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Résumé en français

Introduction

Les objets connectés représentent une nouvelle étape dans la miniaturisation et
la diffusion dans l’environnement des dispositifs informatiques. Des capteurs et
des actionneurs sont disséminés afin de permettre l’élaboration de nouveaux scé-
narios pour une agriculture de précision, un habitat automatisé, ou encore une
ville dite intelligente. La diversité des cas d’utilisation entraîne une diversité de
besoins, laquelle induit une hétérogénéité tant materielle que logicielle parmi les
objets connectés. Cette hétérogénéité est la source de l’un des verrous qui pèse sur
le développement des objets connectés : le manque d’interopérabilité. Des objets
sont dits interopérables s’ils peuvent échanger des services ou des informations.

Selon le point de vue de la conception centrée sur l’utilisateur [Abras 2004], la
capacité de l’utilisateur à contrôler l’exécution d’une tâche effectuée par un système
est primordiale. Une première étape dans l’ouverture de ce contrôle réside dans la
liberté de choisir les éléments qui composent le système déployé, plutôt que d’être
contraint par un écosystème limité. C’est là que les limitations imposées par le
manque d’interopérabilité commencent.

Afin de garantir l’interopérabilité, des standards ont été développé dans le do-
maine de l’internet des objets. De plus, afin d’offrir une interopérabilité la plus
profonde possible, ces standards ont été complétés par l’utilisation des techniques
et des principes du Web Sémantique (WS). L’interaction entre le domaine de l’IoT
et le domaine du WS a amené l’émergence d’un nouveau domaine, le Semantic Web
of Things (SWoT). Cependant, déployer les technologies du Web Sémantique dans
des réseaux dans lesquels sont présents des objets très contraints n’est pas triv-
ial. En effet, les représentations de connaissances et les principes qui sous-tendent
ces technologies tendent à être consommateurs de ressources, ce qui est incompat-
ible avec la sobriété énergétique et calculatoire imposée par la nature des objets
connectés.

La problématique de cette thèse est donc double : il s’agira de discuter les
intérêts en terme d’interopérabilité du développement du SWoT, tout en pro-
posant des solutions permettant d’adapter les technologies du Web Sémantique
aux contraintes de l’IoT. La suite de ce résumé présente le contenu des chapitres
de cette thèse dans laquelle mes principales contributions sont décrites. Tout
d’abord, le Chapitre §3 détaille le rôle du Web Sémantique en tant que support de
l’interopérabilité, avec en particulier la proposition de IoT-O, une ontologie pour
l’IoT désignée comme contribution I.A. L’utilisation de IoT-O est illustrée dans la
contribution I.B à travers semIoTics, un système autonome de contrôle d’un habi-
tat connecté. Le Chapitre §4 propose un état de l’art analysant la place du Fog
computing (une technique de calcul distribué) dans le déploiement du SWoT. Cette
analyse s’appuie sur un patron architectural de référence pour les réseaux d’objets
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implémentant les principes du SWoT: le Cloud-Fog-Device. Dans le Chapitre §5,
la nature répartie des réseaux d’objets connectés est mise à contribution pour dé-
centraliser le raisonnement, à travers une approche générique de distribution dy-
namique de raisonnement à base de règles, appelée EDR. EDR est la contribution
II.A de cette thèse. Elle est complétée par EDRT , une version raffinée de EDR
implémentant une stratégie particulière de gestion des règles. Les performances de
EDRT sont détaillées dans le Chapitre §6.

Le SWoT, porteur d’interopérabilité

Que ce soit par choix d’un modèle économique, ou contraint par des considérations
techniques, beaucoup de systèmes d’objets connectés ont été développées par leurs
concepteurs dans un modèle d’intégration verticale, dit "en silo". Une telle approche
implique que la couche applicative, le protocole de communication et la couche
matérielle sont des systèmes fermés, avec lesquels il n’est pas possible d’interagir
facilement depuis un système tiers.

Pour pallier ce manque d’interopérabilité, il est courant d’avoir recours aux
standards, tels que oneM2M ou le Web of Things du W3C. Ces standards ont ceci
de particulier qu’ils considèrent non seulement l’interopérabilité syntactique, en
harmonisant les schémas représentant les informations, mais aussi l’intéroperabilité
sémantique, en promouvant des vocabulaires et techniques du Web Sémantique.

En particulier, le Web Sémantique supporte l’interopérabilité en proposant
des vocabulaires formels décrivant un domaine de connaissance donné, que l’on
appelle ontologies [Gruber 1991]. Il existe de nombreuses ontologies pour carac-
tériser le domaine de l’IoT, et la première partie de notre travail a consisté à lis-
ter ces ontologies pour identifier celles qui satisfont un ensemble de besoins que
nous identifions comme des critères de qualité, inspirés par la méthode NeOn
[del Carmen Suarez de Figueroa Baonza 2010]. Nous distinguons deux types de
critères :

• Des critères conceptuels, c’est à dire les domaines couverts par l’ontologie.
L’IoT étant un domaine étalé, plusieurs sous-domaines y sont rattachés : Cap-
teurs et Observations, Actionneurs et Actions, Objets et Agents virtuels, Ser-
vices, Gestion de l’énergie, et enfin Cycle de vie.

• Des critères fonctionnels, déterminant des caractéristiques techniques de
l’ontologie. Ces critères cristallisent un certain nombre de bonnes pratiques
visant à faciliter la réutilisation des ontologies d’un projet à l’autre, les rendant
ainsi interopérables. L’accessibilité en ligne, la modularité [Aquin 2012] ou
l’appui sur des patrons de conception [Gangemi 2005] font partie des critères
identifiés.

Face à l’absence d’ontologies qui couvre l’ensemble des critères identifiés, nous
proposons IoT-O, une ontologie modulaire coeur de domaine pour l’IoT.
La description de IoT-O a été publiée dans [Seydoux 2016b]. Cependant, pour ne
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Figure 1: Dépendances des modules de IoT-O
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pas tomber dans un travers que nous avons observé dans le domaine, IoT-O réutilise
des ontologies déjà existantes, de manière à ne pas redéfinir de concepts. Chacun
des domaines identifiés dans les critères conceptuels est couvert par un module de
IoT-O, et l’ontologie IoT-O en tant que telle est le module de plus haut niveau qui
établit des liens entre les autres. Les modules de IoT-O, ainsi que les ontologies qui
les composent, sont représentés dans la Figure 1.

IoT-O est par exemple utilisée par semIoTics, un logiciel de gestion autonomique
déployé pour automatiser le contrôle des objets dans un appartement connecté.
semIoTics implémente la boucle MAPE-K [Kephart 2003], et s’appuie sur une base
de connaissance dans laquelle l’appartement et ses caractéristiques, mais aussi les
objets qu’il contient et les services que ces derniers implémentent sont décrits avec
les différents modules de IoT-O. La mise en place de semIoTics est aussi ren-
due possible par l’utilisation d’OM2M1, un logiciel libre implémentant le standard
oneM2M. OM2M permet d’assurer l’interopérabilité syntactique vers les différents
objets déployés dans l’appartement. Une question se pose cependant : dans le cas
de semIoTics, les décisions sur les actions à effectuer sont prises sur un serveur dis-
posant d’importantes capacités de calcul, et ces décisions sont converties en actions
atomiques transmises directement aux actionneurs concernés. On observe là une
séparation nette entre la partie du réseau dans laquelle les informations ont été sé-
mantisées, et la partie dans laquelle les objets sont trop contraints pour manipuler
ces représentations plus complexes. Dans la suite de cette thèse, des approches
distribuées sont considérées afin de rapprocher au maximum cette séparation entre
données brutes et informations sémantisées des objets connectés.

