
HAL Id: tel-02009769
https://laas.hal.science/tel-02009769

Submitted on 6 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel genetic algorithms to solve dynamic task
scheduling problems efficiently by taking into account

the energy
Jia Luo

To cite this version:
Jia Luo. Parallel genetic algorithms to solve dynamic task scheduling problems efficiently by taking
into account the energy. Networking and Internet Architecture [cs.NI]. Université Toulouse 3 Paul
Sabatier (UT3 Paul Sabatier), 2019. English. �NNT : �. �tel-02009769�

https://laas.hal.science/tel-02009769
https://hal.archives-ouvertes.fr

� 55�

� 5�

Acknowledgement

It is a real pleasure to thank the people who have helped me to finish this thesis. First

and the most, I would like to show my deepest gratitude to my Ph.D. supervisor Dr.

Didier El BAZ in LAAS du CNRS, France and to my host professor Prof. Shigeru,

FUJIMURA from the Graduate School of Information, Production and Systems,

Waseda University, Japan. They are respectable, responsible and resourceful scholars

who have guided and helped me in every matter during my study. Dr. Didier EL BAZ

has always supported me to understand how to find the direction of my research with

his broad knowledge, creative thinking and deep insights on the subject of parallel and

distributed computing and its applications to combinatorial optimization problems. I

am also especially grateful to Prof. Shigeru FUJIMURA for giving me the opportunity

of an exchange study in his team for three months. During my staying in Japan, he has

given me nice suggestions for building the model of energy efficient dynamic

scheduling problems and has encouraged me technically and spiritually. It is really a

wonderful feeling to do research under their supervision and I would treasure this

period of time as my most valuable memory.

I would like to thank all colleagues in the CDA team of LAAS DU CNRS, Bastien

PLAZOLLES, Bailal FAKIH, Andrei DONCESCU, Li ZHU for their useful advices,

research assistantship and relationship for my Ph. D. study. I want to express my

gratitude to my friends in Toulouse, Menglin HE, Xue HAN, Yiran, CHEN, Xin YI

and others for their accompaniment and encouragement during three years.

Of course, I would like to express a special acknowledgement to my parents for their

understanding and supporting for all these years.

� 55�

� 555�

Abstract

Specialty: Information and Telecommunications

Family name: LUO

Given name: Jia

Thesis delivered at: LAAS, UPS Toulouse

Title: Parallel Genetic Algorithms for Solving Energy Efficient Dynamic Shop

Scheduling Problems

Due to new government legislation, customers’ environmental concerns and

continuously rising cost of energy, energy efficiency is becoming an essential

parameter of industrial manufacturing processes in recent years. Most efforts

considering energy issues in scheduling problems have focused on static scheduling.

But in fact, scheduling problems are dynamic in the real world with uncertain new

arrival jobs after the execution time. In this thesis, two energy efficient dynamic

scheduling problems are studied. Model I analyzes the total tardiness and the makespan

with a peak power limitation while considering the flexible flow shop with new arrival

jobs. A periodic complete rescheduling approach is adopted to represent the

optimization problem. Model II concerns an investigation into minimizing total

tardiness and total energy consumption in the job shop with new urgent arrival jobs. An

event driven schedule repair approach is utilized to deal with the updated schedule.

As an adequate renewed scheduling plan needs to be obtained in a short response time

in dynamic environment, two parallel Genetic Algorithms (GAs) are proposed to solve

these two models respectively. The parallel GA I is a CUDA-based hybrid model

consisting of an island GA at the upper level and a fine-grained GA at the lower level.

It combines metrics of two hierarchical layers and takes full advantage of CUDA’s

compute capability. The parallel GA II is a dual heterogeneous design composed of a

cellular GA and a pseudo GA. The islands with these two different structures increase

the population diversity and can be well parallelized on GPUs simultaneously with

multi-core CPU.

� 5@�

Finally, numerical experiments are conducted and show that our approaches can not

only solve the problems flexibly, but also gain competitive results and reduce time

requirements.

Key words: Shop Scheduling, Energy Efficiency, Dynamic Scheduling, Parallel

Genetic Algorithms, GPUs, multi-core CPU

� @�

Résumé

Spécialité: Informatique et Télécommunications

Nom: LUO

Prénom: Jia

Thèse effectuée au: LAAS, UPS Toulouse

Titre de la Thèse en français : Algorithmes génétiques parallèles pour résoudre

des problèmes d’ordonnancement de tâches dynamiques de manière efficace en

prenant en compte l’énergie

Du fait de nouvelles législations gouvernementales et de la prise de conscience

environnementale des consommateurs ainsi que de la hausse du coût de l’énergie,

l’efficacité énergétique est devenue un paramètre essentiel des processus industriels ces

dernières années. La plupart des avancées en ce qui concerne les économies d’énergie

dans les problèmes d’ordonnancement se sont focalisées sur l’ordonnancement statique.

Mais en fait, ces problèmes sont dynamiques dans le monde réel. Dans cette thèse, deux

problèmes d’ordonnancement dynamique efficace énergiquement sont étudiés. Le

Modèle I analyse le retard total et la durée de production avec une limite de puissance

tout en tenant compte d’un flux dynamique de nouvelles tâches. Un rééchelonnement

complet périodique est adopté. Le Modèle II vise à réduire au minimum le retard total

et la consommation d’énergie totale dans le traitement des tâches en tenant compte de

nouvelles tâches prioritaires. Une approche basée sur la réparation de la planification

des événements est utilisée pour traiter la mise à jour de l’ordonnancement.

Comme un nouveau plan d’ordonnancement adéquat doit être obtenu dans un temps de

réponse court dans un environnement dynamique, deux Algorithmes Génétiques

parallèles (AG) sont proposés pour résoudre ces deux modèles. L’algorithme parallèle

AG I est une méthode hybride basée sur CUDA consistant en un modèle AG insulaire

au niveau supérieur et un modèle AG fin, au niveau inférieur. Il combine les métriques

de deux couches hiérarchiques et tire pleinement parti des capacités de calcul de la

plateforme CUDA. L’algorithme AG II est conçu avec une double hétérogénéité qui

résulte de l’utilisation d’un AG cellulaire parallèle et d’un pseudo AG parallèle. Avec

� @5�

ces deux structures différentes, les ilots augmentent la diversité de la population et

peuvent être simultanément parallélisés sur des GPU et un processeur multi-cœur.

Enfin, des solutions numériques sont présentées et analysées ; elles montrent que nos

approches peuvent non seulement résoudre les problèmes de manière flexible, mais

également obtenir des solutions avantageuses et réduire les temps de calcul.

Mots clefs: Ordonnancement des tâches, efficacité énergétique, ordonnancement

dynamique, algorithmes génétiques parallèles, GPU, CPU multi-cœur.

� @55�

Content
�4-;>1<�����9><:0?/>5:9��	�

$121<19/1���

�4-;>1<�����$17->10�):<6=���

���	��9><:0?/>5:9���

���
��191>5/��73:<5>48=�A5>4�%/410?7593�"<:.718=�59��-9?2-/>?<593�%C=>18=������

���
�	�%58;71��191>5/��73:<5>48=���

���
�
��-=>1<�%7-@1��191>5/��73:<5>48=��	
�

���
�
�	��:.�%4:;�%/410?7593�"<:.718=��	��

���
�
�
��7:A�%4:;�%/410?7593�"<:.718=���	��

���
����591�3<-5910��191>5/��73:<5>48=��	�

���
���	��:.�%4:;�%/410?7593�"<:.718=��	��

���
����=7-90��191>5/��73:<5>48=��	��

���
���	��:.�%4:;�%/410?7593�"<:.718=��	��

���
���
��7:A�%4:;�%/410?7593�"<:.718=���
��

���
�����!;19�%4:;�%/410?7593�"<:.718=���

�

���
������71B5.71�%4:;�%/410?7593�"<:.718=��
��

������1=539�:2��"���<-81A:<6=��-=10��191>5/��73:<5>48=�2:<�%4:;�%/410?7593�

"<:.718=���
�

������:9/7?=5:9��
��

$121<19/1���
��

�4-;>1<������&A:��225/519>� 1A�"-<-7717��191>5/��73:<5>48=���	�

����	��9><:0?/>5:9��	�

����
�"<:.718��12595>5:9���
�

���������'����-=10��C.<50��191>5/��73:<5>48��

������	��C.<50��:017��

������
��191>5/��73:<5>48�!;1<->:<=���

�������� ?81<5/-7��B;1<5819>=���	�

��������	��:9><:77593�"-<-81>1<=�%19=5>5@1��9-7C=5=�&1=>�������������������������������������
�

��������
��:8;-<5=:9�&1=>�:9�%:7?>5:9�#?-75>C��

�����������:8;-<5=:9�&1=>�:9��B1/?>5:9�&581���

���������?-7��1>1<:3191:?=��191>5/��73:<5>48��

� @555�

������	��?-7��1>1<:3191:?=��=7-90�%><->13C���

������
�"191><->5:9��53<->5:9�":75/C��

��������"-<-77175D->5:9�:9��"'=�-90�8?7>5�/:<1��"'��	�

�������� ?81<5/-7��B;1<5819>=��

��������	��53<->5:9��41/6��9>1<@-7�&1=>��

��������
��:8;-<5=:9�&1=>�:9�%:7?>5:9�#?-75>C���

�����������:8;-<5=:9�&1=>�:9��B1/?>5:9�&581��

������:9/7?=5:9=��

$121<19/1���

�4-;>1<� �(�� � "-<-7717���� ��A5>4�"1<5:05/��:8;71>1�$1=/410?7593� 2:<�%:7@593�-9�

�91<3C��225/519>��C9-85/���%"�'=593�>41�"1-6�":A1<�(-7?1���

�(�	��9><:0?/>5:9��

�(�
�"<:.718��12595>5:9���	�

�(���%:7@593��;;<:-/4���

�(���	�"1<5:05/��:8;71>1�$1=/410?7593�%><->13C���

�(���
�"<5:<5>C��-=10��9/:0593�$1;<1=19>->5:9��

�(������'����-=10��C.<50��191>5/��73:<5>48��

�(���� ?81<5/-7��B;1<5819>=���
�

�(���	�"-<-81>1<=��:9253?<->5:9�&1=>�:2�"-<-7717���

�(���
�"1<2:<8-9/1��@-7?->5:9�&1=>�:2�"-<-7717��

�(�����%19=5>5@1��9-7C=5=�&1=>�:2�>41�����%"��

�(������:9@1<319/1�><190�>1=>�:2�>41�����%"���

�(���:9/7?=5:9��	�

$121<19/1��
�

�4-;>1<�(��"-<-7717�������A5>4��@19>��<5@19�%/410?71�$1;-5<�2:<�%:7@593�-��%"�A5>4�

�59585D->5:9�:2�&:>-7�&-<0591==�-90�&:>-7��91<3C��:9=?8;>5:9��������������������������������

(�	��9><:0?/>5:9���

(�
�"<:.718��12595>5:9��

(���%:7@593�-;;<:-/4��

(���	��@19>�0<5@19�=/410?71�<1;-5<�=><->13C���

(���
��C.<50��9/:0593�$1;<1=19>->5:9���

(������?-7��1>1<:3191:?=��=7-90����:9��"'=�-90�8?7>5�/:<1��"'������������������

(����� ?81<5/-7��B;1<5819>=��	�	�

� 5B�

(����	��@-7?->5:9��	�	�

(����
��-=1�%>?0C���	���

(�����:9/7?=5:9��			�

$121<19/1���		
�

�4-;>1<�(����:9/7?=5:9�-90��?>?<1�):<6=���		�

�5=>�:2�"?.75/->5:9=���		��

� B�

� B5�

List of Tables

Table 1 Features of two proposed energy efficient dynamic shop scheduling models . 4�

Table 2 Features of two proposed parallel GAs ... 5�

Table 3 Other required conditions for shop scheduling problems 7�

Table 4 The pseudo-code of simple GA .. 12�

Table 5 The pseudo-code of master-slave GA ... 13�

Table 6 The pseudo-code of fine-grained GA ... 16�

Table 7 The pseudo-code of island GA ... 19�

Table 8 A description of notations used in all formulae in Chapter III 32�

Table 9 The correspondence between the hybrid parallel GA components and the

hierarchy of CUDA threads ... 37�

Table 10 The experimental relative data of the FFSP .. 41�

Table 11 Different implementations used to obtain the execution time 45�

Table 12 An example of the dynamic complementary initialization strategy 49�

Table 13 The solutions’ quality comparison among the parallel GA II and other GAs

.. 54�

Table 14 A description of notations used in all formulae in Chapter IV 61�

Table 15 An example of EDFFS .. 69�

Table 16 The experimental relative data of the EDFFS .. 73�

Table 17 Results of the parallel hybrid GA on GPUs with different settings of

crossover rate and mutation rate .. 74�

Table 18 Execution time with different island sizes (block sizes) on GPUs 75�

Table 19 Solutions’ quality comparison .. 76�

Table 20 Execution time comparison .. 76�

Table 21 Comparison between the periodic complete rescheduling approach and the

traditional static approach with different ratios of the RS to the makespan in the

original schedule .. 78�

Table 22 Relationship between two objectives with different WT settings 79�

Table 23 A description of notations used in Chapter V ... 89�

Table 24 The experimental relative data of energy efficient JSP 102�

� B55�

Table 25 Solutions’ quality comparison .. 103�

Table 26 Execution time comparison .. 104�

Table 27 The case data of an EDJSP ... 106�

Table 28 Original jobs’ finishing time comparison between an optimal solution of the

original schedule and an optimal solution of the update schedule 107�

� B555�

List of Figures

Figure 1 An example of the roulette wheel selection .. 9�

Figure 2 An example of the stochastic universal sampling ... 10�

Figure 3 An example of the tournament selection ... 10�

Figure 4 An example of the 2-point crossover ... 10�

Figure 5 An example of the uniform crossover ... 11�

Figure 6 An example of the shift mutation .. 11�

Figure 7 An example of the pairwise interchange mutation .. 11�

Figure 8 The scheme of master-slave GA .. 13�

Figure 9 The scheme of fine-grained GA .. 16�

Figure 10 The scheme of island GA .. 18�

Figure 11 A flexible flow shop layout ... 34�

Figure 12 The hierarchy of threads and different types of memory of CUDA 36�

Figure 13 The hierarchy of hybrid GA .. 37�

Figure 14 The procedure of hybrid parallel GA with memory management 38�

Figure 15 The selection operation of hybrid GA ... 39�

Figure 16 The crossover operation of hybrid GA .. 40�

Figure 17 The single ring migration among islands .. 41�

Figure 18 The sensitive analysis on controlling parameters .. 43�

Figure 19 The solution quality comparison between the parallel GA I and the simple

GA .. 44�

Figure 20 The execution time comparison among the parallel GA I and other

implementations ... 46�

Figure 21 The dual heterogeneous island GA model ... 47�

Figure 22 The procedure of dual heterogeneous island GA .. 48�

Figure 23 An example of the penetration model� ... 50�

Figure 24 The neighborhood area of cellular GA .. 52�

Figure 25 An example of the Bitonic-Merge sort .. 52�

Figure 26 The influence of the migration policy execution gap for the heterogeneous

GA .. 54�

Figure 27 The convergence trend among the parallel GA II and other GAs 55�

� B5@�

Figure 28 The execution time comparison among the parallel GA II and other GAs . 56�

Figure 29 An example of EDFFSP using the peak power value 63�

Figure 30 The flow of periodic complete rescheduling process for the EDFFSP 65�

Figure 31 The original schedule of an optimized solution .. 70�

Figure 32 The updated schedule of an optimized solution in a static environment 70�

Figure 33 The updated schedule of an optimized solution obtained by the proposed

approach in a dynamic environment .. 70�

Figure 34 An example of the neighboring paired crossover .. 72�

Figure 35 An example of the mutation .. 72�

Figure 36 The trend of the probability obtaining adequate solutions with different

island sizes (block sizes) on GPUs .. 75�

Figure 37 The convergence trend of small size problem ... 80�

Figure 38 The convergence trend of medium size problem .. 80�

Figure 39 The convergence trend of large size problem .. 81�

Figure 40 A job shop layout ... 88�

Figure 41 Conflicts among total tardiness, total energy consumption and disruption to

the original schedule .. 89�

Figure 42 The flow of event-driven schedule repair process for the EDJSP 94�

Figure 43 Gantt chart of the original schedule of an optimal solution 108�

Figure 44 Gantt chart of the updated schedule of an optimal solution 109�

Figure 45 Comparison between the original schedule and three updated schedules . 110�

� B@�

List of Algorithms

Algorithm 1The procedure for determining elements’ value of matrix Z(k) 67�

Algorithm 2 The decoding rule of the EDFFS ... 68�

Algorithm 3 The initialization rule of permutations X'k and Y'(k) for all individuals

of the cellular GA ... 96�

Algorithm 4 The decoding rule of the EDJSP ... 97�

� B@5�

� 	�

Chapter I. Introduction

This Chapter introduces the research that has been done in this thesis. The main work

was undertaken at the Laboratory for Analysis and Architecture of Systems of National

Center for Scientific Research (LAAS-CNRS), Toulouse, France with the funding from

China Scholarship Council. This study was supervised by Dr. Didier EL BAZ in the

Distributed Computing and Asynchronism team at LAAS DU CNRS and was

cooperated with Prof. Shigeru FUJIMURA at Waseda University, Japan. The CDA

team at LAAS DU CNRS focuses on scientific research results in the fields of high

performance computing, parallel computing and distributed computing with application

to combinatorial optimization and numerical simulation problems [1] while Prof.

Fujimura’s research interests are on production management and production scheduling

[2]. Therefore, this thesis was carried out in the background of solving shop job

scheduling problems by parallel algorithms.

The shop scheduling problem is one of the best known combinatorial optimization

problems. In this problem, a set of jobs needs to be scheduled on a set of machines

under certain specific optimization criterions. According to the restrictions on the

technological routes of the jobs, most of the job shop scheduling works’ concern on the

three basic types [3]: a flow-shop (each job is characterized by the same technological

route), a job-shop (each job has a specific route) and an open-shop (no technological

route is imposed on the jobs). Moreover, flexible shops also catch a lot of attention that

is a combination of a shop scheduling problem and a parallel machine scheduling

problem [4]. Nowadays, energy efficiency is becoming an essential parameter of

industrial manufacturing processes, mostly due to new government legislation,

customers’ environmental concerns and continuously rising cost of energy. About one

half of the world’s total energy is currently consumed by the industrial sector [5] and

its energy consumption has nearly doubled over the last 60 years [6]. Because of a

�
�

growing economical competitive landscape and higher environmental norms, it is now

vital for manufacturing companies to integrate energy efficiency when dealing with

traditional shop scheduling problems. Dynamic optimization problems are problems in

which changes occur over time [7]. Scheduling problems are dynamic in the real world

with unexpected events after the start time. Dynamic scheduling problems are more

complex than static scheduling problems. A lot of methods have been proposed to solve

this kind of problems [8]. In the dynamic environment, generating adequate results in

a reasonable response time is a key point that cannot be ignored. Due to the hardness,

the time cost to obtain an adequate solution for shop scheduling problems is heavy.

Furthermore, few works have studied the dynamic scheduling problem with energy

efficient demand. Thus, more efforts need be donated to solve energy efficient dynamic

shop scheduling problems. Nonetheless we have to face the challenge that new

integrated energy requirements in a dynamic environment lead to the complexity of the

considered problem to be higher and ask longer execution time to get acceptable

solutions.

The Genetic Algorithm (GA) is considered as one of the most efficient method to solve

shop scheduling problems. It is a stochastic search algorithm based on the principle of

natural selection and recombination [9] and has been successfully applied to solve many

difficult optimization problems. However, there is an increase in the required time to

find adequate solutions when GAs are applied to complex and large problems.

Particularly, repeated fitness function evaluation is often the most prohibitive and

limiting segment when GAs are chosen to find an optimal solution for high-dimensional

or multimodal implementations. As a consequence, efforts to make GAs faster are

deeply demanded and parallel implementation is considered as one of the most

promising choices. Generally, there are different ways of exploiting parallelism in GAs

[10]: master-slave models, fine-grained models, island models, and hybrid models. The

master-slave model is the only one that does not affect the behavior of the algorithm by

distributing the evaluation of fitness function to slaves. The fine-grained model works

with a large spatially population. The evolution operations are restricted to a small

neighborhood with some interactions by overlap structure. The island model divides

population into subpopulations. These subpopulations on independent islands are free

to converge towards different sub-optima and a migration operator can help mix good

� ��

features that emerge locally. The hybrid model combines any two of the above methods.

Lots of researches have been carried on parallel GAs to solve shop scheduling problems

on different architectures whereas most of them concerned only the traditional case

with schedule efficiency.

In the last decades, High Performance Computing (HPC) has become well-known.

Super computers and parallel processing techniques are used to solve complex

computational issues. By leveraging both administration and parallel computational

techniques, this technology’s aim is to develop parallel processing algorithms and

systems [11]. HPC systems give the ability to provide sustained performance through

the concurrent use of computing resources. As a result, it is widely used for solving

complex problems and performing research activities through computer modeling,

simulation and analysis. The implementation on multi-core processors and many-core

processors is one common way to use hardware efficiently for HPC applications. The

multi-core CPU is a typical multi-core processor in which a single computing

component is equipped with two or more independent processing cores. The

instructions have no difference with ordinary CPU instructions, but multiple

instructions can be run on separate cores simultaneously to increase overall speed. In

theory, parallel implementations may achieve speedup near the number of cores in the

best case. On the other hand, Graphics Processing Units (GPUs) are many-core

processor devices providing a highly multi-threaded environment using the Single

Instruction, Multiple Threads (SIMT) model. To achieve general-purpose parallel

computation on GPUs, the Compute Unified Device Architecture (CUDA) [12] was

developed in 2006. It is a framework that takes the maximum advantage of the low-

lying hardware using an industry standard programming language [13]. These

developments provide a nice point for exploring the parallel GAs. However, few studies

have been conducted to integrate parallel computing in GAs to solve dynamic energy

efficient scheduling problems, because of the complexity that is caused.

Overall, this thesis focuses on solving energy efficient dynamic shop scheduling

problems with parallel GAs. Limiting the peak power is one of the main way when shop

scheduling deals with energy efficiency, because electricity consumption and operating

costs of manufacturing plants are usually charged based on the peak power demand

from electricity providers [14]. Meanwhile, minimizing the total energy consumption

� ��

within the traditional scheduling problem is an alternative solution as delaying

production activities may not be acceptable in manufacturing. Regarding the dynamic

scheduling, two strategies are generally used. The complete rescheduling regenerates a

new schedule from scratch while the schedule repair refers to some local adjustment of

the current schedule [8]. Furthermore, the rescheduling point also has a great influence

on the results. If the schedule is executed until some fixed period begins, it is considered

as the periodic policy. On the other hand, the event driven policy triggers the

rescheduling once any unexpected event happens. In this thesis, two energy efficient

dynamic shop scheduling problems are studied. According to the above-mentioned

classification schemes, their features are marked as in Table 1.

