
HAL Id: tel-02080063
https://laas.hal.science/tel-02080063v1

Submitted on 26 Mar 2019 (v1), last revised 26 Mar 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Verification of the Functional Layer of Robotic
and Autonomous Systems

Mohammed Foughali

To cite this version:
Mohammed Foughali. Formal Verification of the Functional Layer of Robotic and Autonomous Sys-
tems. Automatic. Institut national des sciences appliquées de Toulouse, 2018. English. �NNT : �.
�tel-02080063v1�

https://laas.hal.science/tel-02080063v1
https://hal.archives-ouvertes.fr

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Institut National des Sciences Appliquées de
Toulouse

Présentée et soutenue par

Mohammed FOUGHALI

Le 17 décembre 2018

Vérification Formelle des Modules Fonctionnels de Systèmes
Robotiques et Autonomes

Ecole doctorale : SYSTEMES

Spécialité : Robotique et Informatique

Unité de recherche :
LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes

Thèse dirigée par
Malik GHALLAB et François-Felix INGRAND

Jury
M. Charles PêCHEUR, Rapporteur

M. Herman BRUYNINCKX, Rapporteur
Mme Jeanette CARDOSO, Examinateur

M. Jacques COMBAZ, Examinateur
M. Silvano DAL ZILIO, Examinateur

M. Jacques MALENFANT, Examinateur
M. Malik GHALLAB, Directeur de thèse

M. Félix INGRAND, Co-directeur de thèse

2

Formal Verification of the Functional Layer of
Robotic and Autonomous Systems

Mohammed Foughali

Abstract

The goal of this thesis is to add to the efforts toward the long-sought

objective of secure and safe robots with predictable and a priori

known behavior. For the reasons given above, formal methods are

used to model and verify crucial properties, with a focus on the func-

tional level of robotic systems. The approach relies on automatic gen-

eration of formal models targeting several frameworks. For this, we

give operational semantics to a robotic framework, then several

mathematically proven translations are derived from such semantics.

These translations are then automatized so any robotic functional lay-

er specification can be translated automatically and promptly to vari-

ous frameworks/languages. Thus, we provide a mathematically cor-

rect mapping from functional components to verifiable models. The

obtained models are used to formulate and verify crucial properties on

real-world complex robotic and autonomous systems.

This thesis provides also a valuable feedback on the applicability of

formal frameworks on real-world, complex systems and experience-

based guidelines on the efficient use of formal-model automatic gen-

erators. In this context, efficiency relates to, for instance, how to use

the different model checking tools optimally depending on the proper-

ties to verify, what to do when the models do not scale with model

checking (e.g. the advantages and drawbacks of statistical model

checking and runtime verification and when to use the former or the

latter depending on the type of properties and the order of magnitude

of timing constraints).

Keywords: Robotics, computer science, software engineering, formal

methods, verification, real-time.

 Résumé

 Les systèmes robotiques et autonomes ne cessent d’évoluer et deviennent de

 plus en plus impliqués dans les missions à coût considérable (e.g. exploration

 de l’espace) et/ou dans les milieux humains (e.g. chirurgie, assistance

 handicap). Cette implication remet en question les pratiques adoptées par les

 développeurs et ingénieurs pour donner un certain degré de confiance à ces

 systèmes. En effet, les simulations et campagnes de tests ne sont plus

 adaptées à la problématique de sûreté et fiabilité des systèmes robotiques et

 autonomes compte tenu (i) du caractère sérieux des défaillances éventuelles

 dans les contextes susmentionnés (un dommage à un robot très coûteux ou

 plus dramatiquement une atteinte aux vies humaines) et (ii) de la nature non

 exhaustive de ces techniques (les tests et simulations peuvent toujours passer

 à côté d’un scénario d’exécution catastrophique.

 Les méthodes formelles, bien qu’elles offrent une solution mathématique

 élégante aux problèmes de sûreté de fonctionnement et de fiabilité, peinent à

 s’imposer, de leur côté, dans le domaine de la robotique autonome. Cette

 limitation devient encore plus visible au niveau fonctionnel des robots, i.e. les

 composants logiciels interagissant directement avec les capteurs et les

 actionneurs. Elle est due à plusieurs facteurs. D’abord, les composants

 fonctionnels reflètent un degré de complexité conséquent, ce qui mène souvent

 à une explosion combinatoire de l’espace d’états atteignables (comme

 l’exploration se veut exhaustive). Ce problème force les spécialistes soit à se

 limiter à des applications très simples, soit à recourir à des abstractions qui

 s’avèrent fréquemment exagérées, ce qui nuit à la véracité des résultats de la

 vérification (e.g. l’oubli des contraintes temporelles, la non inclusion des

 spécificités du hardware). En outre, les composants fonctionnels sont décrits à

 travers des languages et frameworks informels (ROS, GenoM, etc.). Leurs

 spécifications doivent alors être traduites en des modèles formels avant de

 pouvoir y appliquer les méthodes formelles associées. Cette opération,

 nommée formalisation, est souvent pénible, lente, et exposée à des erreurs vu

 la complexité des comportements que représentent les composants

 fonctionnels des robots. La formalisation fait face également à un autre

 problème également pesant, à savoir le manque de portabilité. Cela se résume

 au fait que chaque traduction doit être refaite dès qu’un composant change ou

 évolue, sans parler des nouvelles applications faites de nouveaux composants,

 ce qui implique un investissement dans le temps aux limites de la rentabilité. A

 noter que cette thèse ne s’intéresse pas aux composants du haut niveau dits

 “décisionnels” des systèmes robotiques et autonomes. En effet, ces

 composants sont souvent basés sur des modèles bien définis, même formels,

 ce qui facilite leur connexion aux méthodes formelles. Le lecteur intéressé peut

 trouver dans lalittéature de nombreuses contributions y étant pertinentes. Aux

limitations décrites précédemment, s’ajoute le problème de l’indécidabilité vis-

 à-vis les formalismes et les techniques de vérification.

 Par example, les travaux comparant les Réseaux de Petri Temporels “à la ,

 Merlin” et les Automates Temporisés, deux formalismes phares de modélisation

 des systèmes concurrents, demeurent trop formels pour les communautés

 autres que celle des méthodes formelles. Il existe néanmoins des travaux qui

 présentent des techniques qui permettent de bénéficier des deux formalismes,

 bien qu’elles ne soient (i) appliquées qu’à des exemples académiques

 classiques, loin de la complexité des composants fonctionnels robotiques et

 autonomes et (ii) restreintes aux classes des réseaux non-interprétés (pas de

 possibilité d’avoir des données/variables partagées).

 Nous proposons, dans ce travail de recherche, de connecter GenoM3, un

 framework de développement et déploiement de composants fonctionnels

 robotiques, à des langages formels et leurs outils de vérification respectifs.

 Cette connexion se veut automatique pour pallier aux problème de non

 portabilité, décrit au paragraphe précédent. GenoM3 offre un mécanisme de

 synthèse automatique pour assurer l’indépendance des composants du

 middleware. Nous exploitons ce mécanisme pour développer des templates en

 mesure de traduire n’importe quelle spécification de GenoM3 en langages

 formels. Ceci passe par une formalisation de GenoM3: une sémantique

 formelle opérationnelle est donnée au langage. Une traduction à partir de cette

 sémantique est réalisée vers des langages formels et prouvée correcte par

 bisimulation. Nous comparons de différents langages cibles, formalismes et

 techniques et tirerons les conclusions de cette comparaison. La modélisation se

 veut aussi, et surtout, efficace. Un modèle correct n’est pas forcément utile. En

 effet, le passage à l’échelle est particulièrement important.

Cette thèse porte donc sur l'applicabilité des méthodes formelles aux

composants fonctionnels des systèmes robotiques et autonomes. Le but est

d'aller vers des robots autonomes plus sûrs avec un comportement plus connu

et prévisible. Cela passe par la mise en place d'un mécanisme de génération

automatique de modèles formels à partir de modules fonctionnels de systèmes

robotiques et autonomes. Ces modèles sont exploités pour vérifier des

propriétés qualitatives ou temps-réel, souvent critiques pour les systèmes

robotiques et autonomes considérés. Parmi ces propriétés, on peut citer, à titre

d'exemple, l'ordonnançabilité des tâches périodiques, la réactivité des tâches

sporadiques, l'absence d’interblocages, la vivacité conditionnée (un évènement

toujours finit par suivre un autre), la vivacité conditionnée bornée (un

évènement toujours suit un autre dans un intervalle de temps borné),

l'accessibilité (des états “indésirables” ne sont jamais atteints), etc. Parmi les

défis majeurs freinant l'atteinte de tels objectifs, on cite notamment:

- Contrairement aux spécifications décisionnelles, les modules fonctionnels

sont décrits dans de langages informels. La formalisation est dure,

inévidente, et sujette à des erreurs compte tenu des comportements

atypiques qui peuvent se présenter à ce niveau. Cette formalisation est aussi

non réutilisable (besoin de re-formaliser pour chaque nouvelle application). Il

existe une multitude de techniques de vérification et de formalismes

mathématiques pour la modélisation. Le choix n'est pas évident, chaque

formalisme et chaque technique présentant des avantages et des

inconvénients. La complexité des modules fonctionnels (nombre de

composants, mécanismes de communication et d'exécution, contraintes

temporelles, etc.) mène à des problèmes sérieux de passage à l'échelle

(explosion de l'espace d'états atteignables).

- Il existe une déconnexion importante entre les deux communautés (de

robotique et de vérification formelle). D'une part, les roboticiens n'ont ni la

connaissance ni les moyens (en terme de temps surtout mais aussi de

background) de s'investir dans les méthodes formelles, qui sortent de leur

domaine. D'autre part, les spécialistes des méthodes formelles restent loin

de s'attaquer à des problématiques si complexes faute de connaissances en

robotique. Cette thèse tacle la totalité de ces problèmes en proposant une

approche de traduction prouvée mathématiquement et automatisée de

GenoM vers:

- Fiacre/TINA (model checking)

- UPPAAL (model checking)

- UPPAAL-SMC (statistical model checking)

- BIP/RTD-Finder (SAT solving)

- BIP/Engine (enforcement de propriétés en ligne)

La thèse propose également une analyse du feedback expérimental afin de

guider les ingénieurs à exploiter ces méthodes et techniques de vérification

efficacement sur les modèles automatiquement générés.

Mots-clés: Robotique, informatique, méthodes formelles, vérification,

temps-réel

Contents

1 Introduction 11
1.1 Software in robotics . 13

1.1.1 Layers . 14
1.1.2 Component-based software 15

1.2 Reliability . 17
1.2.1 Safety issues . 17
1.2.2 Formal verification, a promising alternative 18

1.3 Formal verification of functional components 21
1.4 Identifying the problems . 24
1.5 Contributions . 26
1.6 Outline . 27

2 GenoM3 29
2.1 Introduction . 29
2.2 Overview . 29

2.2.1 Requirements . 29
2.2.2 Implementation . 30
2.2.3 Behavior . 33

2.3 Templates . 36
2.3.1 Overview . 36
2.3.2 Middleware and implementation 36
2.3.3 Client libraries . 39
2.3.4 Mechanism . 39

2.4 Examples . 40
2.4.1 Osmosis . 40
2.4.2 Quadcopter . 43

2.5 Conclusion . 47

3 Semantics Formalism and Formal Frameworks 49
3.1 Introduction . 49
3.2 Timed Transition Systems (TTS) . 49

3.2.1 Notations . 50
3.2.2 Syntax of TTS . 50
3.2.3 Semantics of TTS . 51
3.2.4 Timed Transition Diagrams 52
3.2.5 Composition of TTDs . 53
3.2.6 Sequential behavior . 54
3.2.7 Suitability . 55

7

3.3 Fiacre and TINA . 56
3.3.1 Time Petri Nets . 56
3.3.2 Fiacre . 58
3.3.3 TINA Toolbox . 62
3.3.4 Conclusion . 63

3.4 UPPAAL . 63
3.4.1 Timed Automata . 63
3.4.2 Extending TA . 64
3.4.3 UPPAAL query language . 66
3.4.4 Verification in UPPAAL . 67
3.4.5 Conclusion . 67

3.5 UPPAAL-SMC . 67
3.5.1 Stochastic Timed Automata 67
3.5.2 Verification in UPPAAL-SMC 68
3.5.3 Conclusion . 71

3.6 BIP . 71
3.6.1 RTD-Finder . 73
3.6.2 The BIP Engine . 74
3.6.3 Conclusion . 74

3.7 Conclusion . 75

4 Formalizing GenoM3 77
4.1 Introduction . 77
4.2 Importance and feasibility . 77
4.3 Syntax and syntactical restrictions 78

4.3.1 Activities . 78
4.3.2 Execution task . 78
4.3.3 Control task . 79
4.3.4 Component . 79
4.3.5 Application and well-formed specifications 79

4.4 Semantics of lightweight GenoM3 80
4.4.1 Level 1: mono-task component 80
4.4.2 Level 2: multi-task component 84
4.4.3 Level 3: all-task component 86
4.4.4 Application . 89

4.5 Conclusion . 89

5 Translation of GenoM3 Semantics 91
5.1 Introduction . 91
5.2 Translation to DUTA . 91

5.2.1 Mono-task component . 91
5.2.2 Multi-task component . 95

5.3 Translation soundness . 96
5.3.1 Execution actions . 96
5.3.2 Absence of st effect on activities 107
5.3.3 Absence of external actions effects on timer 107
5.3.4 Edges equivalence . 107
5.3.5 Bisimilarity between TTS and DUTA systems 108

5.4 Conclusion . 115

8

6 Mapping to Formal Frameworks 117
6.1 Introduction . 117
6.2 The implementation models . 117

6.2.1 Implementation semantics (TTS) 118
6.2.2 Implementation semantics (DUTA) 120

6.3 Mappings . 121
6.3.1 Mapping to Fiacre/TINA . 125
6.3.2 Mapping to UPPAAL . 128
6.3.3 Mapping to BIP . 132

6.4 Automatic synthesis . 140
6.5 Conclusion . 143

7 Verification 145
7.1 Introduction . 145
7.2 Offline verification . 145

7.2.1 Exhaustive verification . 146
7.2.2 Statistical model checking 158

7.3 Runtime enforcement of properties 163
7.3.1 Properties of interest . 163
7.3.2 Enforcement with BIP . 163

7.4 Discussion . 165
7.5 Conclusion . 166

8 Conclusion 167

A Bisimilarity (Part II) 171

B Mappings 177

9

10

Chapter 1

Introduction

The last few decades are characterized by a fast growth in hardware technology,
such as smart sensors and on-board electronics. As a result, the capabilities of robotic
and autonomous systems have increased, which motivated their deployment over a
large spectrum of domains. This large deployment often involves contact with humans
or critical missions (e.g. home assistants, rescue robots, deep space, self-driving cars,
cyber-physical systems). However, robotic and autonomous systems need a software
to fulfill their missions.

Software governs the evolutions of robotic and autonomous systems. It implements
sensory-motor functions and transforms the inner capabilities of the hardware elements
into tangible actions. This major role of software puts it at the heart of missions suc-
cess, but also makes it a major source of failures. This last statement is supported
by a number of incidents that maculate the actual deployment of software autonomy.
Among these, we cite the Uber self-driving car accident last March in Tempe, Arizona.
Elaine Herzberg, a 49-year-old pedestrian was fatally hit by an autonomous Volvo in
an incident widely covered by the media. Experts reports seem to agree on the fact
that the car sensors did actually detect the victim, but software decided not to swerve,
possibly considering the sensor feedback to be a false positive1. This is an example
that shows that envisaging a wider involvement of robotic and autonomous systems in
our daily life requires to achieve a higher level of trust in their software.

We point out that, at this level, we need to distinguish between (1) failure at the
specification level of sensory-motor functions and (2) failure of software. The former
(1) is due to the functions being faulty at the algorithmic/mathematical level, so even
if the software implements them correctly, the system would still fail with regard to
what we expect it to do. The latter (2) results from an erroneous implementation of
the sensory-motor functions, so even if the algorithmic specification is correct, the
system would still fail with regard to what such a specification entails. In this thesis,
we focus on the pure software failures (category (2)), even though diagnosing a failure
in this category may reveal an algorithmic aberrance (category 1). In the example
given above, it is hard to categorize the failure (decision not to swerve) exclusively in
category (1) or category (2), although the current investigation course seems to point
to the direction of a pure software failure. Indeed, the laser reflection was detected, but
the interpretation of it was “wrong” and the reactions were therefore unadapted, with
regard to the specification.

1https://www.theguardian.com/technology/2018/may/08/ubers-self-driving-car-saw-the-
pedestrian-but-didnt-swerve-report

11

https://www.theguardian.com/technology/2018/may/08/ubers-self-driving-car-saw-the-pedestrian-but-didnt-swerve-report
https://www.theguardian.com/technology/2018/may/08/ubers-self-driving-car-saw-the-pedestrian-but-didnt-swerve-report

The addressed problem at a glance In the current practice, robotic software trust-
worthiness relies on testing campaigns, best coding practices, and the choice of sound
architecture principles. While such methods are helpful, they unfortunately do not
provide guarantees on crucial properties such as schedulability of tasks, absence of
deadlocks, leads to (an event b always follows an event a in the future), and bounded
response (an event b always follows an event a within a bounded amount of time). Such
properties often reflect the requirements on the safety and predictability of the system.
For instance, a deadlock in a part of the system means that some execution scenario
ends up in a state where no further evolution is possible, in that part of the system.
Such a scenario is undesirable while an autonomous system is undergoing a critical or
dangerous mission, the success of which requires a correct coordination of all the soft-
ware pieces in the system. Another example is an autonomous system (e.g. a drone)
taking part in a hard real-time application, where all of its tasks need to finish pro-
cessing before a statically assigned deadline. Failing to satisfy this property, known as
schedulability, may induce e.g. an erroneous servoing that would lead a drone to crash,
and possibly injure humans. The bounded response is crucial in e.g. self-driving cars,
where we want to know that for all possible execution scenarios, the maximum time
difference between requesting a brake action and the actual braking is small enough
so the vehicle stops before colliding with an obstacle (which might be a pedestrian).
Verifying this type of properties is thus necessary to obtain a high level of trust in the
robotic software, yet the routinely employed methods fall short of giving the desired
answers. Indeed, scenario-based testing for instance, widely used in robotics, is non
exhaustive and thus cannot verify a property with a known level of certainty. Con-
sequently, the reliability of robotic software does not rise to the level found in many
regulated domains, such as the aeronautic or nuclear industries, where formal methods
are used to check the most vital parts of systems [Woodcock et al., 2009].

The question that arises is why formal methods are not systematically employed
to verify robotic software? There exist many reasons, emerging from the specificities
of the robotics domain, such as the unstructured nature of environments, compared
to other domains like aeronautics. But, more generally, to answer this question, we
need to differentiate the levels of robotic software, mostly viewed as functional (tightly
coupled with the sensors and actuators) and decisional (in charge of deliberative func-
tions). In contrast to most of the decisional ones, functional specifications are written in
informal languages. Thus, in order to apply formal methods to the functional level, we
need first to formalize its specifications. The formalization is hard, error-prone and non
automatic (it needs to be re-done from scratch for each new application). Additionally,
there is a large number of existing formalisms/tools that can be employed in modeling
and verification. The mutual advantages and drawbacks of such formalisms/tools de-
pend on the applications/properties to verify and cannot thus be known beforehand. In
practice, the high cost of modeling often limits the choice to only one formalism/tool,
which makes it impossible to know whether verification might be improved with other
formalisms/tools. Moreover, the complexity of the functional level (e.g. number of
components, timing constraints, communication mechanisms) often leads to scalability
issues. Overall, there is a visible gap between the robotic and formal methods com-
munities. On one hand, robotic programmers have neither the knowledge nor the time
to invest in applying formal methods to their applications. On the other hand, formal
methods specialists are often far from dealing with systems as complex as the robotic
ones.

12

Proposition The goal of this thesis is to add to the efforts toward the long-sought ob-
jective of secure and safe robots with predictable and a priori known behavior. For the
reasons given above, formal methods are used to model and verify crucial properties,
with a focus on the functional level of robotic systems. The approach relies on auto-
matic generation of formal models targeting several frameworks. For this, we give op-
erational semantics to a robotic framework, then several mathematically proven trans-
lations are derived from such semantics. These translations are then automatized so
any robotic functional layer specification can be translated automatically and promptly
to various frameworks/languages. Thus, we provide a mathematically correct mapping
from functional components to verifiable models. The obtained models are used to
formulate and verify crucial properties (see examples above) on real-world complex
robotic and autonomous systems.

This thesis provides also a valuable feedback on the applicability of formal frame-
works on real-world, complex systems and experience-based guidelines on the efficient
use of formal-model automatic generators. In this context, efficiency relates to, for in-
stance, how to use the different model checking tools optimally depending on the prop-
erties to verify, what to do when the models do not scale with model checking (e.g. the
advantages and drawbacks of statistical model checking and runtime verification and
when to use the former or the latter depending on the type of properties and the order
of magnitude of timing constraints).

Outline of the chapter The rest of this chapter is organized as follows. First, we
overview one of the popular hierarchical architectures in robotic software and review
the existing component-based frameworks for the functional level. This helps us to
argue in favor of the framework of our choice. Second, the robotic software reliability
problem is introduced. We give notable examples on software failures in real-world
robots and their direct influence on the deployability of those robots. Formal verifica-
tion is then overviewed at the decisional level and the difference of its applicability to
the different architectural levels is discussed. This motivates our choice to focus on the
functional level. Third, we overview the state of the art of formal verification of func-
tional components. We identify the main problems hindering a systematic verification
of functional components using formal methods. Finally, we present our contributions
as viable solutions to the identified problems and outline the plan of the thesis.

1.1 Software in robotics
Software engineers and developers work permanently on providing robust frame-

works to specify and execute robotic applications. These efforts are confronted with a
raising complexity of robotic and autonomous systems, which makes software devel-
opment, use and maintenance costly and challenging. Indeed, the simplest applications
nowadays involve several sensors/actuators and thousands of lines of code. Further-
more, autonomous systems are highly heterogeneous. Timing constraints, for instance,
differ greatly from a function to another both range-wise (from hundreds of nanosec-
onds to several seconds) and urgency-wise (e.g. hard or weakly hard real-time [Bernat
et al., 2001]).

In order to tackle this complexity efficiently, robotic software is often broken ac-
cording to the role of its parts and the degree of their autonomy and direct involvement
with the hardware. The first direction of dissociating these parts is hierarchical, sepa-
rating those that directly interact with sensors and actuators from the decision-making,

13

deliberative ones; such a separation produces levels, also known as layers. The second
direction consists in partitioning a layer into different reusable components according
to the functionalities they are in charge of.

1.1.1 Layers

Layering separates software pieces with a high level of autonomy from those that
process sensor inputs and send outputs to actuators. This hierarchical splitting produces
three layers [Gat and Bonnasso, 1998; Alami et al., 1998]:

Decisional layer In charge of high-level deliberative functions pertaining to decision
making. Such functions may be e.g. planning, acting and learning [Ingrand and Ghal-
lab, 2017] and usually require a certain knowledge of the system and its environment
with some abstract representation. The decisional layer outputs high-level plans result-
ing from applying its computations, often relying on heuristics, performed over some
data from a lower layer.

Functional layer Tightly coupled to the hardware in charge of perception and action,
that is sensors and actuators. It is in charge of control loops that deal with elementary
robot actions. It implements functions that manage such low-level actions, including
e.g. localization, vision and motion planning. The functional layer also feeds the higher
layers with inputs when deliberation is needed.

Executive layer Plays the role of a middleman between the highest layer, the deci-
sional, and the lowest one, the functional. It selects, according to the actions received
from the decisional layer, the operations to perform at the functional one, with proper
parameters and ordering. Subsequently, it returns reports on functions execution to
the decisional layer so the latter may properly supervise the plans and select the next
actions.

Note that despite its popularity, this is not the only hierarchical architecture that
we encounter in robotic systems. Indeed, the specificities of a given application might
influence the criteria according to which the system is layered. For instance, some ar-
chitectures rely on temporal characteristics as a layering principle, such that high-level
tasks operate at lower frequencies than low-level ones (example in [Albus, 1995]).
A broad view on robotic architectures may be found in [Kortenkamp and Simmons,
2008].

The three-layer architecture presented here does not draw any borders between
layers, which results in systems where one layer is dominant. Moreover, the loose def-
inition of the executive layer leaves blurry spots when trying to specify an autonomous
system as, often, the borders between it and the other layers are hard to localize (exam-
ple in [Knight et al., 2000]). Additionally, the executive layer presence prevents often
access to the functional layer by the decisional one, which may result in inconsisten-
cies. These problems led to the adoption of a more compact two-layer representation
where the executive layer is absorbed by one of the other layers or both (example
in [Volpe et al., 2001]). In this thesis, we focus on the functional layer as this will be
motivated in Sect. 1.2.

14

1.1.2 Component-based software
Within each layer, software is still breakable into different units, called compo-

nents, following their functionality. In this section, we focus on the functional layer
component-based design as we overview a broad range of its existing frameworks. The
focus on the functional layer here pertains to the main goals and contributions of this
thesis (Sect. 1.5) and exposes the middleware dependency recurrent problem in robotics
(Sect. 1.1.2.2).

1.1.2.1 Motivation

Component-based design is particularly convenient for robotic systems, where soft-
ware, inherently complex, is required to be equally reusable (an overview is given be-
low). Typically, each functional component is in charge of a robotic functionality of
which it implements the algorithms. A robotic application is then built by combining
a number of components that communicate in order to fulfill the application require-
ments. Component-based design is therefore powerful due to the possibility to reuse
components for different applications and to implement the same component differ-
ently according to the application (e.g. same functionality but different algorithms),
which produces a broad range of systems resulting from existing components. This
compositionality is the spirit of widely used robotic frameworks, such as ROS [Quigley
et al., 2009] and Orocos [Bruyninckx, 2001]. In this thesis, it is important to rely on
a robotic framework that features reusability and compositionality. Indeed, in order to
make our work the most accessible to robotic engineers, we need to comply with the
current trends in robotics including component-based design. The use of a component-
based framework to specify the robotic applications is therefore important.

1.1.2.2 Middleware dependency

Robotic software components are highly dynamic. There are therefore preponder-
ant needs to handle their mutual interaction and their communication with the operating
system.This is done by the Middleware. In order to meet the components communi-
cation and synchronization rigorous requirements, robotic middleware evolve contin-
uously [Kramer and Scheutz, 2007; Elkady and Sobh, 2012]. This important role of
middleware makes it tightly coupled to the component-based framework, so it is con-
sidered often as a part of the latter. This is the case of ROS (respect. Orocos), pro-
viding a communication layer called ROS-Comm (respect. Orocos Real-Time Toolkit
RTT2). Due to the specificities of each middleware [Mohamed et al., 2008], it is rather
common among robotic programmers to design components for a particular implemen-
tation. One may even end up with components using different middleware within the
same application.

This foggy line between component-based software and middleware questions the
reusability of robotic components, which is the main advantage of component-based
design (Sect. 1.1.2.1). It is even argued in [Smart, 2007] that the current components-
middleware tight coupling practice in robotics constitutes a main speed bump in the
path of robotic research as “we spend our time reimplementing known algorithms and
techniques, rather than discovering new ones”. This problem is known as the middle-
ware dependency. In this thesis, it is important to use an approach that efficiently solves
this problem. Indeed, this will minimize the cost of verifying different implementations

2http://www.orocos.org/node/26

15

http://www.orocos.org/node/26

of the components.

1.1.2.3 Overview of existing frameworks

Software and robotic engineers and researchers propose a various range of spec-
ification frameworks that are also solutions to the middleware dependency problem.
The common factor to the majority of these solutions is mainly attempting to dissoci-
ate component-based frameworks from middleware. In many cases, the propositions
consist in enhancing general-purpose software paradigms to increase their suitability
for robotic applications, including adding layers to enable their connection to the mid-
dleware. This explains the striking resemblance between a decent number of proposed
approaches (see examples below) and the widely used Unified Modeling Language
UML 3.

UML is a general-purpose graphical modeling language, popular among software
engineers especially in object-oriented programming [Coad and Nicola, 1993]. In its
latest stable release, UML 2.5 features an architectural design with connectors for a
natural communication between components [Clements et al., 2003], which apparently
suits the robotic software needs at the functional layer. Nevertheless, UML diagrams
are unable to capture a range of information, inherently important and growingly re-
quired in robotic applications, such as timing constraints and thread allocation [Brugali,
2015]. The literature is rich with efforts attempting to bridge the gap between UML and
the needs in robotic software, starting with the emergence of the UML profile Modeling
and Analysis of Real-Time Embedded Systems (MARTE) [Faugere et al., 2007; De-
mathieu et al., 2008]. Mainly, MARTE allows annotating architectural elements with
real-time features and is therefore suitable for timed analysis, hence the development
of automatic generators from MARTE to schedulability analysis tools in [Medina and
Cuesta, 2011]. However, MARTE models are still disconnected from a real-world de-
ployment, which explains why the robotic case studies using this UML extension are
fictive [Demathieu et al., 2008]. Robotic developers are discouraged to create practi-
cal implementations based on these frameworks, due to an insufficient flexibility for
specification, reuse and deployment of robotic components. This led to the introduc-
tion of other approaches that, while still heavily inspired by UML, are more specific to
robotics, which eases the implementations.

Among these approaches, we distinguish RobotML [Dhouib et al., 2012], a UML
profile specific to robotic applications. It provides a graphical environment for devel-
oping the robotic components, referred to as systems, with some automatic generators
to middleware (mainly Orocos-RTT). While a number of successfully deployed case
studies exist in the frame of the Proteus 4 project, RobotML provides no connection
with ROS-Comm, currently the middleware of the most used robotic framework.

Another equally mature approach is the model-driven SmartSoft [Schlegel et al.,
2009], where components may communicate through a limited set of patterns typi-
cally used in robotics (e.g. clients/server and publisher/subscriber). The toolchain
comprises a generator for platforms using the CORBA standard [Mowbray and Za-
havi, 1995]. Despite fully deployed applications (e.g. the collaborative robot butler
in [Dennis et al., 2016]), SmartSoft offers no bridging with middleware layers of pop-
ular robotic software (such as Orocos-RTT and ROS-Comm).

In contrast to techniques seemingly derived from existing general-purpose lan-

3http://www.uml.org
4Platform for RObotic modelling and Transformation for End-Users and Scientific communities project,

http://www.anr-proteus.fr

16

http://www.uml.org
http://www.anr-proteus.fr

guages, some solutions to middleware dependency rely on relatively novel suggestions,
either reinventing a toolchain from scratch or proposing a looser definition of compo-
nents. In [Jang et al., 2010], the Open Platform for Robotic Services OPRoS is pre-
sented. It is a hierarchical component-based framework where atomic components may
be composed into composite components that form the robotic application. The frame-
work has also an executer to run these components on a target platform. Once more,
no attention is given to bridging this framework to existing popular middleware, which
reduces the reusability of the components. Moreover, the potentiality of this bridg-
ing remains questionable due to the great complexity of the framework design, which
questions equally the usability of the framework by robotic engineers. For instance,
there are several types of communication ports (data, service, event) and several lay-
ers wrapped in the application (composer, executer), and the framework enforces some
scheduling choices at the design level.

A quite different approach is presented in [Adam et al., 2017]. Instead of devel-
oping the application in a precise manner, only its architecture is designed (the com-
ponents, as empty boxes, and their interactions). Then, a model-to-model M2M trans-
formation is performed to e.g. remove hierarchies. Finally, a model-to-target M2T
transformation is realized to obtain an “empty” executable model. The direct advan-
tage of this approach is the possibility to reuse components that are already developed
in the target (e.g. a ROS component for a given robot functionality) rather than wor-
rying about the component algorithms at the design level. This comes, however, at
the obvious expense of a higher cost induced by the two-layer transformation chain,
requiring different levels and kinds of knowledge.

The chosen component-based framework in this thesis is GenoM3 [Mallet et al.,
2010], due to its following advantageous characteristics. First, besides similarities with
UML 2.5 (e.g. components and the connection between ports), GenoM3 is well suited
(and was developed) for robotic applications. For instance, it allows specifying peri-
odic and aperiodic behaviors and finite-state-machine services (Sect. 2.2.2, Sect. 2.2.3).
Second, it adopts a level of specification that is convenient for robotic programmers,
as it does not burden them with e.g. enforced schedulers. Third, learning GenoM3 is
time- and cost-efficient for robotic engineers, as only a basic knowledge in component-
based design and robotic software is required. Finally, and not to omit the main issue
overviewed in this section, GenoM3 specifications are independent from the implemen-
tation (the development of the component is decoupled from the middleware GenoM3
currently supports, more in Sect. 2.3). It provides automatic generation to PocoLibs 5

and ROS-Comm middleware.

1.2 Reliability

1.2.1 Safety issues
The convenience of component-based design, coupled with a loose connection to

middleware (Sect. 1.1.2), is quite promising toward a large deployment of robotic ap-
plications in our daily life. However, an easy-to-reuse, easy-to-deploy software needs
also, more importantly, to be safe. Indeed, serious doubts arise on the safety of robotic
software, especially when involved in costly missions (e.g. space exploration) and di-
rect contact with humans (e.g. home and surgery assistants). These doubts are well
justified, as many studies confirm. For instance, the deployment of the museum guide

5https://git.openrobots.org/projects/pocolibs

17

https://git.openrobots.org/projects/pocolibs

robot RoboX9 is assessed over a period of five months in [Tomatis et al., 2003]. Among
the over four thousand failures recorded, the overwhelming majority are software re-
lated (96%), including over two hundred deemed “critical”. Moreover, the failure of
robotic and autonomous systems is likely to have an impact that is less tolerated by the
humans than the failures of the humans themselves. For instance, while human-caused
road accidents are usually non-news, the injury of a human by a self-driving car makes
it easily to the headlines. This philosophical issue is debated in [Shalev-Shwartz et al.,
2017].

Still, the lack of assurance that characterizes robotic software today is not caused
by a lack of awareness in the community. Robotic components are systematically
tested, both on the field and by the intermediary of sophisticated simulators such as
Gazebo [Koenig and Howard, 2004] and Morse [Echeverria et al., 2011] (a study on
the ability of simulation to reveal bugs is given in [Sotiropoulos et al., 2017]). The
problem resides rather in the inability of testing methods to rise to the required level
of guarantees. The scenario-based conventional methods of testing may demonstrate a
severe inefficiency faced with the complexity of robotic and autonomous systems. For
instance, we find in [Pecheur, 2000] a noteworthy, practical example that exposes the
non adequacy of scenario-based testing to autonomous missions. It is the case of the
Remote Agent Experiment RAX [Nayak et al., 1999], where even a thorough, long-
term (over a year) test failed to detect software bugs beforehand. Indeed, RAX had
to be stopped only a few hours after assigning it the control of a NASA’s Deep Space
mission in 1999. This emergency measure was due to the occurrence of a dormant
deadlock scenario. The non exhaustive nature of testing prevented shedding the light
on this failure as the very scenario that led to the deadlock was never explored. The ur-
ban challenge organized by the Defence Advanced Research Projects Agency DARPA
provides another valuable example in 2007. It involves the autonomous vehicle Alice,
developed at the California Institute of Technology. Alice was a successful participant
of earlier versions of the challenge, e.g. in 2005 [Murray et al., 2005], and underwent a
strict set of tests using simulators (thousands of hours) and on the field (over 450km).
Unexpectedly, Alice was disqualified from the 2007 competition due to a serious soft-
ware bug related to the implementation of handling intersections when nearby objects
are detected, a scenario that never occurred during the testing campaigns [Kress-Gazit
et al., 2011]. These cases are merely examples among many that expose the non suit-
ability of scenario-based testing, either on the field or using simulators, for verifying
complex robotic and autonomous systems. This emphasizes the urgent need for more
accurate techniques, that are up to the challenge of a safer and larger involvement of
autonomous systems in various domains.

1.2.2 Formal verification, a promising alternative
These observations motivate the attempts, since a few decades, to support the

robotic software with more sophisticated, mathematically founded methods. That is, to
gradually replace scenario-based testing with formal validation and verification (V&V),
widely adopted in other domains such as aeronautics and nuclear industries [Bowen
and Stavridou, 1993; Andersen and Romanski, 2011]. Contrary to testing, formal
V&V uses mathematically based analysis methods, i.e. formal methods [Bjørner and
Havelund, 2014] to assert whether a property is satisfied by a system. We distinguish
verification from validation as follows. Validation tries to answer the question “are
we doing the right thing?”, that is, whether the specification coincides with the func-
tional and non-functional requirements. Verification, on the other hand, checks the

18

correctness of the implementation with regard to the specification in order to answer
the question “are we doing it (what we want to do) right?”. In this thesis, we focus on
formal verification as we verify the properties desired by the robotic programmer on
deployed systems.

Due to its mathematical foundation, formal verification provides an elegant and
sound solution. Among existing formal verification techniques, we briefly describe the
following (more in Chapt. 3):

• Model Checking [Clarke et al., 1999]: relies on automata-theoretic methods
to check the validity of properties expressed as temporal-logic formulae (e.g.
LTL [Vardi and Wolper, 1986] and CTL [Emerson and Srinivasan, 1988]) on
the model of a system. Model checking is automatic and exhaustive but can be
unfeasible because of the combinatory explosion when exploring all the possi-
ble states. Statistical Model Checking SMC [Legay et al., 2010] is sometimes
evoked to reduce the cost of model checking. Among SMC techniques, we men-
tion simulating the system for finitely many executions in order to evaluate the
properties with some probability.

• Deductive Verification: consists in deducing, from a specification of the sys-
tem, possibly annotated with e.g. pre- and post-conditions, a set of statements
to prove in order to check the validity of the system with regard to its specifica-
tion. The correctness of these statements is verified using e.g. classical theorem
proving [Green, 1981] or Hoare logic [Hoare, 1969]. Deductive techniques can
reason on infinite systems due to the power of induction but deriving the proof
requires both expertise and costly efforts, which makes them mainly suitable for
small programs rather than whole systems [Pecheur, 2000].

• Runtime Verification [Leucker and Schallhart, 2009]: the property is checked or
enforced at runtime. Runtime verification poses the problem of the scope of its
suitability. Indeed, it is quite hard to decide whether one can rely on a monitor at
runtime and how to deal with the property violation remains an open issue. The
enforcement of properties at runtime is a widely explored solution [Ligatti and
Reddy, 2010; Gabel and Su, 2010].

1.2.2.1 Formal verification at the decisional layer

At the decisional layer, the use of formal methods to reason about software be-
comes more and more common. Indeed, decisional-layer models are often formal.
For instance, most of the planning existing models (e.g. PDDL [McDermott et al.,
1998] and ANML [Smith et al., 2008]) are formally defined with complete semantics.
This alleviates the task of applying formal methods to decisional components as their
formalization, the most time-consuming and error-prone step in verification [Pecheur,
2000], is not needed. This simplification may be one of the reasons why we find a
large corpus of quality works in the literature that apply formal methods to the de-
cisional layer. Some examples of these works are given in the next paragraph. It is
however worth emphasizing that the learning functions are the exception to the conve-
nient connection between decisional components and formal methods. Indeed, despite
some verification works on mathematically well-founded models such as neural net-
works (see [Huang et al., 2017; Katz et al., 2017] for latest results), applying formal
methods to learning algorithms is still a major issue (e.g. formally specifying such
systems is an open challenge [Seshia et al., 2016]).

19

In [Hähnel et al., 1998], the authors propose GOLEX, a safe and robust executer/-
monitor for the formal acting language GOLOG [Levesque et al., 1997], based on the
situation calculus [McCarthy, 1968]. A real-world application shows the capabilities
of GOLEX to successfully monitor a mobile robot in unstructured environments. The
approach proves also to be efficient in other applications, such as a tour-guide in a
museum of Bonn given by the mobile robot RHINO. Bounded response properties are
enforced online in a coffee delivery application. If the time bound to serve the next
customer cannot be respected, GOLEX ignores the current sub-plan and produces a
new plan after it removes the next customer from the waiting list.

Symbolic model checking [Clarke et al., 1996] is used in [Cimatti et al., 2004]
to achieve Conformant Planning, that is finding a sequence of actions to achieve a
goal even in the presence of uncertainty and non-determinism. The formal model of
planning domains is encoded as Binary Decision Diagrams BDDs [Bryant, 1992] and
a Conformant Planning algorithm is consequently developed. The efficiency of the
approach is shown through experiments with a number of planning domains. One
particularity of this work is the fact that model checking is used as a reliable technique
for planning and not for mere verification, which is rendered possible thanks to the
formal nature of the underlying planning model.

The formal model of the temporal planner IxTeT [Abdeddaim et al., 2007] is trans-
lated into UPPAAL-TIGA [Behrmann et al., 2007] timed-game-automata-based mod-
els. The authors evoke the direct advantage of this translation, allowing the verification
of the obtained models with UPPAAL-TIGA.

In [Pecheur and Simmons, 2000], autonomous controllers based on
Livingstone [Williams and Nayak, 1996], a NASA model-based health monitoring
system, are considered. Livingstone specifications are automatically translated into
SMV [Burch et al., 1992], a symbolic model checker. The translation is applied e.g. to
the Livingstone model for the In-Situ Propellant Production ISPP and important prop-
erties, such as recoverability from failures, are verified. Both SMV and Livingstone
relied on synchronous models, which reduced the difficulty of the translation into “the
discrepancies in variable naming conventions between the Lisp-like syntax of Living-
stone and the Pascal-like syntax of SMV” [Pecheur, 2000].

1.2.2.2 High-level abstractions

A popular domain for formal verification of high-level robotic software is the con-
troller synthesis. From high-level models of the robot and a set of desired properties,
both expressed in Linear-time Temporal Logic LTL, a high-level, reactive controller
that guarantees such properties is synthesized. This is the driving idea of e.g. [Kress-
Gazit et al., 2008; Raman et al., 2013].

There are also several works involving cooperating robots or human-robot interac-
tions. For instance, in [Stocker et al., 2012], a multi-agent model involving a robotic
assistant, a human carer, a person and an intelligent house is developed in Brahms [Sier-
huis and Clancey, 2002]. The models are translated to the SPIN model checker [Holz-
mann, 1997] and high-level properties such as the bounded response property “if the
person requests food then the robot will eventually deliver it within an hour” are veri-
fied.

Another example is given in [Gjondrekaj et al., 2012] where the high-level behavior
of three robots cooperating to transport an object to a goal zone is modeled in the formal
agent-based language KLAIM [De Nicola et al., 1998]. The probability of reaching the
goal without collision by one of the robots is then estimated.

20

Other works abstract the robot behaviors to a its high-level model (the functional
layer is considered correct) in order to verify relevant properties in uncertain envi-
ronments. This is the case of e.g. [Aniculaesei et al., 2016] where the passive safety
property (that is, no collision occurs while the robot is moving [Macek et al., 2008]) is
verified using the state-of-the-art model checker UPPAAL (Sect. 3.4).

1.2.2.3 Issues at the functional layer

Contrary to most of the decisional and high-level specifications, functional com-
ponents are neither written in formal languages nor amenable to heavy abstractions.
Indeed, popular component-based frameworks nowadays such as ROS (Sect. 1.1.2) are
not defined formally. Furthermore, abstractions at this level may quickly lead to mod-
els that do not reflect the real behavior induced by the underlying components (e.g.
ignoring some timing constraints or interleavings). Therefore, the formalization, in-
evitable at this level, is particularly challenging and costly and the formalized models
are not guaranteed to scale. This explains the fact that the level of integration of formal
methods at the functional layer is severely behind the actual needs, as will be explained
in the next section.

1.3 Formal verification of functional components

In this section, we overview the state of the art of formal verification at the func-
tional layer. We categorize the contributions into three main verification approaches
and give examples in each category.

Deductive verification In [Täubig et al., 2012], the authors report on their experi-
ences in verifying the implementation of a collision avoidance algorithm. Each func-
tion is annotated with pre- and post-conditions as well as a memory layout and a modi-
fication frame that limits the effects of the function on memory. Then, it is checked if
whenever a function is called such that the call satisfies the pre-conditions and mem-
ory layout, the function will terminate, and the state corresponding to the termination
satisfies the post-conditions and the modification frame. Important properties like the
correct implementation of the braking model are verified using a combination of pen-
and-paper and computer-aided (using ISABELLE/HOL [Nipkow et al., 2002]) proofs.
The work resulted in certification for use of the algorithm implementation up to SIL3
of IEC 61508-3. The approach requires a heavy human intervention and a very good
knowledge of the proof systems and the tools, not to mention the reverse engineering
of the algorithms as to properly write the pre-/post-conditions and proof systems.

The authors of [Kouskoulas et al., 2013] verify a control function of a surgical robot
using the KeYmaeraD theorem prover for differential-dynamic logic [Platzer, 2008].
The (safety) property of interest is that for all configurations, all possible uses of the
robot and at any time, “if the surgeon starts the tool at a safe place, the tool remains in
a safe place”. The dimensions of a “safe place” area are computed so that the patient is
not harmed when the tool is within that area. This property verifies thus that the “free
movement” of the surgeon hand happens always within a safe area, not in direct contact
with the patient. Counterexamples are generated and the function is proven thus unsafe.
A formally proven safe alternative is proposed. The major part of the work is manual
(e.g. modeling the system in differential-dynamic logic) and a profound knowledge of
both continuous models and proofs in differential logic is needed.

21

The correctness of a mutual exclusion function over shared memory is analyzed
in [Kazanzides et al., 2012]. The function is implemented using the cisst software
package [Kapoor et al., 2006], a collection of component-based libraries for robotic
surgical systems, linked with ROS-Comm. The function considers a circular buffer
with an array of state vectors. The authors rely on the History for Local Rely/Guarantee
HLRG logic [Fu et al., 2010] to develop paper-and-pen inference rules that led to the
detection and fixing of a data corruption bug. The proofs are not automatized and the
function verified is very specific.

In [Meng et al., 2015], the correctness of ROSGen, a code generator for ROS com-
ponents, is verified. The proof assistant Coq [Huet et al., 1997] is used interactively
with the user to reason on the proof systems. The Data Delivery property, that is the
data sent by a sensor is correctly handled by the controller and delivered to the ac-
tuator(s), is also proven correct for any targeted platform. In order to guarantee the
correctness of ROSGen, a formal sub-version of ROS called ROS nodes is proposed,
but no proofs are given on its correctness with regards to ROS. Moreover, the approach
is hard to generalize and the verification of e.g. timed properties is unfeasible.

Overall, as said in the last section, deductive verification is costly and requires
considerable human intervention. Furthermore, robotic programmers do not have the
required knowledge and expertise to efficiently use theorem provers and proof assis-
tants. Also, the type of properties is restricted such that e.g. timed properties (like
bounded response) cannot be verified. This explains why the works applying theorem
proving to robotics are often done by formal methods experts and mostly focus on a
small piece of the specification (a function) rather than the system as a whole.

Model checking The synchronous language ESTEREL [Boussinot and de Simone,
1991] (see [Benveniste and Berry, 1991] for synchronous languages) is used in [Si-
mon et al., 2006] to verify important properties ranging from safety to liveness. The
Orccad environment [Simon et al., 1997] is used to build KeepStable, a set of stabil-
isation procedures of an underwater vehicle. Procedures are hierarchically built from
tasks, whose coordination is automatically translated into ESTEREL. The safety prop-
erty consists in a correct handling of exceptions, whereas liveness corresponds to a
procedure eventually reaching its goal. Other properties related to the conformance
between the procedure requirements and behavior are checked visually. The authors
invoke the threat of combinatory explosion for larger applications, which would render
the “visual” verification impossible. ESTEREL is used in other model-checking-based
verification works such as [Sowmya et al., 2002; Kim and Kang, 2005], where the
formalization is manual as robotic specifications are either translated by hand to, or
hard-coded in ESTEREL.

RoboChart [Miyazawa et al., 2016] is used in several verification efforts such
as [Miyazawa et al., 2017]. RoboChart models are automatically translated into Com-
municating Sequential Processes (CSP) [Roscoe, 2010] in order to verify behavioral
and timed properties using the FDR model checker [Gibson-Robinson et al., 2014].
RoboChart is, however, not a robotic framework (its models are not executable on
robotic platforms). That is, each robotic application, initially specified in a robotic
framework, needs to be modeled first in RoboChart before it can be translated into
CSP.

Model checking techniques are also applied to an Autonomous Underwater Vehicle
AUV in [Molnar and Veres, 2009]. A series of manual transformations is performed
to bridge the robotic specification with the multi-agent model checker MCMAS [Lo-

22

muscio et al., 2009]. Collision-avoidance properties are checked. The approach is
tedious and requires many transformations which reduces its reproducibility and raises
the risks of errors.

The PRISM probabilistic model checker [Kwiatkowska et al., 2011] is used in [Hazim
et al., 2016] to verify bounded response properties. A case study involving a ground
autonomous vehicle is given, where PRISM estimates the probability of finding an ob-
ject by the vehicle in a bounded amount of time. Despite an attempt to formalize ROS
graphs, no operational semantics is given which makes the formalization both manual
and ad-hoc.

Another attempt to formalize ROS components is developed in [Halder et al., 2017]
where UPPAAL is used to verify buffer-related properties (no overflow). ROS compo-
nents are not formalized and only the message passing part (publisher/subscriber) is
modeled, manually. Furthermore, there is no attempt to verify bounded response prop-
erties, crucial and challenging in message-sending contexts (e.g. a message will be
always delivered within a known bounded amount of time).

In [Gobillot et al., 2014], specifications written in the Modeling Autonomous VE-
hicles framework MAUVE are verified. Although MAUVE is oriented toward schedu-
lability analysis6, the authors evoke the verification of behavioral properties with the
model checker TINA (Chapt. 3) after a translation into the RT-Fiacre formal language [Abid
and Dal Zilio, 2010]. No further details are given on the translation or the verification
results.

Globally, despite the fact that model checking is automatic, its application to robotics
is no less problematic than that of deductive verification. Indeed, the formalization of
robotic specifications, written in non-formal languages, is quite challenging and error
prone and needs a kind of knowledge that is often out of the competence scope of
robotic programmers. Furthermore, works on model checking in robotics suffer from
the state-space explosion problem (Sect. 1.2) and alternatives are rarely proposed.

Runtime verification The Java PathExplorer tool is presented in [Havelund and
Rosu, 2001]. It allows checking, at runtime, the system against temporal logic for-
mulae and classically undesired properties in concurrent execution such as deadlocks.
A case study with the NASA robot Rover K9 is presented. The developed monitors
are in Java while the logic engine (to check the properties) is in Maude [Clavel et al.,
2002], which causes a perceptible slowing down of the original programs by an order
of magnitude. Moreover, the approach is not generalized to component-based robotic
frameworks.

The Request and Resource Checker R2C is proposed in [Py and Ingrand, 2004a].
It is an execution controller plugged in the executive layer to prevent faulty behaviors.
The latter are described as deliberative commands that could lead to inconsistencies at
the functional layer. For this, R2C has a set of constraints against which it continu-
ously checks the global state of the system and prevents it from transiting into a faulty
state. R2C is successfully deployed on an All-Terrain Robotic Vehicle (ATRV) where
it correctly reacts to injected faults by rejecting services requests or terminating run-
ning services. It also helped to locate a bug at the decisional level. The approach is
solid and automated but does not support the enforcement of timed properties due to
the untimed (yet temporal) nature of its underlying formal model (e.g. consider a state
faulty if some function is waiting for resources for more than some amount of time).

BIP [Basu et al., 2011], a modeling and verification framework based on automata,

6Hence its connection with the Orocos-RTT middleware.

23

is used in the joint verification effort presented in [Abdellatif et al., 2012]. The func-
tional components, written in GenoM (version 2), of an outdoor robot with two nav-
igation modes, are modeled in BIP. Safety constraints, such as “the robot must not
communicate and move at the same time” are automatically translated from logical
formulae into BIP then added to the model. The latter is run within the BIP-Engine
on DALA, an iRobot ATRV, and the constraints are consequently enforced at runtime.
Due to the untimed nature of BIP and the lack of some time information (e.g. execution
times of code) back then, only periods are considered through logical ticks. Further-
more, it is not possible to verify the soundness of the translation from GenoM to BIP
due to the absence of operational semantics of the former.

In [Huang et al., 2014], the authors present ROSRV, a runtime verification environ-
ment for ROS-based robotic systems. A monitoring layer is added on top of the com-
ponents to intercept the different messages and commands. The generated monitors are
successfully implemented on a simulated LandShark military robot. The monitors re-
strict the execution to scenarios satisfying security and safety properties. The approach
is not generalized to other robotic frameworks. Furthermore, it is hard to verify the
generated monitors due to the absence of a formal model of the ROS components.

Performance Level Profiles PLPs are proposed in [Brafman et al., 2016] to describe
the components desired performance in a robotic application. The approach helped to
reveal a bug in the path planning component of a Compact Track Loader CTL. PLPs
are defined semi-formally and their development is quite costly. Indeed, only the gen-
eration of their objects is automatic, since the user needs to fill variable updaters and
condition validation functions. Additionally, there is no support for timed properties.
PLPs require also information, such as expected execution time and runtime distribu-
tion, the gathering of which is challenging and not covered by the contribution.

In sum, works on runtime verification (through monitoring or enforcement) in
robotics face generalizability issues and their automation is limited. Moreover, these
methods are usually complementary to offline verification (e.g. via model checking
and/or theorem proving) as it is often risky to deploy unverified components, even
when a monitoring layer is added.

1.4 Identifying the problems
Clearly, the application of formal verification to functional components remains an

open challenge. We try thus to define the major problems causing this, which helps us
draw the main axes of our contributions. All the works cited in Sect. 1.3 suffer of at
least one of these problems.

