷︷ ︸
b′fR(ya1, ẏa1,X2

C)

+
[
mRRCJq d

]
︸ ︷︷ ︸

EfR(ya1,X0
C) = [E′fRe′′fR ]

ȳa (4.58)

f̈R = bfR(ya1, . . . ,ya1(3),X4
C) + EfR(ya1,X0

C)¨̄ya, (4.59)

where bfR gathers all the terms that do not depend on ¨̄ya. Similarly, can write zR
and its derivatives as function of fR and its derivatives, and thus as function of ya
and its derivatives:

zR = fR/ ‖fR‖ (4.60)
żR = 1/ ‖fR‖ (I3 − zRz>R)ḟR = EzR(ya1, ẏa1,X2

C)ḟR (4.61)

żR = bzR(ya1, . . . ,ya1(3),X4
C) + EzREfR

¨̄ya, (4.62)

where bzR gathers all the terms that do not depend on ¨̄ya.
Let us now compute the second derivative of α, expressing it as function of ya

and its derivatives, replacing the previous equations where necessary.

α̈ = bα(ya1, . . . ,ya1(3),X4
C)−PLEzREfR

¨̄ya, (4.63)
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where bα gathers all the terms that do not depend on ¨̄ya.
Finally, we can compute the derivatives of yb4 = ϑA in order to obtain the form

in (4.57)

ẏb4 = 1
α2

1 + α2
3

[
−α3 α1

] α̇1

α̇3

 = 1
‖α‖2

α>
[
−e3 0 e1

]
︸ ︷︷ ︸
eyb4(ya1, . . . ,ya1(3),X4

C)

α̇ (4.64)

ÿb4 = b′
yb4
− eyb4α̈ = byb4 − eyb4PLEzREfR

¨̄ya (4.65)

where b′
yb4

and byb4 gather all the terms that do not depend on α̈ and ¨̄ya, respectively.

Finally, noticing that yb1 = ya1 and yb5 = ya5 we can write the following equation,
equal to the sought form (4.57)


yb1

(4)

ÿb4

ÿb5

 =


0

byb4
0


︸ ︷︷ ︸

byb(ya1, . . . ,ya1(3),X4
C)

+


I3 0 0
e′
yb4

e′′
yb4

0

0 0 1


︸ ︷︷ ︸
Eyb(ya1,X0

C)


ya1(4)

ÿa4

ÿa5

 , (4.66)

where e′
yb4

= −eyb4PLEzRE′fR and e′′
yb4

= −eyb4PLEzRe′′fR . Now we are ready to prove
that the system is dynamic feedback linearizable with respect to yb. From Sec. 4.7.1,
notice that (ya1, ẏa1, ÿa1,ya1(3)) is a function of (x̄,X4

C). Furthermore, replacing (4.53)
into (4.66) we obtain:

yb1
(4)

ÿb4

ÿb5

 = byb + Eybb̄ + EybĒū = b̄yb(x̄,X2
C) + Ēyb(x̄,X0

C)ū. (4.67)

Therefore, we can conclude that yb is a dynamic feedback linearizing output for
all x̄ such that the decoupling matrix Ēyb is invertible, i.e., such that Eyb and Ē
are full rank. From Sec. 4.7.1, Ē is full rank if l 6= 0, δ 6= ±π/2 and u1 6= 0. On
the other hand, Eyb is invertible if e′′

yb4
6= 0. Recalling the expression of e′′

yb4
, Eyb is

invertible if

(PLzR)>
[
−e3 0 e1

]
PL(I3 − zRz>R)d 6= 0. (4.68)

In order to simplify the notation, let us define v1 = PLzR and v2 = PL(I3−zRz>R)d.
Noticing that [−e3 0 e1] is the skew symmetric matrix relative to e2, we have that
the previous inequality is equal to v>1 (e2 × v2) 6= 0, that we can also write as
e>2 (v2 × v1) 6= 0. Since v1 and v2 belong to the same plane PL, (v2 × v1) is
orthogonal to PL and thus parallel to yL. Notice that yL is equal to e2 in frame
FL. Therefore e>2 (v2 × v1) 6= 0 if and only if (v2 × v1) 6= 0.
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In order to study the conditions for which PL(I3− zRz>R)d×PLzR 6= 0, we can
show that PL(I3 − zRz>R)d×PLzR = PLd×PLzR. Indeed,

PL(I3 − zRz>R)d×PLzR −PLd×PLzR = 0 (4.69a)(
PL(I3 − zRz>R)d−PLd

)
×PLzR = 0 (4.69b)

PLzRz>Rd×PLzR = 0. (4.69c)

The previous equivalent conditions always hold since zRz>R is the projector on zR
and therefore zRz>Rd is always parallel to PLzR (or zero).

Finally, we have that Eyb is invertible if PLd × PLzR 6= 0, and therefore if
zR is not perpendicular to the plane PL and if PLzR and PLd are not parallel,
i.e., if zR 6⊥ PL and PLzR 6‖ PLd. Summarizing, the decoupling matrix Ēyb is
invertible, and thus yb is a feedback linearizing output, for all the states except if
l = 0 and δ = ±π/2 (singularity of the spherical coordinates), u1 = 0 (singularity
of the feedback linearization with respect to ya), zR ⊥ PL and PLzR ‖ PLd.

In the cases in which Ēyb is invertible, using the control law

ū = Ēyb(x̄,X0
C)−1

[
−b̄yb(x̄,X2

C) + vb
]
, (4.70)

where vb = [vb1 vb2 vb3 vb4 vb5]> ∈ R5 are virtual inputs, we obtain

yb1
(4) = vb1, yb2

(4) = vb2, yb3
(4) = vb3, yb4

(2) = vb4, yb5
(2) = vb5. (4.71)

Furthermore, the total relative degree with respect to yb is rb = 16 that cor-
responds to the dimension of the extended state x̄ that is n̄ = 16. Therefore the
system is exactly dynamic feedback linearizable and the linearized system (4.71)
does not have an internal dynamics.

As done in Sec. 4.7.1, to track a desired trajectory ybd(t), we can apply to the
linearized system (4.71) a linear controller, as the one in (4.56) obtaining a control
strategy similar to the one represented in Fig. 4.7.

Proposition 5. For the analyzed system it exists at least one parametrization η of
RR and one of its elements ηi such that yb = [l ϕ δ ϑA ηi]> is an exact feedback
linearizing output for each state, except if l = 0, δ = ±π/2, u1 = 0, zR ⊥ PL
and PLzR ‖ PLd. Furthermore, considering as input ū = [ü1 u2 u3 u4 ü5]>, the
control law ū = ΓbDFL(x̄,X4

C ,ybd(t)) defined by (4.70) and (4.56) (properly adapted),
exponentially steers yb along the desired trajectories ybi d(t) ∈ C3 for i = 1, 2, 3, and
ybj
d(t) ∈ C1 for j = 4, 5.

4.7.3 Dynamic feedback linearization for passive link actuator

Considering yc as output of interest and applying the feedback linearization tech-
nique, we need to differentiate each entry of yc until the input appears. From (4.16)
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and (4.44), yc has to be differentiated twice to see the input appear:ÿc1
ÿc4

 =

M̄a
bηi

+

M̄Q
eηi

u =

M̄a′

bηi


︸ ︷︷ ︸

byc(x,X2
C)

+

−J>q R>CRRe3 03×3

0 e>i TηJ−1
R


︸ ︷︷ ︸

Eyc(x,X0
C)

u′,
(4.72)

where M̄ = M′−1 and a′ = −c′ − g′ − n′ −w′. Similarly to the previous cases, the
decoupling matrix Eyc is singular for every conditions because τR does not appear
on ÿc1. This means that the system is not statically feedback linearizable.

As done before, we can apply a dynamic feedback inserting a dynamic compen-
sator in the control u1. Consider as new input the second derivative of the thrust
and the torque, i.e., ū′ = [ü1 u>2 ]>. Now ÿc1 has to be differentiated four times to
see ū′ appear, while for yc4 everything remains the same, indeed:ÿc1(4)

yc4

 =

 ¨̄M(a′ + au′) + 2 ˙̄M(ȧ′ + ȧu′) + M̄(ä′ + äu′)
bi + eηiū

 , (4.73)

where äu′ , after replacing the system dynamics, results:

äu′ = ¯̈au′ + J>q R>CRR(−ü1e3 − u1
[
J−1
R τR

]
×

e3), (4.74)

where ¯̈au′ gathers all the terms that do not depend on ū′. Replacing equations (4.52)
and (4.74) into (4.73) we obtainy(4)

q

ÿ4

 = b̄yc(x̄,X4
C) +

M̄J>q R>CRRT 03×1

ẽ3 ẽ2


︸ ︷︷ ︸

Ēyc(x̄,X0
C)

ū′, (4.75)

where b̄(x̄,X4
C) collects all the terms that do not depend on ū′, ẽ2 = e>i TηJ−1

R e3,
and ẽ3 = e>i TηJ−1

R [03×1 e1 e2]. Similar to Sec. 4.7.1, the decoupling matrix Ēyc

results to be invertible if u1 6= 0 and if the parametrization η of RR and one of its
elements ηi are chosen such that ẽ2 6= 0, i.e., if (4.45) is verified in the domain of
interest. Then, in the case in which Ēyc is invertible, defining vc = [vc1 vc2 vc3 vc4]> ∈
R4 as virtual inputs, the control law

ū′ = Ēyc(x̄,X0
C)−1

[
−b̄yc(x̄,X4

C) + vc
]
, (4.76)

brings the original system in the equivalent linear one:

yc1
(4) = vc1, yc2

(4) = vc2, yc3
(4) = vc3, yc4

(2) = vc4. (4.77)

This means that the system results to be exactly linearizable through dynamic
feedback and the linearized system (4.77) does not have an internal dynamics.
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Indeed, the total relative degree with respect to yc is rc = 4 + 4 + 4 + 2 = 14 = n̄,
where n̄ is dimension of the extended state x̄.

As done in Sec. 4.7.1, to track a desired trajectory ycd(t), we can apply to the
linearized system (4.77) a linear controller as the one in (4.56) obtaining a control
strategy similar to the one represented in Fig. 4.7.

Proposition 6. For the analyzed system it exists at least one parametrization η
of RR and one of its elements ηi such that yc = [l ϕ δ ηi]> is an exact feedback
linearizing output for each state, except if l = 0, δ = ±π/2, u1 = 0. Furthermore,
considering as input ū′ = [ü1 u2 u3 u4]>, the control law ū′ = ΓcDFL(x̄,X4

C ,ycd(t))
defined by (4.76) and (4.56) (properly adapted), exponentially steers yc along the
desired trajectories yci d(t) ∈ C3 for i = 1, 2, 3, and yc4d(t) ∈ C1.

4.7.4 Dynamic feedback linearization for the reduced model

It is easy to recast all the controllers presented so far for the reduced model presented
in Sec. 4.4. Indeed this is a sub-case of the general system. However, we found
out that for this reduced morel, the tracking of the output ybr = [ϕ ϑA]> can
be obtained with a simpler static-feedback linearizing controller, ΓbSFLr. For the
corresponding details we refer the interested reader to6 [Tognon–2017a]. Notice that
the control actions required by this controller may be discontinuous due to, e.g.,
desired trajectories possessing a discontinuity in the second derivative or simply,
in the real case, due to some noise in the measurements. This has to be taken
into account in case one would like, e.g., to minimize mechanical vibrations of
the link. Furthermore, as recalled in Sec. 3.3.1, one has to keep in mind that
discontinuous inputs cannot be performed by the physical system in exam because
the acceleration of both propeller rotation and the corresponding air flow cannot
be infinite. However, if one needs to enforce smoother inputs it possible to apply a
dynamic compensator in order to get a sufficiently smooth control signal.

Table 4.4 summarizes all the controllers designed so far for the general and
particular systems.

4.8 State estimation

In Remark 2 we already highlighted the fact that in order to compute the control
action, only the system state and the knowledge of the trajectory of the platform
are needed. Assuming that w1 = X4

C (we recall that X4
C is defined in (4.13)) is

a priori known or it is estimated/measured on-line by a set of sensors, then only
the knowledge of x is need to close the control loop. One could directly measure
x by using a collection of sensors such as a GPS, cameras, tracking systems etc.
In this section we shall demonstrate that exploiting the tautness of the cable (i.e.,
when fL 6= 0) it is possible to retrieve x from a standard set of sensors summarized

6Notice that in [Tognon–2017a] we considered θ as part of the output instead of ϑA. However,
in the 2D plane, ϑA = θ so the results are still valid.



4.8. State estimation 71

Ctrl. Cont. outputs Goal Method Type Singularities

ΓaHC (l, ϕ, δ, fL, ηi) stabilization hierarchical static fR = 0

ΓbHC (l, ϕ, δ, ϑA, ηi) stabilization hierarchical static
fR = 0,
zR ⊥ PL,
PLzR ‖ PLd

ΓcHC (l, ϕ, δ, ηi)
stabilization
(passive link
actuator)

hierarchical static fR = 0

ΓaDFL (l, ϕ, δ, fL, ηi) tracking DFL dynamic fR = 0, l = 0,
δ = ±π/2

ΓbDFL (l, ϕ, δ, ϑA, ηi) tracking DFL dynamic

fR = 0, l = 0,
δ = ±π/2,
zR ⊥ PL,
PLzR ‖ PLd

ΓcDFL (l, ϕ, δ, ηi)
tracking
(passive link
actuator)

DFL dynamic fR = 0, l = 0,
δ = ±π/2

ΓbSFLr (ϕ, ϑA) tracking (re-
duced model) SFL static ϑA = 0

Table 4.4 – List of designed controllers with the corresponding main features and
characteristics.

in Tab. 4.5. In particular, from the moving platform side, we assume to have an
encoder that measures the absolute rotation of the link actuator. Assuming no
backlash and constant radius rW , this is equivalent to measure the length of the
link, i.e., w2 = rWϑW = l. Furthermore, using a gimbal-like system based on
two encoders (see [Sandino–2014b] for a similar mechanism), we can measure the
direction of the link, i.e., w3 = ϕ and w4 = δ.

The aerial vehicle is instead equipped with a standard sensory configuration
composed by a 3-axis accelerometer, gyroscope and magnetometer mounted on OR
and aligned along the axis of FR. Recalling the sensor models provided in Sec. 3.4,

# Type Position Reference Measurement

w1 - OC FW X4
C

w2 absolute encoder OC FC ϑW ≈ l
w3 absolute encoder OC FC ϕ

w4 absolute encoder OC FC δ

w5 accelerometer OR FR RR(p̈WR − ge3)
w6 gyroscope OR FR ωR

w7 magnetometer OR FR RRhW

Table 4.5 – List of sensors.
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the accelerometer measures the specific acceleration of OR in FR, i.e.:

w5 = R>R(p̈WR + ge3). (4.78)

The gyroscope measures the angular velocity of FR with respect to FW , expressed
in FR, i.e., w6 = ωR. Finally the magnetometer measures the known unit vector
hW ∈ S2 describing the magnetic field direction expressed in FR:

w7 = R>RhW . (4.79)

Using this sensory configuration, part of the state is already measured, though it
remains to estimate RR and q̇. From the accelerometer, replacing (4.5) into (4.78),
we obtain

fLR>RRC(w1)dC(w3, w4) = −mRw5 − fRe3. (4.80)

We define w8 = ‖−mRw5 − fRe3‖. Notice that, since the controller guarantees
a taut/compressed link, it must be that fL 6= 0, thus w8 = fL. Defining sR1 =
(−mRw5 − fRe3)/w8 and sW1 = RC(w1)dC(w3, w4) we have that RRsR1 = sW1 .
Using also the magnetometer we obtain a direct measurement of RR in the following
way. Under the assumption that sR1 and w7 are not parallel, let us define sR2 =
(sR1 ×w7)/

∥∥∥sR1 ×w7
∥∥∥ and sR3 = sR1 × sR2 . We then get

RRsR2 = RR(sR1 ×w7) = sW1 × hW = sW2 (4.81)
RRsR3 = RR(sR1 × sR2 ) = sW1 × sW2 = sW3 , (4.82)

where {sR1 , sR2 , sR3 } is an orthonormal basis and SR = [sR1 sR2 sR3 ] ∈ SO(3). Then,
defining SW = [sW1 sW2 sW3 ], we obtain a direct measurements of RR from the
sensors (w1, w3, w4,w5,w7) as:

RR = SWSR> = WR(w1, w3, w4,w5,w7). (4.83)

Notice that we can find RR only if dW and hW are not parallel (otherwise
sW1 × hW = 03) and if fL 6= 0. Indeed, if fL = 0 the link becomes slack and the
aerial vehicle results decoupled from the rest of the system. In this condition is then
not possible to estimate the attitude of the vehicle in a direct way. Nevertheless,
this is not a practical issue since the proposed controller guarantees any non zero
internal force7. Regarding the special case in which we ask a zero internal force
for just an instant, e.g., passing from tension to compression, we provide a short
discussion in Sec. 4.10. Furthermore, the magnetometer can be replaced with any
sensor able to measure a known vector in FW expressed in FR not parallel to dW .
In the presence of noisy measurements one can exploit WR and w6 designing a

7As already said, in a preliminary phase one can bring the cable in a taut condition using a
near hovering control [Gioioso–2014a]. Then it can be replaced with our controller to maintain the
desired tension or compression.
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filter to obtain a better estimation of RR and ωR [Mahony–2008].
After having shown how to estimate RR from the measurements, it remains to

estimate q̇. Defining z = [l l̇ ϕ ϕ̇ δ δ̇] ∈ R6 we can write its dynamics (see (4.11))
and the respective measurements as

ż = Az + Bσ(z,ut,RR,X2
C)

wz = [w2 w3 w4]> = Cz,
(4.84)

where8 A = diag9(A′,A′,A′), B = diag(B′,B′,B′), C = diag(C′,C′,C′), A′ =
[ 0 1

0 0 ], B′ = [ 0
1 ], C′ = [ 1 0 ]. Thanks to the particular canonical form of (4.84), in

order to get an estimation of z, it is possible to apply the following nonlinear high
gain observer (HGO) (see Sec. 2.4 )

˙̂z = Aẑ + Bσ(ẑ,ut,WR,w1) + H(wz −Cẑ), (4.85)

where H = diag(H′,H′,H′) and H′ = [α1
ε

α2
ε2 ]>, with ε ∈ R>0, and the gains

(α1, α2) ∈ R>0 are set such that the roots of s2 + α1s+ α2 have negative real part.
The gains (α1, α2) influence the convergence rate of the estimation.

Summarizing, using the standard sensory configuration of Tab. 4.5, we were able
to achieve the third goal obtaining an estimation of the whole state:

l̂ = ẑ1 ϕ̂ = ẑ3 δ̂ = ẑ5 R̂R = WR

ˆ̇l = ẑ2 ˆ̇ϕ = ẑ4
ˆ̇δ = ẑ6 ω̂R = w6.

(4.86)

Closed Loop Stability

In Sec. 4.7 we saw that the control law ΓaDFL, ΓbDFL and ΓcDFL need only the knowl-
edge of the state and of the trajectory of the platform in order to close the loop.
Thus we can use the state estimation provided by the proposed observer as feed-
back for the controller. Though, since the system is nonlinear, one cannot apply
the separation principle like in the linear case. Nevertheless, thanks to the direct
measurements of some entry of the state and to the particular kind of translational
dynamics, i.e., triangular block dynamics with a direct measurement of the first
state of each block, it can be shown that a strong property holds [Khalil–2001].
In fact, since the closed loop system by the state feedback controller is exponen-
tially stable for every state except the its singularities (see Tab. 4.4), there exist
a ε̄ such that, for every 0 < ε ≤ ε̄ in (4.85), the closed loop system with the ob-
server is exponentially stable, except for the zero stress case and for the controller
singularities [Khalil–2001] (see Sec. 2.4).

8diag(X1, . . . ,Xn) is a block matrix having on the main block diagonal the matrices Xi, whereas
the off-diagonal blocks are zero matrices.
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Discussion on platform state measurement

To obtain a perfect tracking one has to know the derivatives of pCC(t) up to the
fourth order and of ωC(t) up to the third order (see Sec. 4.7). Although any
controller (not only the one proposed here) needs to know (implicitly or explicitly)
those variables to obtain a zero tracking error, it is difficult in practice to directly
measure the higher-order derivatives.

In order to overcome such issue, some practical techniques could be applied
which are here shortly mentioned. If the model and control input of the system are
known (e.g., in the case of an autonomous vehicle), an observer can be designed to
retrieve the needed derivatives of pCC and ωC . Without the dynamic model but with
a set of measurements of some derivatives, one can use standard tracking technique
or, if the trajectory of the vehicle is sufficiently ‘low frequency’, the missing higher
derivatives could be simply assumed negligible and equal to zero. For the last case,
in Sec. 5.3.1 we show that the tracking error remains small and bounded.

4.9 State estimation for the reduced model

As said in the previous section, finding the minimal sensory setup that still allows
to retrieve the full state estimation is a very important problem, for safety but
also for technical and cost-related problems. Driven by these practical reasons and
also by the intrinsic theoretical appeal of solving control problems with minimal
sensing, in this section we show that the standard on-board inertial sensor (i.e.,
an accelerometer plus a gyroscope) is sufficient to estimate the full state of the
reduced system presented at the end of Sec. 4.4. We recall that the latter consists
of a tethered aerial vehicles constrained to move on a 2D vertical plane, with the
link fixed to the ground and characterized by a constant length. Its dynamics is
given by (4.18). We then show the design of an exact nonlinear observer for that
purpose. Of course the state estimator designed in Sec. 4.8 can be still applied for
the 2D case, but the corresponding sensory setup results non minimal. Indeed, the
encoder directly measuring the elevation is not needed in this case.

Under the 2D constraints we can redefine the state vector as x = [ϕ ϕ̇ θ θ̇]> =
[x1 x2 x3 x4]> ∈ R4 and the input vector as u = [fR τRy]> = [u1 u2]>. In view of
those definitions we can rewrite the 2D dynamic model (4.18) in a more convenient
state space form:

ẋ =


x2

a1cx1

x4

0

+


0 0

a2cx1+x3 0
0 0
0 a3

u, (4.87)

where a1 = −g/l, a2 = 1/(mRl), a3 = 1/JR22 are the constant parameters of the
dynamical model. As normal in the literature we define s? = sin (?) and c? = cos (?).
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Again, the on-board inertial sensor provides the following measurements:

ω = x4 (4.88)

a = R>R(p̈R + gzW ) = [ax ay az]> . (4.89)

From now on we omit the second row which is zero by construction, i.e., we assume
a = [ax az]>.

Observing the full state of system (4.87) using the partial measurements (4.88),
and (4.89) is a nontrivial nonlinear observation problem, where the nonlinearities
appear both in the system dynamics and in the measurements. We show in the
following how this problem can be successfully tackled. Fist of all exploiting (4.88)
we can define the gyroscope measurement as a new input u3 = ω that lets us
reduce the system dimension from four to three. Then, substituting (4.7) and (4.87)
into (4.89) and performing some simple algebraic manipulation on the accelerometer
measurement we obtain

ẋ1

ẋ2

ẋ3

 =


0 1 0
0 0 0
0 0 0



x1

x2

x3

+


0

a1cx1 + a2cx1+x3u1

u3

 (4.90)

a =

 lcx1+x3

(
x2

2 + a1sx1 + a2sx1+x3u1
)

lsx1+x3

(
x2

2 + a1sx1 + a2sx1+x3u1
)
− a2u1

 . (4.91)

The problem is then ‘reduced’ to the observation of the state [x1 x2 x3]> from the
knowledge of the measurements a and the inputs [u1 u3]>. However this problem
is still nonlinear both in the system dynamics and in the measurement map.

Trying to apply the exact nonlinear high gain observer also in this case, the
system should be in the canonical form (2.15). Although at first view system (4.90–
4.91) does not resemble to a system in canonical form, we shall demonstrate in
the following that it can be put in that form using a few appropriate nonlinear
transformations.

4.9.1 State/output transformations and HGO design

In the following we prove that there exist a change of coordinates from the original
state x to a new state z = [z1 z2 z3]> and from the original measurements a to
a new measurement w such that the system (4.90–4.91) appears in the canonical
form presented in Sec. 2.4. While doing so we highlight also the intuitions that led
us to discover this particular change of coordinates.

First, since the term x1 +x3 occurs frequently in (4.90–4.91) a simplifying choice
is to assume z1 = x1 + x3. With this choice we have ż1 = ẋ1 + ẋ3 = x2 + u3 and
therefore it is natural to choose z2 = x2 to obtain ż1 = z2 + u3, thus matching with
the first row of the sought canonical form (2.15).

Now, if we compare the second and third rows of (4.90), with the corresponding
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rows of the sought canonical form (2.15) we see that: i) in the canonical form (2.15)
the state-dependent nonlinearity φ appears only in the last row of the dynamics,
but, on the other hand ii) in (4.90) the nonlinearity appears already in the second
row. Therefore, in order to push this ‘undesired’ nonlinearity down from the second
to the third row we can define z3 = ż2 = ẋ2 = a1cx1 + a2cx1+x3u1. Summarizing,
we propose the following change of variables

z1 = x1 + x3, z2 = x2, z3 = ẋ2 = a1cx1 + a2cx1+x3u1, (4.92)

that transforms the system (4.90–4.91) in the following form

ż =


0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

A

z +


0
0
1


︸︷︷︸
B

σ′(z, sx1 , u1, u̇1, u3) +


u3

0
0


︸ ︷︷ ︸
λ(u3)

(4.93)

a =

 lcz1

(
z2

2 + a1sx1 + a2sz1u1
)

lsz1

(
z2

2 + a1sx1 + a2sz1u1
)
− a2u1

 , (4.94)

where the sole state-dependent nonlinearity σ′ = a1z2sx1 +a2cz1 u̇1−a2sz1(z2+u3)u1
is now appearing in the third row, as desired. Notice that we have, on purpose, left
the term sx1 untransformed. In the following we show why this choice is convenient
instead of directly computing sx1 from (4.92) .

To reach the form of (2.15) it remains to extract a measurement of z1 from the
accelerometer reading. From (4.94), defining

η =
√
a2
x + (az + a2u1)2 = ±l

(
z2

2 + a1sx1 + a2sz1u1
)
, (4.95)

we can obtain a direct measure of z1 writing

w = atan2 (±ax/η, ±(az + a2u1)/η) = z1 + kπ, (4.96)

where k ∈ {0, 1}. Notice that the transformation is possible only if η 6= 0.
From (4.12), the internal forces expression for the reduced system (4.87) results:

fL = 1
a2
x2

2 + a1
a2
sx1 + sx1+x3u1. (4.97)

Then, from equations (4.97) and (4.95) it results that

η = ± 1
mR

( 1
a2
z2

2 + a1
a2
sx1 + sz1u1

)
= ± fL

mR
, (4.98)

thus the transformation (4.96) requires non zero force along the link, fL 6= 0, as
in the previous section. Another time, this correspondence highlights, that the
condition fL 6= 0 it is not just related to our particular transformation choice but
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is a structural observability requirement. Indeed, if the force along the link is
zero, the aerial vehicle and the link become two independent systems10 and the
onboard inertial sensor is not enough to estimate the entire state. In the design of
the observer we need to consider this singularity especially for the cases where the
desired link force passes from a tension (fL > 0) to a compression (fL < 0).

The accelerometer is also used to replace sx1 into (4.93) obtaining the sought
canonical form(2.15). In particular from (4.95) we can write

sx1 =
(
±η/l − z2

2 − a2sz1u1
)
/a1. (4.99)

With reference to (4.93) we can then write σ′ = σ(z,µ), i.e., in terms of only z
and known quantities µ = [u1 u̇1 u3 ± η]>. Notice that the time derivative of the
thrust is needed. This can be computed numerically from u1 in an approximate way.
However, if one of the previous presented dynamic feedback linearizing controllers
is used (see Sec. 4.7), u̇1 is an internal state of the controller and so known precisely.

Observe that, the sign to be put in front of η is ambiguous. It is convenient
to recast this ambiguity putting always a positive sign and considering two pos-
sible values: η+ = +η and η− = −η. Corresponding to these quantities we then
get two different dynamic models, the one with (σ(z,µ+), w+) and the one with
(σ(z,µ−), w−) corresponding to the use of η+ and η−, respectively. At each time
instant only one choice for η is correct, i.e., η = fL/mR, to which corresponds the
correct measure w = z1 and the correct dynamics. It is not possible, however, to
discriminate the correct choice instantaneously from the measurements only. In
Sec. 4.9.4 we propose a discriminating solution based on the prediction error.

Although less intuitive, the computation of sx1 into (4.93) exploiting the ac-
celerometer readings, allows to concentrate the ambiguity only on the sign of η ob-
taining two possible dynamic models. Whereas with the more canonical technique,
i.e., inverting the state transformation, we would have four different dynamic mod-
els. Indeed from (4.92) we would get sx1 = ±

√
1− (z3 − a2cz1u1)2/a2

1 that presents
another ambiguity on the sign thus generating four possible combinations of the
dynamics and measurement equations.

For the design of the observer let us assume that the correct choice between η+
and η− is known. In Sec. 4.9.4 we shall propose a method to gain this knowledge.
Under this assumption, the described transformation of the state and the measure-
ments have finally transformed the original system (4.90–4.91) in an equivalent one
in a canonical form, i.e., ż = Az + Bσ(z,µ) + λ(µ) and w = [1 0 0]z = Cz, for
which we can use the following high gain observer [Khalil–2001]

˙̂z = Aẑ + Bσ(ẑ,µ) + λ(µ) + H(w −Cẑ), (4.100)

10In fact, due to the assumption that the mass and rotational inertia of the link are negligible,
the link force represents the only coupling force between the two sub-systems.
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w

η

fR, ḟR
HGO

x̂1 = ∠h(ẑ, fR, η)
x̂2 = ẑ2
x̂3 = ẑ1 − ∠h(ẑ, fR, η)
x̂4 = ω

ẑ

η

fR

x̂

Figure 4.8 – Observer.

where H =
[
α1
ε
α2
ε2

α3
ε3

]>
, ε ∈ R>0, and αi ∈ R>0 are set such that the roots of

p3 + α1p
2 + α2p+ α3 have negative real part11.

4.9.2 Observation of the original state

From the estimation of z, in order to obtain the estimation of the original state
x, we note that the state transformation (4.92) is not directly invertible. One can
notice that the only knowledge of z is not enough to retrieve x1, indeed from (4.92)
one can extract only cx1 . Nevertheless, exploiting also the accelerometer measure-
ments (4.99), we can write

cx1

sx1

 =


1
a1

(z3 − a2cz1u1)
1
a1

(η
l − z

2
2 − a2sz1u1

)
 = h(z, u1, η). (4.101)

The state x1 can then be computed as the phase of the unit vector h(z, u1, η)
denoted by ∠h(z, u1, η). Thus the estimation of the original state is given by

x̂ = x̂(ẑ, u1, η) =


∠h(ẑ, u1, η)

ẑ2

ẑ1 − ∠h(ẑ, u1, η)
u3

 . (4.102)

The full observer chain is then depicted in Fig. 4.8.

4.9.3 Closed-loop system stability with state observation

To prove the stability of the closed loop system when the control action is computed
from the estimated state, a similar reasoning to the one in Sec. 4.8 can be done.
In particular, for each of the state feedback linearizing controllers, since they are
stable out of some singularities (see Tab. 4.4) there exists ε? > 0 such that, for
every 0 < ε < ε?, the global closed loop system is exponentially convergent for every
state except for the zero internal link force and the for the controller singularities.
Although the convergence of the observer is almost global, an initialization phase

11The difference (w−Cζ̂) stands here for the unique angle β ∈ (−π, π] such that β+Cζ̂ = w+k2π
for a certain k ∈ Z.
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of the estimation can be useful in order to minimize the transient duration, e.g.,
using the method proposed in [Lupashin–2013] for a quasi static initial condition.

Furthermore notice that this observer cannot be directly employed with the
static controllers of Tab. 4.4. Indeed a measure of the derivative of the thrust
is needed. Nevertheless one can compute it numerically or applying a dynamic
compensator to such controllers. this last option is omitted in this thesis since it is
a trivial extension.

4.9.4 Disambiguation of η and observability discussion

As explained before, the transformation of the measurements presents an ambiguity
on the sign of η, that can be considered positive, η+, or negative, η−. We show
in this section how the correct choice can be easily made. Refer to Fig. 4.9 for a
graphical representation.