Table 1 Features of two proposed energy efficient dynamic shop scheduling models

 Model I Model II

Problem Types Flow Shop Job Shop

Flexible Shops Yes No

Energy Efficiency Peak Power Total Energy Consumption

Reschedule Point Periodic Event Driven

Reschedule Strategy Complete Reschedule Reschedule Repair

In order to solve the energy efficient shop scheduling problem efficiently and achieve

a speedup to meet the short response in the dynamic environment, two parallel GAs are

developed in this thesis. The first one is taken for solving Model I. It is a hybrid model

consisting of an island GA at the upper level and a fine-grained GA at the lower level.

Since the fine-grained model obtains good population diversity when dealing with high-

dimensional variable spaces and the island model converges faster by subpopulations,

this design combines metrics from two levels to gain competitive results. Meanwhile,

the hybrid structure achieves the maximum speedup through its high consistence with

the CUDA framework. The second one is implemented to Model II that is composed

of a cellular GA and a pseudo GA. The 2D variable spaces of the cellular model and

the complementary parent strategy of the pseudo model keep the population diversity

while a penetration inspired migration policy shares information between them.

Furthermore, this heterogeneous structure can be well parallelized on GPUs

simultaneously with multi-core CPU and enjoys parallel computing resources from two

sides. The features of two parallel GAs are summarized as in Table 2.

� �

Table 2 Features of two proposed parallel GAs

 Parallel GA I Parallel GA II

Components Island GA, Fined-grained GA Cellular GA, Pseudo GA

Components’ Relationship Hierarchical Horizontal

Platform CUDA CUDA, OpenMP [15]

The rest of this thesis is organized as follows: Chapter 2 presents the state of the art

with respect to the recent works on solving shop scheduling problems using parallel

GAs. Chapter 3 describes the two proposed parallel GAs and analyzes their

performance by some instances of the flexible flow shop scheduling problem. An

energy efficient dynamic flexible flow shop scheduling model using the peak power

value with consideration of new arrival jobs is discussed in Chapter 4. It is solved by

the CUDA-based hybrid GA with the predictive reactive complete rescheduling

strategy. Chapter 5 studies a model of job shop scheduling problem in dynamic

environment concerning the traditional schedule efficiency, the total energy

consumption and the reschedule cost. The dual heterogeneous Island GA is used to

solve this problem with the event driven schedule repair policy. Finally, Chapter 6

states the conclusions.

Reference

[1]. https://www.laas.fr/public/en/cda

[2]. https://www.waseda.jp/fsci/gips/other-en/2015/09/08/2172/

[3].Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and

approximation in deterministic sequencing and scheduling: a survey. In Annals of

discrete mathematics (Vol. 5, pp. 287-326). Elsevier.

[4].Werner, F. (2011). Genetic algorithms for shop scheduling problems: a

survey. Preprint, 11, 31.

[5].EIA (2009) International energy outlook 2009. May 2009 2.

[6].EIA (2010) Annual energy review 2009. Report no. DOE/EIA0384(2009); August

2010

[7].Khouadjia, M. R., Sarasola, B., Alba, E., Jourdan, L., & Talbi, E. G. (2011, May).

Multi-environmental cooperative parallel metaheuristics for solving dynamic

� ��

optimization problems. In Parallel and Distributed Processing Workshops and Phd

Forum (IPDPSW), 2011 IEEE International Symposium on(pp. 395-403). IEEE.

[8].Ouelhadj, D., & Petrovic, S. (2009). A survey of dynamic scheduling in

manufacturing systems. Journal of scheduling, 12(4), 417.

[9].Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.

[10].Cantú-Paz, E. (1998). A survey of parallel genetic algorithms. Calculateurs

paralleles, reseaux et systems repartis, 10(2), 141-171.

[11].https://www.techopedia.com/definition/4595/high-performance-computing-hpc

[12].https://developer.nvidia.com/cuda-toolkit

[13].Munawar, A., Wahib, M., Munetomo, M., & Akama, K. (2009). Hybrid of genetic

algorithm and local search to solve MAX-SAT problem using nVidia CUDA

framework. Genetic Programming and Evolvable Machines, 10(4), 391.

[14].Xu, F., Weng, W., & Fujimura, S. (2014, January). Energy-Efficient Scheduling

for Flexible Flow Shops by Using MIP. In IIE Annual Conference. Proceedings (p.

1040). Institute of Industrial and Systems Engineers (IISE).

[15].http://www.openmp.org/

� ��

Chapter II. Related Works

II.1 Introduction

The shop scheduling problem is a classical optimization problem. One instance of the

problem consists of a set of n jobs J0, J1, …, Jj , ..., Jn-1 and a set of o machines M0,

M1, …, Mm, …, Mo-1. Each job Ji comprises a number of g stages S0, S1, …, Ss, …,

Sg-1. The processing time of one step of job Ji on a particular machine is denoted as an

operation and is abbreviated by (j, s, m). Usually, its value is known as Pjsm with the

release time Rj and the due time Dj. Additionally, other required conditions are shown

in Table 3.

Table 3 Other required conditions for shop scheduling problems

NO. Description

1 Each operation of a job must be processed by one and only one machine.

2 Each machine can process no more than one operation at a time.

3 Each job is available for processing after the release time.

4 Setup times for job processing and machine assignment times between stages are

not taken into consideration.

5 There is infinite intermediate storage between machines.

When a feasible schedule is given, we can compute for each Jj: the completion time Cj,

the tardiness Tj = max{0, Cj - Dj}, and the unit penalty Uj = 1 if Cj > Dj, otherwise 0.

The most common optimality criteria are the minimization of the makespan Cmax, the

minimization of the sum of the weighted completion time ∑w)C), the minimization of

the sum of the weighted tardiness ∑w)T) , and the minimization of the sum of the

weighted unit penalty ∑w)U), or any combination among them.

� ��

There are three ways to classify the scheduling problem in manufacturing systems by

the machine environment, the job characteristics and the optimization criterion [1].

However, three basic types: the flow-shop, the job-shop and the open-shop, have caught

the most attestation. In a flow-shop, each job passes through the machines with the

same order whereas a job-shop enables specified jobs have possibly different machine

orderings. In an open-shop, there is no particular route imposed on jobs. Meanwhile,

lots of works concern the combination of a shop scheduling and a parallel machine

scheduling, in which at least one stage consists of several parallel machines [2]. The

flexible flow shop and the flexible job shop are two types that are the most considered.

Most shop scheduling problems are known as strong NP-hard problems [3]. Many

works to solve it by exact methods and meta-heuristic methods have been done.

However, this class of problems requires complex and time-consuming solution

algorithms. Although the speed of the best supercomputer increases 10 times each 3 or

4 years, this increase has only a little influence on the size of solvable problems [4].

Therefore, efforts to coordinate algorithms with HPC accelerators to solve shop

scheduling problems efficiently and effectively are deeply desirable. In this Chapter,

works on solving shop scheduling problems using parallel GA are presented. It

showcases the most representative publications in this field by the categorization of

parallel GAs and analyzes their designs based on the frameworks.

II.2 Genetic Algorithms with Scheduling Problems in

Manufacturing Systems

II.2.1 Simple Genetic Algorithms

A simple GA [5] starts with a randomly generated initial population consisting of a set

of individuals. An individual is representated by a chromosome. For flow shop

problems, a standard chromosome consists of a string of length n, and the i-th gene

contains the index of the job at position i [2]. An individual describes a feasible

schedule of jobs’ sequence on target machines. For job shop problems, there are two

ways of chromosome representation: direct way and indirect way. The direct way is

similar with the way for flow shop problems: a feasible schedule is directly encoded

� ��

into the chromosome, whereas the chromosome in the indirect way shows a sequence

of dispatching rules for job assignment [6]. As no imposed technological routes of the

jobs for open shop problems, both of the encoding approaches for the flow shop and

the job shop can be applied in this case. The fitness value of each individual is used to

evaluate the current population. It is related to the objective function value of shop

scheduling problems at the point represented by a chromosome. Since most common

optimality criteria of shop scheduling problems are about minimization. The fitness

function FIT(i) of an individual i usually can be transferred as [2]:

FIT(i) = max	(E678 − F:(S:), 0) (2.1)

where F:(S:)	denotes the objective function value of a feasible schedule from

individual i and E678 is the estimated maximum value of the objective function.

As the values of objective function for shop scheduling problems are generally positive,

some papers measure the fitness function FIT(i) as:

FIT i =
1

F:(S:)
		 (2.2)

Figure 1 An example of the roulette wheel selection

� 	��

Figure 2 An example of the stochastic universal sampling

Figure 3 An example of the tournament selection

Figure 4 An example of the 2-point crossover

� 		�

Figure 5 An example of the uniform crossover

Figure 6 An example of the shift mutation

Figure 7 An example of the pairwise interchange mutation

Three GA operations: selection, crossover and mutation, work on these chromosomes

to get new search points in a state of space. Usually, individuals are first selected

through a fitness-based process. For shop scheduling problems, solutions with larger

fitness values are more likely to be selected. Some well-known methods are

implemented in this step: the roulette wheel selection [7] (see Figure 1), the stochastic

universal sampling [8] (see Figure 2), the tournament selection [9] (see Figure 3) and

so on [10]. Next, the crossover takes two random individuals kept after selection and

exchanges random sub-chromosomes. The classic methods are the n-point crossover [2]

(see Figure 4) and the uniform crossover [2] (see Figure 5). Due to particular

requirements of different shop scheduling problems, additional steps may be required

to repair the illegal offspring caused by the crossover. The mutation then alters some

� 	
�

random value within a chromosome. Different from the binary encoding, the mutation

for shop scheduling problems works often based on the neighborhoods e.g. shift

mutation (insertion neighborhood) [2] (see Figure 6) or pairwise interchange mutation

(swap neighborhood) [2] (see Figure 7) to respect feasible solutions. Population

evaluation is executed after these three steps. Sometimes, an elitist strategy is hired

afterwards to keep limited number of individuals with the best fitness values to the next

generation. This process repeats until the termination criteria have been satisfied. The

full procedure is stated in Table 4.

Table 4 The pseudo-code of simple GA

1: initialize();

2: while (termination criteria are not satisfied) do

3: Generation++

4: Selection();

5: Crossover();

6: Mutation();

7: FitnessValueEvaluation();

8: end while

II.2.2 Master-Slave Genetic Algorithms

The master-slave GA is known as global parallel GA as well. It keeps a single

population as a simple GA that is stored at the master side. In this case, each individual

is free to compete and mate with any other. Since the fitness value calculations of

individuals are independent without any communication with others, the slaves take

care of fitness evaluation in parallel. Data exchange occurs only when sending and

receiving tasks between the master and slaves. Obviously, frequent communication

overhead offsets some performance gains from slaves’ computing. However, as master-

slave GA is the easiest parallel model to be implemented and does not assume

underlying architecture, it is still very efficient when the evaluation is complex and

requires considerable computation. The structure [11] and the steps of this parallel

model are presented in Figure 8 and Table 5 respectively.

� 	��

Figure 8 The scheme of master-slave GA

Table 5 The pseudo-code of master-slave GA

1: Initialize();

2: while (termination criteria are not satisfied) do

3: Generation++

4: Selection();

5: Crossover();

6: Mutation();

7: Parallel_FitnessValueEvaluation_Individuals();

9: end while

II.2.2.1 Job Shop Scheduling Problems

AitZai et al. modeled the job shop scheduling problem with blocking using the

alternative graph with conjunctive arcs and alternative arcs in [12]. In addition to a

parallel branch and bound method, two master-slave GA parallelization methods were

also presented. The first one was based on CPU networking with a star network of inter-

connected computers. On the opposite, the second one worked on GPU with some

memory management respecting to CUDA framework. Numerical tests were carried on

a station equipped with CPU ×2: Intel Xeon E5620 and GPU: NVIDIA Quadro 2000

01 Go GPU. With a population size 1056 and a limited total execution time 300s, the

master-slave GA using GPU could get maximum 15 times more explored solutions than

the GA using CPU. Moreover, a related earlier work was introduced by AitZai in [13].

In order to improve the solution of job shop scheduling problems, Somani et al. [14]

imposed a topological sorting step to the GA before the fitness value calculation, which

� 	��

was used to generate the topological sequences of directed acyclic graph. The parallel

implementation of the proposed GA in CUDA environment consisted of two kernels.

The former one was used for making the topological sequences by the help of

topological sorting, while the later one was hired to calculate the makespan from the

longest path algorithm. The crossover and the mutation were performed between two

randomly selected schedules on CPU. Experiments was setup with Intel(R) Xeon(R)

E5-2650 @ 2.00 GHz and NVIDA Tesla C2075 (448 cores) and results have shown the

proposed GA performed around 9 times faster for large-scale problems than the

sequential GA.

Another job shop scheduling problem was studied by Mui et al. [15] where a prior-rule

was used to create active schedules. The selection combined the idea of an elitist

strategy and a roulette wheel selection, whereas the crossover took a GT algorithm

implemented on three parents and the mutation used neighborhood searching technique.

With this design, the main part of the GA could be computed independently. In the

parallel environment, a master-slave model was employed where the slaves performed

the GA evolutionary operators concurrently and the master searched the global

optimum among optimal results received from slaves. The proposed method was run

on the CSS computer server system with 6 computers, in which each computer had a

Pentium-4 CPU with 4GB free of ram. Empirical results have shown the master-slave

GA with 6 processors could save 3 to 4 times the execution time compared to the

sequential version.

II.2.2.2 Flow Shop Scheduling Problems

A master-slave GA dealing with a single population and a group of local subpopulations

was presented in [16] for a flow shop problem. This method involved a master

scheduler and a set of slave processors. The master scheduler ran the GA operators

(partial replacement selection, cycle crossover and swapping mutation) of all

individuals sequentially. When the evolution of one individual was finished, it was

placed in the unassigned queue from which the master scheduler partitioned the fitness

value calculation to slave processors in batches. The choice of candidate slave

processors was made upon the involved communication overhead and their

� 	�

computational potential. The available resources among slave processors in the

distributed system could vary over time. Moreover, all individuals were maintained in

the master scheduler synchronously. The proposed GA was implemented on a laptop

with Prentium IV core 2 Duo 2.53 GHz CPU. The outputs showed the new algorithm

could be 9 times faster maximally than the results of serial GA achieved by the Lingo

8 software.

Attentions to use master-slave GA to shop scheduling problems have been increased in

the last decade and the work is carried with various underlying architectures. Since only

independent tasks are executed on slaves without communication cost among them,

both the conventional GA and any improved GAs can be implemented with it easily.

Although the communication between the master and the slaves is an impediment in

speed, it still performs well to solve shop scheduling problems whose fitness value

calculation is complex and requires considerable computation.

II.2.3 Fine-grained Genetic Algorithms

The fine-grained GA can also be called as neighborhood GA, diffusion GA or

massively parallel GA. The main idea is to map individuals of a single GA population

on a spatial structure. An individual is limited to compete and mate with its neighbors,

while the neighborhoods overlapping makes good solutions disseminate through the

entire population. This model obtains good population diversity when dealing with

high-dimensional variable spaces [17]. Meanwhile, it is easy to be placed in any 2D

grid, as many massively parallel architectures are designed with this topology. However,

we cannot neglect the great influence from the spatial structure, which generally has

little chance to be modified. The scheme [11] and the implemented process of the fine-

grained GA are shown in Figure 9 and Table 6 separately.

� 	��

Figure 9 The scheme of fine-grained GA

Table 6 The pseudo-code of fine-grained GA

1: Initialize();

2: while (termination criteria are not satisfied) do

3: Generation++

4: Parallel_NeighborhoodSelection_Individuals();

5: Parallel_NeighborhoodCrossover_Individuals();

6: Parallel_Mutation_Individuals();

7: Parallel_FitnessValueEvaluation_Individuals();

8: end while

II.2.3.1 Job Shop Scheduling Problems

A fine-grained GA solving job shop scheduling problems was considered by Tamaki et

al. [18]. In this paper, the selection was executed locally in a neighborhood of each

population. The objectives of this neighborhood model were to improve search in the

GA by suppressing favorably the premature convergence phenomena, and to reduce

computational time by implementing it on a parallel computer at the same time. The

method was then modified as an absolute neighborhood model and implemented on

Transputer. Transputer was a MIMD (Multi-Instruction Multi-Data) machine with

microprocessors, featuring integrated memory and serial communication links.

Through several computational experiments for job shop scheduling problems, the

parallel GA with 16 processors could shorten the calculation time dramatically.

� 	��

However, as Transputer did not equip with shared memory, the data exchange was

handled through communication operations. Therefore, the calculation time reduction

was not able to reach an ideal level. Lin et al. [19] investigated parallel GAs on job

shop scheduling problems with a direct solution representation, which encoded the

operation starting times. The GA operators were inspired by the G&T algorithm with

the random selection, the THX (time horizon exchange) crossover and the THX

mutation. Two hybrid models built up by the fine-grained GA with a 2D torus topology

and the island GA connected in a ring were discussed in this paper. The first one was

an embedding of the fine-grained GA into the island GA, in which each subpopulation

on the ring was a torus. The migration on the ring was much less frequent than within

the torus. In the second model, the connection topology used in the island GA was one

which is typically found in the fine-grained GA and a relatively large number of nodes

were used. The migration frequency kept the same in the island GA. Those two methods

were carried on a Sun Ultra 1 which was a family of Sun Microsystems workstations

based on the 64-bit Ultra SPARC microprocessor with a single population GA, two

island GAs of different subpopulation sizes and one torus fine-grained GA. The

execution time comparison was only made between the single population GA and two

island GAs with the speedup of 4.7 and 18.5 respectively. Regarding to solutions’

quality, best results were obtained by the hybrid model consisting of island GAs

connected in a fine-grained GA style topology by combing the merits from them.

Compared with other two kinds of parallel GA, it seems the implementation of fine-

grained GA for shop scheduling problems is rare and outdated, no matter the amount

of related papers or the various types of treated problems. Along the development of

modern computing accelerators with 2D grid environment, like GPU, this

implementation has a lot of potential in the near future. Apart form manufacturing

systems, the fine-grained GA is also used for task scheduling problems [20]. It is

another type of scheduling problems that focuses on minimizing the makespan as well

but for a set of tasks to be executed in multiprocessor systems. In this domain, the fine-

grained model is treated sometimes as parallel cellular GA [21].

� 	��

II.2.4 Island Genetic Algorithms

The island model is the most famous for the research on parallel GAs. In some papers,

it may be called as coarse-grained models, multi-deme models, multi-population

models, migration models or distributed models. Unlike previous parallel GAs, this

model divides the population into a few relatively large subpopulations. Each of them

works as an island and is free to converge towards its own sub-optima. At some points,

a migration operator is utilized to exchange individuals among islands. These

configurations make the average population fitness improve faster and mix good local

feature efficiently [11]. The main idea of this parallelization is a simple extension of

the serial GA while the island model based underlying architecture is easily available.

Therefore, the island GA dominates the work on parallel GAs for shop scheduling

problems. A sketch [11] and a brief outline about this algorithm are illustrated in Figure

10 and Table 7 distinctly.

Figure 10 The scheme of island GA

� 	��

Table 7 The pseudo-code of island GA

1: Initialize();

2: while (termination criteria are not satisfied) do

3: Generation++

4: Parallel_SubSelection_Islands();

5: Parallel_SubCrossover_Islands();

6: Parallel_SubMutation_Individuals ();

7: Parallel_FitnessValueEvaluation_Individuals();

8: if (generation % migration interval==0)

9: Parallel_Migration_Islands();

10: end if

11: end while

II.2.4.1 Job Shop Scheduling Problems

Park et al. [22] studied a hybrid GA and its parallel version for job shop scheduling

problems with an operation-based representation. Concerning the parallel GA, the

population was divided into two or four subpopulations. Each subpopulation acted as a

single-population GA, where some individuals could migrate from one subpopulation

to another at certain intervals. As four population initialization methods, four crossover

operators and two selection operators were proposed in this paper, different

subpopulations were equipped with different settings to help them evolve

independently. Beside, the migration was implemented synchronously with a static ring

type connection scheme. Experiments were carried out on a PC with Pentium II 350

and 64MB main memory with MT, ORB and ABZ benchmark problems [19]. The

outputs confirmed the island GA improved not only the best solution but also the

average solution from results of single GA. Asadzadeh et al. addressed a parallel agent-

based GA for a job shop scheduling problem in [23]. Chromosomes of the population,

indicating feasible schedules for problem instances were created by the management

agent and the execute agent. Afterwards, the management agent divided it into

subpopulations with the same size and sent each of them to processor agents. Each

processor agent located on a distinct host and executed GA with a roulette wheel

selection, a partially matched crossover and a subsequent gene mutation on its

�
��

subpopulation independently. Different subpopulations communicated by exchanging

migrants through the synchronization agent. The number of processor agents was fixed

at eight in the experiments. Furthermore, those agents formed a virtual cube amongst

themselves and each of them had three neighbors. JADE middleware was used to

implement this method, which was a software development framework aiming at

developing multi-agent systems. Compared with the serial agent-based GA, the

suggested algorithm obtained much short schedule lengths and had higher convergence

speed with large size problems. In [24]. Gu et al. constructed a stochastic job shop

scheduling problem by a stochastic expected value model. It was solved by a parallel

quantum GA organized by the island model with a hybrid star-shaped topology. The

information communication was performed through a penetration migration at the

upper level and through a quantum crossover at the lower lever. Besides, the roulette

wheel selection, the cycle crossover and the Not Gate mutation were designed as GA

operators. Computational tests were run on a PC with a Pentium Processor with clock

speed of 1.66 GHZ. On the average, the advised method had a better performance of

generating optimal or near-optimal solutions with fast convergence speed than a GA or

a quantum GA for large instance problems. Spanos et al. [25] designed a parallel GA

for solving job shop scheduling problems with an elitist strategy based selection, a path

relinking crossover and a swap mutation. The parallelization was set following the

islands paradigm. However, one subpopulation merged with another one once the

individuals inside stagnated, where the Hamming distance of more than half individuals

were less than a predefined value. The process continued until there was only one

subpopulation. Experiments were performed on a commodity workstation with a

Pentium IV CPU running at 2 GHz with 1 GB RAM, The results indicated the addressed

algorithm managed to attain a comparable performance with five recent approaches.

II.2.4.2 Flow Shop Scheduling Problems

Huang et al. [26] discussed flow shop scheduling problems with fuzzy processing times

and fuzzy due dates, where the possibility and necessity measures with exact formulas

were adopted to maximize the earliness and tardiness simultaneously. A modified GA

was designed to solve the problems with the random keys, the parameterized uniform

crossover and the immigration. If Pt was the family of chromosomes in the t-th

�
	�

generation, then |Pt| denoted the population size of Pt. The next generation was made

of a% best chromosomes from Pt, b% chromosomes for taking crossovers, and c%

chromosomes generated randomly as immigrations, where a+b+c=100. In order to get

more efficient convergence, an idea of the longest common substring and rearranging

of the chromosomes chosen in the mating pool were also imposed in the algorithm. The

full procedure was coded with CUDA by separating the whole population into blocks

using the block size of 256 or 128. Circumventing to load the random keys of all

chromosomes to global memory, one chromosome was distributed to a block so that all

random keys could fit in the shared memory. Although there was no migration among

blocks, the idea was organized based on the island GA. In the case of 200 jobs, the

numerical simulations on a 2.33 GHz Intel Core2 Quad desktop computer with 2 GB

of RAM, and an NVIDIA GeForce GTX285 graphics card showed that the proposed

GA combining with CUDA parallel computation got 19 times speedup. Similarly,

Zajicek et al. [27] proposed a homogeneous parallel GA model on the CUDA

architecture, where all computations were carried out on the GPU in order to reduce

communication between CPU and GPU. The main idea was based on an island GA

with a tournament selection, an arithmetic crossover and a Gaussian mutation.