Feasibility and accuracy of formal modeling One inevitable step toward the formal
verification of functional components is their formal modeling. As shown throughout
this chapter, this phase is particularly difficult and error prone, which differentiates the
applicability of formal methods to the functional layer as opposed to the decisional
one, where specifications are already formal (Sect. 1.2). This is due, mainly, to the
fact that component-based frameworks in robotics are not formal (Sect. 1.1.2). This
makes the derived formal models also questionable, in terms of their correctness vis-
à-vis their robotic counterparts. We refer to this problem as Problem 1. The proposed
solution of using formal languages directly to encode robotic specifications (such as
ESTEREL in [Kim and Kang, 2005]) is not suitable for the robotic community, rather
familiar with robotics specific frameworks (Sect. 1.1.2). We need thus to strengthen

24

these frameworks with clear semantics to facilitate the formal modeling of their speci-
fications.

Automation of formal modeling Another problem with formal modeling is the lack
of automation. That is, the modeling is often application dependent (one needs to go
through this tedious phase again for each new application). This problem, that we refer
to as Problem 2, is partially induced by the lack of semantics in robotic component-
based frameworks (Problem 1). We need an approach for a full automatization of
formal modeling of functional components.

Scalability The threat of combinatory explosion leads to heavy abstractions that of-
ten reduce the coverability of the formal model. For instance, the formal models in [De-
sai et al., 2017] represent only some execution scenarios from their underlying robotic
specifications, which made the authors undergo a tedious combination between model
checking and runtime verification. Other abstractions consist in ignoring timing con-
straints, which is no longer acceptable in today’s systems real-time requirements7. This
problem, referred to as Problem 3, restricts the majority of works to simple applications
that are often not deployed on real robots. We need to face the real complexity by ap-
plying formal methods to real-world robots, and propose formal solutions in case of
scalability issues.

Finding the right method/formalism/tool This is one of the major, yet less treated,
problems of formal verification of real-world systems. The multitude of available tool-
s/formalisms/techniques often overwhelm engineers, as most of their mutual advan-
tages and drawbacks depend on the applications/properties to verify and cannot thus be
known beforehand. For instance, one tool may perform better than another for a live-
ness property, while it is the other way around for a reachability property. The choice
of the most suitable formalism and associated verification technique is therefore not
obvious. The literature contains formal works that compare the expressiveness of some
formalisms, e.g. [Bérard et al., 2005; Berthomieu et al., 2006]. There is, however,
an important disconnection between such works and the real-world, complex applica-
tions proposed by the robotics community. This gap widens as formal methods are
out of a roboticist field of expertise. Some efforts propose general-rule translations be-
tween prominent formalisms, such as time Petri nets (Sect. 3.3.1) and timed automata
(Sect. 3.4.1) in [Berard et al., 2013]. These translations are however structural as they
do not support extensions with e.g. shared variables, crucial to the modeling conve-
nience of complex robotic systems and their connection to state-of-the-art verification
tools. This problem, that we refer to as Problem 4, is exacerbated by the fact that for
each formalism, various tools are proposed. Even when making their choice, prac-
titioners have to face the problem of opting for a tool almost blindly. Problem 4 is
further worsened by the lack of automation (Problem 2), since the high cost of mod-
eling limits the choice often to only one formalism/tool, which makes it impossible
to know whether verification might be improved with other formalisms/tools. Valu-
able examples on the painful experience of engineers exploring the use of verification
frameworks for embedded software are given in [Todorov et al., 2018]. Problem 4 may
have great consequences on both the feasability of the modeling (Problem 1) and scal-
ability of the models (Problem 3), and must be tackled by proposing clear guidelines

7We note that, seen at a “mission” level, time is not necessarily crucial as compared to fulfilling the
mission correctly. Still, it is at the functional level, on which we focus here.

25

to robotic programmers based on real-world experiences. Overall, there is a large gap
between the robotics and formal methods communities, and further efforts are needed
to narrow it.

Obviously, this list of problems is not exhaustive, but represents the issues the work
of this thesis tries to overcome. Indeed, one may define other equally important chal-
lenges. For instance, popular approaches nowadays rely on compromises between exe-
cution time and quality of code (see examples for stereo vision algorithms in [Veksler,
2003; Yu et al., 2010]), which cannot be considered by models where timing con-
straints are known beforehand. Another example is guaranteeing the robustness of the
behavior, defined at the software level, vis-à-vis open environments, which cannot be
determined at the functional layer. Therefore, this kind of problems is out of the focus
of this thesis but the work presented here constitutes an important step toward solving
them.

1.5 Contributions

At this stage, we have presented some of the main formal verification efforts in
robotics. Our focus on the related work applying formal methods to the functional
level (Sect. 1.3) is justified, at the end of Sect. 1.2, by highlighting the difference with
the decisional layer in this regard. Analyzing the state of the art and current practice
helped us clearly define a set of problems with which formal verification of functional
components is confronted. In this section, we describe our contributions as proposed
remedies to the identified problems in a structured manner.

Contribution 1 We tackle Problem 1 by proposing formal semantics for GenoM3,
our chosen robotic component-based framework for this thesis. Components have thus
formal definitions and their operational semantics is developed formally (Chapt. 4) in
a suitable formalism (Chapt. 3).

Contribution 2 We tackle Problem 2 by developing automatic generators (aka tem-
plates) to state-of-the-art formal languages and verification tools (Chapt. 5, Chapt. 6),
namely Fiacre/TINA (Sect. 3.3), UPPAAL (Sect. 3.4), UPPAAL-SMC (Sect. 3.5) and
BIP (Sect. 3.6). The output of these templates is proven faithful to their input as
GenoM3 components (Chapt. 5), such a proof being feasible thanks to Contribution
1. Contribution 2 allows thus the automatic generation of any GenoM3 specification
into a number of formal targets with no effort from the robotic engineer.

Contribution 3 We tackle Problem 3 by (i) striving to avoid all non-realistic abstrac-
tions, e.g. all timing constraints are taken into account (Chapt. 5, Chapt. 6), including
code Worst Case Execution times and tasks periods and (ii) applying our approach to
real-world application, deployed on actual robots (Sect. 2.4). We propose templates for
formal statistical (UPPAAL-SMC) and runtime (BIP) models to cope with scalability
issues, when necessary.

Contribution 4 We tackle Problem 4 by giving experience-based advices on when to
use which tool according to the properties to verify (Chapt. 7). We also assist robotic
programmers on which method to use (UPPAAL-SMC or BIP) when exhaustive meth-
ods do not scale.

26

It is worth to point out that the focus on the functional layer does not reduce in any
case the importance of verifying the decisional layer components. On the contrary, it
contributes to the verification of a robotic system as a whole. For instance, the envi-
ronment in which a robotic system evolves needs to be taken into consideration, and
this is practically done at higher abstraction levels (Sect. 1.2.2.1, Sect.1.2.2.2). Conse-
quently, more general properties such as the success of a robotic “mission”, or the data
consistency in multi-robot collaboration, can be reasoned upon. Similarly, the results
of the verification in this thesis are to be complemented with those of verifying the al-
gorithms using e.g. theorem proving techniques, which is also out of the scope of this
thesis. Such verification will allow to conclude on properties equally important as the
ones presented in this thesis, such as the robustness of algorithms against disturbances
(e.g. sensor noise).

1.6 Outline
The remainder of this thesis is organized as follows:

• Robotic framework and case studies (Chapt. 2):
We present our chosen robotic framework GenoM3: the requirements leading to
its design, the implementation of its components and their behavior. We show
then two real-world case studies deployed using this framework.

• Semantics formalism and formal frameworks (Chapt. 3):
We present timed transition systems TTS, our chosen formalism for giving oper-
ational semantics to GenoM3. We give the semantics of this formalism and exam-
ples on why it is suitable for formalizing GenoM3 components. Then, we present
the frameworks targeted by our translations (Fiacre/TINA, UPPAAL, UPPAAL-
SMC and BIP) and their underlying formalisms (time Petri nets, timed automata
and some of their flavors).

• Formalization of GenoM3 components (Chapt. 4):
GenoM3 components are formalized as TTS systems. We develop the rules of
deducing the TTS from the specification of each of GenoM3 entities within a
component. At the end of the chapter, we have an unambiguous operational
semantics of GenoM3 translatable to other formal targets.

• Correct translation of GenoM3 semantics (Chapt. 5):
The semantics is translated to timed automata. We give general rules on how to
translate GenoM3 semantics to timed automata and outline the difficulties of the
process. We prove using bisimulation that the TTS semantics and their timed
automata translation are equivalent.

• Mapping to formal frameworks (Chapt. 6):
We use the TTS semantics and the timed automata translation to map GenoM3
components into the targeted frameworks in a generic way. We show an example
of the mapping using a real-world component. Finally, examples on the process
of automatizing the mapping are given.

• Verification results (Chapt. 7):
We automatically generate formal models for our real-world case studies. We
use the generated models to verify crucial properties. We show how the different

27

models can be used complementarily and optimally according to the application,
the properties to verify, the size of the model and its timing constraints.

• Conclusion: We conclude by summarizing the advances to the state of the art
provided by this thesis and drawing the major axes of future work.

28

Chapter 2

GenoM3

2.1 Introduction

In this chapter, we present the GenoM3 framework. We first introduce the different
architectural elements of a GenoM3 component, the building unit of robotic applica-
tions specified and verified in this thesis. Then, we go through the automatic genera-
tion feature of GenoM3, the template mechanism, and show how it is a key aspect for
developing a reproducible, automated approach to formally verify robotic applications.
Finally, we present the two real-world robotic specifications used as case studies in this
thesis, namely the quadcopter flight controller and the Osmosis terrestrial navigation
showcase.

2.2 Overview

GenoM3 [Mallet et al., 2010] is a tool to specify and implement robotic functional
components. The LAAS architecture [Ingrand et al., 2007] proposes a modular ap-
proach where each functional component acts as a “server” in charge of a given func-
tionality. The latter may range from simple low-level driver control (e.g. the veloc-
ity control of the propellers of a drone, camera, etc) to more integrated computations
(e.g. Simultaneous Localization And Mapping (SLAM), Potential-Field navigation,
Rapidly-exploring Random Tree (RRT) motion planning, etc.).

2.2.1 Requirements

We consider that a typical component is a program which needs to handle and
manage the following aspects:

Inputs and Outputs : a component interacts with external clients and other compo-
nents. For the former, the control flow, it must handle requests from client(s) and
send back reports to the client which issued the request, to act on the result. For the
latter, the data flow, it must provide a mechanism to share data with other compo-
nents and read data from other components. Data flow and control flow are semanti-
cally different and correspond to two different ways a component can interact with,
respectively, other components and external clients.

29

Algorithms : the core algorithms needed to implement the functionality the compo-
nent is in charge of must be appropriately organized within threads as to preserve
the reactivity of the component and the schedulability of the various possibly con-
current algorithms. A component may have just one service to provide, but most of
the time, there are a number of such services associated to the considered robotic
functionality. The way algorithms are specified and organized in a component is a
tradeoff. One can let the programmer organize their code with no design require-
ments or provide structure guidelines that must be followed. The latter case enables
automated verification of properties on the code, given that the set of guidelines
is well known. However, these organization rules must remain simple and easily
understandable for robotic programmers.

Data sharing : the various algorithms, possibly concurrent, running in the component,
may have to share data that represent the internal state of the component. These data
need to be handled correctly respecting e.g. mutual exclusion conditions.

2.2.2 Implementation
To achieve such requirements of a functional component, we propose to organize

each one along the structure shown in Fig. 2.1. The implementation choices will be
explained while presented.

Specifying components in GenoM3 is the programmer’s design choice. Thus, there
are a number of considerations, depending on various factors such as hardware con-
straints and algorithms complexity, that they have to take into account. Here, we de-
scribe in more details the different elements of a GenoM3 component, how they interact,
and how they are specified, in a generic manner. That is, the description given here is
not specific to any middleware or component.

To ease the comprehension of the different elements, a support example is given
in listing 2.1. It shows the dotgen (extension .gen) specification of a simple GenoM3
component called DEMO developed for illustration purposes. DEMO is a simple one-
dimensional motion component of a mobile robot. Its main functionalities are to move
the mobile for a relative distance within the interval [−1, 1], to monitor its position, to
read its speed, and to change it. The elements in charge of these operations are given
within the description of the component constituents hereafter.

Control Task : A component always has a control task that manages the control flow
by processing requests and sending reports (from/to external clients). The control
task must be highly reactive and is only assigned quick computations. It also man-
ages interruption and activation of longer computations (see more in Sect. 2.2.3).
The control task is implicitly comprised within a component and the user does not
need to (and should not) specify it, hence its absence from listing 2.1.

Execution Task(s) : Aside from the control task, one may need one or more execu-
tion tasks, aperiodic or periodic, in charge of longer computations. The component
DEMO has one execution task called motion (periodic at 400 ms, lines 17-19).

Services : The core algorithms needed to implement the functionality of the compo-
nent are encapsulated within services. Each service is associated to a request (with
the same name). One may also define a permanent service (running without being
requested) attached to each execution task. In the DEMO component, services are
MoveDistance (move the mobile for a relative distance within [−1, 1], lines 34-45),

30

Ports

Execution Tasks

Activity Services

Internal
Data

Structure

Reports

Control Task Attribute
and

Function
Services

Ports

Ports

In

Out

Clients

Ports

Permanent Activities

Requests

Figure 2.1: A generic GenoM3 component.

Monitor (monitor the position, lines 46-53), GetSpeed (get the current speed, lines
26-27), SetSpeed (change the current speed, lines 22-25), Finish (stop moving, lines
29-32), and the permanent service of motion (initialization, line 19).

IDS : A local internal data structure is provided for all the services to share param-
eters, computed values or state variables of the component. It is appropriately ac-
cessed (i.e. with proper locking) by the services when they need to read or write one
or more of its fields (lines 4-7). For instance, the arguments of GetSpeed specify
that it reads the current speed from the IDS (line 26).

Ports : They specify the shared data and the access direction to them (read “in” or
write “out”), the component needs or produces from/for other components. The
component DEMO provides one port that it writes (out mode, line 10).

Exceptions : One may specify exceptions, which can be returned by services to report
on execution errors (lines 13-14).

31

1 /* ---- component declaration ---- */
2 component demo {
3 /* ---- Data structures and IDS ---- */
4 ids {
5 demo::state state; /* Current state */
6 demo::speed speedRef; /* Speed reference */
7 double posRef;};
8
9 /* ports declaration: direction type name */

10 port out demo::state Mobile;
11
12 /* exception declaration */
13 exception TOO_FAR_AWAY {double overshoot;};
14 exception INVALID_SPEED;
15
16 /* execution tasks declaration */
17 task motion {
18 period 400 ms;
19 codel <start> InitDemoSDI(out ::ids, port out Mobile) yield ether;};
20 /* services declaration */
21 /* atributes */
22 attribute SetSpeed(in speedRef :"Mobile speed") {
23 doc "To change speed";
24 validate controlSpeed (local in speedRef);
25 throw INVALID_SPEED;};
26 attribute GetSpeed(out speedRef = :"Mobile speed") {
27 doc "To get current speed value";};
28 /* functions */
29 function Finish() {
30 doc "Stops motion and interrupts all motion requests";
31 codel StopMotion();
32 interrupts MoveDistance;};
33 /* activities */
34 activity MoveDistance(in double distRef :"Distance in m") {
35 doc "Move of the given distance";
36 validate controlDistance(in distRef, in state.position);
37 codel <start> mdStartEngine(in distRef, in state.position, out posRef)
38 yield exec, ether;
39 codel <exec> mdGotoPosition(in speedRef, in posRef, out state, port out

Mobile)
40 yield exec, end;
41 codel <end> mdStopEngine() yield ether wcet 1 ms;
42 codel <stop> mdStopEngine() yield ether;
43 interrupts MoveDistance;
44 task motion;
45 throw TOO_FAR_AWAY;};
46 activity Monitor (in double monitor = 0 :"Monitored absolute position in m",
47 out double position) {
48 doc "Monitor the passage on the given position";
49 validate controlPosition (in monitor);
50 codel <start> monitor(in monitor, in ::ids) yield pause::start, end wcet 2 ms;
51 codel <end> monitorStop(in ::ids, out position) yield ether;
52 codel <stop> monitorStop(in ::ids, out position) yield ether;
53 task motion;
54 throw TOO_FAR_AWAY;};
55 };

Listing 2.1: Excerpt from the GenoM3 specification of the DEMO component.

32

2.2.3 Behavior
We go in more details and see how these different elements interact and how the

component internally runs.

Codels Code elements, or codels, are small chunks of C or C++ code (e.g. the codel
StopMotion in line 31 matchs a C function whose body is defined in a separate file).
When defined within activities, codels are associated with states in a finite-state ma-
chine (see activities and FSM below). For instance, the codel mdGotoPosition (line
39) is associated with the state exec (more details below).

Services Services hold the specifications of the algorithms handled by the compo-
nent. Services can take arguments (e.g. SetSpeed takes a SpeedRef, line 22), and return
values (e.g. GetSpeed outputs a SpeedRef, line 26). A service may have a validate
codel (e.g. Monitor, line 48). When the control task receives a service request, it runs
the service validate codel, if any, to check whether the service arguments are valid (it
reports an error to the client that requested it if they are not). A service may also specify
other services it interrupts (e.g. Finish interrupts MoveDistance, line 32). Aside from
control services (see below), a service may not run unless all the services it interrupts
are terminated. A service that is ready to run is called an activated service. There are
two types of services:

Control Services, are only for quick computations which should not delay the con-
trol task (that executes them). A control service may be an attribute (setter or getter of
fields of the IDS, e.g. GetSpeed), or a function (for quick and simple computations, e.g.
Finish . A GenoM3 component offers four predefined functions, namely: Kill (stop the
component), Abort (interrupt an activity, see activities below), Connect Port to connect
a local in port to a distant out port and Connect Service to connect a service of another
component.

Activities, are executed by the execution task specified in their declaration (e.g. line
44, the activity MoveDistance is executed by the task motion). Activities are finite-
state machines, each state associated with a codel.

FSM define the behavior of the activity through states, codels and transitions. A
codel specifies the state it is associated to and the C or C++ function it will call, with
the arguments (taken from the activity arguments, the IDS and the ports of the compo-
nent) they need for their execution (e.g. mdGotoPosition is associated with the state
exec of MoveDistance, it reads the fields speedRef and posRef of the IDS and writes
the field state of the IDS and the port Mobile, line 39). A codel specifies also the
possible transitions subsequent to its execution (e.g. the execution mdStartEngine,
associated with the state start of MoveDistance, returns the state exec or the state
ether, line 38). The non-determinism is resolved at runtime when executing the codel,
which returns upon completion the next state to transit to. Taking a transition labeled
pause stops the execution of the activity until the next cycle of its execution task (see
execution tasks below), the activity is thus paused (e.g. if the execution of monitor
in activity Monitor returns pause::start, Monitor is paused at state start until the
next cycle of the task motion). Each codel may specify a WCET, namely the worst
case execution time of the codel on a given platform (e.g. mdStopEngine, associated
with the state end of MoveDistance, has a WCET of 1 ms, line 41). More about how to
collect WCET in Sect. 2.3.2. Any activity FSM has the states start (entry point) and
ether (end point). When the latter is reached, the activity is terminated and reported
to the client. The state stop, if exists, is associated with the codel to execute when the

33

Start

exec

End

Stop

Ether
Activation
Pause
Interruption
Termination

Figure 2.2: FSM of MoveDistance (lines 34-45 of listing 2.1).

activity is interrupted (e.g. line 51). If an activity with no stop codel is interrupted,
it transits directly to ether. Fig. 2.2 is a visual illustration of the FSM behavior of
activity MoveDistance (WCETs are omitted).

The organisation of activities along FSMs may be seen wrongfully as an unneces-
sary burden for programmers. Indeed, nothing prevents the programmer to have one
start codel that does it all. Yet, breaking code along an FSM brings a number of ad-
vantages as it e.g. improves code execution interleaving and provides a finer model of
data sharing and code interlocking (several shorts computations using each a fragment
of resources brings a better concurrency level and allows shorter task periods than a
single long computation that uses all resources). Furthermore, FSMs are amenable to
translation into formal languages (Chapt. 4).

Control task The control task has a cyclic behavior that consists in managing the
requests and reports of the component, executing control services and activating and
interrupting activities. It runs the validate codels for services which specify one. If
there exist activities that are incompatible with the requested service, the control task
instructs the execution tasks in charge of such activities to interrupt them. If the request
is for a control service (attribute or function), the control task executes it immediately.
Otherwise, the requested activity is put on hold until all the incompatible instances
are correctly interrupted and terminated. The requested activity is then activated. The
control task instructs thus the execution task in charge of such activity to run it, and
sends an intermediate reply to the client to inform it that processing has started. Upon
completion of any service, the control task sends a final reply to the corresponding
client (service ended nominally, interrupted, or failed by throwing an exception).

Execution tasks Execution tasks are cyclic tasks that can be periodic or aperiodic
(e.g. the period of motion is 400 ms, line 18). With each cycle (triggered by a period
signal or event occurrence), the execution task runs, sequentially, its permanent activity
(if any) and all the instances of the activities it is in charge of, previously activated by

34

the control task. The execution of an activated instance ends when the instance is
paused or terminated. In the former case, the instance will be resumed at the next
cycle.

Internal Data Structure The IDS stores data that represent the internal state of the
component, shared among tasks and services. For instance, the IDS of DEMO (lines
4-7) stores the current current position and current speed (in the field state), the speed
reference and the position reference of the mobile. Access to the IDS is mutually ex-
clusive. One can see that the proper specifications (enforced by GenoM3) of the codel
arguments allows for a fine grain locking of the IDS and thus a high level of concur-
rency (only the needed field(s) by a codel are locked when it executes and simultaneous
readings are allowed).

Concurrency The control task and the executions task(s) are run as concurrent threads
on the hardware. That is, they are implemented as parallel tasks, with concurrent ac-
cess to the IDS fragments. Multi-core executions are thus supported. We note that
we do not, however, consider distributed applications, that is over networks of com-
puters. Indeed, actively researched phenomena related to distribution such as clock
drift [Giridhar and Kumar, 2006] and implications of CAP theorem [Brewer, 2012] are
out of the scope of this thesis. We thus focus on a fine-grain locking model that allows
parallel execution over a finite number of cores, but running on a single computer. This
is the case for both of our case studies (Sect. 2.4, more details about the quadcopter
hardware in Sect. 7.2.1.6).

Ports Data flow between components is made through ports (line 10). As seen above,
ports usage (in or out) is also declared in codels arguments (e.g. line 39). Consequently,
over a large set of components composing a robotic functional layer, we have a clear
model of which codels use a particular port. When formalized, this model will enable
verifying important properties such as not reading a port that has not been written at
least once before (Chapt. 7).

Note that, time-wise, operations other than executing codels/services (activities and
control services) are considered to take a negligible amount of time. For instance, the
algorithm of mutual exclusion is supposed to detect that a resource is free “as soon as”
it is available, that is, a negligible amount of time elapses between releasing a resource
by a codel and detecting such release by the system. This approximation is backed
up by the efficient implementations available today for such “atomic” operations as
opposed to time-consuming code at the services level.

Several components and communication Functional-layer components need to ex-
change data. In a sensor-based navigation application, for instance, the collaboration
of several components is indispensable (e.g. the information collected by a compo-
nent from a sensor is a necessary input for another component handling a controller).
GenoM3 offers ports in order to enable interaction between several components. If a
port P is declared out (respect. in) within a component C, any codel of C may be
entitled to write (respect. read) P. It is up to the programmer to decide which codels
have access to the port. The predefined control service Connect Port allows connecting
an in port of one component to an out port of another component. For instance, let C
be a component featuring an in port P of the same type as the port Mobile of DEMO
(line 10 of listing 2.1). Connecting P (component C) to Mobile (component DEMO),

35

made through requesting Connect Port, allows the codels of C to read data written on
Mobile (by the codels of DEMO). More examples are given in Sect. 2.4.

Clients GenoM3 components are usually unable to evolve unless controlled by exter-
nal clients. Indeed, apart from permanent activities, services need to be requested in
order to be served by the component (see the semantics of the control task in Chapt. 4).
For instance, after being implemented and run, the component DEMO, whose specifi-
cation is shown in listing 2.1, does not execute any service. Indeed, the control task, in
charge of the component, needs to receive requests in order to run control services and
activate activities. For this, clients, which are external entities to the component, send
the requests for the services they want to run, together with the arguments, if any. For
example, the following line in a Tcl client requests the activity MoveDistance with the
argument 0 .5 , that is requests moving the mobile for 0.5m:

demo::MoveDistance(0.5)

GenoM3 components can be controlled by various types of clients such as C, Tcl,
and OpenPRS 1. In each case, the libraries are automatically generated through tem-
plates (see next section).

2.3 Templates

2.3.1 Overview
GenoM3 specifications, i.e. dotgen files, do not enforce any specific implementa-

tion. Besides specifying the algorithms executed by the codels, one needs to generate
all the files for the implementation, that varies from a middleware to another, and still
must induce a behavior that agrees with the one presented in the last section. Further-
more, the interaction with the clients needs also to be made possible though generating
the necessary libraries. One may also want to generate additional files such as docu-
mentation and comments. The template mechanism [Mallet et al., 2010] aims initially
at generating, from dotgen specifications, the implementation, clients libraries, and
additional files as explained above.

The template mechanism workflow is summarized as follows. First, GenoM3 parses
the dotgen files and, if they are syntactically correct, builds an internal representation of
the specified components in terms of Tcl structures. This representation is fed to the tcl
interpreter together with the template (which is a tcl program) to generate the wanted
files in the needed format, which may be seen as the template instance of the input
components (Fig. 2.3). Since the files may be of different extensions, templates support
generating unrestricted-format text files. This versatility of the mechanism enables the
possibility to write several useful templates beyond middleware implementations and
communication with various types of clients (Sect. 2.3.4).

2.3.2 Middleware and implementation
Specifying a GenoM3 component is thus decoupled from the implementation. The

programmer specifies the component constituents (except the control task) as well as
the services and codels parameters (e.g. ports, IDS fields) and their read/write ac-
cess in the dotgen file. They also specify the algorithmic core of their codels without

1https://git.openrobots.org/projects/openprs

36

Specification
(Comp.gen)

DocumentTemplate
X

Internal
representation
of Comp (Tcl)

Instance X of
Comp

parsing

synthesis

Figure 2.3: GenoM3 templates (generic).

making any implementation-specific call (involving the implementation middleware).
Codels only depend on the objects passed as arguments, that are found in the dotgen
specification, i.e. in the IDS fields and/or ports and do not therefore depend on the im-
plementation environment. Similarly, activity codels can only return the next state in
the activity FSM or an exception, also found in the specification. Middleware templates
generate an implementation of the generic behavior of tasks and services in accordance
with the description given in Sect. 2.2.2 and Sect. 2.2.3. Moreover, they automatically
synthesize the glue code in charge of making calls to the middleware. This ensures
a complete independency from the implementation. Fig. 2.4 shows an overview of
GenoM3 workflow for implementation independence (aka middleware independence).
Two main middleware templates are available for GenoM3 components (for PocoLibs2

and ROS-Comm [Quigley et al., 2009]).
At the behavioral level, the middleware templates handle two different aspects of

the component implementation:

• The component: englobes the mechanisms of evolution of tasks and services
while properly implementing the mutual exclusion over shared memory and the
control flow with regards to external clients. This implementation must be in
accordance with the expected behavior as described in Sect. 2.2.3. Behaviorally,
middleware templates agree on this aspect (more details in Sect. 6.3). For the
control flow, both templates use mailbox mechanisms where the control task is
notified whenever a new request is received.

• The data flow: a specific part which deals with the communication between com-
ponents through ports. This part reflects the main divergence between the avail-
able middleware templates. Indeed, the Pocolibs template implements ports as
shared memory whereas the ROS-Comm one uses topics. This means that ports
in Pocolibs need to be protected from simultaneous access from different codels,
which is not required in ROS-Comm. We still, because of real-time require-
ments, favor the Pocolibs implementation in this thesis as explained hereafter.

Pocolibs vs. ROS-Comm A ROS topic has one or more publishers and subscribers.
A publisher (respect. subscriber) writes (respect. reads) the topic. With the ROS-
Comm implementation, a publisher message is buffered then pushed into each sub-
scriber queue by an internal ROS thread, additional to those created for each GenoM3

2https://git.openrobots.org/projects/pocolibs

37

https://git.openrobots.org/projects/pocolibs

Document
Document

Specification
(.gen)

Codels

Document
DocumentTemplate

Independent Component Template for middleware X

Genom3

Document
DocumentGenerated

Source

Middleware X

BuildExternal Libraries
Component for
Middleware X

Figure 2.4: Generating a GenoM3 component for a middleware X

task in the application. Similarly, a ROS internal thread pulls the message for each
subscriber. This boils down to writing for each subscriber, which creates a load pro-
portional to the number of subscribers. On the other hand, each port in Pocolibs is a
data field properly protected to prevent simultaneous access. A codel that reads/writes
a port may thus do so whenever it is executed by its task in its own thread. Despite
delays in codel execution due to mutual exclusion over ports, the Pocolibs implemen-
tation is the better choice as (i) no additional threads are involved and (ii) the number of
readers/writers of a port has no side effect on jobs loads. This removes unpredictable
and uncontrollable behaviors and adds thus to the accuracy of the generated formal
models (Sect. 6.3). The ROS-Comm implementation is still more practical for dis-
tributed applications deployed over more than one platform, which is not the case for
our applications (Osmosis and quadcopter, Sect. 2.4).

WCET Middleware templates are enriched to provide runtime execution times for
each codel. The template synthesizes code which, when the application ends, outputs
for each codel the number of times it was executed and the minimum, the average
and the maximum execution time. For instance, below is the output for the codel
mdGotoPosition (activity MoveDistance of component DEMO, listing 2.1).

Demo: mdGotoPosition called: 2567 times, min: 0.0007, max: 0.015, average:
0.001

Specifying WCET is optional. The reason for this choice is that WCET is related to
the hardware, so the developer is not required to provide such information at the design
level. However, for verification purposes, WCET information are necessary to reason
on timed properties in highly complex concurrent applications. Programmers are there-
fore able to enrich their specifications with WCET information at a later stage of the

38

The component <"[$component name]"> has <"[llength [$component tasks]]"> execution
task(s):

<’ foreach t [$component tasks] { ’>
Task <"[$t name]"> periodic at <"[$t period]"> s in charge of
<"[llength [$t services]]"> activities:
<’foreach s [$t services] {’>

<"[$s name]">
<’}’>

<’ } ’>

Listing 2.2: A simple template code for illustration.

deployment process. A “cleaner” possible alternative is to embed WCET information
in a separate file from the dotgen specification.

WCET computation is a hard research problem in reality [Wilhelm et al., 2008].
Still, the information provided here may be exploited in the future to develop more
precise models of WCET. So far, we gather these information on several runs and
estimate the WCET to be a larger value than the maximum execution time obtained for
each codel.

2.3.3 Client libraries
Besides the implementation of the component itself, also known as the server, by

the middleware templates, there is a template that synthesizes C client libraries to
control the component. It can be implemented by both PocoLibs and ROS-Comm. The
interface of the library allows vital operations such as requesting services (see example
in Sect. 2.2.3) and reading data on ports. The interface supports also the display of
intermediate and final reports, as well as errors and exceptions.

The C client libraries provide also JSON where client interface is generic (not gen-
erated for each component). The code is dynamically loaded which allows controlling
any component generically. Services, ports and datatypes are described with JSON dic-
tionaries. OpenPRS clients use also the C libraries. The OpenPRS template generates
the necessary code to control any component(s) with OpenPRS, where the supervisor
is produced using Transgen33.

2.3.4 Mechanism
A template accesses the Tcl internal representation produced by GenoM3 (Fig. 2.3).

This representation contains all the component(s) information (e.g. tasks and their
periods, activities and their codels). Templates have no restriction on what they can
synthesize from internal representations produced by GenoM3. For instance, the tem-
plate code in listing 2.2 generates the output shown in listing 2.3 when called with the
component DEMO (listing 2.1). The interpreter outputs everything without change ex-
cept what is enclosed in markers <’ ’> that it evaluates in Tcl without output, and in
<” ”> that it evaluates and outputs the result. Output is written to a text file whose
extension is the programmer’s choice. This gives developers the freedom to write tem-
plates that output files in any desired language. More practical examples are given in
Sect. 6.4.

3https://www.openrobots.org/wiki/transgen3

39

The component demo has 1 execution task(s):
Task motion periodic at 0.4 s in charge of 2 activities

MoveDistance
Monitor

Listing 2.3: Output of Listing 2.2 when called with DEMO (listing 2.1).

This powerful mechanism paves the way toward an automated modeling and veri-
fication of robotic applications specified in GenoM3. Indeed, since the template feature
comes with no output restrictions, one may, in theory, develop templates that produce
the equivalent formal models, in any given language, of any GenoM3 specification. This
is the basis of the automatic translations from GenoM3 to several formal frameworks
developed and used in this thesis.

2.4 Examples

There are several applications developed and deployed using GenoM3, both aca-
demic (e.g. the RobNav navigation4) and involving industrial partners (e.g. the au-
tonomous driving in the SafeNav H2020 CPSE-Labs project5). Among these, we fo-
cus on two real-world (yet academic) applications to use as case studies in this thesis,
namely Osmosis 6 and quadcopter. These applications present a high level of com-
plexity with a broad range of timing requirements that varies from a few microseconds
(quadcopter) to hundreds of milliseconds (OSMOSIS). We introduce the components
of each application with fair details. In each figure (e.g. Fig. 2.7), each box corre-
sponds to a GenoM3 component, and octagons are out ports written by the components
they are attached to and read by other components through an arrow (thus in ports are
abstracted). Inside each box, we list the execution tasks, their periods (if any), and
a partial list of the services provided by this component. The perm keyword refers
to permanent activities. As said in Sect. 2.2, designing GenoM3 components is the
programmer’s choice, so these applications could have been built differently. This pre-
sentation aims thus at explaining the functionalities of the components in our design
rather than justifying the latter’s choices.

2.4.1 Osmosis
Osmosis is an H2020 CPSE-Labs project that aims at assessing safety in autonomous

and intelligent systems. The case study involves a robot equipped with a Laser Range
Finder LRF for laser-based potential field navigation. The application presented here
is inspired from experiments where the robot inspects lights on airport landing strips7.
The GenoM3 specification of Osmosis includes 10 components8 (Fig. 2.5) that are inte-
grated with the real Robotnik robot and work also in simulation using the Gazebo sim-
ulator. In the latter case, Gazebo replaces the lower level four components (Fig. 2.6)

4Specifications available at https://redmine.laas.fr/projects/robnav/repository
5http://www.cpse-labs.eu/experiment.php?id=c3 fr safenav
6Open-Source Material fOr Safety assessment of Intelligent Systems https://osmosis.gitlab.io/
7See case study at http://138.100.58.3/web/marketplace/producto.html
8Specifications available at https://redmine.laas.fr/projects/osmosis (in the corresponding sub-

-projects).

40

https://redmine.laas.fr/ projects/robnav/repository
http://www.cpse-labs.eu/experiment.php?id=c3_fr_safenav
https://osmosis.gitlab.io/
http://138.100.58.3/web/marketplace/producto.html
https://redmine.laas.fr/projects/osmosis

and provides odometric positions and laser ranges in ROS topics.

• LASERDRIVER is in charge of the LRF. It has a scan task (periodic at 100 ms)
in charge of the StartScan activity. The latter produces, on the port Laser, the
laser’s ranges in front of the robot. The port Laser is updated at every period
with new data from the sensor. This component is absent in the simulation.

• ROBOTDRIVER handles the communication between the GenoM3 ports, Odom-
etry and Cmd, and the Robotnik ROS topics. It has a genomTOros task (pe-
riod 40ms) that reads the speed on the Cmd port (SAFETYPILOT) and writes
publishes its content to a ROS topic for speed command. In parallel, the ros-
TOgenom task (aperiodic) subscribes to the ROS topic containing the current
odometric speed and writes it to the Odometry port. This component is absent
in simulation mode.

• IMUDRIVER handles the Inertial Measurement Unit IMU. It has one task Up-
date that reads periodically (at 100Hz) the IMU driver through its activity Mea-
sure. The position orientation, the angular velocity and the linear acceleration
together with their covariances, are written on the port IMU. This component is
absent in simulation.

• GPSDRIVER handles the Global Positioning System GPS. It has one task Up-
date that reads periodically (at 10Hz) the GPS driver through its activity Mea-
sure. It then writes the coordinates x (longitude), y (latitude) and z (altitude)
with covariances to the port GPS. This component is absent in simulation.

• POM implements an Unscented Kalman Filter UKF. It has two execution tasks:
(i) io reads Odometry, IMU and GPS measurements from their respective com-
ponents and inserts them together with their timestamps in a buffer (ii) filter ap-
plies a UKF to the buffered timestamped measurements to produce an estimated
state with new covariances. The UKF-estimated state gives the coordinates of
the robot together with the orientation, the linear velocity, the angular velocity
and the linear acceleration. This filtered state, that we refer to from now on as
the robot position is written to the port Pose. Both tasks are periodic at 10ms.

• NAVIGATION computes intermediary positions toward a goal position. It reads
Pose from POM and the file Nav Graph,which gives the navigation nodes on
the airfield, and produces the intermediary positions in Target. It has one task
navigate in charge of two activities GotoPosition and GotoNode. The former
takes the goal position as an argument and, given the current position from Pose,
updates Target with intermediary positions that it reads from Nav Graph. The
latter does a similar job but the position given as an argument has to correspond
to a node on the graph read from Nav Graph.

• POTENTIALFIELD performs a potential-field-based navigation. It has one task
plan (period 100ms) with one activity TrackTarget which applies the potential
field navigation algorithm. Given a goal in Target (from NAVIGATION) and
the robot position Pose (from POM), the distance to the goal position is com-
puted. Moreover, TrackTarget reads Scan (from LASERDRIVER) and computes
distances to obstacles from the laser ranges. Computed distances to goal position
and obstacles are used then to compute the attractive (to the goal) and repulsive
(from the obstacles) forces which are used to compute the velocity (angular and
linear) to reach the goal. Such velocity is written to the port PFCmd.

41

Functional Level

3IncludedFrenchDCTechnologies
Inadditiontotheopen-sourcematerial,somemethodsandtechnologieswillbeillustratedonthe
showcase.Fornow,thefollowingtechnologiesfromtheFranceDesignCenterareconsideredtobe
included:

•HAZOP-UML:themethodologywillbeillustratedononeortwooperationspecification;

•SMOF:monitorswillbesynthetizedfortwosafetyrules;

•MAUVE:animplementationofthesoftwarearchitectureusingtheMAUVEmiddlewarewill
beprovided,alongwithreal-timeanalysisresults;

•Genom:thedesignofthesoftwarearchitectureusingGenomwillbeprovided,alongwith
someanalysisresults;

•AltaRica:thedescriptionofthesafetyassessmentonapartofthefunctionnalarchitecture
willbedescribed.

4RoboticplatformfromONERA
TheplatformusedfortestingthesoftwarearchitectureisaRobotnikSummit-XLownedand
equippedbyONERA(figure1).TherobotisequipedwithaIMU(InertialMeasurementUnit),
aGPSsensor,Hokuyolasersensorsandavideocamera.

Figure1:Summit-XLequipedbyONERA

Theplaformdimensionsareshowninfigure2.

5MaterialHosting
AprojectonGitLabwillbecreatedundertheurlhttps://gitlab.com/osmosisinordertohost
documentationoftheshowcaseaswellasspecificgitprojectsforsources.

2

RobotDriverGPSDriver

Task:
update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

Task:
rosTOgenom

Services:
Perm

Task:
genomToros
40ms
Services:
Perm

IMUDriver

Task:
update 10ms
Services:
SetParams*
ConnectDevice
Measure
Stop

LaserDriver
Task:
scan
Services:
SetParams*
ConnectDevice
StartScan
Stop

Teleop

Teleop
Cmd

Task:
check 100ms
Services:
Op
Stop

Joystick

Cmd

PotentialField

Laser
Odometry
(speed)

Navigation

Target

POM SafetyPilot

IMU

Pose PFCmd

Nav
graph

Task:
plan 100ms
Services:
SetParams
TrackTarget
Stop

Task:
pilot 40ms
Services:
SetParams*
Stop
MergeAndAvoid

Task:
navigate 200 ms
Services:
GotoPosition
GotoNode
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter 10ms
Services:
Perm

Attribute
Function
Activity

GPS

RWLSensor
Task:
sense 200 ms
Services:
CheckLight
ResetLightsSeq
UnstowSensor
StowSensor

LightLvl

Lights

Figure 2.5: Osmosis functional level.

42

• TELEOP is for manual navigation using a joystick. The joystick signal, consisting
in a direction and a speed (through a speed button) is stored on the port Joystick.
The task check, periodic at 100ms, has one activity Op that reads the signal
stored on Joystick and converts it into a velocity that it writes to Teleop Cmd.
This component is not available in simulation.

• SAFETYPILOT deals with obstacle avoidance and joystick commands. It has
one task pilot, periodic at 40ms. This component is fed with a velocity either
from potential field navigation (in PFCmd from POTENTIALFIELD) or from
joystick commands (in Teleop Cmd from TELEOP). In the first case, the ac-
tivity MergeAndAvoid computes distances to obstacles from Laser ranges (from
LASERDRIVER) to ensure a safe command, that it writes to Cmd, in case dy-
namic obstacles appear abruptly. In the second case, the velocity on Cmd Teleop
is directly copied to Cmd, ignoring that on PFCmd (from POTENTIALFIELD),
which guarantees prioritizing commands from the human operator.

• RWLSENSOR is the component that manages the RunWay Light sensor of the
robot. It has one task sense running at 5Hz. The activity CheckLight measures
a light intensity and stores the value in the port LightLvl then, using Pose (from
POM), updates the checked light level on Lights which contains an array of all
the lights where each is defined by its position and latest measured intensity.

In both modes, simulation and real robot, important properties that neither the spec-
ification nor the implementation can guarantee emerge. For instance, the failure to
update Laser by LASERDRIVER within a set time bound must be detected and an
emergency routine must be followed consequently. This is a practical example that
reflects the need of connecting robotics to formal methods, which is a main motivation
of this thesis. We recall that properties at the algorithmic level are not in the scope of
this thesis (Chapt. 1), as we focus on verification rather than validation. For instance,
our approach does not deal with problems such as the local minima in potential-field
navigation algorithms [Guerra et al., 2016] that cannot be analyzed in an automatic
manner.

2.4.2 Quadcopter

The quadcopter flying at LAAS runs 5 functional components9 (Fig. 2.7). This
application is also available in simulation where the component MRSIM simulates the
the effect of the propeller velocity on the quadcopter, and produces the current propeller
velocity, IMU and GPS. In the following, we describe each of the components design
and functionality:

• MIKROKOPTER is the component in charge of the quadcopter low-level hard-
ware. The quadcopter is controlled by applying a velocity to each propeller, and
produces the current velocities, as well as its current IMU values. The compo-
nent has two execution tasks i) comm, aperiodic, in charge of polling, parsing
and storing data from the hardware (to get the current propellers velocity and
IMU) and ii) main, periodic at 1KHz, which reads the cmd velocity port and
writes the two ports IMU and the propellers actual velocity.

9Specification available at https://git.openrobots.org/projects/telekyb3 (in the corresponding
sub-projects).

43

https://git.openrobots.org/projects/telekyb3

Functional Level

Cmd

PotentialField

Laser
Odometry
(position)

Navigation

Target

POM SafetyPilot

Pose PFCmd

Nav
graph

Task:
plan 100ms
Services:
SetParams
TrackTarget
Stop

Task:
pilot 40ms
Services:
SetParams*
Stop
MergeAndAvoid

Task:
navigate 200 ms
Services:
GotoPosition
GotoNode
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter 10ms
Services:
Perm

Attribute
Function
Activity

RWLSensor
Task:
sense 200 ms
Services:
CheckLight
ResetLightsSeq
UnstowSensor
StowSensor

LightLvl

Lights

Figure 2.6: Osmosis functional level (simulation).

• OPTITRACK is the component handling the current position of the quadcopter as
perceived by our “OptiTrack” motion capture system. It has one execution task
publish that provides the current position of the quadcopter in the mocap pose
port. Its period is 4ms. This component is absent in simulation.

44

Functional Level

actual
velocityIMU

nhfc
Task:
main_nhfc 1ms
Services:
Init
Servo_nhfc
Stop

cmd
velocity

desired
state

maneuverpom

state

mikrokopter

Task:
plan 5ms
Services:
Goto
WayPoint
TakeOff

Task:
exec 5ms
Services:
perm

Task: io 1ms
Services:
perm, add_me

Task: filter 1ms
Services:
perm

Task:
main 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor
set_ramp

mocap
pose

optitrack
Task:
publish 4ms
Services:
Init

Figure 2.7: The quadcopter functional level. Activities are in Italic font.

• POM is the same component POM in Osmosis (Sect. 2.4.1) but with less input
ports and with a higher frequency. It merges the mocap pose position produced
by OPTITRACK and the IMU from MIKROKOPTER and produces a UK-filtered
position in port state. Its two periodic execution tasks io and filter run at 1KHz.

• MANEUVER is the navigation component, it has two execution tasks exec and
plan both periodic at 5ms. Given a position or waypoints to navigate to, it reads
the state and computes the intermediate positions to fly to that it copies to de-
sired state.

• NHFC (Near Hovering Flight Controller) is the core of the flight controller. Run-

45

actual
velocity

IMU

nhfc

Task: main 1ms
Services:
Init
Servo
Stop

cmd
velocity

desired
state

maneuverpom

state

mikrokopter

Task:
plan 5ms
Services:
Goto
WayPoint
TakeOff

Task:
exec 5ms
Services:
perm

Task: io 1ms
Services:
perm, add_me

Task: filter 1ms
Services:
perm

Task:
main 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor
set_ramp

GPS

mrsim

ve
lo
ci
ty

IM
U

Figure 2.8: The quadcopter functional level (simulation).

ning one task main nhfc at 1KHz, it reads the actual velocity port of the pro-
pellers, the current position in the state port of POM, and the desired posi-
tion (port desired state) of MANEUVER and produces the proper cmd veloc-
ity port containing the desired velocity of the propellers (which is then read by
MIKROKOPTER) to reach and hover near this position.

• MRSIM for simulation only. It simulates the hardware and provides data on pro-
pellers velocity and IMU, fed to MIKROKOPTER. It has a GPS port on which it
produces the simulated position, used by POM to produce state.

46

In simulation, the filtered position in state (POM) is fed to the Morse visualizer.
The latter will therefore display the quadcopter simulated motion using the successive
poses provided by POM.

Note the high frequency at which most of the components perform. Indeed, flight
controllers are usually critical and their tasks need to evolve at a high periodicity rate.
To deploy such systems in human environments, it is very important to verify properties
that the sole specification cannot guarantee, no matter what the chosen middleware
and OS are. For instance, violating the period of any periodic task within the most
critical components MIKROKOPTER, NHFC and POM, might result in a catastrophic
behavior. Indeed, when we provoke period violations in e.g. filter (POM), using basic
temporary suspension functions such as sleep(), we may visualise a drone crash after
a few deadline misses on the simulator. The urge of formally verifying such crucial
properties consolidates the motivation of the work presented in this thesis.

2.5 Conclusion

We advocate in this chapter the use of GenoM3 as our robotic framework of choice.
This is justified along the chapter through the presentation of GenoM3 model-based
approach, which makes it amenable to formalization, but also through its powerful
template mechanism that will enable a fully automatic connection with formal frame-
works. Also, the two real-world examples given at the end of the chapter, that are
currently deployed on real robots, show the maturity of the framework and give valu-
able insights on the type of crucial properties that roboticists are interested in and that
cannot be verified at the robotic programming level. This presentation exposes thus a
non negligible part of the motivation of this thesis. This consolidates the conclusions
drawn in Chapt. 1 on the urge of bridging robotic applications with formal methods
and the convenience of using GenoM3 to this end.

47

48

Chapter 3

Semantics Formalism and
Formal Frameworks

3.1 Introduction

This work relies on building automatic generators from GenoM3 to several formal
languages and tools. This requires giving formal semantics to GenoM3 and therefore
choosing a convenient formalism. In this chapter, we present our choice for formal-
izing GenoM3, that is a more general version of the Timed Transition Systems (TTS)
presented in [Henzinger et al., 1991]. We will also justify why we chose TTS over
other possible formalisms. We start by presenting formal definitions of TTS and their
semantics. We present then a graphical version of TTS “components” known as Timed
Transition Diagrams and show how TTS can be built from the composition of these
diagrams.

In a second part of this chapter, we introduce the formal languages/tools to which
GenoM3 specifications will be automatically translated. We briefly present their under-
lying formalisms and their modeling and verification features. Simple examples are
given through each section to clarify the formal and informal definitions. At the end
of each section, the choice of the formal framework is motivated with regard to our
verification needs.

3.2 Timed Transition Systems (TTS)

The chosen formalism is a variation of the Timed Transition Systems (TTS) pre-
sented in [Henzinger et al., 1991]. TTS provide a high level formalism suitable for
giving operational semantics that are both independent from the implementation and
understandable. There are several arguments that justify this choice and that will be
given at the end of this section.

One difference between our definition of TTS and the one proposed in [Henzinger
et al., 1991] is that we consider a dense-time model (durations and time constraints have
values in R≥0 with interval bounds in Q≥0∪∞) whereas the original presentation relies
on a discrete-time model (durations have values in N). We also accept more general
timing constraints, using time intervals with possibly left-open and right-open bounds.
This extension of TTS makes them closer to the time model used in Timed Automata

49

and Time Petri Nets, which are two of the target formalisms used in this thesis. Finally,
we consider a much simpler composition mechanism, as we will show in the following
definitions.

3.2.1 Notations
We start this section by defining some notations that will be useful in the remainder

of this chapter. We use I to denote the set of well-formed (time) intervals over positive
reals, with rational lower bounds and rational or infinite upper bounds. An element i
of I can be of one of four types: (where a ∈ Q≥0 and b can be either a rational number
or the infinity symbol,∞, meaning an infinite bound).

• [a, b] (with a 6 b),

•]a, b] (with a < b),

• [a, b[(with a < b),

•]a, b[(with a < b).

We say that ↓i = a is the lower bound of the interval i and ↑i = b is its upper bound.
We also say that the interval [a, b] is punctual when a = b.

In the following, we will often use the notation < a, b = for time intervals, where
< and = are the left and right bounds of i. Therefore we have <= [for a closed interval
on the left and == [for an open (strict) interval on the right. Likewise we use ’]’ for
an open interval on the left and closed interval on the right. By an abuse of notation,
we will also conflate bounds with comparison operators between reals. We say that <
is the strict comparison operator < when the left bound is open (<=]) and that < is the
operator 6 when the bound is closed (<= [). Likewise, we say that = is the operator
6 when the right bound is closed and < otherwise. With this choice of notation, an
interval i =< a, b = is exactly the set of real values x ∈ R≥0 such that a < x and
x = b.

For any date δ in Q≥0 and interval i ∈ I, we denote i− δ the time interval obtained
by shifting i (to the left) by an amount of δ. The operation is defined only if δ < ↑i
(or if δ ≤ ↑i and the right bound of i is closed), which we call the upper bound
condition. We consider four different cases depending on the “shape” of interval i.
Assume a′ = max(0, a− δ):

• if i = [a, b] and δ 6 b then i− δ = [a′, b− δ],

• if i =]a, b] and δ 6 b then i− δ =]a− δ, b− δ] if δ 6 a and [0, b− δ] otherwise,

• if i = [a, b[and δ < b then i− δ = [a′, b− δ[,

• if i =]a, b[and δ < b then i− δ =]a− δ, b− δ[if δ 6 a and [0, b− δ[otherwise
(With the convention that∞− δ =∞).

3.2.2 Syntax of TTS
A Timed Transition System TTS is a tuple 〈U, S, s0, τ, I〉 where:

• U is a finite set of variables. Each variable is implicitly typed. We use dom(u)
to denote the domain of variable u;

50

• S is a set of states. Each state of S is an interpretation of variables in U , that is
a mapping from variables u ∈ U to values in dom(u);

• s0 is the initial state (s0 ∈ S) that maps each variable to its initial value;

• τ is a set of transitions. Each transition t ∈ τ defines a partial mapping over
states in S, that is, for every t ∈ τ and for every state s ∈ S either: (a) there is a
unique successor state s′ ∈ S such that s t−→ s′ (we write succ(s, t) = {s ′}); or
(b) there is no such successor succ(s, t) = ∅ (in which case we use the notation
s

t−→ ∅);

• I : τ 7→ I maps each transition t ∈ τ to a static (time) interval I(t) ∈ I.

We denote succ(s, t) the set of successors of state s by a transition t ∈ τ . A
transition t ∈ τ is said enabled at s if and only if s is a source state of t, that is s t−→ s′

(or equivalently succ(s, t) 6= ∅). We denote E(s) the set of transitions enabled at s.
From our definition of TTS, the set succ(s, t) has cardinality at most one. This

allows us to simplify the presentation of the semantics (especially when defining the
notion of persistent transitions later in this section) without loosing any expressiveness
(a state s may still have many successors over transitions with different names).