1http://www.eclipse.org/om2m/

http://www.eclipse.org/om2m/
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Quel est le rôle du Fog computing dans le domaine du
SWoT ?

Pour analyser comment est répartie la charge de calcul imposée par l’utilisation
des technologies et des formalismes du Web Sémantique dans le domaine du SWoT,
identifier un patron architectural récurrent dans les déploiement SWoT est une pre-
mière étape. On trouve d’un côté de ce patron les serveurs puissants et accessibles
de manière globale à travers le Web (aussi appelés serveurs du Coud), et de l’autre
les objets connectés contraints, avec leurs protocoles de communication propres.
Entre les deux, la communication n’est pas forcément directe : des dispositifs sont
souvent utilisés pour assurer l’interface entre les technologies Web côté serveur,
et les technologies spécifiques côté objets. Ces dispositifs sont en général appelés
passerelles, et on en trouve dans de nombreuses architectures de la littérature telles
que décrites dans [Su 2018], [Ben-Alaya 2015], [Zanella 2014] ou [Liu 2015]. Or,
si l’on se réfère à la définition données par l’Open Fog Consortium2, le Fog est
une architecture distribuant services et ressources entre le Cloud et les objets. Par
cette définition, le Fog est un composant intrinsèque du SWoT, d’où notre propo-
sition d’un patron architectural, le Cloud-Fog-Device, qui capture les trois niveaux
identifiés.

En partant de ce constat, il est intéressant d’étudier le rôle du Fog computing
dans l’intégration des technologies du Web Sémantique dans les réseaux IoT. C’est
pourquoi le Chapitre §4 est centré sur un état de l’art dans lequel des fonctions
récurrentes remplies par les technologies du Web Sémantique dans le SWoT sont
identifiées. Le déploiement de ces technologies est situé dans le patron Cloud-Fog-
Device, pour distinguer deux cas de figures :

• Soit les noeuds du Fog se voient délégué des fonctionnalités sémantiques,
auquel cas on peut parler de “Semantic Fog Computing” : le Fog joue un
rôle passif dans l’obtention de l’interopérabilité sémantique.

• Soit les noeuds Fog n’ont aucune fonctionnalité en lien avec les technologies
du Web Sémantique, auquel cas on parle de “Semantic Cloud Computing” :
le Fog a un rôle d’interopérabilité technique ou syntactique, mais il est passif
pour l’interopérabilité sémantique.

Cet état de l’art permet de souligner l’intérêt d’une approche distribuée en
mettant en avant les caractéristiques des déploiements appuyés sur un Fog actif dans
le déploiement des technologies sémantiques pour le SWoT. En particulier, le besoin
de scalabilité est mis en avant, ainsi que l’augmentation de la responsivité rendue
possible par le raisonnement plus local. C’est pourquoi, dans le chapitre suivant,
une approche décentralisée est proposée, pour proposer un SWoT qui s’adapte aux
contraintes de l’IoT.

2http://openfogconsortium.org/

http://openfogconsortium.org/
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Adapter les principes du SWoT aux contraintes de l’IoT

Dans le Chapitre §5, nous proposons la seconde contribution théorique et technique
de cette thèse. Afin de bénéficier des avantages des solutions de SWoT distribuées,
et pour permettre de marier les capacités offertes par le Web Sémantique avec
les contraintes de l’IoT, nous proposons EDR (contribution II.A), une approche
générique de distribution dynamique de raisonnement à base de règles. EDR re-
pose sur l’architecture hiérarchique capturée par le patron Cloud-Fog-Device. C’est
une approche basée sur un vocabulaire dédié qui permet la propagation de règles
SHACL modulaires en contrôlant le comportement des noeuds du réseau. EDR
est décorrélée de la stratégie qui guide la propagation de règles vers des noeuds
en particuliers, c’est pourquoi EDR est une approche dite générique, qui peut être
raffinée en implémentant une stratégie particulière.

Les règles propagées dans EDR sont des règles de production qui permettent
de capturer la logique métier d’une application. Au lieu de fournir à l’application
un flux de données pour qu’elle les traite avec ses règles, EDR vise à ce que que
l’application soumette ses règles au réseau, que celles-ci soient propagées, et que
leurs résultats soient transmis directement à l’application par le noeud qui les a
obtenus. Afin d’être compatibles avec l’approche proposée, les règles doivent se
composer de plusieurs modules :

• Un module “cœur”, qui contient la partie métier de la règle.

• Un module d’activation, qui permet à un noeud de déterminer s’il peut ap-
pliquer la règle

• Un module de transmission, qui permet à un noeud de déterminer auquel de
ses voisins il peut transmettre la règle

• Un module notification, qui permet à un noeud de déterminer à qui envoyer
les résultats de la règle quand celle-ci est appliquée

Les modules d’acivation, de transmission et de notification sont tous liés à la
stratégie de propagation des règles. Les décisions qu’ils permettent s’appuient sur
la base de connaissance de chaque noeud : les décisions sont prises localement.
Pour rendre ce mécanisme possible, les noeuds échangent des informations pour se
représenter les capacités de leurs voisins et l’état de leur environnement.

Afin de démontrer la faisabilité d’EDR, et pour montrer l’intérêt de cette ap-
proche, nous proposons en tant que contribution II.B EDRT , un raffinement d’EDR
implémentant une stratégie qui vise à propager les règles le plus bas possible dans
le réseau. EDRT est basée sur les types de données observées par les capteurs, et
consommées par les règles qui sont propagées. Ainsi, on cherchera à ne pas propager
une règle consommant un type de donnée δ dans un sous-arbre du réseau dans lequel
un tel type de donnée n’est pas produit.

Les performances d’EDRT sont évaluées dans le Chaptitre §6 dans un scénario
d’usine connectée. On mesure le délai entre la collecte d’observations par les cap-
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teurs, et le moment où l’application reçoit les déductions obtenues par la consom-
mation de ces observations par les règles. L’impact de deux paramètres sur ce délai
est mesuré :

• Le nombre de nœuds dans le réseau, qui détermine la capacité de passage à
l’échelle,

• La “décentralisation” possible du traitement. Pour faire varier ce paramètre,
les capteurs produisant les données sont placés plus ou moins profondément
dans l’arbre représentant le réseau. Si tous les capteurs produisant une donnée
sont situés proches de la racine du réseau, répartis entre un nombre limités de
noeuds, les règles consommant ce type de donnée ne pourront pas être répar-
ties plus profond. À l’inverse, une donnée produite à une grande profondeur
dans l’arbre permet un étalement plus large des raisonnements à base de règle.

Les mesures obtenues sur le modèle simulé de l’usine montrent une capacité
bien supérieure des solutions décentralisées comparées aux solutions centralisées au
passage à l’échelle. De plus, quand les performances restent constantes dans une
solution centralisée face à la répartition des capteurs dans le réseau, une plus forte
répartition est bien corrélée avec une auglentation de performances de l’approche
décentralisée que nous proposons.