Experiments were carried on a system with AMD Phenom II X4 945 3.0 GHz processor

and NVIDIA Tesla C1060 GPU. Some instances of the flow shop scheduling problem

were solved with speedup from 60 to 120 comparing to the equivalent sequential CPU

version.

Bożejko et al. proposed a parallel GA for flow shop scheduling problems in [28]. The

algorithm was based on an island model. To implementations, a Multi-Step Crossover

Fusion was used to construct a new individual using the best individuals of different

subpopulations and worked with the migration operator to complete the communication

between different islands. Tests were performed on 4-processors Sun Enterprise 4x400

MHz under the Solaris 7 operating system, which is a MIMD machine of processors

without shared memory. Four crossover operators and four mutation operators were

considered as GA operators. The efficiency of the island GA was activated with the

combination of three strategies: with the same or different start subpopulations, as

independent or cooperative search islands and with the same or different genetic

operators. Results turned out the strategy of starting the computation from different

�

�

subpopulations on every processor with different crossover operators and cooperation

was significantly better than others. The improvement of the distance to reference

solutions and the improvement of the standard deviation were at the level of 7% and

40% respectively, comparing to the sequential GA. A related work by the same team to

minimize the total weighted completion time for the flow shop problem with a special

case of a single machine was solved by a similar island GA in [29]. The results noted

the 8-processors implementation performed the best.

II.2.4.3 Open Shop Scheduling Problems

Kokosinski et al. [30] studied an open shop scheduling problem and two greedy

heuristics, LPT-Task and LPT-Machine, were proposed for decoding chromosomes

represented by permutations with repetitions. The GA operators constituted a 2-

elements tournament selection, a linear order crossover and a swap mutation or an

invert mutation with constant or variable mutation probabilities. An island GA with a

migration strategy was applied to the parallel version in which every island sent its best

emigrants to all other islands and received immigrants from them. Incoming individuals

replaced the chromosomes of host subpopulation randomly. The experimental platform

was a PC with Pentium 4 processor (3.06 GHz) and 1 GB RAM. Unfortunately, this

parallelization did not reveal obvious advantages in the results. A non-preemptive open

shop scheduling problem was discussed by Harmanani et al [31]. Except a feasible

solution, a chromosome in this paper included a scratch area through which a

ReduceGap operation communicated to GA operators: the crossover and the mutation.

A hybrid island GA was hired to organize the parallelization where neighboring islands
shared their best chromosomes every GN generation and all islands broadcasted their

best chromosome to all other islands every LN generations, where GN�LN. Islands

were connected through an Ethernet network and used the Message Passing Interface

(MPI) on a Beowulf cluster. The experiments were executed on a cluster of five

machines that were running Linux and MPI. The outputs presented that the proposed

method converged to a good solution quickly before it saturated with a speedup

between 2.28 and 2.89 for large instances. A similar work was carried by Ghosn et al.

in [32] later.

�
��

Regarding to solve shop scheduling problems by the island GA, various researches have

been done with different architectures. We can discover that the works with GPU pay

heavier attention on speedup gained from the island GA. On the opposite, the others

consider more the improvement for solutions quality and convergence speed. Few

implementations have discussed them simultaneously with a fair comparison. Besides,

the island connection topology is varied from different papers with different migration

strategies. Some of the designs are carried with respect to the underlying architectures,

whereas the others are proposed from supporting theories. However, a completely

understanding for the effects of migration is still missing as far our knowledge is

concerned.

II.2.4.4 Flexible Shop Scheduling Problems

Defersha et al. [33] considered an island GA for a flexible job shop scheduling problem

with lot streaming. In this case, the batch of each job was split into certain number of

unequal consistent sublots. Each sublot of a job underwent a number of operations in a

fixed sequence where each operation could be processed by one of several eligible

machines. Three commonly used migration topologies: ring, mesh and fully connected

were discussed in this paper with a k-way tournament selection, five kinds of crossover

and six kinds of mutation applied by different probabilities. A parallel computation

environment was composed more than 250 interconnected workstations each having an

8-core Intel Xeon 2.8GHz processor was used for experiments. Test problems were run

using up to 48 cores and taking MPI for communication. With all problems considered,

there were makespan reductions through the island GA. Meanwhile, empirical studies

presented the impact from its different parameters. Regarding to topologies, the fully

connected one outperformed other two. Three migration policies: random-replace-

random, best-replace-random and best-replace-worst were tested. Results showed the

island GA was not much sensitive to the change of migration policy while the best-

replace-random migration policy performed slightly better. The same authors built a

mathematical model for a flexible job shop scheduling problem incorporating

sequence-dependent setup time, attached or detached setup time, machine release dates,

and time lag requirements in [34]. Like the previous work, the GA operators constituted

a k-way tournament selection, three assignment operators and two sequencing operators

�
��

applied by different probabilities. However, islands were connected with a randomly

topology which employed randomly generated migration routes for each

communication epoch. The method was tested on a similar experimental platform.

Results of medium size problems showed the island GA helped improve the solutions

quality and it converged to a better solution within the allowable computational time

for large size problems where the single GA failed.

An island GA for flexible flow shop scheduling problems was addressed by Belkadi et

al. [35] where genome constituted one assignment chromosome and a sequencing

chromosome. The GA was implemented on a biprocessor architecture with a roulette

wheel selection, a uniform crossover and a mutation similar to the crossover but

operated only on the sequencing scheduling chromosomes. Four combinations from

two island connected typologies (ring and grid with two dimensions) and two

replacement strategies (best and random) were tested. The results noted those two

parameters did not have significant influence in the variation of makespan. Regarding

to the subpopulation size and its related subpopulation amount, the quality of the

solution decreased progressively at the same time as the number of subpopulations

increased based on the experiments. However, when the complexity of the problem

rose up, this influence reduced. Finally, outputs stated the migration interval was the

parameter that had the decision influence to the island GA where the quality of the

solution improved gradually with increasing migration frequency. A comparison

between the island GA and the sequential GA was also carried in this paper. According

to empirical results, the island GA always obtained a smaller makespan while its

performance of execution time was only discussed with theoretical values based on two

processors. Rashidi et al. [36] studied flexible flow shop scheduling problems with

unrelated parallel machines, sequence-dependent setup times and processor blocking to

minimize the makespan and the maximum tardiness. Different weights were assigned

to two criteria to transform the problem into a single-objective function. The individuals

inside one island sought for their own single-objective function, and all islands worked

in parallel for Pareto optimal solutions. The paired weights in different islands are

different with a small deviation between each successive pairs. After executing the

conventional GA operators, a local search step or a Redirect procedure were

implemented to further cover the Pareto solutions. A comparison was carried between

�
�

the island GA without or with a local search step and a Redirect procedure where the

later one indicated better performance.

As a combination of a shop scheduling problem and a parallel machine scheduling

problem, the complexity of flexible shop scheduling problems is increased. According

to previous work, the implementation of parallel GAs for this kind of specific problems

is only referred by the island GA. In addition to design the algorithm, some papers have

considered the influence from the migration by the connection topology, the migration

rate, the migration interval and the migration strategy. A good cooperation of these

parameters could decentralize the searching space and enlarge the diversity level to

make a GA have better performance while enjoying a speedup from computing

accelerations. However, current implementations are still limited. Most of the works

address only the improvement to solutions quality. Experimental results to analyze the

speedup gained from the island GA are not sufficient. As the increased complexity will

lead to longer execution time, it is interesting to consider GPU to solve related problems

whose native topology is suitable for the island GA with thousands parallel computing

threads.

II.3 Design of HPC Frameworks-Based Genetic Algorithms

for Shop Scheduling Problems

The preliminary work of parallel GAs for shop scheduling problems is implemented by

fine-grained models on distributed memory machines. Although the results are outdated,

impressive reduction for the execution time has been achieved. As the fine-grained GA

is easy to be placed on a spatial structure, to coordinate this design with some modern

HPC accelerators with 2D grid architecture, such as CUDA, is supposed to optimize its

performance. Moreover, with new requirements from manufacturing systems in the real

life, the complexity of shop scheduling problems is increasing. The 2D grid topology

could organize a greater amount of threads to work in parallel, which is more efficient

to help find optimal results of strong NP hard problems with large instances. The other

problems from the operations research family solved in this way [37, 38] could be

persuasive evidences.

�
��

The MIMD machine also works with the island GA at the earlier stage. Soon, it is

improved to a parallel computation environment or a computer cluster equipped with

multiple processors or multi-core processors. The commonly used parallel processing

library MPI is generally chosen for information sharing through the migration.

Meanwhile, GPU is involved with its special memory management to work with this

design. As there is no strict underlying architecture limitation to implement the island

GA when dealing with shop scheduling problems, the islands connected topology is

varied. According to the collected papers, the ring topology is used most frequently.

But it is hard to judge which topology performs the best. Besides, the cooperated

influence between islands connected topology and other migration parameters cannot

be neglected. Fortunately, the average results confirm the implementations of island

GAs for shop scheduling problems are able to improve solutions quality and gain a

speedup with reasonable migration design. As this model dominates not only the work

on parallel GAs for shop scheduling problems but also parallel GAs for other

applications, it still has a lot of potential in the future with the popularity of computing

nodes providing multiple processors or multi-core processors.

Since the master slave GA does not assume underlying computer architecture, any

parallel computing environment has the chance to use this design without worrying

about sharing information. The most time consuming part for GAs to shop scheduling

problems is the fitness value calculation that requires even much longer execution time

with large problems. Therefore, GPU equipped with much more parallel threads is

considered to have better performance among several choices.

II.4 Conclusion

As one kind of important problem in combinatorial optimization, applying parallel GAs

for solving shop scheduling problems have caught heavy attention since last few

decades. This Chapter addressed some of the most representative publications in this

domain and the reviews were classified by the most common parallel GA categories:

master-slave models, fine-grained models and island models. An independent section

for hybrid models combining two of the above methods was not set, as the related work

was few. These we have considered in this Chapter were assigned to one of the three

�
��

basic models according to their main designs. Most works of parallel GAs to search

optimal results for scheduling problems in manufacturing systems are currently

managed by the island GA. However, the future of implementing the other two parallel

models to this field is promising as well by the development of modern computing

accelerators with more parallel threads.

Reference

[1].Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and

approximation in deterministic sequencing and scheduling: a survey. In Annals of

discrete mathematics (Vol. 5, pp. 287-326). Elsevier.

[2].Werner, F. (2011). Genetic algorithms for shop scheduling problems: a

survey. Preprint, 11, 31.

[3].Ullman, J. D. (1975). NP-complete scheduling problems. Journal of Computer and

System sciences, 10(3), 384-393.

[4].Bożejko, W. (2010). A new class of parallel scheduling algorithms. Oficyna

wydawn. Politechniki Wrosłwskiej.

[5].Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.

[6].Cheng, R., Gen, M., & Tsujimura, Y. (1996). A tutorial survey of job-shop

scheduling problems using genetic algorithms—I. Representation. Computers &

industrial engineering, 30(4), 983-997.

[7].http://www.edc.ncl.ac.uk/highlight/rhjanuary2007g02.php/

[8]. http://www.geatbx.com/docu/algindex-02.html#P416_20744

[9].https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_parent_sel

ection.htm

[10].Jebari, K., & Madiafi, M. (2013). Selection methods for genetic

algorithms. International Journal of Emerging Sciences, 3(4), 333-344.

[11].Cantú-Paz, E. (1998). A survey of parallel genetic algorithms. Calculateurs

paralleles, reseaux et systems repartis, 10(2), 141-171.

[12].AitZai, A., Boudhar, M., & Dabah, A. (2013). Parallel CPU and GPU

computations to solve the job shop scheduling problem with blocking.

�
��

[13].AitZai, A., Benmedjdoub, B., & Boudhar, M. (2012). A branch and bound and

parallel genetic algorithm for the job shop scheduling problem with

blocking. International Journal of Operational Research, 14(3), 343-365.

[14].Somani, A., & Singh, D. P. (2014, August). Parallel Genetic Algorithm for solving

Job-Shop Scheduling Problem Using Topological sort. In Advances in Engineering and

Technology Research (ICAETR), 2014 International Conference on (pp. 1-8). IEEE.

[15].Mui, N. H., Hoa, V. D., & Tuyen, L. T. (2012, December). A parallel genetic

algorithm for the job shop scheduling problem. In Signal Processing and Information

Technology (ISSPIT), 2012 IEEE International Symposium on (pp. 000019-000024).

IEEE.

[16].Akhshabi, M., Haddadnia, J., & Akhshabi, M. (2012). Solving flow shop

scheduling problem using a parallel genetic algorithm. Procedia Technology, 1, 351-

355.

[17].Kohlmorgen, U., Schmeck, H., & Haase, K. (1999). Experiences with fine-grained

parallel genetic algorithms. Annals of Operations Research, 90, 203-219.

[18]. Tamaki, H. (1992). A paralleled genetic algorithm based on a neighborhood model

and its application to the jobshop scheduling. Parallel Problem Solving from Nature 2,

573-582.

[19].Lin, S. C., Goodman, E. D., & Punch, W. F. (1997, April). Investigating parallel

genetic algorithms on job shop scheduling problems. In International Conference on

Evolutionary Programming (pp. 383-393). Springer, Berlin, Heidelberg.

[20].Pinel, F., Dorronsoro, B., & Bouvry, P. (2013). Solving very large instances of the

scheduling of independent tasks problem on the GPU. Journal of Parallel and

Distributed Computing, 73(1), 101-110.

[21].Alba, E., & Dorronsoro, B. (2009). Cellular genetic algorithms (Vol. 42). Springer

Science & Business Media.

[22].Park, B. J., Choi, H. R., & Kim, H. S. (2003). A hybrid genetic algorithm for the

job shop scheduling problems. Computers & industrial engineering, 45(4), 597-613.

[23].Asadzadeh, L., & Zamanifar, K. (2010). An agent-based parallel approach for the

job shop scheduling problem with genetic algorithms. Mathematical and Computer

Modelling, 52(11-12), 1957-1965.

�
��

[24].Gu, J., Gu, X., & Gu, M. (2009). A novel parallel quantum genetic algorithm for

stochastic job shop scheduling. Journal of Mathematical Analysis and

Applications, 355(1), 63-81.

[25].Spanos, A. C., Ponis, S. T., Tatsiopoulos, I. P., Christou, I. T., & Rokou, E. (2014).

A new hybrid parallel genetic algorithm for the job-shop scheduling

problem. International Transactions in Operational Research, 21(3), 479-499.

[26].Huang, C. S., Huang, Y. C., & Lai, P. J. (2012). Modified genetic algorithms for

solving fuzzy flow shop scheduling problems and their implementation with

CUDA. Expert Systems with Applications, 39(5), 4999-5005.

[27].Zajıcek, T., & Sucha, P. (2011). Accelerating a Flow Shop Scheduling Algorithm

on the GPU. eraerts, 143.

[28].Bożejko, W., & Wodecki, M. (2003, September). Parallel genetic algorithm for

the flow shop scheduling problem. In International Conference on Parallel Processing

and Applied Mathematics (pp. 566-571). Springer, Berlin, Heidelberg.

[29].Bożejko, W., & Wodecki, M. (2004, June). Parallel genetic algorithm for

minimizing total weighted completion time. In International Conference on Artificial

Intelligence and Soft Computing (pp. 400-405). Springer, Berlin, Heidelberg.

[30].Kokosiński, Z., & Studzienny, Ł. (2007). Hybrid genetic algorithms for the open-

shop scheduling problem. IJCSNS, 7(9), 136.

[31].Harmanani, H. M., Drouby, F., & Ghosn, S. B. (2009, March). A parallel genetic

algorithm for the open-shop scheduling problem using deterministic and random moves.

In Proceedings of the 2009 Spring Simulation Multiconference(p. 30). Society for

Computer Simulation International.

[32].Ghosn, S. B., Drouby, F., & Harmanani, H. M. (2016). A parallel genetic algorithm

for the open-shop scheduling problem using deterministic and random moves. Int. J.

Artif. Intell, 14(1), 130-144.

[33].Defersha, F. M., & Chen, M. (2009, August). A coarse-grain parallel genetic

algorithm for flexible job-shop scheduling with lot streaming. In Computational

Science and Engineering, 2009. CSE'09. International Conference on (Vol. 1, pp. 201-

208). IEEE.

[34].Defersha, F. M., & Chen, M. (2010). A parallel genetic algorithm for a flexible

job-shop scheduling problem with sequence dependent setups. The international

journal of advanced manufacturing technology, 49(1-4), 263-279.

� ���

[35].Belkadi, K., Gourgand, M., & Benyettou, M. (2006). Parallel genetic algorithms

with migration for the hybrid flow shop scheduling problem. Advances in Decision

Sciences, 2006.

[36].Rashidi, E., Jahandar, M., & Zandieh, M. (2010). An improved hybrid multi-

objective parallel genetic algorithm for hybrid flow shop scheduling with unrelated

parallel machines. The International Journal of Advanced Manufacturing

Technology, 49(9-12), 1129-1139.

[37].Boyer, V., & El Baz, D. (2013, May). Recent advances on GPU computing in

operations research. In Parallel and Distributed Processing Symposium Workshops &

PhD Forum (IPDPSW), 2013 IEEE 27th International (pp. 1778-1787). IEEE.

[38].Boyer, V., El Baz, D., & Salazar-Aguilar, M. A. (2017). GPU Computing Applied

to Linear and Mixed Integer Programming.

� �	�

Chapter III. Two Efficient New Parallel

Genetic Algorithms

III.1 Introduction

According to related works, there are different ways of exploiting parallelism in GAs

[1]: master-slave models, fine-grained models, island models, and hybrid models. The

master-slave model is the only one that does not affect the behavior of the algorithm by

distributing the evaluation of fitness function to slaves. The fine-grained model works

with a large spatially population. The evolution operations are restricted to a small

neighborhood with some interactions by overlap structure. The island model divides

population into subpopulations. These subpopulations on independent islands are free

to converge towards different sub-optima and a migration operator can help mix good

features that emerge locally. The hybrid model combines any two of the above methods.

Despite the fact that the island model dominates the work on parallel GAs, it is hard to

conclude that the island GA overcomes other models since the comparison cannot be

made in absolute terms.

As far as solving shop scheduling problems by parallel GAs, we could find two

drawbacks from the former works. Firstly, few implementations have considered the

execution time reduction and the solutions’ quality improvement simultaneously with

a fair comparison. Particularly, the GPU-based parallel GA is usually used to gain the

maximum possible speedup while compromising with the solutions’ quality. Regarding

as the most frequent used GPUs architecture, the previous discussed parallel GAs on

CUDA also have not conquered this problem when they were chosen for solving shop

scheduling problems. Second, island GAs generally have a high risk to lose the

� �
�

population diversity due to the same genetic operator configurations and the limited

sub-population sizes. Despite some promising results from leveraging computational

capabilities of a cluster to improve its performance, these methods must face some

common challenges such as lost connections, low bandwidth, abandoned work, security

and privacy [2]. Meanwhile, it is hard to control its performance with multiple

migration parameters. Thus, proposing a method to optimize the performance of island

GA with a better population diversity and less time requirement in a stable and secure

parallel environment is represented as a not fully resolved topic.

Therefore, designing a parallel GA that is highly consistent with the CUDA framework

while balancing conflicts between the solutions’ quality and the execution time remains

an open research challenge. Similarly, crafting a heterogeneous island model that is

well suited for parallelizalizing inside or between GPUs and multi-core CPU is

considered as an efficient way to overcome the shortages of island GAs and is

extremely desired. In this Chapter, we seek to address two efficient new parallel GAs

and their application to flexible flow shop scheduling problems (FFSP). The parallel

GA I is a CUDA-based hybrid model consisting of an island GA at the upper level and

a fine-grained GA at the lower level. It combines metrics of two hierarchical layers and

takes full advantage of CUDA’s compute ability. The parallel GA II is a dual

heterogeneous design composed of a cellular GA and a pseudo GA. The islands with

these two different structures increase the population diversity and can be well

parallelized on GPUs simultaneously with multi-core CPU.

III.2 Problem Definition

For an easy presentation, we summarize the notations used along the rest of this

Chapter in Table 8.

Table 8 A description of notations used in all formulae in Chapter III

Notation Description

n Number of jobs�

g Number of stages�

oC Number of machines at stage s.

� ���

j Job index

s Stage index

m Machine index

J Set of jobs, J = {1,2,3, … , n}

S Set of stages, S = {1,2,3, … , g}

MC Set of machines at the stage s, s ∈ S,MC = {1,2,3, … , oC}

R) Release time of job j, j ∈ J

D) Due time of job j, j ∈ J

P)C6
Processing time when job j at stage s is to be processed on machine

m, j ∈ J, s ∈ S,m ∈ MC

S)C Start time of job j at stage s, j ∈ J, s ∈ S

M)C Target machine handling job j at stage s, j ∈ J, s ∈ S

T) Total tardiness, j ∈ J

C678 Completion time of the last job, i.e., the makespan

WT Weight for the total tardiness in the objective function

p Gene index in a chromosome

ρ Individual index

N Number of individuals

PoP Set of individuals, PoP = {0,1,2, … , N − 1}

G Set of genes, G = {0,1,2, … , n×g − 1}

I Abbreviation of individual

T Abbreviation of thread

C Number of islands

D Number of individuals per islands

A, B Island indices

α Migration rate

β Migration direction indicator

θ Migration threshold value

fitZ The best individual’s fitness value of sub-population A on island A

fit[The best individual’s fitness value of sub-population B on island B

a a ∈ (0,1)

� ���

Figure 11 A flexible flow shop layout

The Flexible Flow Shop scheduling Problem (FFSP) is a multistage production process

that has two or more stages in series as illustrated in Figure 11. There is at least one

machine in each stage, and at least one stage has more than one machine. All jobs need

to go through all stages in the same order before they are completed. On each stage,

one machine is selected for processing a given operation. There is no precedence

between operations of different jobs, but there is precedence among operations due to

the jobs’ processing cycles. Preemptive operations are not allowed. A feasible solution

of the FFSP is described by jobs’ sequence on target machines. Furthermore, the

formulation is given as follows.