3.2.3 Semantics of TTS
In a TTS 〈U, S, s0, τ, I〉, each (enabled) transition is associated with a timing con-

straint, that is an interval I(t) =< a, b =∈ I. The semantics of time depends on the
dates at which the transition becomes enabled. Informally, if we are in state s since the
date ∆ and if transition t can occur, then we can “take” the transition starting at a date
∆ +↓I (t) < d and no later than a date d′ = ∆ +↑I (t), unless t is disabled in between
by taking another transition.

The semantics of a TTS is therefore given over pairs (s, φ) where s ∈ S is a state
and φ : τ → I is a mapping from transitions to time intervals. Intuitively, if t is enabled
at s, then φ(t) contains the dates at which t can be possibly taken in the future. Hence,
a transition t can be taken (immediately) only when 0 is in φ(t). Likewise, a transition
t cannot remain enabled for more than its timespan, that is the value ↑φ(t).

We use φ .− δ for the partial function that associates, at a state s, each transition
t ∈ E(s) to the value φ(t)− δ (the interval φ(t) shifted by δ). This function is useful to
model the effect of time progress on the enabled transitions of a TTS. (Note that φ .− δ
is defined only when φ(t) − δ is defined for all t ∈ E(s), that is δ satisfies the upper
bound condition for all φ(t)).

Let t be enabled at s with s t−→ s′. We say that a transition k is persistent (with
k 6= t) if it is also enabled at s′. The transitions that are enabled at s′ and not at s
are called newly enabled. We define the predicates pers(s, t) and nenabl(s, t) that
describe, respectively, the sets of persistent and newly enabled transitions after t is
taken from s. We see that if t is still enabled in s′ then it is necessarily newly enabled.

pers(s, t) = {k ∈ τ | k ∈ E(s) ∧ k ∈ (E(s′) \ {t}) ∧ s t−→ s′}
nenabl(s, t) = {k ∈ τ | k /∈ (E(s) \ {t}) ∧ k ∈ E(s′) ∧ s t−→ s′}

With all these notations, we can define the semantics of a TTS as a Kripke structure
(a rooted, state graph) such that:

51

(discrete)

t ∈ E(s) 0 ∈ φ(t) s
t−→ s′ ∈ τ

∀k ∈ E(s′) : φ′(k) = φ(k) if k ∈ pers(s, t) and I(k) otherwise

(s, φ)
t−→ (s′, φ′)

(continuous)
δ ∈ Q≥0 φ .− δ defined

(s, φ)
δ−→ (s, φ .− δ)

Table 3.1: Operational Semantics of TTS.

• states in the graph are pairs (s, φ) where s ∈ S is a state and φ is a map from
t ∈ E(s) to I,

• the initial state is (s0, φ0) where φ0 is such that φ0(t) = I(t) for each transition
t ∈ E(s0) (all transitions possible from s0 are newly enabled),

• discrete transitions: from every reachable state (s, φ) and every transition t ∈
E(s), we have a (discrete) transition (s, φ)

t−→ (s′, φ′) when 0 ∈ φ(t) and
s

t−→ s′. In this case φ′ is the unique mapping such that: φ′(k) = φ(k) for
all transitions k ∈ pers(m, t) and φ′(k) = I(k) otherwise,

• continuous transitions: for every delay δ ∈ Q≥0 such that φ .− δ is defined, we
have a (continuous) transition (s, φ)

δ−→ (s, φ .− δ).

From this definition, we see that time progress does not change the set of enabled
transitions; but it may change the set of transitions that may be taken immediately (the
set of transitions such that 0 ∈ φ(t)). We can also see that the state graph of a TTS is
generally infinite. Indeed, in most cases, we can choose between an infinite number of
continuous transitions. This is, for instance, the case when there are no transitions in τ
enabled at s (in which case we can let time elapse by an unbounded amount).

We give, In Table 3.1, an alternate definition of the reduction relation using nota-
tions borrowed from structural operational semantics, where the relation −→ is defined
by a set of inference rules. We use this notation later in order to simplify the presenta-
tion of the semantics of GenoM3.

In this work, we have chosen a strong time semantics, meaning that we must always
take an enabled transition from a state (s, φ) if there is no delay δ > 0 such that
φ .− δ is defined (that is when time cannot elapse). Since a transition cannot become
disabled from a continuous transitions, it follows from this choice that a TTS cannot
have a “timelock”, that is a situation in which a system is blocked because every timing
constraints is indefinitely false.

3.2.4 Timed Transition Diagrams
In this section, we define a graphical notation for TTS (called Time Transition

Diagrams, or TTD for short) as well as a composition operation between TTD that is
also inspired from the work in [Henzinger et al., 1991]. Basically, we can see every
atomic TTD as a component and composition as a way to build more complex systems
through the synchronization and interactions of simpler systems. In this approach, the
composition of multiple TTD (viewed as components) results in a TTS (viewed as the

52

system).
A timed transition diagram (TTD) P is a finite directed graph where each edge e

is labeled with: an interval I(e); a guard ge; and operations ope . Each TTD operates
on a finite set of variables, Y . We use V to denote the set of vertices of P and v0 to
denote its unique initial vertex. In the remainder of this thesis, guards that are always
true, operations with no effect on variables and [0,∞[intervals will not be represented.

As with TTS, we say that a state s of a TTD is a mapping from variables in Y to
values. We consider a distinguished variable, or control vertex, denoted π, whose value
gives the “current vertex” of the TTD. Hence dom(π) = V and the initial value of π is
v0.

Informally, a guard is a boolean expression over Y that defines when an edge can
be taken, whereas an operation is a sequence of instructions that can modify the values
stored in these variables (all the updates declared in an operation are processed atomi-
cally). We use the expression g(s) to denote the “truth” value of a guard g on the state
s. likewise, we use the notation s′ = op(s) when the results of op on Y from s agree
with the interpretation of Y at s′.

We show in Fig. 3.1 a simple generic TTD example with two vertices, v0 and v1,
and one edge e. The initial vertex, in this case v0, is denoted with an incoming edge
without source vertex.

v0

I(e)

v1

ge

ope
e

Figure 3.1: A generic TTD example

Given a TTD P , we can associate its meaning, [[P]], that is a TTS that describes the
semantics of P . The meaning of P is the TTS 〈U = Y ∪ {π}, S, s0, τ, I〉 such that:

• S is the set of states, where each state is an interpretation of the π and each
variable in Y .

• the initial state s0 is the mapping associating π to v0 (initially the control vertex
is at v0) and all the variables in Y to their default value,

• τ is the set of edges of P and s e−→ s′ if and only if there is an edge e in P from
vi to vj such that: s(π) = vi and s′(π) = vj ; and ge(s) is true; and s′ = ope(s).

• The function I maps every edge e in P to the interval I(e).

3.2.5 Composition of TTDs
The parallel composition of a finite number of TTDs, P1, . . . , Pn, over a set of

shared variables, Us, results in a TTS denoted:

{Θ}[‖i∈1..n Pi]

A TTS also defines an initial valuation, Θ, that gives the initial assignation of variables
in Us to values.

53

We assume that the edge (identifiers) of different components are always distinct: if
e is an edge in Pi then it cannot be an edge in Pj with i 6= j. We also assume that each
component (TTD) Pi can have access to a set of local variables, denoted Ui, besides
the variables in Us. (We assume that Ui ∩ Us = ∅ and Ui ∩ Uj = ∅ for all indexes
i, j ∈ 1..n with i 6= j). We also consider one distinguished control vertex, πi, for each
component Pi, whose role is to store the current vertex of the TTD. Hence the set of
variables declared in a TTS is:

U = Us ∪
(⋃
i∈1..n

Ui

)
∪
(⋃
i∈1..n

{πi}
)

Given the parallel composition {Θ}[‖i∈1..n Pi], we can easily define a TTS with
the set of variables U that will give the “semantics of the system”. Assume that
〈Ui, Si, s0i , τi, Ii〉 is the meaning ofPi for all i ∈ 1..n. Then the meaning of {Θ}[‖i∈1..n Pi]
is the TTS 〈U, S, s0, τ, I〉 such that:

• the set S lists all the possible interpretation of U ,

• the initial state s0 ∈ S is the only interpretation such that s0(x) = s0i (x) if x
x ∈ Ui (in particular s0(πi) = vi0 for all i ∈ 1..n, where vi0 is the initial vertex
of the component Pi); and s0(x) = Θ(x) for all x ∈ Us,

• τ is the union of all edges found in the components P1, . . . , Pn, that is τ =⋃
i∈1..n τi. The result of taking transition e in the TTS boils down to taking e in

the corresponding component. Let s|U denote the restriction of a state (mapping)
s to the variables in U . Then, if e connects vij to vik in Pi and Usop ⊆ Us is the
set of shared variables affected by ope, we have s e−→ s′ ∈ τ if and only if
s|Ui∪Usop

e−→ s′|Ui∪Usop
∈ τi and s′(x) = s(x) for all variables x ∈ U \ (Ui ∪

Usop),

• the static time interval function I maps every transition e ∈ τ to the time interval
Ii(e), where Pi is the component containing the edge e.

The notion of a TTS defines a composition operator over TTDs and their composi-
tions. This is basically the same operation as the one in [Henzinger et al., 1991] with
the simplification that all the components must start in their initial state. That is we
only consider a “synchronous start” of TTDs.

3.2.6 Sequential behavior
The fact that TTS support the use of variables eases building several classes of

systems by simply composing TTDs. In this section, we show how to use TTS in
order to build a system from the “sequential composition” of components. Sequential
composition will be a useful operation when defining the behavior of execution tasks
in Chapter 4.

We only describe the construction for a specific example. Let us consider the par-
allel composition of the TTDs in Fig. 3.2. We assume that the set of shared variables
Us contains a variable Π that will denote the “identity” of the only currently executing
component; that is dom(Π) = {P0, P1, P2} with Θ(Π) = P0.

The sequential composition of the three components is the TTS {Θ}[‖i∈0..2 Pi]
where the guard of each edge in the TTD Pi include the test Π = Pi. With this

54

v0
[0,1]

v1π = P2

π:= P0e

v0
[1,1]
π = P1

π:= P0

e

v0
[0,0]
π = P0

π:= P1

e1

P1

P2

P0

π = P0[0,0]
π:= P2

e2

Figure 3.2: TTDs of a sequential system

constraint, it is only possible to take a transition from the component whose identity is
the current value of Π. Therefore, at most one component can execute at a time.

In this particular example, component P0 plays the role of a scheduler that gives
the control randomly to either P1 or P2. Giving the control more than once to P1 leads
a deadlock (no discrete transitions possible in the resulting TTS).

3.2.7 Suitability

We discuss the rationale for the choice of TTS for formalizing GenoM3, as opposed
to e.g other formalisms based on clocks, such as Timed Automata (Sect. 3.4.1). There
are several arguments that favor such a choice among which we emphasize the follow-
ing.

Variables and compositionality: As seen in Chapter 2, GenoM3 relies on a com-
positional approach where robotic applications contain several components communi-
cating together. Moreover, components themselves are built from entities that interact
in order to ensure a correct behavior with regards to the requirements. For instance,
the control task interacts with the execution tasks to instruct them on which activities
to run or interrupt (Sect. 2.2.2 and Sect. 2.2.3). The power of TTS through the compo-
sition of TTDs is very useful in such circumstances. Indeed, shared variables and the
parallel operator allow to ease the modeling of the complex asynchronous communica-
tion within and between GenoM3 components (more in Chapt. 4). Also, the sequential
behavior within execution tasks can be conveniently modeled using shared variables
and parallel operators as seen in Sect. 3.2.6 (more in Chapt. 4).

Variables, guards and time intervals: The possibility to have guards over vari-
ables and to use time intervals makes TTDs suitable for modeling the entities of a
GenoM3 component. For instance, one may, within a TTD model of an activity, con-
dition through the guards the execution of a codel by the availability of resources, and
use WCET as upper bounds (we give examples about this in Chapter 4).

Urgencies: many of the behaviors in GenoM3 are subject to global urgency con-
straints rather than local ones. For instance, executing a codel happens as soon as it has
secured the needed resources within the IDS, shared between all tasks. These aspects
are modeled easily in TTS as opposed to clock-based transition systems such as those
based on e.g. classical timed automata where urgencies can be expressed only locally

55

using invariants. The confrontation between the two models in terms of expressing
urgencies is explained in details in Sect. 6.3.3.2 and Sect. 7.2.1.4.

The remaining sections in this chapter are devoted to a high-level description of the
other formalisms and tools used in this thesis.

3.3 Fiacre and TINA
We present in this section the formal language Fiacre and the model-checking

toolbox TINA, developed at LAAS-CNRS. Both Fiacre and TINA are freely available
with some introductory material at, respectively, http://www.laas.fr/fiacre and
http://www.laas.fr/tina. The model checkers and state abstractions available in
TINA can be used to explore and analyze Fiacre descriptions translated into extended
time Petri nets, introduced hereafter.

3.3.1 Time Petri Nets
Introduction Petri nets [Petri, 1962] are a prominent model for the analysis of con-
current, distributed and discrete-event systems (examples in [Ramamoorthy and Ho,
1980; Genc and Lafortune, 2003; Leveson and Stolzy, 1987]). There exist different
flavors of Petri nets extended with time to enable modeling and analyzing timed and
real-time systems. Time Petri nets [Merlin and Farber, 1976] is one of these extensions.
A time Petri net (TPN for short) enriches a Petri net with time intervals associated with
the transitions of the net and specifies thus the possible time delays between the last
enabledness of these transitions and their activation (or firing in Petri net terminology).

In a TPN, each transition t is associated with a time interval I (t) ∈ I, in much the
same way a transition t in a TTS has a timing constraint. We use the same notations
from Sect. 3.2, namely:

• ↓I (t) is the lower bound of interval I(t), also called the earliest firing deadline
of t,

• ↑I (t) is the upper bound of I(t) (it can be equal to ∞), also called the latest
firing deadline of t.

Firing a transition in a TPN is constrained by the same Strong Time Semantics
condition than the TTS defined in Sect. 3.2. Actually, we will encounter similar notions
of enabled, newly enabled and persistent transitions, but given in terms of Petri net
markings rather than TTS states.

More formally, a TPN N is a tuple 〈P, T, Pre, Post,m0, I〉 such that:

• 〈P, T, Pre, Post,m0〉 is a Petri net, with P the set of places, T the set of tran-
sitions, m0 : P → N the initial marking, and Pre, Post : T → (P → N) the
precondition and postcondition functions,

• I is the static interval function, that associates a time interval in I to every tran-
sition in T .

In the following, E(m) is the set of enabled transitions at marking m, that is the set
of transitions t ∈ T such that m ≥ Pre(t) (we use the pointwise comparison between
functions). The shifting function φ − θ and the partial function φ .− θ that associates,

56

http://www.laas.fr/fiacre
http://www.laas.fr/tina

at a marking m, each transition t ∈ E(m) to the value φ(t)− θ are the same as defined
in Sect. 3.2.

At a marking m, we say that a transition k is persistent (with k 6= t) if it is also
enabled in the marking m − Pre(t), that is if m − Pre(t) ≥ Pre(k). The transitions
that are enabled at m′ and not at m are called newly enabled. We define the pred-
icates pers(m, t) and nenabl(m, t) that describe, respectively, the sets of persistent
and newly enabled transitions after t fires from m. We see that if t is still enabled in
m′ then it is necessarily newly enabled.

pers(m, t) = {k ∈ E(m)\{t} | m− Pre(t) ≥ Pre(k)}
nenabl(m, t) = {k ∈ (T\E(m)) ∪ {t} | m− Pre(t) + Post(t) ≥ Pre(k)}

The semantics of a TPN is then given over marking-interval pairs (m,φ) where
m is a marking and φ contains the dates at which each t ∈ E(m) can be fired in the
future. In particular, t may be fired immediately if 0 ∈ φ(t). The initial marking-
interval pair is (m0, φ0) where m0 is the initial marking and φ0(t) = I(t) for each
enabled transition t ∈ E(m0). Starting from (m0, φ0), only two types of transitions
are allowed:

discrete transition: (m,φ)
t∈E(m)−−−−→ (m′, φ′) given that 0 ∈ φ(t), where m′ =

m − Pre(t) + Post(t) and φ′ is defined as follows: φ′(k) = φ(k) for all persistent
transition k ∈ pers(m, t) and φ′(k) = I(k) otherwise.

continuous transition: (m,φ)
θ−→ (m,φ′) given that θ satisfies the upper bound

condition of φ .− θ for each t ∈ E(m) (see Sect. 3.2), where φ′ is defined over the
set of enabled transitions at m, E(m), as follows: ∀t ∈ E(m) : φ′(t) = φ(t) .− θ.
In particular, if no transition is enabled at m ,that is E(m) = ∅, then θ may be any
arbitrary value in Q>0 which allows time to diverge unboundedly.

Example Figure 3.3 shows a TPN with three places and four transitions. The tran-
sition tinit is initially fireable and may fire at any moment in the future. Let τ be the
value of the global time at the moment tinit fires (if it does). Transitions t0 and t1 are
both enabled (p0 is marked) but none is already fireable. When τ evolves by one time
unit, t0 becomes fireable as ↓I (t0) = 1 . If it is fired within the interval [τ + 1, τ + 2[,
p0 is unmarked, p2 is marked and both t0 and t1 are no longer enabled. However, if t0
is not fired and τ evolves by one time unit further, t1 becomes also fireable. Within the
interval [τ + 2, τ + 3[, either t1 or t0 may fire. At τ + 3, ↑I (t0) is reached and thus t0
must fire or become disabled (that is either t0 or t1 must fire, which will disable both
of them).

Let τ ′ be the value of the global time at the moment either t0 or t1 fires. Firing
t0 will enable t2 which must fire at exactly τ ′ + 1. Firing t1, on the other hand, will
enable t3, which will fire in the interval [τ ′ + 3, τ ′ + 5].

These temporal constraints allow reasoning on timed properties of the net. For
instance, we may prove that the minimum (respect. maximum) amount of time p0 is
marked continuously is 1 (respect. 3) time units. Similarly, the minimum (respect.
maximum) amount of time p0 remains unmarked (after being already marked) is 1
(respect. 5) time units.

Enriching TPN TPN can be conveniently enriched by a number of features enhanc-
ing their expressiveness like priorities, expressing that some transitions should be fa-
vored over others when fireable at the same instant or data-processing, consisting of

57

pinit

tinit

p0

t1[2,4] t0 [1,3]

p2 p1

t3[3,5] t2 [1,1]

[0, ∞[

Figure 3.3: Time Petri net example

synchronizing the evolution of the TPN with computations on a set of variables in some
programming notation. In this thesis, only the data-processing extension is needed. We
will refer from now on to TPN enriched with data as D-TPN.

3.3.2 Fiacre

Introduction Fiacre (for Format Intermédiaire pour les Architectures de Composants
Répartis Embarqués, Intermediate Format for the Architectures of Embedded Dis-
tributed Components in French) is a formal specification language for describing com-
positionally both the behavioral and timing aspects of embedded and distributed sys-
tems [Berthomieu et al., 2008]. Fiacre is based on communicating state machines with
a rich notion of transitions, i.e transitions might embed large sequences of code eas-
ing the model mapping from complex applications (e.g. a Fiacre single transition may
embed different control structures such as conditionals and loops). Timing aspects and
firing semantics in Fiacre are identical to the strong time semantics of TPN introduced
in Sect. 3.3.1. Fiacre specifications can be used as an input format for formal veri-
fication tools (mainly real-time model-checkers) as well as for simulation purposes.
Fiacre stems from several projects in different applicative domains like telecoms and
avionics [Berthomieu et al., 2014; Bourdil et al., 2014; Rangra and Gaudin, 2014].

Apart from its ability to model priorities and timing constraints (using a dense time
model), a distinctive feature of Fiacre is to include a rich set of datatypes: booleans,
integers and integer ranges, records, tagged unions, arrays and queues. The language
is statically typed, with depth subtyping to handle integer ranges. In terms of pro-
cess interactions, Fiacre supports both the classical paradigms of shared variables and
synchronous message passing à la process calculi. Finally, Fiacre provides functions,
native or imported.

58

1 process example is
2 states s0, s1, s2
3
4 from s0
5 select
6 wait [1,3]; to s2
7 [] wait [2,2]; to s1
8 end
9

10 from s1
11 wait [1,5];
12 to s0
13
14 from s2
15 wait [0,1];
16 to s0

Listing 3.1: A simple Fiacre process

Fiacre descriptions are made of processes and components, both parametrizable by
values, value locations (shared variables) and interaction labels (for communication or
synchronization)

Fiacre processes A process describes a sequential behavior; it specifies a set of con-
trol states and a set of transitions, each expressing a state change by a statement built
from deterministic constructs (assignments, conditionals, loops, and sequential com-
position), nondeterministic constructs (nondeterministic choice and assignments), in-
teraction statements and jump statements. Listing 3.1 shows an example of a simple
Fiacre process.
Line 2 defines the states of the Fiacre process. The first state is by default the initial one.
Transitions are described afterwards within blocks. Each block defines the possible
transitions from a given state. For instance, the very first block (lines 4 to 8) describes
the existence of two possible transitions (to state s2 and to state s1) from state s0. Non-
determinism is expressed via the statement select (lines 5 to 8) and timing using the
keyword wait preceding the time interval associated with each transition. A process
can be parameterized by variables and ports as shown in the sequel.

Components Components describe in a hierarchical manner the architecture of the
system as the parallel composition of process or component instances. Components
also specify the interactions between the constituting processes or components, and
possibly constrain these interactions with timing and/or priority requirements. The
next paragraphs detail the composition into components via examples.

Example: communication through shared variables Listings 3.2 and 3.3 show two
simple Fiacre processes sharing a variable x. x is of type 0..3 (an integer ranging from
0 to 3). The blocking statement on is used to express guards on transitions (e.g. line
5 of Listing 3.2). As long as the guard is false, the guarded transition is disabled. The
value of x is updated when firing transitions (e.g. line 7 of Listing 3.2).

Now listing 3.4 defines the Fiacre component that encapsulates proc1 and proc2
and allows them to communicate through x. It declares and initializes the shared vari-
ables (line 2) and defines the parallel composition of the processes (lines 4 to 7).

59

1 process proc1 (&x: 0..3) is
2 states s0, s1
3
4 from s0
5 on x=1;
6 wait [2,2];
7 x:=2;
8 to s1
9

10 from s1
11 on x=3;
12 wait [0,1];
13 x:=0;
14 to s1

Listing 3.2: A simple Fiacre process proc1

1 process proc2 (&x: 0..3) is
2 states s0, s1
3
4 from s0
5 on x=0;
6 wait [0,0];
7 x:=1;
8 to s1
9

10 from s1
11 on x=2;
12 wait [0,1];
13 x:=3;
14 to s0

Listing 3.3: A simple Fiacre process proc2

1 component CMP is
2 var x: 0..3:= 0
3
4 par
5 proc1 (&x)
6 || proc2 (&x)
7 end

Listing 3.4: Fiacre component encapsulating proc1 (listing 3.2) and proc2 (listing
3.3)

60

1 process sync1 [R: sync] is
2 states s0, s1
3
4 from s0
5 R;
6 to s1
7
8 from s1
9 wait [0,1];

10 to s0

Listing 3.5: A simple Fiacre process sync1

1 process sync2 [R: sync] is
2 states s2
3
4 from s2
5 R;
6 to s2

Listing 3.6: A simple Fiacre process sync2

Example: communication through ports Listings 3.5 and 3.6 describe two pro-
cesses sync1 and sync2 communicating through the port R. A port has a profile which
determines the type of messages that can be passed through it. The profile of R is sync
which is a pure synchronization profile, i.e no data flow is allowed through R. The line
5 of both listings is blocking: this means that, when communicating through R with
process sync1, the self-loop transition of process sync2 from s2 to s2 is not enabled
unless process sync1 is in state s0.

Finally, listing 3.7 shows the component SYNCMP encapsulating sync1 and sync2
and allowing them to interact through R. It defines R, its profile sync and a time inter-
val [1, 1] (line 2). This means that the transitions synchronized over R are associated
with the interval [1, 1]. If the interval is not defined, it defaults to [0,∞[.

Verification Fiacre descriptions can be complemented by declarations of properties.
Atomic properties include the states of process instances, predicates on the values of
variables and Fiacre events (interactions). The Fiacre observables are boolean com-
binations of atomic properties. They can be combined to form property patterns in
the style of [Dwyer et al., 1999]. For checking real-time properties, these patterns are
enriched with time constraints [Abid et al., 2014]. For verification, the real-time pat-
terns are translated by the Fiacre compiler into LTL properties on the Fiacre description
instrumented with observers.

As an illustration, we present the timed property “source leadsto target within
[d1, d2]” and show how it is handled in Fiacre. This property asserts that along each
path some state obeying target occurs within a delay in interval [d1, d2] after each
state obeying source, where source and target are some observables and [d1, d2] is a
time interval. This property is encoded using a Fiacre process (an observer) given in
listing 3.8; the process is automatically generated from the property formula (source
leadsto target within [d1, d2]) and connected with the main Fiacre program through
two transition guards on the source and target observables. With this observer, the
property is to show that the state error of the observer is unreachable.

61

1 component SYNCMP is
2 port R: sync in [1,1]
3
4 par * in // consider all interactions
5 sync1 [R]
6 || sync2 [R]
7 end

Listing 3.7: Fiacre component encapsulating sync1 (listing 3.5) and sync2
(listing3.6)

1 process LeadsToWithin is
2 states idle, start, watch, error
3 from idle
4 on source; to start
5 from start
6 wait [d1,d1]; to watch
7 from watch
8 select
9 on target; wait [0,0]; to idle

10 unless
11 wait]∆,...[; to error /* where ∆ = d2− d1 */
12 end

Listing 3.8: Fiacre process for the leadsto within property

3.3.3 TINA Toolbox
Introduction TINA [Berthomieu et al., 2004], the TIme Petri Net Analyzer, is a
toolbox for the analysis and verification of TPN and D-TPN possibly enriched with
priorities and stopwatches. TPN state spaces are infinite due to the dense nature of
time. To sidestep this problem, finite abstractions known as State Classes have been
defined since the 1980’s, see for instance [Berthomieu and Menasche, 1983]. The State
classes construction, known as the State Class Graph (SCG), is suitable for LTL model-
checking as it preserves markings and traces. A simple variation of the construction
(reducing classes by inclusion) only preserves markings and is typically coarser; it is
the method of choice for reachability analysis.

The TINA toolbox provides state space generators and offline model-checkers for
LTL and modal µ-calculus. The generators can produce compressed representations
of SCGs into files. Some classes of properties can also be checked on the fly when
building SCGs. When a property is not satisfied, a counterexample is generated. A
counterexample can be turned into a timed trace and replayed in a simulator.

Verification of Fiacre models For their verification, Fiacre descriptions are trans-
lated into D-TPN by an optimized compiler. The latter, frac, performs syntax analysis
and type checking, then encodes the description into a D-TPN for TINA preserving its
semantics. The compilation process includes a model optimization pass that simpli-
fies redundant transitions, removes dead code and abstracts some variables, retaining
only those contributing to the state (unlike e.g. those only used as temporaries). This
optimization pass helps reduce the size of the SCG.

The frac compiler also translates the properties declared in the description into
properties in the format supported by the TINA model checkers. Verifications of Fiacre

62

properties are then carried out exactly like verification of TINA models properties; in
case of failure, a timed scenario can be computed, corresponding to a Fiacre scenario.

3.3.4 Conclusion
Fiacre and TINA provide a modeling and verification workflow based on TPN and

their extensions. This makes Fiacre a natural choice as a target formal language for our
robotic specifications. Indeed, TPN are a prominent model for the modeling of con-
current and real-time systems and are expressive enough to model the aspects present
in such systems. For instance, it is quite simple to model urgencies using the fact that
firing intervals depend on the enabledness of the transitions. Furthermore, the different
optimized SCG constructions offered by TINA makes it suitable for verifying complex
real-time properties of robotic applications. In particular, in our examples, we will of-
ten use an optimized state class reduction approach, based on checking the inclusion
of classes, that can drastically reduce the size of the generated SCGs and provides an
efficient method for checking safety properties.

3.4 UPPAAL
UPPAAL [Behrmann et al., 2004] is a model checker based on Timed (Safety) Au-

tomata (Sect. 3.4.1) extended with data, user-defined functions and urgent channels.
An UPPAAL system is made of one or several processes, composed using the parallel
operator ‖. To formulate properties, UPPAAL supports a query language (Sect. 3.4.3)
based on a fragment of the branching logic TCTL. It also features a graphical sim-
ulator where counterexamples may be replayed and analyzed. UPPAAL has been
developed in a close collaboration between the University of Uppsala (Sweden) and
the University of Aalborg (Denmark) and is available, together with its extensions on
http://www.uppaal.org. UPPAAL is widely used in verification of real-time sys-
tems and implements efficient optimization techniques such as minimal cost reachabil-
ity [Larsen et al., 2001] and symmetry reduction [Hendriks et al., 2004].

3.4.1 Timed Automata
Introduction Timed Automata is a theory for modeling and verification of timed
systems. In the original version of the theory [Alur and Dill, 1994], Timed Automata
extend finite-state Büchi automata with real-valued clocks. The behavior of such au-
tomata is therefore restricted by defining constraints on the clock variables and a set
of accepting states. A simpler version allowing local invariant conditions and known
as Timed Safety Automata is introduced in [Henzinger et al., 1994]. In this thesis, we
focus on Timed Safety Automata and refer to them as Timed Automata or TA for short.

Formally A timed automaton TA is a tuple

TA = 〈L, l0, X,Σ, E, I〉 (3.1)

where:

• L is a finite set of locations,

• l0 ∈ L is the initial location,

63

http://www.uppaal.org

• X is a finite set of continuous variables called clocks,

• Σ = Σi] Σo is a finite set of actions partitioned into inputs (Σi) and outputs
(Σ0),

• E is a finite set of edges of the form (l, g, a, ϕ, l′), where l and l′ are locations,
g is a predicate on RX , action label a ∈ Σ, and ϕ is a binary relation on RX ,

• I assigns an invariant predicate I(l) to any location l.

Semantics The semantics of TA is defined over a Kripke structure, whose states are
pairs s = (l, v) ∈ L× RX , with v |= I(l), and transitions defined as:

• delay transitions: ((l, v)
d−→ (l, v′) with d ∈ R≥0 and v′ = v + d), and

• discrete transitions: ((l, v)
a−→ (l′, v′) if there is an edge (l, g, a, Y, l′) such that

v |= g and v′ = v[Y], where Y ⊆ X , and v[Y] is the valuation assigning 0 when
x ∈ Y and v(x) otherwise).

Example Fig. 3.4 shows a simple TA with three locations l0 (initial), l1 and l2 and
a clock c. With locations l1 and l2 are associated the invariants (in purple) c ≤ 2 and
c ≤ 1, respectively. This means that whenever l1 (respect. l2) is reached, it must be
left at most when the valuation of c is equal to 2 (respect. 1). The reset actions (in
blue) assign the valuation 0 to c when the edges they are associated to are taken (edges
from l0 to l1 and from l1 to l2). The guards (in green) must be satisfied when an edge
is taken.

The absence of an invariant on location l0 makes taking its outgoing edge possible
no matter what the valuation of c is. Let τ be the value of the global time at the moment
the outgoing edge of l0 is taken. This means that l1 is reached at τ and must be left
within the interval]τ, τ + 2]. This interval is left-open because each outgoing edge of
l1 is guarded with the strict inequality c > 0 (l1 cannot be left at τ). Let τ ′ be the value
of the global time at the moment the edge from l1 to l2 is taken. Location l2 will be left
within]τ ′, τ ′ + 1] and the initial location is reached.

We may use these temporal constraints (invariants and guards) to assert timed prop-
erties of the automaton. For example, we may prove that the maximum amount of time
separating two successive visits of location l0 is 3.

3.4.2 Extending TA
Urgencies TA urgencies may be expressed only locally through invariants. To deal
with urgencies expressed globally, e.g. involving different TA components, TA are ex-
tended with urgencies in [Bornot et al., 1998]. We refer to such formalism as Urgency
Timed Automata UTA. When an edge in a UTA is eager, that we note

;

, it must be
taken (or disabled by taking another edge) as soon as enabled. That is, when an eager
edge is enabled, time is not allowed to progress until this very edge is taken or disabled.

Data variables To ease the modeling of real-world systems, often communicating
through shared variables, TA may be extended with data variables. In such a case,
guards and assignments, originally allowed only on clocks (equality/inequality for
guards and reset for assignments), become possible on variables as well. We refer
to this extension as DTA. UTA extended with data are referred to as DUTA.

64

clock c

c<=2

l0

c:= 0
c>0

c>0
c:= 0

c>0l1

l2
c<=1

Figure 3.4: Timed automaton example

3.4.2.1 Composition of DUTA

The parallel composition of n DUTA is the system {Init}[‖i∈1..n Ai], where each
Ai is a DUTA and Init defines the initial valuations of shared variables.

The semantics of a DUTA composition is thus given over a Kripke structure with
states of the form of pairs s = (l , v). The difference with the states given in the se-
mantics of a single (non-extended) TA in Sect. 3.4.1 is that now (i) l stores the current
location for each DUTA Ai and the valuation of each non-clock variable in the system,
(ii) v stores the valuation of all clocks in the composition (in each Ai) and v |= Ii for
all Ai.

The transitions are then defined as in Sect. 3.4.1: discrete and delay. Here, the dis-
crete transitions may contain a set of

;

transitions, such that an

;

transition corresponds
to an

;

edge. When enabled, an

;

transition deactivates all delay transitions until it is
taken (or disabled by taking another concurrent discrete transition). A large example
over DUTA compositions in terms of GenoM3 applications is given in Sect. 5.3.

3.4.2.2 In UPPAAL

UPPAAL offers several extensions of TA to make modeling real-world timed sys-
tems easier and more practical. It supports DTA over booleans and integers and a
restricted class of UTA (see below). We refer to a (possibly extended) UPPAAL TA as
a process.

Broadcast channels Multiparty synchronizations are allowed in UPPAAL through
(non-blocking) broadcasts. A sender may synchronize with several receivers. A re-
ceiver that can synchronize in the current state of the system must synchronize. A
sender, on the other hand, that can synchoronize in the current state of the system does

65

so with the maximum number of receives that can synchronize in the same state. If
the sender can synchronize in the current state where no receiver can synchronize, the
sender may still execute the sending action, i.e. broadcast is never blocking.

Urgent channels UPPAAL implements a restricted class of UTA, where urgencies
are allowed only over channels, on which timing constraints are forbidden. That is, one
may define an eager transition, involving the synchronization of at least two edges in
two different processes, but may not define an urgent edge. Moreover, time constraints
are not allowed on edges contributing to urgent channels. Despite such restrictions,
urgent channel allow implementing urgencies expressed globally, i.e. depending on the
behavior of more than one processes in the system.

Data and user functions Besides clocks, data variables are also allowed to take parts
in guards and actions. Supported data types are booleans and integers. User functions
are also supported in a C-like syntax with no support for pointers.

3.4.3 UPPAAL query language

UPPAAL features a query language to express the properties the user wants to
verify. The query language is based on a small fragment of the branching timed logic
TCTL with path and state formulae.

State formulae A state formula is any expression than can be evaluated to true or
false on a global state of the system. This may involve locations, clocks and data
variables, e.g. a == 2 where a is a global variable, p.x < 1 where x is a clock in
process p and p.l0 where l0 is a location of process p. The first formula evaluates to
true in all states of the system where a is equal to 2, the second for all states where the
valuation of x is inferior to 1, and the third for all states where the current location of
p is l0.

Path formulae Path formulae enable quantifying over traces of the system evolution.
Path formulae in UPPAAL use the operators (i) A (along all paths, inevitably), (ii) E
(there exists a path, possibly) and (iii) ; (leads to, inevitably). In the following, we
give the five path formulae supported by UPPAAL (φ and ψ are state formulae). Note
that nesting path formulae is not allowed in UPPAAL.

• A�φ: φ holds in all states of the system.

• E�φ: there exists a maximal path where φ is true in all states. The last two
formulae are suitable for safety properties.

• E � φ: there exists a reachable state that satisfies φ. This formula is suitable for
reachability properties.

• A � φ: φ is eventually satisfied.

• φ ; ψ: whenever φ is satisfied, the satisfaction of ψ eventually follows. The
last two formulae are suitable for liveness properties.

66

3.4.4 Verification in UPPAAL
Models can be drawn in the graphical editor or encoded in the .xta format. List-

ing 3.9 shows how the TA in Fig. 3.4 is encoded in the .xta format. This gives an
organized and clear view of the processes when models are too complex to be readable
in the graphical format. Therefore, the .xta is the format of choice in this thesis.

1 process example () {
2 clock c;
3 state l0, l1{x≤2}, l2{x≤1};
4 init l0;
5
6 trans l0 →l1 {assign x:=0; },
7 l1 →l0 { guard x>0; },
8 l1 →l2 { guard x>0; assign x:=0; },
9 l2 →l0 { guard x>0; };

10 }

Listing 3.9: .xta encoding of the TA in Fig. 3.4

In the verifier, one can insert the properties using the allowed path formulae shown in
Sect. 3.4.3. The properties are verified on the fly and a counterexample is produced if
the property is violated. Counterexamples can be replayed in the graphical simulator
for diagnosis purposes.

3.4.5 Conclusion
UPPAAL is a state-of-the-art TA model checker that is well known for its user-

friendliness and performance. As Fiacre/TINA for TPN, UPPAAL is the model checker
of choice for TA. Besides their convenience for real-time and concurrent systems, TA
semantics enable a particular ease for modeling and verification of bounded response
properties thanks to the clocks. UPPAAL graphical interface allows visualizing the
models and especially analyzing counterexamples which eases diagnosis in case of
non satisfaction of properties of interest by the model.

3.5 UPPAAL-SMC

UPPAAL-SMC is an extension of UPPAAL based on stochastic timed automata
(see below). In addition to the classical TA models, UPPAAL-SMC supports modeling
and verifying systems the bevahior of which depend on stochastic and non-linear fea-
tures such as cyber-physical systems with complex dynamics and uncertainties. More-
over, UPPAAL-SMC is a tradeoff approach that does not require the exploration of the
whole state space and is thus a promising alternative for large models that do not scale
with regular UPPAAL. This comes however at the expense of precision as the truth
value of properties is no longer given with absolute certainty.

3.5.1 Stochastic Timed Automata
A stochastic timed automaton (STA) is a tuple

STA = 〈TA, µ, γ〉 (3.2)

where:

67

• TA is a timed automaton (Def. 3.1),

• µ is the set of all density delay functions µs ∈ L × RX , which can be either
uniform or exponential distribution,

• γ is the set of all output probability functions γs over the Σo output edges of the
automaton.

The delay density function µs over delays in R≥0 for each state a is either uniform
or exponential distribution depending on the invariant of l of the state s. Let El de-
note the disjunction of guards such that (l, g, o,−,−) ∈ E for some output o. With
D(l, v) = sup{d ∈ R≥0 : v + d |= I(l)} we denote the supremum delay (the least
of maximal delays), whereas with d(l, v) = inf{d ∈ R≥0 : v + d |= El} we de-
note the infimum delay (the greatest of minimal delays) before enabling an output. If
D(l, v) <∞ then the delay density function µs for a given state s is a uniform distribu-
tion over the interval [d(l, v), D(l, v)], otherwise it is an exponential distribution with
a rate P (l), given by the density function P(l).exp(−P(l).t) for t ≥ 0 (0 otherwise)
where t is the time relative to the output enabledness and exp the exponential function.
For every state s, the output probability function γs over Σo is the uniform distribution
over the set {o : (l, g, o,−,−) ∈ E ∧ v |= g} whenever the set is non empty. The
stochastic semantics of the distributions and the delay intervals defined by the classic
semantics of the underlying TA agree. It is thus easy to show that an STA semantics
is defined over a Kripke structure with discrete and continuous transitions (as it is the
case for TA semantics).

Example Fig. 3.5 shows an STA that extends the TA in Fig. 3.4. On invariant-free
locations (only l0 here), exponential rates are provided (10 on l0, in purple). Note that,
given the density function, a larger exponential rate implies a higher (respect. lower)
probability to leave the location at smaller (respect. larger) time values, which justifies
the choice of large exponential rates in our case studies on invariant-free locations
(Sect. 7.2.2). We may also define discrete probabilities on the outgoing edges of a
given location. Here, the outgoing edges of l1 have the values 1/3 (from l1 to l0) and
2/3 (from l1 to l2). This means that the probability to take the first (respect. second)
edge is 1/3 (respect. 2/3).

NSTA and UPPAAL-SMC Under the assumption of input-enabledness, disjointed-
ness of clock sets and output actions, a parallel composition of (composable) STA
defines a network of STA (NSTA), as follows: A1 ‖ A2 ‖ ... ‖ An. The states of
the NSTA are defined as a tuple s = 〈s1, ..., sn〉, where sj is a state of Aj of the form
(l, v), where l ∈ Lj and v ∈ RXj

. The probabilistic semantics of NSTA in UPPAAL-
SMC is based on the principle of independence between components, where different
automata synchronize based on standard broadcast channels. Each component decides
on its own (that is, based on a given delay density function and output probability func-
tion) how much to delay before outputting and what output to broadcast at that moment.
Therefore, only broadcast channels are allowed.

3.5.2 Verification in UPPAAL-SMC
Extension of the .xta format The .xta format was extended to support probabilities
on edges and exponential rates on invariant-free locations. Listing 3.10 shows how the

68

clock c

c<=2

l0

c:= 0
c>0

c>0
c:= 0

c>0l1

l2
c<=1

10

1/3

2/3

Figure 3.5: Stochastic extension of the TA in Fig. 3.4

STA in Fig. 3.5 is encoded in .xta for UPPAAL-SMC. In line 3, the exponential rate for
location l0 is specified. Line 4 introduces a branchpoint from which probabilistic edges
emerge. That is, for each location sl that is a source of edges with probabilities with
target locations tl0 ... tln , we need one branch point sl b such that non-deterministic
edges from sl to tl0 ... tln are replaced with:

• An edge from sl to sl b, guarded with the common guard to non-deterministic
edges (line 8 in our example in listing 3.10),

• and non-deterministic edges from sl b to tl0 ... tln with the same operations and
probabilities of the replaced edges from sl to tl0 ... tln (lines 9-10 in our example
in listing 3.10).

The graphical UPPAAL-SMC model of listing 3.10 is shown in Fig. 3.6. Note how
UPPAAL-SMC abuses the term “probability” to denote the number of occurrences for
each edge, as it computes the probability automatically by dividing that number on the
sum of occurrences on all edges, which explains the values 1 and 2 in Fig. 3.6 (instead
of 1/3 and 2/3 in Fig. 3.5)

Query language UPPAAL-SMC uses a weighted extension of the MITL logic (WMITL)
[Bulychev et al., 2012]. It allows to express properties over runs and has the following
grammar:

φ ::= s|¬φ|Oφ|φ′Ux≤ dφ
′′ (3.3)

where s is a state formula (Sect. 3.4.3), O (respect. U) is the next (respect. until)
operator and d a bound on the valuation of the clock x. One may notice immediately
that “leads” to and bounded response properties cannot be expressed and thus cannot
be verified with UPPAAL-SMC.

69

Figure 3.6: UPPAAL-SMC model of the STA in Fig. 3.5

1 process example () {
2 clock c;
3 state l0 {;10}, l1{x≤2}, l2{x≤1};
4 branchpoint l1_b
5 init l0;
6
7 trans l0 →l1 {assign x:=0; },
8 l1 →l1_b {guard x>0; }
9 l1_b →l0 { probability 1; },

10 l1_b →l2 {assign x:=0; probability 2; },
11 l2 →l0 { guard x>0; };
12 }

Listing 3.10: .xta encoding of the TA in Fig. 3.5

70

Probabilistic verification UPPAAL-SMC uses simulation-based algorithms to give
and approximate answer to one of the following questions:

• Hypothesis testing: is the probability of satisfying φ within time x ≤ d is greater
or equal to a certain threshold p? (Pr(Opx≤Cφ) ≥ p), whereOp is either 3, or�,

• Probability evaluation: what is the probability Pr(Opx≤Cφ) for some NSTA?

• Probability comparison: is P (Opx≤Cφ1) > P (Opy≤Dφ2)?

3.5.3 Conclusion
The cost of SMC algorithms (e.g. time and memory consumption) is particularly

low compared to classical model-checking algorithms. SMC is thus a technique of
choice when models are too large to be handled by model checkers. In contrast, some
types of properties are not supported (e.g. bounded response) and the results of the
verification are given in terms of probabilities rather than boolean answers. SMC might
be seen then as a fair compromise between simulation and exhaustive verification.

3.6 BIP
BIP (Behavior, Interaction, Priority) is a component-based language for modeling,

executing and analyzing real-time systems developed at Verimag1. A system is repre-
sented by a set of components (behavior) that interact through connectors which define
weak and/or strong synchronizations (interaction). The conflicts between connectors
are possibly resolved using priorities. Complex systems can thus be built hierarchi-
cally using compound components, that encapsulate sub-systems made of components
constrained with connectors and priorities. In this thesis, we use the RT (Real-Time)
version of BIP that supports timing constraints over clocks and refer to it as simply BIP.
The underlying formalism of BIP is timed automata, already introduced in Sect. 3.4.1.

The building unit of a BIP model is the simplest type of components, i.e. with
no hierarchies, and is knows as an atom. An atom is a DUTA (urgencies and data
variables are allowed). Ports are used to interact with other atoms and are thus the
building blocks of connectors (similar to channels in UPPAAL). Connectors may be
rendezvous or broadcasts. Rendezvous are strong synchronizations (similar to hand-
shake synchronization channels in UPPAAL with the advantage of supporting multi-
party interactions). Broadcasts are weak synchronizations similar to broadcast chan-
nels in UPPAAL. Connectors may be exported to build other connectors hierarchically.
BIP supports the use of external data types and functions for simulation and execution
purposes.

Example Fig. 3.7 shows a simple example of three BIP components interacting through
connectors with priority rules. Each component has ports that label each edge (e.g. the
edge from location idle to location busy in component A is labeled with the port start).
The little red circle denote that the port is exported for strong synchronization (e.g. the
port sync of componentB1). The black links are the connectors (e.g. s1 is a rendezvous
connector that involves the ports sync1 of A and sync of B1. The priority pr denotes
that the interactions through s1 have a higher priority than those possible through s2.
Note that, in contrast to UPPAAL, BIP offers no support for graphical representation.

1BIP documentation and downloads are available at http://www-verimag.imag.fr/BIP-Tools-93.html

71

http://www-verimag.imag.fr/BIP-Tools-93.html

clock c
A

busy

finish

c<=2

idle

c:= 0

c>0
c:= 0

c<=1

c>0

start

sync1

sync2

pr s1>s2

c>1

skip

idle

busy

B2

startsync

idle

busy

B1

startsync sync

sync sync2

sync1

start

start

start

s1

begin

s2

restart

sync2

Figure 3.7: A BIP example (graphical)

In the textual description, we need first to define the ports and connectors types.
Here the ports are basic without data flow, hence the empty arguments (line 2). The de-
fine keyword is used to specify the possible interactions through the connector (broad-
cast or rendezvous, line 5). For instance, if c sync2 was a broadcast connector type, p′

would be the way to define p as the sender:
1 /* port types */
2 port type Basic()
3 /* connector types */
4 connector type c_sync (Basic p, Basic q)
5 define p q
6 end
7 connector type c_sync2 (Basic p, Basic q, Basic r)
8 define p q r
9 end

Then, the atom types are defined. We show only the type a for component A. The
keyword provided (e.g. line 19) is for guards and reset (e.g. line 20) for resetting
clocks. After describing the behavior, invariants are defined (lines 34-35):

1 /* atoms types */
2 atom type A()
3 clock c
4 port Basic restart()
5 export port Basic sync1()
6 export port Basic sync2()
7 export port Basic start()
8
9 state idle, busy, finish, skip

10
11 initial to idle
12
13 on start

72

14 from idle to busy
15 reset c
16
17 on sync1
18 from busy to finish
19 provided c>0
20 reset c
21
22 on sync2
23 from busy to skip
24 provided c>1
25 reset c
26
27 on restart
28 from skip to idle
29
30 on sync2
31 from finish to idle
32 provided c>0
33
34 invariant inv1 at busy when (x ≤2)
35 invariant inv2 at finish when (x ≤1)
36 end

Finally, we build the compound (line 2) instantiating the components (lines 3-4) and the
connectors (lines 6 to 8) and defining the priorities (line 10). Note that the components
B1 and B2 have the same behavior and that they are instantiated from the same atom
declaration (line 4). The : ∗ given after the name of the connectors s1 and s2 (line
10) denote all the possible interactions. Thus, the priority pr states that any possible
interaction through s1 have a higher priority than any possible interaction through s2.

1 /* compound definition */
2 compound type example()
3 component a A()
4 component b B1(), B2()
5 /* connectors */
6 connector c_sync s1(A1.sync1, B1.sync)
7 connector c_sync s2(A1.sync2, B2.sync)
8 connector c_sync2 begin(A1.start, B1.start, B2.start)
9 /* priorities */

10 priority pr s1:*>s2:*

Now if we analyze the behavior of this model, we may see that, for instance, there is no
reachable global state where the current location of A is busy and the current location
of B1 (or B2) is idle. This is due to the rendezvous connector begin. More interestingly,
we may prove that the location skip of A is never reached because of the application of
priority pr.

3.6.1 RTD-Finder
RTD-Finder [Aştefănoaei et al., 2014] is a deductive, compositional verification

tool that overapproximates the reachable state space using invariants. It aims to over-
come the state space explosion problem often encountered in complex real-time sys-
tems. RTD-Finder extends its untimed version D-Finder [Bensalem et al., 2009] with
the possibility to reason over time by considering history clocks in the generation of
the components local invariants. Only TA are supported by RTD-Finder (data variables
and urgencies are ignored by the tool).

The compositional verification spirit of RTD-Finder relies on deducing the proper-

73

ties of a system from the properties of its individual components and their interactions.
The history clocks track the time elapsed since a given action has been last performed.
History clocks are formulated as constraints and are taken into account when comput-
ing the invariants of the components. This permits to, additionally, derive relations
between the clocks of different components. The invariants of the components are then
complemented with the interactions invariants, computed as in D-Finder, to obtain an
overapproximation of the reachable state space of the system.

RTD-Finder supports only safety properties, expressed as invariants themselves.
For instance, the safety property location skip of A is never reached from the example
in Fig 3.7 is expressed as follows: ¬A1 .skip. The evaluation of a safety property is
conducted on the global invariant of the system using SAT solving techniques. For this
purpose, the latest version of RTD-Finder features an interface with the state-of-the-art
SMT solver Z3 [De Moura and Bjørner, 2008].

3.6.2 The BIP Engine
The back-end compiler of BIP generates source code in C++ for execution pur-

poses. The engine ensures a correct execution of the generated source code following
the semantics of BIP. It computes execution sequences of the underlying model. In
general, an executable model is created by linking a C++ representation to the runtime
of the engine. The engine computes execution sequences with respect to the target plat-
form (concrete execution) or the host machine (simulation). In the first case, the engine
ensures the correct connection between the model and the hardware with respect to the
latter’s inputs/outputs and time constraints. In the second case, the engine interprets
time logically.

Since the underlying BIP models are formally specified and follow DUTA seman-
tics, and that the actual code of the real system can be executed by the engine, the
engine may replace the program of the real system. This may be any system that runs
C or C++ code. Using the engine makes it possible to (i) monitor the execution of the
system online with regard to e.g. its timing constraints and (ii) augment the model with
properties that the engine will enforce online. The BIP engine is thus the framework of
choice for runtime monitoring and verification. However, these advantages come at the
cost of relatively average performance that hinders using the engine for applications
running at high frequencies, such as the quadcopter.

3.6.3 Conclusion
The verification technique implemented in RTD-Finder, based on an overapproxi-

mation rather than an exact exploration of the reachable state space, makes it a valid
candidate for the verification of our models whenever they do not scale or induce a
high cost with model checking. In contrast, RTD-Finder supports only safety proper-
ties and handles neither urgencies nor data variables, which reduces, respectively, the
verification feasibility and the convenience of modeling.

The BIP engine offers an efficient environment for runtime monitoring and enforce-
ment of properties online. In particular, the latter is advantageous when the properties
of interest cannot be verified offline because e.g. they involve data that the offline
model, at its abstraction level, cannot capture. In addition, runtime enforcement of
properties does not require exploring the whole state space at once and is thus generally
scalable. In contrast, the complex computations that need to be performed continuously
by the BIP engine may have a non negligible side effect on the resource consumption

74

in the robotic platform.

3.7 Conclusion
In this chapter, we introduced the formal frameworks that will be used for the au-

tomated modeling and verification of our robotic specifications. These frameworks use
different techniques and come with various features. We rely therefore on their re-
spective advantages to use them in an efficient and complementary manner in order to
respond to our verification needs. In sum, four major methods are available:

• Model checking: with UPPAAL and Fiacre/TINA. The respective strengths of
these tools (reduction-by-inclusion technique and automated observers for Fi-
acre/TINA, overall performance and user-friendly diagnosis for UPPAAL) offer
guidance on using them efficiently depending on the properties and the complex-
ity of the robotic application.

• Invariant-based verification: with RTD-Finder. The main advantage of this method
(theoretically more scalable than model checking) calls for experimenting RTD-
Finder with safety properties when models do not scale or entail significant cost
with model checking.

• Statistical model checking: with UPPAAL-SMC. The support for stochastic be-
havior motivates the extension of GenoM3 with probabilities over non-deterministic
transitions. Moreover, the low cost of SMC algorithms makes of UPPAAL-SMC
an alternative to consider when models scale with neither model checking nor
invariant-based verification.

