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Chapter I. Introduction

This Chapter introduces the research that has been done in this thesis. The main work was undertaken at the Laboratory for Analysis and Architecture of Systems of National Center for Scientific Research (LAAS-CNRS), Toulouse, France with the funding from China Scholarship Council. This study was supervised by Dr. Didier EL BAZ in the Distributed Computing and Asynchronism team at LAAS DU CNRS and was cooperated with Prof. Shigeru FUJIMURA at Waseda University, Japan. The CDA team at LAAS DU CNRS focuses on scientific research results in the fields of high performance computing, parallel computing and distributed computing with application to combinatorial optimization and numerical simulation problems [1] while Prof.

Fujimura's research interests are on production management and production scheduling [2]. Therefore, this thesis was carried out in the background of solving shop job scheduling problems by parallel algorithms.

The shop scheduling problem is one of the best known combinatorial optimization problems. In this problem, a set of jobs needs to be scheduled on a set of machines under certain specific optimization criterions. According to the restrictions on the technological routes of the jobs, most of the job shop scheduling works' concern on the three basic types [3]: a flow-shop (each job is characterized by the same technological route), a job-shop (each job has a specific route) and an open-shop (no technological route is imposed on the jobs). Moreover, flexible shops also catch a lot of attention that is a combination of a shop scheduling problem and a parallel machine scheduling problem [4]. Nowadays, energy efficiency is becoming an essential parameter of industrial manufacturing processes, mostly due to new government legislation, customers' environmental concerns and continuously rising cost of energy. About one half of the world's total energy is currently consumed by the industrial sector [5] and its energy consumption has nearly doubled over the last 60 years [6]. Because of a growing economical competitive landscape and higher environmental norms, it is now vital for manufacturing companies to integrate energy efficiency when dealing with traditional shop scheduling problems. Dynamic optimization problems are problems in which changes occur over time [7]. Scheduling problems are dynamic in the real world with unexpected events after the start time. Dynamic scheduling problems are more complex than static scheduling problems. A lot of methods have been proposed to solve this kind of problems [8]. In the dynamic environment, generating adequate results in a reasonable response time is a key point that cannot be ignored. Due to the hardness, the time cost to obtain an adequate solution for shop scheduling problems is heavy.

Furthermore, few works have studied the dynamic scheduling problem with energy efficient demand. Thus, more efforts need be donated to solve energy efficient dynamic shop scheduling problems. Nonetheless we have to face the challenge that new integrated energy requirements in a dynamic environment lead to the complexity of the considered problem to be higher and ask longer execution time to get acceptable solutions.

The Genetic Algorithm (GA) is considered as one of the most efficient method to solve shop scheduling problems. It is a stochastic search algorithm based on the principle of natural selection and recombination [9] and has been successfully applied to solve many difficult optimization problems. However, there is an increase in the required time to find adequate solutions when GAs are applied to complex and large problems.

Particularly, repeated fitness function evaluation is often the most prohibitive and limiting segment when GAs are chosen to find an optimal solution for high-dimensional or multimodal implementations. As a consequence, efforts to make GAs faster are deeply demanded and parallel implementation is considered as one of the most promising choices. Generally, there are different ways of exploiting parallelism in GAs [10]: master-slave models, fine-grained models, island models, and hybrid models. The master-slave model is the only one that does not affect the behavior of the algorithm by distributing the evaluation of fitness function to slaves. The fine-grained model works with a large spatially population. The evolution operations are restricted to a small neighborhood with some interactions by overlap structure. The island model divides population into subpopulations. These subpopulations on independent islands are free to converge towards different sub-optima and a migration operator can help mix good features that emerge locally. The hybrid model combines any two of the above methods.

Lots of researches have been carried on parallel GAs to solve shop scheduling problems on different architectures whereas most of them concerned only the traditional case with schedule efficiency.

In the last decades, High Performance Computing (HPC) has become well-known.

Super computers and parallel processing techniques are used to solve complex computational issues. By leveraging both administration and parallel computational techniques, this technology's aim is to develop parallel processing algorithms and systems [11]. HPC systems give the ability to provide sustained performance through the concurrent use of computing resources. As a result, it is widely used for solving complex problems and performing research activities through computer modeling, simulation and analysis. The implementation on multi-core processors and many-core processors is one common way to use hardware efficiently for HPC applications. The multi-core CPU is a typical multi-core processor in which a single computing component is equipped with two or more independent processing cores. The instructions have no difference with ordinary CPU instructions, but multiple instructions can be run on separate cores simultaneously to increase overall speed. In theory, parallel implementations may achieve speedup near the number of cores in the best case. On the other hand, Graphics Processing Units (GPUs) are many-core processor devices providing a highly multi-threaded environment using the Single Instruction, Multiple Threads (SIMT) model. To achieve general-purpose parallel computation on GPUs, the Compute Unified Device Architecture (CUDA) [12] was developed in 2006. It is a framework that takes the maximum advantage of the lowlying hardware using an industry standard programming language [13]. These developments provide a nice point for exploring the parallel GAs. However, few studies have been conducted to integrate parallel computing in GAs to solve dynamic energy efficient scheduling problems, because of the complexity that is caused.

Overall, this thesis focuses on solving energy efficient dynamic shop scheduling problems with parallel GAs. Limiting the peak power is one of the main way when shop scheduling deals with energy efficiency, because electricity consumption and operating costs of manufacturing plants are usually charged based on the peak power demand from electricity providers [14]. Meanwhile, minimizing the total energy consumption within the traditional scheduling problem is an alternative solution as delaying production activities may not be acceptable in manufacturing. Regarding the dynamic scheduling, two strategies are generally used. The complete rescheduling regenerates a new schedule from scratch while the schedule repair refers to some local adjustment of the current schedule [8]. Furthermore, the rescheduling point also has a great influence on the results. If the schedule is executed until some fixed period begins, it is considered as the periodic policy. On the other hand, the event driven policy triggers the rescheduling once any unexpected event happens. In this thesis, two energy efficient dynamic shop scheduling problems are studied. According to the above-mentioned classification schemes, their features are marked as in Table 1. In order to solve the energy efficient shop scheduling problem efficiently and achieve a speedup to meet the short response in the dynamic environment, two parallel GAs are developed in this thesis. The first one is taken for solving Model I. It is a hybrid model consisting of an island GA at the upper level and a fine-grained GA at the lower level.

Since the fine-grained model obtains good population diversity when dealing with highdimensional variable spaces and the island model converges faster by subpopulations, this design combines metrics from two levels to gain competitive results. Meanwhile, the hybrid structure achieves the maximum speedup through its high consistence with the CUDA framework. The second one is implemented to Model II that is composed of a cellular GA and a pseudo GA. The 2D variable spaces of the cellular model and the complementary parent strategy of the pseudo model keep the population diversity while a penetration inspired migration policy shares information between them.

Furthermore, this heterogeneous structure can be well parallelized on GPUs simultaneously with multi-core CPU and enjoys parallel computing resources from two sides. The features of two parallel GAs are summarized as in Table 2. The rest of this thesis is organized as follows: Chapter 2 presents the state of the art with respect to the recent works on solving shop scheduling problems using parallel 

Chapter II. Related Works

II.1 Introduction

The shop scheduling problem is a classical optimization problem. One instance of the problem consists of a set of n jobs J 0 , J 1 , …, J j , ..., J n-1 and a set of o machines M 0 ,

M 1 , …, M m , …, M o-1 . Each job J i comprises a number of g stages S 0 , S 1 , …, S s , …, S g-1 .
The processing time of one step of job J i on a particular machine is denoted as an operation and is abbreviated by (j, s, m). Usually, its value is known as P jsm with the release time R j and the due time D j . Additionally, other required conditions are shown in Table 3.

Table 3 Other required conditions for shop scheduling problems

NO. Description 1

Each operation of a job must be processed by one and only one machine.

2

Each machine can process no more than one operation at a time.

3

Each job is available for processing after the release time.

4

Setup times for job processing and machine assignment times between stages are not taken into consideration.

5

There is infinite intermediate storage between machines.

When a feasible schedule is given, we can compute for each J j : the completion time C j , the tardiness T j = max{0, C j -D j }, and the unit penalty U j = 1 if C j > D j , otherwise 0.

The most common optimality criteria are the minimization of the makespan C max , the minimization of the sum of the weighted completion time ∑w ) C ) , the minimization of the sum of the weighted tardiness ∑w ) T ) , and the minimization of the sum of the weighted unit penalty ∑w ) U ) , or any combination among them.

There are three ways to classify the scheduling problem in manufacturing systems by the machine environment, the job characteristics and the optimization criterion [1].

However, three basic types: the flow-shop, the job-shop and the open-shop, have caught the most attestation. In a flow-shop, each job passes through the machines with the same order whereas a job-shop enables specified jobs have possibly different machine orderings. In an open-shop, there is no particular route imposed on jobs. Meanwhile, lots of works concern the combination of a shop scheduling and a parallel machine scheduling, in which at least one stage consists of several parallel machines [2]. The flexible flow shop and the flexible job shop are two types that are the most considered.

Most shop scheduling problems are known as strong NP-hard problems [3]. Many works to solve it by exact methods and meta-heuristic methods have been done.

However, this class of problems requires complex and time-consuming solution algorithms. Although the speed of the best supercomputer increases 10 times each 3 or 4 years, this increase has only a little influence on the size of solvable problems [4].

Therefore, efforts to coordinate algorithms with HPC accelerators to solve shop scheduling problems efficiently and effectively are deeply desirable. In this Chapter, works on solving shop scheduling problems using parallel GA are presented. It

showcases the most representative publications in this field by the categorization of parallel GAs and analyzes their designs based on the frameworks.

II.2 Genetic Algorithms with Scheduling Problems in

Manufacturing Systems

II.2.1 Simple Genetic Algorithms

A simple GA [5] starts with a randomly generated initial population consisting of a set of individuals. An individual is representated by a chromosome. For flow shop problems, a standard chromosome consists of a string of length n, and the i-th gene contains the index of the job at position i [2]. An individual describes a feasible schedule of jobs' sequence on target machines. For job shop problems, there are two ways of chromosome representation: direct way and indirect way. The direct way is similar with the way for flow shop problems: a feasible schedule is directly encoded into the chromosome, whereas the chromosome in the indirect way shows a sequence of dispatching rules for job assignment [6]. As no imposed technological routes of the jobs for open shop problems, both of the encoding approaches for the flow shop and the job shop can be applied in this case. The fitness value of each individual is used to evaluate the current population. It is related to the objective function value of shop scheduling problems at the point represented by a chromosome. Since most common optimality criteria of shop scheduling problems are about minimization. The fitness function FIT(i) of an individual i usually can be transferred as [2]:

FIT(i) = max (E 678 -F : (S : ), 0) (2.1)
where F : (S : ) denotes the objective function value of a feasible schedule from individual i and E 678 is the estimated maximum value of the objective function.

As the values of objective function for shop scheduling problems are generally positive, some papers measure the fitness function FIT(i) as:

FIT i = 1 F : (S : ) (2.2)
Figure 1 An example of the roulette wheel selection fitness values are more likely to be selected. Some well-known methods are implemented in this step: the roulette wheel selection [7] (see Figure 1), the stochastic universal sampling [8] (see Figure 2), the tournament selection [9] (see Figure 3) and so on [10]. Next, the crossover takes two random individuals kept after selection and exchanges random sub-chromosomes. The classic methods are the n-point crossover [2] (see Figure 4) and the uniform crossover [2] (see Figure 5). Due to particular requirements of different shop scheduling problems, additional steps may be required to repair the illegal offspring caused by the crossover. The mutation then alters some random value within a chromosome. Different from the binary encoding, the mutation for shop scheduling problems works often based on the neighborhoods e.g. shift mutation (insertion neighborhood) [2] (see Figure 6) or pairwise interchange mutation (swap neighborhood) [2] (see Figure 7) to respect feasible solutions. Population evaluation is executed after these three steps. Sometimes, an elitist strategy is hired afterwards to keep limited number of individuals with the best fitness values to the next generation. This process repeats until the termination criteria have been satisfied. The full procedure is stated in Table 4. 

II.2.2 Master-Slave Genetic Algorithms

The master-slave GA is known as global parallel GA as well. It keeps a single population as a simple GA that is stored at the master side. In this case, each individual is free to compete and mate with any other. Since the fitness value calculations of individuals are independent without any communication with others, the slaves take care of fitness evaluation in parallel. Data exchange occurs only when sending and receiving tasks between the master and slaves. Obviously, frequent communication overhead offsets some performance gains from slaves' computing. However, as masterslave GA is the easiest parallel model to be implemented and does not assume underlying architecture, it is still very efficient when the evaluation is complex and requires considerable computation. The structure [11] and the steps of this parallel model are presented in Figure 8 and Table 5 respectively.

Figure 8 The scheme of master-slave GA 

II.2.2.1 Job Shop Scheduling Problems

AitZai et al. modeled the job shop scheduling problem with blocking using the alternative graph with conjunctive arcs and alternative arcs in [12]. In addition to a parallel branch and bound method, two master-slave GA parallelization methods were also presented. The first one was based on CPU networking with a star network of interconnected computers. On the opposite, the second one worked on GPU with some memory management respecting to CUDA framework. Numerical tests were carried on a station equipped with CPU ×2: Intel Xeon E5620 and GPU: NVIDIA Quadro 2000 01 Go GPU. With a population size 1056 and a limited total execution time 300s, the master-slave GA using GPU could get maximum 15 times more explored solutions than the GA using CPU. Moreover, a related earlier work was introduced by AitZai in [13].

In order to improve the solution of job shop scheduling problems, Somani et al. [14] imposed a topological sorting step to the GA before the fitness value calculation, which was used to generate the topological sequences of directed acyclic graph. The parallel implementation of the proposed GA in CUDA environment consisted of two kernels.

The former one was used for making the topological sequences by the help of topological sorting, while the later one was hired to calculate the makespan from the longest path algorithm. The crossover and the mutation were performed between two randomly selected schedules on CPU. Experiments was setup with Intel(R) Xeon(R) E5-2650 @ 2.00 GHz and NVIDA Tesla C2075 (448 cores) and results have shown the proposed GA performed around 9 times faster for large-scale problems than the sequential GA.