Objective function:

min:	WT ∗ T) + C678
)∈_

 (3.1)

Constraints:
T) = max(S)` + P)`abc − D), 0)						j ∈ J (3.2)
C678 = max) (S)` + P)`abc) 						j ∈ J (3.3)

S)d ≥ R)						j ∈ J (3.4)
S)C ≥ S)	Cfd + P)	Cfd	ab	ghi						j ∈ J, s ∈ S, s > 1 (3.5)
S)C+P)Cabg ≤ S:C						j ∈ J, i ∈ J, s ∈ S, j ≠ i, 	M)C == M:C, 	S)C ≤ S:C (3.6)

The decision variables in the mathematical model are M)C and S)C. As two scheduling

objectives are considered, it is formulated as a single additive objective function (3.1)

by aggregating the total tardiness and the makespan with the weight WT. As tardy jobs

� ��

typically cause penalty costs [3] and have a great influence on customer satisfaction,

the weight WT indicates the priority of the first objective. Constraints (3.2) and (3.3)

define the tardiness of jobs and the makespan separately. The precedence among

operations due to the jobs’ processing cycles is presented by constraints (3.4) and (3.5),

while constraint (3.6) establishes the precedence caused by the sequencing on machines.

The population of GA consists of a set of individuals and is initialed by random values.

An individual is represented by a chromosome. For the FFSP, a chromosome is

composed of a string of length n×g, and the p-th gene states the index of the target

machine for job p g + 1 at stage p g + 1. For instance, assume that 3 jobs with

2 production stages are scheduled in a flexible flow shop and there are 2 parallel

machines at each stage. A chromosome can be expressed as [1,2,1,2,2,1] which

indicates [job 1 at stage 1 processed on machine 1, job 1 at stage 2 processed on

machine 2, job 2 at stage 1 processed on machine 1, job 2 at stage 2 processed on

machine 2, job 3 at stage 1 processed on machine 2, job 3 at stage 2 processed on

machine 1]. The fitness function FIT (ρ) of an individual ρ is transferred from the

above-mentioned objective function (Eq. (3.1)) as

FIT(ρ) = max	(E678 − (WT ∗ T) + C678)
)∈_

, 0) (3.7)

where E678 is the estimated maximum value of the objective function.

III.3 A CUDA-Based Hybrid Genetic Algorithm

III.3.1 Hybrid Model

To achieve general-purpose parallel computing on GPUs, the Compute Unified Device

Architecture (CUDA) [4] was developed in 2006. It is a framework that takes the

maximum advantage of the low-lying hardware using an industry standard

programming language [5]. The parallel threads of CUDA are grouped into blocks that

are organized in a grid as shown in Figure 12. The hierarchisation of threads is related

to the memory hierarchy. There are three distinct levels of memory and their features

are stated as follows [6].

� ���

l Global memory: As the largest memory of CUDA, it is accessible to all threads,

but exhibits the highest latency.

l Shared memory: It enables threads only within a block whose access is much faster

than the global memory.

l Local memory: It presents the lowest latency whereas it is only available to one

thread with few KB of storage.

Figure 12 The hierarchy of threads and different types of memory of CUDA

With respect to the CUDA framework, our parallel GA consists of two levels, a fine-

grained GA at the lower level and an island GA at the upper level, as presented in Figure

13. There is a correspondence between the hybrid parallel GA components and the

hierarchy of CUDA threads and the details are displayed in Table 9. At the lower level,

each CUDA thread processes one GA individual. Because of the 2D grid structure, the

� ���

GA individuals can get connected completely. Selection, crossover, mutation and

fitness value calculation are generated mainly via the local memory to enjoy its lowest

latency unless imperative information exchange among individuals is done through the

global memory. On the other hand, one block on the CUDA framework represents one

island in the GA at the upper level. An elitism based replacement inside the island and

a migration among islands are carried. The shared memory is chosen to complete these

works primarily while the overwriting is processed via the global memory

synchronously. The procedure of the hybrid parallel GA with memory management is

expressed in Figure 14.

Figure 13 The hierarchy of hybrid GA

Table 9 The correspondence between the hybrid parallel GA components and the

hierarchy of CUDA threads

Hybrid GA components CUDA underlying architecture

Individual Thread

Island Block

Population Grid

� ���

Figure 14 The procedure of hybrid parallel GA with memory management

According the evolution theory and the underlying architecture of CUDA, several

advantages can be gained by the hybrid model over the simple one:

l At the lower level, the fine-grained model obtains good population diversity by

dealing with high-dimensional variable spaces [7]. Limitation of interactions

among individuals prevents the premature convergence. A reasonable

neighborhood size with GA operators may disseminate the good solutions across

the entire population.

l At the upper level, the island model increases the convergence speed by

subpopulations as the long-held principle in Population Genetics: favorable traits

spread faster when the demes are small than when the demes are large [1]. An

� ���

appropriate island size with a proper migration interval is able to optimize this

performance.

l CUDA is built up with the 2D grid environment that matches perfectly the

structure of the fine-grained GA. Thousands of CUDA threads are powerful to deal

with large size individuals concurrently without increasing the time complexity.

Meanwhile, GA operators are carried out using the fastest local memory.

l As CUDA threads are grouped into blocks, they are compatible to the mechanism

of the island GA that divides the population into a few relatively large

subpopulations. Isolated GA islands can work on CUDA blocks in parallel by the

shared memory while some information sharing are executed through the global

memory.

III.3.2 Genetic Algorithm Operators

l Selection: Because the 2D grid is adopted as the spatial population structure where

each grid point contains one individual, the conventional selection operation is

modified to suit the neighborhood configuration as in Figure 15. The selection area

is defined with a certain diameter where the target individual is placed at the center

of a grid. Among individuals within the selection area, the tournament selection is

used where the individual with the best fitness value is selected to replace the

target one.

Figure 15 The selection operation of hybrid GA

l Crossover: We pair individuals with neighbors (See Figure 16) rather than

selecting two from population randomly. This strategy does not require global

� ���

information sharing and is appreciated to work on the 2D grid architecture.

Meanwhile, a risk that the GA converges to the local minima can be eliminated by

its cooperation with the selection. Afterwards, a single point crossover is executed

if a specified crossover probability is satisfied.

Figure 16 The crossover operation of hybrid GA

l Mutation: Any individual in the population gets a random number generated on

the interval 0 to 1. If it is smaller than the default mutation rate, genes in the

chromosome are replaced by random values in the range, apart from the original

ones.

l Replacement: The individual whose fitness value is the largest in history within

one island is kept. Then it is used to replace the individual whose fitness value is

the smallest in this island. As one island is presented as one CUDA block, this

operation is carried through the shared memory.

l Migration: Islands are interconnected as a single ring as shown in Figure 17. An

island can only accept an individual with the largest fitness value from one

neighbor to overwrite the individual with the smallest fitness value. The shared

memory is utilized to search the best individual and the worst individual within

one island while the overwriting is processed via the global memory

synchronously.

� �	�

Figure 17 The single ring migration among islands

III.3.3 Numerical Experiments

To analyze the performance of parallel GA I, we consider several instances and all

instances are characterized by 50 jobs with 4 stages and 3 available machines at each

stage. The crossover rate and the mutation rate are set as 0.9 and 0.1, respectively.

Other experimental relative data are defined in Table 10. The experimental platform is

based on the Intel Xeon E5640 CPU with 2.67GHz clock speed and four cores. The

GPU code implementation is carried out using CUDA 8.0 on NVIDIA Tesla K40,

with 2880 cores at 0.745GHz and 12 GB GDDR5 global memory. All programs are

written in C, except for the GPU kernels in CUDA C. All results display the average

value of 100 runs.

Table 10 The experimental relative data of the FFSP

WT 100

Pjsm U[1, 5]

Rj U[0, P], where �P= (P)C66 oC)C)

Dj 	R) + P)(1 + σ), where σ=U[0,2] and P) = (P)C6/oC6)C

� �
�

III.3.3.1 Controlling Parameters Sensitive Analysis Test

As the maximum threads amount per block on CUDA is 1024. We keep the population

size as 1024 (32×32). There are three controlling parameters in this proposed method:

the island size, the selection diameter and the migration interval. They are set by

different numbers: Island Size (IS) = 4 (2×2), 16 (4×4), 64 (8×8), 256 (16×16), 1024

(32×32) individuals, Selection Diameter (SD) = 3, 9, 15, 21, 27 individuals, Migration

Interval (MI) = 10, 20, 30, 40, 50 generations. Figure 18 illustrates the convergence

trend with combinations of different values. As the graph with all parameters’ setting

is a little confusing as shown by the first one. We separate it as 7 sub-graphs.

� ���

Figure 18 The sensitive analysis on controlling parameters

The island size keeps increasing from the second sub-graph to the sixth. It shows that

the small selection diameter generally leads to an early convergence, whereas there is

not much improvement after it reaches a medium size. Meanwhile, this influence is

� ���

more distinct when the island size is larger. As larger selection area requires larger

memory, we suggest a medium size diameter value for implementations. For the

following two tests, we keep its value as 9. The last two sub-graphs display the

influence of the island size. As a result, a relatively larger island size makes the

performance better. This trend is more obvious with groups of medium and large size

selection diameters. Since the maximum threads amount per block on CUDA is 1024,

the best performance is achieved by an island size 32×32. Moreover, there is no

significant change when the migration interval is increased. Due to the additional cost

caused by migration, it is advised not to have small migration intervals.

III.3.3.2 Comparison Test on Solution Quality

The simple GA is taken as a comparison to check the performance of parallel GA I. As

the roulette wheel selection is the most frequently used selection strategy [8], we take

it for the simple GA while the single point crossover is executed with randomly paired

individuals. Meanwhile, the mutation operation is kept the same as the CUDA-based

parallel GA. The convergence trends of the average result and the best result obtained

from them are displayed in Figure 19.

Figure 19 The solution quality comparison between the parallel GA I and the simple

GA

� ��

Fine-grained models obtain good population diversity when dealing with high-

dimensional variable spaces [7] and island models converge faster by subpopulations

[1]. By combining the merits from them, we could find the parallel GA on CUDA

always gains better performance with the average value and the best value of the

objective function than the simple GA.

III.3.3.3 Comparison Test on Execution Time

For fair comparison, we do not only use the single CPU, but also take the multi-core

CPU to contrast the execution time with GPUs for implementations of the simple GA,

the master-slave GA and the proposed parallel GA I separately. The multi-core CPU

code is run by OpenMP [9] that is an application programming interface (API)

supporting multi-platform shared memory multiprocessing programming. Different

implementations used to obtain the execution time are noted in Table 11.

Table 11 Different implementations used to obtain the execution time

Hgpu Proposed hybrid parallel GA I over NVIDIA K40 GPU

Scpu Simple GA over Intel Xeon E5640 CPU with one core

MSmulticpu
OpenMP based master-slave GA over Intel Xeon E5640 CPU with

four cores

MSgpu Master-slave GA over NVIDIA K40 GPU

Hcpu Proposed hybrid GA over Intel Xeon E5640 CPU with one core

Hmulticpu
OpenMP based hybrid GA over Intel Xeon E5640 CPU with four

cores

The speedups of the parallel GA I to the compared GAs are displayed as in Figure 20.

Since parallel implementation is one of the most promising options to accelerate GAs,

parallel GAs always work faster than serial GAs. Although, the proposed hybrid GA

on CUDA does not win against other parallel algorithms with the small size population,

the performance has been improved dramatically by increasing this latter parameter.

Moreover, we expect that it can achieve further acceleration for more complicated

problems.

� ���

Figure 20 The execution time comparison among the parallel GA I and other

implementations

III.4 A Dual Heterogeneous Genetic Algorithm

III.4.1 Dual Heterogeneous Island Strategy

Island GAs may lose the population diversity due to the limited sub-population size and

the same genetic operator configurations. When the population size is N and there are

C sub-populations, only N/C individuals work with GA operators in one island.

Moreover, the selection and the elitist strategy in GAs decrease the sub-population

diversity in one island after several generations. Although the crossover and the

mutation can help create new individuals, the influence is restricted. At this moment, a

migration from heterogeneous sub-populations can increase the local diversity and has

a chance to produce better genes by working with GA operators. Thus, we propose a

heterogeneous island strategy as in Figure 21 where the internal structures and the GA

operations of each island are different.

� ���

Figure 21 The dual heterogeneous island GA model

� ���

Figure 22 The procedure of dual heterogeneous island GA

The algorithm structures and the interaction between them are shown in Figure 22. At

the software level, we can consider three sublevels according to the source of the

heterogeneity [10].

� ���

l Operator level: There are two islands with the same amount of individuals where

island A works with the cellular GA [11] and island B works the pseudo GA [12].

The cellular GA starts with random initialization and maps individuals on a two-

dimensional grid. An individual is limited to compete and mate with its neighbors,

while the neighborhoods overlapping makes good solutions disseminate through

the entire population. This design allows a better exploration of the search space

with respect to decentralization. The pseudo GA initializes every pair of parents

with complementary chromosomes. The crossover is executed between the

offspring from the same parents, during which the parents are completely replaced

by their own children. In this case, search ability is enhanced since higher

population diversity is got without gene lost.

l Genotype level: The chromosome is modified to have two layers in this case. The

upper layer is designed for the cellular GA and keeps the same structure as in

Chapter III.2 Problem Definition where the p-th gene is displayed by an integer

number. On the other hand, the p-th gene is expressed by binary numbers to work

with the dynamic complementary initialization strategy [12] (See Table 12) of the

pseudo GA at the lower layer.

Table 12 An example of the dynamic complementary initialization strategy

Bit 0th gene 1st gene 2nd gene … pstgene … (n×g − 2)stgene (n×g − 1)stgene

Individual 0 1 1 0 … a … 0 0

Individual 1 0 0 1 … 1-a … 1 1

l Parameter level: The execution of the crossover operator and the mutation operator

are determined by the crossover rate and the mutation rate. Their values for the

cellular GA and the pseudo GA on different islands are set differently.

III.4.2 Penetration Migration Policy

The performance of migration between islands is controlled by the topology, the rate,

the interval and the strategy. In order to decrease the amount of parameters need to be

set manually, we develop a migration polity inspired by the penetration theory. The

penetration theory [13] (See Figure 23) takes into account, the molar concentration, the

temperature and the cubage of a liquor. It assumes that in mixing two kinds of liquor

� ��

with the same temperature and cubage but with different molar concentration, the liquor

with the smaller concentration will move to the one with a bigger concentration value.

Figure 23 An example of the penetration model�

Following the penetration theory, a migration threshold value θ is set	(0 ≤ θ ≤ 1).

The execution of migration is decided by this value and there is more likely for

individuals to migrate when θ = 1. Moreover, the migration rate α and the migration

direction indicator β are formulated as in equation (3.8) and equation (3.9),

respectively:

α = 1 − β																				1 − β < θ
0																												1 − β ≥ θ (3.8)

	β = fitZ fit[fitZ < 	 fit[
fit[fitZ														fitZ > 	 fit[

 (3.9)

Here, fitZ	and	fit[are the best individual’s fitness value of sub-population A on

island A and sub-population B on island B. In a certain generation, we calculate the

above functions and carry out three steps as follows:

l If 1 − β < θ,	the migration is executed. Otherwise, do nothing.

l The topology of migration is made by the ratio of fitZ	to	fit[. If fitZ fit[> 1,

the migration is from sub-population A to sub-population B. If fitZ fit[< 1, the

migration direction is reversed. If fitZ fit[= 1, no migration is implemented.

l When the migration is carried, α×N individuals with best fitness values in the

emigrant sub-population are selected to replace α×N individuals with worst

� 	�

fitness values in the immigrant sub-population.

With this design, the migration policy needs no longer to fix the topology, the rate, the

interval and the strategy manually. New merged individuals with good genes can be

transited fast and the execution time is saved by preventing ineffective information

sharing.

III.4.3 Parallelization on GPUs and multi-core CPU

As far as the hardware level, there are two obvious benefits to parallelize the dual

heterogeneous island GA in GPUs and multi-core CPU environment:

l Widespread HPC resources: Nowadays, almost all modern computers are

equipped with GPUs and multi-cores CPUs. The coordination between them is

through their inner connection which is stable and secure. With the development

of CUDA, it is convenient to use enabled GPUs for general purpose processing.

On the other hand, concurrency platforms allowing coordination of multicore

resources facilitate programming on multi-core CPUs. Moreover, in addition to

the parallelization on multi-core CPU or GPUs at the lower level, the multi-core

CPU and the GPUs can work concurrently at the higher level to maximally use

computing resources.

l High consistency with the proposed GA: The cellular GA maps individuals on a

two-dimensional grid, it can be entirely parallelized on GPUs. On the other hand,

only the crossover, the fitness evaluation and the replacement are kept in the

pseudo GA. The crossover is performed between fixed complementary parents.

The fitness evaluations of individuals are independent. Since no global

information is required, all for loops in the above two steps can be easily handled

on multi-core CPU in parallel.

As texture catches of CUDA are designed to gain an increase in performance

accelerating access patterns with spatial locality [14], we design the neighborhood area

of the cellular GA as shown in Figure 24. Individuals’ information and GA operators

are placed and executed through the global memory while the neighbors’ information

are stored in the texture memory. Each CUDA thread handles one cellule of the cellular

GA. It firstly recombines two individuals selected from the neighborhood area to

�
�

generate a new one. Afterwards, this new individual undertakes the mutation as

designed in parallel GA I and replaces the original individual if its solution is better.

Finally, individuals are sorted according to their fitness values using the Bitonic-Merge

sort [15] (See Figure 25), if the cellular GA meets the island termination criterion but

not the final termination criterion.

Figure 24 The neighborhood area of cellular GA

Figure 25 An example of the Bitonic-Merge sort

With the two layers encoding, the target machine index is presented by binary numbers

at the lower level that is compatible with the dynamic-complementary initialization

strategy [12]. When the GPUs are occupied by executing the cellular GA, the pseudo

GA is run on multi-core CPU by OpenMP. In this case, the GA operators on two

heterogeneous islands are working in parallel on the host (multi-core CPU) and the

device (GPUs) simultaneously. At the end, the Bitonic-Merge sort [14] is accomplished

by the OpenMP-based code in a similar way as the cellular GA on CUDA.

� ��

III.4.4 Numerical Experiments

To analyze the performance of parallel GA II, we compare its solutions’ quality and

execution time with the cellular GA and the pseudo GA. The population size is kept as

512 for all tested GAs while the sub-population size for each island of heterogeneous

GA is 256. The crossover rate and the mutation rate of cellular GA are set as 1.00 and

0.05 respectively [11], while the crossover rate of pseudo GA is equal 0.75 [12]. The

cellular GA from the dual heterogeneous GA keeps the same crossover rate and

mutation rate as the cellular GA. Similarly, the pseudo GA from the dual heterogeneous

GA keeps the same crossover rate as the pseudo GA. Moreover, to check the influence

of migration, the migration threshold is fixed as 1.00. All analyzed instances are

characterized by 300 jobs with 4 stages and 2 available machines at each stage. Other

experimental relative data and the experimental platform are kept the same as the

parallel GA I. The following table and figures display results of 2000 generations and

they are average values of 50 runs.

III.4.4.1 Migration Check Interval Test

Even the topology, the rate, the interval and the strategy are set adaptively when the

migration policy is carried in a certain generation. We still need to test when to execute

it since the migration policy needs call back results on GPUs and too frequent data

exchange between the device and the host may weaken the performance of the proposed

method. As it is displayed in Figure 26, the migration policy execution gap is increased

from 10 generations to 800 generations and the island GA has a risk to fall in a local

optimum if this value is either too small or too big. As a result, it finds that an

inappropriate migration can also lead onto premature convergence, besides

homogeneous genetic operator configurations and limited subpopulation sizes.

Following the polynomial fitting values, the best performance for the tested instance is

obtained when the migration policy execution gap is around 500 generations and we

keep this setting for the remaining tests.

� ��

Figure 26 The influence of the migration policy execution gap for the heterogeneous

GA

III.4.4.2 Comparison Test on Solution Quality

The solutions’ quality of different GAs are shown in Table 13. Although the specific

designs of cellular GA and the pseudo GA can help increase population diversity, the

proposed method combines the merits from both and optimizes the performance by

independent evolution and penetration migration. Thus, the heterogeneous GA

overcomes them with better solutions and less variance. This effect is also confirmed

by the convergence trend among three GAs in Figure 27. Moreover, there are elbows

in the convergence curve of the designed approach and they always appear around the

generations where the migration policy is executed. This phenomenon witnesses the

process of how the premature convergence is avoided thanks to two heterogeneous

islands connected by the penetration migration.

Table 13 The solutions’ quality comparison among the parallel GA II and other GAs

Different GAs Best Average Variance

Heterogeneous GA 306500.03 309885.90 2003059.14

Cellular GA 314467.50 320648.18 6792896.04

Pseudo GA 314636.59 317683.23 2963668.96

� �

Figure 27 The convergence trend among the parallel GA II and other GAs

III.4.4.3 Comparison Test on Execution Time

Figure 28 displays the execution time of three GAs with increasing population size. It

is easy to discover the heterogeneous island GA takes less execution time than the

pseudo GA on multi-core CPU as the heterogeneous design can be well parallelized on

GPUs simultaneously with multi-core CPU. However, the cellular GA performs best

because the amount of individuals executed on GPUs and the threads occupancy are

twice as much as the heterogeneous GA.

� ��

Figure 28 The execution time comparison among the parallel GA II and other GAs

III.5 Conclusions

Two efficient new parallel GAs are developed in this Chapter. The parallel GA I

consists of an island model at the upper level and a fine-grained model at the lower

level. This hybrid design is highly consistent with the CUDA framework and combines

metrics from two levels by keeping population diversity and increasing convergence

speed. The controlling parameters configuration test witnesses that the performance of

this method is optimized with a medium size selection diameter, a relatively large island

size and a wide range size migration interval. Through numerical experiments, the

parallel GA I overcomes the simple GA by obtaining better results and taking less

execution time. The parallel GA II is working with a dual heterogeneous island model

that is composed of a cellular GA on GPUs and a pseudo GA on multi-core CPU. The

2D variable spaces of the cellular model and the complementary parent strategy of the

pseudo model keep the population diversity while a penetration inspired migration

policy helps share information between them. Furthermore, this heterogeneous design

can be well parallelized on GPUs simultaneously with multi-core CPU. For solving

some instances of FFSP, numerical experiments have shown that this approach cannot

only get competitive results but also reduces execution time.

� ��

Reference

[1].Cantú-Paz, E. (1998). A survey of parallel genetic algorithms. Calculateurs

paralleles, reseaux et systems repartis, 10(2), 141-171.

[2].García-Valdez, M., Trujillo, L., Merelo-Guérvos, J. J., & Fernández-de-Vega, F.

(2014, September). Randomized parameter settings for heterogeneous workers in a

pool-based evolutionary algorithm. In International Conference on Parallel Problem

Solving from Nature (pp. 702-710). Springer, Cham.

[3].Parmee, I. C. (2009). Adaptive Computing in Design and Manufacture.

[4].https://developer.nvidia.com/cuda-toolkit

[5].Munawar, A., Wahib, M., Munetomo, M., & Akama, K. (2009). Hybrid of genetic

algorithm and local search to solve MAX-SAT problem using NVIDIA CUDA

framework. Genetic Programming and Evolvable Machines, 10(4), 391.