• Runtime enforcement of properties: with the BIP-engine. The (online) partial
exploration of the state space allows a scalable enforcement of desired properties
online. Also, the fact that the engine runs the actual code on the robotic platform
makes it possible to express properties that depend on low-level data (absent in
the offline model).

75

76

Chapter 4

Formalizing GenoM3

4.1 Introduction

In this chapter, we propose a formalization of GenoM3 components. We first moti-
vate the need of such formalization and its feasibility. We give afterwards the formal
definitions of a simplified version of a GenoM3 component where the most important
constituents and mechanisms are taken into account. Finally, we derive from these
definitions the operational semantics, given in TTS (Sect. 3.2), based on the behavior
described informally in Sect. 2.2.3.

4.2 Importance and feasibility
As seen in Chapt. 1, the absence of formal semantics in low-level robotic frame-

works is quite problematic. Indeed, it is mostly cumbersome and error-prone to try
to model robotic specifications, specified within informal frameworks such as ROS, in
formal languages and frameworks. Furthermore, computer science is a mathematically
founded discipline where, for instance, formal semantics is at the heart of program-
ming languages. Formal semantics gives a clear, unambiguous definition to the lan-
guage/software contrary to informal descriptions that might be interpreted differently
by different readers. In the case of robotics, such semantics would make it possible to
soundly translate robotic specifications into various formal frameworks. Indeed, since
the translated specifications obey some formal semantics, it is possible to construct a
proof of soundness between the semantics and the translation (Chapt. 5).

GenoM3 is amenable to formalization due, mainly, to its model-based nature. In-
deed, the definition of the entities a GenoM3 component may have is clear and finite.
For instance, we know that each GenoM3 component has one control task, and we know
how it evolves. We also know that a GenoM3 component may have a finite number of
activities, and that each activity has a finite number of codels, and the evolution rules
of an activity within its execution task are well defined. Overall, there is a finite set of
rules on what the programmer may define (definitions) and how the component evolves
(operational semantics) in GenoM3. This makes the formalization of GenoM3 possible
by carefully mapping each entity and rule into TTS.

We give formal definitions and operational semantics of a lightweight version of
GenoM3. This version preserves the most important mechanisms including concur-
rency, mutual exclusion, activation and interruption of activities. Validate codels, con-

77

trol services and aperiodic execution tasks are excluded. These choices permit giving
in-depth insights on semanticizing ambiguous, yet crucial, software aspects of GenoM3
(such as interruptions). At the same time, the formalization is not overloaded with sim-
pler and clearer mechanisms such as the execution of control services. For simplicity,
we abuse notation to make the term codel refer, from now on, interchangeably to the
codel or the state it is associated to, and bears always the name of the state rather than
the function it calls upon execution.

4.3 Syntax and syntactical restrictions

Let Comp be a GenoM3 component. We define hierarchically the constituents of
Comp:

4.3.1 Activities
An activity A is a tuple

〈IDA, CA,WA, TA, T
P
A 〉

where:

• IDA is the unique activity name,

• CA is a set of codels with at least two codels (the entry codel startA and the final
codel etherA):

{startA, etherA} ⊆ CA.
An activity may also have a “stop codel”, stopA, that defines the code to be
executed when the activity is interrupted,

• WA : CA\{etherA} 7→ Q>0 is a function that associates to every codel its
WCET (Sect. 2.2.3). We do not define a WCET for the codel ether , reserved for
termination only (there is no code attached to it),

• TA is a set of transitions of the form c→ c′ where c and c′ are codels in CA. We
denote such a transition by simply c → (or → c′) when the identity of codel c
(or c′) is unimportant,

• TPA ⊆ TA is the set of pause transitions.

4.3.2 Execution task
An execution task ET is a tuple

〈Per ,A, Inc, V 〉

where:

• A is the non-empty set of activities ET is in charge of. We use the notation IDA
to refer to the set

⋃
A∈A IDA of all IDs of activities in A,

• Per ∈ Q>0 is the period,

78

• Inc is the incompatibility function that maps the ID of each activity in A, say
IDA, to the set of activities inA that are incompatible withA, that is the activities
that must be interrupted before A is launched. Therefore:
Inc : IDA 7→ P(IDA), where P(S) denotes the powerset (the set of all subsets)
of S,

• V is a set of variables.

4.3.3 Control task
A control task CT is a specific task dedicated to the interaction between a compo-

nent and its surrounding. It is also responsible for “marking” an activity as ready for
execution or for interruption, and reports on the termination of activities. In GenoM3,
the user does not specify the control task whose behavior is defined implicitly. There-
fore, a control task is only defined at this level by a set of local variables that we call
V .

4.3.4 Component
A component Comp is a tuple 〈CT,E, V, µ〉 where:

• CT is a control task,

• E is a set of execution tasks,

• V is a set of variables (shared between CT and each ET in E).

• µ : C 7→ P(C) is the mutual exclusion function, where C is the union of all the
codels in all activities of all execution tasks inE. Informally, the set µ(c) lists the
set of codels that cannot simultaneously execute with c. In the remainder of this
document, codels c such that µ(c) = ∅ are referred to as thread safe. Otherwise
we say that c is non thread safe.

4.3.5 Application and well-formed specifications
An application, denoted App in the rest of the text, is simply a set of components.
We will only consider well-formed applications, that are defined by syntactic re-

strictions on the activities and execution tasks that they include.
First, we require that each codel in an activity A, excluding etherA, must have at

least one successor in the relation defined by the set of transitions TA. More formally,
for any activity A and codel c in CA \ {etherA}, there must be a transition of the form
c→ c′ in TA, with c′ ∈ CA.

Second, we require that a transition in TA must not involve a stop codel as a target.
Indeed stop codels are reserved for interruptions. Similarly, it cannot involve an ether
codel as its source, since ether is reserved for termination. Also, an ether codel cannot
be the target of a pause transition because the latter is for suspension until the next
period, while the former is for termination.

All the previous requirements can be expressed more succinctly with the following
constraints:

∀c ∈ CA\{etherA} ∃c′ ∈ CA : c→ c′ ∈ TA
∀c, c′ ∈ CA : (c→ c′ ∈ TA)⇒ (c 6= etherA ∧ c′ 6= stopA)
∀c, c′ ∈ CA : (c→ c′ ∈ TPA)⇒ (c′ 6= etherA)

79

Finally, ether codels are always thread safe (there is no code attached to them,
Sect. 4.3.1). Also, there must be no mutual exclusion between codels of activities that
belong to the same execution task. Indeed, any two activities A and B in the same
execution task are executed sequentially “by construction” (no activities in the same
task can run concurrently). Therefore we require that µ(c) ∩ CB = µ(c′) ∩ CA = ∅
for all c in CA and c′ in CB .

4.4 Semantics of lightweight GenoM3

The operational semantics of GenoM3 entities is given in terms of TTDs that are
composed together to build components and applications. Then we can derive a no-
tion of reduction on GenoM3 by lifting the corresponding relation at the TTS level
(Sect. 3.2.3). As a consequence, we can define the behavior of GenoM3 components
independently from the implementation (in accordance with the informal description
given in Sect. 2.2.3). In the next section, we refine the operational semantics by defin-
ing a more precise notion of actions.

Here, we need to distinguish between what the programmer specifies (which is re-
flected at the syntactical level, for instance in transitions between codels declared in
activities, Sect. 4.3), and what is implicitly specified, that is, enforced at execution to
produce the expected behavior, like for instance interruption transitions (to codel stop
if it exists). Indeed, the programmer does not specify transitions to the stop codel, if
it exists (Sect. 4.3.5), as such transitions are defined by default and automatically exe-
cuted when applicable (Sect. 2.2.3). We define the semantics of a GenoM3 component
gradually through three levels:

• Mono-task component: the component contains only one execution task (no con-
trol task),

• Multi-task component: the component contains a finite number of execution
tasks (no control task),

• All-task component: the component contains a finite number of execution tasks
and a control task.

This layering will help us present the semantics progressively, in an understandable
way, but also select the right level according to the objective (presentation, translation,
proof) such as both readability and convenience are preserved (more in next section).

4.4.1 Level 1: mono-task component
This is the lowest level in complexity (and highest abstraction). In this context, the

component contains only one execution task, which means that all the codels are thread
safe (see the property of µ() in Sect. 4.3.5).

For the sake of simplicity, we stop referring to the names of edges in TTDs (Sect. 3.2.4).
That is, an edge e that connects vertex v to v′, denoted also v e−→ v′ in Sect. 3.2.4 will
be referred to, from now on, as simply v → v′, v → (when the identity of v′ is un-
inmportant), or → v′ (when the identity of v is unimportant). This will alleviate the
notations but still permits to define edges uniquely through their source and target ver-
tices and the set they belong to as we will see hereafter. It will also ease loading edges
with actions in Sect. 5.3.

80

Definition 1 Activities semantics.
The operational semantics of an activity 〈IDA, CA,WA, TA, T

P
A 〉 (Sect. 4.3.1) is given

by a TTD (Sect.3.2.4) such that:

• Vertices V : each c ∈ CA is mapped to one vertex with the same name c ∈ V .
The initial vertex v0 is etherA.

• Edges E are partitioned into a set of nominal edges, E N , and additional edges,
E A. That is E = E N ∪ E A where:

– Nominal edges: each transition c → c′ in TA is mapped to an edge c → c′

in E N . We distinguish three disjoint sets of nominal edges:
E N = E P ∪ E T ∪ E X . E P is the (possibly empty) set of pause edges
that maps the set of pause transitions T P ; E T is the (possibly empty) set
of termination edges of the form→ ether and E X the (possibly empty) set
of the remaining (execution) edges.

– Additional edges: We distinguish two disjoint sets of additional edges:
E A = E S ∪ E I . E S contains the additional edge for starting ether → start .
E I is the set of additional edges for interruption: (i) from vertex c = ether
and (ii) from each vertex c such that there is an edge→ c in E P to vertex
stopA if stopA ∈ CA (to vertex etherA otherwise).

• Time intervals I: I =]0 ,W (c)] for each edge in E N and I = [0 , 0] for each
edge in E A.

Consequently, the set of nominal edges maps the transitions that the programmer spec-
ifies, while the set of additional edges reflects internal actions enforced by GenoM3 to
handle starting and interruption of activities. The additional edges for interruption E I

ensure that an activity that is interrupted before starting or after a pause will execute
the interruption routine: transit to stop (if it exists) or terminate by transiting to ether
(otherwise).

Edges uniqueness For activities, due to the restrictions defined in Sect. 4.3.5, the
sets E N and E A are necessarily disjoint, and thus all subsets of E N and E A are mu-
tually disjoint. Moreover, it is not possible to have two different edges with exactly the
same source and target codel, so specifying the source and target of an edge defines it
uniquely. The only exception is for codels c that are both the target of a pause transition
(∃ → c ∈ TPA) and the source of a transition to ether (c→ etherA ∈ TA) in an activity
that does not have a stop codel. In this case, we end up with two edges connecting c to
etherA: one nominal for termination (in the set E T) and one additional for interruption
(in the set E I). Here, it is sufficient to mention also to which set the edge belongs to
define it uniquely. For TTDs of other entities excluding the control task (such as the
task manager, see below), edges are uniquely defined through their source and target
vertices. This remains true at level 2 and level 3 (next sections).

Example This example shows the definition of an activity A and its operational se-
mantics.
Syntactic definition (from Sect. 4.3.1)

• CA = {startA,mainA, etherA},

• WA(startA) = 1 ,WA(mainA) = 2 ,

81

• TA = {startA → mainA,mainA → etherA},

• TPA = ∅.

Semantics We apply Definition 1 to A to get the TTD of A in Fig. 4.1. Note the edge
from etherA to etherA that represents interruption (absence of codel stopA here).

startA mainA

etherA

]0,1]

]0,2]

[0,0]

[0,0]

Figure 4.1: Activity TTD example (mono-task context)

Definition 2 Execution task semantics.
The semantics of an execution task ET = 〈Per ,A, Inc, V 〉 is a TTS (parallel compo-
sition, Sect.3.2.5)

ET = {Θ}[Tim||Ex]

where Θ gives the initial values of the shared variables (given below) and Tim is the
timer.

Ex is a TTS (sequential composition, Sect.3.2.6)

{Θ}[M ||(||
A∈A

A)]

where M is the task manager and ||
A∈A

A is the sequential composition (Sect.3.2.6) of

all activities A in A (Sect. 4.3.2).
The set of variables V contains: N , the set of names of activities to be executed

nominally, R, the set of names of activities to be interrupted (bothN andR are defined
over IDA, Sect. 4.3.2), sig , the period signal (boolean), and Π, the control passing
variable (of type IDA ∪ M , the same idea as in Sect.3.2.6). The initial values are
Θ(N) = Θ(R) = ∅, Θ(sig) = False , and Θ(Π) = M .

Π is initialized to M to ensure that the manager has the control when the system starts
(the global control is held by the manager M at the initial state of the underlying TTS).
Both Tim and M are TTDs whose behavior is defined in the sequel.

Definition 3 Timer semantics.
The timer has one vertex and one edge. The latter is associated with the interval
[Per ,Per] and the operation sig := true (Fig. 4.2).

Changing the value of sig to true corresponds to transmitting a signal asynchronously
to the manager (see below). The time interval [Per ,Per] ensures that this signal is
transmitted at exactly each period (each Per time units).

82

start
[Per, Per]
sig:= true

Figure 4.2: Timer TTD

Definition 4 Manager semantics.
The manager is a TTD with two vertices: wait and manage. The edges, guards, opera-
tions and time intervals are shown in Fig. 4.3.

The location wait denotes waiting for the next period signal and manage is to exe-
cute activities, if any. The union N ∪R defines the set of activities to execute through
their IDs . The operation Π := rand(N ∪ R) gives the global control randomly to one
of the activities whose ID is in N ∪R (by assigning randomly an element from N ∪R
to Π). The manager transits back to wait as soon as the set defined by this union is
empty.

Since Θ(N) = Θ(R) = ∅, no activity would ever be executed by the manager.
This is normal because fulfilling activities requests is the role of the control task that we
do not have at this level. The manager performs the operation rrand(N ,R) to solve
this problem. It initializes randomly N and R, over the set of IDs of the activities
ET is in charge of; while respecting the disjointness condition N ∩ R = ∅ and the
uniqueness condition (IDA ∈ S ∧ IDB ∈ S) ⇒ (A 6= B) with S is either N or
R. Note how the guard on the edge from wait to manage does not contain the clause

wait
[0, 0]

sig:= false,
rrand(N,R)

sig N∪R ≠ ∅ ∧ π = M

π := rand(N∪R)
[0, 0]

manage

[0, 0]
N∪R = ∅ ∧ π = M

Figure 4.3: Manager TTD

Π = M . This is indeed not necessary as we may easily prove that if the manager is
at vertex wait, then Π = M (this kind of invariants will be useful when we prove the
soundness of our translation in the next section):

• First visit: Θ(Π) = M ,

• Subsequent visits: each subsequent visit results from taking the edge from man-
age to wait, which is itself guarded by Π = M and does not modify Π,

• Time progress: all operations that change Π from M to something else are on
the edges whose source vertex is manage, which means that the value of Π when
reaching wait, proven above to beM , will remain so as long as the current vertex
of manager is wait. Activities have also access to Π but never change it to
something else than M (see below).

83

Now we see how the TTD of an activityA given in Definition 1 is enriched with guards
and operations when involved in the execution task.

Definition 5 Activities semantics (enriched).
Each incoming edge to ether (each element of E T if a codel stop exists, of E T ∪ E I

otherwise) and each pause edge (each element of E P) is augmented with the oper-
ation Π := M and the operation UP(ID ,N ,R) that removes ID from N or R,
whichever set it belongs to. Additional edges for interruption (E I) are guarded with
Π = ID ∧ ID ∈ R. The starting edge (the only element of E S) and each edge c → in
E N such that there exists an edge→ c in E P are guarded with Π = ID ∧ ID ∈ N .

Let us illustrate with an example how this augmentation with guards and operations
coincides with the behavior given in Sect. 2.2.3. We consider the same activity A
(Fig. 4.1) and a second activity B defined as follows:

• CB = {startB ,mainB , stopB , etherB},

• WB (startB) = 1 ,WB (mainB) = 2 ,WB (stopB) = 1 ,

• TB = {startB → mainB ,mainB → mainB , stopB → etherB},

• T P
B = {mainB → mainB}.

We apply Definition 5 to get the TTDs of A and B in Fig. 4.4 when evolving within
the execution task whose manager and timer are represented in Fig. 4.3 and Fig. 4.2
(Definition 4 and Definition 3), respectively. The non-determinism on whether to ex-
ecute nominally or interrupt at the beginning of the execution (from ether or wherever
the activity was paused) is resolved by finding to which set the activity ID belongs (e.g.
edges from mainB to stopB and from mainB to mainB). At the end of the execution,
either by taking a pause edge (e.g. edge from mainB to mainB) or reaching ether
(e.g. edge from mainA to etherA), the control is given back to the manager through
the operation Π := M . Together with such operation, the activity updates the set N or
R by removing its ID from the set it belongs to through the operation UP(ID ,N ,R).
This is to denote that there is no further execution required for this activity in the cur-
rent cycle. Note that checking whether the activity has the control is necessary only on
starting and interrupting edges and when resuming after a pause (Definition 5) as we
may easily prove that when activating any of the remaining edges, Π is always equal to
the activity ID .

Component At this level, the component is simply the execution task ET . It is thus
derived from Definition 2.

4.4.2 Level 2: multi-task component
At this level, the component may contain several execution tasks, which means

that some codels may be non thread safe. Only the operational semantics of activities
change.

Definition 6 Activities semantics (level 2).
The operational semantics of an activity 〈IDA, CA,WA, TA, T

P
A 〉 (Sect. 4.3.1) is given

by a TTD such that:

84

startA

]0,1]

]0
,2

]

[0,0]

[0,0]

]0,1]

]0,2]

[0,0]

A B

]0,1]

[0,0]

[0,0]

π = ID
A ∧ ID

A∈ N

π = IDA ∧ IDA∈ R

π
 = ID

B ∧
 ID

B ∈
 N

π = IDB ∧ IDB∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB∈ N

UP(IDB ,N,R), π := M

UP(IDA ,N,R), π := M

UP(IDB ,N,R), π := M

U
P

(ID
A

 ,N
,R

),
π

 :=
 M

mainA

etherA

startB mainB

stopBetherB

Figure 4.4: Activities A and B in task ET (level 1)

• Vertices V : each c ∈ CA s.t. µ(c) 6= ∅ (non thread safe) is mapped to two
vertices c and cexec. Definition 1 applies otherwise.

• Edges E: partitioned into nominal edges E N and additional edges E A:

– Nominal edges E N : partitioned into E P (pause edges), E T (termination
edges) and E X (execution edges). Each transition in TA\TPA from a non-
thread-safe codel c to c′ is mapped to an edge cexec → c′ in E X (in E T if
c′ = ether). Each transition in TPA from a non-thread-safe codel c to c′ is
mapped to an edge cexec → c′ in E P . For the remaining transitions in TA,
Definition 1 applies to get their mapping in E N ,

– Additional edges E A: partitioned into E I (interruption edges), E S (start-
ing edges) and E M (mutual exclusion edges). E M is the set of edges
c → cexec for all non-thread-safe codels c. Definition 1 applies to get
E S and E I .

• Time intervals: Definition 1 applies on all edges.

The manager and the timer remain unchanged (Definition 3 and Definition 4).
Now we see how the activities at this level are enriched when involved in ET .

Definition 7 Activities semantics (enriched, level 2).
Definition 5 applies. Then, each additional edge c → cexec in E M is guarded with
Fr(c) ∧Π = ID ∧ ID ∈ N if there exists an edge → c in EP (Fr(c) otherwise),
such that Fr(c) is true if and only if c′exec is not the current vertex of its activity (in the
global state of the underlying TTS) for all c′ in µ(c).

The guard Fr(c) is to ensure no two codels sharing some resources run simultaneously.
It is implementable through e.g. shared variables (see example in [Foughali et al.,
2016], section 6.1).

85

Example Let us consider the same activitiesA andB from the previous level seman-
tics (Sect. 4.4.1). The behavior is the same, but some codels become non thread safe
due to the existence of other execution tasks:

• Activity A: The codel mainA becomes non thread safe (µ(mainA) 6= ∅).

• Activity B: The codel mainB becomes non thread safe (µ(mainB) 6= ∅).

Applying Definition 6 then Definition 7 to A and B give the TTDs in Fig. 4.5.

startA

]0
,1

]

[0,0]

]0
,2

]

[0,0]

[0,0]

mainB exec

]0,1]
[0,0]

]0,2]

[0,0]

A B

]0,1]

[0,0]

[0,0]
π = ID

A ∧ ID
A∈ N

π = IDA ∧ IDA∈ R

π
 = ID

B ∧
 ID

B ∈
 N

π = IDB ∧ IDB∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB∈ N
∧ Fr(mainB)

UP(IDB ,N,R), π := M

UP(IDA ,N,R), π := M

Fr(mainA)
UP(IDB ,N,R), π := M

U
P

(ID
A

 ,N
,R

),
π

 :
=
 M

mainA execmainA

etherA

startB mainB

stopBetherB

Figure 4.5: Activities A and B in task ET (level 2)

Component At this level, the component is the TTS

Comp = [E]

where E =‖i∈1 ..n ETi is the parallel composition of all execution tasks in the com-
ponent Comp.

4.4.3 Level 3: all-task component
Definition 8 Control task semantics.
The semantics of a control task (Sect. 4.3.3) is given over the TTD in Fig. 4.6 where:
rec(ID) evaluates to true when an activity ID is received, Insert(ID ,Wa) inserts the
received ID in the local variable (a set) Wa , and report is the operation of reporting
to external entities.

Requesting an activity, denoted by the guard rec(ID) (ID received), triggers an
urgent edge from the initial vertex idle to the vertex busy . The received activity name
is inserted in the set Wa , which is an initially empty local variable denoting the names
of the activities waiting for activation (it is the only element of V given in Sect. 4.3.3).
Another possible edge with the same source and target vertices is triggered when an
activity finishes its execution (the guard will be formalized later). The edge from busy
to end includes the operations of e.g. interruption and activation, which will be given
later. The edge from end to idle corresponds to sending replies through the operation
report to external entities.

86

idle
[0, 0]
rec(ID)

[0, 0]

busy

[0, 0]

end

[0, 0]

Insert (ID,Wa)

report

Figure 4.6: Control task TTD

Definition 9 Component semantics.
a GenoM3 component is a TTS

Comp = {Θ}[CT ‖ E]

where CT is a control task, and E =‖i∈1 ..n ETi is the TTS resulting from the parallel
composition of all the n execution tasks ET in component Comp (CT and E are the
operational counterparts of CT and E in Sect. 4.3.4), and Θ gives the initial values
of the shared variables (from V in Sect. 4.3.4). These shared variables are: Act the
set of activated activities, In the set of interrupted activities and Fi the set of finished
activities. Θ(Act) = Θ(In) = Θ(Fi) = ∅.

Act and In are modifiable only by CT that determines who is activated and who is
interrupted (read-only for E) and Fi is modifiable by everyone (both activities and
control task need to update it).

Now, the execution tasks and control task diagrams will be enriched with operations
over shared variables to ensure a correct behavior within Comp (with regard to that
given informally in Sect. 2.2.3). Within an execution task, the manager (Definition 4)
and the activities (Definition 7) will be enriched as follows:

Definition 10 Manager semantics (level 3).
On the edge from wait to manage (Definition 4), N and R are copied from Act and
In , respectively (instead of randomization). Only the names of the activities that this
execution task is in charge of (i.e. activities members of A, Sect. 4.3.3) are copied,
excluding those in Fi . That is, for task ET , the restricted copy of Act into N results in
the set N = {IDA|A ∈ A ∧A ∈ Act ∧A /∈ Fi} (and similarly when copying In into
R). We denote this operation by rcopy (restricted copy), see Fig. 4.7.

The restricted copy eliminates possible infinite execution scenarios (the execution
task makes the copy once, the activities activated afterwards will be processed at the
next period). Excluding the elements in Fi when copying ensures that already termi-
nated activities will not be re-executed (unless requested again in the future).

Definition 11 Activities semantics (level 3)
The enriched TTD is obtained from Definition 7. Then, on each incoming edge to ether
(each element of E T if a codel stop exists, of E T ∪ E I otherwise), a new operation
that inserts the activity ID in the set Fi is added.

87

wait
[0, 0]

sig:= false,

sig

π := rand(N∪R)
[0, 0]

manage

[0, 0]

rcopy(Act,N), rcopy(In,R)

N∪R ≠ ∅

N∪R = ∅ ∧ π = M

Figure 4.7: Manager TTD (level 3)

This new operation will notify the control task to act accordingly on the termination
of the activity (see below). Applying Definition 11 to activities A and B (Fig. 4.5)
gives the TTDs in Fig. 4.8.

startA

]0
,1

]

[0,0]

]0
,2

]

[0,0]

[0,0]

mainB exec

]0,1]
[0,0]

]0,2]

[0,0]

A B

]0,1]

[0,0]

[0,0]
π = ID

A ∧ ID
A∈ N

π = IDA ∧ IDA∈ R

π
 = ID

B ∧
 ID

B ∈
 N

π = IDB ∧ IDB∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB∈ N
∧ Fr(mainB)

UP(IDB ,N,R), π := M
Insert(IDB, Fi)

UP(IDA ,N,R), π := M
Insert(IDA, Fi)

Fr(mainA)
UP(IDB ,N,R), π := M

U
P

(ID
A

 ,N
,R

),
π

 :
=
 M

In
se

rt
(ID

A
, F

i)

mainA execmainA

etherA

startB mainB

stopBetherB

Figure 4.8: Activities A and B in task ET (level 3)

Definition 12 Control task semantics (enriched).
The control task (Definition 8) is enriched as follows: the edge idle → busy (not
guarded with rec(ID)) is guarded with a non-emptiness condition on Fi (Fig. 4.9).
The edge busy → end is associated with the following operations (in this order):

• update Act and In by removing the IDs in Fi :
Act := Act\(Act ∩ Fi) (and same for In)
We refer to this operation as U (),

• empty Fi ,

• Activate and interrupt: move elements of Wa to Act if possible (and from Act
to In if necessary):
∀id ∈Wa:

if Inc(id) ∩ (Act ∪ In) = ∅ then
Wa := Wa\{id} and Act := Act ∪ {id} (activation)

else if Inc(id) ∩Act 6= ∅ then

88

In := In ∪ (Act ∩ Inc(id)) and Act := Act\(Act ∩ Inc(id)) (in-
terruption).
We refer to this operation as A I ().

idle
[0, 0]
rec(ID)

[0, 0]

busy

[0, 0]

end

[0, 0]

Insert (ID,Wa)

report
U(),

Fi:= ∅,

A_I()

Fi ≠ ∅

Figure 4.9: Control task TTD (enriched)

The guard Fi 6= ∅, combined with the urgency interval [0, 0] (the edge idle → busy
not guarded with rec(ID)), allows the control task to update the sets Act and In as soon
as an activity ends. The operation U () on the edge busy → end ensures that this up-
date is correct by removing the ended activities from the sets of activities to be executed
(Act ∪ In). The operation A I () activates the waiting activities if possible. That is, for
each waiting activity A (in Wa), it checks if there is at least an activity incompatible
with it that is still not terminated (in Act ∪ In). If it is the case, then A needs to wait
further (remains in Wa) and the incompatible activities with A that are not interrupted
(in Act) need to be moved to In . Otherwise, A is activated (moved from Wa to Act).
After these operations, the control task reports to the external entity that requested the
finished activities (if any, edge end → idle).

4.4.4 Application
A robotic specification written in GenoM3 contains usually several components. We

give thus the definition of a robotic application in terms of operational semantics. We
can apply this at any level, which gives us different views of an application at different
levels of abstraction. Note that the data flow through ports is not specified at this level
as its mechanisms depend on the implementation [Foughali et al., 2018].

Definition 13 Application semantics.
An m-component specification is the TTS resulting from the parallel composition of all
components

app = [‖i∈1 ..m Compi]

.

4.5 Conclusion

In this chapter, we formalize a lightweight version of GenoM3 in TTS. The for-
mal definitions give an unambiguous characterization of the most complex GenoM3

89

constituents, namely activities, execution and control tasks. We thus tackle the most
delicate mechanisms such as interruption and communication between tasks while ab-
stracting away less delicate aspects like the execution of control services. This makes
our semantics both understandable and extendable. Indeed, this semantics is amenable
to enriching with the discarded, less complex entities/aspects with a minimal effort.
We provide thus a sort of abstract syntax that, despite helping practitioners grasp the
notion of components and their ingredients, defines the attributes on which operational
semantics are built. That is, each abstract element in a tuple has an operational mean-
ing that helps define the behavior of the global system. The work on semanticizing
GenoM3 allowed to clarify several ambiguous notions such as the incompatibility be-
tween activities and the behavior of pause transitions. Additionally, it allowed, using
the full power of TTS, GenoM3 to evolve from a single-threaded version, where tasks
executed sequentially using a global lock, to a multithreaded one where tasks run in
parallel following a fine-grain mutual exclusion model.

In contrast to the descriptions given in Sect.2.2.3, the operational semantics favors
unambiguity and gives a clear view on the behavior of GenoM3 components. Indeed,
the semantics given in this section in terms of TTDs composed in parallel would always
give the same TTS for the same GenoM3 specifications, while informal descriptions
might be interpreted in different ways. Also, besides the choice of TTS, only ele-
mentary operations over sets and booleans are used which abstracts away from more
tedious structures and complex operators and contributes thus to the comprehension of
the formalization. This will smooth translating the semantics to other formalisms and
proving the soundness of such translations as we will see in the next chapter.

90

Chapter 5

Translation of GenoM3
Semantics

5.1 Introduction

In this chapter, we translate the high-level semantics of lightweight GenoM3 (Chapt. 4)
to DUTA (Sect. 3.4.2). We then prove the correctness of the translation using bisim-
ulation. This argues in favor of the soundness of the approach but also the possibility
to reproduce similar proofs for the implementation-level mappings (Chapt. 6). It thus
paves the way to a generic mapping of GenoM3 components into the targeted formal
frameworks, namely Fiacre, UPPAAL and BIP.

5.2 Translation to DUTA
DUTA use clocks which evolve monotonically with time and do not depend on

edges enabledness. It is thus important to translate while preserving a semantically
equivalent behavior under clocks. This equivalence will be proven using bisimula-
tion (Sect. 5.3). From the previous section, we easily notice that the main source of
complexity in GenoM3 resides at the execution tasks level. Thus, for readability and
convenience, we restrict our translation to the first two levels of operational seman-
tics (Sect. 4.4.1 and Sect. 4.4.2). At these levels, we use the rrand(N ,R) initial-
ization (Sect. 4.4.1) which covers all the possible evolutions of execution tasks as N
and R would contain at least all possible IDs if the control task was involved. That
is, the set of all the possible configurations of N and R resulting from the applica-
tion of rrand(N ,R) is a superset of that resulting from applying the restricted copy
rcopy(N ,R) (Sect. 4.4.3).

5.2.1 Mono-task component
The objective is now to define the DUTA equivalent to the TTS of ET (Sect. 4.4.1):

{Θ}[Tim ‖ M ‖ (‖
A∈A

A)]

where Tim , M and A are, respectively, the DUTA translations of the timer, the man-
ager and each activity in A. Θ will define the initial values of shared variables in the

91

DUTA of ET that will have the same names as in in the TTS, i.e. N , R, Π and sig .
We give hereafter the definitions of the elements of the DUTA of ET .

Definition 14 Timer Tim (DUTA).
The DUTA translation of the timer is given by the following rules:

• clocks: The timer has one clock xt , whose initial valuation is zero,

• locations: The timer has one location start that maps the vertex start of its TTD
counterpart (Definition 3). It is associated with the invariant xt ≤ Per ,

• edges: The timer has one edge from start to start that maps its TTD counterpart.
With this edge, a guard xt = Per and an operation that resets xt to zero are
associated. The sig := true operation is also associated with the same edge.

The invariant on location start is to enforce its unique outgoing edge to be taken
at Per time units at most. The guard on the latter (xt = Per) is to ensure taking it at
exactly each period, and the reset operation xt := 0 to recount the period from zero
each time. Consequently, the period signal through sig is sent periodically.

Fig. 5.1 shows the timer TTD given in Definition 3 and its DUTA counterpart,
resulting from applying Definition 14.

start
[Per, Per]
sig:= true

(a) Timer TTD

start

clock xt

xt ≤ Per

xt=Per
sig:= true,

xt:= 0

(b) Timer DUTA

Figure 5.1: Timer TTD to DUTA (Definition 14)

Definition 15 Manager M (DUTA).
The DUTA translation of the manager is given by the following rules:

• locations: The manager has two locations wait and manage that map their TTD
counterparts (Definition 4),

• edges: The manager has three edges that map their TTD counterpart. Guards
and operations are the same as in the TTD version. Now the urgency on each
TTD edge, ensured with [0, 0] intervals, is enforced by making each edge in the
DUTA counterpart eager .

Fig. 5.2 shows the manager TTD given in Definition 4 and its DUTA counterpart,
resulting from applying Definition 15.

We define now translation rules for activities. Due to the special pause statements,
one needs to be particularly careful with the translation of activities. For starts, let us
consider activity A with the restriction TPA = ∅. We will clarify later with an example
why pause behaviors at this level are more delicate to translate to DUTA and propose
a solution as a general rule (see Definition 17 below).

Definition 16 Activities A (DUTA, restricted).
The DUTA translation of an activity A such that T P

A = ∅ is given by the following
rules:

92

wait
[0, 0]

sig:= false,
rrand(N,R)

sig N∪R ≠ ∅ ∧ π = M

π := rand(N∪R)
[0, 0]

manage

[0, 0]
N∪R = ∅ ∧ π = M

(a) Manager TTD

wait

sig:= false,
rrand(N,R)

sig N∪R ≠ ∅ ∧ π = M
π := rand(N∪R)

manage

N∪R = ∅ ∧ π = M

(b) Manager DUTA

Figure 5.2: Manager TTD to DUTA (Definition 15)

• clocks: An activity A has one clock xA, whose initial valuation is zero,

• locations: Each vertex in the underlying TTD (Definition 5) is mapped to a
location with the same name in the DUTA. Each location c 6= ether is associated
with an invariant xA ≤ ↑I(c → c′) with c′ any vertex in the TTD s.t. c → c′

in E (↑I of any outgoing edge of c is equal to W (c) of the underlying codel,
Definition 11),

• edges: (1) Each edge of the underlying TTD is mapped into an edge in the target
DUTA with the same source and target. (2) Urgency intervals [0, 0] are mapped
into

;

tags (eager edges). (3) Each outgoing edge of a location that is associated
with an invariant xA ≤W (c) is guarded with xA > 0. (4) Each incoming
edge to a location with an invariant xA ≤W (c) is associated with the reset
operation over xA. (5) Guards (respect. operations) associated with each edge
in the DUTA result from the conjunction (respect. sequencing) of guards (respect.
operations) of its TTD counterpart and the guards (respect. resets) of clocks as
defined in (3) and (4).

The invariants ensure that the execution of each codel takes between zero and W (c)
units of time. For clock x, the guards x > 0 are to eliminate 0 as a possible execution
time and the reset operations are to ensure counting W (c) starting at zero. Conse-
quently, each codel c is executed in a non-zero amount of time inferior or equal to its
WCET W (c).

As an example, Fig. 5.3 shows the TTD of activity A (Sect. 4.4.1, Fig. 4.4 left) and
its DUTA counterpart, resulting from applying Definition 16.

Let us now focus on activity B at the same level (Sect. 4.4.1, Fig. 4.4 right). We
note immediately that B violates the restriction in Definition 16 since
T P 6= ∅. The activity B is a good practical example to show why Definition 16 may
lead to incorrect translations in some cases due to the nature of clocks in DUTA.

Fig. 5.4 shows the TTD of activity B (Sect. 4.4.1, Fig. 4.4 right) and its DUTA
counterpart, resulting from applying Definition 16. This translation is incorrect. In-
deed, if B passes the control back to the manager after a pause transition (taking the
edge from mainB to mainB in the DUTA in Fig. 5.4), the clock xB will continue
evolving monotonically and the DUTA will timelock after 2 time units unless it re-
sumes the control before then (all outgoing edges from location mainB are disabled).
This problem is due in part to the fact that clocks evolve independently from edges
enabledness in DUTA (in contrast to TTDs where time intervals are relative to the date

1This is true for all outgoing edges of c here because no pause transition exists in the underlying activity,
and thus no interruption is possible from any c 6= ether

93

startA

]0,1]

]0
,2

]
[0,0]

[0,0]

A

π = ID
A ∧ ID

A∈ N

π = IDA ∧ IDA∈ R

UP(IDA ,N,R), π := M
U

P(
ID

A
,N

,R
),
π

 :=
 M

mainA

etherA

(a) TTD of Activity A task ET (level 1)

startA

A

π = IDA ∧ IDA ∈ R
UP(IDA ,N,R),
π:= M

UP
(ID

A
,N

,R
),

π:
=

M

mainA

clock xA

xA ≤ 1

x A
>0

π = ID
A ∧ ID

A ∈ N

xA:=
 0

xA ≤ 2

x A
>0

x
A:= 0

etherA

(b) DUTA of Activity A in task ET (level 1)

Figure 5.3: Activities TTD to DUTA (activity A, level 1, Definition 16)

]0,1]

]0,2]
[0,0]

B

]0,1]

[0,0]

[0,0]

π
 = ID

B ∧
 ID

B ∈
 N

π = IDB ∧ IDB∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB∈ N

UP(IDB ,N,R), π := M

UP(IDB ,N,R), π := M
startB mainB

stopBetherB

(a) TTD of Activity B task ET (level 1)

startB

B

π = ID
B ∧

 ID
B ∈

 N

π = IDB ∧ IDB ∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB ∈ N ∧ xB>0

UP(IDB ,N,R), π:= M

UP(IDB ,N,R), π:= Mclock xB

xB ≤ 1

xB ≤ 2

xB ≤ 1

xB>0

xB>0

xB:= 0

x
B := 0

x
B := 0

mainB

stopB

etherB

xB:= 0

xB:= 0

(b) Incorrect DUTA of Activity B (level 1)

Figure 5.4: Incorrect TTD to DUTA translation (activity B, level 1, Definition 16)

their edge was last enabled). We propose thus a new generic translation that is valid for
all activities at this level without restrictions.

Definition 17 Activities A (DUTA, level 1).
The DUTA of an activity A is defined using the following translation rules:

• clocks: Same as in Definition 16,

• locations: Each vertex c of a codel c s.t. there exists → c in T P is mapped
to, besides the location c (Definition 16), another location cpause. The rules on
translating vertices in Definition 16 apply on the remaining vertices to obtain
the remaining locations,

94

• edges: Obtained through two steps:
- (a) Each edge c

g,op−−→ c′ in E P (Definition 1) is mapped to an edge c
xA>0 ,op−−−−−→ c′pause

in the DUTA, and an eager edge c′pause
g,xA:=0−−−−−→ c′ is added.

- (b) Each interruption edge (in E I) in the TTD from c 6= ether to stop (respect.
to ether , Definition 1) is mapped to an edge from location cpause to stop (re-
spect. to ether)2. Then, Rule (1) of Definition 16 is applied on the remaining
edges of the TTD to obtain their counterpart in the DUTA. Finally, rules (2) to
(5) in Definition 16 are subsequently applied to all edges obtained at step (b).

These additional rules will allow time on clocks to evolve unboundedly at locations
cpause, that is when the activity is paused. Resuming the activity nominally is then
equivalent to taking the eager edge cpause → c and the clock will be reset at this very
edge to count the WCET of c starting from 0.

Now, applying Definition 17 to activity A will give exactly the same outcome as
when applying Definition 16 (Fig. 5.3). Let us apply Definition 17 to activity B for
which Definition 16 is not valid as shown in Fig. 5.4. The new translation is given in
Fig. 5.5. Here we know that mainB is reached only when B has the control and with a
prior clock reset, which eliminates the potential timelock seen in Fig. 5.4.

]0,1]

]0,2]

[0,0]

B

]0,1]

[0,0]

[0,0]
π

 = ID
B ∧

 ID
B ∈

 N

π = IDB ∧ IDB∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB∈ N

UP(IDB ,N,R), π := M

UP(IDB ,N,R), π := M
startB mainB

stopBetherB

(a) TTD of Activity B task ET (level 1)

startB
mainB pause

B

π = ID
B ∧

 ID
B ∈

 N

π = IDB ∧ IDB ∈ R

π
 =

 ID
B ∧

 ID
B ∈

 R

π = IDB ∧ IDB ∈ N

UP(IDB ,N,R), π:= M

UP(IDB ,N,R), π:= M

clock xB

xB ≤ 1

xB ≤ 2

xB ≤ 1

xB>0

xB>0

xB:= 0

x
B := 0

x
B := 0

mainB

stopB

etherB

xB:= 0

xB:= 0

xB>0

(b) DUTA of Activity B in task ET (level 1)

Figure 5.5: TTD to DUTA translation (activity B, level 1, Definition 17)

5.2.2 Multi-task component
The DUTA translation rules remain unchanged for the timer Tim ′ and manager

M ′. We extend now translation rules for activities to take into account non-thread-safe
codels.

Definition 18 Activities A′ (DUTA, level 2).
The DUTA of an activity A is defined using the following translation rules:

• clocks: Same as in Definition 16,

2To ensure interruption of a paused activity occurs as soon as the latter is resumed.

95

• locations: Each vertex c in the underlying TTD (Definition 7) of a thread-safe
codel c s.t. there exists→ c in T P is mapped to, besides the location c , another
location cpause. Each remaining vertex in the underlying TTD (Definition 7) is
mapped to a location with the same name in the DUTA. Each location c that
maps a vertex c of a thread-safe codel c 6= ether is associated with an invariant
xA ≤ ↑I(c → c′) with c′ any vertex in the TTD s.t. c → c′ in EN . The same
invariant rule is applied to each location cexec,

• edges: Obtained through two steps:
- (a) Each edge c

g,op−−→ c′ in E P s.t. c′ is thread safe is mapped to an edge
c

xA>0 ,op−−−−−→ c′pause in the DUTA, and an eager edge c′pause
g,xA:=0−−−−−→ c′ is added.

- (b) Each interruption edge (in E I) in the TTD from c 6= ether to stop (respect.
to ether , Definition 1) is mapped to an edge from location cpause to stop (re-
spect. to ether)3. Then, Rule (1) of Definition 16 is applied on the remaining
edges of the TTD to obtain their counterpart in the DUTA. Finally, rules (2) to
(5) in Definition 16 are subsequently applied to all edges obtained at step (b).

We note immediately the resemblance between this translation and that given for level
1. Indeed, only thread-safe codels targeted by pause transitions induce a non-direct
mapping of vertices and edges, and this aspect is already covered at level 1. For in-
stance, applying Definition 18 to activities A and B at level 2 (Sect. 4.4.2, Fig. 4.5)
gives the models in Fig. 5.6. Notice how, in the absence of thread-safe codels targeted
by pause transitions, the translation is rather a one-to-one mapping (besides clock-
related constraints).

5.3 Translation soundness
In this section, we use weak timed bisimulation (Definition 20 below) to prove

that our translation from TTS to DUTA is correct. To make the proof readable and the
definitions minimal, we restrict it at level 1. This choice is both convenient and repre-
sentative since it shows the most delicate aspect of the translation, related to thread-safe
codels targeted by pause transitions. Indeed, we saw in the previous section how, ex-
cept this aspect, the translation is rather straightforward.

5.3.1 Execution actions
To ease following the events within a GenoM3 execution task, we define a set of

possible actions. Each action represents a category of similar events that obey the same
guards and have similar side effects on global variables. This will also ease reasoning
on the soundness of the translation to DUTA. We first define the actions for the original
system (in TTS) then the translation (in DUTA).

Nominal execution Nominal edges E N are the ones explicitly specified in the GenoM3
specification (Sect. 4.3.1 and Definition 1). In order to partition these edges according
to the actions they pertain to, we need to have a similar precondition for them. The is-
sue here is that nominal edges (members of E N) do not necessarily obey the property
IDA ∈ N . Indeed, in activity B for instance (Sect. 4.4.1, Fig. 4.4 right), the edge from
stopB to etherB is nominal, yet it is taken when IDA ∈ R. This will make it hard to

3To ensure interruption of a paused activity occurs as soon as the latter is resumed.

96

startA

]0
,1

]
[0,0]

]0
,2

]

[0,0]

[0,0]

mainB exec

]0,1]
[0,0]

]0,2]

[0,0]

A B

]0,1]

[0,0]

[0,0]
π = ID

A ∧ ID
A∈ N

π = IDA ∧ IDA∈ R

π
 = ID

B ∧ ID
B ∈

 N

π = IDB ∧ IDB∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB∈ N
∧ Fr(mainB)

UP(IDB ,N,R), π := M

UP(IDA ,N,R), π := M

Fr(mainA)
UP(IDB ,N,R), π := M

U
P

(ID
A

 ,N
,R

),
π

 :=
 M

mainA execmainA

etherA

startB mainB

stopBetherB

(a) TTDs of Activities A and B in task ET (level 2)

startA

startB
mainB exec

A B

π = IDA ∧ IDA ∈ R

π =
 ID

B ∧
 ID

B ∈
 N

π = IDB ∧ IDB ∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB ∈ N
∧ Fr(mainB)

UP(IDB ,N,R), π:= M

UP(IDA ,N,R),
π:= M

Fr(mainA)

UP(IDB ,N,R), π:= M

U
P(

ID
A

,N
,R

),
π

:=
 M

mainA exec

clock xA clock xB

xA ≤ 1

x A
>0

π = ID
A ∧ ID

A ∈ N

xA:= 0 xA ≤ 2

x A
>0

xB ≤ 1

xB ≤ 2

xB ≤ 1

xB>0

xB>0

xB>0

x
A:= 0

xB:= 0

xB:= 0

x
B := 0

x
B := 0

mainA

etherA

mainB

stopB

etherB

(b) DUTA of Activities A and B in task ET (level 2)

Figure 5.6: Activities TTD to DUTA (A and B, Definition 18)

express nominal actions distinguishably from interruption ones. We propose thus the
following.

Definition 19 Augmenting interruption edges.
Enriching an activity A TTD is given by Definition 5, then each interruption edge
c → stop (in E I) is augmented with the operation R := R\{IDA} (remove IDA from
R)4. The DUTA of A is then obtained from Definition 17.

Lemma 1 Correctness of Definition 19.
Activities TTDs and DUTA obtained from Definition 19 induce the same behavior as
the ones obtained from Definition 5 and Definition 17. That is, augmenting interrup-
tion edges c → stop with the operation R := R\{IDA} does not alter the behavior of
the execution task.

4if ether is the target codel of the interruption edge, then this is not needed.

97

Proof 1 Removing IDA from R at the beginning of the interruption (when taking the
interruption edge) is equivalent to removing IDA from R at the end of the interrup-
tion (with a termination or a pause edge). Indeed, between these two events, A has
the control, that is Π = A, which means that all edges in the manager and other ac-
tivities are disabled (the composition of the activities and the manager is sequential,
Definition 2). It follows that no edge depending onR is enabled, and thus the behavior
remains unchanged.

Additionally, when performing R := R\{IDA} (when taking the interruption edge
to stop) is followed by performing UP(IDA,N ,R) (when taking a termination edge),
removing IDA fromR is redundant, that is the operation UP(IDA,N ,R) is side-effect
free (since IDA has been already removed from R).

Definition 19 makes it easier to differ between interruption edges and nominal
edges. Simply, a nominal edge must satisfy IDA /∈ R while an interruption edge must
satisfy IDA ∈ R. We will use thus this definition for our proof. Fig. 5.7 shows the
TTD and DUTA of activity B (Fig. 5.5) when applying Definition 19.

]0,1]

]0,2]

[0,0]

B

]0,1]

[0,0]

[0,0]

π
 = ID

B ∧
 ID

B ∈
 N

π = IDB ∧ IDB∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB∈ N

UP(IDB ,N,R), π := M

UP(IDB ,N,R), π := M
startB mainB

stopBetherB

R:= R\{ID
B }

R:= R\{IDB}

(a) TTD of activity B (Definition 19)

startB
mainB pause

B

π = ID
B ∧

 ID
B ∈

 N

π = IDB ∧ IDB ∈ R

π
 =

 ID
B ∧

 ID
B ∈

 R

π = IDB ∧ IDB ∈ N

UP(IDB ,N,R), π:= M

UP(IDB ,N,R), π:= M

clock xB

xB ≤ 1

xB ≤ 2

xB ≤ 1

xB>0

xB>0

xB:= 0, R:= R\{IDB}

x
B := 0, R

:= R
\{ID

B }

x
B := 0

mainB

stopB

etherB

xB:= 0

xB:= 0

xB>0

(b) DUTA of activity B (Definition 19)

Figure 5.7: TTD and DUTA of activity B (Definition 19)

TTS
First, we partition the edges within an activity as follows:

• Interrupt activity A (ia): This action contains all additional edges for interruption
(Definition 1), that is all edges in E I ,

• Finish activity A (fa): This action contains all nominal termination and pause
edges (Definition 1), that is all edges in E P ∪ E T ,

• Execute activity A (ea): This action contains all nominal non-pause, non-termination
edges plus the additional edge (for starting) ether → start (Definition 1), that
is all edges in E X ∪ E S .

Second, each edge in the manager and the timer corresponds to a distinguished action:

• Start timer (st): corresponds to taking the only possible edge in the timer (Definition 3),

98

st :

0 ∈ φ(st)
s′(sig) = true φ′(st) = [Per, Per])

(s, φ)
st−→ (s′, φ′)

Table 5.1: Action st .

• Start manager (sm): corresponds taking the edge from vertex wait to vertex
manage (Definition 4),

• Launch manager (lm): matches taking the edge from vertex manage to itself
(Definition 4),

• Finish manager (fm): matches taking the edge from vertex manage to vertex
wait (Definition 4).

It is intuitive to say that these actions are (i) disjoint and (ii) cover all the edges
in the execution task. Indeed, from the partitioning of the actions over edges above
and from Definition 1, Definition 3 and Definition 4, it follows that the actions cover
all the possible edges (no edge remains untied to an action). Additionally, from the
definition of the actions above and the mutual disjointness of all the subsets of nominal
and interruption edges given in Definition 1 (Sect. 4.4.1), it follows that the sets of
actions are disjoint.

Now, we give for each action some inference rules in terms of TTS semantics: the
properties that must be satisfied before taking the action and the side effects of taking
it on state variables (and on future dates of taking edges, when uniquely defined). We
recall that M and Tim are, respectively, the manager and timer TTDs. By abuse of

notation, we refer to an edge by the action it is associated with. For instance, c
fa−→ c′

is an edge associated with fa (by abuse of notation, an edge fa) from c to c′, that is
an edge c → c′ that belongs to E P ∪ E T (see partitioning of actions above). The
edges preserve thus their uniqueness according to their source and target vertex, and
the set of edges they belong to (that we can retrieve from the action on the edge). This
simplification helps writing the inference rules without loading the notations further.

Discrete actions (TTS): In the following, s′ agrees with s on all state variables
unless indicated otherwise. The formula ∃c act−−→c′ means there is an edge act from c to
c′ in the TTD of activity A (even if not enabled). R′ and N ′ are the results of applying
rrand() to R and N , respectively.

Action st Taking this action requires satisfying the timing constraints at the timer
edge. That is, st is taken at state s in the underlying TTS iff the Kripke state (s, φ)
(see TTS semantics in Sect. 3.2.3) satisfies 0 ∈ φ(st). Similarly, the state s′ satisfies
sig = true (table 5.1).

Action sm To take this action, the manager must be at vertex wait and must have the
period signal (sig = true). After taking this action, the manager is at location manage ,
sig becomes false and N and R are randomly initialized (table 5.2).

Action lm To take this action, the manager must have the control (Π = M) and there
must be activities to execute ((N ∪ R) 6= ∅). According to the target Kripke state of

99

sm:

s(sig) = true s(πM) = wait
s′(sig) = false s′(πM) = manage s′(N) = N ′ s′(R) = R′

(s, φ)
sm−→ (s′, φ′)

Table 5.2: Action sm .

lm.1 :

s(Π) = M (s(N) ∪ s(R)) 6= ∅
s′(Π) = IDA∈A s′(πA) = ether IDA ∈ s′(R)

(s, φ)
lm−→ (s′, φ′)

lm.2 :

s(Π) = M (s(N) ∪ s(R)) 6= ∅
s′(Π) = IDA∈A s′(πA) = c 6= ether IDA ∈ s′(R)

(s, φ)
lm−→ (s′, φ′)

lm.3 :

s(Π) = M (s(N) ∪ s(R)) 6= ∅
s′(Π) = IDA∈A s′(πA) = ether IDA /∈ s′(R)

(s, φ)
lm−→ (s′, φ′)

lm.4 :

s(Π) = M (s(N) ∪ s(R)) 6= ∅
s′(Π) = IDA∈A s′(πA) = c 6= ether IDA /∈ s′(R)

(φ′(ea) = Iea ∨ φ′(fa) = Ifa)

(s, φ)
lm−→ (s′, φ′)

Table 5.3: Action lm .

fm:

s(Π) = M (s(N) ∪ s(R)) = ∅ s(πM) = manage
s′(πM) = wait

(s, φ)
fm−−→ (s′, φ′)

Table 5.4: Action fm .

this action, we distinguish four cases (table 5.3): the activity that will take the control is
to interrupt from ether (rule lm.1), the activity that will take the control is to interrupt
after a pause (rule lm.2), the activity that will take the control is to execute nominally
from ether (rule lm.3), or the activity that will take the control is to execute nominally
after a pause (rule lm.4).