Conclusion

Au cours des différents chapitres de cette thèse, différents aspects du domaine du
SWoT sont abordés. Le rôle des principes et des technologies du Web Sémantique
dans le développement de l’interopérabilité sont mis en avant dans le Chapitre 3.
Après une analyse sommaire du rôle des standards pour faire face à l’hétérogénéité
du domaine, les principales ontologies pour l’IoT sont présentées. Pour respecter
des critères de qualité que nous identifions, nous proposons IoT-O, la contribution
I.A de cette thèse. IoT-O est une ontologie modulaire, coeur de domaine pour l’IoT,
et son utilisation est illustrée dans la contribution I.B à travers semIoTics, une ap-
plication de contrôle autonomique pour un appartement connecté. L’architecture
mise en place dans semIoTics amène à une réflexion dans le Chapitre §4 sur le
rôle du traitement décentralisé des technologies du Web Sémantique, en partic-
ulier illustré par le Semantic Fog Computing. Un état de l’art des approches du
domaine est proposé, pour identifier les points forts et les éléments à développer
dans l’intégration de technologies du Web Sémantique dans les réseaux IoT. Dans
le Chapitre §5, le paradigme du Semantic Fog Computing est mis en oeuvre dans
une approche dynamique de distribution des raisonnements à base de règle, appelée
EDR, constituant la contribution II.A de cette thèse. EDR est ensuite raffinée
par l’implémentation d’une stratégie de propagation de règles pour obtenir EDRT ,
la contribution II.B. EDRT est évaluée dans le Chapitre §6 à travers un scénario
d’usine connectée.
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Le design centré utilisateur a été utilisé comme argument pour souligner
l’importance de l’interopérabilité, mais il est aussi un élément important pour met-
tre en avant le traitement décentralisé. En effet, permettre de traiter des données
sensibles collectées par des objets placés dans la sphère privée dans un contexte lo-
cal, plutôt que de concentrer les données sur un serveur distant offre de meilleures
garanties pour le respect de la vie privée. C’est pourquoi, dans les futurs travaux
poursuivant ceux amorcés dans cette thèse, une nouvelle extension d’EDR sera
développée, prenant en compte non plus seulement les types de données produites,
mais aussi les critères de vie privée. En combinant EDR et semIoTics, nous comp-
tons aussi concevoir un système autonome qui puisse dynamiquement se reconfigurer
pour s’adapter à la topologie du réseau dans lequel il est déployé.
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1.1 Interoperability and scalability issues in the IoT

The “Things” of the Internet of Things (IoT) are now part of everyday life for
many. To support this claim, one might consider the increasing number of smart
cities including but not limited to Dublin (IE)1, Santander (ES)2, Milton Keynes
(UK), San Francisco (US), New York (US), Jaipur (IN)3 or Yokohama (JA). All
these municipalities are deploying IoT technologies to monitor city facilities such as
street lightning, public transportation as well as environmental factors such as air
quality, in order to offer innovative services to citizens.

The growing integration of connected Things to human activities has an impact
on a wide scope of application domains, such as environmental metering with sensor
networks, transportation, home automation, e-health, agriculture, manufacturing,
or smart user space (e.g., shopping malls, airports, parkings). In the context of the
IoT domain, the word “smart” is used to refer to devices whose core functionalities
have been extended based on connection and computing capabilities: smartphones,
smart watches, or smart fridges for instance. By extension, domains where such
connected devices are integrated are also referred to as “smart”, e.g., smart cities,
smart homes or smart agriculture. Systems qualified as “smart” are thus meant to
communicate with other “smart” devices in order to provide innovative services to
their users depending on his/her requirements. When user requirements are driving
the conception of a system, principles of user-centered design apply [Abras 2004].

One of the core principles of user-centered design is to “empower the user
to control the task”. In the case of IoT, such control starts with the installation
of devices chosen directly by the user to match his/her needs. However, the cus-
tomizability of IoT-based applications is restricted by the approach of the industry
so far, and has been oriented toward vertical silos [Desai 2015]. Proprietary sys-
tems are designed with a specific purpose, and on top of the devices the vendor

1http://smartdublin.ie/
2http://www.smartsantander.eu/
3http://smartcities.gov.in/content/

http://smartdublin.ie/
http://www.smartsantander.eu/
http://smartcities.gov.in/content/
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also distributes the application serving the purpose. Siloed development may be an
business model, chosen in order to build a closed ecosystem to keep customers cap-
tive, but it is also driven by technological constraints. Developing a closed system
is easier, and enables the implementation of optimizations dedicated specifically
to the use cases intended by the manufacturer. This approach cannot match the
diversity of possible scenarios driven by user requirements, and raises interoper-
ability issues. Interoperability is the ability of systems to work together, and can
be achieved in roughly two ways:

• either the interworked systems are natively compatible (e.g., by vendor-
specific design, or through standardization), or

• a third-party acts as an interoperability provider.

Designing devices as black boxes hinders the development of third-party interoper-
ability solutions, which is why vertical silos promote closed ecosystems: they favor
vendor-specific interoperability. Such restrictive vision limits the diversity of the
potential applications, since deployments are locked by vendor design. Users should
be allowed to combine their connected devices in a personalized fashion, and ap-
plication developers should be able to deploy generic applications that adapt to
the available devices, which is totally opposed to vertical integration. Customizing
one’s IoT system requires devices to understand each other: Things must be in-
teroperable. The extreme diversity of technologies involved in IoT deployments
[Cabé 2018], as well as the multiplicity of IoT standards, including but not lim-
ited to oneM2M4, OIC5, and LWM2M6, makes IoT interoperability a non-trivial
issue. Moreover, standards do not solve interoperability issues entirely, and do not
support the development of smart applications as depicted in the original vision of
[Berners-Lee 2001], where intelligent agents seamlessly interact with devices and in-
formation. Beyond enabling the communication between entities, understanding
must be achieved.

The heterogeneity of the IoT systems brings another issue: management com-
plexity. As stated in [Zanella 2014], [Barnaghi 2012] or [Foteinos 2013], the het-
erogeneity of an IoT system makes it hard to manage, especially on a large scale.
The more interactions there are, and the more technologies involved, the harder
and the costlier human management can become. Heterogeneous devices require
different actions to obtain a similar result, which opposes another principle of user-
centered design: “follow natural mappings between intentions and the required
actions” [Abras 2004]. Interoperability should therefore be used to give systems
the ability to self-manage and self-configure, based on a shared understanding of
human-understandable high-level goals.

Disseminating myriads of devices in the environment also raises obvious scala-
bility issues. It is estimated that by 2020, 30 billion devices7 [moz 2018] will be

4http://www.onem2m.org/
5https://openconnectivity.org/
6http://www.openmobilealliance.org
7https://internethealthreport.org/2018/spotlight-securing-the-internet-of-things/

http://www.onem2m.org/
https://openconnectivity.org/
http://www.openmobilealliance.org
https://internethealthreport.org/2018/spotlight-securing-the-internet-of-things/
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connected by Machine-to-Machine (M2M) technologies, compared to the 0.9 billion
connected in 2009 [Rivera 2013]. The exponential growth of the number of con-
nected devices is correlated with a dramatic increase in the volume of data they
collect and exchange. Therefore, future-proof IoT devices and data manage-
ment solutions must be designed for scalability as well as interoperability.

Early studies for IoT data management, as in [Zhao 2010], are mainly based on
centralized approaches: data is collected and processed by a unique entity, usually
a powerful remote Cloud-hosted server. Such a design choice is motivated by the
intrinsic constraints of IoT devices: the swarm of sensors and actuators on which
the IoT system is based has a limited processing power, being more dedicated to
the interaction with the physical world (i.e. sensing or acting). Therefore, resource-
consuming decision-making mechanisms based on large-scale data analysis cannot
be deployed on peripheral devices, and they are centralized on powerful machines.
Cloud-based system design supports a smoother user experience by providing an
interface reachable from any device and by hiding the complexity of the under-
lying infrastructure, while providing developers with on-demand provisioning and
maintainability. However, centralized architectures have flaws when used for to
massively distributed systems such as for IoT systems deployment. The drawbacks
include response time, and the introduction of a single point of failure. In such a
centralized architecture, the Cloud server may become a bottleneck for communi-
cation and a threat for privacy. Storing and processing a large data volume in a
central place induces delay [Shi 2016] and may degrade the quality of service for
IoT applications. This may hamper the development of a variety of applications
and inhibit the implementation of time-critical IoT applications. Therefore, relying
on a solely Cloud-based infrastructure is not satisfactory. The characteristics of
Cloud architectures must be combined with a complementary paradigm appropri-
ate for distributed systems. In Cloud computing, scalability is envisioned in terms
of horizontal expansion (more machines) or vertical expansion (increase of machine
capabilities), but structurally data still needs to be concentrated in a central place
before being processed. An alternative approach is proposed by Fog computing, by
taking advantage of the reduced processing power of equipments available close to
IoT devices, in order to decentralize processing and to bring small pieces of com-
putation executed locally. Two aspects of scalability are therefore considered, with
different implications for the designed solutions. In order to enable emergent decen-
tralized behaviors, an understanding of both its own components and the policies
it should enforce, are necessary to the system. Moreover, the interoperability so-
lutions should be aware of the resource-constrained environment in which they are
deployed.