[6].Plazolles, B., El Baz, D., Spel, M., Rivola, V., & Gegout, P. (2017). SIMD Monte-

Carlo Numerical Simulations Accelerated on GPU and Xeon Phi. International Journal

of Parallel Programming, 46(3) 589-606

[7].Kohlmorgen, U., Schmeck, H., & Haase, K. (1999). Experiences with fine-grained

parallel genetic algorithms. Annals of Operations Research, 90, 203-219.

[8].Zhong, J., Hu, X., Zhang, J., & Gu, M. (2005, November). Comparison of

performance between different selection strategies on simple genetic algorithms.

In Computational Intelligence for Modelling, Control and Automation, 2005 and

International Conference on Intelligent Agents, Web Technologies and Internet

Commerce, International Conference on (Vol. 2, pp. 1115-1121). IEEE.

[9].http://www.openmp.org/

[10].Alba, E., Luna, F., Nebro, A. J., & Troya, J. M. (2004). Parallel heterogeneous

genetic algorithms for continuous optimization. Parallel Computing, 30(5-6), 699-719.

[11].Vidal, P., & Alba, E. (2010). Cellular genetic algorithm on graphic processing

units. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) (pp.

223-232). Springer, Berlin, Heidelberg.

[12].Chen, Q., Zhong, Y., & Zhang, X. (2010). A pseudo genetic algorithm. Neural

Computing and Applications, 19(1), 77-83.

� ��

[13].Gu, J., Gu, X., & Gu, M. (2009). A novel parallel quantum genetic algorithm for

stochastic job shop scheduling. Journal of Mathematical Analysis and

Applications, 355(1), 63-81.

[14]. J. Sanders, E. Kandrot, CUDA by example: an introduction to general-purpose

GPU programming, Addison-Wesley Professional, 2010.

[15].Pharr, M., & Fernando, R. (2005). Gpu gems 2: programming techniques for high-

performance graphics and general-purpose computation. Addison-Wesley Professional.

� ��

Chapter IV. Parallel GA I with Periodic

Complete Rescheduling for Solving an

Energy Efficient Dynamic FFSP Using the

Peak Power Value

IV.1 Introduction

About one half of the world’s total energy is currently consumed by the industrial sector

[1] and its energy consumption has nearly doubled over the last 60 years [2]. Thus

energy efficiency is becoming an essential parameter of industrial manufacturing

processes, mostly due to new government legislation, customers’ environmental

concerns and continuously rising cost of energy. Because of a growing economical

competitive landscape and higher environmental norms, it is now vital for

manufacturing companies to reduce their energy consumption and to become more

environment-friendly. To limit peak power consumption is one important approach to

support energy efficient production, because electricity consumption and operating

costs of manufacturing plants are usually charged based on the peak power demand

from electricity providers [3]. This method takes load shifting to reduce energy use at the

utility’s peak demand [4]. Fang et al. [5] presented a multi-objective mixed-integer

programming model of the flow shop scheduling problem that considers peak power

load, energy consumption, and associated carbon footprint in addition to cycle time.

Bruzzone et al. [6] proposed the integration of an energy aware scheduling module with

an advanced planning and scheduling system in order to control the peak consumption,

while accepting a possible increase in the total tardiness. Xu et al. built two mixed-

� ���

integer programming models in [3] to achieve a global optimal solution between the

peak power and the traditional production efficiency without compromise on

computing efficiency. To sum up, numerous works have focused on shop scheduling

problems with peak power limitation in static perspective. But, due to frequently

inevitable new arrival jobs in the production environment, a fixed preset scheduling

plan could not meet the requirement.

Scheduling problems are dynamic in the real world with uncertain expected events after

the start time. Dynamic scheduling problems are more complex than static scheduling

problems. A lot of methods have been utilized to solve this kind of problems [7].

However, only a few of them considered the efficiency of shop scheduling problem

with energy efficient demand and they were generally solved by the predictive reactive

approach with complete rescheduling. Tang et al. [8] adopted an improved particle

swarm optimization to search for the Pareto optimal solution of dynamic flexible flow

shop scheduling problems that minimize energy consumption and makespan. A

predictive reactive strategy was used to allocate the new jobs and the previous remaining

operations simultaneously after the rescheduling point. Zhang et al. studied the dynamic

rescheduling in flexible manufacturing systems considering energy consumption and

schedule efficiency in [9] with a new goal programming math model. Optimal solutions

were found by a genetic algorithm with the complete rescheduling strategy and the

period policy. In a word, some efforts to solve energy efficient dynamic shop

scheduling problems have been carried out. However, limitations still remain and must

be tackled. A typical one is to obtain the renewed adequate scheduling plan in a

reasonable response time. Particularly, complete rescheduling requires prohibitive

computation even it performs the best to maintain optimal solutions.

In recent years, various algorithms using GPUs have been successfully applied to

generate optimized results for shop scheduling problems with impressive time decrease.

In addition to the already stated works in Chapter II, Melab et al. [10] indicated a

parallel branch and bound algorithm based on a GPU-accelerated bounding model on

flow shop scheduling benchmarks to improve the performance by optimizing data

access management. Czapinski et al. [11] implemented a Tabu search method with

GPUs for the solutions of permutation flow shop scheduling problems, which is 89

times faster than the CPU version. These cases have confirmed that the parallel

� �	�

algorithms on GPUs have good performance in solving shop scheduling problems.

However, it is also revealed that few studies have been conducted to integrate GPUs

computing in dynamic energy efficient shop scheduling problems, because of the

complexity that is caused.

As far as the above-mentioned requirements, the total tardiness and the makespan with

a peak power limitation are analyzed in this Chapter while considering the flexible flow

shop with new arrival jobs. A periodic complete rescheduling approach is adopted to

represent the optimization problem. Furthermore, due to the fact that an adequate

renewed scheduling plan needs to be obtained in a short response time in dynamic

environment, a priority based hybrid parallel GA on GPUs is implemented. The

efficiency and the effectiveness of the proposed approach are validated through

computational tests.

IV.2 Problem Definition

For an easy presentation, we summarize the notations used along the rest of this

Chapter in Table 14.

Table 14 A description of notations used in all formulae in Chapter IV

Notation Description

j, i, i′ Job indices

s, s′, s′′ Stage indices

m Machine index

t Time period index

n Number of original jobs�

n′ Number of new arrival jobs�

r
Number of original operations assigned to machines before the

rescheduling point

g Number of stages�

oC Number of machines at the stage s.

H Time horizon

J Set of original jobs, J = {0,1,2, … , n − 1}

� �
�

J′ Set of new arrival jobs, J′ = {0,1,2, … , n′ − 1}

S Set of stages, S = {0,1,2, … , g − 1}

MC Set of machines at the stage s, s ∈ S,MC = {0,1,2, … , oC − 1}

T Set of time periods, T = {1,2,3, …,H}

RS Rescheduling point

R) Release time of job j, j ∈ J ∪ J′

D) Due time of job j, j ∈ J ∪ J′

P)C6
Processing time when job j at stage s is to be processed on machine m,

j ∈ J ∪ J′, s ∈ S,m ∈ MC

Q)C6
Average power consumption when job j at stage s is to be processed on

machine m, j ∈ J ∪ J′, s ∈ S,m ∈ MC

Q678 Power’s peak

WT Weight for the total tardiness in the objective function

u)Cs Boolean variable, j ∈ J ∪ J}, s ∈ S, t ∈ T

S)C Start time of job j at stage s, j ∈ J ∪ J′, s ∈ S

M)C Target machine handling job j at stage s, j ∈ J ∪ J′, s ∈ S

Qs Total power consumption at time period t, t ∈ T

T) Total tardiness, j ∈ J ∪ J′

C678 Completion time of the last job, i.e., the makespan

k Current generation number of the GA

X(k) Target machine matrix at generation k

Y(k) Priority matrix at generation k

Z(k) Order matrix at generation k

C A very large constant, C	ϵ	RÄ

ρ Individual index

� ���

Figure 29 An example of EDFFSP using the peak power value

An Energy efficient Dynamic Flexible Flow Shop scheduling Problem (EDFFSP) is a

further development of the FFSP. A set of new jobs may arrive after the start of the

original plan. They should be processed sequentially and non-preemptively from the

beginning of the rescheduling point with the remaining uncompleted operations of

original jobs. In addition to the processing time, the power consumption of one step of

J: (J:}) on a particular machine is known. Furthermore, there is a power’s peak limitation

when the system operates as illustrated in Figure 29. As an FFSP is considered to be

NP-hard in essence and difficult to solve, the EDFFSP is a NP-hard combinatorial

optimization problem and more complex than the FFSP. To achieve the power’s peak

limitation and minimize the traditional makespan and the total tardiness objectives, the

formal mathematical model for the EDFFSP is an extension of the mathematical model

presented in [3, 6] to cover rescheduling. The formulation is given in the following.

Objective function:

min:	WT ∗ T) 	+ C678
)∈_∪_Å

 (4.1)

Constraints:
T) = max(S)	`fd + P)	`fdab	chi	 − D), 0)						j ∈ J ∪ J′ (4.2)
C678 = max) (S)	`fd + P)	`fd	ab	chi) 						j ∈ J ∪ J′ (4.3)

S)Ç ≥ R)						j ∈ J ∪ J′ (4.4)
S)C ≥ S)	Cfd + P)	Cfd	ab	ghi						j ∈ J ∪ J′, s ∈ S, s > 0 (4.5)
S)C+P)Cabg ≤ S:C						j ∈ J ∪ J′, i ∈ J ∪ J′, s ∈ S, j ≠ i, 	M)C == M:C, 	S)C ≤ S:C (4.6)

� ���

Q678 ≥ Qs						t ∈ T (4.7)

Qs = Q)Ca)C ∗ u)Cs
C∈É)∈_∪_Å

						t ∈ T (4.8)

u)Cs=
1						j ∈ J ∪ J′, s ∈ S, S)C ≤ Ñ < S)C+P)Cabg
			0						ÖÑℎáàâäãá																																																	

 (4.9)

RS ≤ S)C						j ∈ J ∪ J′, s ∈ S (4.10)

The decision variables in this mathematical model are M)C and S)C . The objective

function (4.1) and constraints (4.2)-(4.6) keep the same as the FFSP stated in Chapter

III.2 but including new arrival jobs. Constraint (4.7) introduces the power’s peak by an

upper bound whereas the power consumption during a certain period is expressed by

constraint (4.8). Constraint (4.9) gives the definition of a Boolean variable u)Cs. It is

equal to 1 if job j at stage s is being processed at time period t. Finally, constraint (4.10)

imposes the definition of rescheduling.

IV.3 Solving Approach

IV.3.1 Periodic Complete Rescheduling Strategy

In the periodic policy, schedules are re-generated at the rescheduling points that occur

with regular intervals and gather all new arrival jobs’ information. To solve the

EDFFSP, operations are assigned to machines in order, following the original schedule

until the reschedule point. New arrival jobs and uncompleted operations of original jobs

are processed in terms of the updated schedule executed by the optimization algorithm

within a short response. The parallel GA I is chosen for solving this problem with a

complete rescheduling strategy which is better in maintaining optimal solutions, but is

rarely achievable in practice due to the prohibitive computation time [12]. Figure 30

summarizes the flow of the periodic complete rescheduling process.

� ��

Figure 30 The flow of periodic complete rescheduling process for the EDFFSP

IV.3.2 Priority-Based Encoding Representation

According to the problem description in Chapter IV.2, a target machine matrix X(k),

stored on the GPU global memory with n + n′ rows and g columns, is presented in

(4.11).

X(k) =

xÇÇ(k)
xdÇ(k)
⋮

x(çÄç}fd)Ç(k)

xÇd(k)
xdd(k)
⋮

x(çÄç}fd)d(k)

⋯⋯
x)C(k)
⋯

xÇ(`fd)(k)
xd(`fd)(k)

⋮
x(çÄç}fd)(`fd)(k)

 (4.11)

Where x)C k ϵ[0, o − 1] ∪ {−1}, j ∈ J ∪ J′, s ∈ S.

Moreover, (4.12) shows a (n + n′)×g matrix placed on the GPU global memory that

expresses the priority relation among operations.

� ���

Y(k) =

yÇÇ(k)
ydÇ(k)
⋮

y(çÄç}fd)Ç(k)

yÇd(k)
ydd(k)
⋮

y(çÄç}fd)d(k)

⋯⋯
y)C(k)
⋯

yÇ(`fd)(k)
yd(`fd)(k)

⋮
y(çÄç}fd)(`fd)(k)

 (4.12)

Where y)C k ϵ[1, g×(n + n′) − r] ∪ {−1}, j ∈ J ∪ J′, s ∈ S.

Each element of matrix X(k) indicates the machine number that deals with job j at stage

s at generation k while each element of matrix Y(k) is used to sequence operations

assigned to machines. The values for the EDFFSP are defined as:

l if job j at stage s is started or completed before the start time of the rescheduling

point, both element x)C(k) and element y)C(k) are equal to -1. This includes:

Case 1: job j at stage s of the original job is accomplished.

Case 2: job j at stage s of the original job is being executed.

l if job j at stage s is assigned to a machine after the start time of the rescheduling

point, element x)C(k) is equal to a random integer representing the target machine

handling job j at stage s. Similarly, elements y)C(k)	is also generated randomly

from the range starting from 1 to the amount of unassigned operations. Moreover

the value of element y)C(k) is unique, where the larger the value of the random

integer represents higher priority. This includes:

Case 1: job j at stage s of the original job remains to be processed.

Case 2: job j at stage s of the new arrival job must be processed.

In this representation, each chromosome of the parallel GA consists of one target

machine matrix and one priority matrix, representing a feasible schedule. In the

decoding step, elements of a matrix Z(k) (4.13) generated from the matrix X(k) and the

matrix Y(k) are designed to address the assignment order of uncompleted operations.

Element z)C(k) is equal to 0 if job j at stage s of the original job is being executed at

the start time of the rescheduling point, while element z)C(k) is equal to C if the

operation is accomplished before it. The procedure to determine elements’ value of

matrix Z(k) is displayed in Algorithm 1 and all these values are reserved on the GPU

� ���

global memory. When the power’s peak is met, the later assigned operation needs to be

delayed as shown by the decoding rule in Algorithm 2.

Z(k) =

zÇÇ(k)
zdÇ(k)
⋮

z(çÄç}fd)Ç(k)

zÇd(k)
zdd(k)
⋮

z(çÄç}fd)d(k)

⋯⋯
z)C(k)
⋯

zÇ(`fd)(k)
zd(`fd)(k)

⋮
z(çÄç}fd)(`fd)(k)

 (4.13)

Where z)C k ϵ[1, g×(n + n′) − r] ∪ {0, ì}, j ∈ J ∪ J′, s ∈ S	.

Algorithm 1The procedure for determining elements’ value of matrix Z(k)

For s, s}, s}}ϵS, s ≠ s}}, j, i ∈ J ∪ J}, j ≠ i,m ∈ M

if x)C k = −1 then

if S)C < RS	 < S)C + P)C6 then

	z)C k = 0,	machine m continues to process job j at stage s before executing a rescheduling plan.

else

z)C k = C.

end if

else

if y)C(k) 	> y:C}(k) then

z)C k < z:C} k , job j at stage s is assigned to its target machine earlier than job i at stage s′.

end if

if s < s}} then

	z)C k < z)C}} k , job j at stage s is assigned to its target machine earlier than job j at stage s′′.

end if

end if

� ���

Algorithm 2 The decoding rule of the EDFFS

For	s, s′ϵS, j, i, i′ ∈ J ∪ J}, j ≠ i ≠ 	i′, z)C k 	< z:C k , z:}C} k < 	z)C k 	&& job i′ at stage s′	is the

earliest finished one among all the processing operations at period t, m ∈ M, t ∈ T
if Q678 ≥ Qs + Q)Cabg then

if M)C == M:C then

job j at stage s is assigned to machine m earlier than job i at stage s.

else

jobs are assigned to each machine in terms of matrix X(k).

end if

else

job j at stage s needs be delayed to be assigned to its target machine until finishing job i′ at stage s′.

end if

An example of EDFFSP is presented in Table 15. There are 6 original jobs. Each job

consists of 3 stages and there are two machines at each stage. Jobs are available to be

assigned to machines after the release time (R)). Each operation is processed on the

target machine (M)C) after the start time (S)C). To make it simple, the processing time is

set as 1, 2 and 3 for the three stages respectively. The average power consumption Q)C6

is defined as 1 for any operation on any machine while the value of the power’s peak

Q678 is equal to 3. Finally, we assign a priority to the total tardiness over the makespan

in the objective function by setting the WT as 100. Figure 31 shows the Gantt chart of

this scheduling. Regarding new arrival jobs, job 6 and job 7 need to be considered after

starting the plan. In the traditional static environment, they could only be scheduled

after completing operations of the original schedule at each stage as illustrated in Figure

32. However, the periodic complete rescheduling approach in a dynamic environment

reschedules new arrival jobs at the beginning of the rescheduling point (RS=7) with

remaining operations of original jobs simultaneously as in Figure 33.

� ���

Table 15 An example of EDFFS

 Original jobs New arrival jobs

 job 0 job 1 job 2 job 3 job 4 job 5 job 6 job 7

R) 0.80 1.42 3.54 3.77 4.91 2.45 7.77 7.49

M)Ç,M)d, M)ï 1, 1, 0 0, 0, 1 0, 1, 1 0, 1, 0 1, 1, 1 0, 0, 0

S)Ç, S)d, S)ï

0.80,1.80,

3.80

1.42, 2.42,

4.42

6.80, 9.91,

11.91

3.77, 7.91,

12.42

4.91, 5.91,

7.91

2.45, 7.42,

9.42

The following matrices show the EDFFSP decoding result for the example. Each row

of these matrices represents a job and each column represents a stage. A chromosome

consists of the target machine matrix X(k) and the priority matrix Y(k) generated

randomly to obtain the order matrix Z(k).

X(k) =

		−1 −1 	−1
		−1 −1 	−1
		−1 1 0
−1 1 		1
−1 −1 		0
−1 0 		0
	1 				1 				1
	0 				0 				0

, Y(k) =

	−1 −1 −1
	−1 −1 −1
	−1 4 2
−1 10 	8
−1 −1 12
−1 9 3
		6 		13 	11
		1 		5 	7

	→	Z(k) =

C C C
C C 0
0
C
C
C
5
11

8
2
0
3
6
12

10
4
1
9
7
13

Following the description, the later assigned operation needs be delayed when the

power’s peak is met. For instance, job 7 at stage 0 was supposed to be processed after

the completion of job 2 at stage 0 on machine 0 as in Figure 33. Moreover, at the same

moment machine 2, 3 and 4 are busy with job 5 at stage 1, job 3 at stage 1 and job 4 at

stage 2 respectively. But due to the power limitation, this scenario is not possible. As

zöÇ(k) is equal to 11, zõd(k) to 3, zúd(k) to 2, zùï(k) to 1, job 7 at stage 0 is the

newest allocated one among all of them. Thus, it is delayed until the completion of job

5 at stage 2 on machine 4.

� ���

Figure 31 The original schedule of an optimized solution

Figure 32 The updated schedule of an optimized solution in a static environment

(T) = 1.64, C678)∈_∪_Å = 19.91, Value of the Objective Function=183.91)

Figure 33 The updated schedule of an optimized solution obtained by the proposed

approach in a dynamic environment

 (T) = 0.96, C678)∈_∪_Å = 20.42, Value of the Objective Function=116.42)

IV.3.3 CUDA-Based Hybrid Genetic Algorithm

As the complete rescheduling strategy is rarely achievable in practice due to the

prohibitive computation time [12], the parallel GA I is used in this Chapter for the

� �	�

EDFFSP. This design is highly consistent with the CUDA framework in order to get

the maximum speedup without compromising to solutions’ quality. The main structure

keeps the same as in Chapter III.3 while some modifications are made to suit the

priority-based encoding and to meet the additional requirements of EDFFSP.

l The fitness function: Since the EDFFSP is also a minimization problem, the fitness

function FIT(ρ) of an individual ρ is transferred from the objective function as

FIT(ρ) = max	(E678 − (WT ∗ T) + C678)
)∈_

, 0) (4.14)

where E678 is the estimated maximum value of the objective function.

l Selection: Because the texture memory allows a CUDA thread likely to read
from an address “near” the address that nearby threads [13] and the short

response time is required by the EDFFSP, we modify the selection area of parallel

GA I from Figure 15 to Figure 24. Thus, the memory management is similar with

the cellular GA where the neighbors’ information are stored on the texture memory

and a tournament selection is implemented via the global memory. Finally, the

individual with the largest fitness value is the winner of each tournament and is

selected to replace the considered individual.

l Crossover: Individuals are still paired with neighbors as in Figure 16 while a 2D

single point crossover is executed for the target machine matrix and the priority

matrix respectively if a specified probability is satisfied. As the randomly

generated values in the priority matrix is unique, a correction step is required to

replace the duplicate values by the missing values in ascending order. All steps

are executed through the global memory and an example shows the procedure in

Figure 34.

� �
�

Figure 34 An example of the neighboring paired crossover

l Mutation: When the mutation is executed using the global memory, the non-

negative elements of the target machine matrix of this individual are replaced by

random values in the range, apart from the original ones. Regarding the priority

matrix, two non-negative elements are chosen randomly to exchange the values.

An example is given in Figure 35.

Figure 35 An example of the mutation

l Replacement: No modification.

l Migration: No modification.

IV. 4 Numerical Experiments

In order to assess the implementation of parallel GA I to the EDFFSP, 4 tests are

conducted. Test 1 and test 2 are performed in terms of an energy efficient FFS without

considering new arrival jobs. Test 1 configures the parameters of the proposed hybrid

GA, while test 2 shows its efficiency and effectiveness compared to the simple GA [14],

the cellular GA [15] and the OpenMP based master-slave GA. New arrival jobs are

included in test 3 to evaluate the performance of the EDFFSP. A small size instance is

considered in those 3 tests. There are 10 original jobs with 3 production stages. Each

stage includes 2 parallel machines. The power’s peak is imposed through a bound equal

to 4. Test 4 examines the convergence trend of EDFFSP with 3 different size problems.

� ���

The instances are characterized by the different numbers of jobs (n = 10, 50, 80) with

the different numbers of stages (g = 3, 4, 4), the different numbers of machines (oC= 2,

2, 3) in each stage and the different numbers of power’s peak (Q678 =4, 5, 10). The

rescheduling point is randomly generated in test 3 and test 4. The number of new arrival

jobs is decided by the ratio of the rescheduling point to the makespan in the original

schedule times the amount of original jobs. This is designed to keep the total amount

of jobs waiting to be scheduled roughly consistent. Other experimental relative data are

defined in Table 16 and there is no update for the experimental platform.

Table 16 The experimental relative data of the EDFFS

WT 100

Pjsm U[1, 5]� where P0sm= P1sm= ⋯ = P(n+n’-1)sm

Rj U[0, P], where P = (P)C66 oC)C

Dj Rj+	P(1 + σ), where σ=U[0,2]

Qjsm 1

IV.4.1 Parameters Configuration Test of Parallel GA I

As the maximum threads amount per block on the CUDA framework is 1024 and they

are organized in a grid, the maximum island size for the hybrid GA is 1024 (32×32). In

order to have more than one island in all cases, the population size is kept as 4096

(64×64). Since small size islands with the migration lead to premature convergence

while the algorithm with large size islands converges slower [16], we set there are 64

(8×8) individuals in one island. Considering the existing experiences, the most

appropriate crossover rate ranges between 0.75 and 0.9 [17] and the mutation rate

should be much lower than the crossover rate [18]. Therefore, the values of crossover

rate and mutation rate are given as 0.9 and 0.1 respectively.