Another job shop scheduling problem was studied by Mui et al. [15] where a prior-rule was used to create active schedules. The selection combined the idea of an elitist strategy and a roulette wheel selection, whereas the crossover took a GT algorithm implemented on three parents and the mutation used neighborhood searching technique.

With this design, the main part of the GA could be computed independently. In the parallel environment, a master-slave model was employed where the slaves performed the GA evolutionary operators concurrently and the master searched the global optimum among optimal results received from slaves. The proposed method was run on the CSS computer server system with 6 computers, in which each computer had a Pentium-4 CPU with 4GB free of ram. Empirical results have shown the master-slave GA with 6 processors could save 3 to 4 times the execution time compared to the sequential version.

II.2.2.2 Flow Shop Scheduling Problems

A master-slave GA dealing with a single population and a group of local subpopulations was presented in [16] for a flow shop problem. This method involved a master scheduler and a set of slave processors. The master scheduler ran the GA operators (partial replacement selection, cycle crossover and swapping mutation) of all individuals sequentially. When the evolution of one individual was finished, it was placed in the unassigned queue from which the master scheduler partitioned the fitness value calculation to slave processors in batches. The choice of candidate slave processors was made upon the involved communication overhead and their computational potential. The available resources among slave processors in the distributed system could vary over time. Moreover, all individuals were maintained in the master scheduler synchronously. The proposed GA was implemented on a laptop with Prentium IV core 2 Duo 2.53 GHz CPU. The outputs showed the new algorithm could be 9 times faster maximally than the results of serial GA achieved by the Lingo 8 software.

Attentions to use master-slave GA to shop scheduling problems have been increased in the last decade and the work is carried with various underlying architectures. Since only independent tasks are executed on slaves without communication cost among them, both the conventional GA and any improved GAs can be implemented with it easily.

Although the communication between the master and the slaves is an impediment in speed, it still performs well to solve shop scheduling problems whose fitness value calculation is complex and requires considerable computation.

II.2.3 Fine-grained Genetic Algorithms

The fine-grained GA can also be called as neighborhood GA, diffusion GA or massively parallel GA. The main idea is to map individuals of a single GA population on a spatial structure. An individual is limited to compete and mate with its neighbors, while the neighborhoods overlapping makes good solutions disseminate through the entire population. This model obtains good population diversity when dealing with high-dimensional variable spaces [17]. Meanwhile, it is easy to be placed in any 2D grid, as many massively parallel architectures are designed with this topology. However, we cannot neglect the great influence from the spatial structure, which generally has little chance to be modified. The scheme [11] and the implemented process of the finegrained GA are shown in Figure 9 and Table 6 separately.

Figure 9 The scheme of fine-grained GA 

II.2.3.1 Job Shop Scheduling Problems

A fine-grained GA solving job shop scheduling problems was considered by Tamaki et al. [18]. In this paper, the selection was executed locally in a neighborhood of each population. The objectives of this neighborhood model were to improve search in the GA by suppressing favorably the premature convergence phenomena, and to reduce computational time by implementing it on a parallel computer at the same time. The method was then modified as an absolute neighborhood model and implemented on

Transputer. Transputer was a MIMD (Multi-Instruction Multi-Data) machine with microprocessors, featuring integrated memory and serial communication links.

Through several computational experiments for job shop scheduling problems, the parallel GA with 16 processors could shorten the calculation time dramatically.

However, as Transputer did not equip with shared memory, the data exchange was handled through communication operations. Therefore, the calculation time reduction was not able to reach an ideal level. Lin et al. [19] investigated parallel GAs on job shop scheduling problems with a direct solution representation, which encoded the operation starting times. The GA operators were inspired by the G&T algorithm with the random selection, the THX (time horizon exchange) crossover and the THX mutation. Two hybrid models built up by the fine-grained GA with a 2D torus topology and the island GA connected in a ring were discussed in this paper. The first one was an embedding of the fine-grained GA into the island GA, in which each subpopulation on the ring was a torus. The migration on the ring was much less frequent than within the torus. In the second model, the connection topology used in the island GA was one which is typically found in the fine-grained GA and a relatively large number of nodes were used. The migration frequency kept the same in the island GA. Those two methods were carried on a Sun Ultra 1 which was a family of Sun Microsystems workstations based on the 64-bit Ultra SPARC microprocessor with a single population GA, two island GAs of different subpopulation sizes and one torus fine-grained GA. The execution time comparison was only made between the single population GA and two island GAs with the speedup of 4.7 and 18.5 respectively. Regarding to solutions' quality, best results were obtained by the hybrid model consisting of island GAs connected in a fine-grained GA style topology by combing the merits from them.

Compared with other two kinds of parallel GA, it seems the implementation of finegrained GA for shop scheduling problems is rare and outdated, no matter the amount of related papers or the various types of treated problems. Along the development of modern computing accelerators with 2D grid environment, like GPU, this implementation has a lot of potential in the near future. Apart form manufacturing systems, the fine-grained GA is also used for task scheduling problems [20]. It is another type of scheduling problems that focuses on minimizing the makespan as well but for a set of tasks to be executed in multiprocessor systems. In this domain, the finegrained model is treated sometimes as parallel cellular GA [21].

II.2.4 Island Genetic Algorithms

The island model is the most famous for the research on parallel GAs. In some papers, it may be called as coarse-grained models, multi-deme models, multi-population models, migration models or distributed models. Unlike previous parallel GAs, this model divides the population into a few relatively large subpopulations. Each of them works as an island and is free to converge towards its own sub-optima. At some points, a migration operator is utilized to exchange individuals among islands. These configurations make the average population fitness improve faster and mix good local feature efficiently [11]. The main idea of this parallelization is a simple extension of the serial GA while the island model based underlying architecture is easily available.

Therefore, the island GA dominates the work on parallel GAs for shop scheduling problems. A sketch [11] and a brief outline about this algorithm are illustrated in Figure 10 and Table 7 distinctly.

Figure 10 The scheme of island GA 

II.2.4.2 Flow Shop Scheduling Problems

Huang et al. [26] discussed flow shop scheduling problems with fuzzy processing times and fuzzy due dates, where the possibility and necessity measures with exact formulas were adopted to maximize the earliness and tardiness simultaneously. A modified GA was designed to solve the problems with the random keys, the parameterized uniform crossover and the immigration. If Pt was the family of chromosomes in the t-th generation, then |Pt| denoted the population size of Pt. The next generation was made of a% best chromosomes from Pt, b% chromosomes for taking crossovers, and c% chromosomes generated randomly as immigrations, where a+b+c=100. In order to get more efficient convergence, an idea of the longest common substring and rearranging of the chromosomes chosen in the mating pool were also imposed in the algorithm. The full procedure was coded with CUDA by separating the whole population into blocks using the block size of 256 or 128. Circumventing to load the random keys of all chromosomes to global memory, one chromosome was distributed to a block so that all random keys could fit in the shared memory. Although there was no migration among blocks, the idea was organized based on the island GA. In the case of 200 jobs, the numerical simulations on a 2.33 GHz Intel Core2 Quad desktop computer with 2 GB of RAM, and an NVIDIA GeForce GTX285 graphics card showed that the proposed GA combining with CUDA parallel computation got 19 times speedup. Similarly, Zajicek et al. [START_REF] Zajıcek | Accelerating a Flow Shop Scheduling Algorithm on the GPU[END_REF] proposed a homogeneous parallel GA model on the CUDA architecture, where all computations were carried out on the GPU in order to reduce communication between CPU and GPU. The main idea was based on an island GA with a tournament selection, an arithmetic crossover and a Gaussian mutation.

Experiments were carried on a system with AMD Phenom II X4 MHz under the Solaris 7 operating system, which is a MIMD machine of processors without shared memory. Four crossover operators and four mutation operators were considered as GA operators. The efficiency of the island GA was activated with the combination of three strategies: with the same or different start subpopulations, as independent or cooperative search islands and with the same or different genetic operators. Results turned out the strategy of starting the computation from different subpopulations on every processor with different crossover operators and cooperation was significantly better than others. The improvement of the distance to reference solutions and the improvement of the standard deviation were at the level of 7% and 40% respectively, comparing to the sequential GA. A related work by the same team to minimize the total weighted completion time for the flow shop problem with a special case of a single machine was solved by a similar island GA in [29]. The results noted the 8-processors implementation performed the best.

II.2.4.3 Open Shop Scheduling Problems

Kokosinski et al. [START_REF] Kokosiński | Hybrid genetic algorithms for the openshop scheduling problem[END_REF] studied an open shop scheduling problem and two greedy heuristics, LPT-Task and LPT-Machine, were proposed for decoding chromosomes represented by permutations with repetitions. The GA operators constituted a 2elements tournament selection, a linear order crossover and a swap mutation or an invert mutation with constant or variable mutation probabilities. An island GA with a migration strategy was applied to the parallel version in which every island sent its best emigrants to all other islands and received immigrants from them. Incoming individuals replaced the chromosomes of host subpopulation randomly. The experimental platform was a PC with Pentium 4 processor (3.06 GHz) and 1 GB RAM. Unfortunately, this parallelization did not reveal obvious advantages in the results. A non-preemptive open shop scheduling problem was discussed by Harmanani et al [START_REF] Harmanani | A parallel genetic algorithm for the open-shop scheduling problem using deterministic and random moves[END_REF]. Except a feasible solution, a chromosome in this paper included a scratch area through which a

ReduceGap operation communicated to GA operators: the crossover and the mutation.

A hybrid island GA was hired to organize the parallelization where neighboring islands shared their best chromosomes every G N generation and all islands broadcasted their best chromosome to all other islands every L N generations, where G N L N. Islands were connected through an Ethernet network and used the Message Passing Interface (MPI) on a Beowulf cluster. The experiments were executed on a cluster of five machines that were running Linux and MPI. The outputs presented that the proposed method converged to a good solution quickly before it saturated with a speedup between 2.28 and 2.89 for large instances. A similar work was carried by Ghosn et al.

in [START_REF] Ghosn | A parallel genetic algorithm for the open-shop scheduling problem using deterministic and random moves[END_REF] later.

Regarding to solve shop scheduling problems by the island GA, various researches have been done with different architectures. We can discover that the works with GPU pay heavier attention on speedup gained from the island GA. On the opposite, the others consider more the improvement for solutions quality and convergence speed. Few implementations have discussed them simultaneously with a fair comparison. Besides, the island connection topology is varied from different papers with different migration strategies. Some of the designs are carried with respect to the underlying architectures, whereas the others are proposed from supporting theories. However, a completely understanding for the effects of migration is still missing as far our knowledge is concerned.

II.2.4.4 Flexible Shop Scheduling Problems

Defersha et al. [START_REF] Defersha | A coarse-grain parallel genetic algorithm for flexible job-shop scheduling with lot streaming[END_REF] considered an island GA for a flexible job shop scheduling problem with lot streaming. In this case, the batch of each job was split into certain number of unequal consistent sublots. Each sublot of a job underwent a number of operations in a fixed sequence where each operation could be processed by one of several eligible machines. Three commonly used migration topologies: ring, mesh and fully connected were discussed in this paper with a k-way tournament selection, five kinds of crossover and six kinds of mutation applied by different probabilities. A parallel computation environment was composed more than 250 interconnected workstations each having an 8-core Intel Xeon 2.8GHz processor was used for experiments. Test problems were run using up to 48 cores and taking MPI for communication. With all problems considered, there were makespan reductions through the island GA. Meanwhile, empirical studies presented the impact from its different parameters. Regarding to topologies, the fully connected one outperformed other two. Three migration policies: random-replacerandom, best-replace-random and best-replace-worst were tested. Results showed the island GA was not much sensitive to the change of migration policy while the bestreplace-random migration policy performed slightly better. The same authors built a mathematical model for a flexible job shop scheduling problem incorporating sequence-dependent setup time, attached or detached setup time, machine release dates, and time lag requirements in [START_REF] Defersha | A parallel genetic algorithm for a flexible job-shop scheduling problem with sequence dependent setups[END_REF]. Like the previous work, the GA operators constituted a k-way tournament selection, three assignment operators and two sequencing operators applied by different probabilities. However, islands were connected with a randomly topology which employed randomly generated migration routes for each communication epoch. The method was tested on a similar experimental platform.

Results of medium size problems showed the island GA helped improve the solutions quality and it converged to a better solution within the allowable computational time for large size problems where the single GA failed.

An island GA for flexible flow shop scheduling problems was addressed by Belkadi et al. [START_REF] Belkadi | Parallel genetic algorithms with migration for the hybrid flow shop scheduling problem[END_REF] where genome constituted one assignment chromosome and a sequencing chromosome. The GA was implemented on a biprocessor architecture with a roulette wheel selection, a uniform crossover and a mutation similar to the crossover but operated only on the sequencing scheduling chromosomes. Four combinations from two island connected typologies (ring and grid with two dimensions) and two replacement strategies (best and random) were tested. The results noted those two parameters did not have significant influence in the variation of makespan. Regarding to the subpopulation size and its related subpopulation amount, the quality of the solution decreased progressively at the same time as the number of subpopulations increased based on the experiments. However, when the complexity of the problem rose up, this influence reduced. Finally, outputs stated the migration interval was the parameter that had the decision influence to the island GA where the quality of the solution improved gradually with increasing migration frequency. A comparison between the island GA and the sequential GA was also carried in this paper. According to empirical results, the island GA always obtained a smaller makespan while its performance of execution time was only discussed with theoretical values based on two processors. Rashidi et al. [START_REF] Rashidi | An improved hybrid multiobjective parallel genetic algorithm for hybrid flow shop scheduling with unrelated parallel machines[END_REF] studied flexible flow shop scheduling problems with unrelated parallel machines, sequence-dependent setup times and processor blocking to minimize the makespan and the maximum tardiness. Different weights were assigned to two criteria to transform the problem into a single-objective function. The individuals inside one island sought for their own single-objective function, and all islands worked in parallel for Pareto optimal solutions. The paired weights in different islands are different with a small deviation between each successive pairs. After executing the conventional GA operators, a local search step or a Redirect procedure were implemented to further cover the Pareto solutions. A comparison was carried between the island GA without or with a local search step and a Redirect procedure where the later one indicated better performance.