Action fm To take this action, the manager must have the control (Π = M), must be
at vertex manage and there must be no remaining activities to execute ((N ∪ R) = ∅).
Taking this action switches the manager vertex to wait (table 5.4).

Action ia We distinguish four cases (table 5.5): the source vertex is ether and the
target vertex is stop (rule ia.1),the source vertex is not ether and the target vertex is

100

ia.1 :

∃ether ia−→ stop
s(Π) = IDA∈A s(πA) = ether IDA ∈ s(R)

s′(πA) = stop IDA /∈ s′(R) φ′(ea) = Iea ∨ φ′(fa) = Ifa

(s, φ)
ia−→ (s′, φ′)

ia.2 :

∃c 6= ether
ia−→ stop

s(Π) = IDA∈A s(πA) = c IDA ∈ s(R)
s′(πA) = stop IDA /∈ s′(R) φ′(ea) = Iea ∨ φ′(fa) = Ifa

(s, φ)
ia−→ (s′, φ′)

ia.3 :

∃ether ia−→ ether
s(Π) = IDA∈A s(πA) = ether IDA ∈ s(R)

s′(πA) = ether s′(Π) = M ¬(IDA ∈ s′(N) ∨ IDA ∈ s′(R))

(s, φ)
ia−→ (s′, φ′)

ia.4 :

∃c 6= ether
ia−→ ether

s(Π) = IDA∈A s(πA) = c IDA ∈ s(R)
s′(πA) = ether s′(Π) = M ¬(IDA ∈ s′(N) ∨ IDA ∈ s′(R))

(s, φ)
ia−→ (s′, φ′)

Table 5.5: Action ia .

fa.1 :

∃c fa−→ c′ 6= ether
s(Π) = IDA∈A s(πA) = c IDA /∈ s(R) φ(fa) = Ifa − θ θ > 0
s′(πA) = c′ s′(Π) = M ¬(IDA ∈ s′(N) ∨ IDA ∈ s′(R))

(s, φ)
fa−→ (s′, φ′)

fa.2 :

∃c fa−→ ether
s(Π) = IDA∈A s(πA) = c IDA /∈ s(R) φ(fa) = Ifa − θ θ > 0
s′(πA) = ether s′(Π) = M ¬(IDA ∈ s′(N) ∨ IDA ∈ s′(R))

(s, φ)
fa−→ (s′, φ′)

Table 5.6: Action fa .

stop (rule ia.2), the source vertex is ether and the target vertex is ether (rule ia.3),
the source vertex is not ether and the target vertex is ether (rule ia.4).

Action fa We distinguish two cases (table 5.6): taking a pause edge (in E P , rule
fa.1) or taking a termination edge (in E T , rule fa.2).

101

ea.1 :

s(Π) = IDA∈A IDA /∈ s(R) s(πA) = ether
s′(πA) = start φ′(ea) = Iea ∨ φ′(fa) = Ifa

(s, φ)
ea−→ (s′, φ′)

ea.2 :

∃c 6= ether
ea−→ c′

s(Π) = IDA∈A IDA /∈ s(R) s(πA) = c φ(ea) = Iea − θ θ > 0
s′(πA) = c′ φ′(ea) = Iea ∨ φ′(fa) = Ifa

(s, φ)
ea−→ (s′, φ′)

Table 5.7: Action ea .

Action ea We distinguish two cases (table 5.7): taking an additional (starting) edge
(in E S , rule ea.1) or taking a nominal edge (in E X rule ea.2).

Note that the definitions of discrete actions preconditions are both necessary and
sufficient, and also expressed minimally. For instance, the condition to take the action
lm (table 5.3) seems to lack the clause (πM = manage). This clause is, however,
not necessary because we may easily prove that if (Π = M ∧ (N ∪ R) 6= ∅) then
πM = manage .

Proof 2 If s |= (Π = M ∧ πM 6= manage) then:
either s = s0 , which means that (N ∪ R) = ∅)

or s is reached by taking the edge manage
g=(Π=M∧N∪R=∅),op=null)−−−−−−−−−−−−−−−−−−−→ wait , which

means also that (N ∪ R) = ∅)
It follows that the only vertex where (Π = M ∧ (N ∪ R) 6= ∅) may evaluate to true
is manage

Another example is the lack of the clause ∃ether
ea−→ start . This is a rule optimiza-

tion since, by definition (i) any activity has the codels start and ether (Sect. 4.3.1), (ii)
there is always an additional edge ether → start (in E S , Definition 1) and (iii) this
edge is necessarily an ea edge (see the partitioning of actions above).

Similarly, side effects are expressed minimally and effects on future times to take
transitions are mentioned only when certain. For instance, we may easily prove that
each execution action ea results in a state where only ea or fa are possible (table 5.7).

Proof 3 From the partitioning, action ea is taken either on a starting edge (ether → start)
or on a nominal edge that is neither a pause nor a termination edge (c → c′ ∈ E X). It
follows that ea is operation free (no side effects on shared variables (Definition 1 and
Definition 5). Now, since s |= (IDA /∈ s(R)) (table 5.7), then s ′ |= (IDA /∈ s ′(R)),
which means that ia is not possible from s′. Additionally, since each vertex has at least
one successor (Definition 1 and Sect. 4.3.5), then either ea or fa are possible at s′.

Example: In activity B (Fig. 5.5a), the edge from mainB to mainB is a pause
edge, it corresponds thus to the finish B action fb. The same action is associated with
taking the termination edge from stopB to etherB . The edges from mainB to stopB

and etherB to stopB are interruption edges, and therefore correspond to the interrupt
B action ib. Finally, the remaining edges are the starting edge and nominal edges that
are neither for termination nor for pause, that is ea edges. Fig. 5.8 shows the TTD of
B where edges are tagged with their corresponding actions (guards and operations are
omitted for readability).

102

]0,1]

]0,2]

[0,0]

B

]0,1]

[0,0]

[0,0]

startB mainB

stopBetherB

fb

eb

eb

ib

ib

fb

Figure 5.8: Actions in activity B

d .1 :

φ(st) = Ist − a a < Per s(sig) = false s(πM) = wait
d ∈]0, P er − a]

φ′(st) = φ(st)− d
(s, φ)

d−→ (s′, φ′)

d .2 :

φ(st) = Ist − a a < Per s(Π) = IDA s(πA) = c 6= ether
IDA /∈ s(R) φ(ea) = Iea − b ∨ φ(fa) = Ifa − b b < W (c)

d ∈]0,min(Per − a,W (c)− b)]
φ′(st) = φ(st)− d φ′(ea) = φ(ea)− d ∨ φ′(fa) = φ(fa)− d

(s, φ)
d−→ (s′, φ′)

Table 5.8: Time actions d .

Time actions (TTS) We define the inference rules of taking a time action in table 5.8.
Informally, to let time evolve for a strictly positive amount d (non-trivial time

step), we must have: (i) A timer period still has not elapsed since the last tick, that
is φ(st) = Ist − a 6= [0 , 0]. Additionally, there must be no urgent edges possible ei-
ther in the manager M or in an activity A, whichever has the control. If M has the
control, that is Π = M , then the only case where no urgent edge is enabled is when
M is at location wait5 given that sig evaluates to false (see the manager model in Def-
inition 3). If A has the control, that is Π = IDA, it must be at a vertex c different
than ether because all possible edges at ether are urgent (see the activities model in
Definition 4), the urgent edge ia , if exists, must be deactivated at c, that is IDA /∈ R
(table 5.5) and the time elapsed since visiting c must be inferior than W (c) of the
underlying codel c (that is φ(ea) = Iea − b 6= [0 , 0] ∨ φ(fa) = Ifa − b 6= [0 , 0]). (ii)
The time amount to let elapse must be superior to zero (non trivial) and must not violate
any timing constraint, that is it must be at most equal to ↑φ(st) (if the manager is at
wait) or the supremum of ↑φ(st), ↑φ(ea), and ↑φ(fa)(otherwise).

5Here Π = M is redundant since the manager is at location wait , hence the absence of the precondition
Π = M from table 5.8.

103

st :

v(xt) = Per
l′(sig) = true v′(xt) = 0

(l, v)
st−→ (l′, v′)

Table 5.9: Action st (DUTA).

sm:

l(sig) = true l(πM) = wait
l′(sig) = false l′(πM) = manage l′(N) = N ′ l′(R) = R′

(l, v)
sm−→ (l′, v′)

Table 5.10: Action sm (DUTA).

lm.1 :

l(Π) = M (l(N) ∪ l(R)) 6= ∅
l′(Π) = IDA∈A l′(πA) = ether IDA ∈ l′(R)

(l, v)
lm−→ (l′, v′)

lm.2 :

l(Π) = M (l(N) ∪ l(R)) 6= ∅
l′(Π) = IDA∈A l′(πA) = cpause IDA ∈ l′(R)

(l, v)
lm−→ (l′, v′)

lm.3 :

l(Π) = M (l(N) ∪ l(R)) 6= ∅
l′(Π) = IDA∈A l′(πA) = ether IDA /∈ l′(R)

(l, v)
lm−→ (l′, v′)

lm.4 :

l(Π) = M (l(N) ∪ l(R)) 6= ∅
l′(Π) = IDA∈A l′(πA) = cpause IDA /∈ l′(R)

(l, v)
lm−→ (l′, v′)

Table 5.11: Actions lm (DUTA).

DUTA The composition of the DUTA of the manager M , timer Tim and activities
(Definition 14, Definition 15 and Definition 18) results in a Kripke structure with pairs
(l , v) as states (Sect. 3.4.2.1). We may thus define the conditions and side effects for
each action, defined in the original TTS, in the DUTA system.

Actions (DUTA translation). In the following, l′ agrees with l on all state variables
unless indicated otherwise. R′ and N ′ are the results of applying rrand() to R and N ,
respectively. We keep the notation π(P), used in TTS, to denote the control location
of DUTA P . The inference rules for actions st , sm , lm , fm , ia , fa and ea are given,
respectively, in table 5.9, table 5.10, table 5.11, table 5.12, table 5.13, table 5.14 and
table 5.15.

Example: In activity B (Fig. 5.5b), the edge from mainB to mainB pause maps a
pause edge in its TTD counterpart, it corresponds thus to the finish B action fb. The
interruption action ib is associated with taking any of the edges mainB pause to stopB

or etherB to stopB , as both map interruption edges in the TTD counterpart. The edge

104

fm:

l(Π) = M (l(N) ∪ l(R)) = ∅ l(πM) = manage
l′(πM) = wait

(l, v)
fm−−→ (l′, v′)

Table 5.12: Action fm (DUTA).

ia.1 :

∃ether ia−→ stop
l(Π) = IDA∈A l(πA) = ether IDA ∈ l(R)
l′(πA) = stop IDA /∈ l′(R) v′(xA) = 0

(l, v)
ia−→ (l′, v′)

ia.2 :

∃cpause ia−→ stop
l(Π) = IDA∈A l(πA) = cpause IDA ∈ l(R)
l′(πA) = stop IDA /∈ l′(R) v′(xA) = 0

(l, v)
ia−→ (l′, v′)

ia.3 :

∃ether ia−→ ether
l(Π) = IDA∈A l(πA) = ether IDA ∈ l(R)

l′(πA) = ether l′(Π) = M ¬(IDA ∈ l′(N) ∨ IDA ∈ l′(R))

(l, v)
ia−→ (l′, v′)

ia.4 :

∃cpause ia−→ ether
l(Π) = IDA∈A l(πA) = cpause IDA ∈ l(R)

l′(πA) = ether l′(Π) = M ¬(IDA ∈ l′(N) ∨ IDA ∈ l′(R))

(l, v)
ia−→ (l′, v′)

Table 5.13: Actions ia (DUTA).

fa.1 :

∃c fa−→ c′pause
l(Π) = IDA∈A IDA /∈ l(R) l(πA) = c v(xA) > 0
l′(πA) = c′pause l′(Π) = M ¬(IDA ∈ l′(N) ∨ IDA ∈ l′(R))

(l, v)
fa−→ (l′, v′)

fa.2 :

∃c fa−→ ether
l(Π) = IDA∈A l(πA) = c IDA /∈ l(R) v(xA) > 0
l′(πA) = ether l′(Π) = M ¬(IDA ∈ l′(N) ∨ IDA ∈ l′(R))

(l, v)
fa−→ (l′, v′)

Table 5.14: Actions fa (DUTA).

105

ea.1 :

l(Π) = IDA∈A IDA /∈ l(R) l(πA) = ether
l′(πA) = start v′(xA) = 0

(l, v)
ea−→ (l′, v′)

ea.2 :

∃c 6= ether
ea−→ c′

l(Π) = IDA∈A IDA /∈ l(R) l(πA) = c v(xA) > 0
l′(πA) = c′ v(xA) = 0

(l, v)
ea−→ (l′, v′)

Table 5.15: Actions ea (DUTA).

τ :

l(πA) = cpause l(Π) = IDA∈A IDA /∈ l(R)
l′(πA) = c v′(xA) = 0

(l, v)
τ−→ (l′, v′)

Table 5.16: Internal action tau (DUTA).

etherB to startB and the edge startB to mainB map, respectively, the starting edge
and the only nominal edge that is neither a termination nor a pause edge in the TTD
counterpart, they are therefore execute B actions eb. Now, the edge from mainB pause to
mainB does not match the definition of any action and will be thus treated as an internal
action τ . Fig. 5.9 shows the DUTA of activity B where edges are tagged with their
corresponding actions (non-clock guards and operations are omitted for readability).

The internal discrete action τ The internal action τ is possible only when the ac-
tivity has the control, its current location is cpause and it is not interrupted. Taking τ
changes the current location to c and resets the clock of the activity (Definition 17).
Formally, the inference rules are given in table 5.16.

startB
mainB pause

B
clock xB

xB ≤ 1

xB ≤ 2

xB ≤ 1

xB>0

xB>0

xB:= 0

x
B :=

 0

x
B := 0

mainB

stopB

etherB

xB:= 0

xB:= 0

xB>0
fb

fb

ib

ib

eb

eb

τ

Figure 5.9: Actions in DUTA of activity B

106

d .1 :

v(xt) < Per l(sig) = false l(πM) = wait
d ∈]0, P er − v(xt)]

∀x ∈ X : v′(x) = v(x) + d

(s, φ)
d−→ (s′, φ′)

d .2 :

v(xt) < Per l(Π) = IDA∈A l(πA) 6= ether
IDA /∈ l(R) v(xA) < W (c)
d ∈]0,min(Per − v(xt),W (c)− v(xA))]

∀x ∈ X : v′(x) = v(x) + d

(s, φ)
d−→ (s′, φ′)

Table 5.17: Time action d (DUTA).

Time actions (DUTA) The preconditions and effects of time actions are given by the
inference rules in table 5.17 (X is the set of clocks in the DUTA system).

5.3.2 Absence of st effect on activities
The action st has no effect on the enabledness or timing constraints of activities

actions.

Proof 4 The action st changes only the variable sig , that is not involved in any guard
g(act) | act ∈ {ea, fa, ia}. It follows that if act is enabled (or disabled) before taking
st , it will remain so after taking it, both in the TTDs and DUTA. As for timing con-
straints, Since the enabledness is not affected in the TTD then we may write:
(s, φ)

st−→ (s ′, φ′)⇔ φ′(act) = φ(act)∀act ∈ {ea, fa, ia}. In the DUTA, the clocks
valuations are trivially unaffected because the timer has no access to the activities
clocks, intrinsically local to their components.

5.3.3 Absence of external actions effects on timer
Any action that is external to the timer has no effect on the enabledness or timing

constraints of the timer action.

Proof 5 The action st is guard free, which means that it is always enabled, and thus
no other action can affect its enabledness or timing constraints. In the DUTA, the clock
valuations is trivially unaffected because external actions have no access to the timer
clock, intrinsically local to it.

5.3.4 Edges equivalence
Let At and Ad be, respectively, the TTD and DUTA of some activity A. (i) there

is an action edge ea between vertices c and c′ in At iff there is an identical action edge
between locations c and c′ in Ad. (i) there is an action edge ia between vertices ether
and c′ in At iff there is an identical action edge between locations ether and c′ in Ad.
(iii) there is an action edge ia (respect. fa) between vertices c and c′ in At iff there is
an identical action edge between locations cpause and c′ (respect. c and c′pause) in Ad,
given that there is an edge→ c ∈ EP in At (respect. given that c→ c′ is in EP). (iv)

107

there is an action edge fa between vertices c and ether in At iff there is an identical
action edge between locations c and ether in Ad. Formally:
(i) ∃cAt

ea−→ c′At ⇔ ∃cAd
ea−→ c′Ad

(ii) ∃etherAt
ia−→ c′At ⇔ ∃etherAd

ia−→ c′Ad

(iii) (action ia) (∃cAt
ia−→ c′At ∧ ∃ → c ∈ E P)⇔ ∃cAd pause ia−→ c′Ad

(iii) (action fa) (∃cAt
fa−→ c′At ∈ E P)⇔ ∃c fa−→ c′

Ad pause

(iv) ∃cAt
fa−→ etherAt ⇔ ∃cAd

fa−→ etherAd

Proof 6 From Definition 17, each edge c → c′ in the TTD is mapped to c → c′ in
the DUTA, except for interruption edges c → c′ mapped to cpause → c′ iff c satisfies
∃ → c ∈ E P (respect. pause edges c → c′ mapped to c → c′pause).

5.3.5 Bisimilarity between TTS and DUTA systems

Let Ψ and Γ be the Kripke structures over which the semantics of an execution task
TTS and DUTA, respectively, is defined. Each state in Ψ is a pair (s, φ) where s is
the TTS state and φ the future dates for taking transitions (Sect. 3.2.3). Each state in Γ
is a pair (l , v) where l is the interpretation of all variables excluding clocks and v the
valuation of each clock x in the DUTA composition (Sect. 3.4.2.1). The objective is to
prove that Ψ and Γ are timed bisimilar.

Definition 20 Timed bisimilarity.
We say that Ψ and Γ are timed bisimilar iff for some binary relationR and discrete or
time-progress action α, the initial states of Ψ and Γ are inR, that is ψ0 Rγ0 , and:

• Γ simulates Ψ: if (ψ ∈ Ψ)R(γ ∈ Γ) and ψ α−→ ψ′ then ∃γ′ ∈ Γ s.t. γ α−→ γ′

and ψ′Rγ′,

• Ψ simulates Γ: if (ψ ∈ Ψ)R(γ ∈ Γ) and γ α−→ γ′ then ∃ψ′ ∈ Ψ s.t. ψ α−→ ψ′

and ψ′Rγ′.

In our proof, we use the weak version of timed bisimilarity: some internal actions τ
may be involved in α−→. That is, x(

τ−→)∗
α−→ (

τ−→)∗x′ is observed simply as x α−→ x′. For
a stronger equivalence between the models, we require τ to be a discrete action. That
is, time is not allowed to progress when taking τ . We begin by defining the relationR:

Definition 21 The binary relationR:

108

(ψ = (s, φ))R(γ = (l , v)) iff

(1) (∀u ∈ {Π ,N ,R, sig} : s(u) = l(u)) ∧

(2) (s(πTim) = l(πTim) ∧ φ(st) = Ist − θ ∧ v(xt) = θ) ∧

(3) (s(πM) = l(πM)) ∧

(4) (∀A ∈ A | s(Π) = l(Π) 6= IDA : s(πA) = l(πA)∨
(s(πA) = c ∧ l(πA) = cpause)) ∧

(5)(∃A |= (s(Π) = l(Π) = IDA)⇒
(5 .1)(s(πA) = l(πA) = ether)∨
(5 .2)(s(πA) = l(πA) = c 6= ether ∧ ((φ(ea) = Iea − θ)∨

(φ(fa) = Ifa − θ)) ∧ v(xA) = θ)∨
(5 .3)(s(πA) = c ∧ l(πA) = cpause∧

(IDA ∈ s(R) ∨ ((φ(ea) = Iea∨
φ(fa) = Ifa)))))

Informally, Definition 21 of the relation between states ψ and γ says the following.
Rules (1) to (4) stipulate that ψ and γ need to agree on all state variables, at the
exception of the locations of idle activities (not being executed) that can be cpause
instead of c in γ. Additionally, the property φ(st) = Ist − θ ∧ v(xt) = θ (Rule
(2)) reflects that time in both timers progresses at the same rate (there is no guard
on st which means φ(st) is always defined, and taking st in the timer DUTA resets
xt). Rule (5) is only for the activity A currently executing (if any). Roughly, it says
that the TTD vertex and the DUTA location of A need to be identical, and at which
time must progress similarly. The location and vertex of the activity DUTA and TTD,
respectively, must be identical if at ether (5.1). The location of the DUTA of A must
match the vertex of its TTD counterpart when executing a codel, where time must also
progress identically (5.2). Finally, if the vertex of the TTD is c whereas the location of
the DUTA is cpause, then time is not allowed to progress and only instantaneous actions
(mainly interruption actions) are possible (5.3).

Initial states We start with checking whether the initial states ψ0 = (s0, φ0) and
γ0 = (l0, v0) are inR (Definition 20). By definition, we know that initially:
(s0 (N) = s0 (R) = l0 (N) = l0 (R) = ∅) ∧ (s0 (sig) = l0 (sig) = false)∧
(s0 (Π) = l0 (Π) = M),
l0 (πTim) = s0 (πTim) = start ∧ φ(st) = Ist ∧ v(xt) = 0 ,
l0 (πM) = s0 (πM) = wait ,
∀A ∈ A : l0 (πA) = s0 (πA) = ether ,
@A ∈ A | l0 (Π) = s0 (Π) = IDA.

It follows that ψ0 and γ0 satisfy all the rules in Definition 21, that is ψ0Rγ0.
Now, we prove that Γ (weakly) time simulates Ψ (Definition 20). Let ψ ∈ Ψ and
γ ∈ Γ be some states satisfying ψRγ.

Discrete actions

Action st: From inference rules in table 5.1, to take st from ψ, we must have:
ψ = (s, φ) |= (0 ∈ φ(st)) (1.a)
Additionally, we know that ψRγ, then from (1.a) and Definition 21 (Rule (2)) we have:

109

v(xt) = θ ∧ φ(st) = Ist − θ, knowing that Ist = [Per ,Per] and from (1.a) 0 ∈ φ(st).
It follows that θ = Per and thus v(xt) = Per (1.b)
Now from inference rules in table 5.9, to take st we must have
γ = (l , v) |= (v(xt) = Per) (1.c)
From (1.b) and (1.c) it follows that action st is possible at γ.
We take now the action st from ψ to reach the state ψ′. From table 5.1 we have:
ψ′ = (s ′, φ′) |= (s ′(sig) = true ∧ φ(st) = [Per ,Per]) and s′ agrees with s otherwise
(1.d)
We take the action st from γ to reach the state γ′. From table 5.9 we have:
γ′ = (l ′, v ′) |= (l ′(sig) = true ∧ v ′(xt) = 0) and l′ agrees with l otherwise (1.e)
From (1.d) and (1.e) it follows that rules (1) to (4) in Definition 21 are satisfied by ψ′

and γ′, and from Sect. 5.3.2 (absence of effects on activities) we conclude that the rule
(5) in Definition 21 is satisfied as well.
It follows that ψ′Rγ′.

Action sm: From inference rules in table 5.2, to take sm from ψ, we must have:
ψ = (s, φ) |= (s(sig) = true ∧ s(πM) = wait) (2.a)
Additionally, we know that ψRγ, then from (2.a) and Definition 21 (Rules (1),(3)) we
have at γ:
l(sig) = true ∧ l(πM) = wait (2.b)
Now from inference rules in table 5.10, to take sm we must have
γ = (l , v) |= (l(sig) = true ∧ l(πM) = wait) (2.c)
From (2.b) and (2.c) it follows that action sm is possible at γ.
We take now the action sm from ψ to reach the state ψ′. From table 5.2 we have:
ψ′ = (s ′, φ′) |= (s ′(sig) = false ∧ s ′(πM) = manage ∧ s ′(N) = N ′ ∧ s ′(R) = R′) and
s′ agrees with s otherwise (2.d)
We take the action sm from γ to reach the state γ′. From table 5.10 we have:
γ′ = (l ′, v ′) |= (l ′(sig) = false ∧ l ′(πM) = manage ∧ l ′(N) = N ′ ∧ l ′(R) = R′) and
l′ agrees with l otherwise (2.e)
From (2.d) and (2.e) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) in Definition 21 are satisfied by ψ′ and γ′. Also, from (2.a)
and (2.d) (respect. (2.b) and (2.e)) we have Π = M at ψ′ and γ′ and thus both satisfy
rule (5) in Definition 21 (@A ∈ A | s ′(Π) = l ′(Π) = IDA).
It follows that ψ′Rγ′.

Note that N ′ and R′, being the result of a random initialization, may be different at
ψ′ and γ′. However, since the operation rrand(N ,R) is the same in both systems, it
is sufficient to match the states pairwise, that is ψ′ and γ′ where the result of applying
rrand(N ,R) is the same. It is trivial to prove that mapping ψ′ ∈ Ψ to γ′ ∈ Γ s.t.
sm−−→ ψ′ ∧ sm−−→ γ′ ∧ψ(N ′) = γ(N ′)∧ψ(R′) = γ(R′) is a one-to-one function defined

over all ψ′ |= sm−−→ ψ′, and thus for each ψ′ resulting from taking an action sm there is
γ′ ∈ Γ s.t. ψ′Rγ′.

Action lm: From inference rules in table 5.3, to take lm from ψ, we must have:
ψ = (s, φ) |= (s(Π) = M ∧ (s(N) ∪ s(R)) 6= ∅) (3.a)
Additionally, we know that ψRγ, then from (3.a) and Definition 21 (Rule (1)) we have
at γ:
l(Π) = M ∧ (l(N) ∪ l(R)) 6= ∅ (3.b)
Now from inference rules in table 5.11, to take lm we must have
γ = (l , v) |= (l(Π) = M ∧ (l(N) ∪ l(R)) 6= ∅) (3.c)
From (3.b) and (3.c) it follows that action lm is possible at γ.
We take now the action lm (rule lm.1) from ψ to reach the state ψ′. From table 5.3 we

110

have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = ether ∧ IDA ∈ s ′(R)) and s′ agrees with
s otherwise (3.d)
We take the action lm (rule lm.1) from γ to reach the state γ′. From table 5.11 we have:
γ′ = (l ′, v ′) |= (l ′(Π) = IDA∈A ∧ l ′(πA) = ether ∧ IDA ∈ l ′(R)) and l′ agrees with
l otherwise (3.e)
From (3.d) and (3.e) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.1) are satisfied by
ψ′ and γ′, that is ψ′Rγ′ after taking lm (rule lm.1).

We take now the action lm (rule lm.2) from ψ to reach the state ψ′. From table 5.3
we have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = c 6= ether ∧ IDA ∈ s ′(R)) and s′ agrees
with s otherwise (3.f)
We take the action lm (rule lm.2) from γ to reach the state γ′. From table 5.11 we have:
(l ′, v ′) |= (l ′(Π) = IDA∈A ∧ l ′(πA) = cpause ∧ IDA ∈ l ′(R)) and l′ agrees with l oth-
erwise (3.g)
From (3.f) and (3.g) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.3) are satisfied by
ψ′ and γ′, that is ψ′Rγ′ after taking lm (rule lm.2).

We take now the action lm (rule lm.3) from ψ to reach the state ψ′. From table 5.3
we have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = ether ∧ IDA /∈ s ′(R)) and s′ agrees with
s otherwise (3.h)
We take the action lm (rule lm.3) from γ to reach the state γ′. From table 5.11 we have:
γ′ = (l ′, v ′) |= (l ′(Π) = IDA∈A ∧ l ′(πA) = ether ∧ IDA /∈ l ′(R)) and l′ agrees with
l otherwise (3.i)
From (3.h) and (3.i) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.1) are satisfied by
ψ′ and γ′, that is ψ′Rγ′ after taking lm (rule lm.3).

We take now the action lm (rule lm.4) from ψ to reach the state ψ′. From table 5.3
we have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = c 6= ether ∧ IDA /∈ s ′(R)∧
(φ′(ea) = Iea ∨ φ′(fa) = Ifa)) and s′ agrees with s otherwise (3.j)
We take the action lm (rule lm.4) from γ to reach the state γ′′. From table 5.11 we
have:
γ′′ = (l ′′, v ′′) |= (l ′′(Π) = IDA∈A ∧ l ′′(πA) = cpause ∧ IDA /∈ l ′′(R)) and l′′ agrees
with l otherwise.
We take now the internal urgent action τ from γ′′ to reach the state γ′. From table 5.16
we have:
γ′ = (l ′, v ′) |= (l ′(Π) = l ′(πA) = c ∧ v ′(xA) = 0) and l′ agrees with l′′ otherwise
(3.k)
From (3.j) and (3.k) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.26 with θ = 0) are
satisfied by ψ′ and γ′, that is ψ′Rγ′ after taking lm (rule lm.4).

Action fm: From inference rules in table 5.4, to take fm from ψ, we must have:
ψ = (s, φ) |= (s(Π) = M ∧ (s(N) ∪ s(R)) = ∅ ∧ s(πM) = manage) (4.a)
Additionally, we know that ψRγ, then from (4.a) and Definition 21 (Rules (1),(3)) we

6Note that we know that location c from (3.k) is different from ether since cpause exists and we know
by definition (Sect. 4.3.5) that ether cannot be the target of a pause.

111

have at γ:
l(Π) = M ∧ (l(N) ∪ l(R)) = ∅ ∧ l(πM) = manage (4.b)
Now from inference rules in table 5.12, to take fm we must have
γ = (l , v) |= (l(Π) = M ∧ (l(N) ∪ l(R)) = ∅ ∧ l(πM) = manage) (4.c)
From (4.b) and (4.c) it follows that action fm is possible at γ.
We take now the action fm from ψ to reach the state ψ′. From table 5.4 we have:
ψ′ = (s ′, φ′) |= (s ′(πM) = wait) and s′ agrees with s otherwise (4.d)
We take the action fm from γ to reach the state γ′. From table 5.12 we have:
γ′ = (l ′, v ′) |= (l ′(πM) = wait) and l′ agrees with l otherwise (4.e)
From (4.d) and (4.e) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) in Definition 21 are satisfied by ψ′ and γ′. Also, from (4.a)
and (4.d) (respect. (4.b) and (4.e)) we have Π = M at both ψ′ and γ′ and thus both
satisfy rule (5) in Definition 21 (@A ∈ A | s ′(Π) = l ′(Π) = IDA).
It follows that ψ′Rγ′.

Action ia: From inference rules in table 5.5, to take ia (rule ia.1 or ia.3) from ψ,
we must have, besides the existence of an outgoing ia edge from ether (to stop (rule
ia.1) or to ether (ia.3)):
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ s(πA) = ether ∧ IDA ∈ s(R)) (5.a)
Additionally, we know that ψRγ, then from (5.a) and Definition 21 (Rules (1), (5.1))
we have at γ:
l(Π) = IDA∈A ∧ l(πA) = ether ∧ IDA ∈ l(R) (5.b)
Now from inference rules in table 5.13, to take ia (rule ia.1 or ia.3) we must have,
besides the existence of an outgoing ia edge from ether (to stop (rule ia.1) or to ether
(ia.3)):
γ = (l , v) |= (l(Π) = IDA∈A ∧ l(πA) = ether ∧ IDA ∈ l(R)) (5.c)
From (5.a), (5.b) and (5.c) and edges equivalence (Sect. 5.3.4) it follows that action ia
(rule ia.1 or ia.3) is possible at γ.
We take now the action ia (rule ia.1) from ψ to reach the state ψ′. From table 5.5 we
have:
ψ′ = (s ′, φ′) |= (s ′(πA) = stop ∧ IDA /∈ s ′(R) ∧ (φ′ea = Iea ∨ φ′(fa) = Ifa)) and s′

agrees with s otherwise (5.d).
We take the action ia (rule ia.1) from γ to reach the state γ′. From table 5.13 we have:
γ′ = (l ′, v ′) |= (l ′(πA) = stop ∧ v ′(xA) = 0 ∧ IDA /∈ l ′(R)) and l′ agrees with l oth-
erwise (5.e)
From (5.d) and (5.e) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.2 with θ = 0) are
satisfied by ψ′ and γ′, that is ψ′Rγ′ after taking ia (rule ia.1).

We take now the action ia (rule ia.3) from ψ to reach the state ψ′. From table 5.5
we have:
ψ′ = (s ′, φ′) |= (s ′(πA) = ether ∧ s ′(Π) = M ∧ ¬(IDA ∈ s ′(N) ∨ IDA ∈ s ′(R))) and
s′ agrees with s otherwise (5.f)
We take the action ia (rule ia.3) from γ to reach the state γ′. From table 5.13 we have:
γ′ = (l ′, v ′) |= (l ′(πA) = ether ∧ l ′(Π) = M ∧ ¬(IDA ∈ l ′(N) ∨ IDA ∈ l ′(R))) and
l′ agrees with l otherwise (5.g)
From (5.f) and (5.g) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (5) are satisfied by ψ′ and γ′ ((5) is satisfied because Π = M at
both ψ′ and γ′ and thus @A ∈ A | s ′(Π) = l ′(Π) = IDA). It follows that ψ′Rγ′ after
taking ia.1 or ia.3 .

From inference rules in table 5.5, to take ia (rule ia.2 or ia.4) from ψ, we must
have, besides the existence of an outgoing ia edge from c (to stop (rule ia.2) or to

112

ether (ia.4)):
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ s(πA) = c 6= ether ∧ IDA ∈ s(R)) (5.h)
Additionally, we know that ψRγ, then from (5.h) and Definition 21 (Rules (1),(5.3))
we have at γ:
l(Π) = IDA∈A ∧ l(πA) = cpause ∧ IDA ∈ l(R) (5.i)
Now from table 5.13, to take ia (rule ia.2 or ia.4) we must have, besides the existence
of an outgoing ia edge from cpause (to stop (rule ia.2) or to ether (ia.4)):
γ = (l , v) |= (l(Π) = IDA∈A ∧ l(πA) = cpause ∧ IDA ∈ l(R) (5.j)
From (5.h), (5.i), (5.j) and edges equivalence (Sect. 5.3.4) it follows that action ia (rule
ia.2 or ia.4) is possible at γ.
Now, proving that ψ′Rγ′ after applying rule ia.2 (respect. ia.4) is identical to proving
ψ′Rγ′ after applying rule ia.1 (respect. ia.3).

Action fa: From inference rules in table 5.6, to take fa from ψ, we must have,
besides the existence of an outgoing fa edge from c (to c′ 6= ether (rule fa.1) or to
ether (fa.2)):
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = c ∧ (φ(fa) = Ifa − θ | θ > 0))
(6.a)
Additionally, we know that ψRγ, then from (6.a) and Definition 21 (Rules (1),(5.2)7)
we have at γ:
l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = c ∧ v(xA) > 0 (6.b)
Now from From inference rules in table 5.14, to take fa we must have, besides the
existence of an outgoing fa edge from c (to c′pause (rule fa.1) or to ether (fa.2)):
γ = (l , v) |= (l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = c ∧ v(xA) > 0) (6.c)
From (6.a), (6.b), (6.c) and edges equivalence (Sect. 5.3.4) it follows that action fa is
possible at γ.
We take now the action fa (rule fa.1) from ψ to reach the state ψ′. From table 5.6 we
have:
ψ′ = (s ′, φ′) |= (s ′(πA) = c′ 6= ether ∧ s ′(Π) = M ∧ ¬(IDA ∈ s ′(N) ∨ IDA ∈ s ′(R)))
and s′ agrees with s otherwise (6.d)
We take now the action fa (rule fa.1) from γ to reach the state γ′. From table 5.14 we
have:
γ′ = (l ′, v ′) |= (l ′(πA) = c′pause, l

′(Π) = M ∧ ¬(IDA ∈ l ′(N) ∨ IDA ∈ l ′(R))) and
l′ agrees with l otherwise (6.e)
From (6.d) and (6.e) and absence of external actions effect on the timer (Sect. 5.3.3)
it follows that rules (1) to (4) in Definition 21 are satisfied by ψ′ and γ′. Also,
we have Π = M at both ψ′ and γ′ and thus both satisfy rule (5) in Definition 21
(@A ∈ A | s ′(Π) = l ′(Π) = IDA).
It follows that ψ′Rγ′.

We take now the action fa (rule fa.2) from ψ to reach the state ψ′. From table 5.6
we have:
ψ′ = (s ′, φ′) |= (s ′(πA) = ether ∧ s ′(Π) = M ∧ ¬(IDA ∈ s ′(N) ∨ IDA ∈ s ′(R))) and
s′ agrees with s otherwise (6.f)
We take now the action fa (rule fa.2) from γ to reach the state γ′. From table 5.14 we
have:
γ′ = (l ′, v ′) |= (l ′(πA) = ether ∧ l ′(Π) = M ∧ ¬(IDA ∈ l ′(N) ∨ IDA ∈ l ′(R))) and
l′ agrees with l otherwise (6.g)
From (6.f) and (6.g) and absence of external actions effect on the timer (Sect. 5.3.3) it

7Here also we know that c in (6.a) is different from ether (Sect. 4.3.5 and Definition 1, there is no
nominal edge outgoing ether).

113

follows that rules (1) to (4) in Definition 21 are satisfied by ψ′ and γ′. Also, from (6.a)
and (6.f) (respect. (6.b) and (6.g)) we have Π = M at both ψ′ and γ′ and thus both
satisfy rule (5) in Definition 21 (@A ∈ A | s ′(Π) = l ′(Π) = IDA).
It follows that ψ′Rγ′.

Action ea: From inference rules in table 5.7, to take ea (rule ea.1) from ψ, we
must have:
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = ether) (7.a)
Additionally, we know that ψRγ, then from (7.a) and Definition 21 (Rules (1),(5.1))
we have at γ:
l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = ether (7.b)
Now from inference rules in table 5.15, to take ea (rule ea.1) we must have:
γ = (l , v) |= (l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = ether) (7.c)
From (7.b), (7.c) it follows that action ea is possible at γ.
We take now the action ea (rule ea.1) from ψ to reach the state ψ′. From table 5.7 we
have:
ψ′ = (s ′, φ′) |= (s ′(πA) = start ∧ (φ′(ea) = Iea ∨ φ′(fa) = Ifa)) and s′ agrees with
s otherwise (7.d)
We take the action ea (rule ea.1) from γ to reach the state γ′. From table 5.15 we have:
γ′ = (l ′, v ′) |= (l ′(πA) = start ∧ v ′(xA) = 0) and l′ agrees with l otherwise (7.e)
From (7.d) and (7.e) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.2 with θ = 0) are
satisfied by ψ′ and γ′.
It follows that ψ′Rγ′.

From inference rules in table 5.7, to take ea (rule ea.2) from ψ, we must have,
besides the existence of an outgoing ea edge from c:
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = c 6= ether ∧ φ(ea) = Iea − θ | θ > 0)
(7.f)
Additionally, we know that ψRγ, then from (7.f) and Definition 21 (Rules (1),(5.2))
we have at γ:
l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = c 6= ether ∧ v(xA) > 0 (7.g)
Now from inference rules in table 5.15, to take ea (rule ea.2) we must have, besides
the existence of an outgoing ea edge from c:
γ = (l , v) |= (l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = c 6= ether ∧ v(xA) > 0) (7.h)
From (7.f), (7.g), (7.h) and edges equivalence (Sect. 5.3.4) it follows that action ea (rule
ea.2) is possible at γ.
We apply now the rule ea.2 from ψ to reach the state ψ′ (table 5.7) then from γ to
reach the state γ′ (table 5.15). The proof that ψ′Rγ′ is similar to that when taking ea.1
(with replacing start by c′.

Time actions From inference rules in table 5.8, to take d (rule d .1) from ψ, we must
have:
ψ = (s, φ) |= ((φ(st) = Ist − a | a < Per) ∧ s(sig) = false ∧ s(πM) = wait) (8.a)
Additionally, we know that ψRγ, then from (8.a) and Definition 21 (Rules (1),(2,
θ = a),(3)) we have at γ:
v(xt) = a ∧ l(sig) = false ∧ l(πM) = wait (8.b)
Now from inference rules in table 5.17, to take d we must have:
(l , v) |= (v(xt) < Per ∧ l(sig) = false ∧ l(πM) = wait) (8.c)
From (8.a), (8.b) and (8.c) it follows that action d (d ∈]0 ,Per − a]) is possible at γ.
We take now the action d (d ∈]0 ,Per − a]) from ψ to reach the state ψ′. From ta-

114

ble 5.8 (rule d .1) we have:
ψ′ = (s, φ′) |= (φ′(st) = Ist − a − d) (8.d).
We take the action d (d ∈]0 ,Per − a]) from γ to reach the state γ′. From table 5.17
(rule d .1) we have:
γ′ = (l , v ′) |= (∀x ∈ X : v ′(x) = v(x) + d), which means v ′(xt) = a + d (8.e)
From (8.d) and (8.e) it follows that rules (1), (2 with θ = a + d), (3), (4), and (5) (the
manager has the control because s(πM) = l(πM) = wait and thus @A ∈ A | s(A) = l(A) = IDA)
are satisfied by ψ′ and γ′.
It follows that ψ′Rγ′.

From inference rules in table 5.8, to take d (rule d .2) from ψ, we must have:
ψ = (s, φ) |= ((φ(st) = Ist − a | a < Per) ∧ s(Π) = IDA∧
s(πA) = c 6= ether ∧ IDA /∈ s(R) ∧ (φ(ea) = Iea − b ∨ φ(fa) = Ifa − b | b < W (c)))
(8.f)
Additionally, we know that ψRγ, then from (8.a) and Definition 21 (Rules (1),(2,
θ = a),(5.2, θ = b)) we have at γ:
v(xt) = a ∧ l(Π) = IDA∧
l(πA) = c ∧ IDA /∈ l(R) ∧ v(xA) = b (8.g)
Now from inference rules in table 5.17 (rule d .2), to take d we must have:
(l , v) |= (v(xt) < Per ∧ l(Π) = IDA∧
l(πA) = c 6= ether ∧ IDA /∈ R ∧ v(xA) < W (c)) (8.h)
From (8.f), (8.g) and (8.h) it follows that action d (d ∈]0 ,min(W (c)− b,Per − a)])
is possible at γ.
We take now the action d (d ∈]0 ,min(W (c)− b,Per − a)]) from ψ to reach the state
ψ′. From table 5.8 (rule d .2) we have:
ψ′ = (s, φ′) |= (φ′(st) = Ist − a − d ∧ (φ′(ea) = Iea − b − d ∨ φ′(fa) = Ifa − b − d))
(8.i).
We take the action d (d ∈]0 ,min(W (c)− b,Per − a)]) from γ to reach the state γ′.
From table 5.17 (rule d .2) we have:
γ′ = (l , v ′) |= (∀x ∈ X : v ′(x) = v(x) + d), which means (v ′(xt) = a + d ∧ v ′(xA) = b + d)
(8.j)
From (8.i) and (8.j) it follows that rules (1), (2 with θ = a + d), (3), (4), and (5)
(through the clause 5.2 with θ = b + d) are satisfied by ψ′ and γ′.
It follows that ψ′Rγ′.

We have thus proven that for all discrete and time actions, if ψRγ and action act

is possible from ψ s.t. ψ
act−−→ ψ′, then the same action act is possible from γ s.t.

γ
act−−→ γ′ and ψ′Rγ′. It follows that Γ (weakly) time simulates Ψ. Similarly, we

prove that Ψ simulates Γ in Appendix. A. Γ and Ψ are thus weakly timed bisimilar
which proves the soundness of our translation.

5.4 Conclusion
We develop a sound translation from the TTS semantics (Chapt. 4) to DUTA (Sect. 3.4.2).

We thus have, at the end of this chapter, accurate semantics of GenoM3 in the underly-
ing formalisms of the target formal frameworks. Indeed, as we will see in Chapt. 6, the
mapping of TTS (as TTDs) into Fiacre processes is straightforward and both BIP and
UPPAAL are based on subclasses of DUTA. Besides allowing a convenient mapping
into these tools in Chapt. 6, the translation presented here may be the basis to map
GenoM3 into other frameworks based on DUTA and their subclasses. This adds to the
value and the usability of the work presented in this chapter.

115

116

Chapter 6

Mapping to Formal
Frameworks

6.1 Introduction

In this chapter, we show how GenoM3 implementations are mapped into their for-
mal models counterparts in each of the frameworks presented in Chapt. 3. Since we
choose the Pocolibs middleware1, the mappings shown here are supposed to follow
the Pocolibs implementation. However, because we focus on execution tasks and their
activities, presenting the major part of the lightweight GenoM3 version formalized in
Chapt. 4 (level 2, Sect. 4.4.2), the mapping presented here is also valid for the ROS-
Comm implementation. Indeed, as explained in Sect. 2.3.2, the behavioral aspects
of the Pocolibs and ROS-Comm implementations diverge only at the data flow level
(communication between components through ports), not considered here. We will
thus refer to the Pocolibs and ROS-Comm models as implementation models.

We derive TTS and DUTA models from the high-level TTS semantics (respect. its
DUTA translation) at level 2 as presented in Sect. 4.4.2 (respect. Sect. 5.2.2). We
explain step by step how the implementation restricts the high-level semantics by elim-
inating a number of order-insensitive-induced behaviors. We then use the TTS and
DUTA models and propose their coding in Fiacre (for TTS) and UPPAAL and BIP
(for DUTA). Finally, we give examples on how the templates are used to generate the
Fiacre/UPPAAL/BIP models automatically from GenoM3 specifications.

6.2 The implementation models
We see in this section how the semantics of execution tasks in TTS and its transla-

tion in DUTA (at level 2, Sect. 4.4.2 and Sect. 5.2.2) are restricted in implementation
models.The implementation restricts the set of possible behaviors in the independent
semantics of an execution task as follows. For implementation purposes, the sets of
activities IDs to execute nominally (N) and to interrupt (R) are substituted with an
array run of size n (the number of activities in the task) of records. Each record is
composed of two fields: an activity ID and its status . Different IDs in the array may
refer to activities with the same behavior (equivalent to instances of the same activ-

1The arguments for this choice are given in Sect. 2.3.2.

117

ity in Sect. 2.2.3). The status of an activity A ranges over three values: nominal ,
interrupted and void , equivalent, respectively to A ∈ N , A ∈ R and A /∈ N ∪ R in
the TTS semantics in Sect. 4.4. The record type is thus defined in an execution task
ET (Definitions 3, 4 and 7) in pseudo-code as follows:

type info is record : {id ∈ IDA, status ∈ {nominal , interrupted , void}}.

Note that another global array of size n global (number of activities in the component)
is introduced to replace the sets Act , In , Fi and Wa (Definition 12) and is writable
by the control task. Since we focus only on the execution tasks in this chapter for
simplicity, this global array will be abstracted to the sole operation of copy explained
below.

Now, back to the execution task array run . It is initialized as follows. The fields
id receive the IDs of the activities in the order of their definition in the dotgen. The
fields status are initialized to void . Each new execution cycle, upon reception of
a period signal, starts with copying the updated statuses from the global array (see
above), which replaces the operation rrand(N ,R) in Definition 4. We call the copying
function update(run). The manager of the task will then go through each cell of run .
The control is passed to an activity A when visiting cell run[i] iff run[i].id = IDA

and run[i].status 6= void . The main difference with the independent semantics is that
activities are executed in a predefined order, i.e. that of browsing the array cells in the
increasing order of their indices (from 1 to n). This eliminates a number of behaviors
in the generic semantics where selecting the activity to which the control is passed next
is random (see operation rand() in Sect. 4.4).

6.2.1 Implementation semantics (TTS)
Let us now consider the execution task independent operational semantics in Sect. 4.4

(Definitions 3, 4 and 7) and derive the implementation semantics using the restrictions
explained above. An implemented execution task MET is a TTS (parallel composition,
Sect. 3.2.5)

MET = {Θ}[Tim ‖ Ex]

where Θ gives the initial values of the shared variables (given below) and Tim is the
timer .

Ex is a TTS (parallel composition, Sect.3.2.5)

{θ}[M ‖ (‖
A∈A

A)]

where M is the task manager and ‖
A∈A

A is the parallel composition of all activities

A in A (Sect. 4.3.2).
The local variables of MET , shared between Tim and Ex are: the array run with

Θ(run[i]) = {Ai ∈ A, void} for each cell i, the control passing variable
Π ∈ M ∪ IDA with Θ(Π) = M , the browsing variable ind ∈ [1 ,n + 1] with Θ(ind) = 1 ,
and the boolean period signal variable sig with Θ(sig) = false (the same as in the in-
dependent semantics). Now, we will see how the guards and operations in the TTDs
of the manager (Definition 4) and the activities (Definition 7) are updated with respect
to the new implementation variables and restricted set of behaviors. The TTD of the
timer remains unchanged (it has no operations or guards involving N and R, replaced
by the array run in the implementation).

118

Definition 22 Manager (implementation).
The manager TTD (implementation) is derived from the manager TTD (specification,
Definition 4) with the following changes:

• With the edge from wait to manage , the operations update(run) and ind := next(run, ind)
are associated. The former updates the statuses in run while the latter browses
run from index ind and updates it with the first index i that satisfies run[i].status 6= void
(n+ 1 if none or if ind is not a valid index in run),

• On the edge from manage to manage , the guard is ind < n + 1 ∧Π = M (the
manager has the control and there are still activities to execute in the cycle)
and the operation is π := run[ind].id (give the control to the next activity to
execute),

• On the edge from manage to wait , the guard is ind = n + 1 ∧Π = M (the
manager has the control and there are no more activities to execute in the cycle)
and the operation is ind := 1 (reset the browsing index).

Consequently, on the edge from wait to manage , after updating the statuses in
run , the browsing variable ind is updated to the index of the next activity to execute,
if any (Fig. 6.1). If the computed ind is valid (ind < n + 1), the edge from manage
to manage is taken and the control variable Π is updated to the ID of the next activity
to execute, i.e. run[ind].id . As soon as the manager resumes the control, it takes the
same edge to pass the control to the next activity to execute (if ind , updated by the last
executed activity, is valid) or the edge from manage to wait to wait for the next period
(otherwise).

wait
[0, 0]

sig:= false, update(run),
ind:= next(run,ind)

sig ind < n+1 ∧ π = M

π := run[ind].id
[0, 0]

manage

[0, 0]
ind = n+1 ∧ π = M

ind := 1

Figure 6.1: Manager TTD (implementation)

Now, we update the operations and guards on edges in the activities TTDs (Definition 7)
using the new set of variables.

Definition 23 Activities (implementation):
In the specification TTD (Definition 7), Each expression of the type ID ∈ N (respect.
ID ∈ R) will become
run[ind].status = nominal (respect. run[ind].status = interrupted). Each opera-
tion of the type UP(ID ,N ,R) will be replaced by the index update operations ind := ind + 1
and ind := next(run, ind).

Note that since the execution is order-sensitive and the browsing ends when ind = n + 1 ,
there is no need of updating the statuses of the activities in run (there is no risk of re-
executing an activity within the same period and, at the next period, run will be updated
from the global array anyway). For mutual exclusion, the operation Fr(c) seen before
is performed at runtime to prevent codels in conflict to execute at the same time.

119

As an example, let us apply these rules to activities A and B given in Fig. 4.5 to
get the TTDs in Fig. 6.2.

startA

]0
,1

]

[0,0]

]0
,2

]

[0,0]

[0,0]

mainB exec

]0,1]
[0,0]

]0,2]

[0,0]

A B

]0,1]

[0,0]

[0,0]
π = ID

A ∧
run[ind].status=nominal

π = IDA ∧

run[ind].status=interrupted

π = ID
B ∧

run[ind].status=nom
inal

π = IDB
∧ run[ind].status=interrupted

π = ID
B

∧ run[ind].status=interrupted

π = IDB
∧ run[ind].status=nominal

∧ Fr(mainB)

Fr(mainA)

in
d:

=
in

d+
1,

in

d:
=

ne
xt

(ru
n,

 in
d)

, π
 :=

 M

mainA execmainA

etherA

startB mainB

stopBetherB
ind:= ind+1, ind:= next(run, ind),

π := M

ind:= ind+1, ind:= next(run, ind),
π := M

ind:= ind+1,
ind:= next(run, ind), π := M

Figure 6.2: TTDs of activities A and B in ET (implementation)

6.2.2 Implementation semantics (DUTA)

It is trivial to derive the DUTA implementation semantics from the high-level TTS
and DUTA operational semantics. Indeed, on the one hand, the implementation has
no effect on timing constraints in the operational semantics. On the other hand, the
TTS to DUTA translation is proven to be sound. It is thus sufficient to translate the
TTS implementation semantics of execution tasks (Definition 3, Definition 22 and
Definition 23) to DUTA using the rules given in Sect. 5.2 (Definition 14, Definition 15
and Definition 18). It follows that the timer implementation is identical to that in
(Definition 14). The manager and activities are defined in the sequel.

Definition 24 Manager DUTA (implementation).
The manager implementation DUTA results from applying Definition 15 to the TTD
obtained from applying Definition 22.