For each of the two possible choices let us implement an HGO equal to (4.100)

˙̂z+ = Aẑ+ + Bσ(ẑ+,µ+) + λ(µ+) + H(w+ −Cẑ+) (4.103)
˙̂z− = Aẑ− + Bσ(ẑ−,µ−) + λ(µ−) + H(w− −Cẑ−), (4.104)

obtaining two different estimations of the state (ẑ+, ẑ−), and therefore two different
estimations of the original state (x̂+, x̂−) of which only one is correct. In order to
select the correct state we propose a discrimination method based on the comparison
of the measurement prediction errors. At the first observer we assign a prediction
error ẽ+ smoothed with an exponential discount factor: ˙̃e+ = λ (‖a − â+‖ − ẽ+),
where λ ∈ R>0 sets the discount rate, and â+ is defined as

â+ =

 lcx̂1++x̂3+

(
x̂2

2+ + a1sx̂1+ + a2sx̂1++x̂3+u1
)

lsx̂1++x̂3+

(
x̂2

2+ + a1sx̂1+ + a2sx̂1++x̂3+u1
)
− a2u1

. (4.105)

The other prediction error ẽ− is defined similarly. Then we select the estimation
provided by the observer implementation which produces the prediction error closer
to zero, i.e., x̂ = x̂+ if ẽ+ ≤ ẽ− and x̂ = x̂− otherwise.

In Fig. 4.9 we represent the full observer with the discrimination chain. Notice
that the disambiguation of the two observers is not done directly using ẑ because is
not possible to write the predicted measure â as function of ẑ without introducing

Measures

transform.

a

ω

fR, ḟR

Observer

+

Observer

−
η−, w− Selector

x̂+

x̂−

ẽ+

ẽ−

x̂

η+, w+

Figure 4.9 – Global observer with disambiguation of η.
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Model Method
External
measure-
ments

Internal
mea-
sure-
ments

Transfor-
mations

Singu-
larities Degree Ambiguities

general HGO IMU, three
encoders - measures fL = 0 2 no

reduced HGO IMU ḟR
measures,
state fL = 0 2 2

Table 4.6 – List of designed observers with corresponding main features and char-
acteristics.

another ambiguity. Indeed, as we saw in Sec. 4.9.1, trying to replace x̂ with ẑ
into (4.105) inverting the state transformation (4.92), we introduce an ambiguity
on the sign of sx1 . Whereas the problem does not hold if we apply this discrimination
technique on the original state estimation (x̂+, x̂−).

Notice that for the motions that implies a constant elevation (x2 = 0), it is
not possible to discriminate the correct observer. Indeed, with x2 = 0 and since
w± = z1+kπ, after a transient the two observers converge to (ẑ1± = z1+kπ, ẑ2± = 0,
ẑ3± = 0), and, using (4.102), we obtain (x̂1± = x1 + kπ, x̂2± = 0, x̂3± = x3, x̂4± =
x4). Under this condition, from equation (4.105) it results that the prediction errors
of the two observers converge both to zero thus making ineffective the proposed
discrimination strategy. Nevertheless, in practice this is not a problem. Indeed, if
the controller loop is closed with the wrong observer then the wrong estimation will
let the control implement a law that is different from the sole that keeps x2 = 0
causing x2 6= 0 and thus the predictions errors will become discriminant.

Finally, notice that the ambiguity issue discussed in this section is present only in
the initial phases. Whenever the good observer is selected with sufficient certainty,
one can switch off the other. For this purpose one can set a confidence threshold
on the tracking error of the desired output. If an observer reaches the confidence
threshold then this is identified as the correct one and the other one is switched off.

4.10 Discussion on the proposed observers

In this thesis we proposed two observers for the state estimation of a tethered
aerial vehicle. One for the general system and one for the reduced one presented in
Sec. 4.4. The main features and characteristics of such observers are summarized
in Tab. 4.6. Some discussions about the applicability and the robustness of the
proposed observers follow.

Applicability

If the link force fL is zero then some of the measurement transformation shown for
both the general and reduced model cannot be determined. In the very special case
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that the link force has to be constantly equal to zero, the proposed observers are
not applicable12 (while the controller would still work). Nevertheless, the proposed
controller ΓaDFL can guarantee a nonzero link internal force. In the particular case
in which the desired link force is passing through zero for a sufficiently short time
interval, then the proposed observer can be still used in practice by updating the
filter without the correction term in that time instants. For example, for the reduced
model we can impose

˙̂z = Aẑ + Bσ(ẑ,µ) + λ(µ) if η = 0. (4.106)

In this way the error dynamics becomes non strictly stable for a short moment but
the dynamics returns asymptotically stable as soon as the link force returns to a
non-zero value.

Robustness

In order to deal with known drawbacks of the HGO, such as peaking phenomenon
and noise sensitivity, many common practical solutions have been presented in
the literature, see e.g., [Khalil–2001]. For example, to overcome the peaking phe-
nomenon, it is sufficient to saturate the estimated state on a bounded region that
defines the operative regions of the state for the system in exam. In the presence
of measurement noise, the use a switched-gain approach can guarantee a quick con-
vergence to the real state during the first phase while reducing the noise effects at
steady state.

12The static observer in [Lupashin–2013] requires a nonzero link force as well to work.
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Chapter 5

Single vehicle: validation

5.1 Introduction

In this chapter we shall present the results obtained by the experimental and nu-
merical campaign, apt to validate the proposed control and estimation methods
presented in Chap. 4. In particular, we recall that we designed:
• two hierarchical controllers for the outputs ya, yb;
• three dynamic feedback linearizing controllers for the output ya, yb, and yc;
• a nonlinear observer based on IMU and three encoders readings;
• a nonlinear observer based on the IMU readings only, valid for the reduced
model.

The first hierarchical controller has been mainly tested experimentally and has been
successfully employed to perform the landing and takeoff on/from a sloped surface
(see Chap. 6). The successive dynamic feedback linearizing controllers designed for
the tracking problem, and the nonlinear observers have been tested together by
a careful simulation campaign. We performed a thorough simulation analysis in
non ideal conditions as well, like with noisy measurements, parameter uncertainties
and so on. With this we assessed the robustness of the proposed methods and the
corresponding limits, beyond which the system turns out to be unstable. Due to
the limited available time, the implementation and the experimental test of those
controllers and observers are left as future work. Table 5.1 schematically shows the
performed validating tests and the sections in which the corresponding results are
shown.

We also remark the fact that the dynamic feedback linearizing controller for yb

Hierarchical controllers DFL controllers Observers
ya, yb ya yb yc 3D 2D

Sim. − 5.3.1, 5.4 5.4.2 (2D) 5.3.3 5.3.1 5.4
Exp. 5.2 × × × × ×

Table 5.1 – For each controller and observer we report the section in which the
relative validating results are reported. The symbol − on the first raw says that the
simulation tests for the hierarchical controller are not relevant, since the controller
has been already tested by real experiments. The symbol × indicates that the
validating tests for the DFL controllers and for the observers are not done yet, for
the limited time, but are left as future work.
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has been tested by simulations only for the reduced model. This because the dy-
namic feedback linearizability of the system w.r.t. yb for the generic model, and the
corresponding tracking controller have been found only very recently. Thus, we had
not the time to run exhaustive simulations to test it. This and the corresponding
experimental validation is also left as future work.

In the following we shall present the simulation and hardware setups used for
the validation of the proposed methods.

5.1.1 Simulation setup

All the simulations are carried out using Matlab Simulink and considering an aerial
vehicle with massmR = 1[Kg] and inertia JR = 0.25I3[Kg m2]. We assume constant
link actuator radius and inertia equal to rW = 0.2[m] and JW = 0.15[Kg m2],
respectively. The values of the gains and of the desired trajectories are specified in
the following, since they are different for each controller.

5.1.2 Hardware setup

The unidirectional-thrust aerial vehicle used for the experiments consists of a Quadro-
tor VTOL (see Fig. 5.1), weighting about 1[Kg]. The hardware of the vehicle is the
one of a Mikrokopter1 quadrotor. It is endowed with an IMU, and four brushless
motor controllers (BLDC ESC) regulating the propeller speed using an in-house
developed closed-loop speed controller [Franchi–2017].

We tested our controller with two different setups:

a) In the first, the quadrotor is linked to a fixed point on the ground by a rigid
structure made by carbon-fiber bars and 3D printed parts (see Fig. 5.1a). The
system implements the reduced model described in Sec. 4.4. In fact, the bar
constraints the vehicle to fly on a 2D vertical plane, but, at the same time,
does not constraint the vehicle orientation along the yR axes. The structure
has been designed such that the quadrotor can freely rotate between the two
lateral bars without touching them with the propellers. Furthermore the axis
of rotation has been brought as close as possible to the vehicle center of mass.
Although this setup constraints the vehicle on a reduced space, actually it
allows the aerial vehicle to exert on the link both tension and compression.

b) In the second, the quadrotor is equipped with a light cable with fixed length,
ending with a triple hook that can be anchored to a platform (see Fig. 5.1b).
The other end of the link is attached to the vehicle as close as possible to its
CoM. Once the cable is made taut, the tethered quadrotor can fly on a sphere
but can exert only tension on the link.

In both cases the link has a length of 1[m] while a mass of 0.13[Kg] and less than
0.01[Kg] for the first and second setup, respectively, thus negligible w.r.t. the vehicle
one.

1http://www.mikrokopter.de

http://www.mikrokopter.de
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(a) Quadrotor tethered by a bar-link. (b) Quadrotor tethered by a cable-link.

Figure 5.1 – Test bed used for testing the hierarchical controller for a tethered aerial
vehicle. On the left the robot is compressing the bar with a force equal to −12 [N],
being in an inclined hovering with ϑA = −80◦. On the right the robot is pulling
the cable with a force equal to 7 [N], being in an inclined hovering with ϑA = 30◦.

The control law, implemented in Matlab–Simulink, runs on a desktop PC send-
ing the commanded propeller velocities at 500 [Hz] through a serial communication.
The control loop is then closed based on the measurements of: i) the position and
attitude of the vehicle provided at 1 [kHz] by a UKF that fuses the Motion Capture
(Mo-Cap) system measurements at 120 [Hz] with the IMU measurements at 1 [kHz];
ii) the linear and angular velocities of the vehicle provided by the same UKF filter
at 1 [KHz].

5.2 Hierarchical controllers: experimental validation

In order to validate and test the performance of the proposed hierarchical controllers
we tried to track some dynamical trajectories showing the ability to independently
track the entries of ya and yb. The validation has been done by real experiments
with the platform described in Sec. 5.1.2, where the other end of the link has been
anchored to a very heavy load (much more than the total lifting of the vehicle).
Figure 5.1 shows the corresponding test beds.

Table 5.2 gathers the executed experiments specifying the corresponding test
bed, controller and giving a short description. The reader can choose to go directly
to the section of a specific experiment or to the corresponding plots.
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Test bed Controller Section # Description Figure

Bar-link
(Fig. 5.1a )

ΓaHC 5.2.1
1

Quasi static condi-
tions, initial tension
to vertical compres-
sion

5.2

2
Dynamic trajectory
with vertical com-
pression

5.3

Cable-link
(Fig. 5.1b )

ΓbHC 5.2.2

3 Time varying trajec-
tory on ϕ 5.4

4 Time varying trajec-
tory on ϑA

5.5

5
Time varying trajec-
tory on both ϕ and
ϑA

5.6

Table 5.2 – Validating experiments.

5.2.1 Hierarchical controller for ya

For these first tests we use the setup of Fig. 5.1a in order to show the ability of
the robot to apply forces to the link, and so to the ground, that go from tension
to compression and vice-versa, while changing its position. We shall show such
capability in two conditions:

1) The first is a quasi static condition. The robot is asked to follow a smooth
trajectory yad(t) = [ϕd(t) 0 0 fL

d(t)]> with t ∈ [0, T ] where T is the final
time and ϕd(0) = 20 [◦], ϕd(T ) = 90◦, fLd(0) = 5 [N], fLd(T ) = −20N .
Figure 5.2 shows the corresponding results and performed motion. One can
notice how the robot is able to keep the bar vertical while pushing it. Since
the desired compression is grater then the gravitational one, the robot has to
turn and push the bar with an upside down orientation. Even in this unusual
configuration for a standard qudrotor, the controlled system remains stable.

2) The second is a more dynamic trajectory. Like before, yad(t) = [ϕd(t) 0 0
fL

d(t)]> is such that ϕd(0) = 40 [◦], ϕd(T/2) = 90◦, ϕd(T/2) = 140◦, and
fL

d(0) = 5 [N], fLd(T/2) = −20N , fLd(T ) = 5 [N]. Figure 5.3 shows the
corresponding results and performed motion. In Fig. 5.3b one can notice that
to follow the desired trajectory the robot has to flip performing a turn of more
than 380 [◦] along yR. We remark that this is not something pre-planned but
it is a by-product of the desired internal force trajectory. Although the tra-
jectory is really acrobatic, the controlled vehicle is able to track the trajectory
with sufficient precision.
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(b) Sequence of snapshots of the experiment.

Figure 5.2 – Results of the the experiment 1) with the hierarchical controller for
ya.

5.2.2 Hierarchical controller for yb

Since our control methods works only for the tethered system (nonzero internal
force), a pre-tensioning phase is needed. During this phase, the robot is controlled
with a standard position controller trying to reach a position outside of the feasible
sphere. As soon as, at time t0 the link is taut (detectable using a threshold in the
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Figure 5.3 – Results of the the experiment 2) with the hierarchical controller for
ya.

position error) the controller is activated.
In the following we shall show the results of the control action for three different

sinusoidal trajectories:
1) sinusoidal trajectory with time varying frequency on ϕ while keeping ϑA con-

stant,
2) sinusoidal trajectory with time varying frequency on ϑA while keeping ϕ con-

stant, and
3) sinusoidal trajectory with fixed frequency on both ϕ and ϑA,
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Figure 5.4 – Experimental results: tracking of a sinusoidal input on elevation with
varying period with fixed attitude. fLn is the nominal internal force computed by
the flatness from ϑdA. (f1, . . . , f4) are the forces produced by each thruster.

while δ and ψ are kept constantly to zero. We recall that since there is not a
link actuator the length of the link cannot be controlled. The first two tests are
done firstly to see that the proposed controller can track a desired trajectory on ϕ
or ϑA, independently. Secondly we want to show which is the maximum feasible
frequency for both dynamics. Notice that with the validation of controller ΓbHC for
the tracking of yb, we indirectly validate the controller ΓaHC for the tracking of ya,
as well. Indeed, given the structure of ΓbHC, it internally uses ΓaHC (see (4.43)). We
recall that the desired trajectory ybd(t) is transformed into a new desired trajectory
yad(t) = ga(ybd(t),X2

C) that is tracked by ΓaHC. Checking the tracking errors of
both yb and ya, we can evaluate both controllers.

In the first experiment we fixed the desired ϑdA at 15[◦]. In this way we assure a
sufficiently high tension in order to avoid nominal negative tension values during the
experiment. The desired sinusoidal trajectory ϕd(t) starts with a frequency equal
to ωϕ = 2π

4 [rad/s] and it increases linearly until the value of about ωϕ = 4π
5 [rad/s]

after which the system becomes unstable. From Fig. 5.4 one can see that the
tracking of ϕ and ϑA, thus of ϕ and fL, degrades with the increasing of the frequency
of the sinusoidal trajectory. We remark that the internal force on the link shown
in the plots is an estimation, computed using the model and the knowledge of the
state and the input.

The second experiment is the dual, indeed we propose a sinusoidal desired trajec-
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Figure 5.5 – Tracking of a desired sinusoidal trajectory of ϑA with varying frequency
and fixed ϕ.

tory with varying frequency on ϑA while keeping a desired constant ϕd = 45[◦]. For
what concerns the frequency of the sinusoidal desired trajectory ϑdA(t), it starts from
a value of ωϑA = 2π

6 [rad/s] and increase up to a value of about ωϑA = 8π
9 [rad/s].

After that, as it is possible to see from the plots in Fig. 5.5, the tracking error
becomes very high. However, the system remains always stable.

Finally, for the third experiment, we gave as reference a sinusoidal trajectory
on both ϕ and ϑA. The two signals have different frequency and phases, in partic-
ular ωϕ = 2π

4 [rad/s] and ωϑA = 2π
6 [rad/s], respectively. The results can be seen

in Fig. 5.6. As one can see, the trajectories are both tracked with a sufficiently
small error. This analysis finally shows that the proposed controller is able to inde-
pendently track sufficiently slow time varying desired trajectories of yb with small
tracking errors. On the other hand, as expected, the controller shows increasing
tracking errors when asked to follow more dynamic trajectories, revealing its limi-
tations. Anyway, a time varying reference governor (see [Kolmanovsky–2014] and
references therein) could be applied to improve tracking performance. We did not
report the results of the tracking of δ because they are analogous to the ones related
to ϕ. We also encourage the reader to watch the first part of [video 1–2016] where
some static inclined hovering for a tethered aerial vehicle are shown.
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Figure 5.6 – Experimental results: tracking of a desired sinusoidal trajectory on
both ϕ and ϑA with fixed period.

5.3 DFL-controllers in 3D

In this section we consider the generic system described in Sec. 4.4 with a cable-
like link (only positive internal forces are allowed.). Like in a real patrolling task,
the platform follows a certain trajectory in the 3D space mimicking, e.g., a ground
robot following a road. We require the aerial vehicle at time t0 to takeoff from the
moving platform, at time tcirc to circle above the platform at a certain altitude, and
at time tland to land on the moving platform. The yaw angle of the aerial vehicle
has to follow the one of the platform. Notice that takeoff and landing are performed
while the platform is moving, making these standard maneuvers non trivial.

5.3.1 DFL-controller for ya with observer

We firstly test the controller ΓaDFL for the tracking of ya, together with the observer
designed for the generic system (see Tab. 4.6). We set ki and kj such that the
error dynamics ξi and ξj have poles in (−1,−2,−3,−4) and (−1,−2) respectively.
For the observer we choose ε = 0.1 and (α1, α2) such that s2 + α1s + α2 has
roots (−3,−4). Those values guarantee the stability and ensure a sufficiently fast
exponential tracking. During the takeoff the desired tension must go from a small
initial tension of 0.5[N] to a steady-state value of 3[N], that is kept for the whole of
the circling phase, and then has to go back to the initial value during the landing.

To fully validate our method for real applications we test the convergence and
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the robustness for different non ideal cases commented in the following. Fig. 5.7
gathers the main results, while the full plots and long explanations can be found in
App. A.1.
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Figure 5.7 – Simulation results: plausible task trajectory. The performance for each
non-ideal case are compared.

a) With an initial position and estimation errors, after the convergence of
the observer (less than one second) the outputs follow the desired trajectories
with high fidelity. An animation of this simulation is available at [video 2–
2016].
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b) With a parametric variation of 5% we notice a small constant error in the
estimation of the state, but we obtain a monotonically decreasing tracking
error thanks to the addition of an integral term in the outer loop (4.56), e.g.,
v1 = y

d(4)
1 + k>1 ξ1 + kI1

∫>
0 ξ1(τ)dτ .

c) For a moving platform a standard sensory set (e.g., optical flow, IMU and
magnetometer) usually is sufficient to measure its trajectory variables up to
p̈CC and ωC . In this case, in which we have a partial knowledge of the
platform motion, we can consider as zero the higher derivatives. We observe
that the estimation and tracking errors are very small and remain always
bounded under a reasonable threshold.

d) In the presence of Gaussian noise in the measurements with typical
variance values, we notice that the state estimate becomes slightly noisy but
the error remains bounded within small values. The non zero estimation error
implies a non zero but bounded tracking error as well.

e) Since in practice one cannot assume the link attached exactly to OR, we tested
the method for a vertical offset of 5[cm] with respect to FR. In this case
the tracking error does not go to zero but remains bounded below a small
threshold.

f) We also compared the dynamic feedback linearizing controller with the hi-
erarchical one. We noticed that to obtain good tracking performance, the
hierarchical controller requires very high gains that cause instability in the
presence of the same noisy measurements of case d). Therefore we lowered
the gains until we obtained a stable behavior. However these gains are not
enough to obtain good tracking performance anymore. Moreover notice that
the cable becomes even slack (fLf < 0). Further discussions about the hier-
archical control will follow in the next section.

In App. A.1 we provide additional plots and discussions for the previous non
ideal cases. We also consider other additional non idealities such as non diagonal
inertia matrix, saturation of the inputs and non ideal motors.

5.3.2 Hierarchical control vs. DFL control for ya

As we noted in Sec. 5.2, the hierarchical controller guarantees sufficiently good
tracking performance in quasi static conditions. However the performance gets
worse when the desired velocities and accelerations increase. In this section we
shall compare the hierarchical controller tracking performance with respect to the
one provided by the dynamic feedback linearizing controller. In particular, we
simulate the system with ΓaHC together with the observer ΓaHC, tracking the same
desired trajectory yad(t) used in Sec. 5.3.1, with an initial tracking error and under
noisy estimated state. We shall then compare the results with the ones obtained
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(c) Trajectories visualization.

Figure 5.8 – Simulation results: hierarchical control in ideal conditions with initial
tracking error.

with ΓaDFL tracking the same trajectory, and in particular under the non ideal cases
a) and c) of Sec. 5.3.1 (see Fig. 5.7).

In Fig. 5.8 the results of the hierarchical controller in ideal conditions are
reported. The initial tracking and estimation errors are the ones of case a) in
Sec. 5.3.1. After a tuning phase we were able to get a good performance and a
small bounded tracking error, even if the error does not converge exactly to zero.
On the other hand, in the same conditions the controller based on dynamic feedback
linearization is able to steer the output along the desired trajectory with zero error
(see Fig. 5.7 or Sec. A.1.1 for more details). However, to obtain good tracking per-
formance with the hierarchical controller we had to set very high gains that make
the system more reactive and thus able to follow the desired trajectory. Nevertheless
this requirement has two main drawbacks.

The first drawback is that, due to the large control gains, the control effort
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increases thus possibly requiring an input that is out of the physical limits of the
actuators. Indeed with this configuration we reach a maximum thrust and a maxi-
mum torque of about 15[N] and 2.5[Nm] respectively. This values are higher than
the nominal inputs required to track the desired trajectory.

The second extremely serious issue arises in the presence of noise in the mea-
surements and so in the estimated state. Indeed, the higher the gains, the larger
the noise in the commands and the closer the controlled system is to instability. In
fact, simulating the system with the same measurement noise described in Sec. 5.3.1
(see Sec. A.1.4 for more details) the closed loop system becomes unstable. In order
to get a stable behavior we had to significantly lower the gains, an action that,
however, clearly degrades the tracking performance. As we can see in Fig. 5.9 the
performance with noise is much worse than the one obtained using the dynamic
feedback linearizing controller in the same noisy condition.

Therefore, the hierarchical approach presents a strictly penalizing trade-off be-
tween applicability with noise and tracking performance. One cannot obtain both.
Attainment of both objectives is instead possible with the DFL controller ΓaDFL.
Nevertheless, we experimentally proven that, in standard conditions, with not too
dynamic desired trajectories, the hierarchical controller can still guarantees good
tracking performance with a minimum implementation effort. This controller al-
lowed us to perform the landing and takeoff maneuvers on surfaced inclined up to
60◦, in a very robust and reliable way. On the other hand, although the dynamic
feedback linearization control provide much better performance, even in non ideal
conditions, it comes with an higher computational cost, that makes it also more
difficult to be implemented on a real robot.

5.3.3 DFL-controller for yc in case of passive link actuator

Recalling the discussion in Sec. 4.5.4, in order to obtain a steady state internal force
fL

? = 5 [N], we set the torque winch τW = −1 [N ]. To obtain a sufficiently fast
exponentially tracking, we set the controller gains ki and k4 such that the error
dynamics ξi and ξ4 have poles in (−0.5,−1,−1.5,−2) and (−0.5,−1), respectively,
for i = 1, 2, 3. Since the observer has been already tested in the previous section,
here the control loop is closed with a direct measure of the state.

As before, we design the platform motion and the aerial vehicle desired trajec-
tory in order to simulate a patrol-like task of a delimited area. The platform simply
follows a certain trajectory shown in Fig. 5.10. The aerial vehicle, after the takeoff
maneuver, at time tcirc has to loiter above the platform. Then, starting from time
tland, the aerial vehicle has to land on the platform.

To validate the control method and to test its robustness we performed several
simulations in different non ideal conditions:

a) We initialized the system with an initial tracking error of 10 [◦] for the
elevation, of 5 [◦] for the azimuth and of 0.5 [m] for the link length. Looking
at Fig. 5.10a we can notice that after a transient, the controller steers the
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Figure 5.9 – Simulation results: hierarchical control in the noisy case. To preserve
stability lower gains have to be used with noise, therefore the performance is sig-
nificantly degraded. The hierarchical controller presents a strictly penalizing trade
off between tracking performance and robustness to noise.

output of interest along the desired trajectory. Notice that the internal force
along the link remains always positive and close to the desired steady state
value fL?. Furthermore it is exactly equal to fL? whenever l̈ is zero.

b) We tested the robustness of the control method with a variation of the 5%
on all the model’s parameters (see Fig. 5.10b). Due to the mismatch
between real and nominal model, the feedback linearization is not exact and
the error does not go to zero. However it remains always bounded showing
nicely degrading and sufficiently good tracking performance. Moreover, in
order to eliminate the constant error at steady state we have seen that a
simple integral term in the linear control loop is sufficient. With further
simulations we noticed that the system remains stable showing acceptable
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Figure 5.10 – Simulation results: plausible task trajectory for the case of a passive
link actuator. The performance for each non-ideal case are shown.
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tracking errors up to a parametric variation of 50%, proving the robustness
of the proposed method. Above the system becomes unstable.

c) Although the control loop is not closed with the observer, we tested the robust-
ness of the proposed method injecting Gaussian noise on the measured
state used to close the control loop. The power of the noise has the same
value of the one noticed in Sec. 5.3.1 out of the observer based on noisy sen-
sors. From Fig. 5.10c one can see that the error does not converge to zero
but remains always bounded showing good and practically viable tracking
performance.

d) In this simulation we considered the thrust and the torque of the aerial vehicle
generated by non ideal motorsmodeled as a first order system characterized
by a time constant of 0.2 [s]. The results displayed in Fig. 5.10d show a very
small tracking error, validating the robustness of the control method to this
additional non ideality.

5.4 Observer based DFL-controllers for reduced model

In this section we validate the observer based on IMU only, together with the 2D
version of controllers ΓaDFL and ΓbDFL (see [Tognon–2017a] for the corresponding
details). In the first subsection we show the capability of ΓaDFL of independently
controlling ϕ and fL, even when the desired internal force trajectory goes from
tension to compression, and vice versa. In the second subsection we instead provide
a thorough analysis of the robustness of the 2D version of ΓaDFL and ΓbDFL together
with the observe against non ideal conditions.

5.4.1 Controlling fL for both tension and compression

Figures 5.11a, 5.11b, 5.12a, 5.12b show the behavior of the system following smooth
trajectories from an initial to a final output configuration. The plots of the tracking
errors show that the proposed controller is able, after a short transient, to perfectly
follow the time varying smooth trajectories of class C3 and C1 for the elevation
and link internal force, respectively. An animation of the presented simulations is
available at [video 3–2015]. Notice that in Fig. 5.12b, the pick of torque at around
time 2.6[s], arises due to the crossing of the control singularity, i.e., zero thrust.
However, since that singularity is crossed only for one instant, the system remains
stable.

We also tested controller ΓaDFL to track a desired trajectory of fL that goes
from an initial tension to a final compression, while following a desired elevation
motion as well. In Fig. 5.12a it is interesting to notice that to pass from tension
to compression the vehicle turns upside-down keeping the thrust always positive.
On the other side, in the simulation of Fig. 5.12b the transition from tension to
compression is obtained with the thrust that passes through zero and inverts its sign
in order to obtain the same final compressing force of the simulation of Fig. 5.12a.
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Figure 5.11 – Simulation results: controlling ϕ and the tension (on the left) or the
compression (on the right).
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This happens because in the second case the desired trajectory requires zero thrust
at a certain moment. Then, since it is not possible to instantaneously turn the
vehicle, the controller inverts the sign of the thrust in order to provide compression.
In the case of vehicles able to provide also negative thrust this is not a problem.
While, in the case of robots providing only positive thrust a planning phase is
needed in order to generate feasible trajectories.

5.4.2 Robustness investigation against non ideal conditions

In this section we present a comprehensive analysis of the robustness of the designed
dynamic feedback linearizing controllers together with the observer based on IMU
only, against non-ideal conditions. This shows both their strengths and possible
limits when applied on a real system. In order to test the observer based only on
the IMU measurements, the following analysis is carried out for the reduced model
presented in Sec. 4.4, consisting of an aerial vehicle constrained on a 2D vertical
plane tethered to a fixed point on the ground by a link with a constant length
l = 2[m].

For this system we tested the reduced version of ΓaDFL and ΓbDFL together with
the observer based only on the IMU measurement. We recall that the details of such
reduced version of the presented DFL controllers can be found in [Tognon–2017a].

Concerning the controller ΓaDFL we set the gains of the linear outer control loop,
ka1 and ka2, such that the error dynamics of ϕ and fL has poles in (−1,−1.5,−2,−2.5)
and (−1,−1.5) respectively. While for the controller ΓbDFL we set the gains kb1 and
kb2, such that the error dynamics of ϕ and ϑA has poles in (−0.5,−1,−1.5) and
(−0.5,−1) respectively. For the gains of the observer we set ε = 0.1 and (α1, α2, α3)
such that the root of s3+α1s

2+α2s+α3 are (−6,−4.5,−3). Those values guarantee
the stability of the closed loop system and a sufficiently rapid convergence of the
observer and controller.

For the controller ΓaDFL, the desired trajectory is a smooth step, continuous up
to the fourth order for ϕ and up to the second order for fL, from the initial values
ϕd0 = 45◦, fLd0 = 3[N], to the final values ϕdf = 135◦, fLdf = 5[N], respectively.
Smooth step-like trajectories (see Fig. 5.13), as it will be clear later, have the
benefit of clearly showing the performance of the controllers under three important
conditions: the initial transient, the tracking of a fast time-varying signal, and
the steady state. For the controller ΓbDFL, the desired trajectory is a smooth step,
continuous up to the third order for ϕ and up to the second order for θ, from
the initial values ϕd0 = 10◦, ϑAd0 = 30◦ to the final values ϑAdf = 50◦, ϑAdf = 5◦,
respectively. Notice that, since the system is constrained to the 2D vertical plane
with yR = yW , we have that ϑA = ϑ, where we recall that ϑ is the pitch of the
vehicle.

To obtain a complete validation, in the following we show a concise summary
of the results about the stability and robustness of the proposed method under
different non-ideal conditions, such as: a) nonzero initial tracking and estimation
errors, b) parametric variations, c) generic CoM position and non-negligible link
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Figure 5.12 – Simulation results: controlling ϕ and fL going from tension to com-
pression. In figure (b)
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(a) Results of ΓaDFL and of the observer, on the left and on the right, respectively.
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(b) Results of ΓbDFL and of the observer, on the left and on the right, respectively.

Figure 5.13 – Simulation results: nonzero initial tracking error.

mass, d) noisy sensor measurements, and e) non-ideal motors.

Validation for nonzero initial tracking/estimation errors In order to show
the asymptotic convergence performance of both the controller and the observer
we initialize the control system with nonzero initial tracking and estimation errors.
One can see in Fig. 5.13 that, after the convergence of the observer, which takes less
than one second, the controller ΓaDFL is able to steer the outputs along the desired
trajectories with zero error. A similar behavior is obtained for the controller ΓbDFL.
We then performed many other similar simulations with different initial errors and
we observed always the same asymptotically convergent behavior, as expected from
the almost-global nature of the proposed observer and control laws.

Parametric variations We notice that in principle one could try to design an
adaptive control law that is able to compensate for parametric uncertainties. How-
ever, this is clearly a tough objective, because the system is nonlinear and the
available measurements are only the (nonlinear) accelerometer and the gyroscope
readings. Therefore this goal is left as future work. Instead, we concentrate in this
section on assessing the ranges of parameter variations that causes a degradation
of the performance that remains within an acceptable bound. By doing so, we shall
see in fact that the proposed control scheme possesses a remarkable robustness even
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Figure 5.14 – Simulation results: parametric variation - Controller ΓaDFL (elevation
and link force). The subscript 1, 2, and 3 correspond to the three different trajectory
times. Outside of the displayed range of parametric variation the performance is
unacceptable or the closed loop system results to be even unstable.

without the presence of an adaptive design.
Considering l0, mR0 and JR0 the real parameters value and l, mR and JR the

nominal ones, we set l = (1+∆l)l0, mR = (1+∆mR)mR0 and JR = (1+∆JR)JR0,
where ∆mR, ∆l and ∆JR denote the corresponding parametric variations.