1.2 Enabling user centricity through the SWoT

The will to produce machine-understandable knowledge has been associated to the
idea of devices able to communicate directly with each other in order to extend



4 Chapter 1. Introduction

their functionalities for a long time. In his article proposing a reference definition
for ontologies in computer science, [Gruber 1991] uses the formal description of
electromechanical devices as an example of an ontology developed in a pilot project.
Even if the connected nature of these devices is not discussed, and was probably not
part of the work produced at that time, the necessity to produce rich, meaningful
device descriptions is still a challenge today.

In the scenario depicted by [Berners-Lee 2001], the foundational article for the
Semantic Web (SW), devices discover each other based on their descriptions. In
this vision, the extended capabilities of software agents and physical devices help
to seamlessly provide complex services to human users. Important aspects of the
scenario revolve around a user-centric approach:

• interoperability among devices and services

• the dynamic discovery process, adaptative to spatio-temporal constraints as
well as to user preferences.

All of these concerns are at the core of the IoT domain in general, as coined in
[Ashton 2009a].

As [Corcho 2010] and [Murdock 2016] point out, SW principles and tech-
nologies can provide solutions to the interoperability issues the IoT do-
main is facing. The use of dereferencable vocabularies such as ontologies enables
the capture of metadata in a machine-understandable way supporting a richer M2M
communication. Many recent research contributions from the SW community in-
troduce SW capabilities (rich content description, reasoning...) into the Web Of
Things (WoT) in order to develop the Semantic Web Of Things, an evolution of
the WoT where the IoT domain is extended with SW principles and technologies.

There is a natural dependency between the IoT and the SW domains: since IoT
devices communicate directly among themselves, in an M2M fashion, no human
agent can intervene in order to provide context or translation between two devices.
Therefore, it is necessary, in order to enable the deployment of ubiquitous auto-
nomic smart systems, to support the mutual understanding of devices. Achieving
global interoperability tends to enable the communication from anything to any-
thing, not limited to physical devices. This vision is referred to by Cisco as the
Internet of Everything (IoE) [Evans 2012], where people, data and devices are
interconnected. By supporting the representation of complex knowledge and
reasoning processes, the SW also paves the way towards self-managing systems
where reconfiguration actions are based on logical inference.

However, SW technologies are resource-consuming, while IoT systems are char-
acterized by resource-constrained devices. Therefore, the challenge in the de-
velopment of the Semantic Web Of Things (SWoT) is to support inter-
operability while adapting to the constraints of IoT systems.

The work presented in this thesis proposes contributions in the context of the
SWoT, and aims at elaborating approaches to tackle this issue. An overview of
the contributions is provided in Fig. 1.1. For the sake of clarity, and in order
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Figure 1.1: Overview of problematics and contributions
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to support the technical description of contributions proposed in this dissertation,
Chapter §2 provides background information about the IoT and the SW domains.
For both, a contextual and technical overview is provided, leading to introducing
the emergence of the SWoT from the convergence of the IoT and the SW principles
and technologies. An architectural pattern supporting SWoT deployments is also
described.

In Chapter §3, the first contributions of this thesis are presented, focusing on
interoperability in the SWoT. Interoperability being a core concern of the SW,
and the drive for the emergence of the SWoT, it is necessary to define exactly
the aspects of interoperability that are in the scope of the present work. The
role of SWoT standards is briefly discussed, before considering how ontologies can
support interoperability in the SWoT. The multiplicity of ontologies dedicated to
the IoT led us to propose a set of requirements to measure the quality of IoT
ontologies. We instantiated these requirements with IoT-O, a core-domain modular
IoT ontology, referred to as contribution I.A. The role of IoT-O in the support
of interoperability is discussed in three use cases centered around a smart building:

• an open data,

• a federated data hub,

• a home automation use case.

Self-management of SWoT systems is addressed in the latter, by proposing tech-
nical contribution I.B, namely semIoTics, an autonomic computing system.

Since the considered problematic is twofold, first focusing on interoperability
and then on IoT systems scalability and computational power constraints, the de-
scription of related work is distributed in the appropriate chapters. However, a
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complete chapter is dedicated to surveying the inter-dependence of interoperability
and IoT system constraints in the SWoT. In Chapter §4, the decentralization of the
SW technological stack is studied in a state-of-the-art of SWoT deployments. Re-
curring functions of SW technologies in IoT architectures are identified, and they
are used to characterize the role of Fog-enabled architectures for supporting the
development of a decentralized SWoT.

The survey proposed in Chapter §4 builds the context for the second contribu-
tion of this thesis, presented in Chapter §5. In order to adapt the SWoT solutions
to IoT systems constraints, both in terms of processing power and scalability, we
propose a generic approach to dynamically distributed rule-based reasoning, where
Cloud and Fog nodes collaborate to achieve an emergent distribution of processing,
called Emergent Distributed Reasoning (EDR), and referred to as contribution
II.A. Being a generic approach, EDR is agnostic to application-level requirements.
Therefore, technical contribution II.B is a refinement of EDR, called EDRT ,
that implements a deployment strategy aiming at bringing rule computation as close
as possible to sensors producing data. Such strategy is devised to fulfill a delay re-
duction requirement, from the collect of observations to the delivery of deduction to
the application. The performances of EDRT are studied in two use cases detailed
in Chapter §6, dedicated to home automation and smart manufacturing. Finally,
limits of the current contributions and perspectives for future work are considered
in Chapter §7, the concluding chapter of the present thesis.
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The contributions proposed in the present thesis are at the interface between the
IoT and the SW. This chapter aims at giving an overview of both these technological
domains, as well as to motivate their convergence towards the SWoT, a composite
domain where SW principles and technologies are used in an IoT setting.

A very brief illustrative use case is initially described, in order to be used in the
descriptions provided all along the chapter. The IoT and the SW domains are then
introduced individually, respectively in Section §2.2 and §2.3. For each of them, a
definition is provided, as well as a technological landscape, before describing some
challenges they face. Then, in Section §2.4 the SWoT is introduced, as well as the
motivations for its emergence. Finally, the architecture supporting the SWoT is
examined in order to identify an architectural pattern.
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2.1 Illustrative smart home example

In order to support the description of the numerous technologies and design princi-
ples at stake in the technical background of the present work, a simple smart home
use case is introduced here. This example is inspired by an actual experimental
deployment in which experimentations of my work have been performed, as it is
discussed in Section §3.3.4. The smart home we consider is equipped with several
devices disseminated in the environment, such as temperature, presence or lumi-
nosity sensors, or light bulbs. These devices are provided by different vendors, and
they are not designed to be used together natively. A software is installed on
the house computer in order to read the state of sensors, and to control actuators.
This software runs a Web server, and may be reached via a dedicated smart phone
application. From his/her phone, the user is thus able to check the temperature in
some rooms, as well as to remotely control lightning. The scenario motivating this
example is kept to a minimum for the sake of simplicity, in order to focus on the
technological stack supporting the use case.