In order to ensure the performance of our GA parameters, we applied the parallel hybrid

GA on the tested instance with three groups of crossover rates and three groups of

mutation rates as in Table 17. According to the average results of 100 iterations, we

could find the crossover rate and the mutation rate do have some influence on the

algorithm performance. Moreover, when crossover rate=0.9 and mutation rate=0.1, the

parallel hybrid GA could obtain satisfying results for solutions’ quality and execution

� ���

time. To achieve the fairness of comparison, we set the crossover rate and the mutation

rate as 0.9 and 0.1 for all GAs in the following tests of this Chapter.

Table 17 Results of the parallel hybrid GA on GPUs with different settings of

crossover rate and mutation rate (Generations =100)

Crossover Rate Mutation Rate Solution Quality Execution Time (s)

0.75 0.05 216.39 8.21

0.75 0.1 219.98 8.34

0.75 0.15 211.70 8.47

0.825 0.05 220.39 8.30

0.825 0.1 214.03 8.43

0.825 0.15 210.90 8.53

0.9 0.05 216.56 8.36

0.9 0.1 209.81 8.50

0.9 0.15 215.09 8.58

Due to the influence from the island size, the trend of the probability obtaining adequate

solutions and the execution time with different island sizes is illustrated in Figure 36

and Table 18 respectively. Each value denotes an average result over 100 runs.

Regarding the values of the objective function got by different settings of crossover rate

and mutation rate are approaching 200, we set the adequate solution level as 200 for

the tested instance. When a value of the objective function is less than 200 after the

specified generations, it is considered as an adequate solution. From Figure 36 and

Table 18, we could observe a great influence from the island size on the solutions’

quality of the hybrid parallel GA on GPUs but a few difference on the execution time.

The islands with 64 individuals (8×8 threads) perform best. In terms of the 2D

population size 4096 (64×64), there are 64 islands (8×8 blocks).

� ��

Figure 36 The trend of the probability obtaining adequate solutions with different

island sizes (block sizes) on GPUs

Table 18 Execution time with different island sizes (block sizes) on GPUs (s)

Island Size

Generations
4 (2×2) 16 (4×4) 64 (8×8) 256 (16×16) 1024 (32×32)

100 7.65 7.71 9.11 9.14 12.30

IV.4.2 Performance Evaluation Test of Parallel GA I

Firstly, we try to compare the solutions obtained from the parallel GA I, the simple GA

and the cellular GA. The designs of simple GA and cellular GA keep the same as in

Chapter III. For fair comparison, a master-slave GA on multi-core CPU with or without

vectorization is also taken into consideration. The master-slave model exploits

parallelism in the simple GA by distributing the most time consuming part, fitness

function evaluation, to slaves. As it does not affect the behavior of the algorithm, the

master-slave GA is only included for the execution time comparison. Furthermore, we

run the hybrid parallel GA and the cellular GA on GPUs, the simple GA on single core

CPU, the master-slave GA on four cores CPU. Each of them is generated 100 times

respectively.

�

��	

��

���

���

��

���

���

���

���

2*2 4*4 8*8 16*16 32*32

"$
!
��
��
��
&+
!
�
&�
�
(
�
�'
��
!
��

!
��
��
&�
(
�
�'

�
&�
!

��
�
�
��
%%
&�
�

�
�

�%�� � %�,� ���!�� %�,��

�� �$�&�! %�	�� �� �$�&�! %�
�� �� �$�&�! %����

� ���

Table 19 Solutions’ quality comparison

Generations
Hybrid Parallel GA Simple GA Cellular GA

Avg. Best Variance Avg. Best Variance Avg. Best Variance

100 209.81 153.45 152.22 410.72 236.55 5208.84 258.39 158.86 1635.95

200 183.16 151.67 149.47 354.64 214.31 3834.04 228.65 155.26 1549.97

300 181.80 151.67 150.01 339.09 198.69 3565.65 221.51 154.51 1073.24

400 178.32 149.83 151.67 331.57 170.60 4010.57 217.42 153.24 1322.16

500 177.93 149.47 150.63 327.46 156.41 4779.69 216.99 151.74 1073.99

From the results in Table 19, we discover that the parallel GA I always gains a better

performance for solving the energy efficient FFS than the simple GA and the cellular

GA with the average value, the best value and the variance of the objective function.

As a result, the efficiency of parallel GA I gets confirmed by dealing with different

shop scheduling problems. Moreover, the cellular GA overcomes the simple GA as it

allows a better exploration of the search space with respect to the decentralized

population [15].

Table 20 Execution time comparison (Generations=100)

Population

size

Hybrid Parallel GA

on GPUs

Cellular GA

on GPUs

Simple GA

on single core CPU

Master-Slave GA on 4 cores CPU

without vectorization with vectorization

64×64 8.77 s 8.14 s 129.16 s 39.50 s 5.60 s

128×128 30.71 s 31.13 s 554.01 s 182.27 s 33.07 s

256×256 105.73 s 108.07 s 2651.61 s 1127.78 s 298.96 s

Since the hybrid parallel GA and the cellular GA are designed specially for 2D grid

architectures, they could maximize the benefits from the CUDA framework and almost

take the same execution time when dealing with different population sizes as illustrated

in Table 20. On the opposite, the simple GA on single core CPU takes from 14.73 to

25.08 times the execution time of the hybrid parallel GA when the population size is

increased from 64×64 to 256×256. As far as the available experiment platform, we

firstly parallelized the master-slave GA using OpenMP [20] on 4 cores CPU.

Afterwards, the SIMD vectorization was executed simultaneously via SSE2 [20]. The

code was compiled by the command as follows and the vectorization report showed

that all loops for the fitness function evaluation were well vectorized.

� ���

gcc -fopenmp -O3 -ftree-vectorize -msse2 mycode.c -ftree-vectorizer-verbose=1 -o

mycode.o

With the development of multi-cores CPU and SIMD vectorization, the performance

of master-slave GA has been improved a lot by distributing the fitness function

evaluation to slaves and executing them concurrently. It even overcomes the GAs on

GPUs with small population size. However, the GAs working on GPUs always win

with less execution time when the amount of individuals is increased, due to the limited

amount of cores and the limited SIMD width in our case.

IV.4.3 Sensitive Analysis Test of the EDFFSP

As the number of new arrival jobs is decided by the ratio of the RS to the makespan in

the original schedule times the amount of original jobs, we change the amount of new

arrival jobs by varying the ratio of the RS to the makespan in the original schedule. The

influence with different ratios to the periodic complete rescheduling approach and the

traditional static approach are displayed in Table 21. The iteration number is kept as

100 like the last two tests. The periodic complete rescheduling approach is more

flexible in a dynamic environment as it reschedules the new arrival jobs at the beginning

of the rescheduling point. However, those jobs could only be scheduled after

completing operations of the original schedule at each stage by the traditional static

approach. This impact is even more evident when the ratio of the RS to the makespan

in the original schedule is small. And it is decreasing and almost disappears when the

RS takes place near the end of the original schedule. Therefore, we strongly suggest

using the periodic complete rescheduling approach with the assistance of parallel GA I

when the RS is arranged at the first half part of the original schedule. Meanwhile, the

traditional static approach may have similar performance if the RS is considered at the

later half part.

� ���

Table 21 Comparison between the periodic complete rescheduling approach and the

traditional static approach with different ratios of the RS to the makespan in the

original schedule (Generations=100)

Ratio of the RS to the makespan

in the original schedule

Traditional static

approach

Periodic complete

rescheduling approach

Improvement

Ratio

20% 4108.41 2142.90 1.9172

40% 11131.51 9209.40 1.2087

60% 17892.24 16941.56 1.0561

80% 26595.63 26520.96 1.0028

As tardy jobs typically cause penalty costs [21] and have a great influence on

customers' satisfaction, the weight WT indicates the priority of the total tardiness in the

objective function. However, we consider the relationship between two objectives with

different WT settings due to the importance of makespan in manufacturing practice and

Table 22 shows the average results of 100 iterations. According to the values of total

tardiness and makespan, we could find the makespan is less sensitive to the weight WT

than the total tardiness as the variance of makespan is 0.61 while the variance of total

tardiness is 78.17. Moreover, once the value of WT is increased to reach a very large

constant, the total tardiness is approaching its minimum value. Thus, manufacturers

should take the chance to optimize the value of total tardiness while limiting the

makespan in a reasonable range.

� ���

Table 22 Relationship between two objectives with different WT settings

(Generations=100)

WT Total Tardiness Makespan Objective Function Value

0.0001 39.48 40.55 40.56

0.001 39.95 40.55 40.59

0.01 35.23 40.54 40.89

0.1 23.43 40.78 43.12

0.4 19.04 41.14 48.76

0.7 18.61 41.23 54.26

1 18.29 41.44 59.73

4 17.83 42.15 113.46

7 17.69 42.18 166.00

10 17.57 42.12 217.86

100 17.58 42.39 1800.43

1000 17.60 42.51 17645.71

10000 17.58 42.41 175831.12

Variance 78.17 0.61

IV.4.4 Convergence trend test of the EDFFSP

As a GA converges when most of the population is identical or the diversity is minimal

[22], there is no need to execute the algorithm for more generations after the

convergence point. For the EDFFSP, it is important to identify the convergence point

and its corresponding execution time for different size problems. Three different size

problems are considered in this test. The convergence trends of the small size, the

medium size and the large size problem instances are described in Figure 37, Figure 38

and Figure 39 separately. Each point in figures displays a value of 30 runs.

� ���

Figure 37 The convergence trend of small size problem

Figure 38 The convergence trend of medium size problem

��	

��	�

��	�

��
	

��
�

��

��
�

��
�

���	

����

� � 	�� 	�
��

(
�
�'
�
!
�
&�
�
!
��
��
&�
(
�
�'

�
&�
!

*�
	�
��
�

�� �$�&�! %

�(��)!$%& ��%&

�

�
�

��

���

��

���

�

� 	��
�� ��� ��� �� ���(
�
�'
�
!
�
&�
�
!
��
��
&�
(
�
�'

�
&�
!

*�
	�
��
�

�� �$�&�! %

�(��)!$%& ��%&

� �	�

Figure 39 The convergence trend of large size problem

With regard to the small size problem, it converges approximately at the level of 50

generations, while the values for the medium size and the large size problems are

around 400 and 600. As the complexity increases when we raise the size of the problem,

the execution time per 10 generations for these problems is about 1.24s, 223.37s and

4256.14s respectively. Therefore, to get solutions after the convergence for the small

size problem, it takes 6.2s whereas the medium size and the large size problems need

much longer time as 8934.8s and 255368.4s. Due to the dramatically increasing

execution time for large-scale problems, the hybrid parallel GA may get a feasible

solution before achieving the convergence based on decision-makers’ consideration,

namely a trade-off between the solutions’ quality and the time consumption.

IV.5 Conclusion

In this Chapter, we have first studied an energy efficient dynamic flexible flow shop

scheduling model using the peak power value with consideration of new arrival jobs.

To solve this NP-hard problem in a short response time, a priority based hybrid parallel

GA with a periodic complete rescheduling approach was developed. In the first test, we

��

��

��

�

	

�

�
�� ��� ��� ���

(
�
�'
�
!
�
&�
�
!
��
��
&�
(
�
�'

�
&�
!

*�
	�
��
�

�� �$�&�! %

�(��)!$%& ��%&

� �
�

configured the parameters of the hybrid parallel GA and obtained a reasonable island

size for the tested instances to inhibit the premature convergence with a faster

convergence speed. Afterwards, the designed GA in test 2 showed that it could gain

better results than the simple GA, the cellular GA through the combination of merits

from two levels. Meanwhile, it reduced the time requirements dramatically by

optimizing the benefits from the CUDA framework. As seen in test 3, the periodic

complete rescheduling approach was flexible to solve the EDFFSP, particularly when

the rescheduling point was considered at the first half part of the original schedule.

Moreover, the total tardiness was more sensitive in this two objectives optimization

problem and its value was approaching the minimum once the weight WT was

increased to a very large constant. Finally, test 4 demonstrated the response time to

achieve the convergence point for large-scale EDFFSP. We suggested as well in this

case decision-makers to obtain a feasible scheduling by making a trade-off between the

solutions’ quality and the time consumption.

Reference

[1].EIA (2009) International energy outlook 2009. May 2009 2.

[2].EIA (2010) Annual energy review 2009. Report no. DOE/EIA0384(2009); August

2010

[3].Xu, F., Weng, W., & Fujimura, S. (2014, January). Energy-Efficient Scheduling for

Flexible Flow Shops by Using MIP. In IIE Annual Conference. Proceedings (p. 1040).

Institute of Industrial and Systems Engineers (IISE).

[4].Pach, C., Berger, T., Sallez, Y., Bonte, T., Adam, E., & Trentesaux, D. (2014).

Reactive and energy-aware scheduling of flexible manufacturing systems using

potential fields. Computers in Industry, 65(3), 434-448.

[5].Fang, K., Uhan, N., Zhao, F., & Sutherland, J. W. (2011). A new shop scheduling

approach in support of sustainable manufacturing. In Glocalized solutions for

sustainability in manufacturing (pp. 305-310). Springer, Berlin, Heidelberg.

[6].Bruzzone, A. A. G., Anghinolfi, D., Paolucci, M., & Tonelli, F. (2012). Energy-

aware scheduling for improving manufacturing process sustainability: A mathematical

model for flexible flow shops. CIRP Annals-Manufacturing Technology, 61(1), 459-

462.

� ���

[7].Ouelhadj, D., & Petrovic, S. (2009). A survey of dynamic scheduling in

manufacturing systems. Journal of scheduling, 12(4), 417.

[8].Tang, D., Dai, M., Salido, M. A., & Giret, A. (2016). Energy-efficient dynamic

scheduling for a flexible flow shop using an improved particle swarm

optimization. Computers in Industry, 81, 82-95.

[9].Zhang, L., Li, X., Gao, L., & Zhang, G. (2016). Dynamic rescheduling in FMS that

is simultaneously considering energy consumption and schedule efficiency. The

International Journal of Advanced Manufacturing Technology, 87(5-8), 1387-1399.

[10].Melab, N., Chakroun, I., Mezmaz, M., & Tuyttens, D. (2012, September). A GPU-

accelerated branch-and-bound algorithm for the flow-shop scheduling problem.

In Cluster Computing (CLUSTER), 2012 IEEE International Conference on (pp. 10-

17). IEEE.

[11].Czapiński, M., & Barnes, S. (2011). Tabu Search with two approaches to parallel

flowshop evaluation on CUDA platform. Journal of Parallel and Distributed

Computing, 71(6), 802-811.

[12].Gholami, M., Zandieh, M., & Alem-Tabriz, A. (2009). Scheduling hybrid flow

shop with sequence-dependent setup times and machines with random

breakdowns. The International Journal of Advanced Manufacturing Technology, 42(1-

2), 189-201.

[13].Sanders, J., & Kandrot, E. (2010). CUDA by example: an introduction to general-

purpose GPU programming. Addison-Wesley Professional.

[14]. Zhong, J., Hu, X., Zhang, J., & Gu, M. (2005, November). Comparison of

performance between different selection strategies on simple genetic algorithms.

In Computational Intelligence for Modelling, Control and Automation, 2005 and

International Conference on Intelligent Agents, Web Technologies and Internet

Commerce, International Conference on (Vol. 2, pp. 1115-1121). IEEE.

[15] Alba, E., & Dorronsoro, B. (2009). Cellular genetic algorithms (Vol. 42). Springer

Science & Business Media.

[16]. Cantú-Paz, E. (1998). A survey of parallel genetic algorithms. Calculateurs

paralleles, reseaux et systems repartis, 10(2), 141-171.

[17]. Schaffer, J. D. A. R. (1989). A study of control parameters affecting online

performance of genetic algorithms for function optimization. San Meteo, California.

� ���

[18]. Cabrera, J. A., Simon, A., & Prado, M. (2002). Optimal synthesis of mechanisms

with genetic algorithms. Mechanism and Machine theory, 37(10), 1165-1177.

[19]. http://www.openmp.org/

[20]. https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

[21]. Parmee, I. C. (2009). Adaptive Computing in Design and Manufacture.

[22]. Louis, S. J., & Rawlins, G. J. (1993). Predicting convergence time for genetic

algorithms. Foundations of Genetic Algorithms, 2, 141-161.

� ��

Chapter V. Parallel GA II with Event-Driven

Schedule Repair for Solving a JSP with

Minimization of Total Tardiness and Total

Energy Consumption

V.1 Introduction

Energy costs due to production have been traditionally treated as externalities that must

be incurred and that cannot be reduced by production planning and scheduling [1]. With

an increasing interest in industrial sustainability, integrating energy efficiency into

production efficiency is concerned as one essential factor in factory practice. In the

literature, there are two kinds of approaches studying energy saving in manufacturing

systems [2]: avoiding peak power consumption and reducing the overall energy

consumption. The first one shifts load at energy peaks when the maximum available

energy is limited. The efficiency and the effectiveness of this method have been

discussed in Chapter IV. However, moving the production activities in off-peak periods

or inserting idle times for machine may not be acceptable with intense production

process or fixed working time shifts [1]. The second one aims at reducing the total

energy consumption of the manufacturing system by subdividing it and switching

among the different types and levels of energy consumption. Liu et al. [3] developed a

model for the bi-objective problem that minimized the total electricity consumption and

the total weighted tardiness, where a non-dominant sorting genetic algorithm was used

to obtain the Pareto front. Similarly, an emission-aware multi-machine job shop

scheduling model was addressed in [4] and was solved through a modified multi-

� ���

objective genetic algorithm. Dai et al. [5] reported an energy efficient model for the

flexible flow shop scheduling problem and utilized a genetic-simulated annealing

algorithm to make a significant tradeoff between the makespan and the total energy

consumption. In one word, numerous efforts have been given to combine the traditional

shop scheduling efficiency with the overall energy consumption. However, the models

used in these researches are deterministic in which the number of jobs is a fixed value

[3]. As ongoing reactive process where the presence of a variety of unexpected

disruptions is usually inevitable [6], the static scheduling obviously cannot meet the

requirements in most real-world environments.

The inevitable unpredictable new arrival jobs may lead changes in the original schedule.

Literature on dynamic scheduling has considered a significant number of works dealing

with new arrival jobs and their effects in various manufacturing systems [6].

Nevertheless, limited researches along this domain focus on dynamic energy aware

shop scheduling problems and they were generally solved by the predictive reactive

approach with complete rescheduling [7, 8]. Complete rescheduling and schedule repair

are the most two common used strategies in the dynamic environment. As in Chapter

IV, complete rescheduling provides the optimal solutions. But it can result in instability

and disruption in manufacturing flows, leading to tremendous production costs [9].

Schedule repair only attempts to revise part of the originally created schedule for

responding to the production environment changes. Pach et al. [2] set up a potential

fields based reactive scheduling approach for flexible manufacturing systems in which

resources were able to switch to the standby mode to avoid useless energy consumption

and to emit fields to attract products. Zeng et al. [10] presented the particle swarm

optimization algorithm to solve the dynamic scheduling problem of multi-task for

hybrid flow-shop with the objective of minimizing energy consumption by introducing

idle time windows of machines. To sum up, a few works have tried to solve dynamic

energy aware shop scheduling problems with schedule repair. Even schedule repair

does not require prohibitive computation as complete rescheduling and has potential

saving in CPU times [11], to obtain a renewed adequate scheduling plan within a short

response time is still highly desired in the dynamic environment, especially for large

scale or complex problems.

� ���

The research on parallel GAs is dominated by island GAs [12]. As the discussion in

Chapter II, the main efforts pay attention to the homogeneous islands even the same

genetic operator configurations and the migration mechanism may lead to premature

convergence [13]. Moreover, with the huge evolution of multi-core CPUs and
GPUs, some works have considered the cooperation between them to maximally utilize

their compute capability. Dabah et al. [14] proposed five parallel approaches to

accelerate the branch and bound algorithm for solving the blocking job shop scheduling

problem and two of them represented a hybridization between the multi-core CPU

approach and the GPUs-based parallelization approach. Benner et al [15] discussed a

hybrid Lyapunov solver based on the matrix sign function where the intensive parts of

the computation were accelerated using GPUs while executing the remaining

operations on a multi-core CPU. In [16], Bilel et al. introduced a CPU-GPU co-

simulation framework where synchronization and experiment design were performed

on CPU and node’s processes are executed in parallel on GPU according to the master

slave model. These cases have confirmed the efficiency to design a scheme that exploits

the different hardware architectures simultaneously. However, this strategy is not yet

implemented for island GAs, particular for heterogeneous island GAs to solve dynamic

energy aware shop scheduling problems, as far our knowledge is concerned.

Considering the above-mentioned requirements, an investigation into minimizing total

tardiness and total energy consumption in the job shop with new urgent arrival jobs is

concerned in this Chapter. Afterwards, an adequate renewed scheduling plan is

provided in a short response by the dual heterogeneous GA executed simutaniously on

different parallel platforms with the event driven schedule repair approach. Finally, the

efficiency and the effectiveness to implement the proposed method for solving dynamic

energy aware shop scheduling problems are validated through computational tests.

V.2 Problem Definition

The Job Shop scheduling Problem (JSP) is a NP-hard problem [17] in which there are

several jobs and each job consists of a certain amount of operations. One operation is

processed by a particular machine and every job is assigned to a group of machines

following a predetermined route [3]. As a layout shown in Figure 40, job A and job B

� ���

need to be processed by 4 machines and their processing routines are fixed as Machine

0-2-1-3 and Machine 2-0-3-1, respectively.

Figure 40 A job shop layout

The Energy efficient Dynamic Job Shop scheduling Problem (EDJSP) is an extension

of the JSP with machine speed scaling [18] in which machines are available to be set at

different speed levels when dealing with different jobs. The processing time and the

energy consumption of one operation processed on one machine at a set speed level are

known. When a higher speed level is chosen, the processing time is shortened but with

an energy consumption increase. Not like the EDFFSP presented in Chapter IV, a set

of new urgent jobs may arrive after the start time of original schedule and these jobs

need to be processed as soon as possible. Therefore, the production line should conduct

them immediately. The operations being processed are terminated and need be

rescheduled with the remaining uncompleted operations of original jobs based on the

insertion of new urgent arrival jobs. The updated schedule refers some local adjustment

of the original one for the stability of manufacturing system. There are two possible

measures for the impact caused by the schedule changes [19]: (1) the deviation from

the original jobs starting times, (2) the deviation from the original sequence. In this

Chapter, a measure modified from the first one is taken into consideration where each

job has an importance weight and a larger importance weight indicates a higher penalty

for delaying the finishing time of original jobs from the original schedule. If one

operation of a new urgent arrival job is added before one operation of an original job

on the same machine, a higher speed level with less processing time but more energy

consumption is required to make the original job be completed as in the original

schedule. Clearly, there is a conflict among the minimization of total tardiness, the

� ���

minimization of total energy consumption and the minimization of disruption to the

original schedule as displayed in Figure 41. Thus, a trade-off must be made among of

them. Because of the NP hardness of the JSP, the EDJSP is a NP-hard combinatorial

optimization problem and more complex than the JSP.