For obtaining a comprehensive analysis we tested the behavior for several dif-
ferent parametric variation combinations. The results are plotted in Figs. 5.14
and 5.15, where we show the mean tracking error, ētrack, and the corresponding
standard deviation σētrack , defined as

etrack(t) =

∥∥∥yd1(t)− y1(t)
∥∥∥

yd1(t)
+

∥∥∥yd2(t)− y2(t)
∥∥∥

yd2(t)

ētrack = 1
tf − t0

∫ tf

t0
etrack(t)dt

σētrack =
√

1
tf − t0

∫ tf

t0
(etrack(t)− ētrack)2dt,

where t0 and tf are the initial and final time, respectively. Notice that for the
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Figure 5.15 – Simulation results: parametric variation - Controller ΓbDFL(elevation
and attitude).

reduced model y1 = ϕ and y2 = fL or y2 = ϑA for ΓaDFL and ΓbDFL respectively.
In the plots the solid line corresponds at the mean tracking error while the dashed
lines correspond at the mean tracking error plus and minus its standard deviation.

The effect of an unknown parameter could also change with respect to the
trajectory and in particular with respect to the velocity and acceleration at which
the path is followed. Consequently we plotted the mean tracking error, ētrack1,
ētrack2 and ētrack3, for the same type of desired path (smooth step) but executed with
three different durations (increasing velocity): 1) 7[s], 2) 5[s] and 3) 3[s] respectively.
We also analyze the error behavior dividing the trajectory into three phases: in the
Phase 1 (transient) the desired trajectory is constant and the analysis is more
focused on the convergence of the observer; Phase 2 constitutes the dynamic part
where the desired trajectory quickly goes from the initial value to the final one;
the Phase 3, the last, corresponds to the steady state condition where the desired
trajectory is again constant. We show the tracking error for each of the three
phases to better understand if a parameter variation affects more the transient, the
dynamic phase, or the static one.

From Fig. 5.14 and Fig. 5.15 one can notice that, as expected, the performance
gets worse increasing the parametric variation. Furthermore, the same variation
has more effect if the trajectory is more “aggressive” and it is followed with higher
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speed (ētrack3). This is due to the fact that with higher speed and acceleration the
inertial and Coriolis/centripetal terms become larger, and thus also the error in the
feedback linearization increases, which in turn implies a worst tracking.

Comparing the performance between the two controllers, we notice that con-
troller ΓbDFL results to be more robust than controller ΓaDFL in term of mean track-
ing error. This is due to the fact that for the controller ΓbDFL, the dynamics of one
of the controlled outputs, namely ϑA, is not influenced by the parameters such as
mass and length of the link. This means that any variation on these parameters
does not generates a worse tracking of ϑdA, which results in a lower tracking error.

One can also notice that the mean tracking error is not in general symmetric
with respect to the sign of the corresponding parametric variation. For example
for the controller ΓbDFL it is better to overestimate the mass, and the length of the
link rather than underestimating them, while for controller ΓaDFL it results to be
the opposite, even if these consideration are more relevant for the dynamic phase.
Indeed, during the steady state phase the behavior is almost symmetrical.

Another fact that appears clear from the plots is that the variation that most
influences the performance is the one on the mass of the aerial vehicle. Fortunately,
in practice this parameter can be easily measured with high precision.
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Figure 5.16 – Representation of the more general system and its variables, still
constrained in the 2D vertical plane.

Generic CoM position and non-negligible link mass The controllers devel-
oped in this paper assume that the system can be represented with the model given
in Sec. 4.4, where the CoM of the aerial vehicle coincides with the attachment point
of the link to the vehicle and the link has a negligible mass. Fig. 5.16 represents
instead a more general model, for which the assumptions done in Sec. 4.4 are not
fulfilled. Taking into account the definitions made in Sec. 4.4 we then define a body
frame, Fl, attached to the link, with axes {xl,yl, zl} and origin Ol coinciding with
the center of mass (CoM) of the link. The position of Ol, defined in FW , is denoted
with pl = [xl yl zl]>. As for FR we have that yl ≡ yB ≡ yW and yl ≡ 0. For
the validation we model the link as a rigid body of mass mL ∈ R>0 and inertia
JL ∈ R>0. Considering the inertia of the link as the inertia of an infinitesimally
thin rigid tie with uniform distributed mass, we have also that JL = mLl

2/12.
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Assuming links with high stiffness, the deformations and the elongations results
negligible with respect to the length of the cable itself, in the range of forces of our
concern. Therefore the link length is fixed. The link is connected at one end to a
fixed point coinciding with OW and at the other end to a point rigidly attached to
the aerial vehicle whose constant position in FR is denoted with rRl = [rx 0 rz]>.
If ‖rRl‖ = 0 then the link is directly attached to the CoM of the aerial vehicle.

The mechanical model of the more general robotic system can be then derived
writing the dynamics as the one in (4.18) plus a disturbance due to the non idealities:

M′(q′)q̈′ + g′(q′) + δ(q′, q̇′, q̈′,u′) = Q′(q′)u′,

where

δ(q′, q̇′, q̈′,u′) = M̄(q′)q̈′ + c̄(q′, q̇′) + ḡ(q′)− Q̄(q′)u′,

M̄ =

 J̄ϕ Jϕθ

Jθϕ J̄θ

 , c̄ =

 c̄θ̇2

c̄ϕ̇2

 ,
ḡ =

 mL
2 lgd⊥ · e3

−mRlgR̄W
B rRl · e3

 , Q̄ =

 0 0
−rRl · e3 0

 ,
where R̄W

B = ∂RW
B /∂θ, J̄ϕ = mLl

2/3, J̄θ = mR ‖rRl‖2, Jϕθ = Jθϕ = −mRlR̄W
B rRl ·

d⊥, c̄ = mRlR̄W
B rRl · d.

For a plausible case in which the link consists of a cable of mass mL = 0.01mR

and inertia (during taut condition) JL = mLl
2/12, and it is attached to the robot

in the position rBL = [0.03 0 0.03]>[m] with respect to FR, we noticed that the
controlled system is stable but the error does not converge exactly to zero. Indeed,
due to the nonzero ‖rRl‖, the force along the link generates an extra torque on the
aerial vehicle that is not compensated and so a constant steady state error appears.

In order to understand how each parameter of the more general model affects
the tracking performance, as before, we show in Fig. 5.17 the mean tracking error
and its standard deviation for different parameter values and in the three phases
described before. In particular the mass of the link is taken as mL = ∆mLmR.

We noticed that the negative effects due to a nonzero offset rBL reduce or in-
crease if the rotational inertia is increased or reduced, respectively. Indeed, looking
at the rotational dynamics in the case of non zero offset:

ϑ̈ = τR/JR − fLd · rBL/JR, (5.1)

one can notice that the effect of the link force on the angular acceleration decreases
if the inertia increases. Intuitively, a bigger inertia would mean a bigger mass or a
bigger dimension of the vehicle. In the second case, the bigger the vehicle the more
the effect of the offset becomes negligible. For this reason in Fig. 5.17 we plot the
mean tracking error with respect to rBL?/JR, thus normalizing this effect.

We did the same test for the controller ΓbDFL, which resulted to be much more
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Figure 5.17 – Simulation results: controller ΓaDFL. Mean tracking error when chang-
ing the parameters of the general model.

sensitive to link mass and to the offset than the controller ΓaDFL. This is due to
the fact that one of the output, namely the attitude of the aerial vehicle ϑA, is
directly influenced by the offset as it is shown in (5.1) (we recall the in the 2D
case ϑA = ϑ). Furthermore, even with a small offset the tracking error is such
that the actual trajectory passes through the singularity of the controller ΓbDFL (see
Sec. 4.7.2) causing an unstable behavior.

On the other hand, the controller ΓaDFL turned to be much more robust to these
sort of structural model variations. From Fig. 5.17 we can see that the parameters
that mostly affect an increase of the error are the entries of rBL, i.e., rBLx and
rBLz. One can notice that it is more advisable to attach the link such that one
is sure that rBLz ≤ 0, especially if agile motions are required. The effect of the
displacement along xR is instead almost symmetric. The small asymmetry is due to
the particular trajectory passing from the first to the second quadrant. The mean
tracking error increases instead almost linearly with respect to the mass of the link.
Nevertheless, even with mL equal to the 20% of mR the closed loop system remains
still perfectly stable.

Noisy measurements In this section we investigate the robustness of the pro-
posed method in presence of noisy measurements, which always exist in reality. We
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(a) Results of ΓaDFL and of the observer, on the left and on the right, respectively.
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(b) Results of ΓbDFL and of the observer, on the left and on the right, respectively.

Figure 5.18 – Simulation results: noisy measurements.

consider both the accelerometer and the gyroscope measures being affected by a
white Gaussian noise of variance 0.1[m/s2] and 0.01[rad/s] respectively.

From Fig. 5.18 we can observe that the estimated state shows some noise but
the corresponding error remains always bounded. Due to the noisy component on
the estimated state the control action presents some oscillations that imply a non
exact tracking of the desired trajectory. Nevertheless the tracking error remains
small and always bounded. Notice that to achieve these results we had to reduce
the gains of both the controller and observer. Indeed, high gain values increase
the convergence speed but also amplify the sensitivity to noisy measurements. In
general the two controllers does not show particularly different behaviors in face of
the presence of noise.

Non-ideal motors In a real scenario, one motor cannot instantaneously change
the spinning velocity of the propeller, and in turn the thrust produced. Indeed,
this discontinuous variation of the speed would require the application of an infinite
torque by the motor, that is clearly not possible. Instead the dynamics of the motor
is characterized by a certain time constant, τM ∈ R, that quantifies the time needed
to change the motor speed. In this section we analyze this additional non ideality
testing the proposed method with different non ideal motors characterized by an
increasing time constant. In Fig. 5.19 we show the relative mean and variance of the
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Figure 5.19 – Simulation results: non ideal motors. Mean tracking error when
changing the motor time constant.

tracking error for the different time constant values τM . The plots clearly shows that
increasing the time constant the tracking error increases as well, especially during
the dynamic part of the desired trajectory (Phase 2). Indeed, for motors with higher
time constant, the error between commanded and actuated thrust on each propeller
increases causing a bigger tracking error. However, the system remains stable up
to a time constant of 0.08[s], which is completely acceptable in real systems.

This analysis is important for the scalability of the system. Indeed, bigger
vehicles with higher mass imply the need of an higher lift that can be in general
generated by bigger propellers. This in turn requires the use of bigger motors that
are characterized by a larger time constant. Finally, as shown in Fig 5.19, the
larger mass of the system, and so the larger time constant of the motors, reduces
the tracking performance of the system for dynamic trajectories. Therefore, when
we increase the dimension and the mass of the vehicle, in order to still obtain good
tracking performance, it is necessary to reduce the agility of the desired maneuver
reducing the demanded accelerations.
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Chapter 6

Single vehicle application:
landing and takeoff on high

inclined surfaces

6.1 Introduction and problem formulation

In many aerial robot applications such as search and rescue, the task consists on
providing assistance in hostile environments such as mountains or civil areas after
natural catastrophes. In this scenarios it is very likely that the terrain is not flat,
making the landing and takeoff maneuvers of the aerial robot very complicate and
unsafe.

The problem of landing on a sloped (not flat) surface is a very challenging
problem for an unidirectional-thrust aerial vehicle due to its underactuation. In
fact, the task requires to control both position and attitude since the vehicle has to
be oriented as the surface on which we want to land, but this is not possible. It is well
known that one can control the position of an unidirectional-thrust aerial vehicle,
but not its attitude. The latter is indeed a byproduct of the particular position
trajectory that we want to follow (given by the differential flatness). The classical
approach for free-flying vehicles is based on motion planning [Cabecinhas–2012;
Mellinger–2012; Mueller–2013] (sometimes called perching maneuver). It consists
on exploiting the flatness of the system with respect to the position [Martin–1996]
to plan a desired trajectory such that the vehicle ends the maneuver with the
proper position and orientation. Different controllers can be then applied to track
this trajectory. However, the success of the maneuver requires an almost perfect
tracking that implies an almost perfect state estimation and knowledge of the model.
Otherwise, small deviations from the nominal trajectory would lead to miss the
target or to crash on it.

On the other hand, we shall show that the use of a tether is very useful to solve
the faced problem of landing and takeoff on a sloped surface. As we saw in Chap. 4,
for a tethered aerial vehicle we have the great advantage to partially control the
attitude of the vehicle. Under certain conditions better stated in the following, this
property allows to perform the landing and takeoff maneuvers in a very reliable
way, even in the presence of model errors, and for almost any sloped surface.

In Chap. 4 and Chap. 5, we already showed the case of a tether aerial vehicle,
together with an actuated link, landing and taking off on/from a flat moving sur-
faces. Nevertheless, this configuration requires to add an actuator that increases the
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complexity of the system and reduces its already limited payload if placed on-board.
For these reasons, to increase the applicability of the method to solve the sought
problem, we instead consider the case of a passive tether that does not require extra
actuation. We remark that the results found in Chap. 4 are still valid. The only
difference is that the link length is now not controllable but remains constant.

One of the main contributions of our work is the definition of some general con-
ditions to perform a robust takeoff and landing. We then provide a careful analysis
and a comparison of the free-flight and passive-tethered methods, based on these
conditions. This study shows that, when an anchoring spot is available, the tether
solution is highly preferable with respect to the free-flight one since it is the only
one that allows to land on any sloped surface, and with good repeatability and ro-
bustness to tracking inaccuracies. Focusing on the passive-tether solution, in order
to execute the maneuver respecting the inputs limits and to increase the robustness
and safety of the maneuver, we also design a planner to compute an optimal refer-
ence trajectory. The latter is then followed by the hierarchical controller ΓbHC for the
output yb (see Sec. 4.6). We chose this controller rather then one based on dynamic
feedback linearization, ΓbDFL, because highly dynamic trajectory are not required
for the task (to increase the safety of the maneuver). The global method is finally
tested through exhaustive real experiments in which a quadrotor is able to perform
the landing and takeoff on/from a sloped surface tilted by an angle up to 60◦. Part
of the following results have been published in [Tognon–2016b; Tognon–2017b]

6.2 Modeling

The unidirectional-thrust aerial vehicle is modeled as in Sec. 4.4 (link attached to
a fixed platform and with a fixed length, i.e., no link actuator) and its states and
control inputs are described by the same variables. We assume the vehicle equipped
with at least three landers whose ending parts form the landers plane PRL. As in
the most common case in reality, we assume zR perpendicular to PRL1. Then we
define pRL ∈ R3 as the projection of pR on PRL and hR = ‖pR − pRL‖ as the
distance between pR and PRL.

We assume that the landing/takeoff (LTO) surface is planar in the neighborhood
of the desired landing point and it is defined by PS := {p = [x y z]> ∈ R3 | ax+
by + cz + d = 0} where a, b, c, d ∈ R are the parameters of the plane. In particular,
nS = (1/

√
a2 + b2 + c2)[a b c]> are the coordinates in FW of the unit vector

normal to PS . Then we define a frame FS that is rigidly attached to PS , whose
axes are {xS ,yS , zS}. If nS = zW , i.e., PS is horizontal, then we set {xS ,yS , zS} =
{xW ,yW , zW }. In the others (more interesting) cases, i.e., when PS is locally
inclined, the axes of FS are set as: zS = nS , yS = (zW × zS)/ ‖zW × zS‖ and
xS = (yS×zS)/ ‖yS × zS‖. The origin of FS , OS , is taken as any arbitrary position
on PS . Fig. 6.1 gives a schematic representation of the whole system.

1The equal interesting but unusual case of an arbitrary PRL is left as future work.
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Figure 6.1 – Representation of the system and its main variables.

Model in free (non-tethered) flight

Recalling the modeling of a unidirectional-thrust aerial vehicle in free-flight done in
Sec. 3.2, its configuration is described by pR and RR and its dynamic is given by:

mRp̈R = −mRgzW − fRzR (6.1)
JRω̇R = JRωR × ωR + τR. (6.2)

Model (6.1) holds as long as the aerial vehicle is not in contact with the surface.
In this last case, i.e., PRL ≡ PS , (6.1) has to be extended taking into account
the reaction force of the surface, denoted by fN ∈ R, and the static friction force,
denoted by fS ∈ R3, thus obtaining:

mRp̈R = −mRgzW − fRzR + fNnS + fS , (6.3)

where fN ≥ fN , z>S fS = 0 and ‖fS‖ ≤ fS . For a standard surface fN = 0 and
fS = µfN where µ ∈ R≥0 is the characteristic friction coefficient of the contact
between PRL and PS . If PRL and PS are equipped with an adhesive membrane
(e.g., a Velcro or a gecko inspired material) then fN ∈ R≤0 is the maximum negative
reaction force. In these cases both fN and fS depend on the adhesive membrane.

Model in tethered flight

Let us consider one of the particular tethered aerial cases considered in Sec. 4.4. In
particular we consider an aerial vehicle tethered to a fixed point through a constant-
length link, such as a cable or a chain. One end of the link is attached to the aerial
vehicle at OR through a passive 3D spherical joint and the other end is attached to
an anchor point OA rigidly attached to the surface. The position of OA is described
by pA ∈ R3 in FW and its distance from PS is given by hA = z>S (pA − pL) ∈ R≥0,
∀ pL ∈ PS .
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When the link is slack and the aerial vehicle is not in contact with the LTO
surface the dynamic model of the system is given by (6.1)–(6.2).

On the other hand, when the link is taut, the system model is the one presented
in Sec. 4.4 when the link length is constant. We recall that pR ∈ Sl(pA) = {p ∈
R3 | p = pA + ld, ∀d ∈ S2}, where Sl(pA) is a sphere of radius l centered on pA,
and d is the unit vector that represents the attitude of the link expressed in FW .

We introduce the frame FA = {OA,xA,yA, zA} defined as zA = zW , yA = yS
and xA = yA × zA/ ‖yA × zA‖. Recalling the modeling of Sec. 4.4 and assuming
FC = FA, we have that the dynamics of the system is equal to (4.3) and (4.11) for
the rotational and translational part, respectively. We recall that the model can
be easily derived from (4.10) considering only the first three row, l̇ = l̈ = 0 and
replacing the notation C with the notation A where appropriate. For the reader
convenience we report here the main equations with the proper notation that will
be useful also in the following.

The vector dA denotes the expression of d in FA. It is parametrized by the
elevation angle, ϕ ∈ [0, 2π], and the azimuth angle, δ ∈ [−π

2 ,
π
2 ], such that dA =

[cos δ cosϕ − sin δ cos δ sinϕ]>. Since the link is attached to OR, the rotational
dynamics of the vehicle is independent of the translational one and it is equal to
(6.2). We retrieve the dynamics of2 q = [ϕ δ]> with the Newton-Euler method
applying the balance of forces at OR:

mRp̈R = −mRgzW − fRzR − fLd, (6.4)

where p̈R is obtained differentiating twice pR = pA + lRAdA:

p̈R = RA

(
J̇qq̇ + Jqq̈

)
, Jq =


−l cos δ sinϕ −l cosϕ sin δ

0 −l cos δ
l cos δ cosϕ −l sin δ sinϕ

 ,
where RA ∈ R3×3 is the rotation matrix from FA to FW . Equations (6.2) and (6.4)
fully describe the dynamics of the system when the link is taut.

Similarly to the non-tethered case, when the robot is tethered and in contact
with the surface, the model (6.4) is extended taking into account the reaction and
friction forces, fN ∈ R and fS ∈ R, respectively:

mRp̈R = −mRgzW − fRzR − fLd + fNnS + fS . (6.5)

6.3 Conditions for robust landing and takeoff

In the following we define and analyze the problem of landing on PS at a desired
landing position p?L ∈ PS . Analogous conditions can be drawn for the takeoff

2In this chapter, since the length of the link is constant, l is not a generalized variable but
becomes a parameter of the system.
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problem, which are omitted here for brevity. Denoting with tL ∈ R>0 the landing
time, a correct and robust landing is such if the following conditions are satisfied:

1) pRL converges to p?L, i.e., pRL(tL) = p?L ∈ PS ;

2) the robot orientation has to be such that PRL and PS are parallel, i.e.,
zR(tL) = z?R = −zS , in order to have the robot perfectly in contact with
the surface;

3) the vehicle has to reach this configuration with almost zero kinetic energy in
order to avoid hard impacts, i.e., at time tL−, immediately before of touching
the surface, it has to be that ṗR(tL−) = 0 and ωR(tL−) = 0;

4) all the accelerations should be also zero at tL−, i.e., p̈R(tL−) = 0 and ω̇R(tL−) =
0, thus obtaining a smooth and gentle maneuver;

Definition 1 (Inclined hovering). The system is said in inclined hovering
if zR 6= −zW and Cond. 3), and 4) coexist.

5) after the conclusion of the landing maneuver, at time tL+, when the robot is in
contact with the surface, p?L has to be a stable position, i.e., zero velocity and
acceleration. This condition prevents the robot to fly away from the surface
or to slide down on it when the motors are switched off after the landing
maneuver.

Remark. At time tL− the robot is not yet in contact with the surface and the flying
model has to be used to describe the system (equations (6.1, 6.2) or (6.4, 6.2)).
On the contrary, at time tL+ the vehicle is in contact with the surface thus equa-
tions (6.3) or (6.5) have to be used.

Notice that the Cond. 4), although not strictly necessary, lets the vehicle ap-
proach the surface in a static equilibrium condition, passing from flight to contact
very smoothly and in a more robust way with respect to model uncertainties.

If, due to the characteristics of the system, Cond. 4) is not attainable, the landing
can still be done but when at time tL+ the vehicle touches the surface, one has to
find the way (e.g., turning off the motors as quickly as possible and using a Velcro
system) to immediately pass in a stable condition in order to remain in contact
with the surface without flying away or sliding on it (Cond. 5)). Nevertheless, this
could be not possible for some surfaces without the use of a tether or a Velcro-like
solution.

Remark. For the takeoff, only Cond. 5), that now is an initial condition, has to be
fulfilled.
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6.4 Analysis and comparison for landing and takeoff

In the following we analyze two different kind of approaches for the landing: the
free-flying and the tethered maneuvers. For both cases we define the conditions to
satisfy the landing objectives and illustrate the benefits of the tethered solution.

6.4.1 Free flight method

Replacing the conditions zS = zW and p̈R(tL−) = 0 in (6.1), it is clear that the
only case in which Cond. 4) holds is when PS is horizontal. In all the other cases
p̈R(tL−) 6= 0, which means that the aerial vehicle cannot approach the surface in a
fully stable condition.

For the Cond. 5), imposing p̈R(tL+) = 0 in (6.3) and projecting the two sides
of (6.3) on FS , we obtain

fN = mRgz>S zW + fR, x>S fS = mRgx>S zW , y>S fS = 0. (6.6)

The first two conditions of (6.6) let us determine which is the maximum thrust
at time tL+ and the maximum slope to have Cond. 5) fulfilled, i.e.:

fR(tL+) ≤ mRgz>S zW − fN and x>S zW ≤ fS/(mRg). (6.7)

Thus, one can land on any point of PS only if (6.7) holds, restricting the set of
admissible slopes.

Assuming that the surface fulfills (6.7), we now investigate how to reach it, and in
particular, how to achieve the first three conditions. In the less interesting case of a
horizontal surface, one can simply follow a trajectory along zW in hovering condition
to reach p?L with zero velocities and accelerations. In the more interesting case of a
sloped surface, this is a very challenging problem due to the underactuation of the
vehicle. From the theory it is well known that the system is differentially flat with
respect to pR and the rotation around zR [Martin–1996]. Therefore one can track
any desired position trajectory, pdR(t), such that pRL(tL) = p?L and ṗR(tL−) = 0,
but the orientation of the vehicle along the trajectory is exactely determined by
pdR(t) and its derivatives. Thus it is not possible to control the attitude indepen-
dently from the position trajectory. The classical method to overcome this issue
is to use a state-to-state planner like, e.g., the ones presented in [Mueller–2013]
slightly modified, that gives a particular position trajectory pdR(t) that satisfies
Conds 1), 2) and 3).

Remark. Consider an aerial vehicle that has to land on a given surface PS , at any
desired point p?L ∈ PS . If the landing has to be performed using a free-flight method
then, in general:
• if PS is non-horizontal then Cond. 1), 2), 3) can only be achieved by a very

accurate tracking of a perfectly synchronized dynamic maneuver generated
using a state-to-state kino-dynamic planner;
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• Cond. 5) is fulfilled iff fR(tL+) and PS are such that the two conditions in (6.7)
hold;
• Cond. 4) is fulfilled iff PS is horizontal;

Assuming that the non-easy motion planning problem is solved, one could use
different types of controllers, as the ones in [Cabecinhas–2012; Faessler–2018],
to track the planned trajectory. Nevertheless, these methods lack in general of
robustness since small tracking errors could lead, e.g., to miss the target or to
crash on it if the velocity is not well tracked. Furthermore, a precise model and an
accurate and high-rate state estimation are needed.

To partially solve those problems and the ones related to the sliding, a common
practical solution is to use a Velcro, as in [Mellinger–2012; Mohta–2014], to help the
perching. However these solutions are not feasible in a real environments. Velcro
solution also does not permit to easily takeoff after the perching.

6.4.2 Tethered method

In this section we show that the tethered method overcomes the limits of free-
flight (in particular the impossibility to satisfy Cond. 4) for sloped surfaces, which
guaranties a safer landing maneuver) thanks to the inclined equilibria.

For the tethered method the landing position must belong to Sl(pA) ∩ PS . We
then first investigate which are the points in this set that satisfy Cond. 4). Consider
a generic point pL ∈ Sl(pA) ∩ PS . From simple geometry we have

d = (pL − pA + hRzS)/l. (6.8)

Since pA, l and hR are given parameters, finding the pL that satisfies Cond. 4) is
equivalent to find the d that satisfies the same condition. Projecting both sides
of (6.8) on z>S we obtain

z>Sd =
(
hR + z>S (pL − pA)

)
/l = (hR − hA)/l := c. (6.9)

Then, in order to fulfill Cond. 4), let us project both sides of (6.4) on the plane
{xS ,yS}, and set p̈R = 0, thus obtaining

fLPS
xyd = −mRgPS

xyzW , (6.10)

where PS
xy = [xS yS ]>. Equation (6.10) implies that PS

xyd is parallel to PS
xyzW .

Since fL ≥ 0 and mRg > 0, we obtain

(PS
xyd)/

∥∥∥PS
xyd

∥∥∥ = −(PS
xyzW )/

∥∥∥PS
xyzW

∥∥∥ = [1 0]> =: zSxyW . (6.11)

Notice that (6.11) requires3
∥∥∥PS

xyzW
∥∥∥ 6= 0 and

∥∥∥PS
xyd

∥∥∥ 6= 0. The latter inequality

3When
∥∥PS

xyzW
∥∥ = 0 the surface is horizontal and any d such that (6.9) holds, satisfies

Cond. 4). In this condition, one can still land with the tethered configuration keeping fL = 0 and
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implies also that (hR − hA) 6= l. From (6.9) and (6.11) and applying some simple
geometry we obtain

d = [xS yS zS ]
[√

1− c2 0 c
]>

=: d̃, (6.12)

where d̃ is defined as the (unique) d for which Cond. 4) is fulfilled. This proves
that, given the parameters of the system, pA, l and hR, it exists a (unique) p̃L =
pA + ld̃− hRzS , for which Cond. 4) is respected.

Remark. The use of a tether creates the conditions to approach or depart from a
sloped surface in a stable equilibria condition (inclined hovering), i.e., in a more
robust and safer way. In fact, using the tether it exists a landing position in which
one can land in inclined hovering for any sloped surface (in free-flight this position
exists only for horizontal surfaces). Moreover, given any desired landing position
p?L ∈ PS , one can always fulfill Cond. 4) setting hA 6= hR − l and

pA = p?L + hRzS − ld̃ := p̃A. (6.13)

Compliance with Cond. 5)

If (x>S zW )(x>Sd) < 0, i.e., if the landing spot is below the projection of pA on PS ,
then a solution of (6.5) for p̈R(tL+) = 0 is

fL = −mRgx>S zW
x>Sd

, fN = mRgz>S zW − fR + fLz>Sd,

y>S fS = fLy>Sd, x>S fS = 0.
(6.14)

In this case the tension is always positive and, from the conditions on fN and fS
in (6.14), we can determine which is the maximum thrust intensity at time tL+ and
the maximum slope of the surface to respect the Cond. 5), i.e.,

fR(tL+) ≤ mRgz>S zW
(
1− (z>Sd/x>Sd)

)
− fN =: fR (6.15)∣∣∣−mRgy>Sd(x>S zW /x>Sd)

∣∣∣ ≤ fS . (6.16)

If d = d̃ then the condition (6.16) holds for any surface. In the opposite case
of (x>S zW )(x>Sd) ≥ 0, i.e., when the landing spot is above the projection of pA on
PS , we have that fL = 0 and the conditions in (6.7) have to be respected.

Tab. 6.1 summarizes all the previous results. To accomplish Conds. 1), 2) and 3)
the controllers ΓbHC or ΓbDFL presented in Sec. 4.6.2 and Sec. 4.7.2, respectively, can
be used. Although not needed, to further improve the robustness and the reliability
of the maneuver, we designed a motion planning method presented in the following
Sec. 6.5 to optimize the motion during the landing and takeoff maneuvers. Notice

using the same method for free flight.
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that with the tethered method we can achieve all the landing conditions for any
surface and any desired landing position by properly choosing the anchor point.
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C
hapter

6.
A
pplication:

landing
and

takeoff

Method Free Flight Tethered Flight

Fulfillment
of cond.

All All but Cond. 4) (p̈R(tL−) 6= 0) All All but Cond. 4) (p̈R(tL−) 6= 0)

Surf. ori-
entations

zS = zW x>S zW ≤ fS/(mRg) any
∣∣−mRgy>Sd(x>S zWx>Sd)

∣∣ ≤ fS
Anchor
positions

- - any any

Landing
positions

any any pL = pA + ld̃− hRzS pL ∈ Sl(pA) ∩ PS

Max. fR
at tL+ fR ≤ mRg − fN fR ≤ mRgz>S zW − fN fR(tL+) ≤ fR fR(tL+) ≤ fR

fR
fN fR

fN fS fR
fN fL

fR
fN fL

fS

Pros Simple system
Possibility to perform the maneuver reaching a stable equi-
libria condition; a planner is not required; robustness to
model uncertainties and tracking errors

Cons
Not feasible for every slope; it requires: a planner, high
tracking accuracy, precise state estimation and knowledge
of the model (very low robustness)

Need of a method to pass from free-flight condition to teth-
ered one

Table 6.1 – Characteristics of free-flight and tethered configuration for the landing problem. Analogous conditions hold for the
take-off.
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6.5 Optimal trajectory planning

Given the tracking controllers of Sec. 4.6.2 and Sec. 4.7.2 for the output yb, we need
to design a feasible desired trajectory ybd(t) that fulfills the objectives of Sec. 6.3 to
successfully perform the landing. From now on we focus on the landing problem,
since the trajectory for the takeoff can computed with the same method.

We assume that in a preliminary phase the vehicle has been tethered to the
anchor point pA such that p?L = p̃L, and the system has been steered to the state
x0 for which the link results taut. Then, the initial and final value of the trajectory,
ybd(t), has to be such that x(t0) = x0 and x(tL) = x?, where x? corresponds to the
Conds. 1), 2), 3) and 4). In the following we define the final desired output value
and an optimal planner to design a feasible and optimal trajectory that fulfills all
the objectives of Sec. 6.3, and respects the input limits.

Final desired output

Since pRL and zR are independent from ψ, then ψ? can be chosen arbitrarily. Given
a desired landing position p?L ∈ Sl(pA) ∩ PS , one can compute the corresponding
desired link attitude d? from (6.8). Finally, from the parametrization of d and (4.26)
we can complete the remaining entries of the desired output yb?:

ϕ? = atan2
(
z>Ad?,x>Ad?

)
δ? = atan2

(
y>Ad?,

√
(z>Ad?)2 + (x>Ad?)2

)
ϑ?A = atan2 (α?1, α?3) ,

where α? = P?
LzS and P?

L is computed as in Sec. 4.5.2 from d?.
Notice that the equality yb(tL) = yb? = [ϕ? δ? ϑ?A ψ?]>, does not necessarily

imply that zR(tL) = z?R. Indeed, controlling ϑA we control only the direction of the
projection of zR on the plane PL. Whereas, the remaining component y>LzR is not
directly controlled but, for the flatness, it is given by the particular trajectory yb(t)
and its derivatives. A possible solution consists on planning a proper trajectory
yb(t) such that yb(tL) = yb? and y>LzR(tL) = yL>z?R = 0. Though, this technique
based on motion planning shows the same drawbacks saw in Sec. 6.4 for the free-
flight method.