The details of the technological stack deployed to connect the control platform
to the end devices are given in the remainder of this chapter.

2.2 The IoT, a heterogeneous technological domain

The term IoT, as many words with marketing value, tends to be used with a wide
range of meanings. After providing a definition of what IoT stands for in this
thesis, representative IoT technologies are described, some of which being part of
the illustrative smart home use case.

2.2.1 Definition

The term “Internet of Things”, coined in 1999 by Kevin Ashton (according to a
later statement [Ashton 2009b]), initially referred to networks of Radio Frequency
Identification (RFID) tags. The meaning of the word evolved with the emergence
of active computing power ubiquitously deployed in connected devices. A broader
definition of the IoT has been provided by the ITU in 2012 [itu 2012b], embrac-
ing the diversity of nature and purpose of the so-called Things: “[The IoT is]
a global infrastructure for the information society, enabling advanced
services by interconnecting (physical and virtual) things based on exist-
ing and evolving interoperable information and communication technolo-
gies”. We adopt this definition in this thesis, and the term IoT thus refers to the the
area of technology and research enabling the deployment of Things networks. The
same ITU report defines a Thing as “an object of the physical world (physical
things) or the information world (virtual things), which is capable of be-
ing identified and integrated into communication networks”. The notion
of Thing is thus not limited to devices such as temperature sensors or connected
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light bulbs, it also includes services and elements of the environment about which
characteristics may be collected, e.g., a room or a package.

However, even if the technology of the IoT domain have radically transformed,
the core idea introduced by [Ashton 2009b] is still relevant: the Internet, and
a fortiori the Web, is both fueled by human productions and targeted
at human consumption. It is in that regard that the IoT domain is a game
changer: exchanged data is no longer solely made of abstract concepts shared be-
tween humans, but rather of observations of the physical world meant for M2M
communication.

2.2.2 Support technologies

The notion of ubiquity associated to the IoT [Qu 2016] emerges from the deploy-
ment in the environment of constrained devices, and the term “IoT technologies”
is in general used to refer to the dedicated technologies deployed to support their
operation and communications.

In the remainder of this section, technologies representative of the constraints
of the IoT domain are introduced. Causes for these constraints are discussed in
Section §2.2.2.1. Different types of communication technologies, based on different
physical channels, are introduced in Section §2.2.2.2, and transport protocols of
higher level common in IoT use cases are described in Section §2.2.2.3.

2.2.2.1 Sources of IoT devices constraints

The constrained nature of IoT devices comes from the necessity for their large-scale
deployment in the environment. They are not necessarily connected to regular
power grids, and therefore might rely on an internal battery, or even on exter-
nal energy harvesting. Such harvesting may be based on wireless technologies
[Kamalinejad 2015], where the device consumes the power converted from an elec-
tromagnetic signal received by an embedded antenna. Another approach is to col-
lect energy from a mechanical source [Gorlatova 2014], similarly to the principle of
self-winding watch1. Such a system is for instance integrated into the EnOcean de-
vices2: the signal generated when a user presses a button is generated thanks to the
mechanical energy issued from the button press. An EnOcean remote is available
in our illustrative use case. The integration of IoT devices in the environment also
requires to reduce their size, which is another source of constraint. Of course,
when deploying devices at a very large scale, the individual cost of each device has
to be minimized. Since each IoT device is meant to perform a few simple tasks,
granting these devices with large computational capabilities, and thus raising their
cost,

1https://en.wikipedia.org/wiki/Automatic_watch
2https://www.enocean.com/

https://en.wikipedia.org/wiki/Automatic_watch
https://www.enocean.com/
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2.2.2.2 Communication technologies

Multiple communication technologies support the IoT, and this section only gives
a very broad overview of the main ones.

Proprietary technologies Proprietary technologies are many in the IoT do-
main, the variety of use cases and application domains creating a wide range of
requirements.

• EnOcean, that has already been introduced, is an example of wireless propri-
etary technology.

• Phidget3 is a wired proprietary protocol based on USB communication. In
our example, a temperature and a luminosity sensor are connected via this
technology.

• Z-Wave is a short-range mesh network wireless communication technology
based on a proprietary radio technology. The presence sensor of our use case
communicates over Z-Wave.

Short-range technologies The concentration of devices in a limited geograph-
ical space, potentially indoors, allows to use telecommunication technologies only
able to reach a short range. If necessary, multiple devices communicating locally at
a short range can create a mesh covering a wide area.

• Bluetooth Low Energy (BLE) is an extension of the Bluetooth communica-
tion technology designed to have a much lower power consumption. BLE is
however based on the same paradigm as Bluetooth, and only star topologies
are allowed, with a central master and some peripheral slaves.

• Zigbee is a radio protocol developed by the Zigbee Alliance4. Contrary to
BLE, Zigbee devices may be organized in a mesh. The main characteristics
and use cases for Zigbee are quite similar to Z-wave. However, since Zigbee
is an open standard, more manufacturers can produce Zigbee devices. This
creates a more diverse ecosystem, but generates interoperability issues among
devices that are supposed to be based on the same technology. The connected
light bulb installed for the use case communicates over Zigbee.

• 6LowPan is an acronym for “IPv6 over Low-Power Wireless Personal Area
Networks”, proposed in IETF5 RFC 49446. Deploying an IP network over low-
power devices enables the creation of a mesh network at the packet level (based
on the OSI layered model7). BLE and Zigbee are Personal Area Networks
technologies that may support 6LowPan networks.

3https://www.phidgets.com/
4http://www.zigbee.org
5https://ietf.org/
6https://tools.ietf.org/html/rfc4944
7https://www.iso.org/standard/20269.html

https://www.phidgets.com/
http://www.zigbee.org
https://ietf.org/
https://tools.ietf.org/html/rfc4944
https://www.iso.org/standard/20269.html
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Long-range technologies In order to be able to implement some use cases such
as environment monitoring or agriculture, IoT devices must be deployed over large
areas, potentially not covered by traditional communication networks. Some tech-
nologies have been developed to provide ad-hoc networks that allow long-range and
low-power communication.

• SigFox8 is both a network operator and a communication technology deployed
by said operator. SigFox devices communicate with SigFox gateways, that are
connected to the Internet. Messages produced by SigFox devices are therefore
stored on servers to be accessible via a Web interface from the client side.

• LoRa is a communication technology that is supported by the LoRa alliance9,
and contrary to SigFox it is not tied to an operator: anyone may deploy an
ad-hoc LoRa network. The network topology enabled by LoRa is however
quite similar to SigFox: devices communicate over LoRa with gateways that
are connected to “traditional” networks, and make the messages available
to the user on dedicated servers. When a LoRa device wakes up to send a
message, it is briefly possible to send a message to it, enabling bi-directional
communication.

2.2.2.3 Transport protocols

HTTP/CoAP HTTP10 is the protocol at the core of the Web. However, HTTP
is based on TCP11, requiring a permanent connection between the communicat-
ing entities during the communication. Establishing such connection is costly, and
HTTP is therefore not adapted to all IoT architectures, where more lightweight pro-
tocols might be preferred. That is why Constrained Application Protocol (CoAP)12,
based on UDP13, has been introduced. CoAP is a protocol especially designed for
constrained applications, with reduced headers and limited packet body. UDP be-
ing a datagram-based protocol, the establishment of a connection is not necessary
before exchanging messages. CoAP mimics the verbs of HTTP, such as GET or
POST, and adds a now verb, OBSERVE, to enable notification of the client when
a resource is changed.

The notion of REST services is usually associated to the HTTP protocol: a
Web server exposes an HTTP interface which is not meant to be accessed by a
Web browser but rather by a REST client. The Constrained RESTful Environ-
ments (CoRE) Link Format14 enables the deployment of a REST architecture for
constrained devices. CoRE is based on CoAP.