Applying Definition 24 produces the DUTA in Fig. 6.3.

wait

sig:= false,
update(run),

ind:= next(run,ind)

sig ind < n+1 ∧ π = M
π := run[ind].id

manage

ind = n+1 ∧ π = M
ind:=1

Figure 6.3: Manager DUTA (implementation)

120

Definition 25 Activities DUTA (implementation).
The activities implementation DUTA results from applying Definition 18 to the TTD
obtained from applying Definition 23

6.3 Mappings
Let us now show how the implementation of execution tasks is encoded in Fiacre,

UPPAAL and BIP. We use a customized version of the component MANEUVER in
the quadcopter case study (Sect. 2.4). To simplify the presentation, we consider only
execution tasks and activities and convert permanent activities to plain activities that
can be requested by clients (excerpt in Listing. 6.1).
From the dotgen, we can give the formal definition of each activity using Sect. 4.3.1.
For simplicity, the base unit is the millisecond. The IDs, not shown here, are referred
to as IDA to differ between the activity and its identifier (name). For instance, the ID
of goto is IDgoto.

Activity SetState (task plan)

• CSetState = {startSetState, etherSetState},
• WSetState(startSetState) = 0.5,

launch

startlaunch

pathlaunch

ethergoto

startlaunch execFr(startlaunch) gn ∧ Fr(waitlaunch)

start

sigex:= true,

timerex
wait

[0, 0]

sigex

g ∧
index < nex+1

πex := runex[index].id
[0, 0] manage

g ∧
index = nex+1

index := 1

managerex

waitlaunch
waitlaunch exec

pathlaunch exec

servolaunchservolaunch exec

stoplaunch

Fr(servolaunch)

g i g n ∧ F
r(path aunch)

gi

op

op

op

op

op

g n

gi

op

Key:

op’

[5, 5]

[0, 0]

]0,1][0, 0] [0, 0]]0,1]

]0,1]

[0, 0]

]0,2]

]0,2]

]0,1]

[0, 0]

]0,1]

[0, 0]

[0
, 0

]

]0,0.5]

[0
, 0

]

[0, 0]

op : (index:= index +1,
index:= nextex(runex, index),
 πex := Mex)

gn : (πex = IDlaunch ∧

runex[index].status =
nominal)

op' : (sigex:= false,
updateex(runex),

index:= nextex(runex,index))

g : πex = Mex

gi : (πex = IDlaunch ∧

runex[index].status =
interrupted)

Figure 6.4: TTDs of exec

121

1 component maneuver {
2 ...
3 /* IDS */
4 ids {
5 planner_s planner; /* trajectory planner */
6 planner_s vplanner; /* velocity planner */
7 configuration_s reference;
8 struct trajectory_t {
9 sequence<configuration_s> t;

10 unsigned long i;
11 } trajectory;
12 /* logging */
13 log_s log;
14 };
15 /* task "plan" */
16 task plan {
17 period 5 ms;
18 };
19 activity SetState() {
20 doc "Set initial planning position to current one";
21 task plan;
22 codel<start> mv_current_state_read(in state, out reference)
23 yield ether wcet 0.5 ms;
24 };
25 activity goto(in double x, in double y, in double z, in double yaw,
26 in double duration) {
27 doc "Reach a given position from current state";
28 task plan;
29 local sequence<configuration_s> path;
30 codel<start> mv_plan_goto(in planner, in reference,
31 in x, in y, in z, in yaw, in duration, out path)
32 yield exec wcet 1 ms;
33 codel<exec> mv_plan_exec(in path, out reference, inout trajectory)
34 yield wait wcet 2 ms;
35 codel<wait> mv_plan_wait(in trajectory)
36 yield pause::wait, ether wcet 0.5 ms;
37 interrupt goto;
38 };
39 /* task "exec" */
40 task exec {
41 period 5 ms;
42 }
43 activity launch {
44 task exec;
45 codel<start> mv_exec_start(out reference, out trajectory, out desired)
46 yield wait wcet 1 ms;
47 codel<wait> mv_exec_wait(in trajectory, in reference, out desired)
48 yield pause::wait, path, servo wcet 1 ms;
49 codel<path> mv_exec_path(inout trajectory,
50 in reference, out desired, inout log)
51 yield pause::path, pause::wait wcet 2 ms;
52 codel<servo> mv_exec_servo(inout reference, out desired, inout log)
53 yield pause::wait wcet 1 ms;
54 codel<stop> mv_exec_stop() yield ether wcet 0.5 ms;
55 };
56 };

Listing 6.1: Excerpt of a custom version of MANEUVER component.

122

• TSetState = {startSetState → etherSetState},

• T P
SetState = ∅,

• µ(startSetState) = {startlaunch,waitlaunch, pathlaunch, servolaunch}.

Activity goto (task plan)

• Cgoto = {startgoto, execgoto,waitgoto, ethergoto},

• Wgoto(startgoto) = 1 ,Wgoto(execgoto) = 2 ,Wgoto(waitgoto) = 0 .5 ,

• Tgoto = {startgoto → execgoto, execgoto → waitgoto,waitgoto → waitgoto,waitgoto → ethergoto},

• T P
goto = {waitgoto → waitgoto}.

Activity launch (task exec)

• Claunch = {startlaunch,waitlaunch, pathlaunch, servolaunch, stoplaunch, etherlaunch},

• Wlaunch(startlaunch) = 1 ,Wlaunch(waitlaunch) = 1 ,Wlaunch(pathlaunch) = 2 ,
Wlaunch(servolaunch) = 1 ,

• Tlaunch = {startlaunch → waitlaunch,waitlaunch → waitlaunch,

launch

startlaunch

pathlaunch

ethergoto

startlaunch exec
Fr(startlaunch) gn ∧ Fr(waitlaunch)

op : (index:= index +1,
index:= nextex(runex, index),
 πex := Mex)

gn : (πex = IDlaunch ∧

runex[index].status =
nominal)

start

sigex:= true,
xtex:= 0

timerex
wait

op' : (sigex:= false,
updateex(runex),

index:= nextex(runex,index))

sigex

πex := runex[index].id
manage

index := 1

managerex

clock xlaunch

xlaunch ≤ 1

xlaunch > 0
xlaunch:= 0

xlaunch:= 0 x

launch > 0

x launch:=
 0x

launch > 0

clock xtex

xtex ≤ 5

xtex == 5

waitlaunch

waitlaunch exec

pathlaunch exec

servolaunch

servolaunch exec

 x
launch := 0

x launch >
 0

xlaunch:= 0

stoplaunch

xlaunch > 0

Fr(servolaunch)

g i g n ∧ F
r(path aunch)

gi

op

op
xlaunch > 0

x
launch > 0op

op

x
launch > 0op

 xlaunch:= 0

x lau

nc
h
:=

 0

g
n

gi

op

g : πex = Mex

Key:

op’

xlaunch ≤ 1

xlaunch ≤ 2

xlaunch ≤ 1xlaunch ≤ 0.5

g ∧
index < nex+1

g ∧
index = nex+1

gi : (πex = IDlaunch ∧

runex[index].status =
interrupted)

Figure 6.5: DUTAs of exec

123

waitlaunch → pathlaunch,waitlaunch → servolaunch, pathlaunch → pathlaunch,
pathlaunch → waitlaunch, servolaunch → waitlaunch, stoplaunch → etherlaunch},

• T P
launch = {waitlaunch → waitlaunch, servolaunch → waitlaunch,

pathlaunch → pathlaunch, pathlaunch → waitlaunch}.

Mutual exclusion We compute now µ(c) for each codel c in each activity. In the im-
plementation, c′ ∈ µ(c) iff c′ and c belong to activities in different tasks (see condition
on mutual exclusion in Sect. 4.3.5) and c′ writes (respect. reads) an IDS field that c
reads or writes (respect. writes). That is, only simultaneous readings are allowed on
an IDS field. For instance, we may conclude that codel start (activity SetState) and
codel start (activity launch) are in conflict as they both write the field reference and
their activities are run by different tasks, that is startSetState ∈ µ(startlaunch) (and
reciprocally). Middleware templates (Sect. 2.3.2) provide a function mutex (c) that re-
turns for any codel c the list of codels in µ(c) according to the explanation given above.
For activity SetState:
µ(startSetState) = {startlaunch,waitlaunch, pathlaunch, servolaunch}.
For activity goto:
µ(startgoto) = {startlaunch, servolaunch},
µ(execgoto) = {startlaunch,waitlaunch, pathlaunch, servolaunch},
µ(waitgoto) = {startlaunch, pathlaunch}.
For activity launch:
µ(startlaunch) = {startSetState, startgoto, execgoto,waitgoto},
µ(waitlaunch) = {startSetState, execgoto},
µ(pathlaunch) = {startSetState, execgoto,waitgoto},
µ(servolaunch) = {startSetState, startgoto, execgoto},
µ(stoplaunch) = ∅.

We can now use the inductive definitions Definition 22 and Definition 23 (respect.
Definition 24 and Definition 25) to get the implementation TTDs (respect. DUTAs) of
the execution tasks plan and exec (the timers follow Definition 3, unchanged by the
implementation). We use the subscripts p and ex to differ between variables and man-
agers/timers TTDs/DUTAs names in, respectively, tasks plan and exec. For instance,
runex is the implementation array run for task exec and managerp is the name of
the TTD/DUTA of plan manager . The TTDs of exec (respect. plan) are given in
Fig. 6.4 (respect. Fig. 6.6) and the DUTAs of exec (respect. plan) are given in Fig. 6.5
(respect. Fig. 6.7).

Note that knowing more about the exact value of µ(c) for each codel c allows us to
explain easily using examples how guards Fr(c) evaluate. For instance, in the TTD of
goto (Fig. 6.6), taking the edge from execgoto to execgoto exec (which is equivalent to
executing the codel exec of goto) is subject to satisfying the guard Fr(execgoto). This
guard evaluates to true only if the current state of the underlying TTS of the whole
system, that is the parallel composition of all TTDs in both tasks, satisfies the priority
∀ca ∈ µ(execgoto) : πa 6= ca exec, a being an activity TTD and ca exec one of its ver-
tices (equivalent to: none of the codels in conflict with execgoto is currently executing).
We can then use the definition of µ(execgoto) (see above) to easily formalize the eval-
uation of Fr(execgoto) as true if and only if:
(πlaunch 6= startlaunch exec ∧ πlaunch 6= waitlaunch exec ∧ πlaunch 6= pathlaunch exec
∧πlaunch 6= launch.servolaunch exec)

124

startSetState

]0,1]

[0,0]

[0,0]

execgoto exec

SetState

goto

etherSetState

startgoto execgoto

waitgotoethergoto

startSetState exec

[0,0]
Fr(startSetState)

startgoto exec

waitgoto exec

[0,0]
Fr(startgoto)

]0,1] [0,0]
Fr(execgoto)

]0,2]
[0,0]

]0,0.5]

]0,0.5]

op

[0,0]

[0,0]

gn ∧

Fr(waitgoto)

op
[0,0]

start
[5, 5]

sigp:= true

timerp

wait

[0, 0]

sigp

πp := runp[indp].id
[0, 0] manage

[0, 0]

indp := 1

managerp

g
n

gi
gi

op

op

g’n

op

g’i
op

op’ g’

g

Key:

op : (indp:=indp+1,
indp= nextp(runp, indp),
 πp := Mp)

gn : (πp = IDgoto ∧

runp[indp].status =
 nominal)
gi : (πp = IDgoto ∧

runp[indp].status =
interrupted)

op' : (sigp:= false,
updatep(runp),
indp:= nextp(runp,indp))

g : (indp < np+1 ∧

πp = Mp)

g’n : (πp = IDSetState ∧

runp[indp].status =
nominal)
g’i : (πp = IDSetState ∧

runp[indp].status =
interrupted)

g’ : (indp= np+1 ∧

 πp = Mp)

Figure 6.6: TTDs of plan

6.3.1 Mapping to Fiacre/TINA

As mentioned in Sect. 3.3, Fiacre supports a rich set of constructs such as unions
and records. Let us specify the Fiacre component for the execution task exec. We start
by defining the run exec array type and size. First, we define the activity IDs and the
statuses each as a union, then we build the record type from these types, and finally, we
define the array run exec type and size (listing 6.2).

/* Activity IDs */
type ID_exec is union ID_launch end
/* status */
type STATUS is nominal | interrupted | void end
/* array */
type CELL_exec is record id: ID_exec, status: STATUS end
const size_exec: nat is 1
type RUN_exec is array size_exec of CELL_exec end

Listing 6.2: Types I (Fiacre)

Now, we define the type of the browsing variable ind exec as a natural ranging
from 0 to n, and the type for the control passing variable Pi exec (Πexec) which is
the union of all elements of type ID exec and M exec (listing 6.3).

125

startSetState

execgoto exec

SetState

goto

etherSetState

startgoto

execgoto

waitgoto
ethergoto

startSetState exec
Fr(startSetState)

startgoto exec

waitgoto exec

Fr(startgoto) Fr(execgoto)

op

op

g
n

op

gn ∧
Fr(waitgoto)

gi
op

op

start
sigp:= true,

xtp:= 0

timerp

wait

op’
sigp

g

πp := runp[indp].id
manage

g’
indp := 1

managerp

clock xgoto

xgoto ≤ 1

xgoto > 0
xgoto:= 0

xgoto:= 0

xgoto ≤ 2

x
goto > 0

 xgoto:= 0

xgoto > 0

xgoto > 0

clock xtp

clock xSetState

xSetState:= 0

xSetState ≤ 1

xSetState > 0

xtp ≤ 5

xtp == 5

gi

g’n

g’iop

xgoto ≤ 0.5

Key:

op : (indp:=indp+1,
indp= nextp(runp, indp),
 πp := Mp)

gn : (πp = IDgoto ∧

runp[indp].status =
 nominal)
gi : (πp = IDgoto ∧

runp[indp].status =
interrupted)

op' : (sigp:= false,
updatep(runp),
indp:= nextp(runp,indp))

g : (indp < np+1 ∧

πp = Mp)

g’n : (πp = IDSetState ∧

runp[indp].status =
nominal)
g’i : (πp = IDSetState ∧

runp[indp].status =
interrupted)

g’ : (indp= np+1 ∧

 πp = Mp)

Figure 6.7: DUTAs of plan

We define then the type MUT for an array of booleans the size of which is the
number of non-thread-safe codels (8 in this case, listing 6.4). An array mut of this
type will be used to handle correctly the mutual exclusion aspect (see below).

const mut_nb: nat is 8 /* number of non-thread-safe codels in maneuver
*/

type MUT is array mut_nb of bool

Listing 6.4: Types III (mutual exclusion, Fiacre)

After type definitions, one may define the functions. A particularly interest is given
to the next exec() function given in the implementation semantics (the update exec()
function is abstracted). The : IND exec after the arguments closing bracket means that
the function return type is IND exec (listing 6.5).

/* index */
type IND_exec is nat 0..size_exec end
/* control passing */
type PI_exec is union id: ID_exec | M_exec end

Listing 6.3: Types II (Fiacre)

126

function next_exec (run: RUN_exec, ind: IND_exec): IND_exec is
begin
while ind<size_exec do

if (run[ind].status=nominal or run[ind].status=interrupted) then
return ind

end;
ind:= ind+1

end;
return ind
end

Listing 6.5: The next function (task exec, Fiacre)

Now we encode the TTDs as Fiacre processes. As seen in Sect. 3.3, Fiacre pro-
cesses are sequential with time semantics identical to that of TPN. Thus, in the absence
of Fiacre ports, one may view a Fiacre process as a textual description of a TTD, re-
stricted over the types and domains of variables supported by Fiacre. Let us start with
implementing the TTD of the timer (Fig. 6.4). We give the name of the process and its
arguments, enumerate the vertices, and describe the behavior using transition blocks as
shown in Sect. 3.3 (Listing 6.6).

process timer_exec (&sig_exec: bool) is
state start
/* behavior */
from start

wait [5,5];
sig_exec := true;

to start

Listing 6.6: Timer I (task exec, Fiacre)

Now, we do the same for the manager of exec2 (Fig. 6.4) (listing 6.7).

process manager_exec (&sig_exec: bool, &run_exec: RUN_exec, &ind_exec:
IND_exec, &pi_exec: PI_exec) is

state wait_, manage
from wait_

on sig_exec;
... /* update the statuses in run_exec */
sig_exec := false;
ind_exec:= next_exec (run_exec, ind_exec);

to manage

from manage
on pi_exec = M_exec;
if ind_exec < size_exec then

pi_exec:= run_exec[ind_exec].id;
to manage

else
ind_exec:= 0;
to wait_

end

Listing 6.7: Manager (task exec, Fiacre)

Note that the else clause includes values of ind exec that can be both greater or equal
to size exec. Actually, the value of ind exec should never exceed size exec and this

2Note that we replace the name of vertex wait by wait since the former is a reserved Fiacre keyword
for timing constraints.

127

is verified at compilation by Fiacre thanks to upper-bounding the type of ind exec by
size exec (listing 6.3).

Now we see how the activities are encoded, especially the mutual exclusion func-
tion Fr(c). With each non-thread safe codel c, we associate the boolean mut [r c] in
the array mut (of type MUT , listing 6.4) whose truth value indicates whether the codel
is currently executing. Thus, for the Fiacre transition from c to c exec (equivalent to
the edge from c to cexec in the underlying TTD), true is assigned to mut[r c]. Con-
versely, on each outgoing Fiacre transition from c exec (equivalent to each outgoing
edge from cexec in the underlying TTD), mut[r c] becomes false. The remaining
mapping is straightforward. The Fiacre process for launch (exec, Fig. 6.4) is shown
in listing B.1 (Appendix. B).

We are now set to define the Fiacre component for task exec. This includes declar-
ing and initializing the shared variables and defining the behavior of the component
as the parallel composition of instances of the processes timer exec (listings 6.6),
manager exec (listing 6.7) and launch (listing B.1, Appendix. B) as shown in list-
ing 6.8.

component exec_task(&mut: MUT) is
var run_exec: RUN_exec:= [{id=ID_launch, statusvoid}], pi_exec: PI_exec:= M_exec,

ind_exec: IND_exec:= 0, sig_exec: bool:= false

par
timer_exec(&sig_exec)
|| manager_exec (&sig_exec, &run_exec, &ind_exec, &pi_exec)
|| launch (&run_exec, &ind_exec, &pi_exec, &mut)

end

Listing 6.8: Component for task exec (Fiacre)

Following the same steps, we specify a component plan task for the task plan as
well. That is, we declare the necessary types, functions, processes and the component
as shown for the task exec. At the end, we build the Fiacre component for MANEUVER
by composing both exec task and plan task , after declaring and initializing the mutual
exclusion array mut , shared between both tasks (listing 6.9).

component maneuver is
var mut: MUT:= [false, false, false, false, false, false, false, false]

par
exec_task(&mut)
|| plan_task(&mut)

end

Listing 6.9: Component for MANEUVER (Fiacre)

6.3.2 Mapping to UPPAAL
Before we show the different elements of the mapping, it is fair to point out the fact

that UPPAAL does not support hierarchical composition. Indeed, contrary to Fiacre,
models in UPPAAL must be flat. This means that we cannot compose the component
MANEUVER hierarchically like we did in Fiacre. Though this is not a problem at the
semantic level, it makes the models less readable, especially when modeling a robotic
application with several components. Also, UPPAAL does not support doubles as time
constraints. We have thus to change the base unit to a value small enough to represent
all timing contraints as integers, that is 10−1ms.

128

As specified in Sect. 3.4, .xta is our format of choice for automatic generation. We
will show how we model the component MANEUVER, mainly the task plan (Fig. 6.7),
in this format. Since one can also visualise .xta files in UPPAAL, we will also enrich
the processes listings with DUTA figures exported from UPPAAL.

Let us start with defining the types. Types defined as unions in Fiacre, such as IDs,
are integer constants here (not detailed). We define the type for each cell of the array
run plan using the struct construct, similar to that in C, and declare and initialize
run plan:

typedef struct
{int [ID_SetState,ID_goto] id; int [void_,interrupted] status;}
CELL_plan;
const int size_plan:=2;
CELL_plan run_plan[size_plan] := { {ID_SetState,void_},

{ID_goto,void_} };

Now, we define and initialize the remaining variables needed in the processes of plan:

/* mutual exclusion */
bool mut[mut_nb]:= {false, false, false, false, false, false, false,

false};
/* other variables */
bool sig_plan:= false;
int[M_plan, ID_goto] pi_plan:= M_plan;
int[0, size_plan] ind_plan:= 0;

And the next plan() function:

int[0, size_plan] next_plan (CELL_plan run[size_plan], int [0,
size_plan] ind) {

while (ind < size_plan) {
if (run[ind].status != void_) {return ind;}
ind:= ind+1;}
return ind;}

Let us now deal with another issue, namely the urgencies. The implementation DUTA
model of the task plan (Fig. 6.7) contains several eager edges. In UPPAAL, the latter
are not supported. Indeed, as mentioned in Sect. 3.4, only urgent channels are allowed
in UPPAAL. To enforce urgency on urgent edges in Fig. 6.7, we add a process urgency
with only one location and one edge, and synchronize the latter, over a handshake
urgent channel, with each urgent edge in the original implementation DUTA model
(more explanation below). We define the urgent channel as follows:

urgent chan exe;

The nature of flat models in UPPAAL forces us to define the types, constants and
variables for the task exec here as well, before starting to define the processes. It is
sufficient to follow the same steps above. Once that is done, we are set to define the
processes. Each DUTA in Fig. 6.7 will be mapped to an UPPAAL process, plus the
urgency process. We will start with the latter (listing 6.10).

process Urgency(urgent chan &exe) {
state idle;
init idle;
trans

idle →idle { sync exe?; };
}

Listing 6.10: Urgency process (UPPAAL)

129

process manager_plan(urgent chan &exe, int[M_plan, ID_goto] &pi_plan,
int[0, size_plan] &ind_plan, CELL_plan &run_plan[size_plan], bool
&sig_plan) {

state wait, manage;
init wait;
trans
wait →manage { guard sig_plan; sync exe!;

assign .../* update statuses in run_plan */,
sig_plan := false, ind_plan:= next_plan
(run_plan, ind_plan); };

manage →manage { guard pi_plan == M_plan && ind_plan < size_plan;
sync exe!;

assign pi_plan:= run_plan[ind_plan].id; };
manage →wait { guard pi_plan == M_plan && ind_plan == size_plan; sync

exe!;
assign ind_plan:= 0; },

}

Listing 6.12: manager plan process (UPPAAL)

This specification gives the DUTA in Fig. B.1 (Appendix. B). The ? means that the
only edge in this process, from idle to idle , is the receiver on the urgent channel exe .
Since this edge is always enabled, the urgent channel will be triggered (or deactivated)
as soon as enabled, that is, as soon as any of the emitters (each of the eager edges in
Fig. 6.7) is enabled.

Besides the implementation of urgencies, explained above, and the mutual exclu-
sion, similar to the Fiacre mapping, the mapping from the DUTA in Fig. 6.7 to UP-
PAAL is straightforward. For instance, the timer process timer plan is specified in
listing 6.11 (and Fig. B.2, Appendix. B).

process timer_plan(bool &sig) {
clock x;
state start {x ≤50};
init start;
trans
start →start { guard x==50; assign sig_plan:= true, x:=0; },
}

Listing 6.11: timer plan process (UPPAAL)

The manager process manager plan in listing 6.12 (and Fig. B.3, Appendix. B).
The process SetState for the activity SetState in Fig. 6.8 (and listing B.2, Ap-

pendix. B).
And finally the process goto for the activity goto in Fig. 6.9 (and listing B.3, Ap-

pendix. B).
Similarly, we define the processes for the task exec. Once we finish with the pro-

cesses, we declare the entities that will form our global system as process instances.
For example, listing 6.13 shows the instantiations of all processes in the task plan:

tim_plan:= timer_plan(&sig_plan);
man_plan:= manager_plan(&exe, &pi_plan, &ind_plan, &run_plan,

&sig_plan);
set_state:= SetState(&exe, &pi_plan, &ind_plan, &run_plan[size_plan],

&mut[mut_nb]);
go_to:= goto(&exe, &pi_plan, &ind_plan, &run_plan[size_plan],

&mut[mut_nb]);

Listing 6.13: Instantiations (plan, UPPAAL)

130

Figure 6.8: The process SetState

Figure 6.9: The process goto

And the urgency (listing 6.14).

urgency:= Urgency(&exe);

Listing 6.14: Instantiations (urgency, UPPAAL)

And finally, we compose in parallel all the declared instances, including the ones of
task exec, using the keyword system (listing 6.15).

131

system urgency, tim_plan, man_plan, set_state, go_to,; /* plus
the instances for task exec */

Listing 6.15: System definition (UPPAAL)

6.3.3 Mapping to BIP
The mapping to BIP varies according to the objective of the translation. Indeed,

as seen in Sect. 3.6, RTD-Finder and the BIP Engine do not support the same options
covered by the BIP language. In brief, RTD-Finder supports neither urgencies nor data
variables while the BIP Engine implements the totality of the language. Therefore,
the translation is quite straightforward for online verification and particularly delicate
for offline verification. In this section, we briefly present online models then detail
the translation for offline models. We show how we map the DUTA representations
into BIP TA where neither urgencies nor variables are allowed. Since this mapping is
quite complex, we only show how the mutual exclusion aspect, using both variables
and urgencies, is translated into BIP as supported by RTD-Finder.

6.3.3.1 Online model

Since online models support data variables and urgencies on edges, the implemen-
tation of DUTA models is not particularly difficult. For urgencies, it is enough to use
the BIP keyword eager on each

;

edge. For data variables and functions, we may use
external entities coded in C + +. The main difference from the UPPAAL and Fiacre
models is that here we can call the codels associated code, execute it, and read its
return value. This makes these models runnable on the real robot but also no longer
non-deterministic. Indeed, when executing the codel, it will return the next codel to
execute after it does its internal computations. For a non-thread-safe codel c, the as-
sociated code is called when taking the edge from c to cexec and the return value is
checked at cexec. On the other hand, we need an intermediate location ctest for thread-
safe codels on which we can test the return value and decide, deterministically, which
codel to execute afterwards. Let us see how this works using the activity launch in our
example (Fig. 6.5). Without details on operations over shared variables, except the mu-
tual exclusion variables (same names as in Fiacre and UPPAAL), we briefly see how
the behavior of the BIP component atom for this activity is encoded from the DUTA
implementation semantics. First, we define the external type of values returned by the
execution of a codel:

extern data type genom_event

Then we define a simple port type without arguments:

port type Port()

The following listing shows the header of the BIP atom for activity launch as well
as the behavior of the codel wait. We do not need here to specify the guard x > 0 on
the outgoing edge from wait exec because we are actually executing the codel and this
will take a non-zero time (and if the execution lasts more than the specified WCET, the
BIP engine will detect it).

atom type LAUNCH

data genom_event next_codel

132

clock x unit microsecond
/* ports */
...
port Port to_wait_exec()
port Port to_wait()
port Port to_path()
port Port to_servo()

state ether, ..., wait, wait_exec, wait_test, path, servo, ...
initial to ether

...
on to_wait_exec
from wait to wait_exec
provided (!(mut[r_start_SetState] || mut[r_exec_goto])/* has resources

*/)
eager
do (mut[r_wait_launch]=true /*take resources*/;

next_codel = mv_exec_wait(...) /* execute the codel wait */;)
reset x

on to_path
from wait_exec to path
provided (next_codel == path)
do {mut[r_wait_launch]=false /*release resources*/;}

on to_servo
from wait_exec to servo
provided (next_codel == servo)
do {mut[r_wait_launch]=false /*release resources*/;}

on to_wait
from wait_exec to wait
provided (next_codel == wait)
do {mut[r_wait_launch]=false /*release resources*/;

... /* suspend activity (pause) */}

...
/* invariants */
...
invariant inv_wait at wait_exec when (x≤1000)
end

Now, if the codel stop, which is thread safe, had more than one successor, say servo in
addition to ether , we would need an intermediate location stop test between stop and
its successors ether and servo to check what the execution of stop returns and solve
non-determinism:

atom type LAUNCH2(.../*shared variables*/)
...
/* ports */
...
port Port to_stop_test()
port Port to_ether()
port Port to_servo()
...
on to_stop_test
from stop to stop_test
do {next_codel = mv_exec_stop() /* execute the codel stop */;}

on to_servo
from stop_test to servo

133

provided (next_codel == servo)

on to_ether
from stop_test to ether
provided (next_codel == ether)
do {... /* end activity */}

...
/* invariants */
...
invariant inv_stop at stop when (x≤500)
end

6.3.3.2 Offline model

Let us consider three non-thread-safe codels c1 , c2 and c3 belonging to, respec-
tively, activities A1 , A2 and A3 . These activities are run by three different tasks. c1
and c3 are in conflict with c2 but not in mutual conflict. Consequently, c1 (respect.
c3) may not run if c2 is executing, and vice versa. However, c1 and c3 may run
in parallel. For the sake of readability and simplicity, we suppose that each of these
codels has only one input and only one output codel. That is, for instance, only one
codel inA1 has a transition to c1 and c1 has only one outgoing transition. To reach the
objective, i.e modeling the concurrency/mutual exclusion in pure BIP TA, we follow a
two-step method. First, we get rid of the variables then we get rid of the urgencies. We
will use UTA/TA BIP components (atoms) with ports associated with edges and con-
nectors (thick colored lines in each figure) to synchronize edges only in a rendezvous
fashion here (see Sect. 3.6 for ports and connectors). In each figure, The components
A1 , A2 and A3 are represented only partially (the discontinued edges denote missing
parts before/after them).

With BIP UTA The idea is to get rid of the boolean array used in the UPPAAL model
(Sect. 6.3.2) and replace it with BIP TA. Applying a connector interaction on edges
with no conditions on clocks and with different urgencies produces a transition with
the strongest urgency. That is, it is sufficient to have one eager edge in the interaction
to produce an eager transition. Fig. 6.10 shows the modeling of concurrency/mutual
exclusion between c1 , c2 and c3 in BIP UTA. Each c has a lock c BIP TA compo-
nent that records the information on whether c is idle/waiting to execute (location free,
equivalent to mut [r c] = false in the UPPAAL model), or currently executing (loca-
tion taken, equivalent to mut [r c] = true in the UPPAAL model).

Let us see how it works through an example. The interaction involving the edge
labeled resfree (component A2), the edge labeled take (component lock c2), and the
edge labeled check (components lock c1 and lock c3) results in an eager transition.
Therefore, if the codel c2 is waiting to execute, i.e component A2 is in location c2 wait
and lock c2 in location free, it will transit to c2 exec (start executing) as soon as the
components lock c1 and lock c3 are in their respective locations free, which is equiv-
alent to the truth of the guard !(mut [r c1]||mut [r c3]) in the UPPAAL model (in case
c1 or c3 is also waiting to execute, non-determinism applies). Such a transition is
concomitant to switching lock c2 to its location taken (equivalent to the assignment
mut [r c2] := true in the UPPAAL model), which will prevent any codel in conflict
with c2 to execute until c2 finishes its execution. For the sake of readability, only one
connector (that of c1) defining codels end of execution is represented in Fig. 6.10.

134

give

take

check

take

check

lock_c3

give

lock_c1

give

take

check

take

check

give

lock_c2

check

give

take

take

check

give

resfree

freeres

A1

clock x

freeres

resfree
x:=0

c1

c1_exec

x<=W(c1)

A2

resfree

freeres

freeres

clock x

A3

resfree

freeres

freeres

free

taken

free

taken

free

taken

clock x

resfree
x:=0

c2

c2_exec

x<=W(c2)

resfree
x:=0

c3

c3_exec

x<=W(c3)
x>0

x>0

x>0

Figure 6.10: Concurrency and mutual exclusion in BIP UTA.

With BIP TA Now, we get rid of the urgencies to get the solution in Fig. 6.11.
For the sake of readability, merely the connectors involving the execution and end
of execution of c2 are shown. To eliminate urgencies, the lock components evolve
considerably. Each lock c BIP TA component records whether c may execute (lo-
cation ready, equivalent to mut [r c] = false), is executing (location execute, equiv-
alent to mut [r c] = true) or is idle/needs to wait further (otherwise, equivalent to
mut [r c] = false).

Let us depict how it works with an example. The component lock c2 is initially
at location Init. Unless one of the codels in conflict with c2 , i.e. c1 or c3 , starts exe-
cuting, lock c2 transits to ready as c2 reaches the location c2 wait . Here, an urgency

135

lock_c3
clock x

exec_ext

end_ext

wait

exec

end

exec_ext

exec_ext

wait

wait

end_ext

end_ext

exec

end

lock_c1
clock x

exec_ext

end

wait

exec

end_ext

exec_ext

exec_ext

wait

wait

end_ext

end_ext

x:=0

exec

end

Init

x<=0

exec_ext

lock_c2
clock x

end

wait

exec

end_ext

exec_ext

exec_extexec_ext

wait

wait

wait

end_ext

end_ext

end_ext

exec

end

Init

resfree

freeres

A1

clock x

freeres

resfree

wait
wait

x<=W(c1)

resfree

freeres

A2
clock x

freeres

resfree

wait
wait

x<=W(c2)

resfree

freeres

A3
clock c

freeres

resfree

wait
wait

x<=W(c3)

Init

Ready

Level_0

init

execute

Ready
Level_0

execute

Level_1

x<=0

init

c1

c1_exec

c2

c2_exec

c3

c3_exec

Ready

Level_0

execute

x<=0

init

x:=0

x:=0

x:=0

x:=0

x:=0
x:=0

x:=0

x:=0

x>0

x>0

x>0

Figure 6.11: Concurrency and mutual exclusion in TA (without variables).

136

occurs as no time may elapse at the location ready (component lock c2). Therefore,
c2 transits immediately to its location c2 exec while its lock transits to execute (in case
c1 or c3 is also waiting to execute, non-determinism applies). By the end of execution,
lock c2 transits back to Init. Now, if c1 starts executing, lock c2 transits to level 1.
If c2 reaches its location c2 wait during c1 ’s execution, it is the end of the latter that
allows the transition to ready (component lock c2) and consequently the possibility to
execute c2 .

TA do not express urgencies naturally, hence the heterogeneity of the lock com-
ponents from a codel to another. Let c be a non-thread-safe codel and N the number
of codels in conflict with it. The proposed solution induces a linear proportionality
between N and the number of locations/edges of the lock component associated with
c:

• The number of locations in the lock component associated with c is equal toN+3

• The number of edges within the lock component associated with c is equal to
3N+5.

For instance, when N is equal to 8 (which is rather usual for a GenoM3 non-thread-
safe codel), the number of locations and transitions is, respectively, 11 and 29. This
is a main limitation of RTD-Finder that will influence the scalability of the models
(Chapt. 7). The technical and theoretical difficulties accompanying the modeling and
verification of GenoM3 with RTD-Finder are published in [Foughali, 2017] that we
refer the interested reader to for in-depth details.

Coding in BIP Let us apply this modeling to the activities in our example (the
GenoM3 component MANEUVER). We will see how we would implement the activ-
ities while dealing with mutual exclusion in an urgency-free, variable-free fashion as
shown above. Anything besides nominal execution of activities and mutual exclusion
is ignored in this example, including interruption edges, timers, managers, and other
variables and functions such as run and next .

First, we need to define the ports and connectors types. For that, we need to know
all the possible constructions of connectors from the mutual exclusion information:

• Each codel needs to synchronize its port wait with the port wait of its lock, we
thus need a strong synchronization connector with two ports,

• Each of the codels start (SetState), exec (goto) and start (launch) is in con-
flict with four codels, we need thus for each two six-port strong synchronization
connectors,

• Each of the codels path (launch) and servo (launch) is in conflict with three
codels, we need thus for each two five-port strong synchronization connectors,

• Each of the codels start (goto), wait (goto) and wait (launch) is in conflict
with two codels, we need thus for each two four-port strong synchronization
connectors.

Now we are set to define the ports and connectors types (listing 6.16).

port type Port()
connector type sync_2(Port p1, Port p2)

define p1 p2
end

137

connector type sync_4(Port p1, Port p2, Port p3, Port p4)
define p1 p2 p3 p4

end
connector type sync_5(Port p1, Port p2, Port p3, Port p4, Port p5)

define p1 p2 p3 p4 p5
end
connector type sync_6(Port p1, Port p2, Port p3, Port p4, Port p5,

Port p6)
define p1 p2 p3 p4 p5 p6

end

Listing 6.16: Connectors types (BIP)

Now we define the atoms. Let us start with the locks. For each non-thread-safe
codel c, we will have a lock atom lock c whose behavior, and number of edges and
locations depend on the number of codels c is in conflict with, as shown above. Since
some codels share the same number of codels in conflict with them, we may define
the same atom type for them. For instance, each of the codels start (SetState), exec
(goto) and start (launch) is in conflict with four codels, that is, any couple {c, c′} of
these codels satisfies |µ(c)| = |µ(c′)| = 4. We may thus define an atom type lock 4 ()
and instantiate the locks of codels from it when defining the global component later:

atom type LOCK_4()
clock x
export port Port wait()
export port Port exec()
export port Port end_()
export port Port exec_ext()
export port Port end_ext()

state level_0, level_1, level_2, level_3, init, ready, execute
initial to init

on wait
from level_0 to level_1
... /* then blocks from level_1 to level_2, level_2 to level_3 */
on end_ext
from level_0 to level_1
... /* then blocks from level_1 to level_2, level_2 to level_3 */
on exec_ext
from level_3 to level_2
... /* then blocks from level_2 to level_1, level_1 to level_0 */

on wait
from level_3 to init
on wait
from init to ready
reset x

on end_ext
from level_3 to init
on end_ext
from init to ready
reset x

on exec_ext
from init to level_3
on exec_ext
from ready to init

on exec
from ready to execute

138

on end_
from ready to init

/* invariants */
invariant inv_ready at ready when (x≤0)
end

Similarly, we define the atom type lock 3 (for the locks of codels path (launch) and
servo (launch)) and lock 2 (for the locks of codels start (goto), wait (goto) and
wait (launch)). Note that all the ports need to be exported to build connectors later.
Afterwards, we define an atom type A for each activity a from the DUTA implemen-
tation models (Fig. 6.5 and Fig. 6.7) while ignoring urgencies and variables-dependent
guards and operations. Consequently, the atom type for the activity SetState will be as
follows (the base unit is 10−1 ms, as in the UPPAAL model):

atom type SETSTATE()
clock x

export port Port wait_start()
export port Port resfree_start()
export port Port freeres_start()

state ether, start, start_exec
initial to ether

on wait_start
from ether to start

on resfree_start
from start to start_exec
reset x

on freeres_start
from start_exec to ether
provided (x>0)

invariant inv_start at start_exec when (x≤10)
end

Note how the ports are exported to be able to connect them with ports from lock com-
ponents when building connectors (see below). Similarly, we define the atoms for the
remaining activities, GOTO for goto and LAUNCH for launch. When we are done
with the definition of the atoms, we define the compound type that will englobe the
connectors and the instantiated components (from atoms). The following listing shows
such definition (only connectors involving SetState are shown as an example):

compound type maneuver_simple()
/* locks */
component lock_4 lock_start_SetState(), lock_exec_goto(),

lock_start_launch()
component lock_3 lock_path_launch(), lock_servo_launch()
component lock_2 lock_start_goto(), lock_wait_goto(),

lock_wait_launch()
/* activities */
component SETSTATE SetState()
component GOTO goto()
component LAUNCH launch()
/* connectors */
/* mutual exclusion : SetState codels */

139

connector sync2 wait_start_SetState(SetState.wait_start,
lock_start_SetState.wait)

connector sync6 take_start_SetState(SetState.resfree_start,
lock_start_SetState.exec, lock_start_launch.exec_ext,
lock_wait_launch.exec_ext, lock_path_launch.exec_ext,
lock_servo_launch.exec_ext)

connector sync6 give_start_SetState(SetState.freeres_start,
lock_start_SetState.end_, lock_start_launch.end_ext,
lock_wait_launch.end_ext, lock_path_launch.end_ext,
lock_servo_launch.end_ext)

/* mutual exclusion : goto codels */
...
/* mutual exclusion : launch codels */
...

6.4 Automatic synthesis

After modeling a given component in different formal languages, we generalize
the approach for automatic synthesis, one of the main contribution of this thesis. We
develop six templates overall (table 6.1): four templates for offline models (Fiacre,
UPPAAL, UPPAAL-SMC (Sect. 7.2.2) and BIP/RTD-Finder) and two for online mod-
els (BIP/Pocolibs and BIP/ROS). In this section, we show examples on how we use
the template mechanism (Sect. 2.3) to automatically generate formal models from any
GenoM3 component. We give excerpts from the Fiacre, UPPAAL and BIP/RTD-Finder
templates for illustration purposes.

Template Underl. formalism Verification technique Offline/online
Fiacre/TINA TPN Model checking Offline

UPPAAL TA Model checking Offline
RTD-Finder TA SAT solving Offline

UPPAAL-SMC STA Statistical model checking Offline
BIP (PocoLibs) TA Runtime enforcement Online

BIP (ROS) TA Runtime enforcement Online

Table 6.1: GenoM3 templates for formal models

The first example shows how to generate the BIP/RTD-Finder connector types for
mutual exclusion, which would give the listing 6.16 for the component maneuver
(Sect. 6.3.3). Listing 6.17 shows an excerpt from the BIP/RTD-Finder template that
fulfills these requirements for any GenoM3 component comp. Line 1 creates the list
lengths in Tcl with one element, 2. This is because we know that we will need in any
case a connector of length 2 (that connects the port wait of the codel and the port wait of
the codel’s lock, Sect. 6.3.3). The lines 2-4 will fill the list lengths with further elements
according to the number of codels in conflict with each non-thread-safe codel, returned
by mutex, plus 2 (the addition of 2 ports is explained in Sect. 6.3.3). Line 5 will sort
the list and remove doubles from it. Finally, lines 6-11 will generate a connector type
based on each element of lengths. Note that line 4 would add the element 2 to lengths
if the codel is thread safe. This is not a problem since 2 is already an element of lengths
and line 5 will remove doubles.

1 <’set lengths {2}’>
2 <’foreach s [$comp services] {’>

140

3 <’ foreach c [$s codels] {’>
4 <’ lappend lengths [expr [length [$c mutex]] + 2]}}’>
5 <’set lengths [lsort -unique $lengths]’>
6 <’foreach l $lengths {’>
7 connector type sync_<"$l">(Port p1, Port p2
8 <’ for {set k 3} {$k≤$l} {’>, Port p<"$k"><’}’>)
9 define p1 p2

10 <’ for {set k 3} {$k≤$l} {’>p<"$k"><’}’>
11 end
12 <’}’>

Listing 6.17: Generation of connectors types in BIP

In the second example, we show how some parts of Fiacre activities processes are
generated automatically. These parts are the header of the process and the behavior
involving the additional edges in the TTS semantics (Definition 6 in Chapt. 4). List-
ing 6.18 is a template excerpt that generates these parts for all activities in any GenoM3
component comp, which would give the corresponding same parts, for activity launch,
in listing B.1 of Appendix. B. The automatic translation process from GenoM3 to Fi-
acre, applied to a terrestrial navigation case study, is published in [Foughali et al.,
2016].

1 <’foreach t [$comp tasks]’>
2 <’ foreach s [$t services] {’>
3 <’ set stop 0’>
4 <’ set pauses [list]’>
5 <’#header’>
6 process <"[$s name]"> (&run_<"[$t name]">: RUN_<"[$t name]">,

&ind_<"[$t name]">: IND_<"[$t name]">, &pi_<"[$t name]">: PI_<"[$t name]">,
&mut: MUT) is

7 <’#states’>
8 states ether
9 <’ foreach c [$s codels] {’>

10 <’ if {[$c name] == "ether"} {continue}’>
11 <’ foreach y [$c yields] {’>
12 <’ if {[$y kind] == "pause"} {lappend pauses $y}}’>
13 <’ if {!$stop && [$c name]=="stop"} {set stop 1}’>, [$c name]_
14 <’ if {[llength [$c mutex]]} {’>, [$c name]_exec
15 <’ }} set pauses [lsort -unique $pauses]’>
16 <’#behavior’>
17 <’#from ether’>
18 from ether
19 wait [0,0];
20 on (pi_<"[$t name]"> = ID_<"[$s name]">);
21 if run_<"[$t name]">[ind_<"[$t name]">].status = nominal then
22 to start /* additional edge (starting) */
23 else
24 <’if {$stop} {’>
25 to stop /* additional edge (interruption) */
26 <’} else {’>
27 /* no stop codel. termination */
28 ind_exec:= ind_exec + 1;
29 ind_exec:= next_exec(run_exec, ind_exec);
30 pi_exec:= M_exec;
31 to ether
32 <’}’>
33 end
34 <’#interruption after "pause"’>
35 <’foreach c $pauses {’>
36 from <"[$c name]">
37 wait [0,0];
38 on (pi_<"[$t name]"> = ID_<"[$s name]">);

141

39 if run_<"[$t name]">[ind_<"[$t name]">].status = nominal then /*
nominal behavior */

40 ...
41 else
42 <’if {$stop} {’>
43 to stop /* additional edge (interruption) */
44 <’} else {’>
45 /* no stop codel. termination */
46 ind_exec:= ind_exec + 1;
47 ind_exec:= next_exec(run_exec, ind_exec);
48 pi_exec:= M_exec;
49 to ether
50 <’ }’>
51 end
52 <’}’>
53

Listing 6.18: Generation of activities in Fiacre (excerpt)

In line 3, we define the variable stop which is initialized to zero, and becomes 1 only if
the activity contains a stop codel (line 13). This will define what to do if the activity is
interrupted before starting (at state ether) or when suspended (at a state that is a target
of a pause transition).

In the case of interruption before start, lines 18-32 will generate the right behavior
based on the existence or not of the codel stop. That is, if it exists, only lines 25
and 32 will be generated (inside the block 24-32) which corresponds to a transition to
state stop if the activity is interrupted, and if it does not, the code corresponding to
termination and a transition to ether will be generated (lines 27 to 31).

The idea is the same for the case of interruption after a pause, but we need first
to locate the states that are targets of pause transitions. Lines 11-12 append to the
list pauses, initially empty, the codels that are targeted by pause transitions. Line 15
removes the doubles from pauses. Finally, we simply need to go through the list pauses,
generate the states from the names of its codels and the interruption behavior as seen
with interruption at state ether above.

Now we show through the third and last example (listing 6.19) how the tail of
the UPPAAL file, containing the instantiations of the processes and the definition of
the system is generated for any GenoM3 component comp (examples of what would
be generated for MANEUVER in listings 6.13, 6.14 and 6.15). After instantiating an
urgency process (line 1), we instantiate a timer and a manager for each task, and one
process instance for each activity (lines 4-11). The list inst names, initialized empty at
line 2, is filled in lines 5 and 9 with the instances names that are then used at line 14 to
generate the elements of the system composition.

1 urgency:= Urgency(&exe);
2 <’set inst_names [list]’>
3 <’#instantiations’>
4 <’foreach t [$comp tasks] {’>
5 <’lappend inst_names [join [list "tim" [$t name]] _] [join [list "man"

[$t name]] _]’>
6 tim_<"[$t name]">:= timer_<"[$t name]">(&sig_<"[$t name]">);
7 man_<"[$t name]">:= manager_<"[$t name]">(&exe, &pi_<"[$t name]">,

&ind_<"[$t name]">, &run_<"[$t name]">, &sig_<"[$t name]">);
8 <’ foreach s [$t services] {’>
9 <’ lappend inst_names [join [list [$s name] ""] _]’>

10 <"[$s name]">_:= <"[$s name]">(&exe, &pi_<"[$t name]">, &ind_<"[$t
name]">, &run_<"[$t name]">[size_<"[$t name]">], &mut[mut_nb]);

11 <’ }}’>
12 <’#system composition’>

142

13 system urgency
14 <’foreach i $inst_names {’>, <"$inst"><’}’>;

Listing 6.19: Instantiations and system definition (UPPAAL template)

6.5 Conclusion
In this chapter, we derive implementation semantics for execution tasks in both TTS

and DUTA from the high-level operational semantics and its translation (Chapt. 5). We
then show how we encode the implementation models in Fiacre, BIP, and UPPAAL.
We explain how such a coding is automatized using the template mechanism presented
in Chapt. 2. We thus have, at the end of this chapter, a correct automatic generation
of formal models from any GenoM3 specification, which is a main contribution of this
thesis. Indeed, as shown in Chapt. 1, one of the main issues of verification of func-
tional robotic components is the lack of automation. That is, practitioners need to go
through the tediousness and faillibility of formal modeling for each new robotic appli-
cation. The approach shown in this chapter, Chapt. 5 and Chapt. 4 is a solution to this
issue. The translations are proven correct, and since the process is automatized, this
correctness is propagated no matter what the specification is. Moreover, a considerable
amount of time and effort is saved with automatic translation. Furthermore, the variety
of templates allows us to provide experimental feedback on how to use these templates
as efficiently as possible (next chapter) which is also a part of the contributions of this
thesis introduced in Chapt. 1.

143

144

Chapter 7

Verification

7.1 Introduction

In this chapter, we show how the automatically generated models (Chapt. 6) are
used to specify and verify important behavioral and timed properties on the quadcopter
and Osmosis case studies (Sect. 2.4). The verification can be offline or online. Under
the offline class, we find exhaustive verification and statistical model checking. The for-
mer is based either on model checking (UPPAAL and Fiacre models) or SAT solving
over super-approximations of reachable state spaces (BIP/RTD-Finder models) while
the latter exploits the UPPAAL-SMC models. Under the online verification class, the
BIP execution models are used to enforce desired properties at runtime. Within each
section, we discuss the pros and cons of the used techniques throughout an experi-
mental real-world feedback and derive guidance scheme to help practitioners benefit
the maximum from our templates. We recall that the generated models include all
the timing constraints, that is tasks periods and codels WCET, automatically extracted
from the GenoM3 specifications (Chapt. 6). All the results given in this chapter follow
verification performed on a typical mid-range computer; Intel Core i7 with 16 GB of
RAM.

7.2 Offline verification

As shown in Sect. 2.2.3, clients are needed to run GenoM3 applications. Under the
offline class of verification, clients are modeled separately and composed in parallel
with the automatically generated models. We give examples within both categories of
offline verification (exhaustive and statistical) of the clients models. Also, it is impor-
tant to emphasize that, unless stated otherwise, all the results in this section follow the
assumption that the hardware, in each application, has a sufficient number of cores to
run all the tasks in parallel, so each task can be assigned to a certain core permanently
without being interrupted.

145

Figure 7.1: UPPAAL client (Osmosis).

7.2.1 Exhaustive verification
We automatically generate the Fiacre, BIP/RTD-Finder and UPPAAL models for

Osmosis and quadcopter1. We add clients that model a navigation (for Osmosis in
simulation mode) and a stationary flight (for quadcopter, excluding the component
MANEUVER). For instance, Fig. 7.1 shows the UPPAAL model of the Osmosis client.
Each component X in the application has a fixed-size queue fifo X (not shown here)
that models its PocoLibs mailbox (where it receives clients requests). Each channel
recv X is an urgent channel to insert requests of any activity of X in fifo X through
the shared variable req X . The channel recv urg X is a special channel to insert an
activity Y in fifo X only when the last requested activity has ended. Thus, the self-
loop at location GoTo2 enables issuing a new GotoPosition request each time the last
served GotoPosition activity has ended (goal invalid, reached, or unreachable). From
the same location, a request Stop to interrupt the activity GotoPosition (to stop the
navigation) can be sent at any moment.

7.2.1.1 Properties of interest

Let us now define the type of properties in which we are interested at this level. We
mainly categorize these properties into four classes from a robotic programmer point
of view:

Proper init (Osmosis & quadcopter): Is each port written at least once before being
read for the first time? This property is very important as its violation may induce
the use of garbage values that may lead to dangerous behaviors. This is a safety
property.

Progress (Osmosis): Will an activity eventually finishes a codel it starts? Due to non-
deterministic mutual exclusion, a non-thread-safe codel within a started activity
may wait forever for resources it needs to acquire. We will see how this property
is formulated as a leads to property.

Schedulability (quadcopter): Do execution tasks meet their deadlines? Summing the
WCETs of the codels and comparing them to the task period would not help to
reason on this property since the WCET refers to execution and does not consider
waiting for IDS/ports resources, the latter being quite difficult to obtain. The

1The UPPAAL model of the Osmosis simulation application and the verification results are available at
git://redmine.laas.fr/laas/users/mfoughal/case-study-osmosis.git

146

git://redmine.laas.fr/laas/users/mfoughal/case-study-osmosis.git

semantics proposed in Chapt. 4 will allow us to formulate this property as a
safety property.

Bounded stop (Osmosis): Upon the reception of a Stop request (NAVIGATION), what
is the maximum amount of time (upper bound) until the null speed is written to
the Cmd port (SAFETYPILOT)? Indeed, the computation of such a bound, if it
exists, is not obvious. This is a bounded response property.

Bounded processing (quadcopter): It is important to verify that the control task al-
ways finishes its execution in a “short” amount of time to make sure that further
requests can be received and processed in the future. Here also, the mutual ex-
clusion over the IDS might lead to the control task waiting too long for resources
to execute a control service or a validate codel. This is a bounded response prop-
erty.

Note that schedulability implies progress (the converse is false). The importance of
each property depends on the application. This is why we choose to verify schedula-
bility, the stricter property, for the stationary flight (quadcopter) where the frequencies
are high and missing deadlines may lead to catastrophic behaviors. In contrast, it is
sufficient for navigation (Osmosis) to check the weaker property, namely progress, as
long as the bounded stop property holds with sufficiently small upper bound.

7.2.1.2 Verification with TINA (Version 3.4)

In Fiacre, one may express properties as patterns. The frac compiler will then
translate such properties into LTL or modal µ-calculus for TINA (Sect. 3.3).