However, for the case of interest when all the objectives of Sec. 6.3 are fulfilled
and in particular Cond. 4), a planner is not necessary. In this case, from equa-
tion (6.12) and the parametrization of d, it is easy to see that d? = d̃ implies
δ? = 0. Finally, thanks to the flatness, we can demonstrate that if δ is stabilized to
zero, i.e., [δ, δ̇, δ̈] = 0, then y>LzR is stabilized to the desired value y>Lz?R = 0. Let
us project (6.4) on yL considering [δ, δ̇, δ̈] = 0. We obtain:

−fRy>LzR = y>LRA

[
lmR

([−cϕ
0
sϕ

]
ϕ̇−

[
sϕ
0
cϕ

]
ϕ̈

)
+ fL

[
cϕ
0
sϕ

]]
+mRgy>LzW . (6.17)
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Noticing that y>LRA = e>2 and y>LzW = 0, it is clear that y>LzR = 0.
This proves that, if pA is chosen such that p?L = p̃L, then steering yb to yb? is

sufficient to steer pRL and zR to p?L and z?R, respectively. In principle, we could
generate a simple sufficiently smooth trajectory (like a spline) ybd(t) from the initial
output value to yb? that fulfill all the objectives of Sec. 6.3, and then track it with
one of the controllers presented in Sec. 4.6.2 and Sec. 4.7.2, without the use of a
planner. This makes the method more robust to tracking errors since they can be
recovered by the controller avoiding the failure of the maneuver.

However, although not necessary, we still propose an optimal planner to more
intuitively generate a desired trajectory that fulfills the conditions in Sec. 6.3, re-
specting the dynamics of the system, its input limits and other additional features
in order to obtain an even more safe and reliable landing maneuver.

Optimal Planner

The computation of an optimal desired trajectory that fulfills the conditions of
Sec. 6.3 can be formulated as an optimal control problem. Given the tethered sys-
tem, we face a challenging nonlinear optimal control problem in a five dimensional
configuration space. Even for a numerical solver it could be not easy to find a
solution of this problem and its computation could require a lot of time. A com-
mon technique consists of simplifying the model of the system to make the problem
solvable in a reasonable amount of time.

According to this method we assume4 δ(t) = 0 for all t ∈ [t0, tL]. In practice
this fact limits the motion of the vehicle on the 2D vertical plane PM = {xA, zA},
reducing the configuration space to two dimensions. This is not a problem since we
showed that if δ converges to zero then also y>LzR converges to yL>z?R = 0. For
simplicity we also assume a constant rotation around zR, i.e., ψ(t) = ψ? for all t ∈
[t0, tL]. This means that the system, while moving on PM , is fully described only by
ϕ and ϑA, equivalently to the reduced model presented in Sec. 4.4 (indeed, ϑA = θ).
We define xM = [xM1 xM2 xM3 xM4]> = [ϕ ϑA ϕ̇ ϑ̇A]> and uM = [fR τARy]> the
state and input of the 2D system, respectively. In particular τARy ∈ R is the torque
applied by the robot along the axis yA, i.e., τARy = y>ARRτR. Considering δ, y>A
and their derivatives to zero, the dynamics can be derived as done in Sec. 4.9[

ϕ̈

ϑ̈A

]
=
[
a1 cosϕ+ a2 cos(ϕ+ ϑA)fR

a3τ
A
Ry

]
=: fM (xM ,uM ) (6.18)

where a1 = −g/l, a2 = 1/(mRl), a3 = 1/(y>ARRJR).
From now on we focus on the generation of trajectories for a quadrotor-like

VTOL since this is the robot used for the real experiments5 described in Sec. 6.6.
As recalled in Sec. 3.2 and Sec. 3.3, this particular vehicle is equipped with four
propellers, placed in a symmetric configuration with respect to the center of gravity,

4This can be guaranteed by the controllers proposed in Sec. 4.6.2 and Sec. 4.7.2.
5The method can be easily modified according to any VTOL.
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each one generating a thrust fi ∈ [f
i
, f i]. All together the propellers generate

the total thrust fR and torque τR applied to the vehicle according the relation
u = [fR τR]> = Γuf where uf = [f1 f2 f3 f4]> and Γ ∈ R4×4 is a matrix that
maps uf into u (see Sec. 3.3.1). The matrix Γ depends on the parameters of the
vehicle. We can then express uM as function of uf as

uM =

1 0
0 y>ARR

Γuf = ΓMuf . (6.19)

Notice that ΓM is constant since, given the constraint of moving on PM , the vehicle
body rotates only around yA. Then, replacing (6.19) into (6.18) we can define
fMf (xM ,uf ) = fM (xM ,ΓMuf ).

It is well known that the propellers of a real quadrotor can not immediately
actuate a commanded thrust and that the time response depends on the particular
motors and propellers. In order to obtain a feasible and smoother trajectory for the
system we decided to consider a double dynamic extension of the model assuming
as new input the second derivative of the thrust, ūf = [f̈1 . . . f̈4]>. The new
extended state becomes x̄M = [ϕ ϑA ϕ̇ ϑ̇A ϕ̈ ϑ̈A ϕ(3) ϑ

(3)
A u>f u̇>f ]> . The

dynamics becomes

˙̄xM =


0 I6 0 0
0 0 0 0
0 0 I4 0
0 0 0 0

 x̄M +


0

f̈Mf (x̄M , ūf )
0
ūf

 = f̄Mf (x̄M , ūf ). (6.20)

We highlight the fact that for a very reactive vehicle characterized, e.g., by a low
mass and inertia, this dynamic extension could be avoided, since it would be able to
actuate fast varying inputs. Nevertheless, this allows us to generate a C3 trajectory
required by ΓbDFL.

Given the system dynamics (6.20), we are ready to formalize our optimal control
problem as

min
x̄M (t),ūf (t)

J(x̄M (t), ūf (t), t, tL)

subject to, ∀ t ∈ [t0, tL]

(a) ˙̄xM = f̄Mf (x̄M (t), ūf (t)) (b) x̄M (t0) = x̄M 0

(c) f
i
≤ fi(t) ≤ f i (d) fL(t) > 0

,

(6.21)

where J : x̄M , ūf → R is the cost function, (a) is the dynamics, (b) are the initial
conditions, (c) are the input limits, and (d) prevents the link to become slack. In
order to fulfill the objectives of Sec. 6.3, we define the cost function as:

J =
∫ tL

t0
(J1 + J2 + J3 + J4)dτ + J5
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where

J1 = kϕ(ϕ− ϕ?)2 + kϑA(ϑA − ϑ?A)2 + kϕ̇ϕ̇
2 + kϑ̇A ϑ̇

2
A + kϕ̈ϕ̈

2 + kϑ̈A ϑ̈
2
A

J2 = kϑA2hϑA(ϕ)(ϑA − ϑ?A)2

J3 = kϕ̇ϑ̇Ahϕ̇ϑ̇A(ϕ)(ϕ̇2 + ϑ̇2
A)

J4 = kūf ū
2
f

J5 = ktLϑA ϑ̇
2
A + ktLϕ̇ϕ̇

2

and k? ∈ R≥0, hϑA(ϕ) and hϕ̇ϑ̇A(ϕ) are functions that tend to 1 when ϕ is near ϕ?,
and to zero otherwise. The cost terms 1,3,5 together, help to fulfill the conditions
of Sec. 6.3, i.e., to steer the vehicle on the surface approaching it with zero veloc-
ities and accelerations. The cost term 2 enforces to approach PS with the proper
attitude, such that the landers touch the surface simultaneously. Finally, the cost
term 4 avoids fast variations on the commanded thrust that otherwise could not be
actuated. Modifying the gains of J one can adjust the trajectory to obtain different
behaviors.

The solution of the optimal control problem, x̄dM (t) for t ∈ [t0, tL], is computed
using the ACADO [Houska–2011] numerical optimizer. Finally, x̄dM (t) together with
δd(t) = 0 and ψd(t) = ψ? give the desired output trajectory ybd(t) to be tracked in
order to perform the landing.

6.6 Experimental landing and takeoff

In this section we show the main results of the experiments that validate the efficacy
of our proposed method for the problem of landing (and takeoff) on a sloped surface.

In particular, we consider the plausible scenario where a quadrotor-like vehicle
has to deploy a smaller robot or a sensor on a sloped surface tilted by 50◦, shown
in Fig. 6.4. The robot, equipped with a cable ending with a hook, starts from a
non-tethered configuration on the ground. Therefore it has to anchor the other end
of the cable to the surface to then perform the landing in a tethered configuration.
Once the robot has landed on the desired spot and deployed the robot/sensor, it
can take-off from the surface again exploiting the tether. Finally it can go back to
the initial position after having detached the cable from the surface. The hardware
employed for the experiment is the one described in Sec. 5.1.2.

6.6.1 Anchoring tools and mechanisms

In order to pass from a free-flight configuration to a tethered one, a method to
fix the end of the cable to the surface has to be found. The mechanism to do
so strongly depends on the application scenario and in particular on the material
of the slope. For example, in the context of the European project Aeroarms6, an
aerial robot has to deploy a magnetic crawler or a sensor on industrial pipes that

6http://www.aeroarms-project.eu/
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Figure 6.2 – Zoom of the hook and the anchoring mechanism.

are often non-horizontal. In this context the landing surface is mainly a pipe made
of iron/steel. Thus in this case, and whenever the surface is made of proper metal,
a magnetic anchor can be used to enhance the physical connection between surface
and the robot. In the case of a ground, snowed, or iced surface an harpoon-like
mechanism might be envisaged.

In our experimental testbed we instead used a simpler solution based on a
commercial fishing hook made of three tips, and an anchoring mechanism fixed to
the surface made by a horizontal cable. In this way the robot can be tethered to
the surface by sliding the vertical cable on the anchoring mechanism until the hook
is anchored to the horizontal cable, as shown in Fig. 6.2. The hook can be detached
from the anchoring mechanism doing the opposite operation.

6.6.2 Experimental phases

Considering the previous experimental scenario and the goal, we divided the overall
maneuver into several phases:

a) approach to the anchor point with the hook,
b) hooking of the anchoring system,
c) stretching of the cable,
d) tracking of the desired trajectory for tethered landing.
The phases from a) to c), described by the first row of images in Fig. 6.4, serve to

pass from the initial free-flight configuration to the tethered one. Using a standard
free-flight position controller and following a straight-line trajectory, the robot is
able to anchor the anchoring system attached to the surface with the hook (see
Fig. 6.4.b.2). The trajectory is planned such that the cable attached to the robot
slides on the anchoring cable until the hook results attached to the last one.

Afterword, during phase c), the cable is stretched following a simple radial
trajectory whose ending point is slightly outside the reachable region limited by
the cable length. The robot, trying to reach this ending position, as explained
in [Gioioso–2014a], will apply an extra force to the cable that will make it taut. In
particular, the farther the desired ending position, the larger the internal force on
the link. Using the dynamics of the system, the estimated state, and the control
inputs, the robot can estimate the tension on the link. This estimation is then used
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to understand when the cable results sufficiently taut. Once the tension exceeds a
certain security threshold a supervisor switches from the free-flight controller to the
tethered one. We recall that for this experiment we use the hierarchical controller
ΓbHC presented in Sec. 4.6.2 whose validity has been experimentally demonstrated
in Sec. 5.2. In fact, ΓbHC can guarantees sufficiently small tracking errors for the
slow trajectories needed for the safety of the maneuvers. This additionally shows
that the tethered solution does not require a very precise tracker.

Finally the planned landing trajectory is tracked. In order to compute the
desired landing and takeoff trajectories using the planner presented in Sec. 6.5, the
parameters of the landing surface, such as slope angle and anchoring point, must be
known. To acquire those values we applied some markers on the surface to measure
its pose with a motion capture system. However, thanks to the robustness of the
method, those parameters does not have to be very precise.

Once the robot ends the landing maneuver the takeoff can start. The takeoff
maneuver is very similar to the play-back of the previous phases. Indeed, following
the previous trajectory in the opposite sense lets the hook be detached from the
anchoring mechanism to then go back to the starting point in a free-flight configu-
ration.

6.6.3 Controller switch

During the switching between the controllers, the continuity of the control input
has to be guaranteed in order to preserve the stability of the system and to avoid
undesired vibrations and jerks on the cable. This is obtained by setting as desired
output of the next controller, the value of the system output at the switching
instant. This is possible because, thanks to the flatness, there is a bijective relation
between state/input and output. Therefore, for a specific output, there exist a
unique nominal input and state to obtain it. Assume that the system is in a certain
state with a certain input, x0 and u0, respectively. Accordingly we have a particular
output value y0. Asking the next controller to keep the output value y0 we will
obtain the same input u0 and state x0, thus preserving the continuity of the control
action and of the full state.

6.6.4 Software architecture

A schematic representation of the software architecture is represented in Fig. 6.3.
The overall controllers and observers run on a ground PC. The desired spinning
velocities of each propeller are sent at 500 [Hz] to the robot using a serial ca-
ble. The received velocity commands are then actuated by a controller (presented
in [Franchi–2017]) running on the on-board ESC (Electronic Speed Control). The
same serial communication is used to read at 1 [KHz] the IMU measurements that
are then UKF-fused together with the motion capture system measurements (po-
sition and orientation of the quadrotor at 120 [Hz]) to obtain an estimation of the
state of the vehicle. The latter is then used to close the control loop and to compute
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Figure 6.3 – Schematic representation of the software architecture. Pink blocks rep-
resent the sensors. Green blocks represent the controllers and light yellow blocks
represent the observers. Starting from the left, p̃ and R̃ represent the measured
robot position and orientation, respectively; x̂ and f̂L represent the estimated state
and link internal force, respectively; qd(t) represents the desired output trajectory;
fR and τR represents the input of the robot, i.e., thrust intensity and torque vec-
tor; w̃ represents the desired spinning velocity of the propellers. Finally ã and ω̃
represent the readings of the IMU, i.e., specific acceleration and angular velocity.

an estimation of the internal force along the link when it is taut.
The controller for the free-flight and tethered cases run in parallel and a su-

pervisor, according to the state of the experiment, decides whose input has to be
applied to the real system. The user input in the supervisor is needed to trigger
situations of emergency.

6.6.5 Offset nonideality

Another practical aspect that has to be considered is the nonzero offset between
the cable attaching point and the vehicle center of mass. Indeed, the controller
ΓbHC presented in Sec. 4.6.2 assumes that this offset is equal to zero. In this way
the robot translational and rotational dynamics can be decoupled. However, this
never happens in a practical case. Then, due to this non-zero offset, the internal
force along the cable generates a torque on the vehicle that has to be carefully
compensated. This is done computing the extra torque from the estimated tension
and the estimated offset calculated with a mechanical analysis.

Finally we highlight the fact that the maximum tiling of the surface is bounded
by the input limits. Indeed the more inclined is the slope, the less it is the thrust
required to compensate the gravity close to the surface. Due to the impossibility
of producing negative thrust for the single propeller, the almost zero total thrust
implies a reduced control authority on the total input moment that may cause the
instability of the attitude dynamics and of the whole system in general.
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Figure 6.4 – Sequence of images of a real experiment with a sloped surface tilted
by 50◦. The first row of images represents the experimental part in which the
quadrotor is in a free-flight condition. In this case a standard position controller is
used to track the desired position trajectory marked with a dashed red line. The
second row of images represents the experimental part in which the quadrotor is
tethered to the surface. In this case the controller proposed in Sec. 4.6.2 is used
to track the desired position and attitude trajectories marked with a dashed yellow
line and a solid blue line, respectively.

6.6.6 Experimental results

In Fig. 6.4 and 6.5 the experimental results are shown. In this particular case the
robot has to land and then takeoff on/from a planar surface that is tilted by 50◦.
Figure 6.4 shows the first half of the experiment, i.e., the landing, by a series of
images. In particular the first row shows the anchoring procedure done in a free-
flight condition. On the other hand, the second row shows the actual execution of
the tethered landing. A video of the full experiment is available at [video 1–2016]

Figure 6.5 shows the evolution of the state, outputs and inputs of the system
during the landing and takeoff maneuvers. At time zero the tethered controller is
activated and the landing maneuver starts. At time tL the landing is accomplished
and the surface is reached. At time tG the motors are stop to simulate the deploying
of a robot/sensor. Finally, at time tT the takeoff maneuver starts.

From those plots one can see that the desired trajectory is tracked precisely, with
only some small errors due to calibration inaccuracy. Furthermore, notice that the
intensity of the internal force is always positive. This shows that the cable is kept
taut for the whole execution of the maneuvers. Despite the presence of tracking
errors the landing and takeoff maneuver are accomplished successfully and in a very
safe and gentle way. This shows the big advantage of using a tether that makes the
execution on the task reliable and robust to tracking and modeling errors. Thanks
to this we were able to perform landing and takeoff on/from an even non-flat surface
(a pipe) tilted up to 60◦. We provide an image from such experiment in Fig. 6.6.
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Figure 6.5 – Experimental results: plots of the state, outputs and inputs of the
system during the tethered landing and takeoff. In particular ϕ and δ describe
the attitude of the cable and, given the link constraint, the position of the vehicle
with respect to the anchoring point. φ and ψ are the angles that together with
ϑA describe the orientation of the robot. f1, f2, f3, f4 are the forces produced by
each propeller. Finally, fL is the intensity of the internal force along the link. The
super-script d and n represent the desired and the nominal values of a variable,
respectively.

Figure 6.6 – Execution of a tethered landing on an inclined pipe tilted by 60◦.
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Chapter 7

Multi-vehicles

Here we consider a multi-agent extension of the original problem analyzed in Chap. 4,
by looking at a system composed by two underactuated flying vehicles lying on a
vertical plane that are connected to the ground and to each other through two
generic links, as depicted in Fig. 7.1. One can notice the similarity with a classic
two-link Cartesian robot where the end of the chain represents the end-effector,
while the aerial vehicles are the actuated joints of the robot.

For this singular system, never studied before according to our best knowledge,
we aim to extend part of the results found for the single tethered case. In particular,
we want to control not only the elevation but also the internal force of the two links.
Moreover we want to obtain the tracking of the output of interest along any desired
time-varying trajectory, instead of just achieving regulation to constant values. For
this goal we shall show that also in this case the elevations and internal force along
the links are differential flat/feedback linearizing outputs. Following the analysis
of Chap. 4, we will design a state feedback linearizing controller for the precise
tracking of the output of interest. Finally, we investigate which is the minimal set
of sensors needed to estimate the full state of the system. Based on such sensory
setup we will design a nonlinear observer based on the HGO in order to obtain the
sough estimation of the state.

7.1 Modeling

In order to refer to the quantities of one component of the chain, we use the subscript
·i with i = 1 for the first link and i = 2 for the second. Similarly to Chap. 4 we
assume: i) negligible link masses and rotational inertias with respect to the ones
of the vehicles, ii) fixed link lengths li ∈ R>0 where i ∈ {1, 2}, and iii) negligible
deformations and elasticities.

We define ϕi ∈ R the elevation angle of the i-th link. With fLi ∈ R we denote
the internal force that is exerted on the i-th link. Also in this case the link is generic
and both compressions and tensions are allowed. The first link is connected at one
end to the CoM of the first vehicle, and the other end to a fixed point. The two
ends of the second link are attached to the first and second vehicle center of masses,
respectively. No rotational constraints are present in the connections, e.g., by using
passive rotational joints. Finally, mRi ∈ R>0 and JRi ∈ R>0, with i = 1, 2, denote
the mass and inertial, respectively, of the i-th vehicle.

It is convenient to define the frames of the system in 3D, even if we consider
a 2D problem, in order to, e.g., have a well defined angular velocity vector for the



132 Chapter 7. Multi-vehicles

ϕ1

τR1

xB2

zW

xW

l1

OW

ϕ2

−θ1

θ2
−fR2zB2

τR2

zB2

OB2

−mR2gzW

−fL2d2

xB1

OB1

zB1

−mR1gzW−fL1d1

l2 −fR1zB1

Figure 7.1 – Representation of the system and its main variables. The system
is depicted in a scenario of example where the grey box represents a surface of
manipulation for, e.g., a pick and place task.

aerial vehicles. Thus we define a world frame, FW , described by the unit vector
along its axes {xW ,yW , zW } and origin set on a fixed point OW . Then, for every
robot, we define a body frame, FBi, rigidly attached to the i-th vehicle, described
by the unit vector along its axes {xBi,yBi, zBi} and origin OBi set on the vehicle
CoM, represented in FW by the coordinates pBi = [xBi yBi zBi]

>, where yBi = 0.
The axes yW , yB1 and yB2 are perpendicular to the vertical plane {xW , zW } where
motion occurs, as depicted in Fig. 7.1. The system evolves on this vertical plane on
the effect of the four control inputs (two for each robot), i.e., the intensities fRi ∈ R
and τRi ∈ R of the thrust force −fRizBi ∈ R3 and the torque −τRiyBi ∈ R3,
respectively, with i = 1, 2.

Given the constraints, the system is completely described by the generalized
coordinates q = [ϕ1 ϕ2 θ1 θ2]> = [ϕ> θ>]> ∈ R4, where ϕi and θi are the elevation
of the i-th link (defined before) and the attitude of the i-th vehicle, respectively.

To derive the dynamic model of the system, as done in Sec. 4.4, we employ the
Newton-Euler methods, because also in this case we are interest in controlling the
internal force along the link and an analytical expression is thus needed. Since the
rotational dynamics of the generic i-th vehicle is decoupled by the translational one,
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we have that

θ̈ = J−1τR, (7.1)

where J = diag(JR1, JR2) ∈ R2×2
>0 and τR = [τR1 τR2]> ∈ R2. Since we are

considering the 2D problem, in the following, we will omit the lines full of zeros
relative to the yB1 and yB2 axes. Balancing the forces acting on the vehicle CoMs
we obtain m1p̈B1

m2p̈B2


︸ ︷︷ ︸

a

= −

d1fL1 − d2fL2

d2fL2


︸ ︷︷ ︸

afL

−

fR1zB1

fR2zB2


︸ ︷︷ ︸

afR

−

mR1gzW
mR2gzW


︸ ︷︷ ︸

ag

, (7.2)

where di = [cosϕi sinϕi]> and d⊥i = [− sinϕi cosϕi]> are unit vectors in the
vertical plane parallel and perpendicular to the i-th link, respectively. The acceler-
ations of the vehicle CoMs expressed in FW are

p̈B1 = −l1d1ϕ̇
2
1 + l1d⊥1 ϕ̈1

p̈B2 = p̈B1 − l2d2ϕ̇
2
2 + l2d⊥2 ϕ̈2.

(7.3)

Using (7.3) and (7.2) we have that

a =

 −mR1l1d1ϕ̇
2
1

−mR2(l1d1ϕ̇
2
1 + l1d2ϕ̇

2
2)


︸ ︷︷ ︸

aϕ̇

+

mR1l1d
⊥
1 0

mR2l1d
⊥
1 mR2l2d

⊥
2


︸ ︷︷ ︸

Aϕ̈

ϕ̈

afL =

d1 −d2

0 d2


︸ ︷︷ ︸

D

fL,

where aϕ̇ ∈ R4, Aϕ̈ ∈ R4×2, D ∈ R4×2 and fL = [fL1 fL2]> ∈ R2. Therefore (7.2)
can be rewritten as:

[
Aϕ̈ D

]
︸ ︷︷ ︸

W

ϕ̈
fL

 = −afR − ag − aϕ̇. (7.4)

The matrix W ∈ R4×4, that can be explicitly written as

W =


−l1mR1 sinϕ1 0 cosϕ1 − cosϕ2

l1mR1 cosϕ1 0 sinϕ1 − sinϕ2

−l1mR2 sinϕ1 −l2mR2 sinϕ2 0 cosϕ2

l1mR2 cosϕ1 l2mR2 cosϕ2 0 sinϕ2

 ,



134 Chapter 7. Multi-vehicles

is full rank, in fact its determinant is det (W) = −l1l2mR2[mR1 +mR2(1−cos2(ϕ1−
ϕ2))], which is always nonzero.

The dynamics of the system is then described by the following equations:

ϕ̈ =
[
I2 0

]
W−1(−afR − ag − aϕ̇). (7.5a)

θ̈ = J−1τR (7.5b)

For the design of a state observer in Sec. 7.4 it is useful to rewrite (7.5) in a
Lagrangian format:

M(ϕ)ϕ̈ = −c(ϕ, ϕ̇) + Q̄ϕ(ϕ,θ)fR (7.6a)
Jθ̈ = τR, (7.6b)

where fR = [fR1 fR2]> and

M(ϕ) =

 (mR1 +mR2)l21 mR2l1l2 cos (ϕ1 − ϕ2)
mR2l1l2 cos (ϕ1 − ϕ2) mR2l

2
2


c(ϕ, ϕ̇) =

mR2l1l2 sin (ϕ1 − ϕ2) ϕ̇2
2 + (mR1 +mR2)gl1 cosϕ1

−mR2l1l2 sin (ϕ1 − ϕ2) ϕ̇2
1 +mR2gl2 cosϕ2


Q̄ϕ(ϕ,θ) =

l1 cos (ϕ1 + θ1) l1 cos (ϕ1 + θ2)
0 l2 cos (ϕ2 + θ2)



7.2 Differential flatness

For the single tethered aerial vehicle we showed that it is differentially flat with
respect to ya containing the position of the vehicle and the internal force along the
link. In this section we shall show that analogously, the multi-robot extension here
considered is differentially flat with respect to the output ya2 = [ya21

> ya22
>]> =

[ϕ> f>L ]>, containing the position of the vehicles (parametrized by the elevation
angles) and the internal force along the links.

We recall that to prove the differential flatness of the system, state, x =
[x1 x2 x3 x4 x5 x6 x7 x8]> = [ϕ1 ϕ̇1 ϕ2 ϕ̇2 θ1 θ̇1 θ2 θ̇2]> ∈ R8 and input,
u = [fR1 fR2 τR1 τR2]> = [fR> τR>]> = [u>1 u>2 ]> ∈ R4, have to be expressed as
an algebraic function of the output and its derivatives. We have that ϕ is already
part of the output, thus ϕ = ya21 and ϕ̇ = ẏa21. To find the rest we firstly compute
the nominal thrust vectors from the output and its derivatives using (7.2):fR1zB1

fR2zB2

 = a(ya21, ẏa21, ÿa21) + afL(ya2) + ag. (7.7)

Similarly to Sec. 4.5.1, from the thrust vectors we can easily compute the inputs
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and the missing part of the state as function of the output and its derivatives up
to the fourth derivative.

Proposition 7. The model (7.5), is differentially flat with respect to the flat output
ya2 = [ϕ> f>L ]>. In other words, the state and the inputs can be written as algebraic
function of ya2 and a finite number of its derivatives.

7.3 Dynamic feedback linearization

As usual, to compute the feedback linearizing control law, we need to differentiate
the outputs until the input u appears. Inverting (7.4), and recalling that ya21

(2) = ϕ̈

and ya22 = fL, we directly obtainya21
(2)

ya22

 = W−1(−ag − aϕ̇)︸ ︷︷ ︸
b(x)

+
(
−W−1

[
ZR 0

])
︸ ︷︷ ︸

E(x)

u, (7.8)

where b(x) gathers all the terms that do not depend on u and ZR ∈ R4×2 is:

afR =

zB1 0 0 0
0 zB2 0 0

u =
[
ZR 0

]
u. (7.9)

From (7.8) we can see that the input appears directly in ya22 without need for differ-
entiation while ya21 has to be differentiated twice. Furthermore, we can immediately
notice that the decoupling matrix E(x) is always singular which means that it is
not possible to determine a static feedback that linearizes the system using ya2.

As we saw in Sec. 4.7, the common technique is to delay the appearance of
the input in ya22 (i.e., increasing the relative degree of ya22) introducing a dynamic
compensator composed by one or more integrators in the input channel u1. To
this aim, we redefine the input as ū = [ü>1 u>2 ]> = [ū>1 ū>2 ]>, considering the
acceleration of the thrust intensity as new controllable input, ü1 = f̈R. The system
is now described by the extended state x̄ =

[
ϕ> ϕ̇> θ> θ̇> u>1 u̇>1

]>
∈ R12, that

contains also the thrusts and their derivatives. Considering the extended system and
the new input, ya21 and ya22 have to be differentiated four and two times, respectively,
in order to see the new input ū appear:[

ya21
(4)

ya22
(2)

]
= ¨(W−1)(−afR

− ag − aϕ̇) + 2 ˙(W−1)(−ȧfR
− ȧϕ̇)+

+ (W−1)(−äfR
− äϕ̇).

(7.10)

In the previous equation the inputs appear only in the term äfR that can be
rewritten as:

äfR = ä′fR(x̄) + Ä′′fR(x̄)ū, (7.11)
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where

Ä′′fR(x̄) =


− sin θ1 0 −fR1 cos θ1

JR1
0

− cos θ1 0 fR1 sin θ1
JR1

0
0 − sin θ2 0 −fR2 cos θ2

JR2

0 − cos θ2 0 fR2 sin θ2
JR2

 . (7.12)

We can compactly rewrite (7.10) as:ya21
(4)

ya22
(2)

 = b(x̄) +
(
−W−1Ä′′fR(x̄)

)
︸ ︷︷ ︸

Ē(x̄)

ū, (7.13)

where b(x̄), whose expression is omitted here for the sake of brevity, collects all the
terms in (7.10) that do not depend on the input. After some algebra, it is possible
to analytically compute the determinant of the new decoupling matrix Ē(x̄):

det
(
Ē(x̄)

)
= − fR1fR2

JR1JR2l1l2mR2
(
mR1 +mR2 sin2(ϕ1 − ϕ2)

) ,
which is zero iff fR1 = 0 or fR2 = 0 (same singularity of the single tether case).
Therefore Ē(x̄) is always invertible except for the cases in which one of the two
thrusts vanishes. Furthermore the total relative degree r = 8 + 4 = 12 is equal to
the dimension of the extended state x̄. This means that the system does not have
an internal dynamics, i.e., it is fully linearizable through dynamic feedback. In fact,
designing the control input as

ū = Ē−1(x̄) [−b(x̄) + v] , (7.14)

where v = [v>1 v>2 ]> ∈ R4 is a virtual input, we obtain

ya21
(4) = v1 ya22

(2) = v2,

i.e., through the state feedback transformation (7.14) we transform the original non
linear system (7.5) in a fully-equivalent linear and decoupled dynamical system.

Proposition 8. Consider the system composed by two aerial vehicles connected
in series to the ground by two links with passive joints, whose dynamic model is
described by (7.5). Consider as outputs the elevation and the internal force of
the two links, ya2 = [ϕ> f>L ]>. Then the system is fully linearizable via dynamic
feedback for every state configuration, iff both thrusts fR1 and fR2 are nonzero.

As a consequence of the previous Proposition 8, as done in Sec. 4.7 we can
design a standard linear controller to obtain the tracking of a desired trajectory.
The overall controller design is depicted in Fig. 7.2.
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Figure 7.2 – Graphic representation of the controller.

Corollary 1. Let be given any desired trajectory ya21
d(t) of class C3 for the two

links elevation ya21, and any desired trajectory ya22
d(t) of class C1 for the two links

internal force ya22. Consider as input the second derivative of the two thrusts and
the torques provided by the aerial vehicles, ū = [f̈>R τR

>]>. Consider the control
law described by (7.14) and set the virtual inputs as:

v1 = ya21
d(4) + K11e1 + K12e

(1)
1 + K13e

(2)
1 + K14e

(3)
1

v2 = ya22
d(2) + K21e2 + K22e

(1)
2 ,

(7.15)

where Kij ∈ R2×2
>0 , with i = 1 . . . 4 and j = 1, 2, are diagonal matrices.

That control law exponentially steers ya2 along any desired trajectory ya2d =
[ϕd1 ϕd2 fL

d
1 fL

d
2]>. The behavior of the convergence can be arbitrarily assigned by

suitably choosing the gain matrixes.

Let us define the errors as e1 = ya21
d − ya21 and e2 = ya22

d − ya22. The controller
yields to the following error dynamics:

e
(4)
1 + K11e1 + K12e

(1)
1 + K13e

(2)
1 + K14e

(3)
1 = 0

e
(2)
2 + K21e2 + K22e

(1)
2 = 0.

Therefore, from basic linear system theory, one can arbitrarily assign the poles of the
dynamics of the error in order to guaranties an arbitrarily fast exponential track-
ing of (ya21

d(t),ya22
d(t)) for (ya21(t),ya22(t)) by suitably choosing the gains: K̄1 =

[K11 K12 K13 K14] ∈ R2×8
>0 and K̄2 = [K21 K22] ∈ R2×4

>0 . Since (ya21
d(4)(t),ya22

d(2)(t))
have to be well defined, the elevation and internal force trajectories have to be of
class C3 and C1 respectively.