8https://www.sigfox.com
9https://www.lora-alliance.org/

10https://tools.ietf.org/html/rfc2616
11https://tools.ietf.org/html/rfc793
12http://coap.technology/
13https://www.ietf.org/rfc/rfc768
14https://tools.ietf.org/html/rfc6690

https://www.sigfox.com
https://www.lora-alliance.org/
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc793
http://coap.technology/
https://www.ietf.org/rfc/rfc768
https://tools.ietf.org/html/rfc6690
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MQTT Message Queue Telemetry Transport (MQTT)15 is a publish-subscribe
protocol standardized by the OASIS consortium16. Messages are published to a
broker in topics, and subscribers to said topics are notified on publications. In order
to enable the notification, a connection must be established between the client and
the broker: that is why MQTT is based on TCP.

2.3 The Semantic Web, a machine-understandable
knowledge space

The Semantic Web is a branch of AI focusing on knowledge representation and
manipulation, merged with the formalisms of Linked Data (LD). After providing a
definition of the Semantic Web encompassing its foundational principles, its main
formalisms and technologies are described, as they are used in the remainder of this
work.

2.3.1 Definition

The SW has been initially proposed in [Berners-Lee 2001] by Sir Tim Berners-Lee,
who received in 2016 the Turing Prize for inventing the Web17. The proposition
of the SW is rooted in the limitations of the “regular” Web, with an observation
somewhat similar to the vision of [Ashton 2009b] for the IoT domain that may be
summarized as follows: the Web is built by humans for humans, and it is hard
to understand for machines. The purpose of the SW is to leverage techniques
from Artificial Intelligence (AI) domains such as logic, knowledge representation or
knowledge engineering in order to foster the creation of machine-understandable
content while keeping its human-understandable aspect.

The SW is based on the foundational principles of the Web, and more specifically
of what is called LD18:

• Entities are identified by dereferencable International Resource Identifier (IRI)

• When its IRI is dereferenced, the representation of an entity is based on World
Wide Web Consortium (W3C) standards

• Entities are connected together by crawlable links

The main difference with legacy Web resources is that both entities and links
are typed in the SW, supporting the understanding by machines. In order to type
resources and links, as well as to describe their properties, dedicated vocabularies
are used. Such vocabularies are called ontologies, as they capture a representation
of the world. The notion of ontology precedes the emergence of the SW, as it has

15http://mqtt.org
16http://oasis-open.org
17https://www.acm.org/media-center/2017/april/turing-award-2016
18https://www.w3.org/DesignIssues/LinkedData.html

http://mqtt.org
http://oasis-open.org
https://www.acm.org/media-center/2017/april/turing-award-2016
https://www.w3.org/DesignIssues/LinkedData.html
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been defined by [Gruber 1991]. The association of an ontology and the information
it describes is referred to as a knowledge graph, or as a Knowledge base (KB), term
that will be used from now on in this thesis.

2.3.2 Formalisms and technologies

SW technologies are standardized by the W3C19, a standard consortium founded
by Tim Berners-Lee in order to ensure the interoperability of Web-related technolo-
gies, such as XML and its derivatives (especially HTML), CSS or SVG, but also
accessibility of Web content, internationalization, or authentication. In the remain-
ing of this section, some technologies standardized by the W3C and related to the
SW are introduced.

2.3.2.1 Representing graphs in RDF

SW resources, their relations and their characteristics can be represented in the form
of a graph. Ressource Description Framework (RDF)20 is a language proposed by
the W3C to represent such graphs, based on the notion of triple.

A triple is constituted of a subject, a property and an object. The subject is
the resource about which the triple expresses a characteristic, the property is the
identifier of said characteristic, and the object is the value of the property for the
subject. The subject and the property are two resources identified on the graph
with an IRI (in the most cases), and the object can either be another individual
with an IRI or a literal (e.g., a string, a integer, or a timestamp) expressing a value
for the property.

For instance, let us assume that the temperature sensor deployed in the use
case is identified with the IRI ex:MyTemperatureSensor21, the living room with
the IRI ex:MyLivingRoom, and the location property expressing that something
is located somewhere is expressed with the IRI ex:isLocated. Therefore, the fact
that the temperature sensor is located in the living room may be expressed with
the triple <ex:MyTemperatureSensor,ex:isLocated,ex:MyLivingRoom> in a KB. In
this case, both subject and object are individuals with an IRI. Assuming that the
property ex:hasSerialNumber captures the serial number of a device, then the fact
that the same sensor has the serial number 0042 is represented with the triple <ex:-
MyTemperatureSensor,ex:hasSerialNumber,0042>. This last triplet is an example
where the object does not have an IRI, and captures a literal value characterizing
the subject.

2.3.2.2 Describing ontologies with RDFS and OWL

RDF is a language enabling the description of resources, but its semantics is limited.
In order to gain the expressiveness necessary to represent ontologies, additional

19https://www.w3.org
20https://www.w3.org/RDF/
21Namespaces are provided in Appendix §A.1

https://www.w3.org
https://www.w3.org/RDF/
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schema must be added on top on RDF.
RDFS22 is a vocabulary supporting the description of both taxonomic and non-

taxonomic relationship between classes. Ontologies expressed solely in RDFS are
considered lightwheight ontologies, as opposed to heavywheight ontologies expressed
in Web Ontology Language (OWL)23.

OWL enables to use an extended set of logical axioms in ontologies description,
enriching the expressiveness of the obtained model. These axioms may express
characteristics of properties, such as their reflexivity, specific relations among indi-
viduals such as equivalence or disjointness, or characteristics for a property for a
specific individual, such as its cardinality. Let us briefly introduce the Sensor, Ob-
servation, Sample, and Actuator (SOSA)24 ontology, proposed by the W3C, which
defines a vocabulary to describe IoT devices. SOSA defines OWL classes to clas-
sify concepts, in particular sosa:Sensor, which represents any entity capturing a
phenomenon into a virtual representation. The temperature sensor of the use case
belongs to this definition, and therefore the following triplet is added th the KB:
<ex:MyTemperatureSensor,rdf:type,sosa:Sensor>.

Some RDF triples are used to define the ontology, by describing the vocabulary
and its properties. Such triples in a KB are referred to as T-box, since they struc-
ture a terminology. Expressing that sosa:Sensor is a class with the triplet <sosa:-
Sensor,rdf:type,owl:Class> is part of the T-box declaration. Other RDF triples
are used to describe data with the previously described vocabulary, and constitute
what is referred to as the A-box, for assertions. The triplet <ex:MyTemperature-
Sensor,rdf:type,sosa:Sensor> is an element of the A-box.

2.3.2.3 Querying a knowledge base with SPARQL

RDF, RDFS and OWL enable the description of KB as graphs. In order to retrieve
knowledge from a KB, the querying language must therefore enable the description
of graph patterns. To this intent, the W3C proposed SPARQL25, or SPARQL
Protocol and RDF Query Language26. SPARQL defines a query language initially
designed to enable the retrieval of knowledge from a KB, and extended to enable
insertion, removal or actuation.

SPARQL also defines a protocol, built over HTTP verb and properties, to com-
municate with a service deployed on top of a KB to submit SPARQL queries. Such
service, enabling Web access to an RDF KB, is referred to as a SPARQL endpoint.

2.3.2.4 Reasoning about ontologies with reasoners

The role of reasoners: The introduction of formalism with RDFS and OWL in
ontologies enables their processing with a reasoning engine, or reasoner. A reasoner

22http://www.w3.org/2000/01/rdf-schema
23http://www.w3.org/2002/07/owl
24http://www.w3.org/ns/sosa/
25https://www.w3.org/TR/sparql11-overview/
26Recursive acronyms are a refined form of computer scientist humor

http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2002/07/owl
http://www.w3.org/ns/sosa/
https://www.w3.org/TR/sparql11-overview/
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is a piece of software that infers new knowledge from a KB, based on the data
it contains and how said data is described with ontologies. Reasoners are imple-
mentations of the theoretical logic embedded withing languages such as RDFS and
OWL.