Figure 41 Conflicts among total tardiness, total energy consumption and disruption to

the original schedule

For an easy presentation, we summarize the notations used along the rest of this

Chapter in Table 23.

Table 23 A description of notations used in Chapter V

Notation Description

j, i, l, x Job indices

s, t, y Operation indices

m Machine index

p, q, w Speed level indices

n Number of original jobs�

n′ Number of new arrival jobs�

n′′ Number of uncompleted original jobs at the rescheduling point

r1
Number of completed operations of original jobs before the

rescheduling point

� ���

r2
Sum of completed operations of original jobs before the rescheduling

point and operations of new urgent arrival jobs

o) Number of operations of job j

g Number of machines

h Number of speed levels

J Set of original jobs, J = {0,1,2, … , n − 1}

J′ Set of new arrival jobs, J′ = {0,1,2, … , n′ − 1}

J′′
Set of uncompleted original jobs at the rescheduling point, J′′ =

{0,1,2, … , n′′ − 1}

O) Set of operations of job j, O) = {0,1,2, … , o) − 1}

M Set of machines, M = {0,1,2, … , g − 1}

L Set of speed levels, L = {0,1,2, … , h − 1}

R) Release time of job j, j ∈ J ∪ J′

D) Due time of job j, j ∈ J ∪ J′

M)C	 Target machine handling operation s of job j, j ∈ J ∪ J′, s ∈ O)

S)C6	
Original start time of operation s of job j on machine m, j ∈ J ∪

J}, s ∈ O), m	ϵ	M

S)C6}
New start time of operation s of job j on machine m, j ∈ J ∪ J}, s ∈

O), m	ϵ	M

T)	 Tardiness of job j, j ∈ J ∪ J′

RS Rescheduling point

P)C6†
Processing time when operation s of job j is to be processed on

machine m at speed level p, j ∈ J ∪ J}, s ∈ O),m	ϵ	M, p	ϵ	L

Q)C6†	
Energy consumption when operation s of job j is to be processed on

machine m at speed level p, j ∈ J ∪ J}, s ∈ O),m	ϵ	M, p	ϵ	L

Z)C6†	

Boolean variable, it is equal to 1 if operation s of job j is processed on

machine m at speed level p, otherwise, it equals to 0,	j ∈ J ∪ J}, s ∈

O),m	ϵ	M, p	ϵ	L

TT Total tardiness of all jobs

ET678	 Estimated maximum value of TT

ET6:ç	 Estimated minimum value of TT
TE Total energy consumption

� �	�

EE678	 Estimated maximum value of TE
EE6:ç	 Estimated minimum value of TE
wt)	 Importance weight of original job j, j ∈ J

DEV
Weighted finishing time deviation of the updated schedule from the

original one

ED678	 Estimated maximum value of DEV

ED6:ç	 Estimated minimum value of DEV

α, β, γ Weight of each normalized objective function.
a, b, c, f, z Gene indices in a chromosome
v) Index of occurrence time of a job number

u) Occurrence time of a job number

U Set of occurrence time of a job number, U = {0,1,2, … , u) − 1}

k Current generation number of the GA

X(k) Operation permutation of original schedule at generation k

Y(k) Speed level permutation of original schedule at generation k

Z(k) Completed status permutation of original schedule at generation k

X′(k) Operation permutation of new schedule at generation k

Y′(k) Speed level permutation of new schedule at generation k

o)C Operation s of job j

d, e Indices for operations on machine m

n)C
Number of operations on machine m before operation s of job j is

assigned on it.

o6} Number of operations on machine m

O6} Set of operations on machine m, O6 = {0,1,2, … , o6 − 1}

ρ Individual index

µ Index used to generate odd or even indexed individuals

•ï¶,7 the a th gene in X′(k) from the 2µ th individual
•ï¶fd,7 the a th gene in X′(k) from the (2µ-1) th individual
•ï¶,7} the a th gene in Y′(k) from the 2µ th individual
•ï¶fd,7} the a th gene in Y′(k) from the (2µ-1) th individual
f The average fitness value of the population

f678 The maximum fitness value of the population

� �
�

f′
The larger fitness value of the two selected parents which are

executed crossover

φd, φï, φú, φù Modified coefficients for the crossover rate and the mutation rate

To minimize the total tardiness, the total energy consumption and the delay caused by

the schedule changes, the formal mathematical model of the EDJPS is derived from

the mathematical models presented in [19, 20]. The formalization is given as follows.

Objective Function:

Min: α× ®®f©®™´¨
©®™≠Æf©®™´¨

+ β× ®©f©©™´¨
©©™≠Æf©©™´¨

+ γ× Ø©∞f©Ø™´¨
©Ø™≠Æf©Ø™´¨

 (5.1)

Constraints:

TT = T) = max S) ±bfd ab ≤bhi
+ P) ±bfd ab ≤bhi †	

×	Z) ±bfd ab ≤bhi †	
– D), 0

)∈_∪_Å)∈_∪_Å
						p	ϵ	L (5.2)

S)Çab¥ ≥ R)							j ∈ J ∪ J
} (5.3)

S) CÄd ab gµi ≥ S)Cabg + P)Cabg†		×	Z)Cabg†						j ∈ J ∪ J′, s ∈ O), s > 0, p	ϵ	L (5.4)
S)Cabg + P)Cabg†		×	Z)Cabg†	 ≤ S:sa´∂		

j ∈ J ∪ J}, i ∈ J ∪ J}, j ≠ i, s ∈ O), t ∈ O:, 	M)C == M:s, 	p	ϵ	L, S)C6 ≤ S:s6
(5.5)

Z)Cabg† = 1						j ∈ J ∪ J
}, s ∈ O)

†∈∑
 (5.6)

TE = Q)Cabg†×	C∈∏b)∈_∪_Å
Z)Cabg†									p	ϵ	L (5.7)

RS ≤ S)Cabg									j ∈ J ∪ J
}}, s ∈ O) (5.8)

DEV = wt)×max	((S) ∫bfd ab ≤bhi
} + P) ∫bfd ab ≤bhi †

		×	Z) ∫bfd ab ≤bhi †	
)

)∈_

− (S) ∫bfd ab ≤bhi
+P) ∫bfd ab ≤bhi ª

		×	Z) ∫bfd ab ≤bhi ª	
), 0)							 p	ϵ	L, q	ϵ	L		

(5.9)

The decision variables in this mathematical model are S)C6 and Z)C6Ω	. A weighted

additive utility function with three normalized objectives is described as (5.1) where all

objectives can be assessed on the same scale. Constraints (5.2) defines the tardiness of

jobs. The precedence among operations due to the jobs’ processing cycles is presented

by constraints (5.3) and (5.4), while constraint (5.5) establishes the precedence caused

by the sequencing on machines. As far as the energy consumption, constraint (5.6)

� ���

states each operation can only be processed on one machine with one fixed speed level

whereas the total energy consumption is given by constraint (5.7). Finally, constraint

(5.8) imposes the definition of rescheduling and constraint (5.9) indicates the weighted

finishing time deviation of the updated schedule from the original one.

V.3 Solving approach

V.3.1 Event-driven schedule repair strategy

With the event-driven policy, rescheduling is triggered in response to an unexpected

event that alters the current system status [6]. In the case of EDJSP, urgent jobs may

arrive after the starting time of the original schedule and need be processed immediately

and quickly. Operations that are being executed need be terminated and uncompleted

operations of original jobs must be rearranged in order to leave the machines available

to firstly handle these urgent jobs. Thus, new urgent arrival jobs are assigned to

machines with the highest speed levels at the beginning when the rescheduling is

triggered. Uncompleted operations of original jobs are considered at the next step

according to the remaining spaces on machines. The parallel GA II is chosen to generate

an adequate schedule for them with the schedule repair strategy in a limited time. The

flow of the event-driven schedule repair process is summarized as in Figure 42.

� ���

Figure 42 The flow of event-driven schedule repair process for the EDJSP

V.3.2 Hybrid Encoding Representation

In solving the EDJSP by the cellular GA, two modified operation-based encodings are

adopted for representing the chromosomes. In terms of the schedule of original jobs

and the schedule of new urgent arrival jobs, the chromosome contains two permutations:

operation permutation X(k) (5.10) and speed level permutation Y(k) (5.11). X(k)

utilizes the operation-based encoding where each job is represented by a natural number

and each number is present as many times as the number of operations of the job it

represents [21]. By scanning X(k) from left to right, the v)th occurrence of a job j refers

to the v)th operation in the technological sequence of this job [22]. According to the

example provided in [23], a feasible solution for a 3×3 job shop is presented as [2, 1,

0, 0, 1, 2, 2, 1, 0] where 2 on the fifth gene position implies the operation 1 of job 2 as

it is the 1st occurrence (after 0th occurrence) of number 2. Thus, X(k) can be translated

to a list of ordered operations as [oïÇ, odÇ, oÇÇ, oÇd, odd, oïd, oïï, odï, oÇï]. On the other

hand, each element y7 k indicates the selected speed level of its related element

� ��

x7 k on the target machine. Concerning new urgent arrival jobs, all the values in Y(k)

are always kept as the highest speed level.

X[k]=[xÇ k , xd k , ⋯ , x7 k ,⋯ , x(∫bb∈æ fd) k] (5.10)

where x7 k ϵ 0, n − 1 , u) == o).

Y[k]=[yÇ k , yd k , ⋯ , y7 k ,⋯ , y(∫bb∈æ fd) k] (5.11)

where y7 k ϵ 0, h − 1 .

To leave machines available to conduct new urgent arrival jobs firstly and rearrange

uncompleted operations of original jobs, the chromosome of updated schedule also

includes an operation permutation X′(k) (5.12) and a speed level permutation Y′(k)

(5.13). The initialization rule for both are shown in Algorithm 3.

X′(k)=[xÇ} k , xd} k , ⋯ , x7} k ,⋯ , x(∫bb∈æ∪æÅ fd)
} k] (5.12)

where x7} k ϵ 0, n + n′ − 2 , u) == o).

Y′(k)= [yÇ} k , yd} k , ⋯ , y7} k ,⋯ , y(∫bb∈æ∪æÅ fd)
} k] (5.13)

where y7} k ϵ 0, h − 1 .

Regarding the pseudo GA, the complementary initialization strategy [24] is

complemented by negating all alleles in a binary chromosome. To implement it with

the EDJSP, even-indexed individuals are initialized by the modified operation-based

encoding. On the other hand, genes in the range [0	, r2 − 1] of odd-indexed

individuals keep same values with its paired parent while values of genes in the range

[r2	, o))∈_∪_Å − 1] of X′(k) is initialized with

•ï¶,7 = (n-1) - •ï¶fd,7 (5.14)

and values of genes in the range [r2	, o))∈_∪_Å − 1] of Y′(k) is initialized with

•ï¶,7‘ = (h-1) - •ï¶fd,7‘ (5.15)

In this case, the X′(k) of the (2µ − 1) th individual may be infeasible as the there is

a risk that u) ≠ o). Therefore, an inspection step is carried out to replace the latest

redundant values by the missing values in the ascending order. Moreover, the decoding

rule is displayed in Algorithm 4.

� ���

Algorithm 3 The initialization rule of permutations X} k and Y′(k) for all

individuals of the cellular GA

a	←	0;

for b ← 0	¬√	 o))∈_ − 1 do

j ← xƒ 0 ;	

s ← 	v);

p ← yƒ 0 ;
if S)Cabg + P)Cabg†		×	Z)Cabg† > RS	then

 x7} 0 ← xƒ 0 ;

 y7} 0 ← yƒ 0 ;

 a	←	a+1;

end if

end for

r1←	a;

for c ← 0	¬√	 o::∈_Å − 1 do

 x7} 0 = x« 0 ;

 y7} 0 = y« 0 = highest	speed	level;

a	←	a+1;

end for

r2←	a;

for a ← r2	¬√	 oΩΩ∈_∪_Å − 1 do

 initialize x7} 0 following the rule of operation-based encoding;

initialize y7} 0 	randomly in the range of machine speed level;

end for

� ���

Algorithm 4 The decoding rule of the EDJSP

for a ← r2	¬√	 o))∈_∪_Å − 1 do

j =x7} k ;	

s =	v);

 if s == 0 then

 if R) > RS then

 S)C = 	R);

else

 S)C = 	RS;

end if

else

for b ← 0	¬√	 o::∈_∪_Å − 1 do

if i == j and	v: == s − 1 then

 w = yƒ} k ;

 break;

end if

 end for
if S)(Cfd)ab(ghi) + P)(Cfd)ab(ghi) 		×	Z)(Cfd)ab(ghi) > RS then

 S)C = 	 S)(Cfd)ab(ghi) + P)(Cfd)ab(ghi) 		×	Z)(Cfd)ab(ghi) ;

else

 S)C = 	RS

end if

end if

d← 0;

for c ← r1	¬√	a do

 l ← x«} k ;	

t ← 	vΩ;

if M)C == MΩs	then

 Oabg
} [d] 	← oΩs;

d	←	d+1;

end if

 end for

� ���

 n)C ← d;

 Sort elements in Oabg
} [d] in ascending order by the starting time;

for e ← 0	¬√	n)C do

 x = job number in Oabg
} [e];

 y = operation number of job f in in Oabg
} [e];

for f ← 0	¬√	 oÀÀ∈_∪_Å − 1 do

if z == x and	vÀ == y then

 q = yÃ} k ;

 break;

end if

 end for

p =y7} k ;
if [S)C, S)Cabg + P)Cabg†		×	Z)Cabg†) ∩ [S8Œ, S8ŒaÆœ + P8ŒaÆœª		×	Z8ŒaÆœª) ≠ ∅ then

S)C = S8Œ + P8ŒaÆœª		×	Z8ŒaÆœª;

 end if

end for

end for

V.3.3 Dual Heterogeneous Island GA on GPUs and multi-core
CPU

l The fitness function: As an extension of the classic JSP, the EDJPS is also a

minimization problem. Thus, we transfer the objective function from (Eq. (5.1))

to get the fitness function FIT(ρ) of an individual ρ as

FIT(ρ) = max	(E678 − (α×
TT − ET6:ç
ET678 − ET6:ç

+ β×
TE − EE6:ç
EE678 − EE6:ç

+ γ×
DEV − ED6:ç
ED678 − ED6:ç

), 0) (5.14)

where E678 is the estimated maximum value of the objective function.

l Selection: Only the cellular GA has selection operator and it has no modification

when it is implemented to the EDJSP.

l Crossover: To work with the modified operation-based encoding of the cellular

GA, the operation-based order crossover [3] is utilized as the crossover operator

� ���

and works for genes in the chromosome within the range [r2	, o))∈_∪_Å − 1].

Firstly, it randomly chooses the same operations from two selected parents. The

loci of chosen operations are preserved and copied to their own offspring.

Afterwards, remaining operations are transmitted to the offspring of the other

parent to fill the missing genes while their original orders are also kept. The

crossover procedure for a 5×3 job shop example is shown in Figure 43 where job

0, job 1, job 2, job 3 are original jobs, job 4 is a new urgent arrival job and each

machine has 3 speed levels. The integers in red indicates genes out of the range

[r2	, o))∈_∪_Å − 1] while the integers in blue mark the loci of randomly chosen

operations.

Before crossover

Parent 1
X′(k) = [2, 0, 1, 4, 4, 4, 0, 1, 3, 2, 2, 1, 3, 3, 0]

Y′(k) = [2, 1, 0, 2, 2, 2, 1, 2, 0, 1, 0, 2, 0, 1, 2]

Parent 2
X′(k) = [2, 0, 1, 4, 4, 4, 3, 1, 1, 3, 3, 0, 2, 0, 2]

Y′(k) = [2, 1, 0, 2, 2, 2, 2, 2, 0, 0, 2, 1, 0, 1, 1]

After crossover

Offspring 1
X′(k) = [2, 0, 1, 4, 4, 4, 3, 1, 3, 0, 2, 1, 2, 3, 0]

Y′(k) = [2, 1, 0, 2, 2, 2, 2, 2, 0, 1, 0, 2, 0, 1, 2]

Offspring 2
X′(k) = [2, 0, 1, 4, 4, 4, 0, 1, 1, 3, 3, 2, 3, 0, 2]

Y′(k) = [2, 1, 0, 2, 2, 2, 1, 2, 0, 0, 2, 1, 0, 1, 1]

Fig.43. An example of the operation-based order crossover

The pseudo GA initializes every pair of parents with complementary

chromosomes and the crossover is executed between the offspring from the same

parents. Therefore, we take the one-point precedence preservative crossover [22]

to work with genes within the range [r2	, o))∈_∪_Å − 1] for the pseudo GA to

keep the complementary chromosomes as much as possible. An example of the

same job shop instance in the operation-based crossover is presented in Figure 44

which shows this process in details. The genes out of the range are marked in red.

Firstly, a crossover point for the paired parents is selected randomly. The genes

within the range and before the cross point are kept for their own off-springs (in

blue) while the same genes are deleted from the paired parents (back ground color

in yellow). Finally, the genes left in the paired parent are appended to fill the empty

positions after the cross point in the original parents.

� 	���

Before crossover

Parent 1
X′(k) = [2, 0, 1, 4, 4, 4, 3, 1, 3, 0, 2, 1, 2, 3, 0]

Y′(k) = [2, 1, 0, 2, 2, 2, 2, 2, 0, 1, 0, 2, 0, 1, 2]

Parent 2
X′(k) = [2, 0, 1, 4, 4, 4, 0, 2, 0, 3, 1, 2, 1, 3, 3]

Y′(k) = [2, 1, 0, 2, 2, 2, 0, 0, 2, 1, 2, 0, 2, 1, 0]

After crossover

Offspring 1
X′(k) = [2, 0, 1, 4, 4, 4, 3, 1, 3, 0, 2, 0, 2, 1, 3]

Y′(k) = [2, 1, 0, 2, 2, 2, 2, 2, 0, 1, 0, 2, 0, 2, 0]

Offspring 2
X′(k) = [2, 0, 1, 4, 4, 4, 0, 2, 0, 3, 1, 3, 1, 2, 3]

Y′(k) = [2, 1, 0, 2, 2, 2, 0, 0, 2, 1, 2, 0, 2, 0, 1]

Fig.44. An example of the one-point precedence preservative crossover

The crossover is executed if a specified probability is satisfied. In this Chapter, a

fixed crossover rate is taken for the pseudo GA where the value is set as 1. On the

other hand, an adaptive crossover rate [25] is adopted for the cellular GA and its

expression is given as

Crossover rate = φd(f678 − f })/(f678 − f), f } ≥ f (5.15)

Crossover rate = φï, f } < f (5.16)

Where φd, φï 	≤ 1.0.

l Mutation: The swap mutation is employed for X′(k) of the cellular GA where

different arbitrary genes within the range r2	, o))∈_∪_Å − 1 are chosen and

exchange values. Concerning Y′(k) of the cellular GA, unfixed amount of genes

are replaced by random values in the range, apart from the original ones.

Following the above example, the procedure is illustrated in Figure 45 where

genes in green illustrate the execution of mutation. Moreover, a mutation is

imposed to the pseudo GA. One of its paired parents is designed to execute the

same mutation operation as the cellular GA while the rest parent is mutated by the

complementary initialization strategy to keep complementary chromosomes.

� 	�	�

Before mutation
X′(k) = [2, 0, 1, 4, 4, 4, 0, 1, 3, 2, 2, 1, 3, 3, 0]

Y′(k) = [2, 1, 0, 2, 2, 2, 1, 2, 0, 1, 0, 2, 0, 1, 2]

After mutation
X′(k) = [2, 0, 1, 4, 4, 4, 0, 1, 0, 2, 2, 1, 3, 3, 3]

Y′(k) = [2, 1, 0, 2, 2, 2, 1, 0, 0, 1, 0, 2, 0, 1, 2]

Fig.45. An example of the crossover

As same as the crossover rate, the mutation rate for the pseudo GA is fixed and is

kept as 0.1 while the mutation rate of the cellular GA is adaptive in response to

individuals’ fitness values [25] and take the form as

Mutation rate = φú(f678 − f)/(f678 − f), f ≥ f (5.17)

Mutation rate = φù, f < f (5.18)

Where φú, φù 	≤ 1.0.

l Replacement: No modification.

l Migration: No modification.

VI. 4 Numerical Experiments

Test 1 checks the efficiency and the effectiveness of parallel GA II for solving the

energy efficient JSP while test 2 evaluates the performance of EDJPS by a case study.

The values of ET678	, ET6:ç	, EE678	, EE6:ç	, ED678	, ED6:ç	 are found through the

simple GA stated in Chapter III and Chapter IV by solving each of them as a single

objective in the following implementations. To prevent the GA from getting stuck at a

local optimum, solutions need to be completely disrupted. For this reason, we set a

value of 1.0 for φd and φï, a value of 0.5 for φú and φù as in [25]. Moreover, the

experimental platform is kept the same as in the previous two Chapters.

VI.4.1 Evaluation

In addition to parallel GA II, two kinds of dual homogeneous island GAs are taken as

comparisons. The first one utilizes the cellular GA on GPUs for its two islands while

the pseudo GA is adopted for the two islands of the second one. Their other operators

� 	�
�

keep the same settings as parallel GA II. Experiments are conducted in terms of the

energy efficient JSP without considering new urgent arrival jobs. In this case, six tested

problems are generated as in [26]. These instances are referred to as “easy problems”

or “hard problems” with names EASY 6×4, EASY 10×8, EASY 20×10, HARD 6×4,

HARD 10×8 and HARD 20×10. EASY 6×4 and HARD 6×4 are 6-job, 4-machine

problems; EASY 10×8 and HARD 10×8 are 10-job, 8-machine problems; EASY

20×10 and HARD 20×10 are 20-job, 10-machine problems. Every job consists of the

same amount of operations as the amount of machines, while one operation is always

performed on a single machine. Moreover, each machine has 5 speed levels. As far as

the easy problems are concerned, the machine procedure constraints for each job are

generated randomly. As an alternative, the hard problems divide the machines into two

sets. Each job must pass firstly through the first set, then through the second one. The

ordering within the two sets of machines is generated randomly. Other experimental

relative data are defined in Table 24.

Table 24 The experimental relative data of energy efficient JSP

P)Cabg† U[1, 5]
Q)Cabg†	 δ×P)C6†ï , where δ=U[2, 4]

R) U[0, P], where P = ((P)Cabg†/h)/o))†C)

D) R) + P)×(1 + σ), where σ=U[0, 2] and P) = (P)Cabg†/h†)C

α 1

β 1

Concerning the solutions’ quality comparison, it is shown in Table 25 that the dual

heterogeneous island GA and the dual cellular island GA have similar performance

while the former one displays better the best value and the latter one illustrates better

the average value. On the other hand, the results of the dual pseudo island GA are

relatively poor. Since the EDJSP works with the operation-based encoding, the order

of genes in one chromosome has great influence to the results. Unlike a simple FFSP

discussed in Chapter 3, the efficiency of the complementary parent strategy get

decreased unfortunately.