Due to Proposition 8, if the links are bars, it is feasible to pass from compression
to tension and viceversa. Instead, in the case of a cable, it is possible to maintain a
sufficient value of tension under a maximum breaking value and above the minimum
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tautness value.
We remark that, since the total relative degree is equal to the dimension of the

extended state, there is no internal dynamics. This implies that the dynamics of
the pitch of each vehicles is stable during the tracking of the desired output.

Remark (Case of zero thrust). If a particular desired trajectory of the outputs re-
quires zero thrust on one of the two vehicles the controller cannot be applied, indeed
in this case it has a singularity. Thus, this fact has to be considered in the plan-
ning phase in order to design desired trajectories that ensure strictly positive, or
negative, thrusts. Although this is a planning problem that does not concern this
work, we believe that the problem of zero thrust does not imply a strong limitation
on the set of the feasible trajectories. Indeed, as it is shown in Sec. 7.5, we can still
generate non-trivial trajectories, e.g., inversion of the internal link force from ten-
sion to compression, ensuring non zero thrusts. An extended study on the planning
of feasible trajectories is left as future work.

Looking at the control law described by the equations (7.14) and (7.15), and
depicted in the block diagram of Fig. 7.2, one can notice that its implementation
requires the knowledge of the extended state x̄, the output y and its derivatives
(up to the third-order for ya21 and first-order for ya22). Nevertheless, y and all its
needed derivatives can be calculated as function of x and ū as done, e.g., in (7.8)
and (7.13) for some of the derivatives. Note also that u1 and u̇1 are directly known
because they are internal state of the controller.

7.4 State estimation

Instead of considering a direct measure of the state to close the control loop, we
aim to find the minimal set of sensors based on which we can obtain an estimation
of the state. Inspired by the results obtained in Chap. 4 we consider the possible
sensory setup of Tab. 7.1. In this section, for the case 4 of Tab. 7.1, we present
a method to transform the original measurements into direct measurements of the
configuration q and we show that this implies the observability of the full state,
i.e., q and q̇. For this case we propose a nonlinear estimator, based on the HGO
able to retrieve the state from any dynamic condition. In the end we analyze the
applicability of the method to the other configurations of Tab. 7.1.

7.4.1 Output transformations

Assume to have an onboard accelerometer for each robot, placed at OBi and at-
tached to FBi. According to the model in Sec. 3.4, it measures the specific acceler-
ation:

ai = RBiW (p̈Bi + gzW ) = [aix 0 aiz ]
> , (7.16)
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Case 2nd Sensor Type Mounting Measures Applica-
Place ρ1, ρ2 bility

1 Absolute Inclinom. FB1 θ1 yes
Absolute Inclinom. FB2 θ2

2 Absolute Inclinom. FB1 θ1 yes
Relative Inclinom. FB2 θ1 − θ2

3 Encoder FW − link1 ϕ1 no
Encoder FB1 − link1 ϕ1 + θ1

4 Encoder FW − link1 ϕ1 yes
Encoder FB1 − link2 ϕ2 + θ1

5 Encoder FW − link1 ϕ1 no
Encoder FB2 − link2 ϕ2 + θ2

6 Encoder FB1 − link1 ϕ1 + θ1 no
Encoder FB1 − link2 ϕ2 + θ1

7 Encoder FB1 − link1 ϕ1 + θ1 no
Encoder FB2 − link2 ϕ2 + θ2

Table 7.1 – Possible sensors configurations. The 1st sensor type corresponds to an
accelerometer mounted on each robot.

where RBiW ∈ R3 is the rotation matrix from FW to FBi, and p̈Bi is the acceleration
of the CoM of the i-th vehicle w.r.t. FW .

Then we assume to be in the case #4 of Tab. 7.1, i.e., the system is equipped
with two encoders, one is rigidly attached to the ground and connected to the first
link and measures its absolute elevation relative to FW , while the second is fixed
to FB1 and connected to the second link, and measures its relative elevation with
respect to FB1, i.e.:

ρ1 = ϕ1, ρ2 = ϕ2 + θ1. (7.17)

Now, replacing p̈B2 from (7.2) into (7.16) for i = 2, we obtain

−mR2a2 = RBiW (fL2d2 + fR2zB2) = fL2R
Bi
W d2 + [0 0 fR2]>, (7.18)

which allows to define the measurement transformation

[
w1(k)
w2(k)

]
=

sgn
(
k − 1

2
)√

ā2
2x

+ ā2
2z

atan2
(

ā2z

w1(k) ,
ā2x

w1(k)

) =
[

0
ϕ2 + θ2 + π

2

]
±

[
fL2
π
2

]
, (7.19)

where ā2x = mR2a2x , ā2z = mR2a2z + fR2 and k ∈ {0, 1}. Note that i) there are
two solutions for k = 0 and k = 1 because sgn (fL2) is not retrievable from the
measurements; ii) the transformation is allowed iff fL2 6= 0.

At every time instant t there is only one correct pair of measurements, equal
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to (fL2, ϕ2 + θ2), while the other is wrong and equal to (−fL2, ϕ2 + θ2 + π). We
define k∗ the unique k ∈ {0, 1} such that (w1(k∗), w2(k∗)) = (fL2, ϕ2 + θ2). Then,
replacing p̈B1 from (7.2) into (7.16) for i = 1, and after some simple algebra, we
can define two additional new measurement transformations:w3(k∗, j)
w4(k∗, j)

 =

 sgn
(
j − 1

2

)√
ā2

1x + ā2
1z

atan2
(

ā1z
w3(k∗, j) ,

ā1x
w3(k∗, j)

) =

 0
ϕ1 + θ1 + π

2

±
fL1

−π
2

 , (7.20)

where ā1x = mR1a1x − w1(k∗) cos ρ2, ā1z = mR2a1z − w1(k∗) sin ρ2 + fR2 and j ∈
{0, 1}. As in (7.19), the transformation is not possible when fL1 = 0. A practical
solution for the instantaneous zero internal force case is provided in Sec. 7.4.5

Since the sign of fL1 is not retrievable from the measurements, we obtain two so-
lutions parametrized by j, i.e., (w3(k∗, j), w4(k∗, j)). At every time instant t there is
only one correct pair of measurements equal to (fL1, ϕ1+θ1), while the other is wrong
and equal to (−fL1, ϕ1 + θ1 + π). Actually, recalling that also k ∈ {0, 1}, we ob-
tain four groups of different measurements, i.e., (w1(k), w2(k), w3(k, j), w4(k, j))
with k, j ∈ {0, 1}. We know that at each time t there is only one couple k∗, j∗ ∈
{0, 1} such that the corresponding measurements are correct, i.e., (w1(k∗), w2(k∗),
w3(k∗, j∗), w4(k∗, j∗)) = (fL2, ϕ2 + θ2, fL1, ϕ1 + θ1), while all the others are wrong.

Finally, exploiting the readings of the encoders, we can define the last measure-
ment transformation

η1 = ρ1

η2(k, j) = ρ1 + ρ2 − w4(k, j)
η3(k, j) = w4(k, j)− ρ1

η4(k, j) = w2(k) + w4(k, j)− ρ1 − ρ2.

(7.21)

The transformation method is represented in Fig. 7.3a. From (7.21) one can no-
tice that for the pair (k∗, j∗) defined before, we obtain a direct measure of the
generalized coordinates, i.e. η(k∗, j∗) = [η1 η2(k∗, j∗) η3(k∗, j∗) η4(k∗, j∗)]> =
[η>1 (k∗, j∗) η>2 (k∗, j∗)]> = [ϕ1 ϕ2 θ1 θ2]>. While, for the pairs (k, j) 6= (k∗, j∗),
η(k, j) is a wrong measurement of the configuration. From a single set of measures
it is not possible to discriminate which is the correct pair (k∗, j∗) corresponding to
the correct η, nevertheless, in Sec. 7.4.4 we show a discriminating method exploiting
the dynamics, similar to the one proposed in Sec. 4.9.

For the purpose of proving the observability of the system and for designing the
observer we consider η = η(k∗, j∗).

7.4.2 Observability

In order to study the observability of the system and to design an observer of the
state, we first rewrite the system in a state space form. We can rewrite (7.6) and
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the measurements function (7.21) as:

ẋ = Ax + B

Σ(x,u1)
J−1u2

 (7.22a)

η = Cx, (7.22b)

where A = diag(A1,A2,A3,A4), B = diag(B1,B2,B3,B4), C = diag(C1,C2,

C3,C4) and

Ai =

0 1
0 0

 , Bi =

0
1

 , Ci =
[
1 0

]
∀i = 1, . . . , 4

Σ(x,u1) = −M(x)−1c(x) +M(x)−1Q̄ϕ(x)u1. (7.23)

Notice that M(x) is always invertible. Writing (7.22) as ẋ = f(x,u), and η =
h(x). the system results observable if the nonlinear observability matrix O(x,u) =[
∂h(x)
∂x ,

∂ḣ(x)
∂x , . . . ,

∂h(7)(x)
∂x

]>
∈ R4·8×8 is full rank [Marino–1996]. We can no-

tice that

O(x,u)1 =
[
∂h(x)
∂x ,

∂ḣ(x)
∂x

]>
=
[
C> (CA)>

]>
.

Changing the order of the rows we obtain O(x,u)′1 = I8, that is full rank for every
x ∈ R8 and u ∈ R4. This implies that also O(x,u) is always full rank, i.e.,

Proposition 9. Consider the system described by (7.6) with two on-board accelerom-
eters, mounted on each vehicles, and two encoders. One is attached to the ground
and connected to the first link, and one is mounted on the first vehicle and connected
to the second link. Then, the system is observable except for the zero internal force
cases, i.e., fL1 = 0 or fL2 = 0.

Although we proved Prop. 9 only for the fourth case of Tab. 7.1, actually, the
result shows a more general sufficient observability condition. Indeed, independently
from the available sensors, whenever there are some output transformations that
translate the original measurements into direct measures of q, then the system is
observable, i.e.,

Proposition 10. Consider the system described by (7.22a) and a set of measure-
ments w = h(x,u) ∈ Rp, where p ∈ R≥1. Define X the state space and U the
control inputs space. If there exists a subspace D ⊆ X × U and a measurement
transformation function Γ : Rp → R4 valid in D, such that [ϕ1 ϕ2 θ1 θ2]> = Γ(w),
then the system is observable for every x and u in D, and can be written in the
form of (7.22).
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7.4.3 High gain observer

For the sets of measurements that fulfill the condition of Prop. 10, and in particular
for the case 4 of Tab. 7.1 we show in this section the design of an observer based
on HGO (see Sec. 2.4).

Considering the system (7.22) we define ζ = [ζ>1 ζ>2 ]> = [ζ1 ζ2 ζ3 ζ4]> =
[x1 x2 x3 x4]> and z = [z>1 z>2 ]> = [z1 z2 z3 z4]> = [x5 x6 x7 x8]>. The
system (7.22) can be then written asζ̇ = Aζζ + BζΣ(ζ,η2,u1)

η1 = Cζζ

ż = Azz + Bzu2

η2 = Czz,
(7.24)

where Aζ = diag(A1,A2), Bζ = diag(B1,B2), Cζ = diag(C1,C2), Az = diag(A3,

A4), Bz = diag(B3,B4)J−1, Cz = diag(C3,C4). Having replaced θ1 and θ2 with
their measures η2 in the dynamics of ζ, the two systems become completely inde-
pendent, moreover, the second one is linear, therefore we can design for it a classical
Luenberger observer

˙̂z = Azẑ + Bzu2 + Hz(η2 −Czẑ), (7.25)

where Hz = diag(Hz1 ,Hz1) and Hzi = [βi1 βi2]>, whose elements, βij ∈ R>0 can be
set to place the poles of the error dynamics, ezi = zi − ẑi. Instead, for the first
system, thanks to its particular triangular form, it is possible to use the following
HGO

˙̂
ζ = Aζ ζ̂ + BζΣ(ζ̂,η2,u1) + Hζ(η1 −Cζ ζ̂), (7.26)

where Hζ = diag(Hζ1 ,Hζ1) and Hζi = [α
i
1
ε

αi2
ε2

]>, with ε ∈ R>0, and the gains
αij ∈ R>0 are set such that the roots of s2 + αi1s+ αi2 have negative real part. The
gains (αi1, αi2) influence the convergence rate of the estimation of the i-th elevation
angle and its derivative, i.e., ϕi and ϕ̇i. A schematic representation of the observer
is given in Fig. 7.3b.

7.4.4 Disambiguation of η

The output transformations described in Sec. 7.4.1 generates four different set of
measurements, η(k, j) with k, j ∈ {0, 1}, of which only one is correct.

As represented in Fig. 7.3a, for each k, j ∈ {0, 1}, we implement an observer of
the state, Σkj , using (7.25) and (7.26), based on the measurements η(k, j). There-
fore we obtain four estimates of the state, one for each measurement pair, x̂0,0, x̂0,1,
x̂1,0, x̂1,1, and the correct one has to be recognized.

Define ŵ = [â>1 â>2 ρ̂1 ρ̂2]> as the vector that contains the measurements
computed with the estimated state, i.e.,

ρ̂1 = x̂1, ρ̂2 = x̂3 + x̂5, âi = R̂BiW (ˆ̈pBi − gzW ),
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Figure 7.3 – Graphic representation of the observer.

where R̂BiW = RBiW (x̂), and ˆ̈pBi is calculated considering the system model (i.e., no
numerical differentiation is needed)

ˆ̈pB1 = −l1d1(x̂1)x̂2
2 + l1d⊥1 (x̂1)ˆ̇x2

ˆ̈pB2 = ˆ̈pB1 − l2d2(x̂3)x̂2
4 + l2d⊥2 (x̂3)ˆ̇x4.

In the previous equations ˆ̇x2 and ˆ̇x4 are the estimation of the angular acceleration of
the elevations calculated replacing the estimated state into (7.23), i.e., [ˆ̇x2 ˆ̇x4]> =
Σ(x̂,u1) (no numerical differentiation needed in this case either).

In order to choose the correct estimation among the four, we propose a method
based on the minimal prediction error, similar to the one used in Sec. 4.9. For each
observer we compute a prediction error ẽk,j smoothed with an exponential discount
factor:

˙̃ek,j = λ(‖w− ŵk,j‖ − ẽk,j),

where λ ∈ R>0 sets the discount rate and w = [a>1 a>2 ρ1 ρ2]>. Then, the
estimation of the observer with minimum prediction error is chosen, i.e., x̂ = x̂k∗,j∗
s.t. {k∗, j∗} = arg mink,j∈{0,1}(ẽk,j). Fig. 7.3 shows the estimator structure.
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7.4.5 Discussion on the proposed method

Zero internal force Case As we previously noticed, if one of the link internal
forces is zero then w2 or w4 cannot be determined. We noticed an analogous singu-
larity in Sec. 4.8 and Sec. 4.9 for the single tethered system as well. Nevertheless,
we showed that if the desired internal force is passing through zero for a sufficiently
short (ideally zero) time interval, one can still use the proposed observes in practice
by updating the filter without the correction term in that time instants. For the
multi-tethered system this implies to impose

˙̂z = Azẑ + Bzu2
˙̂
ζ = Aζ ζ̂ + BζΣ(ζ̂, ẑ,u1)

if w1 = 0 or w3 = 0.

During this instant the observation is done in ‘open loop’ only using the model
dynamics, thus the error dynamics becomes non strictly stable for a short moment.
However, the dynamics returns asymptotically stable as soon as the internal force
becomes non-zero again, as it is shown in Sec. 7.5 by simulations.

Applicability The transformation method showed for the case 4 in Tab. 7.1 can
be applied also to other sets of sensors. Last column of Tab. 7.1 specifies for
which cases the method is able to transform the original measurements into direct
measures of the system configuration. For cases 1 and 2, the measurements trans-
formations are very similar to those derived for case 4. For the remaining cases it
is not possible to apply the proposed method. In particular for the cases 3, 5, 7 we
cannot compute the transformation (7.20). While, for the case 6, the problem lies
in the last transformation (7.21).

Loop Stability For the control law described in Sec. 7.3, the knowledge of the
state is sufficient in order to close the loop. Thus we can use as feedback the state
estimation provided by the proposed observer. Then a similar reasoning to the one
in Sec. 4.8 and Sec. 4.9 can be done to prove that there exist a ε∗ such that, for
every 0 < ε ≤ ε∗ in (7.26), the closed loop system with the observer is exponentially
stable, except for the zero thrust and zero internal force cases.

7.5 Numerical validation

We tested the closed loop system (observer + controller) in simulation using two
aerial robots withmRi = 1 [kg] and JRi = 0.15 [kg m2], and two links with li = 2 [m]
(i = 1, 2). In order to obtain a reasonable fast tracking of the desired trajectories
we set the gains such as the error dynamics relative to ϕ1, ϕ2 and fL1, fL2 has
poles in (−3,−6,−9,−12) and (−5,−10), respectively. Regarding the convergence
of the state estimation, we set ε = 0.1 and the gains (αi1, αi2) such as the roots
of s2 + αi1s + αi2 are (−2,−3). We set Hzi such that the error dynamics of the
estimation of θ1 and θ2 has poles in (−15,−25). Finally, the discount rate of the
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prediction error dynamics is set to λ = 20. These gains values, replicated identically
for each of the four observers, guarantee the stability of the closed-loop system.

To show the ability of the proposed observer to exponentially converge to the
real state, we initialize it with an error of 5◦ relatively to the elevation and pitch
angles. We propose two different simulations:

i) the first, whose results are plotted in Fig. 7.4, shows the performances of the
global closed loop system in the particular case of inversion of the internal
force. In particular, the trajectory of the end-effector is a trajectory of class
C3 from the initial position pB2(0) = [2.5 0 2]T to the final pB2(tf ) =
[−0.7 0 0.7]T . While the desired internal force along the links is a trajectory
of class C1 from the initial tension of 10 [N] to the final compression of−10 [N].

ii) In the second simulation, reported in Fig. 7.5, we replicate a plausible real
scenario where the system is controlled as a two-link robot. The desired
trajectory of the end-effector is planned in the Cartesian space as a sequence
of three arcs of ellipse in order to enter, stop on each room of a plausible
building, and then return to the initial position. By inverse kinematics the
desired trajectories of the two elevations are derived. In the meanwhile a
constant tension of 5 [N] is required on the two links for the hole duration of
the task.

To better represent the behavior of the system, Fig. 7.4c and Fig. 7.5c show
the stroboscopic evolution of the system where the flow of time is provided by the
change of color. To graphically represent the internal force variation, the link is
drawn as a dashed line with a thinner width when the tension is higher, and as a
solid line with a wider width when the compression is higher.

From Fig. 7.4 and Fig. 7.5 one can notice that the estimation of the state con-
verges to the real one in less than one second, in any dynamic condition. Moreover,
for the first simulation, the prediction error does not increase even when the desired
internal force passes through zero. Although during the transient of the estimation
the controller shows a non zero tracking error, actually, as soon as the estimation
error goes to zero, the outputs follow the desired trajectory with high fidelity dur-
ing the remaining time of the simulation. An animation of the simulations is also
available at [video 4–2015].
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Part III

Design, Control and Motion
Planning for Aerial Physical

Interaction





Chapter 8

Design of omnidirectional
total-thrust vehicles

This chapter is a brief summary of [Tognon–2018c] about the design of omnidirec-
tional thrust aerial vehicles. We provide the state of the art related to the topic
and a short description of our contribution and the relative results. However, for
the details we refer the interested reader to [Tognon–2018c].

8.1 Introduction

The challenging problem of aerial physical interaction has been firstly targeted us-
ing unidirectional-thrust vehicles actuated by multiple collinear rotors and endowed
with cables as we did in Part II, rigid tools [Nguyen–2013; Yüksel–2014] or more
complex robotic arms [Fumagalli–2012; Muscio–2016; Tognon–2017e]. These ve-
hicles are energy efficient but underactuated because of the unidirectionality of
the total thrust in the body frame. Therefore, as we already said, i) the vehicle
orientation is coupled with its translational motion, and ii) the system cannot in-
stantaneously react to forces with any direction. Recent solutions to these issues
consist in using multidirectional-thrust vehicles that can generate a force in multiple
directions and can control both position and orientation independently. Examples
are the platforms with tilted unidirectional-thrust rotors (i.e., propellers generating
lift in only one direction), see, e.g., [Rajappa–2015] and [Romero–2007]. However,
in these platforms the set of feasible forces does not span all the directions in R3.

A special case is made by omnidirectional-thrust vehicles, that can produce a
force in any direction in the body frame. This sub-class of vehicles is the most
preferable, especially for physical interaction, because it can hover in any direction
and can compensate/exert any force independently, thus allowing applications that
are impossible with other platforms, including safe human interaction, 360◦ aerial
photography, etc.

In [Park–2016] and [Brescianini–2016] two omnidirectional-thrust vehicles are
proposed with 6 and 8 tilted bidirectional-thrust rotors, respectively. Such rotors
are able to invert the direction of the lift force by inverting either the motor ro-
tation or the propeller angle of attack. However such rotors have several issues:
i) scarceness of reversible ESC for brushless motors, ii) lower energetic efficiency
compared to unidirectional rotors, iii) lower controllability of the exerted force at
low speeds, and iv) extra mechanical complexity and increased weight, thus higher
energy consumption (in case of variable pitch propellers). A solution to obtain an
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Figure 8.1 – Schematic representation of a multirotor and its main quantitites. Only
three of the n propellers are shown.

omnidirectional-thrust vehicle using instead unidirectional-thrust rotors is to ac-
tively tilt the whole propeller groups [Ryll–2016; Ryll–2015; Long–2013]. This also
requires extra actuation and weight, and cannot in general guarantee instantaneous
force exertion because of the non-negligible time the propellers need to re-orient
themselves.

At the best of our knowledge, there are no works thoroughly investigating if and
how it is instead possible to obtain omnidirectional-thrust vehicles with fixed (non-
tiling) and unidirectional thrusters, a solution that would overcome all the problems
of the aforementioned solutions. An attempt can be found in [Nikou–2015], where
an ad-hoc optimization for an hexarotor is performed using an additional thruster
whose position and orientation depend on the other six. The method cannot be
easily extended to generic multirotor platforms, and the general theoretical problem
still remains mostly open.

For example, it turns out that an omnidirectional-thrust vehicle needs to have
at least 7 fixedly attached unidirectional-thrust rotors. We propose an algorithm
computing the best (fixed) directions of the n ≥ 7 propellers that make the vehicle
omnidirectional-thrust and minimize the range of required control inputs to hover
in any orientation. Finally, we propose a full-pose controller ensuring the input
unidirectionality.

8.2 Contribution

In [Tognon–2018c] we formalize the problem of designing an omnidirectional-thrust
vehicle using only body-frame fixed unidirectional thrusters, called omniplus. In
particular, we provide the fundamental definitions, properties, and conditions for
the allocation matrix (defined in Sec. 3.3), needed to rigorously address the prob-
lem in the general case of n propellers having any arrangement. The consid-
ered generic multirotor vehicle is depicted in Fig. 8.1. For example, it turns out
that an omnidirectional-thrust vehicle needs to have at least 7 fixedly attached
unidirectional-thrust rotors.
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Given a design that is omniplus, we propose an allocation strategy in order to
find feasible control inputs that produce a desired wrench. Although the strategy is
suboptimal in terms of energy, it is suited for the design problem. Defining u ∈ Rn
the control input vector containing the speed square of the propellers, F ∈ R6×n

the allocation matrix and w ∈ R6 the desired wrench, the allocation strategy is
u = u◦ with u◦ defined as follow:

u◦ := F†w + λ◦ b = u∗ + λ◦ b, (8.1)

where b ∈ null(F), ‖b‖ = 1 and λ◦ ∈ R≥0 is the smallest number to meet the input
constraint1 u ≥ u1. Equation (8.1) shows that an extra control effort is needed to
meet the constraint given by the unidirectionality of the thrusters, but it does not
produce any effect on the realized wrench.

To provide an interesting geometrical understanding of the structure of the
solutions of the input allocation problems, let us consider an ellipsoid that may, e.g.,
represent the set of desired attainable wrenches Sw = {w ∈ R6 | w>Σw ≤ 1} ⊂ R6,
where Σ ∈ R6×6 is a positive definite matrix. The ellipsoid Sw is mapped by F† to
the set E∗u = {u ∈ Rn | u = F†w, ∀w ∈ Sw} ⊂ Rn – an idealized representation
from R2 to R3, and with Σ = I is shown in Fig. 8.2. The set E∗u is a 6-dimensional
ellipsoid of Rn, contained in the subspace Im(F>), whose shape is defined by the
singular value decomposition of F and Σ. There is a one to one correspondence
between each w ∈ Sw and each u ∈ E∗u. However, any vector u ∈ E∗u has always
at least a negative entry (a part from u = 0). In order to satisfy the constraint
u ≥ u1 one has to project each point u∗ of E∗u onto one of the external facets of
the shifted non-negative orthant denoted with Rn≥u1. The projection must be done
by adding to u∗ a perpendicular vector that belongs to null(F) and has minimum
norm, i.e., obtaining u◦ by solving (8.1). By doing so for all the points in E∗u we
obtain the set defined as E◦u = {u◦ ∈ Rn computed as in (8.1)}.

Given the allocation strategy (8.1) we then want to find a design that is om-
niplus and optimal from an energetic point of view. Focusing on the particular
“balanced” designs, i.e., the designs that can share equally among the n propellers
the extra effort needed to actively satisfy the input constraint, we design an al-
gorithm that, given the number of propellers, their aerodynamic parameters and
positions, provides an optimal balanced omniplus design minimizing the condition
number of the allocation matrix. Figure 8.3 shows the output of the algorithm for
n = 7.

Finally a nonlinear controller based on model inversion plus the allocation strat-
egy (8.1) has been designed to track position and orientation trajectories demon-
strating the lowest possible inputs for the optimized platform. Figure 8.4 shows
the results obtained by simulating an optimal omniplus design with 7 propellers
asked to translate and rotate at the same time (we suggest to see the video [video
5–2018] as well). The translational trajectory is a spline from the initial position
to a desired final one. For the orientation, we planned a trajectory such that the

1The inequality has to be intended component wise.
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respond to the arms sustaining the propellers. The blue spheres correspond to the
positions of the motors. The colored slim lines indicate the lift force direction of
each propeller. The star and the square symbols indicate counter clock wise and
clock wise propellers, respectively.

z-axis of the body frame circles many times around the one-radius sphere. In this
way we can span a vast variety of orientations. Looking at the plots one can see
that the vehicle is able to track the desired trajectory requiring propeller rotational
speeds w1, . . . , w7 that are always in the limits. On the other hand, a non-optimized
platform requires input peaks that go beyond the propeller limits (see Fig. 8.5).

We also conducted a thorough simulation campaign to check the robustness of
the proposed method against: i) noisy measurements, ii) parameters uncertainties,
iii) non ideal motors, iv) control input delay, and v) external disturbances. This
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Figure 8.5 – Simulation results: control inputs required to track the desired trajec-
tory in Fig. 8.4 by a non-optimized omniplus design with cond(F) = 186.84.

analysis showed good tracking performance for standard non-ideal scenarios, and
allowed us to understand its limits. Furthermore, we investigated some interesting
characteristic of the simulated platform as the maximum feasible forces and torques
in every direction, the maximum and minimum thrust to weight ratio and the energy
consumption. Finally, to show that our algorithm can be used for any number of
propellers, we computed and simulated an optimized design for n = 8.

For all the details of the methods and the relative results we refer the interested
reader to [Tognon–2018c] and the attached video and technical report.
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Chapter 9

Control of protocentric
aerial manipulators

This chapter is a brief summary of [Tognon–2017e] about the control of an aerial
manipulator. We provide the state of the art related to the topic and a short descrip-
tion of our contribution and the relative results. However, for the details we refer
the interested reader to [Tognon–2017e] and the attached technical report [Tognon–
2017f].

9.1 Introduction

The interest in control of aerial vehicles, and recently the aerial manipulation for
aerial physical interaction, increased exponentially. Manipulator robots are well
known mechanisms for their dexterity, and have been studied intensively for a very
long time [Siciliano–2008]. Especially the modeling and the control of fixed-base
manipulators is well known, when the joints are actuated rigidly [Siciliano–2009],
elastically [De Luca–1988; De Luca–2008a] or both ways [De Luca–1996].

An aerial manipulator is a robotic system, which has the capacity to fly and
at the same time to manipulate objects in its environment by applying reasonable
forces and torques. Most commonly they consist of a flying robot and at least one
manipulator arm. In such robots, the great workspace and the agility of aerial robots
meet with the dexterity of conventional manipulators. This system breaks ground to
many different robotic applications, e.g., pick and place [Kim–2013], aerial physical
interaction [Yüksel–2015], and aerial grasping (first introduced in [Spica–2012] and
then shown also in [Thomas–2013] with the help of an arm). In [Yang–2014] a
passive decomposition method is shown for dynamic modeling and control of a
quadrotor equipped with a redundant rigid arm. A kinematic control of a rigid
manipulator attached to a quadrotor was recently experimented in [Muscio–2016].
Despite the fact that rigid manipulators are the most common tools, other types
of aerial manipulators are also studied, such as compliant actuators [Yüksel–2015;
Yüksel–2016b].

Although aerial manipulators open new doors for various robotic tasks, their
control is not trivial, since they are an interconnection of multiple nonlinear robotic
systems. For this reason, it is important to analyze their system dynamics, and
develop control algorithms dealing not only with the problem of tracking the outputs
we are interested in, but also with the internal dynamics of the system and how
they are coupled with each other. Such sophisticated control methods using deep
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system knowledge often require torque control of the manipulating arms [Yang–
2014; Yüksel–2016b]. However small-size light-weight arms with torque-controlled
actuators are either not available at a low price or not reliable enough in the torque
control modality. On the other hand, position/velocity controlled servo motors are
cheap and easy to reach, making them preferable to be used in the experimental
setups. Thus, it is relevant to seek for a controller that, while taking into account
the system dynamics, can also be used with light-weight manipulators built using
off-the-shelf servo motors.

As we saw, the differential flatness property allows to analytically compute all
nominal system states and inputs from a desired differentiable trajectory of cer-
tain flat outputs. However, the end-effector configuration of an aerial manipulator
is not in general a flat output of the system. In [Yüksel–2016a] it has been shown
that, in the 2D vertical plane, for a Protocentric Aerial Manipulators (PAMs),
with rigid or compliant joints, the end-effector position together with the arms
configuration is a flat output. PAM are formed by an unidirectional-thrust aerial
vehicle, equipped with any number of different parallel manipulator arms with the
only property that all the first joints are attached at the CoM of the vehicle (see
Fig. 9.1). Notice that the “protocentricity” assumption is a typical one in underac-
tuated robotic systems that display the flatness property. For example, this is the
case of planar arms with passive joints [De Luca–2002] or of underactuated planar
legs under gravity [Sangwan–2009]. This property was exploited to develop an exact
linearization controller, and the same was done in [Yüksel–2016b] for a single-link
PAM equipped with a Variable Stiffness Actuator (VSA).

9.2 Contribution

A drawback of the previous mentioned model-based controllers is that they require
very good knowledge of the model parameters and torque-controlled motors. As an
alternative, taking inspiration from the hierarchical controllers designed in Sec. 4.6
for the tethered system, we designed and experimentally validated a decentralized
flatness-based control for the output tracking problem of PAMs. The proposed
controller is different from the one used in [Yüksel–2016a], since it is not exactly
linearizing, but uses the differential flatness to compute the feed-forward terms in
the control law. In [Thomas–2013] a decentralized controller was presented for the
simple case of a single-DoF PAM (a PAM equipped with an arm having one Degree
of Freedom). The controller presented here is instead thought for a more complex
system where i) the CoM of the aerial vehicle can be different from the geometric
center of its actuation, ii) the PAM can have any number of arms, each having any
number of DoFs. The presented controller best performs for robot arms equipped
with torque-controlled actuators. However, it is possible to obtain very good results
also with kinematically controlled motors, thanks to a simple variant. This is a great
advantage over the torque-based controllers like the ones in [Yüksel–2016a; Yüksel–
2016b], as it makes it implementable to the readily available hardware with less
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Figure 9.1 – Sketch of a two-arm protocentric aerial manipulator (PAM) and its
projection on the xW − zW plane. In the 3D model the axis of rotation for each
joint is parallel to yW .

effort, while still fully considering the dynamics of the nonlinear system, unlike the
controllers only based on the system kinematics, e.g., [Muscio–2016].