As a combination of a shop scheduling problem and a parallel machine scheduling problem, the complexity of flexible shop scheduling problems is increased. According to previous work, the implementation of parallel GAs for this kind of specific problems is only referred by the island GA. In addition to design the algorithm, some papers have considered the influence from the migration by the connection topology, the migration rate, the migration interval and the migration strategy. A good cooperation of these parameters could decentralize the searching space and enlarge the diversity level to make a GA have better performance while enjoying a speedup from computing accelerations. However, current implementations are still limited. Most of the works address only the improvement to solutions quality. Experimental results to analyze the speedup gained from the island GA are not sufficient. As the increased complexity will lead to longer execution time, it is interesting to consider GPU to solve related problems whose native topology is suitable for the island GA with thousands parallel computing threads.

II.3 Design of HPC Frameworks-Based Genetic Algorithms for Shop Scheduling Problems

The preliminary work of parallel GAs for shop scheduling problems is implemented by fine-grained models on distributed memory machines. Although the results are outdated, impressive reduction for the execution time has been achieved. As the fine-grained GA is easy to be placed on a spatial structure, to coordinate this design with some modern HPC accelerators with 2D grid architecture, such as CUDA, is supposed to optimize its performance. Moreover, with new requirements from manufacturing systems in the real life, the complexity of shop scheduling problems is increasing. The 2D grid topology could organize a greater amount of threads to work in parallel, which is more efficient to help find optimal results of strong NP hard problems with large instances. The other problems from the operations research family solved in this way [START_REF] Boyer | Recent advances on GPU computing in operations research[END_REF][START_REF] Boyer | GPU Computing Applied to Linear and Mixed Integer Programming[END_REF] could be persuasive evidences.

The MIMD machine also works with the island GA at the earlier stage. Soon, it is improved to a parallel computation environment or a computer cluster equipped with multiple processors or multi-core processors. The commonly used parallel processing library MPI is generally chosen for information sharing through the migration.

Meanwhile, GPU is involved with its special memory management to work with this design. As there is no strict underlying architecture limitation to implement the island GA when dealing with shop scheduling problems, the islands connected topology is varied. According to the collected papers, the ring topology is used most frequently.

But it is hard to judge which topology performs the best. Besides, the cooperated influence between islands connected topology and other migration parameters cannot be neglected. Fortunately, the average results confirm the implementations of island GAs for shop scheduling problems are able to improve solutions quality and gain a speedup with reasonable migration design. As this model dominates not only the work on parallel GAs for shop scheduling problems but also parallel GAs for other applications, it still has a lot of potential in the future with the popularity of computing nodes providing multiple processors or multi-core processors.

Since the master slave GA does not assume underlying computer architecture, any parallel computing environment has the chance to use this design without worrying about sharing information. The most time consuming part for GAs to shop scheduling problems is the fitness value calculation that requires even much longer execution time with large problems. Therefore, GPU equipped with much more parallel threads is considered to have better performance among several choices.

II.4 Conclusion

As one kind of important problem in combinatorial optimization, applying parallel GAs for solving shop scheduling problems have caught heavy attention since last few decades. This Chapter addressed some of the most representative publications in this domain and the reviews were classified by the most common parallel GA categories: master-slave models, fine-grained models and island models. An independent section for hybrid models combining two of the above methods was not set, as the related work was few. These we have considered in this Chapter were assigned to one of the three basic models according to their main designs. Most works of parallel GAs to search optimal results for scheduling problems in manufacturing systems are currently managed by the island GA. However, the future of implementing the other two parallel models to this field is promising as well by the development of modern computing accelerators with more parallel threads.

Chapter III. Two Efficient New Parallel

Genetic Algorithms

III.1 Introduction

According to related works, there are different ways of exploiting parallelism in GAs [1]: master-slave models, fine-grained models, island models, and hybrid models. The master-slave model is the only one that does not affect the behavior of the algorithm by distributing the evaluation of fitness function to slaves. The fine-grained model works with a large spatially population. The evolution operations are restricted to a small neighborhood with some interactions by overlap structure. The island model divides population into subpopulations. These subpopulations on independent islands are free to converge towards different sub-optima and a migration operator can help mix good features that emerge locally. The hybrid model combines any two of the above methods.

Despite the fact that the island model dominates the work on parallel GAs, it is hard to conclude that the island GA overcomes other models since the comparison cannot be made in absolute terms.

As far as solving shop scheduling problems by parallel GAs, we could find two drawbacks from the former works. Firstly, few implementations have considered the execution time reduction and the solutions' quality improvement simultaneously with a fair comparison. Particularly, the GPU-based parallel GA is usually used to gain the maximum possible speedup while compromising with the solutions' quality. Regarding as the most frequent used GPUs architecture, the previous discussed parallel GAs on CUDA also have not conquered this problem when they were chosen for solving shop scheduling problems. Second, island GAs generally have a high risk to lose the population diversity due to the same genetic operator configurations and the limited sub-population sizes. Despite some promising results from leveraging computational capabilities of a cluster to improve its performance, these methods must face some common challenges such as lost connections, low bandwidth, abandoned work, security and privacy [2]. Meanwhile, it is hard to control its performance with multiple migration parameters. Thus, proposing a method to optimize the performance of island GA with a better population diversity and less time requirement in a stable and secure parallel environment is represented as a not fully resolved topic.

Therefore, designing a parallel GA that is highly consistent with the CUDA framework while balancing conflicts between the solutions' quality and the execution time remains an open research challenge. Similarly, crafting a heterogeneous island model that is well suited for parallelizalizing inside or between GPUs and multi-core CPU is considered as an efficient way to overcome the shortages of island GAs and is extremely desired. In this Chapter, we seek to address two efficient new parallel GAs and their application to flexible flow shop scheduling problems (FFSP). The parallel GA I is a CUDA-based hybrid model consisting of an island GA at the upper level and a fine-grained GA at the lower level. It combines metrics of two hierarchical layers and takes full advantage of CUDA's compute ability. The parallel GA II is a dual heterogeneous design composed of a cellular GA and a pseudo GA. The islands with these two different structures increase the population diversity and can be well parallelized on GPUs simultaneously with multi-core CPU.

III.2 Problem Definition

For an easy presentation, we summarize the notations used along the rest of this Chapter in Table 8. to go through all stages in the same order before they are completed. On each stage, one machine is selected for processing a given operation. There is no precedence between operations of different jobs, but there is precedence among operations due to the jobs' processing cycles. Preemptive operations are not allowed. A feasible solution of the FFSP is described by jobs' sequence on target machines. Furthermore, the formulation is given as follows.

Objective function:

min: WT * T ) + C 678 )∈_ (3.1) 
Constraints: where E 678 is the estimated maximum value of the objective function.

T ) = max(S )`+ P )`a bc -D ) , 0) j ∈ J (3.2) C 678 = max ) (S )`+ P )`a bc ) j ∈ J (3.3) S )d ≥ R ) j ∈ J (3.

III.3 A CUDA-Based Hybrid Genetic Algorithm

III.3.1 Hybrid Model

To achieve general-purpose parallel computing on GPUs, the Compute Unified Device Architecture (CUDA) [4] was developed in 2006. It is a framework that takes the maximum advantage of the low-lying hardware using an industry standard programming language [5]. The parallel threads of CUDA are grouped into blocks that are organized in a grid as shown in Figure 12. The hierarchisation of threads is related to the memory hierarchy. There are three distinct levels of memory and their features are stated as follows [6].

l Global memory: As the largest memory of CUDA, it is accessible to all threads, but exhibits the highest latency.

l Shared memory: It enables threads only within a block whose access is much faster than the global memory.

l Local memory: It presents the lowest latency whereas it is only available to one thread with few KB of storage.

Figure 12 The hierarchy of threads and different types of memory of CUDA With respect to the CUDA framework, our parallel GA consists of two levels, a finegrained GA at the lower level and an island GA at the upper level, as presented in Figure 13. There is a correspondence between the hybrid parallel GA components and the hierarchy of CUDA threads and the details are displayed in Table 9. At the lower level, l At the upper level, the island model increases the convergence speed by subpopulations as the long-held principle in Population Genetics: favorable traits spread faster when the demes are small than when the demes are large [1]. An appropriate island size with a proper migration interval is able to optimize this performance.

l CUDA is built up with the 2D grid environment that matches perfectly the structure of the fine-grained GA. Thousands of CUDA threads are powerful to deal with large size individuals concurrently without increasing the time complexity.

Meanwhile, GA operators are carried out using the fastest local memory.

l As CUDA threads are grouped into blocks, they are compatible to the mechanism of the island GA that divides the population into a few relatively large subpopulations. Isolated GA islands can work on CUDA blocks in parallel by the shared memory while some information sharing are executed through the global memory.

III.3.2 Genetic Algorithm Operators

l Selection: Because the 2D grid is adopted as the spatial population structure where each grid point contains one individual, the conventional selection operation is modified to suit the neighborhood configuration as in Figure 15. The selection area is defined with a certain diameter where the target individual is placed at the center of a grid. Among individuals within the selection area, the tournament selection is used where the individual with the best fitness value is selected to replace the target one.

Figure 15 The selection operation of hybrid GA l Crossover: We pair individuals with neighbors (See Figure 16) rather than selecting two from population randomly. This strategy does not require global information sharing and is appreciated to work on the 2D grid architecture.

Meanwhile, a risk that the GA converges to the local minima can be eliminated by its cooperation with the selection. Afterwards, a single point crossover is executed if a specified crossover probability is satisfied. Figure 17 The single ring migration among islands

III.3.3 Numerical Experiments

To analyze the performance of parallel GA I, we consider several instances and all instances are characterized by 50 jobs with 4 stages and 3 available machines at each stage. The crossover rate and the mutation rate are set as 0.9 and 0.1, respectively.

Other experimental relative data are defined in 

III.3.3.1 Controlling Parameters Sensitive Analysis Test

As the maximum threads amount per block on CUDA is 1024. We keep the population size as 1024 (32×32). There are three controlling parameters in this proposed method: Figure 18 The sensitive analysis on controlling parameters

The island size keeps increasing from the second sub-graph to the sixth. It shows that the small selection diameter generally leads to an early convergence, whereas there is not much improvement after it reaches a medium size. Meanwhile, this influence is more distinct when the island size is larger. As larger selection area requires larger memory, we suggest a medium size diameter value for implementations. For the following two tests, we keep its value as 9. The last two sub-graphs display the influence of the island size. As a result, a relatively larger island size makes the performance better. This trend is more obvious with groups of medium and large size selection diameters. Since the maximum threads amount per block on CUDA is 1024, the best performance is achieved by an island size 32×32. Moreover, there is no significant change when the migration interval is increased. Due to the additional cost caused by migration, it is advised not to have small migration intervals.

III.3.3.2 Comparison Test on Solution Quality

The simple GA is taken as a comparison to check the performance of parallel GA I. As the roulette wheel selection is the most frequently used selection strategy [8], we take it for the simple GA while the single point crossover is executed with randomly paired individuals. Meanwhile, the mutation operation is kept the same as the CUDA-based parallel GA. The convergence trends of the average result and the best result obtained from them are displayed in Figure 19.

Figure 19 The solution quality comparison between the parallel GA I and the simple GA Fine-grained models obtain good population diversity when dealing with highdimensional variable spaces [7] and island models converge faster by subpopulations [1]. By combining the merits from them, we could find the parallel GA on CUDA always gains better performance with the average value and the best value of the objective function than the simple GA.

III.3.3.3 Comparison Test on Execution Time

For fair comparison, we do not only use the single CPU, but also take the multi-core CPU to contrast the execution time with GPUs for implementations of the simple GA, the master-slave GA and the proposed parallel GA I separately. The multi-core CPU code is run by OpenMP [9] that is an application programming interface (API)

supporting multi-platform shared memory multiprocessing programming. Different implementations used to obtain the execution time are noted in Table 11. The speedups of the parallel GA I to the compared GAs are displayed as in Figure 20.

Since parallel implementation is one of the most promising options to accelerate GAs, parallel GAs always work faster than serial GAs. Although, the proposed hybrid GA on CUDA does not win against other parallel algorithms with the small size population, the performance has been improved dramatically by increasing this latter parameter.

Moreover, we expect that it can achieve further acceleration for more complicated problems. Moreover, the selection and the elitist strategy in GAs decrease the sub-population diversity in one island after several generations. Although the crossover and the mutation can help create new individuals, the influence is restricted. At this moment, a migration from heterogeneous sub-populations can increase the local diversity and has a chance to produce better genes by working with GA operators. Thus, we propose a heterogeneous island strategy as in Figure 21 where the internal structures and the GA operations of each island are different.

Figure 21 The dual heterogeneous island GA model Figure 22 The procedure of dual heterogeneous island GA

The algorithm structures and the interaction between them are shown in Figure 22. At the software level, we can consider three sublevels according to the source of the heterogeneity [10].

l Operator level: There are two islands with the same amount of individuals where island A works with the cellular GA [11] and island B works the pseudo GA [12].

The cellular GA starts with random initialization and maps individuals on a twodimensional grid. An individual is limited to compete and mate with its neighbors, while the neighborhoods overlapping makes good solutions disseminate through the entire population. This design allows a better exploration of the search space with respect to decentralization. The pseudo GA initializes every pair of parents with complementary chromosomes. The crossover is executed between the offspring from the same parents, during which the parents are completely replaced by their own children. In this case, search ability is enhanced since higher population diversity is got without gene lost.

l Genotype level: The chromosome is modified to have two layers in this case. The upper layer is designed for the cellular GA and keeps the same structure as in Chapter III.2 Problem Definition where the p-th gene is displayed by an integer number. On the other hand, the p-th gene is expressed by binary numbers to work with the dynamic complementary initialization strategy [12] (See Table 12) of the pseudo GA at the lower layer. 