Expressing reasoning axioms with rules: Complementary to domain knowl-
edge representation through ontologies, logical rules can be seen as a paradigm
for knowledge modeling dedicated to specific usages. Logical rules are purely used
for deduction: if their preconditions are true, the engine deduces their postcondi-
tions. Different formalisms are available to represent logical rules, such as SWRL27

and SPIN28. Both these languages have been submitted to the W3C, but were not
adopted as recommendations, contrary to RIF [Kifer 2013]. RIF documents can be
used to represent inference rules over RDF graphs, and can themselves be serialized
in RDF. Therefore, it is possible to associate an IRI to a RIF rule on a resource
graph, and to establish link between rules, making RIF a format compliant with
the requirements of Linked Rules. SHACL29 and its extension30 are the latest W3C
recommendations for rules representation. SHACL aims to represent constraints on
an RDF graph, called “shapes”, as well as deduction rules. SHACL rules, similarly
to SPIN, can be based on SPARQL: it is possible to express a production rule in
SHACL as a SPARQL CONSTRUCT query.

2.3.2.5 Building links among ontologies

Ontologies being themselves Web resources, they abide to the LD principles, and in
particular interlinking. Two complementary types of interlinking are defined here
in order to be reused later in Chapter §3.

Ontology reuse: When building an ontology, the terms previously defined by
another ontology may be reused and extended. The owl:import enables to specify
that the vocabulary defined by an ontology should be examined in the context
provided by a previous ontology. In our use case, the sosa:Sensor class might be
extended by a ex:TemperatureSensor new class, which would be more specific. Such
extension is expressed with the triple <ex:TemperatureSensor,rdfs:subClassOf,sosa:-
Sensor>. Ontology reuse is typically performed at conception time.

Ontology alignment: An ontology is primarily defined by the domain it covers.
However, it is possible that multiple ontologies define concepts from overlapping
domains. In such case, it is desirable to express links between these two ontologies,
even after they both have been published. To do so, triples can be added th the KB,

27https://www.w3.org/Submission/SWRL/
28https://www.w3.org/Submission/spin-modeling/
29https://www.w3.org/TR/shacl/
30https://www.w3.org/TR/shacl-af/
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unilaterally or bilaterally, to express relations among terms such as subsomption or
equivalence.

2.4 Merging the Semantic Web into the IoT: the SWoT

When the SW principles and technologies are used in an IoT context, the result-
ing hybrid domain is called SWoT. The emergence of the SWoT is presented here
progressively: first, Web technologies have been used in order to unify data and
Thing accessibility through Web protocols. Then, the SW principles have been
introduced, leading to the SWoT.

2.4.1 The WoT, putting the IoT on the Web

In order to bridge the gap between applications and IoT devices on a technical
level, Web principles and technologies have been used. Around 2008, the notion
of WoT was introduced in several studies such as [Stirbu 2008] or [Guinard 2009],
later defined by [itu 2012a] as “A way to realize the IoT where (physical and virtual)
things are connected and controlled through the World Wide Web”. On top of the
heterogeneous IoT communication network, the WoT provides a unified access to
both data and Things identified with IRI through Web protocols.

Indeed, even in the small scale use case that we described, four communication
technologies are deployed, namely EnOcean, Z-Wave, Phidget and Zigbee. Requir-
ing the end application to be able to communicate over these four technologies, three
of which being proprietary, some of them on different physical supports (wired or
wireless), is impossible. That is why we propose an HTTP communication between
the user’s smart phone and the home computer.

The WoT is standardized by a dedicated W3C working group31, using the
[itu 2012a] definition as a reference. The deployment of the WoT is supported
by Web protocols such as HTTP and CoAP. Both these protocols enable content
negotiation, allowing a client to query the server for a specific representation of a
given resource. The WoT also uses technologies associated to the programmable
Web in general, and to Web services in particular, such as REST architectures, and
the CoRE Link Format. In particular, CoRE provides a default URL to expose
links and enable Web browsing for constrained devices.

Things of the WoT are identified with an IRI, but the target device might not
be able to communicate over HTTP. In this case, a proxy interfacing the WoT
on top of the underlying IoT network is necessary to map HTTP to an ad-hoc IoT
protocol. Applications communicate with Web servers, but these servers are usually
not directly connected to IoT devices: dedicated gateways are deployed to ensure
the communication. This deployment pattern is discussed in more details in Section
§2.5.4. Depending on the technological stack implemented, the separation between

31https://www.w3.org/WoT/WG/
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the IoT part and the WoT part of a deployment, i.e. the protocol bridging from/to
HTTP, may vary.

For instance, in our example, multiple gateways are deployed to ensure the com-
munication between the end devices and the server. A Raspberry Pi32 equipped
with an EnOcean and a Z-Wage dongle is connected over WiFi to the home com-
puter. Therefore, the HTTP request from the smartphone is routed by the server
towards the Raspberry Pi, where it is mapped to the appropriate target technology.
Similarly, a proprietary bridge implements a Web server mapping HTTP requests
towards the ZigBee lamp. In the case of the Phidget devices, a Phidget driver is
directly installed on the home computer, where the devices are connected.

2.4.2 From the WoT to the SWoT

Relying on Web technologies to expose devices and IoT data to applications brings
interoperability at the technical level: applications can access representations of
the devices over protocols they understand, such as HTTP. However, the notion of
interoperability (refined in Chapter §3) is richer than just being able to communicate
over the same protocol. Once a message is exchanged, it has little value if its content
cannot be understood by its recipient. That is why in parallel to the WoT, the
SWoT was developed [Scioscia 2009, Pfisterer 2011] in order to achieve semantic
interoperability in IoT networks. The notion of SWoT covers the integration of
SW principles and technologies in the IoT, which is often but not necessarily
conjoined with the WoT. A sensor network where observations are enriched with
an ontology, but where resources are not accessible through HTTP, would be an
example of a SWoT instantiation not based on the WoT. It is however an exception,
and in general the SWoT is built on top of the WoT: it is an assumption made for
the remaining of this work.

The convergence of the IoT and the SW domains is supported by their common
motivation: producing content with machines, meant for machine con-
sumption. By nature, IoT systems are based on M2M communication, which is
at the core of the SW. That is why fundamental components of the SW, that is
to say linked data principles, formal vocabularies and deductions mechanisms are
integrated into the IoT to form the SWoT. Ontologies are used in the SWoT sys-
tems to describe both Things of IoT systems, the environment in which they are
deployed and the information they manage (observations and actuations). The
potential applications enabled by the interoperability, dereferencability and formal
properties of the SW technologies for the IoT in the SWoT are many. A survey of
the recurring practices in the SWoT is proposed in Chapter §4.

The dereferencability of the SW vocabularies enable the discovery of descriptions
at runtime, which is required by the dynamic nature of IoT networks. The mobility
of devices and users makes the assumption of a static known environment a priori
impossible in general. That is why producing machine-understandable content and
services descriptions supports the realization of a global IoT network. The formal

32https://www.raspberrypi.org/
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nature of SW vocabularies enables the development of reasoning applications adding
value to the information manipulated by IoT devices by leveraging its context, and
thus access aspects of this information that might be implicit in the first place.