In particular, for the design of the controller, we exploit the fact that y, con-
taining the position of the vehicle CoM and the absolute angle of each joint (or
equivalently the position of one end-effector and the absolute angle of each joint), is
a flat output for the PAM system. This means that given a desired trajectory yd(t),
we can compute the nominal state qd(t) = [pd0

T
ηd

T
θd

T ]T ,q̇d(t) = [ṗd0
T
η̇d

T
θ̇d

T ]T ,
and input ud = [udt udr

T
τ d

T ]T , also called feed-forward terms. p0 ∈ R3 is the po-
sition of the vehicle CoM, η ∈ R3 the Euler angles describing the attitude of the
vehicle, θ ∈ Rn is the vector containing the angle of each joint for each arm, where
n is the total number of joint. While ut ∈ R≥0 it the intensity of the thrust, ur ∈ R3

is the torque applied by the aerial vehicle, and τ ∈ Rn contains the torque pro-
vided by each joint. Those feed-forward terms can be then used in a decentralized
controller based on a hierarchical approach. Similarly to the controller proposed in
Sec. 4.6, we can first design the outer loop control, computing the controlled thrust
vector as:

f0 = fd0 + f?0 = fd0 + KP
p0(pd0 − p0) + KD

p0(ṗd0 − ṗ0), (9.1)

where KP
p0 ,K

D
p0 ∈ R3×3

≥0 . Notice that f0 is computed as a combination of the feed-
forward terms (·d) computed by the flatness, and the feedback term (·?) proportional
to the state error of the system with respect to the nominal one. From the controlled
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troller, exploiting its differential flatness property.

thrust vector we can retrieve the commanded thrust, fR, and the commended atti-
tude, Rc

0. This closes the outer-loop control. The controlled attitude is then passed
to the inner-loop control as the desired attitude, to compute the controller torque
as:

e[×]
R0

= 1
2(Rc

0
TR0 −RT

0 Rc
0), eω0 = RT

0 Rd
0ω

d − ω
ur = udr + u?r = udr + KP

R0eR0 + KD
R0eω0 ,

(9.2)

where, ·[×] represents the skew operation, ω ∈ R3 and ωd ∈ R3 are the current
and the desired angular velocities of the VTOL body in body-fixed frame (directly
computed from η, ηd and their time derivatives), Rd

0 is the desired rotation matrix
computed from ηd, and KP

R0
,KD

R0
∈ R3×3

≥0 . Notice that eR0 is the attitude error
computed as in [Bullo–2004].

Now, let us give the control of the generic νµ-th joint, to track the relative
desired angle. For a torque-controlled motor, we design the control law based on a
PD strategy as

τνµ =τdνµ+τ?νµ =τdνµ+kPνµ(θdνµ−θνµ)+kDνµ(θ̇dνµ−θ̇νµ), (9.3)

where kPνµ , kDνµ ∈ R≥0. This controller ensures the best performances. Nonetheless,
for kinematically controlled motors, the commanded velocity can be given as

θ̇νµ = θ̇dνµ + kPνµ(θdνµ − θνµ). (9.4)

A schematic representation of the controller is shown in Fig. 9.2.
The controller has been validated by real experiments using an aerial manipula-

tor consisting of a Quadrotor VTOL and a 2-DoF manipulator arm1 (see Fig. 9.3).
The light-weight arm design was inspired by the work in [Cano–2013]. A big dif-

1Although we tested the proposed controller considering a 2-DoF manipulator arm, we remark
that it can be actually applied to aerial manipulators endowed with any number of arms and joints.
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Figure 9.3 – Experimental setup of the aerial manipulator. A quadrotor VTOL is
equipped with a 2 DoF manipulating arm.

ference of our design is that all the actuators are placed at the base of the arm,
rigidly attached to the VTOL. The first joint is directly connected to its actuator
(a dynamixel MX-64 motor), while the second one is connected to its motor (a dy-
namixel MX-28) via a metal-reinforced plastic belt. Such design allows us to reduce
the mass of each joint and in particular their inertia. This in turn lets us use a
relatively small and weak quadrotor (the one presented in Sec. 5.1.2 with diameter
0.4 [m] and maximum thrust per propeller of 5.26 [N]) with respect to the platforms
normally used for arms of similar length (e.g., in [Muscio–2016] a larger octorotor is
used). Since the motors cannot be controlled in torque but at best in velocity (like
almost all the affordable motors suitable for aerial manipulation), we used (9.4)
slightly modified to cope with the fact that the second link is not directly attached
to its motor.

We tested the proposed controller with a parametric and multi-DoF sinusoidal-
like trajectory, i.e., yd = [pd0xy

T qdr
T ]T = [axp0 0 a1

qr a
2
qr ]

T sin(ωt), for three different
sets of parameters corresponding to three qualitatively different task trajectories:
(a) the arm oscillates and the quadrotor remains still,
(b) the arm and quadrotor oscillate with opposite phases,
(c) the arm and quadrotor oscillate with the same phase.
These task trajectories are understandable from Fig. 9.4, and the parameters of the
trajectories are given in Tab. 9.1.

For each of the three task trajectory, we compared the performance of the pro-
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Figure 9.4 – Nine snapshots from the experiments using method 3 (dynamic com-
pensation). From left to right trajectories (a), (b) and (c) are shown, respectively.
From top to bottom the start, intermediate and end moments of half period of each
the trajectory are shown.

posed controller against three different types of feedforward methods:
1) minimal compensation: on the quadrotor side only the total mass is compen-

sated. In this way the VTOL and the arm are virtually treated as two indepen-
dent systems (even if in practice they are not).

2) static compensation: only the static effects due to gravity are compensated, i.e.,
the nominal state and inputs are computed considering all the derivatives of
the desired trajectory equal to zero. This method is often used for the control
of aerial manipulators for so called quasi-static operations, in order to partially
compensate the effects of the manipulator on the aerial vehicle.

3) dynamic compensation: this corresponds to our proposed method where we ex-
ploit the flatness of the system. We compute the nominal states and inputs
as functions of the desired trajectory to be tracked, and provide them to the
controller.

The performances of these three methods are shown in Figs. 9.5, 9.6 and 9.7, and
Tab. 9.2. We encourage the reader to watch the video [video 6–2018] in order to

Traj. Param. axp0 [m] a1
qr [◦] a2

qr [◦] ω [rad/s]

(a) 0 30 60 2π/3
(b) 0.5 -40 -70 2π/3
(c) 0.5 40 70 2π/3

Table 9.1 – Parameters of the three trajectories.
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method 1 method 2 method 3

Traj. (a)
ētrack 0.058 0.033 0.014
σētrack 0.021 0.012 0.005

Traj. (b)
ētrack 0.056 0.174 0.054
σētrack 0.023 0.085 0.023

Traj. (c)
ētrack 0.171 0.209 0.066
σētrack 0.078 0.106 0.034

Table 9.2 – Mean tracking error ētrack and relative standard deviation σētrack for
each trajectory and control method.

appreciate even better the nature and results of the performed tests.
Looking at the tracking of the desired VTOL CoM and end-effector position

one can see that the minimal compensation (method 1) shows good tracking per-
formances (similar to the one with our method) only for trajectory (b). On the
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Figure 9.5 – Experimental results: trajectory (a) (see Fig. 9.4.a). In all plots, the flat
outputs and the nominal states/inputs are depicted with starred black dashed lines,
while red, green and blue curves show the results of the controller with minimal
compensation, static compensation, and dynamic compensation, respectively. A
detailed version of the plots can be found in the technical report [Tognon–2017f].
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Figure 9.6 – Experimental results: trajectory (b) (see Fig. 9.4.b). The proposed
controller (blue) always achieves a better performance.

other hand, for trajectories (a) and (c) the tracking error is considerably larger
than the one with dynamic compensation.

For the static compensation (method 2), the tracking performances result to
be good (similar to the one with our proposed method 3) only for trajectory (a).
Indeed, since trajectory (a) is the less dynamic one (quadrotor not moving), the
static compensation is enough to obtain good performances. However, for more
dynamical trajectories such as (b) and (c) the performances rapidly get worse.

On the contrary, our proposed method 3 shows good tracking performances for
all the types of trajectories validating the fact that flatness-based dynamic compen-
sation is a good control strategy for both static and dynamic trajectories. Moreover,
thanks to the feedback, the controller is robust enough to the non-perfect protocen-
tricity of the real system. Indeed in the testbed used during the experiments, along
the z-axis of F0 there is a non-zero offset of about 6 [cm] between the position of
the CoM of the VTOL and the first joint. Nevertheless the controller is able to keep
the tracking error small even for dynamic trajectories. For the interested reader,
the effects of the non-protocentricity are investigated by numerical simulations in
the technical report [Tognon–2017f].

In addition to the good results obtained with our method, it is also very inter-
esting to notice that for trajectory (b), method 1, based on minimal compensation,
is better than method 2, based on static compensation, in terms of tracking error.
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Figure 9.7 – Experimental results: trajectory (c) (see Fig. 9.4.c). The proposed
controller (blue) again outperforms the other methods.

This brings us two interesting results.
The first one is highlighting how for some dynamic trajectories it is more suit-

able to just compensate the effect of the total mass rather than try to compensate
the static configuration only. Indeed the last compensation term could result con-
siderably wrong since it is computed for a different condition. This error in the
compensation leads to undesired effects and in turn to a large tracking error, as
seen in Fig. 9.6.

The second fascinating aspect is that for some particular dynamic trajectories,
like for trajectory (b), the arm could help the aerial vehicle to move toward the
desired direction, implying the need of smaller compensations and in turn of smaller
control efforts. Indeed, looking at Fig. 9.4.b one could notice the similarity between:
i) the motion of the robotic arm and the one of the legs of a person sitting on a
swing when trying to enhance the angular motion of the swing; ii) the thrust force
and the tension along the cables attached to the swing to win the gravity and the
centrifugal terms. This is why for trajectory (b) the minimal compensation shows
similar results to the ones obtained with our method.
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Chapter 10

Aerial co-manipulation of a
cable suspended load

This chapter is a brief summary of [Tognon–2018e] about the aerial co-manipulation
of a cable-suspended load. We provide the state of the art related to the topic and
a short description of our contribution and the relative results. However, for the
details we refer the interested reader to [Tognon–2018e] and the attached multimedia
materials.

10.1 Introduction

Recently, aerial physical interaction, using aerial manipulators or exploiting phys-
ical links like cables, has become a very popular topic. We saw some examples in
the previous chapters. One interesting and applicative problem is the aerial ma-
nipulation of large objects, for which cooperative approaches are usually applied to
overcome the limited payload of a single platform, thus lifting larger and heavier
loads [Kumar–2012; Maza–2010]. This provides a safer and less expensive solution
w.r.t. the deployment of a single but more powerful aerial vehicle.

Many works targeted this problem proposing different methods and solutions.
In [Nguyen–2015; Ritz–2013] cooperative aerial transportation of a rigid and an
elastic object is considered, respectively. In [Caccavale–2015] the use of multi-
ple flying arms is exploited to address the problem. In [Baizid–2014; Yang–2015;
Caccavale–2015] the problem is addressed using aerial vehicles with a robotic arm.
Aerial manipulation via cables is another interesting solution to the problem since it
can reduce the couplings between the load and the aerial vehicle attitude dynamics.
Examples of cooperative aerial manipulation using cables are studied in [Sreenath–
2013a; Masone–2016; Manubens–2013]. All these examples rely on a centralized
control. Instead, a decentralized algorithm, like in [Mellinger–2013], is more robust
and scalable with respect to the number of robots.

However, the major bottleneck in decentralized algorithms is the explicit com-
munication that may represent a limiting factor for practical implementations.
Communication delays and packet losses can affect the performance and even the
stability of the systems. Limiting the need for explicit communication allows to
reduce the complexity as well and to make the algorithm more scalable. In [Wang–
2016] the authors proposed one of the first decentralized leader-follower algorithm
without explicit communication for the transportation of objects performed by mo-
bile ground robots. Aerial cooperative transportation by two UAVs without explicit
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Figure 10.1 – Representation of the system and its major variables. The two aerial
vehicles do not need to be necessarily quadrotors since the analysis and control
design is valid for general aerial vehicles.

communication has been addressed also in [Tagliabue–2016] for a cable-suspended
beam-like load, and a leader-follower paradigm has been proposed. Here the leader
follows an external position reference, while the horizontal position of the follower
is controlled with an admittance filter, trying to keep the cable always vertical (zero
internal force). The vertical position is instead kept constant. In [Gassner–2017]
an analogous system is considered, and a different, vision-based, decentralized al-
gorithm not requiring explicit communication is proposed. While the master robot
follows a trajectory, the slave control its position to maintain the cable vertical,
relying only on a visual feedback. However, those methods do not deal with the
load pose control and do not provide a formal stability proof.

For the same system composed by two aerial vehicles carrying a cable suspended
beam-like load (see Fig. 10.1 for a schematic representation), we propose a decen-
tralized algorithm relying only on implicit communication. Our algorithm uses
a master-slave architecture with an admittance filter on both aerial vehicles (not
only on the slave like in the related state of the art), to make the overall system
compliant/robust to external disturbances.

One of our main contributions is the constructive and intuitive method to choose
the controller input to stabilize the load at a desired pose. The control of both
position and orientation turns the simpler transportation task found in the state of
the art in a full-manipulation one.

We show that those inputs are parametrized by the internal force of the load
that plays a crucial role in the equilibria stability. In particular, we prove that it has
to be non-zero if one wants to stabilize the load at a certain desired pose. A formal
characterization of the equilibria and their stability, given a certain internal force,
is provided. Differently from the state of the art algorithms, which are not formally
guaranteed to converge, we also provide a formal proof of the stability through
Lyapunov’s direct method. Furthermore, we prove that the controlled system is
output-strictly passive w.r.t. a relevant input-output pair. This provides a bound
for the energy variations during the manipulation and an index of robustness of the
method.
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10.2 Contribution

The considered system is shown in Fig. 10.1. The beam-like load is modeled as a
rigid body. The two cables anchoring points on the object are placed such that the
load CoM coincides with their middle point. The configuration of the load is then
described by the vector pL ∈ R3 and the rotation matrix RL ∈ SO(3). The i-th
UAV configuration is described by the position vector pRi ∈ R3, and the rotation
matrix RRi ∈ SO(3), respectively. The closed loop translational dynamics of the
aerial vehicle subjected to the position controller is then assumed as the one of a
double integrator: p̈Ri = uRi, where uRi is a virtual input to be designed. The
dynamics of the aerial vehicles and the one of the load are connected by the internal
force along the cables defined by the vector fi = tini ∈ R3. ti ∈ R≥0 denotes the
tension along the cable and ni the cable attitude. Each cable is modeled as a
unilateral spring along its principal direction, characterized by a constant elastic
coefficient and a constant nominal length.

Our goals are: i) stabilize the load at a desired configuration, q̄L = (p̄L, R̄L);
ii) preserve the stability of the load during its transportation; without the use of
explicit communication. To achieve the control objectives we propose the use of an
admittance filter for both UAVs, i.e., setting:

uRi = M−1
Ai (−BAiṗRi −KAipRi − fi + πAi) , (10.1)

where the three positive definite matrices MAi,BAi,KAi ∈ R3×3 are the virtual
inertia of the UAV, the virtual damping, and the stiffness of a virtual spring attached
to the UAV, and πAi ∈ R3 is an additional input. Choosing robot 1 as master and
robot 2 as slave we simply set KA1 6= 0, KA2 = 0 to obtain the sought master-
slave paradigm. Notice that (B.3) does not require explicit communication because
it requires only local information, i.e., the state of the vehicle (pRi, ṗRi), and the
force applied by the cable fi. The control strategy is schematically represented in
Fig. B.1.

Load

Cable 1Cable 2

Robot 1Robot 2 Admittance
1

Admittance
2

f1b1f2 b2

f1f2 pR2 pR1

uR2 uR1

pR1, ṗR1pR2, ṗR2

πA2 πA1

Figure 10.2 – Schematic representation of the overall system including both physical
(in light blue) and control blocks (in light yellow).
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Figure 10.3 – 2D representation of the equilibria varying tL.

Afterwords, we performed a thorough analysis of the equilibria and their stabil-
ity. Assume that the load is at a given desired configuration qL = q̄L = (p̄L, R̄L).
We proved that the forcing input π̄A and the position of the vehicles q̄R such that
q̄ = (q̄L, q̄R) is an equilibrium of the system, are unique and parametrized by the
internal force tL ∈ R (equilibria inverse problem). In particular we can define a set
ΠA(q̄L) = {πA ∈ R6 : πA = π̄A(q̄L, tL) for tL ∈ R} which has dimension 1, since
it is parametrized by the scalar tL ∈ R. On the other hand, given tL ∈ R and the
corresponding π̄A, when the input πA = π̄A(tL, q̄L) is applied, q̄ is not the unique
equilibria (equilibria direct problem). We have that:
• if tL = 0, we have multiple equilibria for which the load orientation can be

any (see Fig. B.3b). The subspace containing those equilibria is defined as
Q(0, q̄L);
• if tL 6= 0, we can divide the set of equilibria in two subsets: i) Q+(tL, q̄L)
contains configurations equal to q̄ except for the load orientation along the
xL-axis, which is not controllable, ii) Q−(tL, q̄L) contains configurations equal
to q̄ except that the load is rotated by 180◦ around the zL-axis and by any
angle around the xL-axis (see Fig. B.3a).

Figure B.2 schematically represents the relations between equilibria inverse and
direct problems.

To conclude the equilibria analysis we studied their stability. Exploiting Lya-
punov’s stability theory we proved that
• if tL = 0 the equilibria inside Q(0, q̄L) are locally asymptotically stable;
• if tL > 0 the equilibria inside Q+(tL, q̄L) and Q−(tL, q̄L) are locally asymp-
totically stable and unstable, respectively;
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Configuration Space Parameter Space

ΠA(q̄L) ⋃
tL<0

Q−(tL, q̄L)

⋃
tL>0

Q+(tL, q̄L)

tL < 0

tL > 0 tL = 0

q̄L

Load

qL = (pL,RL) πA q = (pR1,pR2,pL,RL)

Constant Input

Q(0, q̄L)
q̄L

Configuration Space
Full System

R3 × SO(3) R6 R9 × SO(3)

Figure 10.4 – Relation between the equilibria and forcing control input. In par-
ticular, starting from the left: to a desired load configuration of equilibrium it
corresponds a forcing input in the subset ΠA(q̄L) of dimension one (inverse prob-
lem). Then, moving to the right: to a forcing input in ΠA(q̄L) it corresponds
an equilibrium in the subsets Q+(tL, q̄L), Q−(tL, q̄L) or Q(0, q̄L) according to the
value of tL (direct problem). The orange line inside Q+(tL, q̄L) corresponds to the
equilibria q ∈ Q+(tL, q̄L) such that qL = q̄L.

• if tL < 0 the equilibria inside Q+(tL, q̄L) and Q−(tL, q̄L) are unstable and
locally asymptotically stable, respectively.

We can conclude that one has to choose tL > 0 and πA ∈ ΠA(q̄L) to let the system
asymptotically converge to a desired load configuration. On the contrary, one must
avoid tL = 0 because the control of the load attitude and position is not possible.

Furthermore, we proved that for a proper time varying input πA(t) , if tL ≥ 0,
the system is output-strictly passive with respect to a storage function and the
input-output pair (u,y) = (πA, ṗR). Thanks to its passivity, for a bounded input,
the energy of the system remains bounded too, even in the presence of noise or
parameter uncertainties.

In order to validate the proposed method and all the presented theoretical con-
cepts and results, we performed several simulations. We considered a quadrotor-like
vehicle together with a geometric position controller, even though, our method can
be applied to more general flying vehicles.

Let us consider the desired equilibrium q̄ = (p̄L, R̄L), with (φ̄, θ̄, ψ̄) being the
Euler angles that parametrize R̄L. We performed several simulations with πA ∈
ΠA(q̄L) for the cases:

1) tL1 = 1.5 [N] > 0,
2) tL2 = 0 [N],
3) tL3 = −1 [N] < 0.

To test the stability of the equilibria, we initialized the system in different initial
configurations and we let it evolve. Figure 10.5 shows the position and orientation
errors for the three tL and several different initial conditions.

1) For tL = tL1, the system always converges to a configuration belonging to
Q+(tL, q̄L), independently from the initial state, validating the asymptotic
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Figure 10.5 – Simulation results: convergence to the desired load configuration
for cases 1) 2) and 3). In particular the first and second rows show the position
and the attitude errors, respectively, for four different initial conditions (different
colors) and for the three different internal force values (columns). The attitude error
is computed as the sum of pitch and yaw errors. The roll error is not considered
since it is not controllable.

stability of Q+(tL, q̄L) when tL > 0.

2) For tL2, the system final configuration belongs to Q(0, q̄L). The particular
final attitude of the load depends on the initial state.

3) For tL3, the system never converges to Q+(tL, q̄L) even with a very close
initial configuration. This is due to the instability of Q+(tL, q̄L) when tL < 0.

Fig. 10.6 shows the evolution of the system starting from two different initial states
for the three cases. For the detailed and extensive discussion of the results we refer
the interested reader to [Tognon–2018e] and the attached technical report. We also
encourage the reader to watch the animation [video 7–2018].
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Figure 10.6 – Simulation results. Each figure shows the evolution of the system from
two different initial conditions (one is shown in red and the other in blue). The two
evolutions are represented as a sequence of images discriminated by the brightness
of the color that represents the time (from bright/start to dark/end). The load is
represented as a tick solid line, the cables as thin dashed lines, the master robot as
a circle and the slave robot as a cross.
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Chapter 11

Planning for task-contrained
motions

This chapter is a brief summary of [Tognon–2018b] about motion planning for task
constrained aerial manipulation. We provide the state of the art related to the topic
and a short description of our contribution and the relative results. However, for
the details we refer the interested reader to [Tognon–2018b].

11.1 Introduction

In the field of aerial physical interaction, an interesting application is the inspection
by contact of industrial installations. In this context, taking measurements requires
physical contact between the sensor and the inspected part. For example, in the
context of Aeroarms, one of the goals is to develop an aerial manipulator able to
take ultrasonic measurements of a metallic pipe to detect flaws.

As discussed in Sec. 1.1, physical interaction using aerial vehicles endowed with
rigid tools or robotic arms is a much more challenging problem compared to ground
manipulation, mainly due to the use of a floating base. The aerial platform, cannot
instantaneously react to interaction forces between the robotic arm and the environ-
ment. In addition, aerodynamic effects and model uncertainties yield to inaccurate
positioning, thus increasing the challenging nature of the problem. We already men-
tioned the several works presenting various types of dynamic controllers for aerial
manipulators to stabilize the system and track a desired trajectory of the degrees of
freedom. To recall, they range from completely decoupled approaches [Ruggiero–
2015; Kondak–2013], to model-based approaches [Yang–2014; Ryll–2017] and to
more recent differential-flatness-based method [Tognon–2017e] (see Chap. 9).

Some relevant applications impose motion constraints derived from the task.
For example, one could require the end-effector to follow a given trajectory or to
move while keeping contact with a surface that has to be inspected. Figure 11.1
shows an example where an aerial manipulator has to inspect the surface of a pipe.
To accomplish this type of task, one of the possible methods is based on inverse
kinematics control [Baizid–2016]. If the system is over-actuated with respect to
the desired task, one can also exploit the redundancy to locally optimize some
behaviors (e.g., obstacle avoidance, minimum energy consumption, etc.), using null-
space-based behavioral control (NSB) [Antonelli–2008]. However, due to the local
nature of those approaches, the system can get trapped in some local minima. This
problem often implies the failure of the sought task.
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Figure 11.1 – Schematic representation of an aerial manipulator inspecting a pipe
(green surface) by physical contact. The aerial vehicle is an hexarotor with tilted
propellers, endowed with a two-link arm.

Techniques using (global) task-constrained motion planning methods have been
proposed in order to overcome limitations of purely reactive (control-based) meth-
ods. Many works on task-constrained motion planning, as [Berenson–2009; Berenson–
2011; Stilman–2010], use a projection strategy to sample configurations that respect
the task constraints. However they consider the system at a pure kinematic level,
i.e., they assume that the robot can track any velocity reference, even if discontinu-
ous. By doing so, they cannot guarantee that the robot will accurately execute the
planned trajectory. This is an important issue for aerial manipulators that can be
easily destabilized by large tracking errors when dynamic effects are not properly
considered.

A dynamic model of the system can be considered at the motion planning
level using kinodynamic motion planning approaches, like in [LaValle–2001]. How-
ever, this significantly increases the complexity of the problem, which is in practice
tractable only for simple systems. Aerial manipulators are in general characterized
by a high number of degrees of freedom, and thus, the dimension of the state space
is too high for the application of current, general purpose, kinodynamic motion
planners.

Interesting methods have been proposed to circumvent the complexity of kin-
odynamic approaches for task-constrained motion planing problems [Cefalo–2015;
Shkolnik–2008]. However, even if the planned trajectory is feasible w.r.t. the dy-
namics of the system, one cannot guarantee that a given controller will be able
to accurately track it during execution. This strongly depends on the employed
controller. For example, robots controlled kinematically might show large tracking
errors for certain motions. In those cases, when the available controller does not al-
low to precisely track the planned motion, the separation between motion planning
and control is not suitable. This is the case for many robotic fields, such as aerial
manipulation or humanoid robotics, where the complexity of the system does not
always allow to obtain very precise controllers.

In this work, we propose an approach to reinforce the connection between motion
planning and control in the context of aerial manipulation. The underlying idea



11.2. Contribution 177

is conceptually very simple. It consists in using the controller as a local method
to connect neighboring states within a (global) motion planning algorithm. More
precisely, our method is based on a sampling-based motion planning algorithm that
uses the controller as local planner. The computed trajectories are guaranteed to
satisfy task constraints, in addition to other geometric, kinematic and dynamic
constraints. Assuming an accurate model and an appropriate control method, the
use of the controller inside the planner guarantees the feasibility of the trajectory
for the real system and also allows to better predict the behavior of the closed loop
system such as singularities or large tracking errors.

Another advantage of the proposed approach is that the use of control methods
that directly treat the redundancy of the system allows the planner to search for
a solution directly in the reduced and more relevant task space. Planning directly
at the task level permits a more straightforward formulation of task-constrained
motion planning problems, and in general reduces the dimensionality of the search
space. This idea has been often exploited in related works (see, e.g., [Shkolnik–
2008]). Finally, by properly defining the task one can choose a good trade-off
between the dimension of the search space and the delegation of the redundant
degrees of freedom to the local controller. It should be noted here that, although
the proposed method has been firstly conceived for aerial manipulators, it can be
applied to other types of system thanks to the generality of the paradigm.

11.2 Contribution

Figure 11.1 shows an instance of the generic robotic system under study consisting
of an aerial vehicle and a robotic arm. The state of the aerial vehicle is given by the
position and the orientation of the platform and the respective linear and angular
velocities. The aerial platform is actuated by several propellers oriented such that
the vehicle results a multidirectional-thrust platform [Ryll–2017]. This allows to
generate forces in multiple directions with respect to the body frame and to control
position and orientation independently.

Analogously, the state of the robotic arm is given by the rotation angle or
the translation displacement of each joint, either rotational or prismatic, and the
relative velocities. Each joint is actuated by a generalized torque.

The overall state system is given by the combination of the aerial vehicle and
robotic arm states. The dynamics of the system can be easily computed with the
standard Newton-Euler method. For the sake of planning smooth trajectories, we
also define an extended state of the system considering the acceleration as well.

Finally, we characterize the state of the end-effector of the system (e.g., the
sensors at the end of the robotic arm for an inspection task) by its position and
orientation with respect to the world frame, and the relative translational and
rotational velocities and accelerations. Notice that the state of the end-effector can
be computed from the state of the system using the direct kinematics.

In the case of inspection and maintenance of industrial plant, often we need the
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sensor in contact with the surface being analyzed. For example, in case of ultrasonic
measurements of a metallic pipe to detect flaws, the sensor has to be in contact with
the surface of interest. In these cases, we want the end-effector of the robot, namely
the sensor, to track a certain trajectory or to reach a series of points on the surface
of interest while being in contact with the surface. Therefore, we are not interested
on the full system motion but rather in the correct execution of the sought task.

The latter is defined by a m-dimensional vector y belonging to a specific sub-
space of the m-dimensional space Cy. In the case of interest, i.e., inspection of a
pipe by contact, the desired task consists in the position of the sensors that has to
belong to the external surface of the pipe. The relation between the system state
and the task state, considering the task value and its first two derivatives, is given
by the direct kinematics. The proposed motion planning method faces the following
problem:

Problem 1. Consider the dynamics of the system and its initial configuration, a
certain task and a final desired task value. Then the problem consists of finding a
collision free desired trajectory of the robot such that it respects the dynamics, the
task constraint, and such that the final task value corresponds to the desired one.

The proposed motion planning method, called control-aware motion planner, is
based on the paradigm of combining control, used as local planner, and a sampling
based global planner. Let us assume that a closed loop controller is provided, and
that is able to steer the task along a desired task trajectory. It also exploits the
redundant degrees of freedom, if any, according to some certain optimal criteria.
We can then reformulate Problem 1 into:

Problem 2. Find a desired task trajectory that, if provided to the controller, will
generate a motion that solves the previous problem.

In this way we move the planning problem from finding a solution in the full
state space, to find a solution in the reduced task space. In particular the global
planner randomly samples states in the task space. The controller is then used
as a local planner, also called steering method, to connect states in the task space
(sampled by the global planner) and to produce the overall robot motion simulating
the closed loop system. Then, the global planner checks if the local motion is valid
in terms of collisions and input limits. Figure 11.2 shows a schematic representation
of the presented approach. In particular we represent how a trajectory in the task
space is mapped in a robot motion by the simulation of the closed loop system.
Once the planner finds a desired task trajectory solution of the previous planning
problem, it can be given as reference to the controller for execution. Since during
planning the closed loop system has already been simulated, if the controller and the
system model are sufficiently accurate, the real behavior of the system will be very
close to the planned one, even in the case of tracking errors. Thus, the execution
of the trajectory will be in general more consistent and reliable.

For the numerical evaluation of the planner, we considered the aerial manipula-
tor shown in Fig. 11.1: an hexarotor with tilted propellers (presented in [Ryll–2017])
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Figure 11.2 – Schematic representation of the control-aware planning paradigm. To
each trajectory in the task space, yd(t), corresponds a motion of the robot, q(t),
by-product of the used local controller.

endowed with a planar 2-link robotic arm (presented in Chap. 9). A sensor for sur-
face inspection is installed at the end-effector. The popularity of multidirectional-
thrust vehicles w.r.t. unidirectional-thrust platforms is increasing thanks to their
proven superiority for aerial manipulation [Ryll–2017]. Indeed, they allow to inde-
pendently control position and orientation, and to instantaneously react to interac-
tion forces and external disturbances.

We tested the method in simulation using two scenarios:

a) A challenging cluttered environment with several obstacles. One of them is a
concave obstacle made of three walls in a U-shaped configuration. This type
of obstacle can be a trap for classical local controllers. The surface being
inspected is the flat ground.

b) An application-oriented scenario. The task consists in the inspection by con-
tact of a cylindrical pipe in an industrial site. The surface of interest is the
outer part of the pipe.

In both cases, the task consists in safely bringing the end-effector of the robot,
endowed with the inspection sensor, to a desired point on the surface of interest,
keeping the contact while moving. In Scenario b) the task includes the orientation
of the end-effector as well. Indeed, the last link has to be perpendicular to the
surface to properly gather the data. Once defined the task, the robot is controlled
using a second order inverse kinematics controller plus a dynamic controller based
on dynamics inversion.

Figure 11.3 shows the planned trajectories for the two considered scenarios.
One can notice how the search tree grows in the task space until the planner finds
a task trajectory, yd(t), solving Problem 2. Videos showing the robot following the
trajectories can be found in [video 8–2018].

We compared the proposed method against a purely-reactive (optimization-
based) method based on a local controller using a simplified version of Scenario a)
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Figure 11.3 – Images of the motions provided by the control-aware planner for the
Scenario a) (left) and Scenario b) (right). The desired task trajectory is represented
by a red line, ending in the goal task position. The yellow dots are the vertexes
of the tree, while the green lines are the edges. The images (from the top to the
bottom) show intermediate snap-shoots along the solution trajectories.

involving the U-shaped obstacle only. In particular, we used the NSB method in-
cluding an obstacle avoidance feature based on virtual potential fields. As expected,
using only the local controller, the robot gets trapped between obstacles and does
not reach the goal. Additional details about this experiment are included in a
technical report attached to [Tognon–2018b].