III.4.2 Penetration Migration Policy

The performance of migration between islands is controlled by the topology, the rate, the interval and the strategy. In order to decrease the amount of parameters need to be set manually, we develop a migration polity inspired by the penetration theory. The penetration theory [13] (See Figure 23) takes into account, the molar concentration, the temperature and the cubage of a liquor. It assumes that in mixing two kinds of liquor with the same temperature and cubage but with different molar concentration, the liquor with the smaller concentration will move to the one with a bigger concentration value.

Figure 23 An example of the penetration model Following the penetration theory, a migration threshold value θ is set (0 ≤ θ ≤ 1).

The execution of migration is decided by this value and there is more likely for individuals to migrate when θ = 1. Moreover, the migration rate α and the migration direction indicator β are formulated as in equation (3.8) and equation (3.9), respectively:

α = 1 -β 1 -β < θ 0 1 -β ≥ θ (3.8) β = fit Z fit [ fit Z < fit [ fit [ fit Z fit Z > fit [ (3.9) 
Here, fit Z and fit [ are the best individual's fitness value of sub-population A on island A and sub-population B on island B. In a certain generation, we calculate the above functions and carry out three steps as follows: With this design, the migration policy needs no longer to fix the topology, the rate, the interval and the strategy manually. New merged individuals with good genes can be transited fast and the execution time is saved by preventing ineffective information sharing.

l If 1 -β < θ,

III.4.3 Parallelization on GPUs and multi-core CPU

As far as the hardware level, there are two obvious benefits to parallelize the dual heterogeneous island GA in GPUs and multi-core CPU environment:

l Widespread HPC resources: Nowadays, almost all modern computers are equipped with GPUs and multi-cores CPUs. The coordination between them is through their inner connection which is stable and secure. With the development of CUDA, it is convenient to use enabled GPUs for general purpose processing.

On the other hand, concurrency platforms allowing coordination of multicore resources facilitate programming on multi-core CPUs. Moreover, in addition to the parallelization on multi-core CPU or GPUs at the lower level, the multi-core CPU and the GPUs can work concurrently at the higher level to maximally use computing resources.

l High consistency with the proposed GA: The cellular GA maps individuals on a two-dimensional grid, it can be entirely parallelized on GPUs. On the other hand, only the crossover, the fitness evaluation and the replacement are kept in the pseudo GA. The crossover is performed between fixed complementary parents.

The fitness evaluations of individuals are independent. Since no global information is required, all for loops in the above two steps can be easily handled on multi-core CPU in parallel.

As texture catches of CUDA are designed to gain an increase in performance accelerating access patterns with spatial locality [14], we design the neighborhood area of the cellular GA as shown in Figure 24. Individuals' information and GA operators are placed and executed through the global memory while the neighbors' information are stored in the texture memory. Each CUDA thread handles one cellule of the cellular GA. It firstly recombines two individuals selected from the neighborhood area to generate a new one. Afterwards, this new individual undertakes the mutation as designed in parallel GA I and replaces the original individual if its solution is better.

Finally, individuals are sorted according to their fitness values using the Bitonic-Merge sort [15] (See Figure 25), if the cellular GA meets the island termination criterion but not the final termination criterion.

Figure 24 The neighborhood area of cellular GA With the two layers encoding, the target machine index is presented by binary numbers at the lower level that is compatible with the dynamic-complementary initialization strategy [12]. When the GPUs are occupied by executing the cellular GA, the pseudo GA is run on multi-core CPU by OpenMP. In this case, the GA operators on two heterogeneous islands are working in parallel on the host (multi-core CPU) and the device (GPUs) simultaneously. At the end, the Bitonic-Merge sort [14] is accomplished by the OpenMP-based code in a similar way as the cellular GA on CUDA.

III.4.4 Numerical Experiments

To analyze the performance of parallel GA II, we compare its solutions' quality and execution time with the cellular GA and the pseudo GA. The population size is kept as 512 for all tested GAs while the sub-population size for each island of heterogeneous GA is 256. The crossover rate and the mutation rate of cellular GA are set as 1.00 and 0.05 respectively [11], while the crossover rate of pseudo GA is equal 0.75 [12]. The cellular GA from the dual heterogeneous GA keeps the same crossover rate and mutation rate as the cellular GA. Similarly, the pseudo GA from the dual heterogeneous GA keeps the same crossover rate as the pseudo GA. Moreover, to check the influence of migration, the migration threshold is fixed as 

III.4.4.1 Migration Check Interval Test

Even the topology, the rate, the interval and the strategy are set adaptively when the migration policy is carried in a certain generation. We still need to test when to execute it since the migration policy needs call back results on GPUs and too frequent data exchange between the device and the host may weaken the performance of the proposed method. As it is displayed in Figure 26, the migration policy execution gap is increased from 10 generations to 800 generations and the island GA has a risk to fall in a local optimum if this value is either too small or too big. As a result, it finds that an inappropriate migration can also lead onto premature convergence, besides homogeneous genetic operator configurations and limited subpopulation sizes.

Following the polynomial fitting values, the best performance for the tested instance is obtained when the migration policy execution gap is around 500 generations and we keep this setting for the remaining tests.

Figure 26 The influence of the migration policy execution gap for the heterogeneous GA

III.4.4.2 Comparison Test on Solution Quality

The solutions' quality of different GAs are shown in Table 13. Although the specific designs of cellular GA and the pseudo GA can help increase population diversity, the proposed method combines the merits from both and optimizes the performance by independent evolution and penetration migration. Thus, the heterogeneous GA overcomes them with better solutions and less variance. This effect is also confirmed by the convergence trend among three GAs in Figure 27. Moreover, there are elbows in the convergence curve of the designed approach and they always appear around the generations where the migration policy is executed. This phenomenon witnesses the process of how the premature convergence is avoided thanks to two heterogeneous islands connected by the penetration migration. 

Introduction

About one half of the world's total energy is currently consumed by the industrial sector [1] and its energy consumption has nearly doubled over the last 60 years [2]. Thus energy efficiency is becoming an essential parameter of industrial manufacturing processes, mostly due to new government legislation, customers' environmental concerns and continuously rising cost of energy. Because of a growing economical competitive landscape and higher environmental norms, it is now vital for manufacturing companies to reduce their energy consumption and to become more environment-friendly. To limit peak power consumption is one important approach to support energy efficient production, because electricity consumption and operating costs of manufacturing plants are usually charged based on the peak power demand from electricity providers [3]. This method takes load shifting to reduce energy use at the utility's peak demand [4]. Fang et al. [5] presented a multi-objective mixed-integer programming model of the flow shop scheduling problem that considers peak power load, energy consumption, and associated carbon footprint in addition to cycle time.

Bruzzone et al. [6] proposed the integration of an energy aware scheduling module with an advanced planning and scheduling system in order to control the peak consumption, while accepting a possible increase in the total tardiness. Xu et al. built two mixed-integer programming models in [3] to achieve a global optimal solution between the peak power and the traditional production efficiency without compromise on computing efficiency. To sum up, numerous works have focused on shop scheduling problems with peak power limitation in static perspective. But, due to frequently inevitable new arrival jobs in the production environment, a fixed preset scheduling plan could not meet the requirement.

Scheduling problems are dynamic in the real world with uncertain expected events after the start time. Dynamic scheduling problems are more complex than static scheduling problems. A lot of methods have been utilized to solve this kind of problems [7].

However, only a few of them considered the efficiency of shop scheduling problem with energy efficient demand and they were generally solved by the predictive reactive approach with complete rescheduling. Tang et al. [8] adopted an improved particle swarm optimization to search for the Pareto optimal solution of dynamic flexible flow shop scheduling problems that minimize energy consumption and makespan. A predictive reactive strategy was used to allocate the new jobs and the previous remaining operations simultaneously after the rescheduling point. Zhang et al. studied the dynamic rescheduling in flexible manufacturing systems considering energy consumption and schedule efficiency in [9] with a new goal programming math model. Optimal solutions were found by a genetic algorithm with the complete rescheduling strategy and the period policy. In a word, some efforts to solve energy efficient dynamic shop scheduling problems have been carried out. However, limitations still remain and must be tackled. A typical one is to obtain the renewed adequate scheduling plan in a reasonable response time. Particularly, complete rescheduling requires prohibitive computation even it performs the best to maintain optimal solutions.

In recent years, various algorithms using GPUs have been successfully applied to generate optimized results for shop scheduling problems with impressive time decrease.

In addition to the already stated works in Chapter II, Melab et al. [10] indicated a parallel branch and bound algorithm based on a GPU-accelerated bounding model on flow shop scheduling benchmarks to improve the performance by optimizing data access management. Czapinski et al. [11] implemented a Tabu search method with GPUs for the solutions of permutation flow shop scheduling problems, which is 89 times faster than the CPU version. These cases have confirmed that the parallel algorithms on GPUs have good performance in solving shop scheduling problems.

However, it is also revealed that few studies have been conducted to integrate GPUs computing in dynamic energy efficient shop scheduling problems, because of the complexity that is caused.

As far as the above-mentioned requirements, the total tardiness and the makespan with a peak power limitation are analyzed in this Chapter while considering the flexible flow shop with new arrival jobs. A periodic complete rescheduling approach is adopted to represent the optimization problem. Furthermore, due to the fact that an adequate renewed scheduling plan needs to be obtained in a short response time in dynamic environment, a priority based hybrid parallel GA on GPUs is implemented. The efficiency and the effectiveness of the proposed approach are validated through computational tests.

IV.2 Problem Definition

For an easy presentation, we summarize the notations used along the rest of this Chapter in Table 14. original jobs. In addition to the processing time, the power consumption of one step of J : (J : } ) on a particular machine is known. Furthermore, there is a power's peak limitation when the system operates as illustrated in Figure 29. As an FFSP is considered to be NP-hard in essence and difficult to solve, the EDFFSP is a NP-hard combinatorial optimization problem and more complex than the FFSP. To achieve the power's peak limitation and minimize the traditional makespan and the total tardiness objectives, the formal mathematical model for the EDFFSP is an extension of the mathematical model presented in [3,6] to cover rescheduling. The formulation is given in the following.

Objective function:

min: WT * T ) + C 678 )∈_∪_ Å (4.1)
Constraints:
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IV.3 Solving Approach

IV.3.1 Periodic Complete Rescheduling Strategy

In the periodic policy, schedules are re-generated at the rescheduling points that occur with regular intervals and gather all new arrival jobs' information. To solve the EDFFSP, operations are assigned to machines in order, following the original schedule until the reschedule point. New arrival jobs and uncompleted operations of original jobs are processed in terms of the updated schedule executed by the optimization algorithm within a short response. The parallel GA I is chosen for solving this problem with a complete rescheduling strategy which is better in maintaining optimal solutions, but is rarely achievable in practice due to the prohibitive computation time [12]. Figure 30 summarizes the flow of the periodic complete rescheduling process.

Figure 30 The flow of periodic complete rescheduling process for the EDFFSP

IV.3.2 Priority-Based Encoding Representation

According to the problem description in Chapter IV.2, a target machine matrix X(k), stored on the GPU global memory with n + n′ rows and g columns, is presented in (4.11).

X(k) = x ÇÇ (k) x dÇ (k) ⋮ x (çÄç}fd)Ç (k) x Çd (k) x dd (k) ⋮ x (çÄç}fd)d (k) ⋯ ⋯ x )C (k) ⋯ x Ç(`fd) (k) x d(`fd) (k) ⋮ x (çÄç}fd)(`fd) (k) (4.11) Where x )C k ϵ[0, o -1] ∪ {-1}, j ∈ J ∪ J′, s ∈ S.
Moreover, (4.12) shows a (n + n′)×g matrix placed on the GPU global memory that expresses the priority relation among operations.

Y(k) = y ÇÇ (k) y dÇ (k) ⋮ y (çÄç}fd)Ç (k) y Çd (k) y dd (k) ⋮ y (çÄç}fd)d (k) ⋯ ⋯ y )C (k) ⋯ y Ç(`fd) (k) y d(`fd) (k) ⋮ y (çÄç}fd)(`fd) (k) (4.12)
Where y )C k ϵ[1, g×(n + n′) -r] ∪ {-1}, j ∈ J ∪ J′, s ∈ S.

Each element of matrix X(k) indicates the machine number that deals with job j at stage s at generation k while each element of matrix Y(k) is used to sequence operations assigned to machines. The values for the EDFFSP are defined as: l if job j at stage s is started or completed before the start time of the rescheduling point, both element x )C (k) and element y )C (k) are equal to -1. This includes: Case 1: job j at stage s of the original job is accomplished.

Case 2: job j at stage s of the original job is being executed. l if job j at stage s is assigned to a machine after the start time of the rescheduling point, element x )C (k) is equal to a random integer representing the target machine handling job j at stage s. Similarly, elements y )C (k) is also generated randomly from the range starting from 1 to the amount of unassigned operations. Moreover the value of element y )C (k) is unique, where the larger the value of the random integer represents higher priority. This includes: Case 1: job j at stage s of the original job remains to be processed. Case 2: job j at stage s of the new arrival job must be processed.

In this representation, each chromosome of the parallel GA consists of one target machine matrix and one priority matrix, representing a feasible schedule. In the decoding step, elements of a matrix Z(k) (4.13) generated from the matrix X(k) and the matrix Y(k) are designed to address the assignment order of uncompleted operations. Element z )C (k) is equal to 0 if job j at stage s of the original job is being executed at the start time of the rescheduling point, while element z )C (k) is equal to C if the operation is accomplished before it. The procedure to determine elements' value of matrix Z(k) is displayed in Algorithm 1 and all these values are reserved on the GPU global memory. When the power's peak is met, the later assigned operation needs to be delayed as shown by the decoding rule in Algorithm 2.