� 	���

Table 25 Solutions’ quality comparison (Population Size=2048)

Problems
Dual Heterogeneous Island GA Dual Cellular Island GA Dual Pesudo Island GA

Avg. Best Avg. Best Avg. Best

EASY 6×4 0.013307 0.013307 0.013363 0.013307 0.037983 0.021057

EASY 10×8 0.090601 0.074350 0.086318 0.075833 0.266073 0.204708

EASY 20×10 0.037718 0.022688 0.032669 0.014034 0.359445 0.292384

HARD 6×4 0.013307 0.013307 0.013307 0.013307 0.044449 0.022629

HARD 10×8 0.079581 0.066118 0.076593 0.066203 0.269521 0.208583

HARD 20×10 0.032360 0.014858 0.029107 0.015666 0.281563 0.253130

As the cellular GA on GPUs performs best in Chapter 3 by its twice threads occupancy,

we try to enhance the computation capability on the multi-core CPU further in this

Chapter. Therefore, the pseudo GA on a multi-core CPU is parallelized not only using

OpenMP [27] but also the SIMD vectorization via SSE2 [28]. As the execution time

comparison shown in Table 26, the dual heterogeneous island GA on GPUs and a multi-

core CPU overcomes the dual cellular island GA on GPUs because of the simultaneous

execution on both sides. Moreover, it points out the importance of computation

capability balance between the host and the device when the proposed approach is

implemented where the weak side may become as a bottleneck and reduces the overall

effectiveness. Finally, because the dual pseudo GA only deals only with integers whose

storage size is small, the contribution of SIMD vectorization is impressive and the dual

pseudo GA on a 4 core CPU with vectorization takes the least execution time in most

instances.

� 	���

Table 26 Execution time comparison

Problems
Population

Size

Dual Heterogeneous Island GA

on GPUs and a Multi-core CPU

Dual Cellular Island GA

on GPUs

Dual Pesudo Island GA

on a Multi-core CPU

EASY

6×4

2048 10.28 s 19.67 s 5.53 s

8192 28.21 s 50.99 s 31.14 s

32768 122.62 s 154.03 s 150.85 s

EASY

10×8

2048 62.12 s 120.11 s 24.87 s

8192 169.63 s 334.24 s 108.42 s

32768 631.04 s 1208.30 s 464.10 s

EASY

20×10

2048 377.85 s 692.13 s 224.78 s

8192 1089.00 s 1849.96 s 896.22 s

32768 4078.54 s 6771.42 s 3560.37 s

HARD

6×4

2048 10.53 s 19.21 s 4.87 s

8192 27.46 s 50.48 s 31.02 s

32768 120.01 s 152.41 s 150.96 s

HARD

10×8

2048 60.78 s 115.00 s 24.97 s

8192 174.78 s 342.73 s 109.47 s

32768 627.20 s 1222.74 s 489.49 s

HARD

20×10

2048 370.06 s 691.85 s 290.73 s

8192 1074.19 s 1843.71 s 879.43 s

32768 3946.17 s 6735.54 s 3609.78 s

VI.4.2 Case Study

A modified job shop instance incorporating machine speed scaling and new urgent

arrival jobs is developed based on the well know 10×10 problem (10 jobs, 10 machines)

from Muth and Thompson [29] (MT 10×10) as a case study. There are 10 original jobs

and 3 new urgent arrival jobs. Each machine has 5 speed levels. New urgent jobs arrive

at the point that equals 30% of the makespan of original schedule. The operation

sequence of original jobs and their processing times on target machine at speed level 0

are collected from MT10×10. On the other hand, these values for new urgent arrival

jobs are generated following the rule of “hard problems”. The values of energy

consumption at level 0 Q)C6Ç	 and due time (D)) are set as in Table 24 while the

� 	��

value of release time (R)) is fixed as 0. Concerning the importance weight of original

jobs, we make wtÇ = wtd = 4, wt)	 = 2 for j = 2, 3, …, 7 and wt“ = wt” = 1. All

details are shown in Table 27. Moreover, the processing time and energy consumption

when operation s of job j processed on machine m at different level is defined as

P)C6† = P)C6Ç×V† and Q)C6† = Q)C6Ç ÷ V†,	 respectively, where V =

{1, 1.3, 1.55, 1.75, 2.1}. Finally, we keep the values of α, β equal to 1 while a very

large constant is assigned to γ which indicates the priority of the schedule repair

strategy.

An optimal solution of the original schedule is shown by Gantt chart in Figure 43. Since

new urgent jobs arrive at time 600, all operations are being operated at this moment

need to be canceled and leave machines available for processing them firstly. In this

case, some machines are occupied at some periods after scheduling new urgent arrival

jobs and the uncompleted operations of original jobs are rearranged to make use of

machines only when they are idle. By implementing the schedule repair strategy, an

optimal solution illustrated by the Gantt chart of the updated schedule in Figure 44

presents that the processing time of some operations are obviously decreased. As a

result, most original jobs’ finishing time are delayed slightly which is confirmed by the

details displayed in Table 28.

� 	���

Table 27 The case data of an EDJSP

Jobs

M)C

P)CabgÇ

Q)CabgÇ

wt) R) D)

JÇ

0,

29

2732

1

78

22255

2

9

184

3

36

3729

4

49

8905

5

11

261

6

62

7849

7

56

10985

8

44

7219

9

21

1151

4 0 787

Jd

0

43

5859

2

90

25571

4

75

16498

9

11

396

3

69

11116

1

28

2999

6

46

4796

5

46

5571

7

72

16324

8

30

3438

4 0 1096

Jï

1

91

30407

0

85

24102

3

39

5696

2

74

11450

8

90

19091

5

10

315

7

12

423

6

89

19723

9

45

4446

4

33

3161

2 0 1587

Jú

1

81

17491

2

95

27291

0

71

19422

4

99

33401

6

9

237

8

52

8060

7

85

21768

3

98

36629

9

22

1711

5

43

6783

2 0 2050

Jù

2

14

606

0

6

126

1

22

1546

5

61

12666

3

26

2229

4

69

10107

8

21

1711

7

49

6160

9

72

12115

6

53

6022

2 0 1450

Jõ

2

84

27497

1

2

15

5

52

9080

3

95

30657

8

48

6690

9

72

16749

0

47

7013

6

65

13934

4

6

86

7

25

1507

2 0 1945

J’

1

46

5410

0

37

2748

3

61

14764

2

13

596

6

32

3033

5

21

1042

9

32

2920

8

89

30266

7

30

3340

4

55

11800

2 0 1415

Jö

2

31

2720

0

86

15213

1

46

5903

5

74

14670

4

32

3078

6

88

16246

8

19

1198

9

48

5121

7

36

4872

3

79

19509

2 0 1005

J“

0

76

20250

1

69

17948

3

76

12094

5

51

7397

2

85

18308

9

11

289

6

40

5980

7

89

20515

4

26

1459

8

74

21613

1 0 1265

� 	���

J”

1

85

23242

0

13

429

2

61

12595

6

7

141

8

64

14008

9

76

17143

5

47

8648

3

52

9555

4

90

16289

7

45

6382

1 0 2182

JdÇ

2

16

831

1

58

12305

0

22

1099

4

24

1657

3

53

10418

8

9

175

9

57

6634

7

63

13903

5

92

31562

6

43

4829

 600 879

Jdd

3

6

114

1

48

7273

4

14

574

0

66

14278

2

24

1344

7

2

15

9

85

16379

6

73

14031

8

19

1136

5

99

37449

 600 859

Jdï

4

99

35989

2

90

27021

0

63

14863

1

14

409

3

31

2265

5

27

2298

9

15

662

8

2

9

6

51

5711

7

33

3161

 600 806

Table 28 Original jobs’ finishing time comparison between an optimal solution of the

original schedule and an optimal solution of the update schedule

 Job 0 Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9

Original

Schedule
632.05 1091.80 1555.15 1817.90 1485.05 1535.80 1390.05 987.45 1431.40 1838.65

Updated

Schedule
688.10 1092.30 1579.25 1824.40 1472.20 1331.65 1455.85 990.00 1991.45 1851.20

Difference 56.05 0.5 24.1 6.5 0 0 65.8 2.55 560.05 12.55

� ����

Figure 43 Gantt chart of the original schedule of an optimal solution

� ��	�

Figure 44 Gantt chart of the updated schedule of an optimal solution

� ����

Figure 45 Comparison between the original schedule and three updated schedules

�

���

����

����

����

����

�&���#�!������)!� �%��(��������)!��
(��(�
!!��%�&�(�$#'�
�&���&$��''����,�(���
�����'(��%������*�!

�%��(��������)!��
+�(�$)(�(��������)!��

��%��&��(&�(��,

�%��(��������)!��
+�(��(��������)!��
��%��&��(&�(��,

�� �'%�#

�

���

����

����

����

�&���#�!������)!� �%��(��������)!��
(��(�
!!��%�&�(�$#'�
�&���&$��''����,�(���
�����'(��%������*�!

�%��(��������)!��
+�(�$)(�(��������)!��

��%��&��(&�(��,

�%��(��������)!��
+�(��(��������)!��
��%��&��(&�(��,

�$(�!���&��#�''

�

������

������

������

������

�������

�&���#�!������)!� �%��(��������)!��
(��(�
!!��%�&�(�$#'�
�&���&$��''����,�(���
�����'(��%������*�!

�%��(��������)!��
+�(�$)(�(��������)!��

��%��&��(&�(��,

�%��(��������)!��
+�(��(��������)!��
��%��&��(&�(��,

�$(�!�#�&�,��$'(

�

���

����

����

����

����

�&���#�!������)!� �%��(��������)!��
(��(�
!!��%�&�(�$#'�
�&���&$��''����,�(���
�����'(��%������*�!

�%��(��������)!��
+�(�$)(�(��������)!��

��%��&��(&�(��,

�%��(��������)!��
+�(��(��������)!��
��%��&��(&�(��,

�$(�!���#�'��#����"����*��(�$#

� ����

Moreover, a comparison concerning the makespan, the total tardiness, the total energy

cost and the total finishing time deviation between the original schedule and three

updated schedules is demonstrated in Figure 45. The updated schedule that all

operations are processed by the highest speed level can decrease the makespan and the

total tardiness maximum. However, the total energy cost is increased and its impact to

minimize the total finishing time deviation is limited. The updated schedule without the

schedule repair strategy keeps the total energy cost almost the same level as the original

schedule while the other three parameters all go up, particularly the total finishing time

deviation. Finally, the updated schedule with the schedule repair strategy minimize the

total finishing time deviation maximum by holding the makespan, the total tardiness

and the total energy cost within a reasonable level.

VI. 5 Conclusion

In this Chapter, an investigation into minimizing total tardiness and total energy

consumption in the job shop with new urgent arrival jobs was firstly studied. In order

to provide an adequate renewed scheduling plan in a short response, the dual

heterogeneous GA executed simultaneously on different parallel platforms with the

event driven schedule repair approach was updated. When dealing with six kinds of

energy efficient JSP in the evaluation, the designed method verified its performance by

obtaining competitive results as the dual cellular GA on GPUs while decreasing the

execution time significantly. Moreover, it pointed out that the balance of computation

capability between the host and the device had a great influence on its overall

effectiveness. Concerning the EDJSP in the case study, an optimal solution of the

updated schedule is shown by Gantt chart. Compared with the original schedule, the

processing time of some operations are obviously decreased. Furthermore, we

confirmed the efficiency of the event driven schedule repair strategy by minimizing the

total finishing time deviation while holding the makespan, the total tardiness and the

total energy cost within a reasonable level.

� ����

Reference

[1].Paolucci, M., Anghinolfi, D., & Tonelli, F. (2017). Facing energy-aware scheduling:

a multi-objective extension of a scheduling support system for improving energy

efficiency in a moulding industry. Soft Computing, 21(13), 3687-3698.

[2].Pach, C., Berger, T., Sallez, Y., Bonte, T., Adam, E., & Trentesaux, D. (2014).

Reactive and energy-aware scheduling of flexible manufacturing systems using

potential fields. Computers in Industry, 65(3), 434-448.

[3].Y. Liu, H. Dong, N. Lohse, S. Petrovic, N. Gindy, An investigation into minimising

total energy consumption and total weighted tardiness in job shops, Journal of Cleaner

Production 65 (2014) 87-96.

[4].Q. Yi, C. Li, Y. Tang, Q. Wang, A new operational framework to job shop

scheduling for reducing carbon emissions, in: Automation Science and Engineering

(CASE), 2012 IEEE International Conference, IEEE, 2012, pp. 58-63.

[5].M. Dai, D. Tang, A. Giret, M. A. Salido, W. D. Li, Energy-efficient scheduling for

a flexible flow shop using an improved genetic-simulated annealing algorithm,

Robotics and Computer-Integrated Manufacturing 29 (5) (2013) 418-429.

[6].Ouelhadj, D., & Petrovic, S. (2009). A survey of dynamic scheduling in

manufacturing systems. Journal of scheduling, 12(4), 417.

[7].Tang, D., Dai, M., Salido, M. A., & Giret, A. (2016). Energy-efficient dynamic

scheduling for a flexible flow shop using an improved particle swarm

optimization. Computers in Industry, 81, 82-95.

[8].Zhang, L., Li, X., Gao, L., & Zhang, G. (2016). Dynamic rescheduling in FMS that

is simultaneously considering energy consumption and schedule efficiency. The

International Journal of Advanced Manufacturing Technology, 87(5-8), 1387-1399.

[9].Le, C. V., & Pang, C. K. (2013). Fast reactive scheduling to minimize tardiness

penalty and energy cost under power consumption uncertainties. Computers &

Industrial Engineering, 66(2), 406-417.

[10].Zeng, L., Zou, F., Xu, X., & Gao, Z. (2009, June). Dynamic scheduling of multi-

task for hybrid flow-shop based on energy consumption. In Information and

Automation, 2009. ICIA'09. International Conference on (pp. 478-482). IEEE.

� ����

[11].Gholami, M., Zandieh, M., & Alem-Tabriz, A. (2009). Scheduling hybrid flow

shop with sequence-dependent setup times and machines with random

breakdowns. The International Journal of Advanced Manufacturing Technology, 42(1-

2), 189-201.

[12].Cantú-Paz, E. (1998). A survey of parallel genetic algorithms. Calculateurs

paralleles, reseaux et systems repartis, 10(2), 141-171.

[13].Gozali, A. A., & Fujimura, S. (2017, May). Localization strategy for island model

genetic algorithm to preserve population diversity. In International Conference on

Computer and Information Science (pp. 149-161). Springer, Cham.

[14].Dabah, A., Bendjoudi, A., AitZai, A., El Baz, D., & Taboudjemat, N. N. (2018).

Hybrid multi-core CPU and GPU-based B&B approaches for the blocking job shop

scheduling problem. Journal of Parallel and Distributed Computing, 117, 73-86.

[15].Benner, P., Ezzatti, P., Kressner, D., Quintana-Ortı, E. S., & Remón, A. (2011). A

mixed-precision algorithm for the solution of Lyapunov equations on hybrid CPU–

GPU platforms. Parallel Computing, 37(8), 439-450.

[16].Bilel, B. R., Navid, N., & Bouksiaa, M. S. M. (2012, October). Hybrid cpu-gpu

distributed framework for large scale mobile networks simulation. In Proceedings of

the 2012 IEEE/ACM 16th International Symposium on Distributed Simulation and

Real Time Applications (pp. 44-53). IEEE Computer Society.

[17].Lenstra, J. K., Kan, A. R., & Brucker, P. (1977). Complexity of machine

scheduling problems. In Annals of discrete mathematics (Vol. 1, pp. 343-362). Elsevier.

[18].Fang, K., Uhan, N. A., Zhao, F., & Sutherland, J. W. (2013). Flow shop scheduling

with peak power consumption constraints. Annals of Operations Research, 206(1),

115-145.

[19].Wu, S. D., Storer, R. H., & Pei-Chann, C. (1993). One-machine rescheduling

heuristics with efficiency and stability as criteria. Computers & Operations

Research, 20(1), 1-14.

[20]. Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling

problem: a multi-objective genetic algorithm with enhanced local search for

minimizing the total weighted tardiness and total energy consumption. Journal of

Cleaner Production, 112, 3361-3375.

� ����

[21]. May, G., Stahl, B., Taisch, M., & Prabhu, V. (2015). Multi-objective genetic

algorithm for energy-efficient job shop scheduling. International Journal of Production

Research, 53(23), 7071-7089.

[22]. Park, B. J., Choi, H. R., & Kim, H. S. (2003). A hybrid genetic algorithm for the

job shop scheduling problems. Computers & industrial engineering, 45(4), 597-613.

[23]. Liu, M., & Wu, C. (2008). Intelligent optimization scheduling algorithms for

manufacturing process and their applications. National Defense Industry Press, 334.

[24].Chen, Q., Zhong, Y., & Zhang, X. (2010). A pseudo genetic algorithm. Neural

Computing and Applications, 19(1), 77-83.

[25].Srinivas, M., & Patnaik, L. M. (1994). Adaptive probabilities of crossover and

mutation in genetic algorithms. IEEE Transactions on Systems, Man, and

Cybernetics, 24(4), 656-667.

[26].Storer, R. H., Wu, S. D., & Vaccari, R. (1992). New search spaces for sequencing

problems with application to job shop scheduling. Management science, 38(10), 1495-

1509.

[27]. http://www.openmp.org/

[28]. https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

[29].Muth, J. (1963). Probabilistic learning combinations of local job-shop scheduling

rules. Industrial Scheduling.

� ����

Chapter VI. Conclusion and Future Works

This thesis focuses on solving energy efficient dynamic shop scheduling problems by

parallel GAs. Because of a growing economical competitive landscape and higher

environmental norms, it is now vital for manufacturing companies to consider energy

efficiency when dealing with traditional shop scheduling problems. Meanwhile,

scheduling problems are dynamic in the real world with unexpected events after the

start time. The dynamic scheduling is one familiar problem that cannot be ignored in

manufacturing practices. Two energy efficient dynamic shop scheduling problems are

studied in this thesis.

The Energy efficient Dynamic Flexible Flow Shop scheduling Problem (EDFFSP)

takes the way to limit the peak power as electricity consumption and operating costs of

manufacturing plants are usually charged based on the peak power demand from

electricity providers. In this case, the later assigned operation needs to be delayed when

the power’s peak is met. The total tardiness and the makespan are considered as two

objectives in a flexible flow shop scheduling problem. A set of new jobs may arrive

after the start of the original plan. With the complete rescheduling strategy, they are

processed from the beginning of the rescheduling point with the remaining

uncompleted operations of original jobs. The rescheduling points always occur with

regular intervals and gather all new arrival jobs’ information.

The Energy efficient Dynamic Job Shop scheduling Problem (EDJSP) focuses on

minimizing the total energy consumption within a job shop scheduling problem. The

processing time and the energy consumption of one operation processed on one

machine at a set speed level are known. When a higher speed level is chosen, the

processing time is shortened but with an energy consumption increase. The new arrival

jobs trigger the rescheduling and are treated as urgent tasks in which the production

� ����

line should conduct them immediately. The operations being processed are terminated

and need to be rescheduled with the remaining uncompleted operations of original jobs

based on the insertion of new urgent arrival jobs. The updated schedule refers some

local adjustment of the original one. Thus, three objectives are included in this problem,

the total tardiness, the total energy consumption and the total weighted finishing time

deviation of the updated schedule from the original one.

The Genetic Algorithm (GA) is considered as one of the most efficient method to solve

shop scheduling problems. However, there is an increase in the required time to find

adequate solutions when GAs are applied to complex and large problems. On the other

hand, new integrated energy requirements in a dynamic environment lead to the

complexity of the considered problem to be higher and ask even longer execution time

to get acceptable solutions. In order to find adequate solutions for energy aware shop

scheduling problems efficiently and achieve a speedup to meet the short response in the

dynamic environment, parallel implementation is considered as one of the most

promising choices and two parallel GAs are developed in this thesis. The first one is

taken for solving the EDFFSP. It is a hybrid model consisting of an island GA at the

upper level and a fine-grained GA at the lower level. Since the fine-grained model

obtains good population diversity when dealing with high-dimensional variable spaces

and the island model converges faster by subpopulations, this design combines metrics

from two levels to gain competitive results. Meanwhile, the hybrid structure achieves

the maximum speedup through its high consistence with the CUDA framework. The

second one is implemented to solve the EDJSP that is composed of a cellular GA and

a pseudo GA. The 2D variable spaces of the cellular model and the complementary

parent strategy of the pseudo model keep the population diversity while a penetration

inspired migration policy shares information between them. Furthermore, this

heterogeneous structure can be well parallelized on GPUs simultaneously with multi-

core CPU and enjoys parallel computing resources from two sides.

The main work of Chapter 2 has been organized as a survey and is published in 2018

IEEE International Parallel and Distributed Processing Symposium Workshops.

Concerning the two parallel GAs discussed in Chapter 3, the parallel GA I and its

application to the FFSP is published in 2018 19th IEEE/ACIS International Conference

on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

� ����

Computing. Meanwhile, the work of parallel GA II and its performance analysis has

been submitted to the journal entitled Mathematical Problems in Engineering.

Moreover, the EDFFSP solved by the CUDA-based hybrid GA with the predictive

reactive complete rescheduling strategy in Chapter 4 has been accepted by the Journal

of Parallel and Distributed Computing.

In the future, we will try to improve the performance of the dual heterogeneous island

GA when it is implemented to solve the EDJSP as in Chapter 5. Because the efficiency

of the complementary parent strategy is decreased in this case, some modifications are

required for the pseudo GA on a multi-core CPU to enhance its searching ability. On

the other hand, the overall execution time will not be increased by controlling the work

load balance between GPUs and a multi-core CPU with SIMD vectorization. This

implementation is also planned to be executed on a computing node with V100 GPUs

which is a new generation architecture. Since the cost of using computing accelerators

like GPUs or Intel Xeon Phi is not expensive nowadays, these devices are strongly

suggested to be utilized for solving hard optimization problems in manufacturing

practice. Since only the linear combination is used in this thesis to deal with multi-

objective problems, the Pareto approach is considered as the nest step with a parallel

version of the non-dominated sorting genetic algorithm II.

� ��	�

� ��
�

List of Publications

[1]. Luo, J., Fujimura, S., El Baz, D., & Plazolles, B. (2018). GPU based parallel genetic

algorithm for solving an energy efficient dynamic flexible flow shop scheduling

problem. Journal of Parallel and Distributed Computing. (IF:1.815)

[2]. Luo, J., & El Baz, D. (2018, May). A Survey on Parallel Genetic Algorithms for

Shop Scheduling Problems. In 2018 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW) (pp. 629-636). IEEE.

[3]. Luo, J., El Baz, D., & Hu, J. (2018, June). Acceleration of a CUDA-Based Hybrid

Genetic Algorithm and its Application to a Flexible Flow Shop Scheduling Problem.

In 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing (SNPD) (pp. 117-122).

IEEE.