The planner has been implemented in ROS using Moveit!1 and the OMPL
library2. To quantify the performance of the planner, we run the method 20 times
for each scenario. Tab. 11.1 reports the average and the standard deviation of the
most meaningful variables. It also shows the repartition of the total planning time
between the four major operations. One can observe that the majority of the time is

1http://moveit.ros.org/
2http://ompl.kavrakilab.org/

http://moveit.ros.org/
http://ompl.kavrakilab.org/
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Scenario Data Planning
time

Rejected
nodes

Accepted
nodes

Trajectory
time

Path
length

[s] # # [s] [m]

a)
Average 47.26 58.75 62.15 97.34 9.6

σ 6.61 18.5 2.25 8.14 0.71

b)
Average 21.92 28.5 22.5 35.6 3.7

σ 5.3615 11 0.8 4.08 0.5

Steering
method

Collision
checking

Neighbor
search

Selection of
the best path

% of total
time

63.78 1.54 28.94 5.72

Table 11.1 – Performance of the planner out of 20 runs for the two scenarios. σ
stands for the standard deviation.

taken by the steering method, which has to simulate the system. Note however that
we have used a preliminary implementation, which could be substantially improved
to reduce computing time.
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Chapter 12

Pipe Inspection

This chapter is a brief summary of [Tognon–2019] about the integration work of
control and motion planning on an over-actuated aerial robot to perform push-and-
slide task. Such complete robotic system has been successfully employed, together
with an Eddy Current sensor, to detect and map a weld on a metallic pipe. We
provide the state of the art related to the topic and a short description of our
contribution and the relative results. However, for the details we refer the interested
reader to [Tognon–2019].

12.1 Introduction

In industrial facilities, the assessment of the structural integrity is a mandatory
process to be performed regularly. For example, the periodic control of pipeline
networks constitutes a common task in sectors like oil&gas and water industries.
In those and many other sectors, Non-Destructive Testing (NDT) or Evaluation
(NDE) plays a very important role. Among all the various tests required in an
oil&gas-like plant, the integrity inspection of low carbon steel welds over pipes is
very frequent. They might have cracks or defects.

Among the available NDT techniques for weld inspection, the Eddy-Current
(EC) [GarcíaMartín–2011] is particularly advantageous because does not require
the preparation of the inspecting surface. Furthermore, the EC method is also used
for other applications, like the wall-thinning of insulated pipes.

In particular, the instrument used in this work is a Sensima1 UPec kit, visible
in Fig. 12.1. The output of the sensor is a time varying signal w(t) ∈ C, the field
of complex numbers, related to the properties of the material in contact with the
sensor. The shape of its trajectory in C allows to eventually recognize features like
a crack, the variation of the metal alloy composition, etc. In particular, from w, it
is possible to retrieve the magnitude of the signal directly linked to the lift-off and
the weld, denoted by wl and ww, respectively. The first is related to the distance
from the surface, while the second to the presence or not of a weld. An example of
a manual inspection can be seen in the first part of [video 9–2018].

Nowadays, the inspection task is typically conducted by human operators that
often have to access dangerous areas (e.g., elevated points) with the use of haz-
ardous equipment like climbing ropes or temporary scaffolds. This aspect led to a
growing interest in the development and deployment of structural health monitor-

1Sensima Inspection: Electro-Magnetic Solutions for Industrial Inspection, http://www.
sensimainsp.com

http://www.sensimainsp.com
http://www.sensimainsp.com
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Figure 12.1 – Measurement setup: The eddy current controller Sensima UPec (1),
powered by battery (2), and the pen-probe (3) are installed on the aerial robot.
The measurements are sent through bluetooth or wifi connection to a PC (4) and
are processed by the software UPecView. We removed the usual coating/paint that
protects and insulates the pipe in order to make the weld visible. However, we
remark that the weld is not usually detectable by vision.

ing solutions [Gasparin–2015] or remotely operated inspections by means of aerial
robots. However, the inspection task is challenging for a robot since it involves
accurate physical interaction. In particular, the probe have to be always in contact
with the surface during its scan. This contact-based inspection is only one example
of the many other applications requiring robots to slide an end-effector on a curved
surface while pushing it against the surface, ensuring the contact. Both pose of the
end-effector and interaction force have to be accurately controlled.

In Chap. 1 we already mentioned several aerial systems and methods proposed
to face the aerial physical interaction problem (additionally, see [Ruggiero–2018]
and references therein). The majority of these works present methods to enhance
aerial interaction capabilities of aerial vehicle, but only few addressed real tasks that
require physical interaction like the previously mentioned NDT (e.g., [Alexis–2016]).

12.2 Contribution

The first contribution of this work is to present one of the first complete aerial
robotic solutions with sufficient physical interaction capabilities for generic push-
and-slide tasks on curved surfaces. Such achievement goes substantially beyond
tasks such as pick&place and pull/push objects, which have been already covered
in the literature. The second main contribution is to demonstrate that such system,
endowed with an EC sensor, can successfully inspect a metallic pipe and localize
position and orientation of a weld on it.

The success of the automatic inspection task stems from a wise conception
of an aerial manipulator and to the design and integration of methods for the
EC sensing, motion planning and control of the robot. In our system, the aerial
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Figure 12.2 – Aerial manipulator on the left. On the right a sliced visualization of
the compliant sensor holder attached at the end-effector of the arm.

manipulator is composed by a multidirectional-thrust vehicle, called OTHex [Staub–
2018], endowed with the same lightweight arm presented in Chap. 9, ending with the
EC sensor (see Fig. 12.2). The system has been designed in order to have a certain
redundancy w.r.t. the task, to grant the system a greater dexterity. Furthermore,
the choice to use a multidirectional-thrust vehicle, rather than an unidirectional
one, grants a true redundancy. In fact, thanks to its fully actuation, the attitude of
the vehicle is not linked to the position (like for underactuated aerial vehicles) and
can be independently assigned and controlled according to the task. Furthermore,
such platform significantly improves the robustness of the system w.r.t. external
disturbances and uncertainties.

A raster scan path is executed to inspect the pipe. During the scan, the inspec-
tion method requires the tip of the sensor always in contact with the surface and
perpendicular to it. In fact, the probe tilt and lift-off w.r.t. the inspected surface
shall be minimized during the scan process in order to reduce any spurious effect
not related to material change or defects. Since the motion of the robot is deter-
mined from the task, a task-constrained motion planner is required. At the motion
planning level, it is also very important to take into account the dynamics of the
aerial manipulator, as well as its kinematics and input limits. For these reasons, we
use our previously presented Control-Aware Motion Planner (see Chap. 11).

A simple but effective controller was designed to follow the planned trajectory
with sufficiently small errors, preserving the contact with the pipe surface, despite
the lack of force feedback, the presence of uncertainties (like frictions) and flexi-
bility of the structure. Given the redundancy of the system, the pose control of
the end-effector could be done with a standard Inverse Kinematics Control, like
in [Ruggiero–2015]. However, we experimentally noticed that, due to the flexibility
of the arm, the vibrations of the end-effector were amplified by the feedback control
action, even with very small gains, not guaranteeing the required precision. To use
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Figure 12.3 – Representation of the desired (superscript ·d) and actual trajectories
of the end-effector over the pipe. pE is the position of the end-effector. The
subscripts ‘air’ and ‘contact’ distinguish the two corresponding phases. The purple
dots highlight the points in which the weld is detected. weldhat (solid line) and
weldreal (dashed line) represent the estimated and real pose of the weld, respectively.

such control approach, the robot should be endowed with a more rigid and so more
expensive and heavy arm. We instead adopted a ‘dislocated’ PD control law, e.g.,
a PD with a mixed feedback strategy, inspired by the state-of-the-art on control of
manipulators with elastic joints [De Luca–2008b]. In particular the arm is controlled
in joint space while the aerial vehicle position controller employs a mixed feedback
strategy using the position of the end-effector and the translational velocity of the
aerial vehicle in the feedback loop. We recommend the reading of [Tognon–2019]
for the understanding of the details.

The overall aerial manipulator system, result of a well-thought robot conception
and of the integration of motion planning and control methods together with sensing
technologies, have been validated by a real experiment. Being the focus of this work
on the integration of the robotic system with the sensing for push-and-slide task,
the experimental validation is conducted indoor using a Motion Capture system
to retrieve the state of the robot. The experiment is aimed to demonstrate the
effectiveness of the proposed aerial manipulator system to perform inspection tasks
requiring physical contact. In particular, the goal is to identify and localize a weld on
a portion of metallic pipe (see Figs. 12.1 and 12.2) of length 0.5 [m] and diameter
0.4 [m], using an EC probe. Giving a raster scan path to the proposed motion
planner, we obtain the desired end-effector trajectory and the nominal trajectories
of the robot DoFs shown in Figs. 12.3 and 12.4, respectively. The contact-inspection
trajectory has a duration of 110 [s] and is planned in around 9 [s] on a standard
laptop (Intel i5, 3.2 [GHz], 6GB RAM).

Figures 12.3, 12.4 and 12.5 show the behavior of the robot and the acquired
data by the sensor, from right before contact (time 25 [s]) to right after contact
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Figure 12.4 – Evolution of the main variables. In particular, (eEx, eEy, eEz)
and (eEφ, eEθ, eEψ), are the end-effector position and orientation tracking errors.
(pRx,pRy,pRz) and (ψR, θR, φR) are the coordinates of the position and the Euler-
angles of the aerial vehicle. qJ1 and qJ2 are the joint angles of the arm. The dashed
lines in the last four plots represent the nominal trajectories given by the motion
planner.

(once the inspection is over, time 144 [s]). Few images of the robot during the pipe
inspection are shown in Fig. 12.6.

From Figs. 12.3 and 12.4, one can appreciate the accuracy of the robot to track
the desired end-effector trajectory, with sufficiently small tracking error keeping
always the contact (confirmed by the value of wl below the contact threshold w̄l =
15). This is done despite the presence of many uncertainties, elasticity, frictions
and no force feedback.

Fig. 12.5 shows the raw signal w(t) coming from the EC sensor. It is interesting
to notice its evolution when the probe passes from air to contact and vice-versa, and
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Figure 12.5 – Acquired raw data w, showing its real and imaginary parts and its
evolution in C. On the right image, the color of the line represents the time.

Figure 12.6 – A series of three images during the inspection of the pipe.

over the weld. The contact phase can be identified looking at when wl < w̄l. On the
other hand, looking at ww for ww > w̄w = 1.4 and wl < w̄l, we can identify when
the probe is in contact with the weld. In all the plots, we highlight the no-contact
and contact-with-weld phases with red and purple colors, respectively.

Combining ww with the measured position of the probe, we retrieved an esti-
mation of the weld position all along the surface, using a simple linear regression
technique. The estimated and the real weld positions are shown in Fig. 12.3 by
green solid and dashed lines, respectively.

In view of a future integration with a vision system for outdoor experimentation,
we tested the proposed robotic system with degraded MoCap measurements and
the presence of wind obtaining similar results. For the detailed results we refer
the reader to [Tognon–2019]. A video of the experiment is also available at [video
9–2018].

The experiments show that the proposed aerial manipulator is able, similarly to
a human operator, to autonomously scan the pipe surface sliding the sensor over it,
ensuring the contact and its perpendicularity w.r.t. the surface. The acquired data
from the EC sensor are streamed real-time and post-processed in order to detect
and exactly locate a weld on the metallic pipe.
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Chapter 13

Conclusions

13.1 Summary of the thesis

The global goal of this thesis was to advance in the control and motion planning
for aerial robots interacting with the environment. As a result, a considerable step
forward was achieved for the case of tethered aerial vehicles, namely unidirectional-
thrust aerial vehicles connected to a moving or fixed point on the ground by a
link whose length can be changed by a link actuator. For this general system, we
produced a complete theoretical analysis of its dynamics and intrinsic properties,
the controllability and the observability with a minimal set of standard sensors.

Starting with the investigation of the differential flatness of the systems, a very
useful and powerful property of dynamical systems, we proved the existence of two
flat outputs. The first, ya, is directly linked to physical interaction. It contains
the position of the vehicle with respect to the anchoring point, the rotation along
the thrust vector (standard flat output for an unidirectional-thrust vehicle in free-
flight) and the internal force along the link. This tells us that the position of the
aerial vehicle and the interaction force between the robot, the link and the system
at the other end, can be controlled independently. Thanks to the generality of the
computed dynamic model, the internal force can be tension and/or compression
accordingly to the specific implementation. The second flat output, yb, contains
the position of the vehicle with respect to the anchoring point, the rotation along
the thrust vector and the angle ϑA that is related to the attitude of the vehicle with
respect to the link. The latter output entry is unusual for unidirectional-thrust
aerial vehicles because, in the free-flight configuration, the attitude is (in terms
of differential flatness) a by-product of the translational motion. This adds new
potential capabilities to the system.

Aiming to control those outputs and not only the position of the vehicle like in
the majority of the state of the art, we designed and experimentally validated two
first hierarchical controllers. Those are based on the separation principle between
translational and rotational dynamics and exploit the flatness to compute the feed-
forward terms. The conducted experimental tests proven the validity of the method
in quasi-static conditions but also shown its limitations when asked to track highly
dynamic trajectories. For the goal of precisely tracking any sufficiently smooth
time-varying trajectory (not only stabilization like in the state of art), we used the
dynamic feedback linearization method to design a second pair of controllers. Parts
of those control results were also extended to the particular case of a passive link
actuator, which is an interesting case thanks to its simplicity. However, in this



192 Chapter 13. Conclusions

case, the internal force along the link is not controllable anymore, and neither the
attitude-related variable.

All controllers require the full knowledge of the state of the system in order to
compute the control action. Though, in practice it is difficult or even impossible to
directly measure the full state of the system. Thus, motivated by the practical and
theoretical relevance of the problem, we investigated which is the minimal set of
standard sensors that make the system observable. Assuming that the motion of the
anchoring platform is known, we proved that the standard onboard IMU together
with three encoders measuring the attitude and the length of the link, are enough
to obtain an estimation of the full dynamic state (including, e.g., the generalized
velocities of the system). Differently from the state of the art in which an observer
based on a quasi-static assumption was proposed, we aimed to design an almost
globally convergent state estimator. For this purpose, we found some nonlinear
transformations of the measurements that bring the system in the canonical con-
trollability form. This allowed us applying a high gain observer. The case in which
the link has a constant length and the vehicle is constrained on a vertical 2D plane
is of particular interest. Under these assumptions, we proved that only onboard
IMU alone is enough to retrieve an estimation of the full state (including position,
attitude and generalized velocities). Such a surprising result is rather unique in the
panorama of state estimation for aerial vehicles, indeed a positional measurement is
typically always needed. Also in this case, we found some nonlinear transformations
of the measurements and of the state such that to apply a high gain observer.

From the theoretical study, we passed to a more applicative and practical prob-
lem: landing and takeoff of an unidirectional-thrust aerial vehicle on/from a sloped
surface. This problem is normally very challenging in a free-flight configuration due
to the underactuation and the consequential need of a precise motion planning and
tracking. On the other hand, we proved that the use of the tether makes those
maneuvers much more safe, reliable and robust to model uncertainties and track-
ing errors. For the practical execution, we successfully employed the hierarchical
controller for yb. A motion planner based on an optimal control method was also
designed to improve the reliability and smoothness of the landing and takeoff.

Finally, we considered a multi-robot extension composed of two aerial vehicles
tethered by two links to the ground and to each other, forming a chain-like system.
The system is of particular interest for its similarity with a planar two-link manip-
ulator, where the actuators are aerial vehicles. For this system, we extended the
flatness and the dynamic feedback linearizability with respect to ya2 (containing the
position and internal link force for both couples vehicle/link). Also in this case, we
designed a high gain observer based on IMU and encoders measurements.

In addition to the tethered topic, few more initial and exploratory steps were also
achieved for i) the design of new aerial vehicles more suited for physical interaction
tasks, ii) the dynamic control for aerial manipulators, iii) the cooperative-manip-
ulation of a cable-suspended load, iv) the kinodynamic motion planning for aerial
manipulators, and v) the design of an aerial manipulator integrating control and
motion planning methods for push-and-slide operations.
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We started the formal study of omnidirectional-thrust platforms, providing the
main definitions, concepts and properties of such sought design. Those are the basis
for the development of new strategies for aerial physical interaction based on such
type of platforms. Our analysis showed the conditions that a vehicle should satisfy
to be omnidirectional-thrust using only fixed unidirectional thrusters. Based on
those findings and some additional intuitions, we proposed an algorithm to generate
an omnidirectional-thrust design that is sub-optimal in terms of energy efficiency.
For such a platform, we also designed a nonlinear controller for the tracking of
both position and orientation respecting the unidirectionality of the thrusters and
demonstrating the lowest possible inputs for the optimized platform.

To improve the state of the art on the control of aerial manipulators, we proposed
a flatness-based decentralized controller. This controller can be applied to any
aerial manipulator, i.e., an unidirectional-thrust aerial platform endowed with any
number of arms, each composed of any number of joints. The aerial manipulator
is assumed to be protocentric, i.e., all the manipulator arms are attached to the
CoM of the flying base. This system is differentially flat with respect to one end-
effector position and the absolute angle of the joints. Using the differential flatness
property of PAMs (in 2D), we showed how to compute the nominal states and inputs
of the system analytically in advance, and use it to track dynamic maneuvers for
an aerial manipulator in the 3D space. Such controller, although very simple to
be implemented, also on kinematically controlled manipulators, considers the full
dynamics of the system thanks to the flatness. We experimentally showed that it
outperforms standard methods based on the separation of the platform and arm
dynamics when asked to follow dynamic trajectories.

We also considered the problem of the cooperative manipulation of a cable sus-
pended load performed by two aerial vehicles. The proposed master-slave architec-
ture exploits an admittance controller in order to coordinate the robots with implicit
communication only, exploiting the cable forces. The passivity of the system has
been proven, and the stability of the static equilibria has been studied highlighting
the crucial role of the internal force. In particular, contrarily from what it is nor-
mally done in the literature (zero internal force and vertical cables), it is advisable
to choose a positive internal force to control both position and orientation of the
beam.

From the motion planning point of view of aerial manipulators, we presented
a task-constrained motion planner based on the paradigm of combining sampling-
based motion planning methods together with local controllers. The motivation
comes from the fact that, although trajectories generated by planning methods may
have good theoretical properties, in practice, control methods applied for motion
execution may have difficulties to track them. This is particularly true for complex
robot systems such as aerial manipulators. Therefore, we propose to apply control
methods already at the trajectory planning stage. More precisely, we considered
a second-order inverse kinematics controller together with a dynamic controller.
The use of this controller inside a RRT-based planner has a threefold advantage:
i) generate motions that are feasible for the real closed loop system; ii) plan directly
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in the reduced and more relevant task space; iii) consider control singularities and
tracking errors already at the planning level.

Finally, driven by the high demand of industrial sectors for aerial manipulators
capable to perform contact-based operations, we wisely designed a truly-redundant
aerial manipulator with proven physical interaction capability. We designed and
integrated control and motion planning methods to perform a non-trivial push-
and-slide task on non-flat surfaces. For the first time (according to the best of our
knowledge) we experimentally showed that such a system equipped with an Eddy-
Current sensor is able to perform a real contact-based inspection of a metallic pipe,
going beyond simpler operations like pick-and-place or pull-and-push.

13.2 Lessons learned

All along this thesis, and for each problem addressed, we firstly conducted a thor-
ough and fundamental theoretical study that then led (when possible) to a more
application-related study. We are convinced that a formal study, whatever is the
problem or the system, is the base of every scientific work. It allows deeply under-
standing the system under exam and learning its truly properties and capabilities.
Our study on tethered aerial vehicles is a clear example. It shows all the intrinsic
controllability and observability property of such system. In particular, it reveals
that, although the link introduces a constraint on the aerial vehicle, it actually adds
new capabilities such as the control of the internal link force for physical interaction
tasks, the partial control of the robot attitude, and the possibility to retrieve the
state with a very basic sensory configuration, useful as backup solution when other
more sophisticated sensors like cameras or GPS can not be used. Afterwards, we
showed how the results of such careful theoretical analysis can be helpful and easy
to apply to a more practical and application-oriented problem. The capacity to
partially control the attitude of the vehicle and to achieve inclined hovering makes
such system suited for all such applications in which the control of both position and
orientation is important, like the landing and takeoff on/from sloped surfaces. For
the latter practical problem we again conduced a first theoretical study to formally
show that the use of the tether is advisable rather than the free-flight solution.
Finally, grounding on the study of generic tethered aerial vehicles we designed a
motion planner that improves the reliability of the trajectory. The planner together
with one of the proposed controllers allowed successfully performing the sough task.

The formal analysis on tethered aerial vehicle and the design of controllers based
on the differential flatness, resulted useful not only for tethered systems. Indeed,
what we have learned with it, inspired the flatness-based decentralized controller for
PAMs. Tethered aerial vehicles and PAMs shares some similarities. They are both
differentially flat systems. Therefore, we designed the decentralized controller for
aerial manipulators grounding on the hierarchical one designed for tethered aerial
vehicles. This controller provided good experimental results showing its validity.
This approach could be theoretically extended to other differentially flat systems.
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A similar approach to problems, i.e., study of the theoretical basis and following
application to practical scenarios, has been applied to the work on omnidirectional-
thrust aerial vehicles as well. Although, multidirectional-thrust aerial vehicles are
studied since long time, the study of omnidirectional-thrust aerial vehicles started
only very recently. Moving from “multi” to “omni” required to fill a large gap in
the theory and in the design as well. For example, it is not just sufficient to add
more propellers to obtain the sought capability of orienting the total thrust in all
the directions with respect to the body frame. This is the reason why works fo-
cused on omnidirectional-thrust vehicles started to appear only recently. Therefore,
we started to investigate omnidirectional-thrust aerial vehicles with unidirectional
thrusters from a theoretical point of view, providing all the grounds and insights.
The application of such a platform to real problem is left as future work. We believe
that many other works could build on top of our findings.

Again, a first theoretical investigation has been done for the problem of manip-
ulating a load with a team of robots without the used of explicit communication.
Although some works on the topic are present in the state of the art, still there
were the lack of a formal study, especially on the possible static equilibria and the
corresponding stability. This is why we focused our study on those theoretical as-
pects showing interesting features of the proposed system and method such as the
passivity of the system and the crucial importance of the internal force. In the state
of the art, the most common chosen static equilibria is the one with vertical cables,
namely zero internal force. However, we proved that this is the worst configuration
to stabilize the load to a desired pose. On the contrary, a desired load configuration
is locally asymptotically stable only if the internal force is positive (load stretched).

The experiments performed to validate the decentralized controller for aerial
manipulators did not only show the good performance of our method. In addition,
they showed the importance of the dynamics of the systems and of the couplings
between aerial platform and robotic arm, for both control and motion planning.
Indeed, we saw that a controller based on quasi-static assumption can not provide
good tracking performance in dynamic conditions. However, the experiments also
showed that a wise motion planning that considers the full system dynamics, might
exploit the coupling effects to reduce the need of compensation from the control side,
thus improving the tracking performance. Based on this consideration we believe
that studies on optimal trajectory generation become even more fundamental to
achieve aerial manipulation tasks exploiting the dynamic properties (such as the
flatness) of the systems. This is why we stated investigating this topics proposing
a fist motion planner based on the paradigm of tying together control and motion
planning.

Finally, we also considered the challenging physical interaction task of push-
ing while sliding on curved surfaces with an aerial manipulator, going beyond the
simpler pick&place and pull/push tasks. We proposed one of the first aerial manip-
ulator systems capable to perform such a task in the context of a real and relevant
application, namely, EC inspection of metallic pipes. The successful results further
validated the effectiveness of multidirectional-thrust aerial vehicles for physical in-



196 Chapter 13. Conclusions

teraction, in this case also incorporating a lightweight arm. Particular attention
was required in the control design to steer the end-effector along the desired trajec-
tory while preserving the contact. In fact, well-known hybrid position/force control
methods cannot be applied to such aerial manipulator for the lack of model ac-
curacy, force feedback, as well as the presence of elasticity in the arm structure.
Those reasons required the design of a selective and displaced PID-based controller
inspired by the control of manipulators with elastic joints. Together with control-
aware motion planning, we demonstrated the capability of the robot to perform the
task, accurately detecting and mapping a weld over a metallic pipe.

13.3 Future works

Regarding Part II, we presented a complete theoretical analysis of tethered aerial
vehicles. Nevertheless, some additional works could be done, e.g., formally proving
the stability of the proposed hierarchical controller, proven only experimentally.
Other interesting extensions could be done toward an automatic identification of
the system parameters and an adaptive controller, or toward a cooperative control
with the moving platform. Another work could be to consider the problem of
landing (and takeoff) on a surface with variable attitude, like a ship in a rough see.
From the control and motion planning point of view, an interesting problem could
be the one of using a tethered robot for the exploration of unknown and cluttered
environments. On the other hand, given the level of maturity of the theoretical
part, many are works that could be done form the practical and engineering point
of view. Firstly, we plan to experimentally test the proposed dynamic feedback
linearizing controller and the observers. Those could be then employed to enhance
the performance during the landing and takeoff maneuvers in highly dynamic cases.
However, for the real application, some improvements of the system have to be
considered. For example a small winch could be added to unroll and roll-up the cable
immediately before and after the tethered maneuvers. A more suitable anchoring
mechanism can be designed according to the type of landing surface. Finally, the
robot could be equipped with an onboard vision system to identify the position of
the anchoring and landing points, as well as the landing surface attitude.

Regarding the works presented in Part III, they are initial studies along some
of the major axis of aerial physical interaction. They are far away from being
concluded topics and there are many possible extensions and open questions in the
field of aerial physical interaction to enhance the manipulation capabilities of aerial
robots. In the following we present some possible future works with respect to the
theoretical and more practical point of views.

Omnidirectional-thrust aerial vehicles Based on the fundamental results on
omnidirectional-thrust aerial vehicles with unidirectional thrusters, many other
works could sprout up from the community. An example could be the improve-
ment of the optimization algorithm, perhaps exploiting symmetries on an opti-
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mized platform, and considering the thrusters position as well. The formal proof
that balanced design with min cond(F) minimizes the norm of the input is also left
as future work, as well as the real implementation of such optimized platform. One
could also try to optimize the thrusters position in order to minimize their mutual
aerodynamic disturbance, a goal that seems doable with a moderate effort. To
mention the practical utility of those systems and some of their possible applica-
tions, omnidirectional-thrust vehicles are more suitable and safer for human-robot
interaction when compared to unidirectional and multidirectional-thrust vehicles.
Indeed, the latter, can be made easily unstable interacting with a human being,
due to the limited capacity of compensating external forces on any direction and
with any orientation. On the other hand, a human being can interact with an
omnidirectional-thrust vehicle more safely. Indeed the user can turn and push the
vehicle in any orientation and direction without destabilizing the system. Another
application field gaining increasing interest consists on virtual and augmented re-
ality. In this context, the necessity to take images from almost all the point of
views, fits perfectly with the capacity of omnidirectional-thrust vehicles of hovering
with any orientation. The same cannot be easily done with standard unidirectional-
thrust vehicles endowed with gimbal-like system due to mechanical constraints of
the latter mechanism, and to obstruction caused by the vehicle structure and pro-
pellers.

Control of aerial manipulators Our work can be extended in many directions.
One is to study the differential flatness property directly in 3D. Another is finding
ways to relax the protocentric assumption. The third one is performing experiments
using one or more manipulator arms for real physical interaction tasks such as pick
and place, throwing and catching objects and so on.

Cooperative manipulation In the future it would be interesting to test the
method on real platforms and to extend the analysis to general loads or to agile
motions. An extension to a more generic load attached to N robots could be very
interesting too.

Motion planning for aerial manipulators In the presented work, we have
applied a basic RRT algorithm as global planner. However, the proposed paradigm
can be extended to other planners. Note however that the use of the controller as
a local planner imposes some restrictions at this level, since planning algorithms
requiring the solution of a two-point boundary value problem (BVP) to connect
sampled states involving the full system cannot be directly applied in this context.
This is for instance the case of RRT* [Karaman–2011], which is an asymptotically-
optimal variant of RRT. An interesting alternative for optimal trajectory planning
would be the SST* algorithm [Li–2016], which does not rely on a BVP solver. Other
technical improvements of the algorithm can be investigated, e.g., biased sampling
to favor particular regions of the search space, post-processing to shorten the tra-
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jectory, or real-time implementation to take into account dynamic environments or
incremental map building, etc. As natural future work, we aim to test the proposed
approach on a real aerial manipulator. Finally, we should mention that the general
ideas proposed in this paper could be applied to other areas in robotics in addition
to aerial manipulation.

Aerial manipulator for push-and-slide operations This integrated system
has been successfully employed for the detection and mapping of a weld on a metallic
pipe. The next step is to use the robotic system also for the detection of cracks along
the weld. This will have a strong impact in the industrial sector where many Non-
Destructive Tests (NDT) for the assessment of the plant integrity require contact
between the employed sensor and the surface of interest. Another natural follow-up
of this work will be the integration with an onboard localization system to perform
the task outdoor in a real industrial plant. Given that the industrial sector is eager
of such aerial manipulators with those capabilities, many other applications and
collaboration with industrial companies will certainly follow. Furthermore, new
research lines could also start from the noticed control problem problem introduced
by the flexibility of lightweight manipulator for aerial robots.



Appendix





Appendix A

Extended simulations for
tethered aerial vehicles

A.1 DFL-controller for force-related output with ob-
server in non ideal conditions

In this section we provide several additional detailed simulation results in order to
test the validity of the proposed method in several different non ideal conditions,
reported in the following:

a) initial position and estimation errors,
b) parametric variations,
c) partial measurements of the moving platform trajectory,
d) noisy sensor measurements,
e) non zero offset between the tether and the center of gravity of the aerial

vehicle,
f) non diagonal inertia matrix JR,
g) saturation of the inputs,
h) motor time constant,
For each case we show the control performances plotting the tracking of each

output of interest, the global tracking error ξtrack computed as the sum of each
errors, and the inputs. Concerning fR and τW we also show the nominal input
coming from the flatness, fRn and τnW , that should be applied to obtain the desired
output tracking in the nominal case. We also show the observer performances
comparing the estimated state and the actual one. The estimation error eestimation
is simply calculated as the sum of the estimation error for each entry of the state.
Finally we display the trajectories of the aerial vehicle and of the moving platform in
the world frame and with respect to FC . In the 3D plots the position of the moving
platform and of the aerial vehicle in some particular instants are represented with
a triangle and a square respectively.

A.1.1 Initial errors

In this section we want to show the closed loop stability of the system in dynamic
condition even with some initialization error. The system starts with an error on l
of 0.1[m], on ϕ and δ of 2[◦] and on fL of 0.5[N]. Similarly the initialization of the
observer is done with an error of 0.2[m] on l̂, of 5[◦] on ϕ̂ and δ̂, while their velocity
are initialized to zero.
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Â

[s]
0 0.2 0.4 0.6 0.8 1

[d
eg

=s
]

-4

-2

0
_?

_̂?

#

_̂#

A

_̂A

[s]
0 0.2 0.4 0.6 0.8 1

0

20

40

60

eestimation

(b) Observer performances. We show here only
the first second because after the estimated state
follows the actual one with high fidelity for all
the remaining simulation.
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Figure A.1 – Simulation: initial errors.

In Fig. A.1 one can see that after the convergence of the observer, that takes less
than one second, the controller exponentially steers the outputs along the desired
trajectories, while the moving platform is following its own dynamic trajectory.

A.1.2 Parametric variations

The purpose of the next sections is to investigate the robustness of the proposed
method. In particular in this one, we consider some parameter variation between
the real model and controller/observer. Indeed in a real scenario we can not know
exactly each parameter of the system, thus the controller and observer would be
based on some parameter value different from the real one.

Fig. A.2 displays the results of the simulation with a parametric variation of the
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Figure A.2 – Simulation: parametric variations.

5% for each entry, i.e., mR, JR, JW and rW . In order to partially compensate the
effects of the uncertainties we added in the controller an integral term with gain
kI = 3.

We can notice that due to the uncertainty of the model we have some nonzero
errors in the tracking and in the estimation of the state. Nevertheless the error
system remains stable and thanks to the integrator terms, during the landing ma-
neuver we obtained a decreasing tracking error that allows a correct landing of the
aerial vehicle.

We performed additional extensive simulations in which we observed that the
system remains stable up to a parametric variation of the 20%, after this value the
system results unstable. However notice that in reality those parameters are very
well measurable with small errors, certainly lower than the 20%.
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Figure A.3 – Plot of xiC , for i = 1, 2, 3, 4. In Simulation C all the variables in the
last five plots are considered zero by the controller and the observer.

A.1.3 Limited knowledge of pWC (t)

In Sec. 4.7.1 we saw that the knowledge of X4
C is needed in order to compute the

control action. In other words, to obtain a perfect tracking one has to know the
derivative of pCC(t) up to the fourth order and of ωC(t) up to the third order.
Although those variables have to be known to obtain zero tracking error, actually,
without a posteriori knowledge of the trajectory or the model and control inputs of
the system, it is difficult to measure the higher-order derivatives. Nevertheless, in
this section we want to show that even with only a partial measurement of X4

C the
system stays stable and the tracking error remains bounded.