Z(k) = z ÇÇ (k) z dÇ (k) ⋮ z (çÄç}fd)Ç (k) z Çd (k) z dd (k) ⋮ z (çÄç}fd)d (k) ⋯ ⋯ z )C (k) ⋯ z Ç(`fd) (k) z d(`fd) (k) ⋮ z (çÄç}fd)(`fd) (k) (4.13) Where z )C k ϵ[1, g×(n + n′) -r] ∪ {0, ì}, j ∈ J ∪ J′, s ∈ S .
Algorithm 1The procedure for determining elements' value of matrix Z(k)

For s, s } , s }} ϵS, s ≠ s }} , j, i ∈ J ∪ J } , j ≠ i, m ∈ M if x )C k = -1 then if S )C < RS < S )C + P )C6 then z )C k = 0,
machine m continues to process job j at stage s before executing a rescheduling plan.

else z )C k = C. end if else if y )C (k) > y :C} (k) then z )C k < z :C} k , job
j at stage s is assigned to its target machine earlier than job i at stage s′.

end if if s < s }} then z )C k < z )C}} k
, job j at stage s is assigned to its target machine earlier than job j at stage s′′.

end if end if

Algorithm 2 The decoding rule of the EDFFS For s, s′ϵS, j, i, i′ ∈ J ∪ J } , j ≠ i ≠ i′, z )C k < z :C k , z :}C} k < z )C k && job i′ at stage s′ is the earliest finished one among all the processing operations at period t, m ∈ M, t ∈ T

if Q 678 ≥ Q s + Q )Ca bg then if M )C == M :C then
job j at stage s is assigned to machine m earlier than job i at stage s. else jobs are assigned to each machine in terms of matrix X(k). end if else job j at stage s needs be delayed to be assigned to its target machine until finishing job i′ at stage s′.

end if

An example of EDFFSP is presented in Table 15. There are 6 original jobs. Each job consists of 3 stages and there are two machines at each stage. Jobs are available to be assigned to machines after the release time (R ) ). Each operation is processed on the target machine (M )C ) after the start time (S )C ). To make it simple, the processing time is set as 1, 2 and 3 for the three stages respectively. The average power consumption Q )C6 is defined as 1 for any operation on any machine while the value of the power's peak Q 678 is equal to 3. Finally, we assign a priority to the total tardiness over the makespan in the objective function by setting the WT as 100. Figure 31 shows the Gantt chart of this scheduling. Regarding new arrival jobs, job 6 and job 7 need to be considered after starting the plan. In the traditional static environment, they could only be scheduled after completing operations of the original schedule at each stage as illustrated in Figure 32. However, the periodic complete rescheduling approach in a dynamic environment reschedules new arrival jobs at the beginning of the rescheduling point (RS=7) with remaining operations of original jobs simultaneously as in Figure 33. The following matrices show the EDFFSP decoding result for the example. Each row of these matrices represents a job and each column represents a stage. A chromosome consists of the target machine matrix X(k) and the priority matrix Y(k) generated randomly to obtain the order matrix Z(k). Following the description, the later assigned operation needs be delayed when the power's peak is met. For instance, job 7 at stage 0 was supposed to be processed after the completion of job 2 at stage 0 on machine 0 as in Figure 33. Moreover, at the same moment machine 2, 3 and 4 are busy with job 5 at stage 1, job 3 at stage 1 and job 4 at stage 2 respectively. But due to the power limitation, this scenario is not possible. As z öÇ (k) is equal to 11, z õd (k) to 3, z úd (k) to 2, z ùï (k) to 1, job 7 at stage 0 is the newest allocated one among all of them. Thus, it is delayed until the completion of job 5 at stage 2 on machine 4. 

M )Ç , M )d , M )ï 1, 1, 0 0, 0, 1 0, 1, 1 0, 1, 0 1, 1, 1 0, 0, 0 S )Ç , S )d , S )ï 0.
X(k) = -1 -1 -1 -1 -1 -1 -1 1 0 -1 1 1 -1 -1 0 -1 0 0 1 1 1 0 0 0 , Y(k) = -1 -1 -1 -1 -1 -1 -1 4 2 -1 10 8 -1 -1 12 -1 9 3 6 13 11 1 5 7 → Z(k) = C C C C C 0 0 C C C 5 11

IV.3.3 CUDA-Based Hybrid Genetic Algorithm

As the complete rescheduling strategy is rarely achievable in practice due to the prohibitive computation time [12], the parallel GA I is used in this Chapter for the EDFFSP. This design is highly consistent with the CUDA framework in order to get the maximum speedup without compromising to solutions' quality. The main structure keeps the same as in Chapter III.3 while some modifications are made to suit the priority-based encoding and to meet the additional requirements of EDFFSP.

l The fitness function: Since the EDFFSP is also a minimization problem, the fitness function FIT(ρ) of an individual ρ is transferred from the objective function as

FIT(ρ) = max (E 678 -(WT * T ) + C 678 ) )∈_ , 0) (4.14) 
where E 678 is the estimated maximum value of the objective function.

l Selection: Because the texture memory allows a CUDA thread likely to read from an address "near" the address that nearby threads [13] and the short response time is required by the EDFFSP, we modify the selection area of parallel GA I from Figure 15 to Figure 24. Thus, the memory management is similar with the cellular GA where the neighbors' information are stored on the texture memory and a tournament selection is implemented via the global memory. Finally, the individual with the largest fitness value is the winner of each tournament and is selected to replace the considered individual.

l Crossover: Individuals are still paired with neighbors as in Figure 16 while a 2D single point crossover is executed for the target machine matrix and the priority matrix respectively if a specified probability is satisfied. As the randomly generated values in the priority matrix is unique, a correction step is required to replace the duplicate values by the missing values in ascending order. All steps are executed through the global memory and an example shows the procedure in An example is given in Figure 35. 

IV. 4 Numerical Experiments

In order to assess the implementation of parallel GA I to the EDFFSP, 4 tests are conducted. Test 1 and test 2 are performed in terms of an energy efficient FFS without considering new arrival jobs. Test 1 configures the parameters of the proposed hybrid GA, while test 2 shows its efficiency and effectiveness compared to the simple GA [14],

the cellular GA [15] and the OpenMP based master-slave GA. New arrival jobs are jobs is decided by the ratio of the rescheduling point to the makespan in the original schedule times the amount of original jobs. This is designed to keep the total amount of jobs waiting to be scheduled roughly consistent. Other experimental relative data are defined in Table 16 and there is no update for the experimental platform.

Table 16 The experimental relative data of the EDFFS WT 100 P jsm U [1,5] where P 0sm = P 1sm = ⋯ = P (n+n'-1)sm R j U[0, P], where P = (

P )C6 6 o C ) C D j R j + P(1 + σ), where σ=U[0,2]
Q jsm 1

IV.4.1 Parameters Configuration Test of Parallel GA I

As the maximum threads amount per block on the CUDA framework is 1024 and they are organized in a grid, the maximum island size for the hybrid GA is 1024 (32×32). In order to have more than one island in all cases, the population size is kept as 4096 (64×64). Since small size islands with the migration lead to premature convergence while the algorithm with large size islands converges slower [16], we set there are 64 (8×8) individuals in one island. Considering the existing experiences, the most appropriate crossover rate ranges between 0.75 and 0.9 [17] and the mutation rate should be much lower than the crossover rate [18]. Therefore, the values of crossover rate and mutation rate are given as 0.9 and 0.1 respectively.

In order to ensure the performance of our GA parameters, we applied the parallel hybrid GA on the tested instance with three groups of crossover rates and three groups of mutation rates as in Table 17. According to the average results of 100 iterations, we could find the crossover rate and the mutation rate do have some influence on the algorithm performance. Moreover, when crossover rate=0.9 and mutation rate=0.1, the parallel hybrid GA could obtain satisfying results for solutions' quality and execution time. To achieve the fairness of comparison, we set the crossover rate and the mutation rate as 0.9 and 0.1 for all GAs in the following tests of this Chapter. Due to the influence from the island size, the trend of the probability obtaining adequate solutions and the execution time with different island sizes is illustrated in Figure 36 and Table 18 respectively. Each value denotes an average result over 100 runs.

Regarding the values of the objective function got by different settings of crossover rate and mutation rate are approaching 200, we set the adequate solution level as 200 for the tested instance. When a value of the objective function is less than 200 after the specified generations, it is considered as an adequate solution. From Figure 36 and Table 18, we could observe a great influence from the island size on the solutions' quality of the hybrid parallel GA on GPUs but a few difference on the execution time.

The islands with 64 individuals (8 × 8 threads) perform best. In terms of the 2D population size 4096 (64×64), there are 64 islands (8×8 blocks).

Figure 36 The trend of the probability obtaining adequate solutions with different island sizes (block sizes) on GPUs 

IV.4.2 Performance Evaluation Test of Parallel GA I

Firstly, we try to compare the solutions obtained from the parallel GA I, the simple GA and the cellular GA. The designs of simple GA and cellular GA keep the same as in Chapter III. For fair comparison, a master-slave GA on multi-core CPU with or without vectorization is also taken into consideration. The master-slave model exploits parallelism in the simple GA by distributing the most time consuming part, fitness function evaluation, to slaves. As it does not affect the behavior of the algorithm, the master-slave GA is only included for the execution time comparison. Furthermore, we run the hybrid parallel GA and the cellular GA on GPUs, the simple GA on single core CPU, the master-slave GA on four cores CPU. Each of them is generated 100 times respectively. From the results in Table 19, we discover that the parallel GA I always gains a better performance for solving the energy efficient FFS than the simple GA and the cellular GA with the average value, the best value and the variance of the objective function.

As a result, the efficiency of parallel GA I gets confirmed by dealing with different shop scheduling problems. Moreover, the cellular GA overcomes the simple GA as it allows a better exploration of the search space with respect to the decentralized population [15]. Since the hybrid parallel GA and the cellular GA are designed specially for 2D grid architectures, they could maximize the benefits from the CUDA framework and almost take the same execution time when dealing with different population sizes as illustrated in Table 20. On the opposite, the simple GA on single core CPU takes from 14.73 to 25.08 times the execution time of the hybrid parallel GA when the population size is increased from 64×64 to 256×256. As far as the available experiment platform, we firstly parallelized the master-slave GA using OpenMP [20] on 4 cores CPU.

Afterwards, the SIMD vectorization was executed simultaneously via SSE2 [20]. The code was compiled by the command as follows and the vectorization report showed that all loops for the fitness function evaluation were well vectorized. GPUs with small population size. However, the GAs working on GPUs always win with less execution time when the amount of individuals is increased, due to the limited amount of cores and the limited SIMD width in our case.

IV.4.3 Sensitive Analysis Test of the EDFFSP

As the number of new arrival jobs is decided by the ratio of the RS to the makespan in the original schedule times the amount of original jobs, we change the amount of new arrival jobs by varying the ratio of the RS to the makespan in the original schedule. The influence with different ratios to the periodic complete rescheduling approach and the traditional static approach are displayed in Table 21. The iteration number is kept as 100 like the last two tests. The periodic complete rescheduling approach is more flexible in a dynamic environment as it reschedules the new arrival jobs at the beginning of the rescheduling point. However, those jobs could only be scheduled after completing operations of the original schedule at each stage by the traditional static approach. This impact is even more evident when the ratio of the RS to the makespan in the original schedule is small. And it is decreasing and almost disappears when the RS takes place near the end of the original schedule. Therefore, we strongly suggest using the periodic complete rescheduling approach with the assistance of parallel GA I when the RS is arranged at the first half part of the original schedule. Meanwhile, the traditional static approach may have similar performance if the RS is considered at the later half part. As tardy jobs typically cause penalty costs [21] and have a great influence on customers' satisfaction, the weight WT indicates the priority of the total tardiness in the objective function. However, we consider the relationship between two objectives with different WT settings due to the importance of makespan in manufacturing practice and Table 22 shows the average results of 100 iterations. According to the values of total tardiness and makespan, we could find the makespan is less sensitive to the weight WT than the total tardiness as the variance of makespan is 0.61 while the variance of total tardiness is 78.17. Moreover, once the value of WT is increased to reach a very large constant, the total tardiness is approaching its minimum value. Thus, manufacturers should take the chance to optimize the value of total tardiness while limiting the makespan in a reasonable range. 

IV.4.4 Convergence trend test of the EDFFSP

As a GA converges when most of the population is identical or the diversity is minimal [22], there is no need to execute the algorithm for more generations after the convergence point. For the EDFFSP, it is important to identify the convergence point and its corresponding execution time for different size problems. Three different size problems are considered in this test. The convergence trends of the small size, the medium size and the large size problem instances are described in Figure 37, Figure 38 and Figure 39 separately. Each point in figures displays a value of 30 runs.

Figure 37 The convergence trend of small size problem 

IV.5 Conclusion

In this Chapter, we have first studied an energy efficient dynamic flexible flow shop scheduling model using the peak power value with consideration of new arrival jobs.

To solve this NP-hard problem in a short response time, a priority based hybrid parallel GA with a periodic complete rescheduling approach was developed. In the first test, we configured the parameters of the hybrid parallel GA and obtained a reasonable island size for the tested instances to inhibit the premature convergence with a faster convergence speed. Afterwards, the designed GA in test 2 showed that it could gain better results than the simple GA, the cellular GA through the combination of merits from two levels. Meanwhile, it reduced the time requirements dramatically by optimizing the benefits from the CUDA framework. As seen in test 3, the periodic complete rescheduling approach was flexible to solve the EDFFSP, particularly when the rescheduling point was considered at the first half part of the original schedule.

Moreover, the total tardiness was more sensitive in this two objectives optimization problem and its value was approaching the minimum once the weight WT was increased to a very large constant. Finally, test 4 demonstrated the response time to achieve the convergence point for large-scale EDFFSP. We suggested as well in this case decision-makers to obtain a feasible scheduling by making a trade-off between the solutions' quality and the time consumption. Energy costs due to production have been traditionally treated as externalities that must be incurred and that cannot be reduced by production planning and scheduling [1]. With an increasing interest in industrial sustainability, integrating energy efficiency into production efficiency is concerned as one essential factor in factory practice. In the literature, there are two kinds of approaches studying energy saving in manufacturing systems [2]: avoiding peak power consumption and reducing the overall energy consumption. The first one shifts load at energy peaks when the maximum available energy is limited. The efficiency and the effectiveness of this method have been discussed in Chapter IV. However, moving the production activities in off-peak periods or inserting idle times for machine may not be acceptable with intense production process or fixed working time shifts [1]. The second one aims at reducing the total energy consumption of the manufacturing system by subdividing it and switching among the different types and levels of energy consumption. Liu et al. [3] developed a model for the bi-objective problem that minimized the total electricity consumption and the total weighted tardiness, where a non-dominant sorting genetic algorithm was used to obtain the Pareto front. Similarly, an emission-aware multi-machine job shop scheduling model was addressed in [4] and was solved through a modified multi-objective genetic algorithm. Dai et al. [5] reported an energy efficient model for the flexible flow shop scheduling problem and utilized a genetic-simulated annealing algorithm to make a significant tradeoff between the makespan and the total energy consumption. In one word, numerous efforts have been given to combine the traditional shop scheduling efficiency with the overall energy consumption. However, the models used in these researches are deterministic in which the number of jobs is a fixed value [3]. As ongoing reactive process where the presence of a variety of unexpected disruptions is usually inevitable [6], the static scheduling obviously cannot meet the requirements in most real-world environments.