Proper init (Osmosis & quadcopter) A global array of initially false booleans ports read
(respect. ports write) represents for each port in the application whether such a port
has been already read (respect. written) at least once (true) or not (false). GenoM3
files specify in the arguments of codels which ports they read/write, if any (Sect. 2.2.2,
Sect. 2.2.3), so it is possible to know when to switch the value of each variable ports x [i]
from false to true. Indeed, if a codel reads (respect. writes) a port p, then the operation
ports read [p] := true (respect. ports write[p] := true) is generated within the oper-
ations of the transition corresponding to the execution of that codel. Then, the property
is an invariant that must evaluate to true for each port p:

always (ports_read[p] ⇒ ports_write[p])

This is a reachability property and depends only on the markings of the State Class
Graph (SCG). TINA offers a coarser and faster Markings-Only construction that com-
putes the set of markings of TPN without preserving firing sequences. We take advan-
tage of this construction to prove that the property holds for all ports in the stationary
flight application (quadcopter). However, the property is violated for the port Pose
(POM) in the navigation application of Osmosis. This helped us fix a bug where this
port was read by NAVIGATION before being initialized which would lead to erroneous
distance computations.

Progress (Osmosis) In the Fiacre modeling (Sect. 6.3.1), the manager T process
current state denotes whether the task T is executing activities (state manage) or idle
(state wait). Thus, to prove no codel is infinitely blocked (waiting for resources), it
is enough to prove that whenever reached, the state manage is eventually left, e.g. for
navigate (component NAVIGATION):

147

(Navigation/navigate_task/manager_navigate/state manage) leadsto
(Navigation/navigate_task/manager_navigate/state wait_)

This pattern encodes the following LTL expression:
2((Navigation/navigate_task/manager_navigate/state manage) ⇒♦

(Navigation/navigate_task/manager_navigate/state wait_)

We build the SCG and prove that the property holds for all execution tasks in the
Osmosis navigation.

Schedulability (quadcopter) If a task T is schedulable, then the variable sig T is
never true when the process manager T is at state manage (Sect. 6.3.1). That is, when
executing the activities, denoted by being at state manage of process manager T, no
new period signal is received, i.e. the process timer T does not change the value of
sig T to true. It is thus sufficient to verify, e.g. for io (component POM):
always ((pom/io_task/manager_io/state manage) ⇒

not (pom/io_task/value tick_io))

This is also, as it is the case for the proper init property, a reachability property that
depends only on the markings of the SCG. We take advantage of the Markings-Only
construction to prove all tasks schedulable in the quadcopter stationary flight applica-
tion.

Bounded stop (Osmosis) As seen in Sect. 3.3, Fiacre provides also patterns to verify
bounded response properties. When a bounded response property is given as a pattern
in the Fiacre description, the frac compiler generates observers to verify it. The main
advantage of this technique is reducing bounded response to reachability. However,
observers induce a larger SCG which has a negative impact on scalability.

The bounded stop property aims at finding, if exists, the upper bound separat-
ing sending a Stop request (NAVIGATION) and writing a null speed to the Cmd port
(SAFETYPILOT). This bound cannot be computed directly by estimating the bound
between the event of sending the Stop request and the event of writing the Cmd port.
Indeed, we need to make sure that the latter follows reading the value of PFCmd
(POTENTIALFIELD) that was written after writing the value of Target (NAVIGATION)
following taking the Stop request into account (the interruption of GotoPosition). This
bound is thus the sum of the following maximum bounds:

• b1 between sending the Stop request and writing a new Target
(NAVIGATION),

• b2 between writing Target (NAVIGATION) and reading Target
(POTENTIALFIELD),

• b3 between reading Target (POTENTIALFIELD) and writing PFcmd
(POTENTIALFIELD),

• b4 between writing PFcmd (POTENTIALFIELD) and reading PFcmd (SAFETYPILOT),

• b5 between reading PFcmd (SAFETYPILOT) and writing Cmd
(SAFETYPILOT).

The events of read/write are localized thanks to the codels arguments (we know
from the model which codels write/read which ports). So a port p writing is complete
at the end of execution of each codel that writes it. We can therefore formulate the
property for e.g. b2 as follows:

148

(leave Navigation/navigate_task/GotoPosition/state stop_exec) leadsto (leave
PotentialField/plan_task/TrackTarget/read_ports) within [min,max]

with max being the sought upper bound (we fix min to 0) and leave denoting leaving
the state, which is equivalent to the end of execution of the underlying codel. The
inserted observer has a state error whose reaching implies the violation of the property.
Thus, here also the property depends only on the markings, so we can use the Markings-
Only construction. We use the on-the-fly mode to optimize the time needed to tune
max . The overall maximum bound is equal to

b1 + b2 + b3 + b4 + b5 = 202 .5 + 101 .1 + 1 .1 + 40 .1 + 3 .5 = 348 .3 ms.

This result is of a crucial importance as it allows the robotic programmer to deduce
critical information from this current setup. For instance, we may conclude that the
robot driving at 2 m/s will advance at most 0.7 m after sending the Stop request and
before a null speed is sent to the controller.

Bounded processing (quadcopter) We use again the Fiacre pattern leadsto within
to formulate this property, e.g. for MIKROKOPTER’s control task:

(mikrokopter/CT/state busy) leadsto (mikrokopter/CT/state idle) within [min,max]

The control task is initially in the state idle. When a request is received, it transits to
busy. Different behaviors corresponding to processing the request are possible from
busy to end through intermediate states (a simplified model is given in Sect. 4.4.3,
Fig. 4.9 without those intermediary states because we do not consider control services
when presenting the semantics). When execution finishes, a transition is taken back to
idle from end. The property above expresses that if the control task starts executing, it
will eventually go back to idle (after execution finishes) in a bounded amount of time.
We prove max to be equal to 0.1 ms for MIKROKOPTER. For each component, the
computed value of max is acceptable (short enough) with no more than 0.2 ms, which
is five times smaller than the smallest period in the specification.

7.2.1.3 Verification with UPPAAL (Version 4.1)

In UPPAAL, one may express the properties in the verifier tab of the graphical in-
terface or use the verifyta command. Note that results are given using the conservative
state-space reduction. The other available options aggressive and extreme proved to be
slower in both of our case studies.

Proper init (Osmosis & quadcopter) Similarly to the Fiacre model, two global ar-
rays of initially false booleans ports read and ports write are generated in each model.
The proper init is then typically a safety property in UPPAAL that must evaluate to
true for each port p:

A[] (ports_read[p] imply ports_write[p])

The verification result are identical to those obtained with TINA, that is the property
being violated for the port Pose in Osmosis. The graphical diagnosis simulator in
UPPAAL eases the analysis of the counterexample and, in consequence, acting accord-
ingly (Fig. 7.2).

149

processescurrent location

state (CE trace)

transition
(CE trace)

next step

replay the
whole CE trace

Figure 7.2: Diagnosis in UPPAAL simulator (screenshot from the Osmosis case study.
CE abbreviates “counterexample”).

Progress (Osmosis) As it is the case for Fiacre, this is a liveness property that we can
formulate using the leadsto −− > operator, e.g. for task plan (POTENTIALFIELD):

manager_plan.manage -→ manager_plan.wait

The results are in line with those obtained with TINA, i.e. the property holds for all
execution tasks in the Osmosis navigation application.

Schedulability (quadcopter) Similarly to the Fiacre model, if a task T is schedula-
ble, then the variable sig T is never true when the process manager T is at state manage
(Sect. 6.3.2). It is thus sufficient to verify the corresponding safety property, e.g. for
filter (component POM):

A[] (manager_filter.manage imply not tick_io)

The results agree with those obtained using TINA, that is all tasks are schedulable in
the quadcopter stationary flight application.

Bounded stop (Osmosis) In contrast to Fiacre, UPPAAL does not provide an auto-
matic support for modeling bounded response properties. Indeed, it is the user’s task
to model the observers and modify the original model accordingly in order to capture
the events that appear in the property. Let us see how this is done through a generic
example.

Fig. 7.3 shows a generic representation of the observer used to verify bounded
response properties. It has two locations, start, where the triggering event source is
captured, and wait, where the response event target is expected. The edge from start to
start corresponds to ignoring some source events upon their reception (synchronized
over the urgent channel exe). The edge from start to wait, on the other hand, models
taking into account some source events upon their reception (also synchronized over

150

Figure 7.3: UPPAAL observer (bounded stop property).

exe). This allows computing the upper bound for all occurrences of source. That
is, although the i th occurrence of source is ignored in the scenario where it occurs
at location wait, it is taken into account in the scenario where its predecessor, the
(i − 1)th occurrence, is ignored at location start. Now, at location wait, the event
target is expected within bound time units, tracked thanks to the clock x and checked
through the invariant x ≤ bound . Otherwise, the location error is reached.

Now, the events source and target need to be updated in the generated UPPAAL
model for the GenoM3 specification. That is, if e.g. the objective is to compute bound 3
(between reading Target and writing PFcmd (POTENTIALFIELD), see the same prop-
erty verified with TINA previously), the end of execution of each codel in POTEN-
TIALFIELD that reads Target (respect. writes PFcmd) must mark a new occurrence
of source (respect. target). This means that each edge corresponding to the end of
each codel in POTENTIALFIELD that reads Target (respect. writes PFcmd) must be
augmented with the operation source := true (respect. target := true).

Once the model is modified as explained above, the observer is added to the par-
allel composition and the value of bound is tuned for each bound (from b1 to b5, see
the same property verified with TINA above). This value corresponds to the smallest
positive integer that satisfies the following safety property (for each bound):

A[] not observer.error

Finally, we sum the obtained bounds to get the same value as with TINA, that is
348 .3ms .

Bounded processing (quadcopter) We can use the same observer idea to verify this
property, since it is a bounded response property as well. The results are in line with
those obtained with TINA.

151

7.2.1.4 Verification with BIP

RTD-Finder uses SAT solving techniques. Typically, properties directly verifiable
by the tool are safety properties, which is the case for schedulability, proper init, but
also bounded stop when observers are modeled as in UPPAAL, after replacing properly
the variables with timed automata due to the absence of support of data variables in
RTD-Finder, as emphasized in Sect. 3.6 and Sect. 6.3.3. Unfortunately, this limited
scope of the tool, combined with the absence of support of urgencies, makes the BIP
TA models quite large due, for instance, to the proportionality between the number
of locations/edges of a given lock and the codels in conflict with its associated codel
(Sect. 6.3.3). The verification process leads quickly to a memory blow-up even when
tested on our simplest components (e.g. DEMO, Sect. 2.2.2).

7.2.1.5 Discussion

When the theory of TA was introduced in [Alur and Dill, 1994], the authors argued
that a main advantage of TA compared to other formalisms like Timed Petri Nets [Ram-
chandani, 1974] is the ability to express the time elapsed in a whole path (not only
between taking two successive transitions). This advantage is contrasted with a less
obvious, yet equal, compositional expressiveness when compared to TPN or UTA with
regards to urgencies. Indeed, as seen in Sect. 6.3.3, expressing urgencies in TA is rel-
atively painful in compositional contexts and leads to larger representations compared
to those based on TPN or UTA. This was one of the motivations to introduce UTA
and benefit from both the aforementioned advantage (expressing time easily through a
whole execution path) and an easy and efficient expression of urgencies. In [Hsiung
et al., 2006], the authors corroborate as they describe why UTA are needed in many
real-world contexts (such as robotics).

The experience depicted here constitutes a useful feedback on RTD-Finder. RTD-
Finder developers are currently investigating the memory blow-up. Consequently, they
are developing a new version of the tool where the linear method [Bensalem et al.,
2013] replaces Binary Decision Diagrams. They are also working on extending RTD-
Finder to UTA to avoid scalability issues with the large TA models. TINA and UP-
PAAL, on the other hand, give promising results despite the scalability issues elabo-
rated below. The advantages of both tools make their use complementary and might be
optimized by choosing them according to the properties of interest.

Tables 7.1 and 7.2 present the cost of verification (in terms of time and memory
consumption) of the Osmosis navigation and the quadcopter stationary flight, respec-
tively. Hereafter, We shed the light on some advantages of both TINA and UPPAAL
in verifying various properties of our real-world robotic applications. We thus enable
practitioners to optimally use these tools depending on the property of interest. These
conclusions are experience based and results may differ for other applications/proper-
ties. In any case, engineers may benefit from the less expensive and/or user-friendlier
verification. Practitioners may also cross-check the properties of their specification
using both tools if they judge it necessary.

TINA

• Markings-Only construction: A considerable amount of time and memory is
saved with this construction. We advise practitioners to favor this construction,
when using TINA, for an efficient verification, in terms of time and memory, of
safety and bounded response properties.

152

Property TINA UPPAAL

time(s)
memory peak

(MB) time(s)
memory peak

(MB)

Proper init 38 368 42 228
Progress 54 474 43 228

Bounded stop (bound b2) 61 505 84 560

Table 7.1: Verification results: Osmosis

Property TINA UPPAAL
time(s) memory peak (MB) time(s) memory peak (MB)

Proper init 161 1051 199 978
Schedulability 159 998 200 980

Bounded processing 167 1012 201 902

Table 7.2: Verification results: quadcopter

• Observers: TINA observers are implemented automatically and do not need any
effort from the user. That is, the practitioner needs only to express the bounded
response properties as Fiacre patterns without having to specify the necessary
observers to verify such properties. This is very useful as robotic practitioners
usually have neither the time nor the required knowledge to edit formal models
manually.

UPPAAL

• Performance UPPAAL is typically fast and shows a steady memory usage. Prac-
titioners may benefit from UPPAAL’s performance especially with leads to prop-
erties where execution sequences may not be ignored.

• Diagnosis UPPAAL offers several options for analyzing and replaying coun-
terexamples, automatically loaded in its user-friendly simulator. Step-wise sim-
ulation in the graphical editor is very useful to practitioners. Indeed, they may
replay the scenario leading to the violation of the property, without any additional
effort from their end, which eases the diagnosis.

Scalability Despite promising results with both tools, scalability issues are quickly
encountered when trying to verify larger applications. Indeed, if we generate the mod-
els corresponding to all the components in the Osmosis case study (real robot), the
verification of properties fails due a memory blowup after dozens of hours of compu-
tation. The same outcome is reached when trying to verify properties on the naviga-
tion application (quadcopter) that involves all the components in the functional level
(MANEUVER was not involved in the stationary flight application). At this stage, we
hit the limits of the used model-checking tools due to combinatory explosion. This is
where statistical model checking and runtime enforcement of properties give alterna-
tive solutions that are discussed, respectively, in Sect. 7.2.2 and Sect. 7.3 below.

153

1 process scheduler (&fifo: queue N of 1..N, &release: array 1..N of bool,
&cores: 0..P) is

2 states start
3 from start
4 on (not empty fifo) and (cores > 0);
5 wait [0,0];
6 cores:= cores-1;
7 release [first fifo]:= true;
8 fifo := dequeue fifo;
9 to start

Listing 7.1: Fiacre model of the FCFS scheduler

7.2.1.6 Integrating hardware constraints

In the current practice, formal verification of robotic and autonomous systems usu-
ally ignores hardware constraints (numbers of processors/cores and scheduling policy).
This restricts the validity of results to the cases where the number of processors/cores
in the platform is at least equal to that of the robotic tasks, which is not always the case
in reality. For instance, the stationary flight application can be run on the ODROID-
C0 board, featuring four cores, while it has ten tasks. We give in [Foughali et al.,
2018] some preliminary results of experiments on verifying this application while tak-
ing into account the hardware real characteristics, namely the number of cores and the
scheduling policies. The considered schedulers are First Come First Served (FCFS)
and Shortest Job First (SJF). The work uses the Fiacre template but can be generalized
to other templates. We summarize the extension of the template and the results on
schedulability below.

First-Come-First-Served (FCFS) Scheduler The preemptive FCFS scheduling pol-
icy is based on serving jobs in the order of their arrival while allowing higher priority
tasks to preempt lower priority ones. Here, we choose a cooperative version of FCFS
(preemption is not allowed)2. To model the scheduler, three shared variables are intro-
duced into the Fiacre model. The first one is a queue, named fifo, which represents
the list of tasks identifiers ordered by tasks activation dates. Tasks identifiers, i.e. the
elements of fifo, are positive integers ranging from 1 to N , where N is the number
of tasks in the robotic specification. The second shared variable is an array of boolean
values, named release, that represents the signals to release tasks. Each task is stati-
cally associated to a specific index of this array, i.e. the task whose identifier is i can
execute only when release[i] is set to true. The last shared variable, cores, is an
integer that ranges from 0 to P . P is the number of cores provided by the platform and
is thus the initial value of cores.

Listing 7.1 gives an overview of the scheduler Fiacre model. It is a process param-
eterized with fifo, release and cores (line 1). It has only one state called start (line
2). A self-loop transition is taken (line 9) (urgently (line 5)) only when the fifo is not
empty and there is at least one available core (line 4). This allows the first task in the
queue to execute by assigning an available core (line 6), sending the right release signal
through release (line 7) and dequeuing the fifo (line 8).

Now, we show the relation between the scheduler and periodic tasks. The manager

2For more details about the policy, both versions (preemptive and cooperative) are studied
in [Schwiegelshohn and Yahyapour, 1998].

154

1 process manager_n (..., &sig_n: bool, &fifo: queue N of 1..N, &release: array 1..N
of bool, &cores: 0..P) is

2 states ask, start, manage
3 from ask
4 wait [0,0];
5 on sig_n;
6 sig_n:= false;
7 fifo:= enqueue(fifo, n); to start
8 from start
9 wait [0,0];

10 on release[n];
11 .../* update variables */;
12 to manage
13 from manage
14 /* if more activities to execute */
15 ... /* execute activities */
16 /* else */
17 ... /* update variables */
18 cores:= cores+1;
19 release[n]:= false;
20 to ask

Listing 7.2: Fiacre model of a the manager (with scheduling)

evolves (compared to the model given in Sect. 6.3.1) to adapt to schedulers. Listing 7.2
shows the new manager process for a generic execution task with identifier n, associ-
ated to the index n of the array release. The process manager has now three states
(line 2): ask, start and manage. The transition from ask to start (lines 3-7) repre-
sents the activation of the task at the beginning of its period (when receiving the signal
from the timer, equivalent to the transition from start to manage when schedulers were
not a part of the model, Sect. 6.3.1). Upon activation, the task identifier is inserted at
the back of fifo (using the primitive enqueue). State start (lines 8-12 in Listing 7.2)
is used to wait on the release signal, that happens as soon as release[n] becomes true.
Finally, when the manager finishes executing activities, it releases the core, updates the
release array and transits back to ask (line 20) to wait for the next period signal.

Shortest-Job-First (SJF) Scheduler The SJF scheduler, aka SPN (Shortest Process
Next), is a cooperative scheduler based on priorities related to the jobs estimated exe-
cution time (aka burst time) [Lupetti and Zagorodnov, 2006]. That is, the insertion of
a job in the waiting queue is based on its Estimated Execution Time (EET) rather than
its activation date. Jobs with equal EET will be sorted in a FIFO fashion, as in FCFS.

To encode this scheduler, we need first to define the EET for a GenoM3 task. We
consider the period as the EET for a periodic execution task. For aperiodic tasks,
including the control tasks, the programmers expect these to react and execute as
promptly and quickly as possible. Their EET is thus considered shorter than any EET
of a periodic task.

The Fiacre encoding is therefore similar to that of FCFS except that the insertion
in the queue fifo is done through the Fiacre recursive function insert sjf (Listing 7.3)
rather than the classical enqueue primitive. This function ensures that the jobs are
inserted according to their respective EET if different, and to their activation date oth-
erwise (the primitive append is used to insert an element in the front of a queue).

The function eet, called within insert sjf , returns for each task its EET. List-
ing 7.4 shows how we can generate such a function from a GenoM3 component c using

155

1 function insert_sjf (q: queue N of 1..N, t: 1..N) : queue N of 1..N is
2 var temp: 1..N
3 begin
4 if (empty(q) or eet(t) < eet(first(q))) then
5 return append(q,t)
6 end if;
7 temp:= first(q);
8 return append(insert_sjf (dequeue(q), t),temp)
9 end

Listing 7.3: Queue insertion function for the SJF scheduler

1 function eet (t: 1..<"[expr [llength [$c tasks]] + 1]">) : nat is
2 begin
3 case t of
4 1 →return 0
5 <’set k 2
6 foreach task [$c tasks] {
7 if {![catch {$task period}]} {’>
8 | <"$k"> →return <"[$task period]">
9 <’} else {’>

10 | <"$k"> →return 0
11 <’}
12 incr k}’>
13 end
14 end

Listing 7.4: Generating the function eet for a component c

the Fiacre template. In line 1, the expression between markers will be replaced by the
number of tasks in c (the +1 is for counting the control task as well, always present in
a GenoM3 component). The statement case ... of (line 3) is similar to the switch case
statement in the C language. The first clause of the case ... of statement (line 4) re-
turns 0 for the control task, encoded by the integer 1. This ensures that the control task
EET is always smaller than any EET of a periodic execution task. The same goes for
aperiodic execution tasks (line 10). For periodic execution tasks, the function simply
returns their periods (line 8).

Schedulability with FCFS (results) The cooperative FCFS scheduler can be easily
implemented by using the real-time policy SCHED FIFO on Ubuntu with all tasks
given the same priority.

The schedulability property is expressed similarly as when schedulers where not
involved. The main difference here is that now being at either state start or manage
while sig becomes true means the violation of the property. For example, for the task
io (component POM), schedulability is formulated as follows:

property sched_io is always (not (pom/manager_io/state ask)
⇒not (pom/manager_io/value sig_pom))

We prove that all tasks are schedulable, considering the given hardware and a co-
operative FCFS scheduling policy. We also prove that the minimum number of cores to
ensure such schedulability is 3 as the task filter (component POM) misses its deadline
when this number is reduced to 2. Table 7.3 summarizes the results according to the
number of cores.

156

Cores
sched main

(MIKROKOPTER)
sched main

(NHFC)
sched publish
(OPTITRACK)

sched io
(POM)

sched filter
(POM)

4 True True True True True
3 True True True True True
2 True True True True False
1 False False False False False

Table 7.3: Schedulability results with FCFS

Schedulability with SJF (results) Since the EETs are assigned statically, this sched-
uler is easily implementable using the same real-time policy as that used for FCFS,
namely SCHED FIFO on Ubuntu, with the following differences:

• Priorities: Priorities are assigned according to the rules explained above: the
smaller the period, the higher the priority, and aperiodic tasks have the same,
highest priority.

• Preemption: To prevent higher priority tasks from preempting lower priority
ones, a semaphore is initialized to the number of cores. A wait operation on
this semaphore is added at the beginning of each task and a signal operation at
the end.

The verification results are given in Table 7.4. With SJF, the minimum number of
cores to ensure the schedulability of all tasks is 2.

Cores
sched main

(MIKROKOPTER)
sched main

(NHFC)
sched publish
(OPTITRACK)

sched io
(POM)

sched filter
(POM)

4 True True True True True
3 True True True True True
2 True True True True True
1 False False False False False

Table 7.4: Schedulability results with SJF

Discussion We prove that using SJF improves the schedulability of tasks as the appli-
cation may be run on a dual-core platform while the minimum number of cores needed
with FCFS is 3. By analyzing the traces of counterexamples, we realize that the scenar-
ios where the task filter (component POM) misses its deadline correspond to execution
paths where the task publish (component OPTITRACK) position in the queue precedes
that of filter. These paths are eliminated in the SJF context thanks to the insert sjf
function (listing 7.3) since the EET of publish (4 ms) is larger than the EET of filter
(1 ms).

Taking into account the hardware constraints gives a higher value to the results,
because the model is the closest to the real hardware-software setting. The integration
of the schedulers can be automatized thanks to the templates, which makes the ap-
proach accessible to robotic engineers. However, this needs to be generalized to more
optimized cooperative schedulers such as cooperative EDF and Highest Response Rate
Next (HRRN). Also, this approach is not suitable for preemptive schedulers, as pre-
emption leads to unmanageable state spaces.

157

7.2.2 Statistical model checking
We use statistical model checking techniques as an alternative to model checking

when the latter fails to scale. As an example, we rely on the navigation application
(quadcopter) whose generated formal models scaled neither with UPPAAL nor with
TINA3. Before elaborating on the properties of interest, presenting the results and dis-
cussing the advantages and limitations of this technique, we explain how GenoM3 mod-
els can be enriched with probabilities to fully benefit from the features of UPPAAL-
SMC.

7.2.2.1 Enriching GenoM3 with probabilities

As seen in Chapt. 2, activities specifications may be non-deterministic. That is, a
codel may have more than one successor, e.g. the codel wait of the activity launch in
listing 6.1:

codel<wait> mv_exec_wait(in trajectory, in reference, out desired)
yield pause::wait, path, servo wcet 1 ms;

This non-determinism, as explained in Chapt. 2, is solved only at runtime. Still,
UPPAAL-SMC features augmenting non-deterministic edges with probabilities, as seen
in Sect. 3.4. The idea is thus to collect a posteriori execution information to decorate
the models with probabilities over non-deterministic transitions. For this, the regular
middleware templates are enriched to generate, at the end of execution, the number of
occurrences of each transition within each activity (in the same way they are enriched
to generate execution times for WCET estimation in Sect. 2.3.2).

After running an application app, these occurrence numbers are generated automat-
ically in an app.proba file where each line has the following syntax:

component_name/task_name/source_codel_name/target_codel_name <#occurrence>

This file is then passed as an argument to the UPPAAL-SMC template, together with
the dotgen file, to generate the statistical model enriched with probabilities. Let us
show, through an excerpt of the UPPAAL-SMC template (listing 7.5), how non-deterministic
edges are automatically enriched with probabilities4. For simplicity, we show only the
case where the source codel is thread safe and none of its ongoing transitions is a pause,
interruption, or termination transition.

1 <’foreach comp [dotgen components] {’>
2 <’ foreach t [$comp tasks] {’>
3 <’ foreach s [$t services] {’>
4 ...
5 <’ foreach c [$s codels] {’>
6 ...
7 <’ if {[llength [$c yields]] > 1} {’>
8 <’ set p [join [list [$comp name] [$t name] [$tr cname] [$y cname]] /]’>
9 <"[$c name]"> → <"[$c name]">_b {guard x>0; },

10 <’ foreach y [$c yields] {’>
11 <"[$c name]">_b → <"[$y name]"> {; probability <"[dict get $argv $p]">; },
12 <’ }}’>
13 ...
14 <’ }’>
15 ...
16 <’ }}}’>

3The UPPAAL-SMC model of the quadcopter navigation application and the verification results are
available at git://redmine.laas.fr/laas/users/mfoughal/case-study-quadcopter.git

4We recall that the number of occurrences is what UPPAAL-SMC refers to as probabilities, Sect. 3.5.

158

git://redmine.laas.fr/laas/users/mfoughal/case-study-quadcopter.git

17

Listing 7.5: Automatic enriching of edges with probabilities (UPPAAL-SMC)

Line 7 conditions adding probabilities by the existence of non-determinism, i.e. the
codel has more than one successor. Line 8 maps the edge from the source codel to a
branchpoint (as shown in Sect. 6.3.2). Lines 9-12 generate the outgoing edges of the
branchpoint and extract the probabilities from the .proba file.

For example, when applied on the codel wait of activity launch (MANEUVER of
quadcopter, listing 6.1), listing 7.5 gives the following output5:

1 wait →wait_b {guard x>0;},
2 wait_b →wait {; probability 100},
3 wait_b →path {; probability 3},
4 wait_b →servo {; probability 30},

7.2.2.2 Adding the client

The client for the navigation application (quadcopter) is given in Fig. 7.4. The self-
loop at location navigate enables issuing a new goto request each time the last served
goto activity has ended (goal invalid, reached, or unreachable). From the same location,
a request wait can be sent, followed by a take off request to land. The client covers
thus all the possible scenarios of navigation. The channels recv X and recv urg X (X
is a component) and the variables req X are defined similarly to those in the UPPAAL
client for Osmosis (Fig. 7.1). The main difference is that recv X and recv urg X are
now broadcast channels, since handshake synchronization channels are not supported
by UPPAAL-SMC (Sect. 3.5). To guarantee that broadcast channels behave as hand-
shake ones, we use the boolean s X for each component X that is true only when the
component is ready to receive a request. It suffices then to guard each edge using the
broadcast channel recv X or recv urg X with s X (Fig. 7.4). The location hold is for
waiting between sending servo nhfc and servo requests (NHFC and MIKROKOPTER)
and the requests of MANEUVER. The waiting time is initially 3 seconds in the specifi-
cation of the client6. This is because servoing must have already started before taking
off, which is an important property to verify as we will see in the next section. The
other difference between the clients is the exponential rates, necessary on invariant-
free locations, that we fix here at 10000 (see the justification of using high exponential
rates in Sect. 3.5).

7.2.2.3 Properties of interest

Schedulability: Estimate the probability of the schedulability of the periodic tasks in
POM, MIKROKOPTER and NHFC, which must be the highest possible.

Progress: Estimate the probability of progress for each service, which must be the
highest possible.

Readiness: When the client starts sending requests for MANEUVER, the previously
requested services of MIKROKOPTER and NHFC must have already started ex-
ecuting. This is an important property since MANEUVER receives navigation
goals while MIKROKOPTER and NHFC are in charge of low-level hardware and

5Once more, this listing is simplified to show probabilities, pause statements and mutual exclusion are
ignored.

630000 in the UPPAAL-SMC model since the smallest time constraint in this application is 0.1 ms.

159

Figure 7.4: UPPAAL-SMC client (quadcopter).

servo control, respectively (Sect. 2.4). It follows that sending a navigation goal
to MANEUVER while MIKROKOPTER or NHFC has not started yet is dangerous.
Estimate the probability of satisfying this property that must be the highest pos-
sible.

7.2.2.4 Verification with UPPAAL-SMC

Statistical parameters are set to ensure a high confidence (0 .98) and precision
(0 .005). The runs are bounded to 10 s (Pr[<= 100000] in table 7.5, the base unit
is 10−4 s) after verifying that the probability to reach the final state of the client within
this bound is higher than 99%.

Schedulability It is reduced to a reachability property as seen in Sect. 7.2.1.3. The
probability of violating this property is the lowest possible for all execution tasks of the
critical components POM, MIKROKOPTER and NHFC (< 1%, table 7.5) considering the
value of the precision (0.005± 0.005). This means that schedulability is verified with
the highest possible probability (> 99%) given the chosen precision (0.005 ± 0.005).
This result means also that we have one chance in 100 to violate the property. Trying
to reduce the probability of violation (by reducing the precision parameter) leads to
remarkably long computations (see discussion below).

Progress This is a “leads to” property, not supported by UPPAAL-SMC. As said
previously, schedulability implies liveness (the first is stricter than the second). For
MANEUVER and OPTITRACK, we propose then to verify schedulability as a stricter
alternative to liveness (table 7.6). The highest possible probability is returned by the
verifier. This means that, overall, we manage to verify that all tasks are schedulable
with the high probability of 99%.

160

Task Query Results Runs Time (s)

Mikrokopter
(main)

Pr [<= 100000](<>
manager main.manage

and sig main)

Pr ∈
[0 , 0 .00998069]

390 948

Pom (io)
Pr [<= 100000](<>
manager io.manage

and sig io)

Pr ∈
[0 , 0 .00998069]

390 966

Pom (filter)
Pr [<= 100000](<>

manager filter .manage
and sig filter)

Pr ∈
[0 , 0 .00998069]

390 962

Nhfc (main nhfc)
Pr [<= 100000](<>

manager main nhfc.manage
and sig main nhfc)

Pr ∈
[0 , 0 .00998069]

390 975

Table 7.5: Analysis results for schedulability (Base unit 10−4 ms.)

Task Query Results Runs Time (s)

Maneuver
(exec)

Pr [<= 100000](<>
manager exec.manage

and sig exec)

Pr ∈
[0 , 0 .00998069]

390 964

Maneuver
(plan)

Pr [<= 100000](<>
manager plan.manage

and sig plan)

Pr ∈
[0 , 0 .00998069]

390 958

Optitrack
(publish)

Pr [<= 100000](<>
manager publish.manage

and sig publish)

Pr ∈
[0 , 0 .00998069]

390 927

Table 7.6: Analysis results for progress (Base unit 10−4 ms.)

Readiness Readiness is typically a bounded response property, not supported by
UPPAAL-SMC. We propose an alternative to express this property using the Until op-
erator. An activity is ensured to have started once its codel start has began executing.
Since none of the codels start in this context is thread safe, beginning to execute an
activity is equivalent to reaching the location start exec. Now, the location start4 of the
client, starting of which requests to MANEUVER are sent, must not be reached before
the locations start exec of each previously requested activity is reached. The bounded
response property boils down then to the conjunction of three Until properties (table
7.7). Note that attempting to reduce these properties to only one using the conjunction
of the right terms of Until would result in a stricter property (e.g. start exec of servo
may be left before start exec of servo nhfc is reached). Note also that one needs to
estimate the probability of reaching location start4 within the 10 s time bound. This
probability is trivially maximal since it is maximal for reaching location end within
the same bound (already estimated) and the latter cannot be reached before start4 is
reached (sequential behavior). The highest possible probability is returned by the veri-
fier for each activity, which means that this property holds with a probability of 99%.

161

Service Query Results Runs Time (s)

Mikrokopter
(start)

Pr [<= 100000]
(not cl .start4

U start .start exec)

Pr ∈
[0 .990019 , 1]

390 2

Mikrokopter
(servo)

Pr [<= 100000]
(not cl .start4

U servo.start exec)

Pr ∈
[0 .990019 , 1]

390 2

nhfc (servo nhfc)
Pr [<= 100000]
(not cl .start4

U servo nhfc.start exec)

Pr ∈
[0 .990019 , 1]

390 2

Table 7.7: Analysis results for readiness (Base unit 10−4 ms.)

7.2.2.5 Discussion

While we cannot verify some properties in a precise way (due to scalability issues
with model checking), the results we get with UPPAAL-SMC are encouraging. We
may assert, up to a high probability, the truth of important properties, which is clearly
better than classical scenario-based testing. Moreover, the verification is cost effective.
Indeed, besides acceptable verification time (around 15 minutes in the worst case),
UPPAAL-SMC shows a remarkably low memory consumption (less than 15 mb). This
approach is therefore promising.

Nevertheless, three main issues are encountered, besides non exhaustivity. First, it
is hard to set the probabilities at which we want the properties to hold. For this appli-
cation, satisfying properties up to 99% may sound fair, but we actually do not know
if it is7 due to the absence of precise requirements expressed probabilistically. In the
robotics domain, we need more regulatory work to define standards on fault tolerance,
which we are severely lacking today. Second, despite a remarkable low consumption
of memory, the verification time becomes unbearably long (in the order of days some-
times) when we tune the statistical parameters to reach higher probabilities. Third, the
expressiveness of UPPAAL-SMC query language is quite limited. The absence of sup-
port for leads to and bounded response properties is particularly disabling. It is true
that we often may manage, with some artefacts, to propose and verify closer alterna-
tives. However, this limited scope of expressiveness remains a serious limitation since
such artefacts need a proficiency with formal languages that robotic practitioners do
not possess.

Finally, the process of obtaining some probabilities in the model can be enhanced.
This is typical in “mode change” transitions where the number of occurrences is not
quite representative of the probability. In the component NHFC, for instance, one of the
codels of the permanent activity of task main is defined as follows:

codel<init> nhfc_main_init(ids in reference, in state, out rotor_input)
yield pause::init, control;

Here, the number of occurrences of each transition does not really reflect the prob-
ability of taking it, because the idea is to repeat the self loop (from init to init)
until servo control is needed (the first valid position is received). A more representa-
tive model that takes into account this mode switch would give a greater value to the
verification results.

7Since, also, this result means also that we have one chance in 100 to violate the property.

162

7.3 Runtime enforcement of properties
We rely on runtime verification to enforce desired properties online. We carry out

the experiments on the navigation application (Osmosis). We generate the BIP model
for all the components in the application that involves the real robot (that does not scale
either with UPPAAL or with TINA). This model is then augmented with a monitor to
enforce a timed property. The BIP generated model, augmented with the monitor, is
then run on the real Robotnik robot.

7.3.1 Properties of interest
In laser-based navigation, it is important to verify that laser data are regularly up-

dated when the robot is moving. Indeed, failure to read new data from the sensor
during motion may lead to collision with obstacles and therefore damaging the robot
or injuring humans. The property consists thus in always writing new laser data in a
bounded amount of time when the robot is moving. That is, each time the port laser
(LASERDRIVER (Sect. 2.4)) is written, it will be rewritten before a timeout occurs,
which means that there is a maximum amount of time separating two successive writes
on the port. If the property is violated, it means that there is a serious problem such as
a starving phenomenon (the codel is waiting forever to get access to the port it writes)
or a sensor defect. The robot must thus urgently abandon its mission and stop moving.

We also visualize the violation of timing constraints extracted from the specifica-
tion, that is the task periods and WCET of the codels.

7.3.2 Enforcement with BIP
After we automatically generate the online BIP model for the PocoLibs implemen-

tation8, we augment it with a monitor to enforce the desired property.
First, we create a BIP atom monitor which verifies online the correctness of the

property:
1 atom type property()
2
3 clock c unit millisecond
4 export port Port scan(), report(), go(), finish()
5
6 state idle, busy
7
8 initial to idle
9

10 on go
11 from idle to busy
12 eager
13 reset c
14
15 on scan
16 from busy to busy
17 provided (c≤ timeout)
18 eager
19 reset c
20
21 on finish
22 from busy to idle
23 provided (c≤ timeout)

8The model for ROS-Comm is also available but we choose PocoLibs for the reasons given in Sect. 2.3.2.

163

24 eager
25
26 on report
27 from busy to idle
28 eager
29 provided (c> timeout)
30
31 end

Starting to move is captured via the port go. The port scan corresponds to the event
of writing the port laser within the constant timeout. The port report corresponds
to detecting the violation of the property. Finally, the port finish must be triggered
when the motion ends (goal reached, invalid, unreachable). It follows that state idle
(respect. busy) corresponds to the robot at rest (respect. at motion), that is no (respect.
one) instance of activity GotoPosition is being currently executed. Notice the non
determinism at busy when c ≤ timeout with no real impact on the desired behavior
(if scan is triggered first when both scan and finish are possible, finish will follow
immediately anyway).

Second, we need to create connectors that link ports automatically generated in the
model with the ports of the atom monitor so they correspond to the wanted events as
explained above. We will see how this works for ports scan and report, for instance.
The event that scan corresponds to is writing the port laser. We need thus a connector
that involves both scan and the connector within the compound laserdriver (generated
from the GenoM3 component LASERDRIVER) that corresponds to writing the GenoM3
port laser. This connector is defined as Write Laser. Now, we create a broadcast
connector involving both parties as follows:

connector trig2 Scan_OK (LaserDriver.Write_Laser, Monitor.scan)

Where trig2 is a broadcast connector type with two ports (the first is the sender), Moni-
tor an instance of atom monitor and LaserDriver an instance of laserdriver. The choice
of a broadcast connector here is justified by the fact that writing the laser must be pos-
sible even when the robot is not moving. When the robot is moving, the maximal
interaction is guaranteed by the BIP engine.

Now, the port report in the monitor must correspond to the property violation. As
explained before, when the property is violated the robot must urgently abandon its
mission and stop moving. In order to do so, we couple the triggering of report with the
generation of a Stop request in the component SAFETYPILOT in order to force writing a
null speed to its Cmd port9. The port triggering the behavior following a Stop request
in the compound safetypilot (generated automatically from the GenoM3 component
SAFETYPILOT) is defined as Req Stop. We need thus to create a rendezvous connector
involving report (from the monitor) and Req Stop:

connector sync2 Scan_Failed (SafetyPilot.Req_Stop, Monitor.report)

Where sync2 is a rendezvous connector type with two ports and SafetyPilot an instance
of safetypilot.

We set the timeout to 100 ms, which is the period of POTENTIALFIELD, the com-
ponent in charge of potential-field navigation. The robot fulfills its missions correctly.
We inject then some delays in the codel responsible for writing laser (e.g. using the
sleep() function) and visualize how the monitor interrupts the missions and forces the
robot to stop quickly. We may see in this case within the execution trace that the engine

9Which makes the robot stop moving when applied by ROBOTDRIVER, Sect. 2.4.

164

forces taking the connector Scan Failed, which results in executing the codel stop of
the activity MergeAndAvoid (SAFETYPILOT)10:

[BIP ENGINE]: state #165351: 1 interaction:
[BIP ENGINE]: [0] ROOT.Scan_Failed: SafetyPilot.Req_Stop()

Monitor.report()] 26s591ms324us108ns, +INFTY]
[BIP ENGINE]: →choose [0] ROOT.Scan_Failed: SafetyPilot.Req_Stop()

Monitor.report() at global time 26s591ms324us109ns
...
[GenoM3] SafetyPilot Calling SafetyPilot_activity_MergeAndAvoid_stop

codel.
[GenoM3] SafetyPilot Exiting SafetyPilot_activity_MergeAndAvoid_stop

codel with ::SafetyPilot::ether.

We try different values for the timeout and realize that a constraint as small as 40 ms
is too strict as the monitor stops the robot often. This might mean that we should
reconsider the period that we give to SafetyPilot (which also relies on the LRF).

The BIP engine allows us also to visualize violating schedulability and when codels
execution does not respect the WCET, which might be useful to further tune these
constraints. For this, we use a flexible execution mode provided by the engine, that
tolerates violating time invariants by emitting a warning instead of stopping the exe-
cution. Below is a warning issued by the engine pointing out that an invariant within
the process init in the compound instance PotentialField (mapping the activity init in
the component POTENTIALFIELD) is violated. The messages given by GenoM3 help
localizing where the invariant was violated (in this example, the WCET of the codel
start).

[GenoM3] PotentialField Calling PotentialField_activity_Init_start codel.
[GenoM3] PotentialField Exiting PotentialField_activity_Init_start codel with

::PotentialField::ether.
[BIP ENGINE]: WARNING: state #903017 and global time 1min3s230ms653us976ns:

violation of the following timing constraint ROOT.PotentialField.init:
[BIP ENGINE]: ROOT.PotentialField.Init invariant [-INFTY, 1min3s229ms530us282ns]

To detect the violation of periods constraints for execution tasks, the online model
of the timer is more dependent on the task manager. It allows detecting the violation
of schedulability by making the timer wait each time until all activities to execute in a
cycle are paused or finished. Therefore, if the execution takes longer than the period,
the period invariant in the timer atom is violated. The log below shows a warning
from the engine relative to the violation of the schedulability property in the task filter
(component POM):

[BIP ENGINE]: WARNING: state #1905764 and global time 2min57s370ms722us604ns:
violation of the following timing constraint ROOT.pom.timer_filter:

[BIP ENGINE]: ROOT.Compound_pom.timer_filter invariant [-INFTY,
2min57s363ms458us605ns]

7.4 Discussion
Using runtime verification can be efficient, especially when properties may be en-

forced online. With the use of the BIP engine and automatically generated models, we
may build monitors to check the properties online and act accordingly when they are
violated. The timeout property that we enforce is crucial to the safety in applications
involving laser-based navigation.

10And therefore a zero speed is sent to the controller.

165

However, this efficiency of the engine comes at a visible cost in performance. We
notice that using the engine in this application induces up to 15% of overhead in the
processor load. Thus, acting on timing constraints in the specification according to
the messages of the engine is not necessarily the right way to go. Indeed, the internal
computations of the BIP engine induce delays and it is thus difficult to know whether
period and WCET violations are due to the code itself or the engine performance. The
same remark is valid with the fact that the value of the timeout is found too strict when
set to 40 ms. The external constraints brought by the engine also makes it unsuitable
for systems where timing constraints are critically small, such as the quadcopter case
study. Another open issue is the way to act when properties are violated. Although our
experiments show a proper stop of the robot, it is difficult to standardize the emergency
routines that monitors need to implement when vital priorities do not hold at runtime.

7.5 Conclusion
We apply in this Chapter various formal verification techniques using automati-

cally generated formal models (Chapt. 6) of real-world complex autonomous applica-
tions (Sect. 2.4). The obtained results are promising and the different techniques and
tools can be used complementarily. The users are thus provided with advices on which
techniques to resort to according to the properties to verify and what to do if some tech-
niques fail to scale, which constitutes a contribution of this thesis. Moreover, getting
the same results with both model checking tools used in this thesis (TINA and UP-
PAAL) in our case studies is reassuring with regard to the soundness of the generated
models and the proper formulation of the properties. It also gives a greater value to the
results, cross-checked using state-of-the-art model checking tools.

Our experiments also shed the light on real limitations and open challenges in for-
mal verification of robotic and autonomous systems. Indeed, the feedback provided on
the performance of the tools is of a high value since they are confronted to real-world,
complex systems, as opposed to academic benchmarks. We believe that these results
will not only help the practitioners to complementarily and optimally use the tools, but
also the developers to enhance such tools and validate their capabilities on real systems.
The conclusions derived after using multiple techniques and tools are potentially useful
to better identify the major problems of applying formal methods to robotic systems
and advance the state of the art in addressing them.

166

Chapter 8

Conclusion

We propose in this thesis a novel automatic generation approach that is mathemat-
ically sound, faithful to the robotic underlying components (without unrealistic ab-
stractions) and with various target formal languages and tools. This automatization,
combined with encouraging experimental results, advances the state of the art toward
a more correct and less tedious formal verification of robotic and autonomous appli-
cations. We cover thus the contributions outlined in Sect. 1.5. This work may be,
consequently, considered as a step forward in the direction of a safe deployment of
autonomous systems in real-world critical applications in human environments.

Contribution 1: a clear semantics for the functional components First, we justify
the choice of GenoM3, a component-based framework, for specifying and deploying
the functional components of robotic applications (Chapt. 2). Then, we propose in
(Chapt. 3) Timed Transitions Systems TTS as a suitable formalism to give unambigu-
ous semantics to GenoM3. In Chapt. 4, we develop lightweight operational semantics
for GenoM3 components in TTS, based on clear formal definitions of those components
and their constituents. This helped us clarify several ambiguous aspects in GenoM3
and contributed to its evolution toward a true multithreaded model. Semanticizing a
robotic framework for functional components that can be generated for popular mid-
dleware (e.g. ROS-Comm) is novel and crucial in order to develop sound translations
into formal frameworks.

Contribution 2: automatic generation of formal models After giving complete
unambiguous semantics to GenoM3 in TTS, we develop a translation into timed au-
tomata, that we prove sound using bisimulation (Chapt. 5). Then, we map the TTS
and timed automata models into formal models in Fiacre, UPPAAL, UPPAAL-SMC
and BIP, that we automatize using templates (Chapt. 6, Sect. 7.2.2). We ensure thus
the automatic translation of any robotic specification written in GenoM3 into various
formal languages and tools.

Contribution 3: rigorous mapping The formal models we develop are rigorous in
the sense that no unrealistic abstractions are allowed. In particular, timing constraints
are all taken into account, including task periods and WCETs of codels. These in-
formation are represented within the semantics model (Chapt. 4), carefully preserved
when translating (Chapt. 5) and implemented in the target models through the target

167

languages constructs (Chapt. 6). The case studies that we consider are from real robotic
and autonomous systems (Sect. 2.4). The results we obtain are thus valid and can be
trusted (since the models are representative of the specifications) and exploited in prac-
tice (since the specifications are implemented on real systems).

Contribution 4: selecting the best verification method/tool We provide advices on
how and when to use a given tool depending on the characteristics of the application
and the properties to verify (Chapt. 7). Indeed, one of the results of our experiments—
that justifies our multi-target approach—is that there is no “one-size-fits all” tool, which
reflects a complementarity between the different approaches. For models that do not
scale with classical model checking, we assist the robotic programmers on which alter-
native method to use depending on application- and property-related factors.

Future work Overall, the work presented in this thesis is of benefit to the robotics,
the formal methods, and the real-time systems communities. It tackles the problem
of the applicability of formal methods to the functional components of robotic and
autonomous systems by confronting a range of formal verification techniques/frame-
works/tools to complex real-time applications. Our experiments allow us, besides to
evaluate the contributions of this thesis, to underline the problems encountered and
consequently draw the directions for future work.

First, we lack a robotic-friendly language to express properties. This means that
the practitioners need to formulate their properties in the targeted formal language (ex-
amples in Chapt. 7), which is often not convenient. Indeed, writing properties formally
requires a good knowledge of the targeted language and the generated model which
robotic programmers do not possess. It follows that an important axis of future work is
to develop a property language for GenoM3 so robotic programmers can express prop-
erties conveniently (some directions may be investigated such that of [Py and Ingrand,
2004b] (section 5) or [Abdellatif et al., 2012] (section 4)). Dually, it would be easier
and less costly if counterexamples generated by verification tools were also understand-
able for robotic programmers. We could envisage to translate such counterexamples
into GenoM3 execution traces, understandable by robotic programmers, or even into
scenarios that could be played directly in robotics simulators. Both of these objectives
will require to extend the semantics of GenoM3 so it takes into account the properties/-
traces languages. For instance, the semantics needs to define user-oriented “events”
(as atomic propositions) that could be used to derive properties, which is already paved
by the formalization work presented in this thesis. Examples on similar works (espe-
cially the interpretation of counterexamples) exist in the literature (mainly [Pecheur
and Simmons, 2000]), but they are typically developed in untimed and higher level
contexts. More research is needed in order to see whether it is possible to reproduce
such developing environments and generic transformation chains in our lower level,
timed setting.

Second, the generated models for offline verification (Fiacre, UPPAAL and UPPAAL-
SMC) reduce the codels (that implement the actual code to execute) into their Worst
Case Execution Time. That is, we consider that the code is written correctly. It would
be more reliable if the verification of such models could be consolidated with the ver-
ification of the code itself by combining (possibly statistical) model checking and de-
ductive techniques. For this, we need to further explore the existing methods and tools
in order to come up with an approach that robotic programmers can benefit from with
a minimal effort. As an intermediary step, we may enrich the models with more data-

168

related information such as codel arguments, which will allow the verification of other
important properties such as data freshness in IDS/ports.

Third, in the current practice, the validity of verification results is restricted to the
cases where the number of processors/cores in the platform is at least equal to that of
the robotic tasks, which is not always the case in reality. We propose in this thesis a
novel approach that allows the verification of robotic specifications while taking into
account the specificities of the hardware. Some preliminary results are given consid-
ering a couple of cooperative schedulers. An obvious axis of future work is to explore
further scheduling algorithms. We plan thus to add options to our templates to allow
the user to specify, if they desire, the used scheduler in their application and the number
of processors/cores in the platform. Comparing the results using different schedulers
can further help the practitioner decide on how to schedule their tasks prior to the im-
plementation.

Fourth, the use of either statistical model checking or runtime verification is subject
to many interrogations. When it comes to statistical model checking, it is difficult to set
the properties in terms of probabilities because we severely lack this kind of require-
ments in robotics. We need to investigate further the problem of interpreting probability
estimation of properties. Also, the restricted query language of UPPAAL-SMC makes
it hard to express a range of important properties in robotics. This forced us to reason
on equivalent alternatives using the supported operators only. For a robotic program-
mer, this could be quite discouraging since it requires a good knowledge of the tool,
the query language and the underlying logic. A possible future work consists therefore
in developing query-to-query transformations that are transparent to the practitioner.
Finally, UPPAAL-SMC supports stochastic behaviors where automata locations can
have associated rates. This feature is interesting since it may be used in future work
to verify some hardware-related properties such as energy consumption (as [Seceleanu
et al., 2009]). For runtime verification, a major issue is to determine when one could
deploy an unverified system (because of scalability issues) and rely only on enforce-
ment of properties. Also, the behavior to adopt when a property does not hold is not
obvious, and it is added manually. For future work, it will be useful to carry out a
study on classes of properties that can be rather enforced online than checked offline,
and those that we cannot deploy the system without checking them beforehand. For
the latter, we may resort to statistical methods (assuming the probabilistic requirements
are well defined) or try compositional approaches (e.g. ECDAR [David et al., 2010]
and the newer versions of RTD-Finder that will take into account our feedback on the
tool). Another proposition for future work is to automate runtime enforcement, which
is quite challenging when we have realtime constraints.

169

170

Appendix A

Bisimilarity (Part II)

Discrete actions

Action st: From inference rules in table 5.9, to take st from γ, we must have:
γ = (l , v) |= (v(xt) = Per) (1.a)
Additionally, we know that ψRγ, then from (1.a) and Definition 21 (Rule (2)) we have:
φ(st) = Ist − Per and thus φ(st) = [0 , 0] (1.b)
Now from inference rules in table 5.1, to take st we must have
ψ = (s, φ) |= (0 ∈ φ(st)) (1.c)
From (1.b) and (1.c) it follows that action st is possible at ψ.
We take now the action st from γ to reach the state γ′. From table 5.9 we have:
γ′ = (l ′, v ′) |= (l ′(sig) = true ∧ v ′(xt) = 0) and l′ agrees with l otherwise (1.d)
We take the action st from ψ to reach the state ψ′. From table 5.1 we have:
ψ′ = (s ′, φ′) |= (s ′(sig) = true ∧ φ(st) = [Per ,Per]) and s′ agrees with s otherwise
(1.e)
From (1.d) and (1.e) it follows that rules (1) to (4) in Definition 21 are satisfied by γ′

and ψ′, and from Sect. 5.3.2 (absence of effects on time constraints in activities) we
conclude that the rule (5) in Definition 21 is satisfied as well.
It follows that ψ′Rγ′.