Indeed, for a real moving platform, a standard onboard sensorial configuration,
such as optical flow, IMU and magnetometer, is sufficient to obtain ωC(t) and pCC(t)
up to its second derivative.

In Fig. A.4b we can observe that the estimation error is almost constantly zero
even if ω̇C is assumed zero. While in Fig. A.4a one can notice that the outputs
oscillates around the desired value and the tracking error does not go to zero but
remains bounded under a reasonable threshold. Nevertheless, with a more “aggres-
sive” platform trajectory the negative effects would be more significants. In Fig. A.3
the entries of xiC for i = 1, 2, 3, 4 are plotted. The last five entries are assumed zero
by the observer and the controller.

A.1.4 Noise on the measurements

In this section we investigate the robustness of the proposed method with the pres-
ence of noise in the measurements. Tab. A.1 gathers the variance magnitude set
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Figure A.4 – Simulation: limited measurements of the moving platform trajectory.

# Type Measurement Noise variance

w2 abs. encoder ϑW ≈ l 0.008[rad]
w3 abs. encoder ϕ 0.008[rad]
w4 abs. encoder δ 0.008[rad]
w5 accelerometer RR(p̈WR + ge3) -
w6 gyroscope ωR 0.01[rad/s]
w7 magnetometer RRhW -
WR complementary filter RR 0.001

Table A.1 – List of sensors.

for each measurement. For the encoder and the gyroscope we set some reasonable
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value found in the literature [Sandino–2014b]. On the other hand, instead of adding
noise on w5 and w7 we preferred inserting the noise directly in the measure of the
rotational matrix RR, i.e., in WR. This is done because the direct measure of RR

using the accelerometer and the magnetometer is normally filtered with the gyro-
scope [Mahony–2008], in order to obtain a less noisy estimation of both RR and
ωR. The noise added directly to RR is comparable to the one we would obtain after
the filtering.

From Fig. A.5 we can observe that the estimated state shows some noise but the
corresponding error remains limited. Due to the noisy component on the estimated
state the outputs presents some oscillation as well, especially on the stress that
seams to be the more sensitive output to the noise. Nevertheless the tracking error
remains small and always bounded.
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Figure A.5 – Simulation: noisy measurements.
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A.1.5 Tethered offset

Exact attachment of the link to the center of mass of the aerial vehicle is practically
unfeasible. Therefore there will always be a non zero offset, although small, between
the tether attachment and the center of gravity. This offset makes the translational
and rotational dynamics of the aerial robot coupled and can potentially lead to the
instability of the controlled system. In this section we want to show the robustness
of the proposed method when the distance between the attaching point and the
center of gravity of the aerial vehicle is non zero. In particular in this simulation
the link is attached 5 [cm] vertically below OR with respect to FR. As expected,
the tracking error does not go to zero but however remains bounded, showing good
tracking performances. Notice that the error is higher during the circling phase
since this part of the global trajectory is very dynamical and the unmodeled effects
due to the offset are larger. However we remark that a good mechanical design
could make the tracking error almost negligible.

We tested the method with even larger offsets and we saw that the system
remains stable up to a vertical offset of 30[cm], that is an exaggerated value for the
system considered in the simulation (small-size quadrotor like vehicle). In fact, note
that a larger quadrotor means a larger inertia which actually reduces the negative
effects of the offset. In additional simulations, which are not reported here for the
sake of brevity, we also tested the robustness of the method with a more general
offset (not only vertical) noticing that, within some reasonable bounds, the system
remains stable and with acceptable tracking performances.

A.1.6 Nondiagonal inertia matrix

In the derivation of the model and of the controller as well, we assumed a diagonal
inertia matrix. In this section we check the robustness of the method if the aerial
vehicle has a non diagonal inertia matrix. In particular, in Fig. A.7, we show the
results for a test in which the real inertia matrix is

JR =


0.25 0.05 0.05
0.05 0.25 0.05
0.05 0.05 0.25

 ,
while the controller still assumes a diagonal inertial matrix.

One can observe that the tracking error is not exactly zero but is kept limited
within a small bound. For the observer this does not constitute a non ideality, in
fact the estimation error is constantly zero.

With further simulations we observed that the system remains stable up to a
value of 0.15 in the off diagonal terms (60% of the values on the main diagonal).
With larger values the system becomes unstable.
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Figure A.6 – Simulation: non zero offset between tether attachment and center of
gravity of the aerial vehicle.

A.1.7 Input saturation

For how we planned the desired trajectory, the nominal input needed to track
the desired outputs is always within the limits of the considered system. Indeed,
exploiting the flatness, we are able to a priori check if the inputs exceed the minimum
and maximum values. Nevertheless, in this section we want to show that the system
is still stable if the inputs are hardly saturated for some instants. Thus we set some
very restrictive limits on the input, i.e., fR ≤ f̄R and τ ≤ τi ≤ τ̄ , where i = x, y, z,
f̄R = 13[N], τ = −1[Nm] and τ̄ = 1[Nm]. In order to let the saturation show up
during execution we did not re-plan the desired trajectory.

In Fig. A.8a it can be seen that the inputs are saturated for some time instants
during the execution of the task. When the inputs are saturated the tracking
error increases, but, as soon as the inputs come back within the limits, the error
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Figure A.7 – Simulation: non-diagonal inertia matrix JR.

exponentially decreases to zero.
We stress again the fact that the saturation of the inputs can be avoided exploit-

ing the flatness. Using the flatness one can check if the desired trajectory requires
inputs that are too large. In the worst case one can re-plan the trajectory such that
the input limits are respected.

A.1.8 Motor time constant

With this simulation we want to further enlarge the set of non ideal models consid-
ered for the testing of the proposed control method. Considering an aerial vehicle
actuated by rotating propellers, in this simulation we add the dynamical model of
the motors described with a first order system characterized by a time constant of
τM = 0.1[s]. In practice the propeller dynamics inserts a frequency dependent phase
shift between the commanded control input and the actuated one, whose amplitude
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Figure A.8 – Simulation: saturation of the input.

depends on the time constant. In other words, the models acts as a low pass filter
on the commanded input, cutting its high frequency components. Those effects
could dramatically decrease the performances or even make the system unstable.
However, from Fig. A.9, one can notice that our method is robust to the unmodeled
effects of the propellers dynamics. Indeed, in some instant, where the trajectory is
more dynamical and requires fast varying inputs, the tracking error increases but
it is always bounded and at steady state converges to zero.

We remark that, if needed, one can increase the smoothness of the control inputs
considering an higher order in the dynamic feedback control. Indeed adding more
integrators on the control channels one can increase the degree of smoothness of the
control input thus guarantying that it is always below the cutting frequency proper
of the system, and in particular of the propellers. Another possible strategy is to
exploit the flatness to plan a trajectory that fulfills the system limitations.
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Figure A.9 – Simulation: system with motors dynamics.
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Appendix B

Proofs for aerial
co-manipulation

B.1 System Modeling

The considered system and its major variables are shown in Fig. 10.1. The beam-like
load is modeled as a rigid body with mass mL ∈ R>0 and a positive definite inertia
matrix JL ∈ R3×3. We define the frame FL = {OL,xL,yL, zL} rigidly attached
to it, where OL is the the load center of mass (CoM). Then, we define an inertial
frame FW = {OW ,xW ,yW , zW } with zW oriented in the opposite direction to the
gravity vector. The configuration of the load is then described by the position of
OL and orientation of FL with respect to FW , i.e., by the vector pL ∈ R3 and the
rotation matrix RL ∈ SO(3), respectively. Its dynamics is given by the Newton-
Euler equations

mLp̈L = −mLge3 + fe
ṘL = [ωL]×RL

JLω̇L = − [ωL]× JLωL + τe −BLωL,

where, ωL ∈ R3 is the angular velocity of FL w.r.t. FW expressed in FL, [?]×
is the operator such that [x]× y = x × y, g is the gravitational constant, ei is the
canonical unit vector with a 1 in the i-th entry, fe and τe ∈ R3 are the sum of
external forces and moments acting on the load, respectively. The positive definite
matrix BL ∈ R3×3 is a damping factor modeling the energy dissipation phenomena.

We denote with ORi the attachment point of the i-th cable to the i-th robot,
with i = 1, 2, and we define the frame FRi = {ORi,xRi,yRi, zRi} rigidly attached
to the robot and centered in the attachment point. The i-th robot configuration is
described by the position of ORi and orientation of FRi w.r.t. FW , denoted by the
vector pRi ∈ R3, and the rotation matrix RRi ∈ SO(3), respectively. We assume
that a position controller is applied to the aerial robot, able to track any C2 tra-
jectory with negligible error in the domain of interest, independently from external
disturbances. Indeed, with the recent robust controllers (as the one in [Ryll–2016]
for both unidirectional- and multidirectional-thrust vehicles) and disturbance ob-
servers for aerial vehicles, one can obtain very precise motions, even in the presence
of external disturbances. However, the proposed control method results particu-
larly robust to non-ideality, thanks to its passivity nature (see Sec. B.4). As a
consequence, in real applications, a precise tracking is actually not needed for the
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stability, but only to achieve perfect performance.
The closed loop translational dynamics of the robot subject to the position

controller is then assumed as the one of a double integrator: p̈Ri = uRi, where
uRi is a virtual input to be designed. If we consider a multidirectional-thrust
platform capable of controlling both position and orientation independently [Ryll–
2017], the double integrator is an exact model of the closed loop system apart
from modeling errors. In the case of underactuated unidirectional-thrust vehicle,
the double integrator is instead a very good approximation. Indeed the rotational
dynamics is totally decoupled from the translational one and it is much faster than
the latter, allowing to apply the time-scale separation principle. At this stage it
might seem that the platform is ‘infinitely stiff’ w.r.t. the force produced by the
cable. However, we shall re-introduce a compliant behavior by suitably designing
the input uRi.

The other end of the i-th cable is attached to the load at the anchoring point
Bi described by the vector Lbi ∈ R3 denoting its position with respect to FL. The
position of Bi w.r.t. FW is then given by bi = pL + RL

Lbi. To simplify the
discussion we assume, without loss of generality, that Lb1 = [‖ Lb1‖ 0 0]>.

Assumption 1. The two anchoring points are placed such that the load CoM coin-
cides with their middle point, i.e., Lb1 = − Lb2. This assumption is rather easy to
meet in practice.

We model the i-th cable as a unilateral spring along its principal direction,
characterized by a constant elastic coefficient ki ∈ R>0, a constant nominal length
denoted by l0i and a negligible mass and inertia w.r.t. the ones of the robots
and of the load. The attitude of the cable is described by the normalized vector,
ni = li/ ‖li‖, where li = pRi− bi. Given a certain elongation ‖li‖ of the cable, the
latter produces a force acting on the load at Bi equal to:

fi = tini, ti =

ki(‖li‖ − l0i) if ‖li‖ − l0i > 0
0 otherwise

. (B.1)

ti ∈ R≥0 denotes the tension along the cable and it is given by the simplified Hooke’s
law. As usually done in the related literature, we assume that the controller and
the gravity force always maintain the cables taut, at least in the domain of interest.
The force produced at the other hand of the cable, namely on the i-th robot at
ORi, is equal to −fi.

v̇R = uR
v̇L = M−1

L (−cL(vL)− gL + G(qL)f) ,
(B.2)

where qR = [pR1> pR2>]>, qL = (pL,RL), vR = [ṗR1> ṗR2>]>, vL = [ṗ>L ω>L ]>,
uR = [u>R1 u>R2]>, f = [f>1 f>2 ]> where fi is given in (B.1), and is a function
of the state, ML = diag (mLI3, JL) and I3 ∈ R3×3 the identity matrix, gL =
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Figure B.1 – Schematic representation of the overall system including both physical
and control blocks.

[−mLge>3 0]>, cL = [0 [ωL]× JLωL − ω>LBLωL]> and

G =

 I3 I3[
Lb1

]
×

R>L
[
Lb2

]
×

R>L

 .
We remark that the two dynamics in (B.2) are coupled together by the cable forces
in (B.1).

B.2 Control Design and Equilibria

To achieve the previous control objectives we propose the use of an admittance filter
for both robots, i.e., setting:

uRi = M−1
Ai (−BAiṗRi−KAipRi− fi + πAi) , (B.3)

where the tree positive definite symmetric matrices MAi,BAi,KAi ∈ R3×3 are the
virtual inertia of the robot, the virtual damping, and the stiffness of a virtual
spring attached to the robot, and πAi ∈ R3 is an additional input (see Fig. B.1
for a schematic representation). Notice that (B.3) does not require explicit com-
munication. Indeed it requires only local information, i.e., the state of the robot
(pRi, ṗRi), and the force applied by the cable fi. The first can be retrieved with
standard on-board sensors, while the second can be directly measured by an on-
board force sensor or estimated by a sufficiently precise model-based observer as
done in [Ryll–2017; Tagliabue–2016].

Combining equations (B.2) and (B.3) we can write the closed loop system dy-
namics as v̇ = m(q,v,πA) where

m(q,v,πA) =

M−1
A (−BAṗR −KApR − f + πA)
M−1

L (−cL(vL)− gL + Gf)

 , (B.4)

with q = (qR,qL), v = [v>R v>L ]> and πA = [π>A1 π>A2]>. Furthermore MA =
diag(MA1,MA2), BA = diag(BA1,BA2) and KA = diag(KA1,KA2). In order to
coordinate the motions of the robots in a decentralized way we propose a master-
slave approach. Only one robot, namely the designated master, will have an active
control of the system. Choosing robot 1 as master and robot 2 as slave we set
KA1 6= 0, KA2 = 0.

We say that q is an equilibrium configuration if ∃ πA s.t. 0 = m(q,0,πA),
i.e, if the corresponding zero-velocity state (q,0) is a forced equilibrium for the
system (B.4) for a certain forcing input πA. We say that an equilibrium configu-
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Figure B.2 – Relation between the equilibria and forcing control input. In particular,
starting from the left: to a desired load configuration of equilibrium it corresponds
a forcing input in the subset ΠA(q̄L) of dimension one (inverse problem). Then,
moving to the right: to a forcing input in ΠA(q̄L) it corresponds an equilibrium
in the subsets Q+(tL, q̄L), Q−(tL, q̄L) or Q(0, q̄L) according to the value of tL
(direct problem). The orange line inside Q+(tL, q̄L) corresponds to the equilibria
q ∈ Q+(tL, q̄L) such that qL = q̄L.

ration q is stable, unstable, or asymptotically stable if (q,0) is stable, unstable, or
asymptotically stable, respectively.

In the following we shall prove that for any desired load configuration q̄L there
exists a set ΠA(q̄L) ⊂ R6 such that for any πA ∈ ΠA(q̄L) one can compute a
q̄R, depending on q̄L and πA, that makes q̄ = (q̄L, q̄R) an asymptotically stable
equilibrium with πA as forcing input. As we shall see, a key role in all the following
analyses is played by the load internal force, defined as

tL := 1
2 f>

[
I3 − I3

]>
RLe1 =: 1

2 f>rL, (B.5)

where rL =
[
I3 − I3

]>
R̄Le1. We have that if tL > 0 the internal force is a tension

(the work of the internal force is positive if the distance between the anchoring
points increases) while if tL < 0 the internal force is a compression (viceversa, the
work is positive if the distance decreases).

B.2.1 Equilibrium Configurations of the Closed Loop System

We firstly carefully analyze the relation between equilibrium configurations, from
now on simply called equilibria, and the forcing input πA. In particular, we shall
study: i) equilibria inverse problem: which is the set of inputs (and corresponding
robot positions) that equilibrates a desired q̄L (Theorem B.2.1); ii) equilibria direct
problem: which is the set of equilibria if πA, chosen in the aforementioned set, is
applied to the system (Theorem B.2.2). A schematic representation of the results
described in the theorems is given in Fig. B.2.
Theorem B.2.1 (equilibria inverse problem). Consider the closed loop system
(B.4) and assume that the load is at a given desired configuration qL = q̄L =
(p̄L, R̄L). For each internal force tL ∈ R, there exists an unique constant value for
the forcing input πA = π̄A (and an unique position of the robots qR = q̄R) such
that q̄ = (q̄L, q̄R) is an equilibrium of the system.

In particular π̄A and q̄R = [p̄>R1 p̄>R2]> are given by

π̄A(q̄L, tL) = KAq̄R + f̄(q̄L, tL) (B.6)

p̄Ri(q̄L, tL) = p̄L + R̄L
Lbi +


∥∥∥f̄i∥∥∥
ki

+ l0i

 f̄i∥∥∥f̄i∥∥∥ , (B.7)
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for i = 1, 2, where

f̄(q̄L, tL) =

f̄1

f̄2

 = mLg

2

I3

I3

 e3 + tL

 I3

−I3

 R̄Le1. (B.8)

Proof. The desired load configuration q̄L can be equilibrated if there exists at least
a q̄R and a πA such that:

m(q̄,0,πA) = 0. (B.9)

Consider the last six rows of (B.9). We must find the f solving

Gf = gL. (B.10)

G is not invertible since rank(G) = 5, thus we have to verify that a solution
for (B.10) exists. Expanding (B.10) we obtain

f1 + f2 = −mLge3 (B.11)[
Lb1

]
×

R̄>L f1 +
[
Lb2

]
×

R̄>L f2 = 0. (B.12)

Then, substituting in (B.12) the f1 obtained from (B.11) we have 2
[
Lb1

]
×

R̄>L f2 =

−
[
Lb1

]
×

R̄>LmLge3, for which f2 = mLge3/2 is always a solution. Therefore, all
the solutions of (B.10) can be written as

f̄ = G†gL + rLtL, (B.13)

where G† = 1/2[I3 I3]> is the pseudo inverse of G, rL ∈ R6 is a vector in Null(G)
, and tL ∈ R is an arbitrary number.

We computed rL = [f>1 f>2 ]> from (B.11) and (B.12) imposing the right hand
side equal to zero. From (B.11) f2 = −f1, and replacing it into (B.12) we obtain[
2 Lb1

]
×

R̄>L f1 = 0 which is verified if f1 = tLR̄Le1 with tL ∈ R. Finally we obtain

rL =
[
I3 − I3

]>
R̄Le1, as in the definition (B.5).

Equation (B.13) can be then rewritten as (B.8). The expression of p̄Ri in (B.7)
is computed using (B.1) and the kinematics of the system. Notice that (B.7) is
singular when f̄i = 0 for some i. However this can always be avoided properly
choosing tL.

Lastly, from the first six rows of (B.9) we have that q̄L is equilibrated if πA =
π̄A, where π̄A is defined as in (B.6).

Remark. Based on Theorem B.2.1 we can define a set ΠA(q̄L) = {πA ∈ R6 : πA =
π̄A(q̄L, tL) for tL ∈ R} which has dimension 1, since it is parametrized by the scalar
tL ∈ R.



218 Appendix B. Proofs for aerial co-manipulation

Remark. The expression (B.8) of the cable forces that equilibrate the system is split
in two parts. The first, i.e., G†gL, compensates the gravity force and the second
generates internal forces that, for the system under consideration, are always along
the direction (b1 − b2).

Remark. Given a desired load configuration q̄L to equilibrate, Theorem B.2.1 and
its constructive proofs, give an intuitive method for choosing the forcing input πA.
In particular one has to choose only the value of the internal force tL.

Once tL is chosen and the input πA = π̄A(tL, q̄L) is applied to the system, it
is not in general granted that (q̄L, q̄R) is the only equilibrium of (B.4), i.e., the
equilibria direct problem may have multiple solutions.

Theorem B.2.2 (equilibria direct problem). Given tL ∈ R and the correspond-
ing π̄A ∈ ΠA(q̄L) computed as in (B.6), the equilibria of the system (B.4), when
the input πA = π̄A(tL, q̄L) is applied, are all and only the ones described by the
following conditions

tLRLe1 × R̄Le1 = 0
pR1 = p̄R1

pL = pR1−RL
Lb1 −


∥∥∥f̄1
∥∥∥

k1
+ l01

 f̄1∥∥∥f̄1
∥∥∥ =

= p̄L + (R̄L −RL) Lb1

pR2 = pL + RL
Lb2 +


∥∥∥f̄2
∥∥∥

k2
+ l02

 f̄2∥∥∥f̄2
∥∥∥ .

(B.14)

Q(tL, q̄L) denotes the set of configurations respecting (B.14).

Proof. Given tL ∈ R, and π̄A ∈ ΠA(q̄L), a configuration q is an equilibrium if
m(q,0, π̄A) = 0. The first six rows are KAqR + f − π̄A = 0. Then, from (B.6) we
have that

f = KA(q̄R − qR) + f̄ . (B.15)

Multiplying both sides of (B.15) by G and using (B.10) we obtain GKA(q̄R−qR)+
Gf̄ = gL. Then, using KA2 = 0, and the expression of f̄ in (B.8), we get KA1eR1[

Lb1

]
×

RLKA1eR1

+

 mLge3

2
[
Lb2

]
×

R>L R̄Le1tL

 =
[
mLge3

0

]
, (B.16)

where eRi = (p̄Ri − pRi). The top row of (B.16) implies that eR1 = 0, hence
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in Q+(tL, q̄L) and Q−(tL, q̄L), respectively.
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conditions.

Figure B.3 – 2D representation of the equilibria varying tL.

pR1 = p̄R1. Replacing eR1 = 0 in the bottom part of (B.16) we obtain[
Lb2

]
×

R>L R̄Le1tL = 0⇔ Lb2 ×R>L R̄Le1tL = 0

⇔ RLe1 × R̄Le1tL = 0.
(B.17)

We can retrieve pL and pR2, using (B.1) and the kinematics.

Remark. If tL = 0 the conditions in (B.17) hold for all the possible load attitudes
RL ∈ SO(3). This means that Q(0, q̄L) contains all the RL ∈ SO(3) and the qR, pL
computed from RL using (B.14). Figure B.3b illustrates some of these equilibria.

For tL 6= 0, it is required that RLe1 is parallel to R̄Le1. This can be obtained
with RL = RL(k, φ) = R̄LRzL(kπ)RxL(φ), where k = 0, 1, φ ∈ [0, 2π], and RzL(·)
and RxL(·) are the rotations about zL and xL, respectively. Considering that Lb1
is parallel to xL we have that RzL(kπ)RxL(φ) Lb1 is either equal to Lb1 if k = 0
or to − Lb1 if k = 1. Therefore, using (B.14), we obtain either pL = p̄L if k = 0 or
pL = p̄L + 2b1 if k = 1. Fig. B.3a provides a simplified representations of the two
different sets of equilibria for k = 0 and k = 1, formally defined as follows:
• Q+(tL, q̄L) = {q ∈ Q(tL, q̄L)|RL = RL(0, φ)∀φ},
• Q−(tL, q̄L) = {q ∈ Q(tL, q̄L)|RL = RL(1, φ)∀φ}.

Notice that Q(0, q̄L) is parametrized by an element in SO(3) (any RL ∈ SO(3)
is allowed), while Q+(tL, q̄L) and Q−(tL, q̄L), for tL 6= 0, are parametrized by an
element in SO(1) (RL(0, φ) and RL(1, φ), for any φ ∈ [0, 2π], respectively). For all
tL, the load rotation about xL is arbitrary because the robots can not apply any
torque along xL, so the corresponding rotation results uncontrollable.
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We can conclude that choosing tL = 0 (equilibrium with vertical cables) every
orientation of the load is contained in the equilibrium set and the load equilibrium
positions are free to move on a sphere of radius ‖ Lb1‖ centered on B1. Contrarily,
tL 6= 0 is a much better choice. In this case, a part from the rotation about the xL
axis, there are only two distinct equilibria, and one is exactly qL = q̄L, as expected.
For the other one the load orientation is parallel to the one in q̄L but its position
is reflected w.r.t. B1 (see Fig. B.3a for an example).

B.3 Stability of the Equilibria

In this section we shall analyze the stability of the equilibria discovered in Sec. B.2.1.
Firstly we define x = (q,v) as the state of the system, x̄ = (q̄,0) the desired
equilibrium state, and the following sets (subspaces of the state space):
• X (tL, q̄L) = {x : q ∈ Q(tL, q̄L), v = 0},
• X (0, q̄L) = {x : q ∈ Q(0, q̄L), v = 0},
• X+(tL, q̄L) = {x : q ∈ Q+(tL, q̄L), v = 0},
• X−(tL, q̄L) = {x : q ∈ Q−(tL, q̄L), v = 0}.

Theorem B.3.1. Let us consider a desired load configuration q̄L. For the sys-
tem (B.4) let the constant forcing input πA be chosen in ΠA(q̄L) corresponding to
a certain internal force tL. Then x belonging to:
• X+(tL, q̄L) is locally asymptotically stable if tL > 0;
• X−(tL, q̄L) is unstable if tL > 0;
• X (0, q̄L) is locally asymptotically stable;
• X+(tL, q̄L) is unstable if tL < 0;
• X−(tL, q̄L) is locally asymptotically stable if tL < 0.

Proof. Let us consider the following Lyapunov candidate:

V (x) =1
2(v>RMAvR + e>RKAeR + v>LMLvL+

+ k1(‖l1‖ − l01)2 + k2(‖l2‖ − l02)2)− l>1 f̄1+
− l>2 f̄2 + tL(1− (R̄Le1)>RLe1) + V0,

(B.18)

where V0 ∈ R≥0 and eR = p̄R1 − pR1. For an opportune choice of V0, V (x) is
a positive definite, continuously differentiable function in the domain of interest
for which we have that xmin = arg minx V (x) is such that xmin ∈ X (0, q̄L) and
xmin ∈ X+(tL, q̄L) for tL > 0. The complete proof is provided in technical report
in the multimedia materials. In particular, if tL ≥ 0, we can choose the term V0
such that V (x) ≥ 0 and V (x̄) = 0. Notice that V (x) = 0 for all x ∈ X (0, q̄L) and
x ∈ X+(tL, q̄L) for tL > 0.

Computing the time derivative of (B.18) and replacing (B.4), (B.1) and (B.8)
we obtain V̇ = −vR>BAvR − ω>LBLωL that is clearly negative semidefinite. In
particular V̇ (x) = 0 for all x ∈ E{x : vR = 0, ωL = 0}
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Since V̇ is only negative semidefinite, to prove the asymptotic stability we rely on
the LaSalle’s invariance principle [Khalil–2001]. Let us define a positively invariant
set Ωα = {x : V (x) ≤ α with α ∈ R>0}. By construction Ωα is compact since (B.18)
is radially unbounded and Ω0 is compact (Ω0 = X (0, q̄L) and Ω0 = X+(tL, q̄L) for
tL = 0 and tL > 0, respectively, are both compact sets). Then we need to find the
largest invariant set M in E = {x ∈ Ωα | V̇ (x) = 0}. A trajectory x(t) belongs
identically to E if V̇ (x(t)) ≡ 0 ⇔ vR(t) ≡ 0 and ωL(t) ≡ 0 ⇔ m(q(t),0,πA) = 0
for all t ∈ R>0. Therefore x has to be an equilibrium, and from Theorem B.2.2 we
have that V̇ (x(t)) ≡ 0⇔ x(t) ∈ X (tL, q̄L). Thus we obtainM = Ωα ∩ X (tL, q̄L).

For tL > 0, it is easy to see that for a sufficiently small α, X+(tL, q̄L) ⊆ Ωα

but X−(tL, q̄L) ∩ Ωα = ∅. This because V (x) = 0 for x ∈ X+(tL, q̄L), while
V (x) > 0 for x ∈ X−(tL, q̄L). Indeed, in (B.18), for x ∈ X−(tL, q̄L), the term
tL(1 − (R̄Le1)>RLe1) = 2tL > 0. Therefore M = X+(tL, q̄L). All conditions of
LaSalle’s principle are satisfied and X+(tL, q̄L) is locally asymptotically stable.

On the other hand, for tL = 0 we have that X (tL, q̄L) ⊆ Ωα for every sufficiently
small α. ThereforeM = X (tL, q̄L) and, as before, we can conclude that X (tL, q̄L)
is locally asymptotically stable for the LaSalle’s invariance principle.

Now, let us investigate the stability for tL < 0. As before, with an opportune
choice of V0, we have that V (x) = 0 for x ∈ X+(tL, q̄L). However X+(tL, q̄L) is a set
of accumulation for the points where V (x) < 0. Indeed, consider v = 0, pR1 = p̄R1,
RL such that (R̄Le1)>RLe1 = 1 − ε, with ε > 0 arbitrarily small, pL and pR2 as
in (B.14). Under this conditions, we have that V (x) = tL(1 − (R̄Le1)>RLe1) =
tLε < 0. Then, V̇ (x) < 0 in a neighborhood of X+(tL, q̄L). All conditions of
Chetaev’s theorem [Khalil–2001] are satisfied, and we can conclude that X+(tL, q̄L)
is an unstable set.

Finally, to study the stability of X−(tL, q̄L) for tL 6= 0, let us consider a desired
load configuration q̄′L = (p̄′L, R̄′L) such that p̄′L = p′L + 2R̄Le1 and R̄′L = RL(1, φ)
for a certain φ. Then we choose π′A ∈ ΠA(q̄′L) with t′L = −tL. For the reasoning in
Sec. B.2.1, we have that X+(t′L, q̄′L) = X−(tL, q̄L). Furthermore, for the previous
results, if tL > 0, t′L < 0 and X+(t′L, q̄′L) is unstable. Therefore, X−(tL, q̄L) is
unstable too. A similar reasoning can be done to prove that X−(tL, q̄L) is locally
asymptotically stable for tL < 0.

B.4 Passivity and Stability of Manipulation

Theorem B.3.1 characterizes the stability of all the possible static equilibria given
a certain constant forcing input. In particular, it shows that one has to choose
tL > 0 and πA ∈ ΠA(q̄L) to let the system asymptotically converge to a desired
load configuration. On the contrary, one must avoid tL = 0 because the control of
the load attitude and its position is not possible. Notice that this last case is the
most used in the literature, where the attempt is made to keep the cables always
vertical, i.e., with no internal forces.

Let us now show how one can exploit the input πA1 in order to move the load
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between two distinct positions. From (B.6)–(B.8) and from the fact that KA2 = 0,
it descends that only π̄A1, in π̄A=[π̄>A1 π̄

>
A2]>, actually depends on the desired load

position p̄L. This makes robot 1 able to steer alone the load position without
communicating with robot 2. This is done by first plugging a new desired position
p̄′L in (B.6) thus computing a new p̄′R1, and then plugging p̄′R1 in (B.7) in order to
compute the new constant forcing input π̄′A1. However, one may want to minimize
the transient phases generated by a piecewise constant forcing input. It is sufficient
to design πA1 as

πA1(t) = π̄A1 + uA1(t), (B.19)

where uA1(t) is a smooth function such that πA1(0) = π̄A1 and πA1(tf ) = π̄′A1 for
tf ∈ R>0.

To ensure that the system remains stable when the input is time-varying, we
shall prove that the system is output-strictly passive w.r.t. the input-output pair
(u,y) = (uA,vR).

Theorem B.4.1. If πA is defined as in (B.19) for a certain q̄ and q̄′ with tL ≥ 0,
then system (B.4) is output-strictly passive w.r.t. the storage function (B.18) and
the input-output pair (u,y) = (uA, vR).

Proof. In the proof of Theorem B.3.1 we already shown that (B.18) is a contin-
uously differentiable positive definite function for tL ≥ 0, properly choosing V0.
Furthermore, replacing (B.19) into (B.3), and differentiating (B.18) we obtain

V̇ =− vR>BAvR + vR>uA − ω>LBLωL

≤u>y− y>BAy = u>y− y>Φ(y),
(B.20)

with y>Φ(y) > 0 ∀ y 6= 0. Therefore, system (B.4) is output-strictly passive [Khalil–
2001].

Thanks to the passivity of the system we can say that for a bounded input
provided to the master, the energy of the system remains bounded too, and in
particular it stabilizes to a new constant value as soon as uA1 becomes constant
again. This means that while moving the master, the overall state of the system
will remain bounded, and will converge to another specific equilibrium configura-
tion when the master input becomes constant. Furthermore, it is well known that
passivity is a robust property, especially w.r.t. model uncertainties. In particular,
choosing πA ∈ ΠA(q̄L) for a given q̄, the system remains asymptotically stable even
in the presence of some parameter uncertainties, but it will converge to a q̄′ that is
slightly different from q̄.

Remark. Once the desired load pose is decided and the value of tL is chosen, one can
compute the control input πA and send it to the robots. Afterwards, if tL > 0 the
robots will steer the load to the desired configuration preserving the stability and
without the need of sending data to each other. The cooperative task is performed
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exploiting the implicit communication through the forces that the robots exchange
and feel from the cables and the object.
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