The inevitable unpredictable new arrival jobs may lead changes in the original schedule.

Literature on dynamic scheduling has considered a significant number of works dealing with new arrival jobs and their effects in various manufacturing systems [6].

Nevertheless, limited researches along this domain focus on dynamic energy aware shop scheduling problems and they were generally solved by the predictive reactive approach with complete rescheduling [7,8]. Complete rescheduling and schedule repair are the most two common used strategies in the dynamic environment. As in Chapter IV, complete rescheduling provides the optimal solutions. But it can result in instability and disruption in manufacturing flows, leading to tremendous production costs [9].

Schedule repair only attempts to revise part of the originally created schedule for responding to the production environment changes. Pach et al. [2] set up a potential fields based reactive scheduling approach for flexible manufacturing systems in which resources were able to switch to the standby mode to avoid useless energy consumption and to emit fields to attract products. Zeng et al. [10] presented the particle swarm optimization algorithm to solve the dynamic scheduling problem of multi-task for hybrid flow-shop with the objective of minimizing energy consumption by introducing idle time windows of machines. To sum up, a few works have tried to solve dynamic energy aware shop scheduling problems with schedule repair. Even schedule repair does not require prohibitive computation as complete rescheduling and has potential saving in CPU times [11], to obtain a renewed adequate scheduling plan within a short response time is still highly desired in the dynamic environment, especially for large scale or complex problems.

The research on parallel GAs is dominated by island GAs [12]. As the discussion in Chapter II, the main efforts pay attention to the homogeneous islands even the same genetic operator configurations and the migration mechanism may lead to premature convergence [13]. Moreover, with the huge evolution of multi-core CPUs and GPUs, some works have considered the cooperation between them to maximally utilize their compute capability. Dabah et al. [14] proposed five parallel approaches to accelerate the branch and bound algorithm for solving the blocking job shop scheduling problem and two of them represented a hybridization between the multi-core CPU approach and the GPUs-based parallelization approach. Benner et al [15] discussed a hybrid Lyapunov solver based on the matrix sign function where the intensive parts of the computation were accelerated using GPUs while executing the remaining operations on a multi-core CPU. In [16], Bilel et al. introduced a CPU-GPU cosimulation framework where synchronization and experiment design were performed on CPU and node's processes are executed in parallel on GPU according to the master slave model. These cases have confirmed the efficiency to design a scheme that exploits the different hardware architectures simultaneously. However, this strategy is not yet implemented for island GAs, particular for heterogeneous island GAs to solve dynamic energy aware shop scheduling problems, as far our knowledge is concerned.

Considering the above-mentioned requirements, an investigation into minimizing total tardiness and total energy consumption in the job shop with new urgent arrival jobs is concerned in this Chapter. Afterwards, an adequate renewed scheduling plan is provided in a short response by the dual heterogeneous GA executed simutaniously on different parallel platforms with the event driven schedule repair approach. Finally, the efficiency and the effectiveness to implement the proposed method for solving dynamic energy aware shop scheduling problems are validated through computational tests.

V.2 Problem Definition

The Job Shop scheduling Problem (JSP) is a NP-hard problem [17] in which there are several jobs and each job consists of a certain amount of operations. One operation is processed by a particular machine and every job is assigned to a group of machines following a predetermined route [3]. As a layout shown in Figure 40 Chapter in Table 23. To minimize the total tardiness, the total energy consumption and the delay caused by the schedule changes, the formal mathematical model of the EDJPS is derived from the mathematical models presented in [19,20]. The formalization is given as follows.

Objective Function:

Min: α× 
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The decision variables in this mathematical model are S )C6 and Z )C6Ω . A weighted additive utility function with three normalized objectives is described as (5.1) where all objectives can be assessed on the same scale. Constraints (5.2) defines the tardiness of jobs. The precedence among operations due to the jobs' processing cycles is presented by constraints (5.3) and (5.4), while constraint (5.5) establishes the precedence caused by the sequencing on machines. As far as the energy consumption, constraint (5.6) states each operation can only be processed on one machine with one fixed speed level whereas the total energy consumption is given by constraint (5.7). Finally, constraint (5.8) imposes the definition of rescheduling and constraint (5.9) indicates the weighted finishing time deviation of the updated schedule from the original one.

V.3 Solving approach

V.3.1 Event-driven schedule repair strategy

With the event-driven policy, rescheduling is triggered in response to an unexpected event that alters the current system status [6]. In the case of EDJSP, urgent jobs may arrive after the starting time of the original schedule and need be processed immediately and quickly. Operations that are being executed need be terminated and uncompleted operations of original jobs must be rearranged in order to leave the machines available to firstly handle these urgent jobs. Thus, new urgent arrival jobs are assigned to machines with the highest speed levels at the beginning when the rescheduling is triggered. Uncompleted operations of original jobs are considered at the next step according to the remaining spaces on machines. The parallel GA II is chosen to generate an adequate schedule for them with the schedule repair strategy in a limited time. The flow of the event-driven schedule repair process is summarized as in Figure 42.

Figure 42 The flow of event-driven schedule repair process for the EDJSP

V.3.2 Hybrid Encoding Representation

In solving the EDJSP by the cellular GA, two modified operation-based encodings are adopted for representing the chromosomes. In terms of the schedule of original jobs and the schedule of new urgent arrival jobs, the chromosome contains two permutations: operation permutation X(k) (5.10) and speed level permutation Y(k) (5.11). X(k) utilizes the operation-based encoding where each job is represented by a natural number and each number is present as many times as the number of operations of the job it represents [21]. By scanning X(k) from left to right, the v ) th occurrence of a job j refers to the v ) th operation in the technological sequence of this job [22]. According to the example provided in [23], a feasible solution for a 3×3 job shop is presented as [2, 1, 0, 0, 1, 2, 2, 1, 0] where 2 on the fifth gene position implies the operation 1 of job 2 as it is the 1 st occurrence (after 0 th occurrence) of number 2. Thus, X(k) can be translated 24.

Table 24 The experimental relative data of energy efficient JSP As the cellular GA on GPUs performs best in Chapter 3 by its twice threads occupancy, we try to enhance the computation capability on the multi-core CPU further in this Chapter. Therefore, the pseudo GA on a multi-core CPU is parallelized not only using

OpenMP [START_REF] Zajıcek | Accelerating a Flow Shop Scheduling Algorithm on the GPU[END_REF] but also the SIMD vectorization via SSE2 [START_REF] Bożejko | Parallel genetic algorithm for the flow shop scheduling problem[END_REF]. As the execution time comparison shown in Table 26, the dual heterogeneous island GA on GPUs and a multicore CPU overcomes the dual cellular island GA on GPUs because of the simultaneous execution on both sides. Moreover, it points out the importance of computation capability balance between the host and the device when the proposed approach is implemented where the weak side may become as a bottleneck and reduces the overall effectiveness. Finally, because the dual pseudo GA only deals only with integers whose storage size is small, the contribution of SIMD vectorization is impressive and the dual pseudo GA on a 4 core CPU with vectorization takes the least execution time in most instances. An optimal solution of the original schedule is shown by Gantt chart in Figure 43. Since new urgent jobs arrive at time 600, all operations are being operated at this moment need to be canceled and leave machines available for processing them firstly. In this case, some machines are occupied at some periods after scheduling new urgent arrival jobs and the uncompleted operations of original jobs are rearranged to make use of machines only when they are idle. By implementing the schedule repair strategy, an optimal solution illustrated by the Gantt chart of the updated schedule in Figure 44 presents that the processing time of some operations are obviously decreased. As a result, most original jobs' finishing time are delayed slightly which is confirmed by the details displayed in Table 28.

VI.4.2 Case Study

Table 27 The case data of an EDJSP Jobs Moreover, a comparison concerning the makespan, the total tardiness, the total energy cost and the total finishing time deviation between the original schedule and three updated schedules is demonstrated in Figure 45. The updated schedule that all operations are processed by the highest speed level can decrease the makespan and the total tardiness maximum. However, the total energy cost is increased and its impact to minimize the total finishing time deviation is limited. The updated schedule without the schedule repair strategy keeps the total energy cost almost the same level as the original schedule while the other three parameters all go up, particularly the total finishing time deviation. Finally, the updated schedule with the schedule repair strategy minimize the total finishing time deviation maximum by holding the makespan, the total tardiness and the total energy cost within a reasonable level.

VI. 5 Conclusion

In this Chapter, an investigation into minimizing total tardiness and total energy consumption in the job shop with new urgent arrival jobs was firstly studied. In order to provide an adequate renewed scheduling plan in a short response, the dual heterogeneous GA executed simultaneously on different parallel platforms with the event driven schedule repair approach was updated. When dealing with six kinds of energy efficient JSP in the evaluation, the designed method verified its performance by obtaining competitive results as the dual cellular GA on GPUs while decreasing the execution time significantly. Moreover, it pointed out that the balance of computation capability between the host and the device had a great influence on its overall effectiveness. Concerning the EDJSP in the case study, an optimal solution of the updated schedule is shown by Gantt chart. Compared with the original schedule, the processing time of some operations are obviously decreased. Furthermore, we confirmed the efficiency of the event driven schedule repair strategy by minimizing the total finishing time deviation while holding the makespan, the total tardiness and the total energy cost within a reasonable level.
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GAs. Chapter 3

 3 describes the two proposed parallel GAs and analyzes their performance by some instances of the flexible flow shop scheduling problem. An energy efficient dynamic flexible flow shop scheduling model using the peak power value with consideration of new arrival jobs is discussed in Chapter 4. It is solved by the CUDA-based hybrid GA with the predictive reactive complete rescheduling strategy. Chapter 5 studies a model of job shop scheduling problem in dynamic environment concerning the traditional schedule efficiency, the total energy consumption and the reschedule cost. The dual heterogeneous Island GA is used to solve this problem with the event driven schedule repair policy. Finally, Chapter 6 states the conclusions.
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 234567 Figure 2 An example of the stochastic universal sampling

  Park et al.[22] studied a hybrid GA and its parallel version for job shop scheduling problems with an operation-based representation. Concerning the parallel GA, the population was divided into two or four subpopulations. Each subpopulation acted as a single-population GA, where some individuals could migrate from one subpopulation to another at certain intervals. As four population initialization methods, four crossover operators and two selection operators were proposed in this paper, different subpopulations were equipped with different settings to help them evolve independently. Beside, the migration was implemented synchronously with a static ring type connection scheme. Experiments were carried out on a PC with Pentium II 350 and 64MB main memory with MT, ORB and ABZ benchmark problems[19]. The outputs confirmed the island GA improved not only the best solution but also the average solution from results of single GA. Asadzadeh et al. addressed a parallel agentbased GA for a job shop scheduling problem in[23]. Chromosomes of the population, indicating feasible schedules for problem instances were created by the management agent and the execute agent. Afterwards, the management agent divided it into subpopulations with the same size and sent each of them to processor agents. Each processor agent located on a distinct host and executed GA with a roulette wheel selection, a partially matched crossover and a subsequent gene mutation on its subpopulation independently. Different subpopulations communicated by exchanging migrants through the synchronization agent. The number of processor agents was fixed at eight in the experiments. Furthermore, those agents formed a virtual cube amongst themselves and each of them had three neighbors. JADE middleware was used to implement this method, which was a software development framework aiming at developing multi-agent systems. Compared with the serial agent-based GA, the suggested algorithm obtained much short schedule lengths and had higher convergence speed with large size problems. In[24]. Gu et al. constructed a stochastic job shop scheduling problem by a stochastic expected value model. It was solved by a parallel quantum GA organized by the island model with a hybrid star-shaped topology. The information communication was performed through a penetration migration at the upper level and through a quantum crossover at the lower lever. Besides, the roulette wheel selection, the cycle crossover and the Not Gate mutation were designed as GA operators. Computational tests were run on a PC with a Pentium Processor with clock speed of 1.66 GHZ. On the average, the advised method had a better performance of generating optimal or near-optimal solutions with fast convergence speed than a GA or a quantum GA for large instance problems. Spanos et al.[25] designed a parallel GA for solving job shop scheduling problems with an elitist strategy based selection, a path relinking crossover and a swap mutation. The parallelization was set following the islands paradigm. However, one subpopulation merged with another one once the individuals inside stagnated, where the Hamming distance of more than half individuals were less than a predefined value. The process continued until there was only one subpopulation. Experiments were performed on a commodity workstation with a Pentium IV CPU running at 2 GHz with 1 GB RAM, The results indicated the addressed algorithm managed to attain a comparable performance with five recent approaches.