Action sm: From inference rules in table 5.10, to take sm we must have
γ = (l , v) |= (l(sig) = true ∧ l(πM) = wait) (2.a)
Additionally, we know that ψRγ, then from (2.a) and Definition 21 (Rules (1),(3)) we
have at ψ:
s(sig) = true ∧ s(πM) = wait (2.b)
Now from inference rules in table 5.2, to take sm from ψ, we must have:
ψ = (s, φ) |= (s(sig) = true ∧ s(πM) = wait) (2.c)
From (2.b) and (2.c) it follows that action sm is possible at ψ.
We take now the action sm from γ to reach the state γ′. From table 5.10 we have:
γ′ = (l ′, v ′) |= (l ′(sig) = false ∧ l ′(N) = N ′ ∧ l ′(R) = R′ ∧ l ′(πM) = manage) and
l′ agrees with l otherwise (2.d)
We take the action sm from ψ to reach the state ψ′. From table 5.2 we have:
ψ′ = (s ′, φ′) |= (s ′(sig) = false ∧ s ′(πM) = manage ∧ s ′(N) = N ′ ∧ s ′(R) = R′) and
s′ agrees with s otherwise (2.e)
From (2.d) and (2.e) and absence of external actions effect on the timer (Sect. 5.3.3), it
follows that rules (1) to (4) in Definition 21 are satisfied by γ′ and ψ′. Also, from (2.a)
and (2.d) (respect. (2.b) and (2.e)) we have Π = M at both γ′ and ψ′ and thus both

171

satisfy rule (5) in Definition 21 (@A ∈ A | s ′(Π) = l ′(Π) = IDA).
It follows that ψ′Rγ′.

Action lm: From inference rules in table 5.11, to take lm we must have:
γ = (l , v) |= (l(Π) = M ∧ (l(N) ∪ l(R)) 6= ∅) (3.a)
Additionally, we know that ψRγ, then from (3.a) and Definition 21 (Rule (1)) we have
at ψ:
s(Π) = M ∧ (s(N) ∪ s(R)) 6= ∅ (3.b)
Now from inference rules in table 5.3, to take lm from ψ, we must have:
ψ = (s, φ) |= (s(Π) = M ∧ (s(N) ∪ s(R)) 6= ∅) (3.c)
From (3.b) and (3.c) it follows that action lm is possible at ψ.
We take now the action lm (rule lm.1) from γ to reach the state γ′. From table 5.11
we have:
γ′ = (l ′, v ′) |= (l ′(Π) = IDA∈A ∧ l ′(πA) = ether ∧ IDA ∈ l ′(R)) and l′ agrees with
l otherwise (3.d)
We take the action lm (rule lm.1) from ψ to reach the state ψ′. From table 5.3 we have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = ether ∧ IDA ∈ s ′(R)) and s′ agrees with
s otherwise (3.e)
From (3.d) and (3.e) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.1) are satisfied by
γ′ and ψ′, that is ψ′Rγ′ after taking lm (rule lm.1).

We take now the action lm (rule lm.2) from γ to reach the state γ′. From table 5.11
we have:
γ′ = (l ′, v ′) |= (l ′(Π) = IDA∈A ∧ l ′(πA) = cpause ∧ IDA ∈ l ′(R)) and l′ agrees with
l otherwise (3.f)
We take the action lm (rule lm.2) from ψ to reach the state ψ′. From table 5.3 we have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = c 6= ether ∧ IDA ∈ s ′(R)) and s′ agrees
with s otherwise (3.g)
From (3.f) and (3.g) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.3) are satisfied by
γ′ and ψ′, that is ψ′Rγ′ after taking lm (rule lm.2).

We take now the action lm (rule lm.3) from γ to reach the state γ′. From table 5.11
we have:
γ′ = (l ′, v ′) |= (l ′(Π) = IDA∈A ∧ l ′(πA) = ether ∧ IDA /∈ l ′(R)) and l′ agrees with
l otherwise (3.h)
We take the action lm (rule lm.3) from ψ to reach the state ψ′. From table 5.3 we have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = ether ∧ IDA /∈ s ′(R)) and s′ agrees with
s otherwise (3.i)
From (3.h) and (3.i) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.1) are satisfied by
γ′ and ψ′, that is ψ′Rγ′ after taking lm (rule lm.3).

We take now the action lm (rule lm.4) from γ to reach the state γ′. From table 5.11
we have:
γ′ = (l ′, v ′) |= (l ′(Π) = IDA∈A ∧ l ′(πA) = cpause ∧ IDA /∈ l ′(R)) and l′ agrees with
l otherwise. (3.j)
We take now the action lm (rule lm.4) from ψ to reach the state ψ′. From table 5.3 we
have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = c 6= ether ∧ IDA /∈ s ′(R)∧
(φ′(ea) = Iea ∨ φ′(fa) = Ifa)) and s′ agrees with s otherwise (3.k)
From (3.j) and (3.k) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.3 with φ′(ea) = Iea ∨ φ′(fa) = Ifa)

172

are satisfied by γ′ and ψ′, that is ψ′Rγ′ after taking lm (rule lm.4).
Note here that taking the action τ from γ′ would give the state γ′′ = (l ′′, v ′′) such that
l ′′(πA) = c, v ′′(xA) = 0 and l′′ agrees with l′ otherwise. We may easily deduce then
that ψ′Rγ′′ (Rule (5) through clause 5.2 with θ = 0).

Action fm: From inference rules in table 5.12, to take fm we must have
γ = (l , v) |= (l(Π) = M ∧ (l(N) ∪ l(R)) = ∅ ∧ l(πM) = manage) (4.a)
Additionally, we know that ψRγ, then from (4.a) and Definition 21 (Rules (1),(3)) we
have at ψ:
s(Π) = M ∧ (s(N) ∪ s(R)) = ∅ ∧ s(πM) = manage (4.b)
Now from inference rules in table 5.4, to take fm from ψ, we must have:
ψ = (s, φ) |= (s(Π) = M ∧ (s(N) ∪ s(R)) = ∅ ∧ s(πM) = manage) (4.c)
From (4.b) and (4.c) it follows that action fm is possible at ψ.
We take now the action fm from γ to reach the state γ′. From table 5.12 we have:
γ′ = (l ′, v ′) |= (l ′(πM) = wait) and l′ agrees with l otherwise (4.d)
We take the action fm from ψ to reach the state ψ′. From table 5.4 we have:
ψ′ = (s ′, φ′) |= (s ′(πM) = wait) and s′ agrees with s otherwise (4.e)
From (4.d) and (4.e) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) in Definition 21 are satisfied by γ′ and ψ′. Also, from (4.a)
and (4.d) (respect. (4.b) and (4.e)) we have Π = M at γ′ and ψ′ and thus both satisfy
rule (5) in Definition 21 (@A ∈ A | s ′(Π) = l ′(Π) = IDA).
It follows that ψ′Rγ′.

Action ia: From inference rules in table 5.13 to take ia (rule ia.1 or ia.3) we must
have, besides the existence of an outgoing ia edge from ether (to stop (rule ia.1) or
to ether (ia.3)):
γ = (l , v) |= (l(Π) = IDA∈A ∧ l(πA) = ether ∧ IDA ∈ l(R) (5.a)
Additionally, we know that ψRγ, then from (5.a) and Definition 21 (Rules (1), (5.1))
we have at ψ:
s(Π) = IDA∈A ∧ s(πA) = ether ∧ IDA ∈ s(R) (5.b)
Now from inference rules in table 5.5, to take ia (rule ia.1 or ia.3) from ψ, we must
have, besides the existence of an outgoing ia edge from ether (to stop (rule ia.1) or
to ether (ia.3)):
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ s(πA) = ether ∧ IDA ∈ s(R)) (5.c)
From (5.a), (5.b) and (5.c) and edges equivalence (Sect. 5.3.4) it follows that action ia
(rule ia.1 or ia.3) is possible at ψ.
We take now the action ia (rule ia.1) from γ to reach the state γ′. From table 5.13 we
have:
γ′ = (l ′, v ′) |= (l ′(πA) = stop ∧ v ′(xA) = 0 ∧ IDA /∈ l ′(R)) and l′ agrees with l oth-
erwise (5.d)
We take the action ia (rule ia.1) from ψ to reach the state ψ′. From table 5.5 we have:
ψ′ = (s ′, φ′) |= (s ′(πA) = stop ∧ IDA /∈ s ′(R) ∧ (φ′ea = Iea ∨ φ′(fa) = Ifa)) and s′

agrees with s otherwise (5.e)
From (5.d) and (5.e) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.2 with θ = 0) are
satisfied by γ′ and ψ′, that is ψ′Rγ′ after taking ia (rule ia.1).

We take now the action ia (rule ia.3) from γ to reach the state γ′. From table 5.13
we have:
γ′ = (l ′, v ′) |= (l ′(πA) = ether ∧ l ′(Π) = M ∧ ¬(IDA ∈ l ′(N) ∨ IDA ∈ l ′(R))) and
l′ agrees with l otherwise (5.f)
We take the action ia (rule ia.3) from ψ to reach the state ψ′. From table 5.5 we have:
ψ′ = (s ′, φ′) |= (s ′(πA) = ether ∧ s ′(Π) = M ∧ ¬(IDA ∈ s ′(N) ∨ IDA ∈ s ′(R))) and

173

s′ agrees with s otherwise (5.g)
From (5.f) and (5.g) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (5) are satisfied by γ′ and ψ′ ((5) is satisfied because Π = M at
both ψ′ and γ′ and thus @A ∈ A | s ′(Π) = l ′(Π) = IDA). It follows that ψ′Rγ′ after
taking ia.1 or ia.3 .

From inference rules in table 5.13, to take ia (rule ia.2 or ia.4) we must have,
besides the existence of an outgoing ia edge from cpause (to stop (rule ia.2) or to
ether (ia.4)):
γ = (l , v) |= (l(Π) = IDA∈A ∧ l(πA) = cpause ∧ IDA ∈ l(R) (5.h)
Additionally, we know that ψRγ, then from (5.h) and Definition 21 (Rules (1),(5.3))
we have at ψ:
s(Π) = IDA∈A ∧ s(πA) = c ∧ IDA ∈ s(R) (5.i)
Now from inference rules in table 5.5, to take ia (rule ia.2 or ia.4) from ψ, we must
have, besides the existence of an outgoing ia edge from c (to stop (rule ia.2) or to
ether (ia.4)):
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ s(πA) = c 6= ether ∧ IDA ∈ s(R)) (5.j)
From (5.h), (5.i), (5.j) and edges equivalence (Sect. 5.3.4) it follows that action ia (rule
ia.2 or ia.4) is possible at ψ.
Now, proving that ψ′Rγ′ after applying rule ia.2 (respect. ia.4) is identical to proving
ψ′Rγ′ after applying rule ia.1 (respect. ia.3).

Action fa: From inference rules in table 5.14, to take fa we must have, besides the
existence of an outgoing fa edge from c (to c′pause (rule fa.1) or to ether (fa.2)):
γ = (l , v) |= (l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = c ∧ v(xA) > 0) (6.a)
Additionally, we know that ψRγ, then from (6.a) and Definition 21 (Rules (1),(5.2)
we have at ψ:
s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = c ∧ (φ(fa) = Ifa − θ | θ > 0) (6.b)
Now from inference rules in table 5.6, to take fa from ψ, we must have, besides the
existence of an outgoing fa edge from c (to c′ 6= ether (rule fa.1) or to ether (fa.2)):
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = c ∧ (φ(fa) = Ifa − θ | θ > 0))
(6.c)
From (6.a), (6.b), (6.c) and edges equivalence (Sect. 5.3.4) it follows that action fa is
possible at ψ.
We take now the action fa (rule fa.1) from γ to reach the state γ′. From table 5.14 we
have:
γ = (l ′, v ′) |= (l ′(πA) = c′pause, l

′(Π) = M ∧ ¬(IDA ∈ l ′(N) ∨ IDA ∈ l ′(R))) and l′

agrees with l otherwise (6.d)
We take the action fa (rule fa.1) from ψ to reach the state ψ′. From table 5.6 we have:
ψ′ = (s ′, φ′) |= (s ′(πA) = c′ 6= ether ∧ s ′(Π) = M ∧ ¬(IDA ∈ s ′(N) ∨ IDA ∈ s ′(R)))
and s′ agrees with s otherwise (6.e)
From (6.d) and (6.e) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) in Definition 21 are satisfied by γ′ and ψ′. Also, we have
Π = M at γ′ andψ′ and thus both satisfy rule (5) in Definition 21 (@A ∈ A | s ′(Π) = l ′(Π) = IDA).
It follows that ψ′Rγ′.

We take now the action fa (rule fa.2) from γ to reach the state γ′. From table 5.14
we have:
(l ′, v ′) |= (l ′(πA) = ether ∧ l ′(Π) = M ∧ ¬(IDA ∈ l ′(N) ∨ IDA ∈ l ′(R))) and l′ agrees
with l otherwise (6.f)
We take now the action fa (rule fa.2) from ψ to reach the state ψ′. From table 5.6 we
have:
ψ′ = (s ′, φ′) |= (s ′(πA) = ether ∧ s ′(Π) = M ∧ ¬(IDA ∈ s ′(N) ∨ IDA ∈ s ′(R))) and

174

s′ agrees with s otherwise (6.g)
From (6.f) and (6.g) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) in Definition 21 are satisfied by γ′ and ψ′. Also, we have
Π = M at γ′ andψ′ and thus both satisfy rule (5) in Definition 21 (@A ∈ A | s ′(Π) = l ′(Π) = IDA).
It follows that ψ′Rγ′.

Action ea: From inference rules in table 5.15, to take ea (rule ea.1) we must have:
γ = (l , v) |= (l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = ether) (7.a)
Additionally, we know that ψRγ, then from (7.a) and Definition 21 (Rules (1),(5.1))
we have at γ:
s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = ether (7.b)
Now, from inference rules in table 5.7, to take ea (rule ea.1) from ψ, we must have:
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = ether) (7.c)
From (7.b), (7.c) it follows that action ea is possible at ψ.
We take now the action ea (rule ea.1) from γ to reach the state γ′. From table 5.15 we
have:
γ′ = (l ′, v ′) |= (l ′(πA) = start ∧ v ′(xA) = 0) and l′ agrees with l otherwise (7.d)
We take now the action ea (rule ea.1) from ψ to reach the state ψ′. From table 5.7 we
have:
ψ′ = (s ′, φ′) |= (s ′(πA) = start ∧ (φ′(ea) = Iea ∨ φ′(fa) = Ifa)) and s′ agrees with
s otherwise (7.e)
From (7.d) and (7.e) and absence of external actions effect on the timer (Sect. 5.3.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.2 with θ = 0) are
satisfied by γ′ and ψ′.
It follows that ψ′Rγ′.

From inference rules in table 5.15, to take ea (rule ea.2) we must have, besides the
existence of an outgoing ea edge from c:
γ = (l , v) |= (l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = c 6= ether ∧ v(xA) > 0) (7.f)
Additionally, we know that ψRγ, then from (7.f) and Definition 21 (Rules (1),(5.2))
we have at ψ:
s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = c 6= ether∧
∧(φ(ea) = Iea − θ ∨ φ(fa) = Ifa − θ) with θ = v(xA) (7.g)
Now from inference rules in table 5.7, to take ea (rule ea.2) from ψ, we must have,
besides the existence of an outgoing ea edge from c:
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = c 6= ether ∧ φ(ea) = Iea − θ | θ > 0)
(7.h)
From (7.f), (7.g) and (7.h) and edges equivalence (Sect. 5.3.4) it follows that action ea
(rule ea.2) is possible at ψ.
We apply now the rule ea.2 from γ to reach the state γ′ (table 5.15) then from ψ to
reach the state ψ′ (table 5.7). The proof that ψ′Rγ′ is similar to that when taking ea.1
(with replacing start by c′.

Time actions From inference rules in table 5.17, to take d (rule d .1) we must have:
(l , v) |= (v(xt) < Per ∧ l(sig) = false ∧ l(πM) = wait) (8.a)
Additionally, we know that ψRγ, then from (8.a) and Definition 21 (Rules (1),(2),(3))
we have at ψ:
φ(st) = Ist − a ∧ s(sig) = false ∧ s(πM) = wait s.t. a = v(xt) (8.b)
Now from inference rules in table 5.8, to take d (rule d .1) from ψ, we must have:
ψ = (s, φ) |= ((φ(st) = Ist − a | a < Per) ∧ s(sig) = false ∧ s(πM) = wait) (8.c)
From (8.a), (8.b) and (8.c) it follows that action d (d ∈]0 ,Per − a]) is possible at ψ.

175

We take now the action d (d ∈]0 ,Per − a]) from γ to reach the state γ′. From ta-
ble 5.17 (rule d .1) we have:
γ′ = (l , v ′) |= (∀x ∈ X : v ′(x) = v(x) + d), which means v ′(xt) = a + d (8.d)
We take now the action d from ψ to reach the state ψ′. From table 5.8 (rule d .1) we
have:
ψ′ = (s, φ′) |= (φ′(st) = Ist − a − d) (8.e)
From (8.d) and (8.e) it follows that rules (1), (2 with θ = a + d), (3), (4), and (5) (the
manager has the control and thus @A ∈ A | s(A) = l(A) = IDA) are satisfied by γ′

and ψ′.
It follows that ψ′Rγ′.

From inference rules in table 5.17 (rule d .2), to take d we must have:
(l , v) |= (v(xt) < Per ∧ l(Π) = IDA∧
l(πA) = c 6= ether ∧ IDA /∈ R ∧ v(xA) < W (c)) (8.f)
Additionally, we know thatψRγ, then from (8.f) and Definition 21 (Rules (1),(2),(5.2))
we have at ψ:
φ(st) = Ist − a | a < Per ∧ s(Π) = IDA∧
s(πA) = c 6= ether ∧ IDA /∈ s(R) ∧ (φ(ea) = Iea − b ∨ φ(fa) = Ifa − b | b < W (c)))
s.t. v(xA) = b and v(xt) = a (8.g)
Now from inference rules in table 5.8, to take d (rule d .2) from ψ, we must have:
ψ = (s, φ) |= (φ(st) = Ist − a | a < Per ∧ s(Π) = IDA∧
s(πA) = c 6= ether ∧ IDA /∈ s(R) ∧ (φ(ea) = Iea − b ∨ φ(fa) = Ifa − b | b < W (c)))
(8.h)
From (8.f), (8.g) and (8.h) it follows that action d (d ∈]0 ,min(W (c)− b,Per − a)])
is possible at ψ.
We take now the action d (d ∈]0 ,min(W (c)− b,Per − a)]) from γ to reach the state
γ′. From table 5.17 (rule d .2) we have:
γ′ = (l , v ′) |= (∀x ∈ X : v ′(x) = v(x) + d), which means (v ′(xt) = a + d ∧ v ′(xA) = b + d)
(8.i)
We take the action d from ψ to reach the state ψ′. From table 5.8 (rule d .2) we have:
ψ′ = (s, φ′) |= (φ′(st) = Ist − a − d ∧ (φ′(ea) = Iea − b − d ∨ φ′(fa) = Ifa − b − d))
(8.j).
From (8.i) and (8.j) it follows that rules (1), (2 with θ = a + d), (3), (4), and (5)
(through the clause 5.2 with θ = b + d) are satisfied by γ′ and ψ′.
It follows that ψ′Rγ′.

We have thus proven that for all discrete and time actions, if ψRγ and action act

is possible from γ s.t. γ
act−−→ γ′, then the same action act is possible from ψ s.t.

ψ
act−−→ ψ′ and ψ′Rγ′. It follows that Ψ (weakly) time simulates Γ.

176

Appendix B

Mappings

process launch (&run_exec: RUN_exec, &ind_exec: IND_exec, &pi_exec: PI_exec, &mut:
MUT) is

states ether, start, start_exec, wait_, wait_exec, path, path_exec, servo,
servo_exec, stop

from ether
wait [0,0];
on (pi_exec = ID_launch);
if run_exec[ind_exec].status = nominal then
to start /* additional edge (starting) */
else
to stop /* additional edge (interruption) */
end

from start
wait [0,0];
on not (mut[r_start_SetState] or mut[r_start_goto] or mut[r_exec_goto] or

mut[r_wait_goto]);
mut[r_start_launch] := true;
to start_exec

from start_exec
wait]0,1]; /*]0, wcet] */
mut[r_start_launch] := false;
to wait_

from wait_
wait [0,0];
on pi_exec = ID_launch;
if run_exec[ind_exec].status = nominal then /* nominal behavior */
on not (mut[r_start_SetState] or mut[r_exec_goto]);
mut[r_wait_launch] := true;
to wait_exec
else
to stop /* additional edge (interruption) */
end

from wait_exec
wait]0,1];
mut[r_wait_launch] := false;
select /* non determinism */

to path
[] to servo

177

[] ind_exec:= ind_exec + 1;
ind_exec:= next_exec(run_exec, ind_exec);
pi_exec:= M_exec;
to wait_ /* pause wait */

end

from path
wait [0,0];
on pi_exec = ID_launch;
if run_exec[ind_exec].status = nominal then /* nominal behavior */
on not (mut[r_start_SetState] or mut[r_exec_goto] or mut[r_wait_goto]);
mut[r_path_launch] := true;
to path_exec
else
to stop /* additional edge (interruption) */
end

from path_exec
wait]0,2];
mut[r_path_launch] := false;
/* pause operations */
ind_exec:= ind_exec + 1;
ind_exec:= next_exec(run_exec, ind_exec);
pi_exec:= M_exec;
select /* non determinism */

to wait_
[] to path

end

from servo
wait [0,0];
on not (mut[r_start_SetState] or mut[r_start_goto] or mut[r_exec_goto]);
r_servo_launch := true;
to servo_exec

from servo_exec
wait]0,1];
mut[r_servo_launch] := false;
/* to pause wait */
ind_exec:= ind_exec + 1;
ind_exec:= next_exec(run_exec, ind_exec);
pi_exec:= M_exec;
to wait_

from stop
wait]0, 0.5];
/* termination */
ind_exec:= ind_exec + 1;
ind_exec:= next_exec(run_exec, ind_exec);
pi_exec:= M_exec;
to ether

Listing B.1: activity launch (Fiacre)

Figure B.1: The process Urgency

178

Figure B.2: The process timer plan

Figure B.3: The process manager plan

179

Listing B.2: SetState process (UPPAAL)
process SetState(urgent chan &exe, int[M_plan, ID_goto] &pi_plan,

int[0, size_plan] &ind_plan, CELL_plan &run_plan[size_plan], bool
&mut[mut_nb]) {

clock x;
state ether, start, start_exec {x≤10};
init ether;
trans
ether →start { guard pi_plan = ID_SetState && run_plan[ind].status

== nominal; sync exe!; };
ether →ether { guard pi_plan = ID_SetState && run_plan[ind].status

== interrupted; sync exe!;
assign ind_plan:= ind_plan+1, ind_plan:=

next_plan (run_plan, ind_plan), pi_plan:=
M_plan; };

start →start_exec { guard !(mut[r_start_launch] || mut[r_wait_launch]
|| mut[r_path_launch] || mut[r_servo_launch]); sync exe!;

assign x:= 0, mut[r_start_SetState]:= true; };
start_exec →ether { guard x>0;

assign mut[r_start_SetState]:= false,
ind_plan:= ind_plan+1,

ind_plan:= next_plan (run_plan,
ind_plan), pi_plan:=
M_plan; },

}

180

Listing B.3: Activity goto (UPPAAL)
process goto(urgent chan &exe, int[M_plan, ID_goto] &pi_plan, int[0,

size_plan] &ind_plan, CELL_plan &run_plan[size_plan], bool
&mut[mut_nb]) {

clock x;
state ether, start, start_exec {x≤10}, exec, exec_exec {x≤20}, wait,

wait_exec {x≤5};
init ether;
trans
ether →start { guard pi_plan = ID_goto && run_plan[ind].status ==

nominal; sync exe!; };
ether →ether { guard pi_plan = ID_goto && run_plan[ind].status ==

interrupted; sync exe!;
assign ind_plan:= ind_plan+1, ind_plan:=

next_plan (run_plan, ind_plan), pi_plan:=
M_plan; };

start →start_exec { guard !(mut[r_start_launch] ||
mut[r_servo_launch]); sync exe!;

assign x:= 0, mut[r_start_goto]:= true; };
start_exec →exec { guard x>0; assign mut[r_start_goto]:= false; };
exec →exec_exec { guard !(mut[r_start_launch] || mut[r_wait_launch]

|| mut[r_path_launch] || mut[r_servo_launch]); sync exe!;
assign x:= 0, mut[r_exec_goto]:= true; };

exec_exec →wait { guard x>0; assign mut[r_exec_goto]:= false; };
wait →wait_exec { guard !(mut[r_start_launch] || mut[r_path_launch])

&& pi_plan = ID_goto &&
run_plan[ind].status == nominal;
sync exe!;

assign x:= 0, mut[r_wait_goto]:= true; };
wait →ether { guard pi_plan = ID_goto && run_plan[ind].status ==

interrupted; sync exe!;
assign ind_plan:= ind_plan+1, ind_plan:=

next_plan (run_plan, ind_plan), pi_plan:=
M_plan; };

wait_exec →wait { guard x>0;
assign mut[r_wait_SetState]:= false,

ind_plan:= ind_plan+1,
ind_plan:= next_plan (run_plan,

ind_plan), pi_plan:=
M_plan; },

wait_exec →ether { guard x>0;
assign mut[r_wait_SetState]:= false,

ind_plan:= ind_plan+1,
ind_plan:= next_plan (run_plan,

ind_plan), pi_plan:=
M_plan; },

}

181

182

Bibliography

Abdeddaim, Y., Asarin, E., Gallien, M., Ingrand, F., Lesire, C., and Sighireanu, M.
(2007). Planning robust temporal plans: A comparison between cbtp and tga ap-
proaches. In International Conference on Automated Planning and Scheduling,
pages 2–10.

Abdellatif, T., Bensalem, S., Combaz, J., De Silva, L., and Ingrand, F. (2012). Rigor-
ous design of robot software: A formal component-based approach. Robotics and
Autonomous Systems, 60(12):1563–1578.

Abid, N. and Dal Zilio, S. (2010). Real-time extensions for the fiacre modeling lan-
guage. International Summer School on Modeling and Verifying Parallel Processes.

Abid, N., Dal Zilio, S., and Le Botlan, D. (2014). A formal framework to specify
and verify real-time properties on critical systems. International Journal of Critical
Computer-Based Systems, 5(1-2):4–30.

Adam, K., Hölldobler, K., Rumpe, B., and Wortmann, A. (2017). Modeling robotics
software architectures with modular model transformations. Journal of Software
Engineering for Robotics, 8(1):3–16.

Alami, R., Chatila, R., Fleury, S., Ghallab, M., and Ingrand, F. (1998). An architecture
for autonomy. The International Journal of Robotics Research, 17(4):315–337.

Albus, J. (1995). Rcs: A reference model architecture for intelligent systems. In Work-
ing Notes: AAAI Spring Symposium on Lessons Learned for Implemented Software
Architectures for Physical Agents, pages 1–6.

Alur, R. and Dill, D. (1994). A theory of timed automata. Theoretical computer
science, 126(2):183–235.

Andersen, S. and Romanski, G. (2011). Verification of safety-critical software. Com-
munications of the ACM, 54(10):52–57.

Aniculaesei, A., Arnsberger, D., Howar, F., and Rausch, A. (2016). Towards the ver-
ification of safety-critical autonomous systems in dynamic environments. arXiv
preprint arXiv:1612.04977.

Aştefănoaei, L., Rayana, S. B., Bensalem, S., Bozga, M., and Combaz, J. (2014).
Compositional invariant generation for timed systems. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages 263–
278. Springer.

183

Basu, A., Bensalem, B., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., and Sifakis,
J. (2011). Rigorous component-based system design using the bip framework. IEEE
software, 28(3):41–48.

Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K., and Lime, D. (2007).
Uppaal-tiga: Time for playing games! In International Conference on Computer
Aided Verification, pages 121–125. Springer.

Behrmann, G., David, A., and Larsen, K. (2004). A tutorial on uppaal. In Formal
Methods for the Design of Real-Time Systems, pages 200–236. Springer.

Bensalem, S., Bozga, M., Boyer, B., and Legay, A. (2013). Incremental generation
of linear invariants for component-based systems. In International Conference on
Application of Concurrency to System Design, pages 80–89. IEEE.

Bensalem, S., Bozga, M., Nguyen, T.-H., and Sifakis, J. (2009). D-finder: A tool for
compositional deadlock detection and verification. In International Conference on
Computer Aided Verification, pages 614–619. Springer.

Benveniste, A. and Berry, G. (1991). The synchronous approach to reactive and real-
time systems. Proceedings of the IEEE, 79:1270–1282.

Bérard, B., Cassez, F., Haddad, S., Lime, D., and Roux, O. H. (2005). Comparison of
the expressiveness of timed automata and time Petri nets. In International Confer-
ence on Formal Modeling and Analysis of Timed Systems, pages 211–225. Springer.

Berard, B., Cassez, F., Haddad, S., Lime, D., and Roux, O. H. (2013). The expressive
power of time Petri nets. Theoretical Computer Science, 474:1–20.

Bernat, G., Burns, A., and Llamosi, A. (2001). Weakly hard real-time systems. IEEE
transactions on Computers, 50(4):308–321.

Berthomieu, B., Bodeveix, J.-P., Farail, P., Filali, M., Garavel, H., Gaufillet, P., Lang,
F., and Vernadat, F. (2008). Fiacre: an intermediate language for model verifica-
tion in the topcased environment. In European Congress on Embedded Real-Time
Software and Systems.

Berthomieu, B., Dal Zilio, S., and Fronc, Ł. (2014). Model-checking real-time proper-
ties of an aircraft landing gear system using fiacre. In International Conference on
Abstract State Machines, Alloy, B, TLA, VDM, and Z, pages 110–125. Springer.

Berthomieu, B. and Menasche, M. (1983). An enumerative approach for analyzing
time Petri nets. In International Federation for Information Processing Congress.

Berthomieu, B., Peres, F., and Vernadat, F. (2006). Bridging the gap between timed
automata and bounded time Petri nets. In International Conference on Formal Mod-
eling and Analysis of Timed Systems, pages 82–97. Springer.

Berthomieu, B., Ribet, P., and Vernadat, F. (2004). The tool Tina – construction of ab-
stract state spaces for Petri nets and time Petri nets. Journal of Production Research,
42(14).

Bjørner, D. and Havelund, K. (2014). 40 years of formal methods. In International
Symposium on Formal Methods, pages 42–61. Springer.

184

Bornot, S., Sifakis, J., and Tripakis, S. (1998). Modeling urgency in timed systems.
In International Symposium on Compositionality: the significant difference, pages
103–129. Springer.

Bourdil, P.-A., Berthomieu, B., and Jenn, E. (2014). Model-checking real-time prop-
erties of an auto flight control system function. In International Symposium on Soft-
ware Reliability Engineering Workshops, pages 120–123. IEEE.

Boussinot, F. and de Simone, R. (1991). The ESTEREL Language. In Proceeding of
the IEEE, volume 79, pages 1293–1304.

Bowen, J. and Stavridou, V. (1993). Safety-critical systems, formal methods and stan-
dards. Software Engineering Journal, 8(4):189–209.

Brafman, R., Bar-Sinai, M., and Ashkenazi, M. (2016). Performance level profiles:
A formal language for describing the expected performance of functional modules.
In International Conference on Intelligent Robots and Systems, pages 1751–1756.
IEEE.

Brewer, E. (2012). Pushing the cap: Strategies for consistency and availability. Com-
puter, 45(2):23–29.

Brugali, D. (2015). Model-driven software engineering in robotics. IEEE Robotics &
Automation Magazine, 22(3):155–166.

Bruyninckx, H. (2001). Open robot control software: the OROCOS project. In Inter-
national Conference on Robotics and Automation, pages 2523–2528. IEEE.

Bryant, R. (1992). Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24(3):293–318.

Bulychev, P., David, A., Larsen, K., Legay, A., Li, G., and Poulsen, D. (2012). Rewrite-
based Statistical Model Checking of WMTL. In International Conference on Run-
time Verification (RV), pages 260–275. Springer.

Burch, J., Clarke, E., McMillan, K., Dill, D., and Hwang, L.-J. (1992). Symbolic model
checking: 1020 states and beyond. Information and computation, 98(2):142–170.

Cimatti, A., Roveri, M., and Bertoli, P. (2004). Conformant planning via symbolic
model checking and heuristic search. Artificial Intelligence, 159(1-2):127–206.

Clarke, E., Grumberg, O., and Peled, D. (1999). Model checking. MIT press.

Clarke, E., McMillan, K., Campos, S., and Hartonas-Garmhausen, V. (1996). Symbolic
model checking. In International Conference on Computer Aided Verification, pages
419–422. Springer.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı-Oliet, N., Meseguer, J., and Quesada,
J. F. (2002). Maude: Specification and programming in rewriting logic. Theoretical
Computer Science, 285(2):187–243.

Clements, P., Garlan, D., Little, R., Nord, R., and Stafford, J. (2003). Documenting
software architectures: views and beyond. In 25th International Conference on Soft-
ware Engineering, pages 740–741. IEEE Computer Society.

185

Coad, P. and Nicola, J. (1993). Object-oriented programming. Yourdon Press Engle-
wood Cliffs.

David, A., Larsen, K., Legay, A., Nyman, U., and Wkasowski, A. (2010). Ecdar:
An environment for compositional design and analysis of real time systems. In
International Symposium on Automated Technology for Verification and Analysis,
pages 365–370. Springer.

De Moura, L. and Bjørner, N. (2008). Z3: An efficient smt solver. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer.

De Nicola, R., Ferrari, G. L., and Pugliese, R. (1998). Klaim: A kernel language for
agents interaction and mobility. IEEE Transactions on software engineering, 5:315–
330.

Demathieu, S., Thomas, F., André, C., Gérard, S., and Terrier, F. (2008). First ex-
periments using the uml profile for marte. In International Symposium on Object
Oriented Real-Time Distributed Computing, pages 50–57. IEEE.

Dennis, S., Alex, L., Matthias, L., and Christian, S. (2016). The smartmdsd toolchain:
An integrated mdsd workflow and integrated development environment (ide) for
robotics software. Journal Of Software Engineering In Robotics, 7(1):3–19.

Desai, A., Dreossi, T., and Seshia, S. A. (2017). Combining model checking and
runtime verification for safe robotics. In International Conference on Runtime Veri-
fication, pages 172–189. Springer.

Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., and Ziane, M. (2012). Robotml, a
domain-specific language to design, simulate and deploy robotic applications. In In-
ternational Conference on Simulation, Modeling, and Programming for Autonomous
Robots, pages 149–160. Springer.

Dwyer, M., Avrunin, G., and Corbett, J. (1999). Patterns in property specifications for
finite-state verification. In International Conference on Software engineering, pages
411–420. ACM.

Echeverria, G., Lassabe, N., Degroote, A., and Lemaignan, S. (2011). Modular open
robots simulation engine: Morse. In International Conference on Robotics and Au-
tomation, pages 46–51. Citeseer.

Elkady, A. and Sobh, T. (2012). Robotics middleware: A comprehensive literature
survey and attribute-based bibliography. Journal of Robotics.

Emerson, A. and Srinivasan, J. (1988). Branching time temporal logic. In Work-
shop/School/Symposium of the REX Project (Research and Education in Concurrent
Systems), pages 123–172. Springer.

Faugere, M., Bourbeau, T., De Simone, R., and Gerard, S. (2007). Marte: Also an uml
profile for modeling aadl applications. In International Conference on Engineering
Complex Computer Systems, pages 359–364. IEEE.

Foughali, M. (2017). Toward a correct-and-scalable verification of concurrent robotic
systems: Insights on formalisms and tools. In International Conference on Applica-
tion of Concurrency to System Design, pages 29–38. IEEE.

186

Foughali, M., Berthomieu, B., Dal Zilio, S., Hladik, P.-E., Ingrand, F., and Mallet,
A. (2018). Formal verification of complex robotic systems on resource-constrained
platforms. In International Conference on Formal Methods in Software Engineering,
pages 2–9.

Foughali, M., Berthomieu, B., Dal Zilio, S., Ingrand, F., and Mallet, A. (2016). Model
checking real-time properties on the functional layer of autonomous robots. In In-
ternational Conference on Formal Engineering Methods, pages 383–399. Springer.

Fu, M., Li, Y., Feng, X., Shao, Z., and Zhang, Y. (2010). Reasoning about optimistic
concurrency using a program logic for history. In International Conference on Con-
currency Theory, pages 388–402. Springer.

Gabel, M. and Su, Z. (2010). Online inference and enforcement of temporal properties.
In International Conference on Software Engineering, pages 15–24. ACM/IEEE.

Gat, E. and Bonnasso, P. (1998). On three-layer architectures. Artificial intelligence
and mobile robots, 195:210.

Genc, S. and Lafortune, S. (2003). Distributed diagnosis of discrete-event systems
using Petri nets. In International Conference on Application and Theory of Petri
Nets, pages 316–336. Springer.

Gibson-Robinson, T., Armstrong, P., Boulgakov, A., and Roscoe, A. (2014). Fdr3a
modern refinement checker for csp. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 187–201. Springer.

Giridhar, A. and Kumar, P. R. (2006). Distributed clock synchronization over wireless
networks: Algorithms and analysis. In International Conference on Decision and
Control, pages 4915–4920. IEEE.

Gjondrekaj, E., Loreti, M., Pugliese, R., Tiezzi, F., Pinciroli, C., Brambilla, M., Bi-
rattari, M., and Dorigo, M. (2012). Towards a formal verification methodology
for collective robotic systems. In International Conference on Formal Engineering
Methods, pages 54–70. Springer.

Gobillot, N., Lesire, C., and Doose, D. (2014). A modeling framework for software
architecture specification and validation. In International Conference on Simulation,
Modeling, and Programming for Autonomous Robots, pages 303–314. Springer.

Green, C. (1981). Application of theorem proving to problem solving. In Readings in
Artificial Intelligence, pages 202–222. Elsevier.

Guerra, M., Efimov, D., Zheng, G., and Perruquetti, W. (2016). Avoiding local min-
ima in the potential field method using input-to-state stability. Control Engineering
Practice, 55:174–184.

Hähnel, D., Burgard, W., and Lakemeyer, G. (1998). Golex - bridging the gap between
logic (golog) and a real robot. In Annual Conference on Artificial Intelligence, pages
165–176. Springer.

Halder, R., Proença, J., Macedo, N., and Santos, A. (2017). Formal verification of
ros-based robotic applications using timed-automata. In International Workshop on
Formal Methods in Software Engineering (FormaliSE), pages 44–50. IEEE/ACM.

187

Havelund, K. and Rosu, G. (2001). Java pathexplorer: A runtime verification tool.
Technical report, NASA Ames Research Center.

Hazim, M., Qu, H., and Veres, S. (2016). Testing, verification and improvements of
timeliness in ros processes. In Conference Towards Autonomous Robotic Systems,
pages 146–157. Springer.

Hendriks, M., Behrmann, G., Larsen, K., Niebert, P., and Vaandrager, F. (2004).
Adding symmetry reduction to uppaal. In International Conference on Formal Mod-
eling and Analysis of Timed Systems, pages 46–59. Springer.

Henzinger, T., Manna, Z., and Pnueli, A. (1991). Timed transition systems. In Work-
shop/School/Symposium of the REX Project (Research and Education in Concurrent
Systems), pages 226–251. Springer.

Henzinger, T., Nicollin, X., Sifakis, J., and Yovine, S. (1994). Symbolic model check-
ing for real-time systems. Information and computation, 111(2):193–244.

Hoare, C. (1969). An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576–580.

Holzmann, G. (1997). The model checker spin. IEEE Transactions on software engi-
neering, 23(5):279–295.

Hsiung, P.-A., Lin, S.-W., Chen, Y.-R., Huang, C.-H., Yeh, J.-J., Sun, H.-Y., Lin, C.-
S., and Liao, H.-W. (2006). Model checking timed systems with urgencies. In
International Symposium on Automated Technology for Verification and Analysis,
pages 67–81. Springer.

Huang, J., Erdogan, C., Zhang, Y., Moore, B., Luo, Q., Sundaresan, A., and Rosu,
G. (2014). Rosrv: Runtime verification for robots. In International Conference on
Runtime Verification, pages 247–254. Springer.

Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. (2017). Safety verification of
deep neural networks. In International Conference on Computer Aided Verification,
pages 3–29. Springer.

Huet, G., Kahn, G., and Paulin-Mohring, C. (1997). The coq proof assistant a tutorial.
Technical report, Institut National de Recherche en Informatique et en Automatique.

Ingrand, F. and Ghallab, M. (2017). Deliberation for autonomous robots: A survey.
Artificial Intelligence, 247:10–44.

Ingrand, F., Lacroix, S., Lemai-Chenevier, S., and Py, F. (2007). Decisional autonomy
of planetary rovers. Journal of Field Robotics, 24(7):559–580.

Jang, C., Lee, S.-I., Jung, S.-W., Song, B., Kim, R., Kim, S., and Lee, C.-H. (2010).
Opros: A new component-based robot software platform. Electronics and Telecom-
munications Research Institute journal, 32(5):646–656.

Kapoor, A., Deguet, A., and Kazanzides, P. (2006). Software components and frame-
works for medical robot control. In International Conference on Robotics and Au-
tomation, pages 3813–3818. IEEE.

Katz, G., Barrett, C., Dill, D., Julian, K., and Kochenderfer, M. (2017). Reluplex: An

188

efficient smt solver for verifying deep neural networks. In International Conference
on Computer Aided Verification, pages 97–117. Springer.

Kazanzides, P., Kouskoulas, Y., Deguet, A., and Shao, Z. (2012). Proving the cor-
rectness of concurrent robot software. In International Conference on Robotics and
Automation, pages 4718–4723. IEEE.

Kim, M. and Kang, K. (2005). Formal Construction and Verification of Home Service
Robots: A Case Study. In International Symposium on Automated Technology for
Verification and Analysis, pages 429–443. Springer.

Knight, R., Chien, S., Gat, E., Starbird, T., Gostelow, K., Keller, B., and Smith, W.
(2000). Integrating model-based artificial intelligence planning with procedural
elaboration for onboard spacecraft autonomy. Technical report, California Institure
of Technology, Pasadena Jet Propulsion Lab.

Koenig, N. and Howard, A. (2004). Design and use paradigms for gazebo, an open-
source multi-robot simulator. In International Conference on Intelligent Robots and
Systems, pages 2149–2154. IEEE.

Kortenkamp, D. and Simmons, R. (2008). Robotic systems architectures and program-
ming. In Springer Handbook of Robotics, pages 187–206. Springer.

Kouskoulas, Y., Renshaw, D., Platzer, A., and Kazanzides, P. (2013). Certifying the
safe design of a virtual fixture control algorithm for a surgical robot. In International
Conference on Hybrid Systems: Computation and Control, pages 263–272. ACM.

Kramer, J. and Scheutz, M. (2007). Development environments for autonomous mobile
robots: A survey. Autonomous Robots, 22(2):101–132.

Kress-Gazit, H., Fainekos, G., and Pappas, G. (2008). Translating structured english to
robot controllers. Advanced Robotics, 22(12):1343–1359.

Kress-Gazit, H., Wongpiromsarn, T., and Topcu, U. (2011). Correct, reactive, high-
level robot control. IEEE Robotics & Automation Magazine, 18(3):65–74.

Kwiatkowska, M., Norman, G., and Parker, D. (2011). Prism 4.0: Verification of
probabilistic real-time systems. In International Conference on Computer Aided
Verification, pages 585–591. Springer.

Larsen, K., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P., and
Romijn, J. (2001). As cheap as possible: effcient cost-optimal reachability for priced
timed automata. In International Conference on Computer Aided Verification, pages
493–505. Springer.

Legay, A., Delahaye, B., and Bensalem, S. (2010). Statistical model checking: An
overview. In International Conference on Runtime Verification, pages 122–135.
Springer.

Leucker, M. and Schallhart, C. (2009). A brief account of runtime verification. The
Journal of Logic and Algebraic Programming, 78(5):293–303.

Leveson, N. G. and Stolzy, J. L. (1987). Safety analysis using Petri nets. IEEE Trans-
actions on Software Engineering, 3:386–397.

189

Levesque, H., Reiter, R., Lespérance, Y., Lin, F., and Scherl, R. (1997). Golog: A logic
programming language for dynamic domains. The Journal of Logic Programming,
31(1-3):59–83.

Ligatti, J. and Reddy, S. (2010). A theory of runtime enforcement, with results. In
European Symposium on Research in Computer Security, pages 87–100. Springer.

Lomuscio, A., Qu, H., and Raimondi, F. (2009). Mcmas: A model checker for the
verification of multi-agent systems. In International Conference on Computer Aided
Verification, pages 682–688. Springer.

Lupetti, S. and Zagorodnov, D. (2006). Data popularity and shortest-job-first schedul-
ing of network transfers. In International Conference on Digital Telecommunica-
tions, pages 26–26. IEEE.

Macek, K., Govea, D. A. V., Fraichard, T., and Siegwart, R. (2008). Safe vehicle
navigation in dynamic urban scenarios. In IEEE Conference on Intelligent Trans-
portation Systems.

Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., and Ingrand, F. (2010). GenoM3:
Building middleware-independent robotic components. In International Conference
on Robotics and Automation, pages 4627–4632. IEEE.

McCarthy, J. (1968). Situations, actions, and causal laws. Semantic Information Pro-
cessing, pages 410–417.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D.,
and Wilkins, D. (1998). Pddl-the planning domain definition language. Technical
report, Yale Center for Computational Vision and Control.

Medina, J. and Cuesta, A. G. (2011). Model-based analysis and design of real-time dis-
tributed systems with ada and the uml profile for marte. In International Conference
on Reliable Software Technologies, pages 89–102. Springer.

Meng, W., Park, J., Sokolsky, O., Weirich, S., and Lee, I. (2015). Verified ros-based
deployment of platform-independent control systems. In NASA Formal Methods
Symposium, pages 248–262. Springer.

Merlin, P. and Farber, D. (1976). Recoverability of Communication Protocols: Impli-
cations of a Theoretical Study. IEEE Transactions on Communications, 24(9):1036–
1043.

Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., and Timmis, J. (2017). Automatic
property checking of robotic applications. In International Conference on Intelligent
Robots and Systems, pages 3869–3876. IEEE.

Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J., and Woodcock, J. (2016).
Robochart: a state-machine notation for modelling and verification of mobile and
autonomous robots. Technical report, University of York.

Mohamed, N., Al-Jaroodi, J., and Jawhar, I. (2008). Middleware for robotics: A survey.
In International Conference on Robotics, Automation and Mechatronics, pages 736–
742. IEEE.

190

Molnar, L. and Veres, S. (2009). System verification of autonomous underwater vehi-
cles by model checking. In OCEANS-EUROPE Conference, pages 1–10. IEEE.

Mowbray, T. and Zahavi, R. (1995). The essential CORBA: systems integration using
distributed objects. Wiley New York.

Murray, R., Burdick, J., Perona, P., Cremean, L., Kriechbaum, K., Pfister, S., Foote, T.,
Gillula, J., Lamb, J., and Stewart, A. (2005). Darpa technical paper: Team caltech.
Technical report, California Institure of Technology, Pasadena Jet Propulsion Lab.

Nayak, P., Kurien, J., Dorais, G., Millar, W., Rajan, K., Kanefsky, B., Bernard, D.,
Gamble, E., Rouquette, N., Smith, B., Muscettola, N., Taylor, W., and Tung, Y.-
W. (1999). Validating the ds-1 remote agent experiment. In Artificial Intelligence,
Robotics and Automation in Space, page 349.

Nipkow, T., Paulson, L. C., and Wenzel, M. (2002). Isabelle/HOL: a proof assistant
for higher-order logic. Springer Science & Business Media.

Pecheur, C. (2000). Verification and validation of autonomy software at nasa. Technical
report, NASA Ames Research Center.

Pecheur, C. and Simmons, R. (2000). From livingstone to smv. In International Work-
shop on Formal Approaches to Agent-Based Systems, pages 103–113. Springer.

Petri, C. A. (1962). Communication with automata. PhD thesis, Technische
Hochschule Darmstadt.

Platzer, A. (2008). Differential dynamic logic for hybrid systems. Journal of Auto-
mated Reasoning, 41(2):143–189.

Py, F. and Ingrand, F. (2004a). Dependable execution control for autonomous robots.
In International Conference on Intelligent Robots and Systems, pages 1136–1141.
IEEE.

Py, F. and Ingrand, F. (2004b). Real-time execution control for autonomous systems.
In European Congress ERTS, Embedded Real Time Software, pages 21–23.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler,
R., and Ng, A. (2009). ROS: an open-source Robot Operating System. In ICRA
workshop on open source software, page 5.

Ramamoorthy, C. and Ho, G. (1980). Performance evaluation of asynchronous concur-
rent systems using Petri nets. IEEE Transactions on software Engineering, 5:440–
449.

Raman, V., Piterman, N., and Kress-Gazit, H. (2013). Provably correct continuous
control for high-level robot behaviors with actions of arbitrary execution durations.
In International Conference on Robotics and Automation, pages 4075–4081. IEEE.

Ramchandani, C. (1974). Analysis of asynchronous concurrent systems by Petri nets.
Technical report, Defense Technical Information Center.

Rangra, S. and Gaudin, E. (2014). SDL to Fiacre translation. In European Congress
on Embedded Real-Time Software and Systems.

191

Roscoe, A. (2010). Understanding concurrent systems. Springer Science & Business
Media.

Schlegel, C., Haßler, T., Lotz, A., and Steck, A. (2009). Robotic software systems:
From code-driven to model-driven designs. In International Conference on Ad-
vanced Robotics, pages 1–8. IEEE.

Schwiegelshohn, U. and Yahyapour, R. (1998). Analysis of first-come-first-serve par-
allel job scheduling. In Symposium on Discrete Algorithms, pages 629–638.

Seceleanu, C., Vulgarakis, A., and Pettersson, P. (2009). Remes: A resource model
for embedded systems. In International Conference on Engineering of Complex
Computer Systems, pages 84–94. IEEE.

Seshia, S., Sadigh, D., and Sastry, S. (2016). Towards verified artificial intelligence.
arXiv preprint arXiv:1606.08514.

Shalev-Shwartz, S., Shammah, S., and Shashua, A. (2017). On a formal model of safe
and scalable self-driving cars. arXiv preprint arXiv:1708.06374.

Sierhuis, M. and Clancey, W. (2002). Modeling and simulating practices, a work
method for work systems design. IEEE Intelligent Systems, 17(5):32–41.

Simon, D., Espiau, B., Kapellos, K., and Pissard-Gibollet, R. (1997). Orccad: software
engineering for real-time robotics. a technical insight. Robotica, 15(1):111–115.

Simon, D., Pissard-Gibollet, R., and Arias, S. (2006). Orccad, a framework for safe
robot control design and implementation. In National workshop on control architec-
tures of robots: software approaches and issues.

Smart, W. D. (2007). Is a common middleware for robotics possible? In IROS work-
shop on Measures and Procedures for the Evaluation of Robot Architectures and
Middleware.

Smith, D., Frank, J., and Cushing, W. (2008). The anml language. In ICAPS Workshop
on Knowledge Engineering for Planning and Scheduling (KEPS).

Sotiropoulos, T., Waeselynck, H., Guiochet, J., and Ingrand, F. (2017). Can robot
navigation bugs be found in simulation? an exploratory study. In International
Conference on Software Quality, Reliability and Security, pages 150–159. IEEE.

Sowmya, A., Tsz-Wang So, D., and Hung Tang, W. (2002). Design of a Mobile Robot
Controller using Esterel Tools. Electronic Notes in Theoretical Computer Science,
65(5):3–10.

Stocker, R., Dennis, L., Dixon, C., and Fisher, M. (2012). Verifying brahms human-
robot teamwork models. In Proccedings of the International Conference on Logics
in Artificial Intelligence, pages 385–397. Springer.

Täubig, H., Frese, U., Hertzberg, C., Lüth, C., Mohr, S., Vorobev, E., and Walter, D.
(2012). Guaranteeing functional safety: design for provability and computer-aided
verification. Autonomous Robots, 32(3):303–331.

Todorov, V., Boulanger, F., and Taha, S. (2018). Formal verification of automotive
embedded software. In 6th Conference on Formal Methods in Software Engineering,
pages 84–87. ACM.

192

Tomatis, N., Terrien, G., Piguet, R., Burnier, D., Bouabdallah, S., Arras, K., and Sieg-
wart, R. (2003). Designing a secure and robust mobile interacting robot for the long
term. In International Conference on Robotics and Automation, pages 4246–4251.
IEEE.

Vardi, M. and Wolper, P. (1986). An automata-theoretic approach to automatic program
verification. In Symposium on Logic in Computer Science, pages 322–331. IEEE
Computer Society.

Veksler, O. (2003). Fast variable window for stereo correspondence using integral im-
ages. In Computer Society Conference on Computer Vision and Pattern Recognition,
pages 556–561. IEEE.

Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., and Das, H. (2001). The claraty
architecture for robotic autonomy. In Proccedings of IEEE Aerospace Conference,
pages 1–121.

Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat,
G., Ferdinand, C., Heckmann, R., Mitra, T., et al. (2008). The worst-case execution-
time problemoverview of methods and survey of tools. ACM Transactions on Em-
bedded Computing Systems (TECS), 7(3):36.

Williams, B. and Nayak, P. (1996). A model-based approach to reactive self-
configuring systems. In National Conference On Artificial Intelligence, pages 971–
978.

Woodcock, J., Larsen, P., Bicarregui, J., and Fitzgerald, J. (2009). Formal methods:
Practice and experience. ACM computing surveys, 41(4):19.

Yu, W., Chen, T., Franchetti, F., and Hoe, J. C. (2010). High performance stereo vision
designed for massively data parallel platforms. IEEE Transactions on Circuits and
Systems for Video Technology, 20(11):1509–1519.

193