  945 3.0 GHz processor and NVIDIA Tesla C1060 GPU. Some instances of the flow shop scheduling problem were solved with speedup from 60 to 120 comparing to the equivalent sequential CPU version. Bożejko et al. proposed a parallel GA for flow shop scheduling problems in [28]. The algorithm was based on an island model. To implementations, a Multi-Step Crossover Fusion was used to construct a new individual using the best individuals of different subpopulations and worked with the migration operator to complete the communication between different islands. Tests were performed on 4-processors Sun Enterprise 4x400
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4 )

 4 S )C ≥ S ) Cfd + P ) Cfd a b ghi j ∈ J, s ∈ S, s > 1 (3.5) S )C +P )Ca bg ≤ S :C j ∈ J, i ∈ J, s ∈ S, j ≠ i, M )C == M :C , S )C ≤ S :C (3.6) The decision variables in the mathematical model are M )C and S )C . As two scheduling objectives are considered, it is formulated as a single additive objective function (3.1) by aggregating the total tardiness and the makespan with the weight WT. As tardy jobs typically cause penalty costs [3] and have a great influence on customer satisfaction, the weight WT indicates the priority of the first objective. Constraints (3.2) and (3.3) define the tardiness of jobs and the makespan separately. The precedence among operations due to the jobs' processing cycles is presented by constraints (3.4) and (3.5), while constraint (3.6) establishes the precedence caused by the sequencing on machines. The population of GA consists of a set of individuals and is initialed by random values. An individual is represented by a chromosome. For the FFSP, a chromosome is composed of a string of length n×g, and the p-th gene states the index of the target machine for job p g + 1 at stage p g + 1. For instance, assume that 3 jobs with 2 production stages are scheduled in a flexible flow shop and there are 2 parallel machines at each stage. A chromosome can be expressed as [1,2,1,2,2,1] which indicates [job 1 at stage 1 processed on machine 1, job 1 at stage 2 processed on machine 2, job 2 at stage 1 processed on machine 1, job 2 at stage 2 processed on machine 2, job 3 at stage 1 processed on machine 2, job 3 at stage 2 processed on machine 1]. The fitness function FIT (ρ) of an individual ρ is transferred from the above-mentioned objective function (Eq. (3.1)) as FIT(ρ) = max (E 678 -

  each CUDA thread processes one GA individual. Because of the 2D grid structure, the GA individuals can get connected completely. Selection, crossover, mutation and fitness value calculation are generated mainly via the local memory to enjoy its lowest latency unless imperative information exchange among individuals is done through the global memory. On the other hand, one block on the CUDA framework represents one island in the GA at the upper level. An elitism based replacement inside the island and a migration among islands are carried. The shared memory is chosen to complete these works primarily while the overwriting is processed via the global memory synchronously. The procedure of the hybrid parallel GA with memory management is expressed in Figure14.
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 1314 Figure 13 The hierarchy of hybrid GA
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 16 Figure 16 The crossover operation of hybrid GA

  the island size, the selection diameter and the migration interval. They are set by different numbers: Island Size (IS) = 4 (2×2), 16 (4×4), 64 (8×8), 256 (16×16), 1024 (32×32) individuals, Selection Diameter (SD) = 3, 9, 15, 21, 27 individuals, Migration Interval (MI) = 10, 20, 30, 40, 50 generations. Figure 18 illustrates the convergence trend with combinations of different values. As the graph with all parameters' setting is a little confusing as shown by the first one. We separate it as 7 sub-graphs.
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 204 Figure 20 The execution time comparison among the parallel GA I and other implementations

l

  the migration is executed. Otherwise, do nothing. The topology of migration is made by the ratio of fit Z to fit [ . If fit Z fit [ > 1, the migration is from sub-population A to sub-population B. If fit Z fit [ < 1, the migration direction is reversed. If fit Z fit [ = 1, no migration is implemented. l When the migration is carried, α×N individuals with best fitness values in the emigrant sub-population are selected to replace α×N individuals with worst fitness values in the immigrant sub-population.
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 285 Figure 28 The execution time comparison among the parallel GA II and other GAs

JFigure 29

 29 Figure 29 An example of EDFFSP using the peak power value
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 3133 Figure 31 The original schedule of an optimized solution
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Figure 35

 35 Figure 35 An example of the mutation

included in test 3

 3 to evaluate the performance of the EDFFSP. A small size instance is considered in those 3 tests. There are 10 original jobs with 3 production stages. Each stage includes 2 parallel machines. The power's peak is imposed through a bound equal to 4. Test 4 examines the convergence trend of EDFFSP with 3 different size problems. The instances are characterized by the different numbers of jobs (n = 10, 50, 80) with the different numbers of stages (g = 3, 4, 4), the different numbers of machines (o C = 2, 2, 3) in each stage and the different numbers of power's peak (Q 678 =4, 5, 10). The rescheduling point is randomly generated in test 3 and test 4. The number of new arrival

  gcc -fopenmp -O3 -ftree-vectorize -msse2 mycode.c -ftree-vectorizer-verbose=1 -o mycode.o With the development of multi-cores CPU and SIMD vectorization, the performance of master-slave GA has been improved a lot by distributing the fitness function evaluation to slaves and executing them concurrently. It even overcomes the GAs on
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 38 Figure 38 The convergence trend of medium size problem

  , job A and job B need to be processed by 4 machines and their processing routines are fixed as Machine 0-2-1-3 and Machine 2-0-3-1, respectively.
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 41 Figure 41 Conflicts among total tardiness, total energy consumption and disruption to the original schedule
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 6677 Number of uncompleted original jobs at the rescheduling point r1 Number of completed operations of original jobs before the rescheduling point r2 Sum of completed operations of original jobs before the rescheduling point and operations of new urgent arrival jobs o ) Number of operations of job j g Number of machines h Number of speed levels J Set of original jobs, J = {0,1,2, … , n -1} J′ Set of new arrival jobs, J′ = {0,1,2, … , n′ -1} J′′ Set of uncompleted original jobs at the rescheduling point, J′′ = {0,1,2, … , n′′ -1} O ) Set of operations of job j, O ) = {0,1,2, … , o ) -1} M Set of machines, M = {0,1,2, … , g -1} L Set of speed levels, L = {0,1,2, … , h -1} R ) Release time of job j, j ∈ J ∪ J′ D ) Due time of job j, j ∈ J ∪ J′ M )C Target machine handling operation s of job j, j ∈ J ∪ J′, s ∈ O ) S )C6 Original start time of operation s of job j on machine m, j ∈ J ∪ J } , s ∈ O ) , m ϵ M S )C6 } New start time of operation s of job j on machine m, j ∈ J ∪ J } , s ∈ O ) , m ϵ M T ) Tardiness of job j, j ∈ J ∪ J′ RS Rescheduling point P )C6 † Processing time when operation s of job j is to be processed on machine m at speed level p, j ∈ J ∪ J } , s ∈ O ) , m ϵ M, p ϵ L Q )C6 † Energy consumption when operation s of job j is to be processed on machine m at speed level p, j ∈ J ∪ J } , s ∈ O ) , m ϵ M, p ϵ L Z )C6 † Boolean variable, it is equal to 1 if operation s of job j is processed on machine m at speed level p, otherwise, it equals to 0, j ∈ J ∪ J } , Estimated minimum value of TE wt ) Importance weight of original job j, j ∈ J DEV Weighted finishing time deviation of the updated schedule from the original one ED 678 Estimated maximum value of DEV ED 6:ç Estimated minimum value of DEV α, β, γ Weight of each normalized objective function. a, b, c, f, z Gene indices in a chromosome v ) Index of occurrence time of a job number u ) Occurrence time of a job number U Set of occurrence time of a job number, U = {0,1,2, … , u ) -1} k Current generation number of the GA X(k) Operation permutation of original schedule at generation k Y(k) Speed level permutation of original schedule at generation k Z(k) Completed status permutation of original schedule at generation k X′(k) Operation permutation of new schedule at generation k Y′(k) Speed level permutation of new schedule at generation k o )C Operation s of job j d, e Indices for operations on machine m n )C Number of operations on machine m before operation s of job j is assigned on it. o Number of operations on machine m O Set of operations on machine m, O 6 = {0,1,2, … , o 6 -1} ρ Individual index µ Index used to generate odd or even indexed individuals • ï ¶,7 the a th gene in X′(k) from the 2µ th individual • ï ¶fd,7 the a th gene in X′(k) from the (2µ-1) th individual • ï ¶,the a th gene in Y′(k) from the 2µ th individual • ï ¶fd,the a th gene in Y′(k) from the (2µ-1) th individual f The average fitness value of the population f 678 The maximum fitness value of the population f′ The larger fitness value of the two selected parents which are executed crossover φ d , φ ï , φ ú , φ ù Modified coefficients for the crossover rate and the mutation rate

  to a list of ordered operations as [o ïÇ , o dÇ , o ÇÇ , o Çd , o dd , o ïd , o ïï , o dï , o Çï ]. On the other hand, each element y 7 k indicates the selected speed level of its related element keep the same settings as parallel GA II. Experiments are conducted in terms of the energy efficient JSP without considering new urgent arrival jobs. In this case, six tested problems are generated as in[26]. These instances are referred to as "easy problems"or "hard problems" with names EASY 6×4, EASY 10×8, EASY 20×10, HARD 6×4, HARD 10×8 and HARD 20×10. EASY 6×4 and HARD 6×4 are 6-job, 4-machine problems; EASY 10×8 and HARD 10×8 are 10-job, 8-machine problems; EASY 20×10 and HARD 20×10 are 20-job, 10-machine problems. Every job consists of the same amount of operations as the amount of machines, while one operation is always performed on a single machine. Moreover, each machine has 5 speed levels. As far as the easy problems are concerned, the machine procedure constraints for each job are generated randomly. As an alternative, the hard problems divide the machines into two sets. Each job must pass firstly through the first set, then through the second one. The ordering within the two sets of machines is generated randomly. Other experimental relative data are defined in Table

1 Concerning

 1 P], where P = ( ( P )Ca bg † /h)/o ) ) † C ) D ) R ) + P ) ×(1 + σ), where σ=U[0, 2] and P ) = ( P )Ca bg † /h † ) the solutions' quality comparison, it is shown in Table25that the dual heterogeneous island GA and the dual cellular island GA have similar performance while the former one displays better the best value and the latter one illustrates better the average value. On the other hand, the results of the dual pseudo island GA are relatively poor. Since the EDJSP works with the operation-based encoding, the order of genes in one chromosome has great influence to the results. Unlike a simple FFSP discussed in Chapter 3, the efficiency of the complementary parent strategy get decreased unfortunately.

A

  modified job shop instance incorporating machine speed scaling and new urgent arrival jobs is developed based on the well know 10×10 problem (10 jobs, 10 machines) from Muth and Thompson[29] (MT 10×10) as a case study. There are 10 original jobs and 3 new urgent arrival jobs. Each machine has 5 speed levels. New urgent jobs arrive at the point that equals 30% of the makespan of original schedule. The operation sequence of original jobs and their processing times on target machine at speed level 0 are collected from MT10×10. On the other hand, these values for new urgent arrival jobs are generated following the rule of "hard problems". The values of energy consumption at level 0 Q )C6Ç and due time (D ) ) are set as in Table24while the value of release time (R ) ) is fixed as 0. Concerning the importance weight of original jobs, we make wt Ç = wt d = 4, wt ) = 2 for j = 2, 3, …, 7 and wt " = wt " = 1. All details are shown in Table27. Moreover, the processing time and energy consumption when operation s of job j processed on machine m at different level is defined asP )C6 † = P )C6Ç ×V † and Q )C6 † = Q )C6Ç ÷ V † ,respectively, where V = {1, 1.3, 1.55, 1.75, 2.1}. Finally, we keep the values of α, β equal to 1 while a very large constant is assigned to γ which indicates the priority of the schedule repair strategy.
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Table 1

 1 Features of two proposed energy efficient dynamic shop scheduling models

		Model I	Model II
	Problem Types	Flow Shop	Job Shop
	Flexible Shops	Yes	No
	Energy Efficiency	Peak Power	Total Energy Consumption
	Reschedule Point	Periodic	Event Driven
	Reschedule Strategy	Complete Reschedule	Reschedule Repair

Table 2

 2 Features of two proposed parallel GAs

		Parallel GA I	Parallel GA II
	Components	Island GA, Fined-grained GA Cellular GA, Pseudo GA
	Components' Relationship Hierarchical	Horizontal
	Platform	CUDA	CUDA, OpenMP [15]

Table 4

 4 

		The pseudo-code of simple GA
	1:	initialize();
	2:	while (termination criteria are not satisfied) do
	3:	Generation++
	4:	Selection();
	5:	Crossover();
	6:	Mutation();
	7:	FitnessValueEvaluation();
	8:	end while

Table 5

 5 The pseudo-code of master-slave GA

	1:	Initialize();
	2:	while (termination criteria are not satisfied) do
	3:	Generation++
	4:	Selection();
	5:	Crossover();
	6:	Mutation();
	7:	Parallel_FitnessValueEvaluation_Individuals();
	9:	end while

Table 6

 6 The pseudo-code of fine-grained GA

	1:	Initialize();
	2:	while (termination criteria are not satisfied) do
	3:	Generation++
	4:	Parallel_NeighborhoodSelection_Individuals();
	5:	Parallel_NeighborhoodCrossover_Individuals();
	6:	Parallel_Mutation_Individuals();
	7:	Parallel_FitnessValueEvaluation_Individuals();
	8:	end while

Table 7

 7 The pseudo-code of island GA

	1: Initialize();
	2: while (termination criteria are not satisfied) do
	3:	Generation++
	4:	Parallel_SubSelection_Islands();
	5:	Parallel_SubCrossover_Islands();
	6:	Parallel_SubMutation_Individuals ();
	7:	Parallel_FitnessValueEvaluation_Individuals();
	8:	if (generation % migration interval==0)
	9:	Parallel_Migration_Islands();
	10:	end if
	11: end while

II.2.4.1 Job Shop Scheduling Problems

Table 8

 8 

		A description of notations used in all formulae in Chapter III
	Notation	Description
	n	Number of jobs
	g	Number of stages
	o	

C

Number of machines at stage s.

Table 10 .

 10 The experimental platform is based on the Intel Xeon E5640 CPU with 2.67GHz clock speed and four cores. The GPU code implementation is carried out using CUDA 8.0 on NVIDIA Tesla K40, with 2880 cores at 0.745GHz and 12 GB GDDR5 global memory. All programs are written in C, except for the GPU kernels in CUDA C. All results display the average value of 100 runs.

		Table 10 The experimental relative data of the FFSP
	WT	100						
	P jsm	U[1, 5]						
	R j	U[0, P], where P=	)	C	(	6	P )C6	o C )
	D j	R						

) + P ) (1 + σ), where σ=U[0,2] and P ) = ( P )C6 /o C 6 ) C

Table 11

 11 Different implementations used to obtain the execution time

	Hgpu	Proposed hybrid parallel GA I over NVIDIA K40 GPU
	Scpu	Simple GA over Intel Xeon E5640 CPU with one core
	MSmulticpu	OpenMP based master-slave GA over Intel Xeon E5640 CPU with
		four cores
	MSgpu	Master-slave GA over NVIDIA K40 GPU
	Hcpu	Proposed hybrid GA over Intel Xeon E5640 CPU with one core
	Hmulticpu	OpenMP based hybrid GA over Intel Xeon E5640 CPU with four cores

Table 12

 12 

			An example of the dynamic complementary initialization strategy	
	Bit	0 th gene 1 st gene 2 nd gene … p st gene …	(n×g -2) st gene	(n×g -1) st gene
	Individual 0	1	1	0	…	a	…	0	0
	Individual 1	0	0	1	…	1-a	…	1	1

l Parameter level: The execution of the crossover operator and the mutation operator are determined by the crossover rate and the mutation rate. Their values for the cellular GA and the pseudo GA on different islands are set differently.

Table 13

 13 

	The solutions' quality comparison among the parallel GA II and other GAs
	Different GAs	Best	Average	Variance
	Heterogeneous GA	306500.03	309885.90	2003059.14
	Cellular GA	314467.50	320648.18	6792896.04
	Pseudo GA	314636.59	317683.23	2963668.96

Table 14 A

 14 description of notations used in all formulae in Chapter IV

	Notation	Description
	j, i, i′	Job indices
	s, s′, s′′	Stage indices
	m	Machine index
	t	Time period index
	n	Number of original jobs
	n′	Number of new arrival jobs
		Number of original operations assigned to machines before the
	r	rescheduling point
	g	Number of stages
	o C	Number of machines at the stage s.

Table 15

 15 An example of EDFFS

	Original jobs

Table 17

 17 Results of the parallel hybrid GA on GPUs with different settings of

	crossover rate and mutation rate (Generations =100)
	Crossover Rate Mutation Rate	Solution Quality	Execution Time (s)
	0.75	0.05	216.39	8.21
	0.75	0.1	219.98	8.34
	0.75	0.15	211.70	8.47
	0.825	0.05	220.39	8.30
	0.825	0.1	214.03	8.43
	0.825	0.15	210.90	8.53
	0.9	0.05	216.56	8.36
	0.9	0.1	209.81	8.50
	0.9	0.15	215.09	8.58

Table 18

 18 Execution time with different island sizes (block sizes) on GPUs (s)

	Island Size Generations	4 (2×2)	16 (4×4)	64 (8×8)	256 (16×16)	1024 (32×32)
	100	7.65	7.71	9.11	9.14	12.30

Table 19

 19 

				Solutions' quality comparison
			Hybrid Parallel GA			Simple GA	Cellular GA
	Generations					
		Avg.	Best Variance	Avg.	Best Variance	Avg.	Best Variance
	100	209.81 153.45	152.22	410.72 236.55	5208.84 258.39 158.86	1635.95
	200	183.16 151.67	149.47	354.64 214.31	3834.04 228.65 155.26	1549.97
	300	181.80 151.67	150.01	339.09 198.69	3565.65 221.51 154.51	1073.24
	400	178.32 149.83	151.67	331.57 170.60	4010.57 217.42 153.24	1322.16
	500	177.93 149.47	150.63	327.46 156.41	4779.69 216.99 151.74	1073.99

Table 20

 20 

			Execution time comparison (Generations=100)	
	Population	Hybrid Parallel GA	Cellular GA	Simple GA	Master-Slave GA on 4 cores CPU
	size	on GPUs	on GPUs	on single core CPU	without vectorization with vectorization
	64×64	8.77 s	8.14 s	129.16 s	39.50 s	5.60 s
	128×128	30.71 s	31.13 s	554.01 s	182.27 s	33.07 s
	256×256	105.73 s	108.07 s	2651.61 s	1127.78 s	298.96 s

Table 21

 21 Comparison between the periodic complete rescheduling approach and the traditional static approach with different ratios of the RS to the makespan in the

	original schedule (Generations=100)	
	Ratio of the RS to the makespan	Traditional static	Periodic complete	Improvement
	in the original schedule	approach	rescheduling approach	Ratio
	20%	4108.41	2142.90	1.9172
	40%	11131.51	9209.40	1.2087
	60%	17892.24	16941.56	1.0561
	80%	26595.63	26520.96	1.0028

Table 22

 22 

		Relationship between two objectives with different WT settings
		(Generations=100)	
	WT	Total Tardiness	Makespan Objective Function Value
	0.0001	39.48	40.55	40.56
	0.001	39.95	40.55	40.59
	0.01	35.23	40.54	40.89
	0.1	23.43	40.78	43.12
	0.4	19.04	41.14	48.76
	0.7	18.61	41.23	54.26
	1	18.29	41.44	59.73
	4	17.83	42.15	113.46
	7	17.69	42.18	166.00
	10	17.57	42.12	217.86
	100	17.58	42.39	1800.43
	1000	17.60	42.51	17645.71
	10000	17.58	42.41	175831.12
	Variance	78.17	0.61	

Table 23

 23 

		A description of notations used in Chapter V
	Notation	Description
	j, i, l, x	Job indices
	s, t, y	Operation indices
	m	Machine index
	p, q, w	Speed level indices
	n	Number of original jobs
	n′	Number of new arrival jobs

Table 25

 25 Solutions' quality comparison (Population Size=2048)

		Dual Heterogeneous Island GA Dual Cellular Island GA	Dual Pesudo Island GA
	Problems						
		Avg.	Best	Avg.	Best	Avg.	Best
	EASY 6×4	0.013307	0.013307	0.013363	0.013307	0.037983	0.021057
	EASY 10×8	0.090601	0.074350	0.086318	0.075833	0.266073	0.204708
	EASY 20×10	0.037718	0.022688	0.032669	0.014034	0.359445	0.292384
	HARD 6×4	0.013307	0.013307	0.013307	0.013307	0.044449	0.022629
	HARD 10×8	0.079581	0.066118	0.076593	0.066203	0.269521	0.208583
	HARD 20×10	0.032360	0.014858	0.029107	0.015666	0.281563	0.253130

Table 26

 26 

	Execution time comparison

Table 28

 28 Original jobs' finishing time comparison between an optimal solution of the original schedule and an optimal solution of the update schedule

		Job 0	Job 1	Job 2	Job 3	Job 4	Job 5	Job 6	Job 7	Job 8	Job 9
	Original Schedule	632.05 1091.80 1555.15 1817.90 1485.05 1535.80 1390.05 987.45 1431.40 1838.65
	Updated Schedule	688.10 1092.30 1579.25 1824.40 1472.20 1331.65 1455.85 990.00 1991.45 1851.20
	Difference 56.05	0.5	24.1	6.5	0	0	65.8	2.55	560.05	12.55

List of Algorithms

where y 7 k ϵ 0, h -1 .

To leave machines available to conduct new urgent arrival jobs firstly and rearrange uncompleted operations of original jobs, the chromosome of updated schedule also includes an operation permutation X′(k) (5.12) and a speed level permutation Y′(k)

(5.13). The initialization rule for both are shown in Algorithm 3.

(5.12) where x 7 } k ϵ 0, n + n′ -2 , u ) == o ) .

where y 7 } k ϵ 0, h -1 .

Regarding the pseudo GA, the complementary initialization strategy [24] is complemented by negating all alleles in a binary chromosome. To implement it with the EDJSP, even-indexed individuals are initialized by the modified operation-based encoding. On the other hand, genes in the range [0 , r2 -1 ] of odd-indexed individuals keep same values with its paired parent while values of genes in the range

and values of genes in the range [r2 , o )

In this case, the X′(k) of the (2µ -1) th individual may be infeasible as the there is a risk that u ) ≠ o ) . Therefore, an inspection step is carried out to replace the latest redundant values by the missing values in the ascending order. Moreover, the decoding rule is displayed in Algorithm 4.

Algorithm 3 The initialization rule of permutations X } k and Y′(k) for all individuals of the cellular GA a ← 0; where E 678 is the estimated maximum value of the objective function.

l Selection: Only the cellular GA has selection operator and it has no modification when it is implemented to the EDJSP.

l Crossover: To work with the modified operation-based encoding of the cellular GA, the operation-based order crossover [3] is utilized as the crossover operator and works for genes in the chromosome within the range [r2 , o )

Firstly, it randomly chooses the same operations from two selected parents. The loci of chosen operations are preserved and copied to their own offspring.

Afterwards, remaining operations are transmitted to the offspring of the other parent to fill the missing genes while their original orders are also kept. The crossover procedure for a 5×3 job shop example is shown in Figure 43 The pseudo GA initializes every pair of parents with complementary chromosomes and the crossover is executed between the offspring from the same parents. Therefore, we take the one-point precedence preservative crossover [22] to work with genes within the range [r2 , o )

)∈_∪_ Å

-1] for the pseudo GA to keep the complementary chromosomes as much as possible. An example of the same job shop instance in the operation-based crossover is presented in Figure 44 which shows this process in details. The genes out of the range are marked in red.

Firstly, a crossover point for the paired parents is selected randomly. The genes within the range and before the cross point are kept for their own off-springs (in blue) while the same genes are deleted from the paired parents (back ground color in yellow). Finally, the genes left in the paired parent are appended to fill the empty positions after the cross point in the original parents. The crossover is executed if a specified probability is satisfied. In this Chapter, a fixed crossover rate is taken for the pseudo GA where the value is set as 1. On the other hand, an adaptive crossover rate [25] is adopted for the cellular GA and its expression is given as

Where φ d , φ ï ≤ 1.0. As same as the crossover rate, the mutation rate for the pseudo GA is fixed and is kept as 0.1 while the mutation rate of the cellular GA is adaptive in response to individuals' fitness values [25] and take the form as

Where φ ú , φ ù ≤ 1.0.

l Replacement: No modification.

l Migration: No modification.

VI. 4 Numerical Experiments

Test 1 checks the efficiency and the effectiveness of parallel GA II for solving the energy efficient JSP while test 2 evaluates the performance of EDJPS by a case study.

The values of ET 678 , ET 6:ç , EE 678 , EE 6:ç , ED 678 , ED 6:ç are found through the simple GA stated in Chapter III and Chapter IV by solving each of them as a single objective in the following implementations. To prevent the GA from getting stuck at a local optimum, solutions need to be completely disrupted. For this reason, we set a value of 1.0 for φ d and φ ï , a value of 0.5 for φ ú and φ ù as in [25]. Moreover, the experimental platform is kept the same as in the previous two Chapters.

VI.4.1 Evaluation

In addition to parallel GA II, two kinds of dual homogeneous island GAs are taken as comparisons. The first one utilizes the cellular GA on GPUs for its two islands while the pseudo GA is adopted for the two islands of the second one. Their other operators

Chapter VI. Conclusion and Future Works

This thesis focuses on solving energy efficient dynamic shop scheduling problems by parallel GAs. Because of a growing economical competitive landscape and higher environmental norms, it is now vital for manufacturing companies to consider energy efficiency when dealing with traditional shop scheduling problems. Meanwhile, scheduling problems are dynamic in the real world with unexpected events after the start time. The dynamic scheduling is one familiar problem that cannot be ignored in manufacturing practices. Two energy efficient dynamic shop scheduling problems are studied in this thesis.

The Energy efficient Dynamic Flexible Flow Shop scheduling Problem (EDFFSP)

takes the way to limit the peak power as electricity consumption and operating costs of manufacturing plants are usually charged based on the peak power demand from electricity providers. In this case, the later assigned operation needs to be delayed when the power's peak is met. The total tardiness and the makespan are considered as two objectives in a flexible flow shop scheduling problem. A set of new jobs may arrive after the start of the original plan. With the complete rescheduling strategy, they are processed from the beginning of the rescheduling point with the remaining uncompleted operations of original jobs. The rescheduling points always occur with regular intervals and gather all new arrival jobs' information.

The Energy efficient Dynamic Job Shop scheduling Problem (EDJSP) focuses on minimizing the total energy consumption within a job shop scheduling problem. The processing time and the energy consumption of one operation processed on one machine at a set speed level are known. When a higher speed level is chosen, the processing time is shortened but with an energy consumption increase. The new arrival jobs trigger the rescheduling and are treated as urgent tasks in which the production line should conduct them immediately. The operations being processed are terminated and need to be rescheduled with the remaining uncompleted operations of original jobs based on the insertion of new urgent arrival jobs. The updated schedule refers some local adjustment of the original one. Thus, three objectives are included in this problem, the total tardiness, the total energy consumption and the total weighted finishing time deviation of the updated schedule from the original one.

The Genetic Algorithm (GA) is considered as one of the most efficient method to solve shop scheduling problems. However, there is an increase in the required time to find adequate solutions when GAs are applied to complex and large problems. On the other hand, new integrated energy requirements in a dynamic environment lead to the complexity of the considered problem to be higher and ask even longer execution time to get acceptable solutions. In order to find adequate solutions for energy aware shop scheduling problems efficiently and achieve a speedup to meet the short response in the dynamic environment, parallel implementation is considered as one of the most In the future, we will try to improve the performance of the dual heterogeneous island GA when it is implemented to solve the EDJSP as in Chapter 5. Because the efficiency of the complementary parent strategy is decreased in this case, some modifications are required for the pseudo GA on a multi-core CPU to enhance its searching ability. On the other hand, the overall execution time will not be increased by controlling the work load balance between GPUs and a multi-core CPU with SIMD vectorization. This implementation is also planned to be executed on a computing node with V100 GPUs which is a new generation architecture. Since the cost of using computing accelerators like GPUs or Intel Xeon Phi is not expensive nowadays, these devices are strongly suggested to be utilized for solving hard optimization problems in manufacturing practice. Since only the linear combination is used in this thesis to deal with multiobjective problems, the Pareto approach is considered as the nest step with a parallel version of the non-dominated sorting genetic algorithm II. IEEE.
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