2.5 SWoT deployments architecture

From the definitions provided of IoT and WoT, it is clear that SWoT deployments
are supported by multiple machines which capabilities are highly heterogeneous,
from small IoT devices to powerful servers. The purpose of this section is to identify
some defining characteristics of these multiple machines. First, a unifying abstrac-
tion is proposed in Section §2.5.1 to ease further discussion. This abstraction is
then used in Section §2.5.2 to identify more homogeneous classes of nodes, which
are aligned to identified concepts in Section §2.5.3.

2.5.1 Abstracting devices and services with nodes

In the definition we adopted for IoT, the notion of Thing refers indifferently to both
to physical devices, such as sensors or actuators, and to virtual entities such as ser-
vices. This choice sheds light on the similarity of the roles devices and services have,
especially in the WoT. A service can be seen as the exposed endpoint of a device,
and a device can be seen as the physical implementation of a service, depending on
the chosen perspective. However, the word “Thing” conveys an ambiguity, among
its multiple definitions33:

• “Some entity, object, or creature that is not [...] specifically designated or
precisely described”

• “A material object without life or consciousness; an inanimate object”

The first definition is the meaning we intend, because the second is more restrictive
as it only pertains to physical entities and excludes services or virtual represen-
tations. For disambiguation purpose, we introduce here the notion of node, an
abstraction covering both device and service concepts. Essentially, a node
is an active entity that can be addressed on the network. An active en-
tity is able to send and/or receive requests, which is the case for both devices and
services. This definition extends to virtual representations, where a third party
acts on behalf of an entity that is logically defined, such as the composition of
two services. An entity is considered active as opposed to a passive entity which
would have a URI, but cannot answer to a request, such as a concept in a KB. The
notion of node is already present in architectures described in [Ben-Alaya 2015] or
in [Perera 2014a]. Such abstraction allows to refer not only to the physical device,
but also potentially to its virtual representation. Virtual objects are important
components of the SWoT [Nitti 2016], and the IoT design pattern Device Shadow
[Reinfurt 2016] is designed for capturing such virtual representations.

33http://www.dictionary.com/browse/thing
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Being an abstraction between device and service, the notion of node is also a
tool to analyze contributions from different research perspectives. For instance,
devices characteristics are used for self-configuration in [Chatzigiannakis 2012],
while services descriptions are used for automatic composition in [Han 2012] or
[Compton 2009b]. Analyzed from the node perspective, contributions focused on
services can be applied to devices, and reciprocally.

Moreover, the notion of node we propose is not limited to IoT devices, and it is
intended to refer to any type of connected entity supporting a SWoT deployment.
In the next section §2.5.2, this generality of the proposed “node” concept is used
to propose an operational classification of the machines and devices supporting the
SWoT.

2.5.2 Identifying three node classes

We saw that not all nodes of an IoT network are equivalent: some devices are
very constrained, whereas the servers providing analytic capabilities are powerful
machines. In our literature search, three homogeneous classes of nodes are iden-
tified, namely “powerful nodes”, “middle nodes”, and “constrained nodes”. The
distinction between these classes is based on a clusterization driven by characteris-
tics summarized in Tab. 2.1.

The core characteristic of a node is its processing power, i.e. its ability to
apply treatments of varying complexity to content. The processing power also de-
termines the ability of the node to process content of a varying expressiveness, from
the very simple agreed-upon byte array to the much more complex KB instantia-
tions. The higher a node’s processing power is, the more expressive content it can
handle, and the more complex operations it can achieve. Nodes are also character-
ized by their memory, i.e. the quantity of information they can hold at a given
time, and storage capability. Storage is the available space giving access to persis-
tent content. The notion of IoT node is inseparable from the notion of connectivity,
and a node can also be classified according to its communication capabilities.
These capabilities include the protocols it supports, its general availability on the
network, and its bandwidth. Nodes also differ by the nature of their energy source:
while some nodes are attached to traditional power grids, other nodes, deployed in
the field, are reliant on batteries, or on renewable energy sources like solar panel,
or energy harvesting.

The definitions for these three clusters are loose enough to be projected onto
similar notions presented in the literature:

• Powerful nodes are named “weakly constrained nodes” in [Zanella 2014],
Infrastructure Node in [Ben-Alaya 2015], and are referred to as Cloud in
[Liu 2015, Szilagyi 2016]. In this category of nodes, we classify remote or
local Cloud servers as well as powerful devices compared to other nodes of
the deployment, potentially including standard laptops and domain-specific
mobile robots or machines with powerful computation capabilities embedded.
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Table 2.1: Node characteristics

Energy
supply

Processing
power

Communication
capabilities Memory Storage

Powerful
node

Traditional
power
grids

High to
very high

Web and internet
protocols

High to
very high
(Several
Go)

Large to
very large
(internal
HD to

disk bay)

Middle
node Mixed Medium

Extended :
IoT, Web and

internet protocols
[Desai 2015]

Medium
to low
(Up to
4Go)

Medium
to limited
(SD card
to flash)

Constrained
node

Often
limited:
battery,
renewable
source

Very
limited,
often

µcontroler

Constrained, Ad-
hoc, potentially
short range

(BLE, Z-Wave)
[Desai 2015]
[Zanella 2014]

Very low
(Under
500Ko)

Limited
(Flash
memory
to none)

They have high processing power, extended communication capabilities, and
large storage capabilities. For instance, in [Le-Phuoc 2016] or [Su 2018], pow-
erful nodes are servers which characteristics are provided in details, in charge
of performing demanding operations on large data quantities. The home com-
puter can be considered a powerful node in our use case.

• Middle nodes are very often referred to in the literature as gateway
([Compton 2009a], [Ben-Alaya 2015], [Desai 2015]), because they are bridges
between powerful nodes and more constrained devices. middle nodes are
usually dedicated to content transformation and protocol bridging: in
[Barnaghi 2009], fog nodes are presented as intelligent nodes where content
can be converted from its raw representation to a richer one. [Desai 2015] pro-
poses an architecture where the gateway is both a technical and seman-
tic interoperability provider between the IoT and the SWoT nodes,
performing both protocol proxying and semantic annotation. In [Nikoli 2011]
and [Zanella 2014], fog nodes are proxies for wireless devices networks. They
are nodes where content gathered by sensors or sensing services is collected,
transformed, and redistributed. The raspberry Pi and the proprietary bridge
are middle nodes in the smart home use case.

• Constrained nodes typically have very limited power source, processing
and communication capabilities, and little to no storage capabilities. These
are by definition present in every IoT architecture, and in direct contact with
the physical world. In some studies such as [Vlacheas 2013], these nodes
are not directly present, their representation is wrapped by a gateway at the
middle node level. Constrained nodes were mainly sensors in early studies such
as [Compton 2009a], and evolved toward diverse nodes including actuators,
displays and composite devices in more recent work such as [Ben-Alaya 2015].
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The end devices of the use case are constrained nodes.

2.5.3 Characterizing the identified node types based on the com-
plementary Cloud and Fog computing paradigms

So far, the classes of nodes we defined have been identified with ad-hoc names.
The criteria considered in this classification have been discussed in other fields of
the literature, in particular Cloud and Fog computing, defined thereafter. Relating
these domains to the node classes we defined would allow to replace ad-hoc concepts
with elements shared in a wider community, and would enable interrelation.

2.5.3.1 The Cloud computing paradigm

Managing powerful servers with little concern about their computing resources is
one of the main characteristics of Cloud computing, a concept which definitive def-
inition has been provided by the NIST in [Mell 2011]. According to the NIST,
“Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction”. Cloud
resources are characterized by their network accessibility and their elasticity,
making them an interesting relay for SWoT applications. Data is collected at a
large scale by Things of IoT systems, and then concentrated on Cloud nodes where
it is processed, stored, and accessed by applications.

However, SWoT architectures are characterized by the presence of constrained
nodes, which limited communicating capabilities might prevent from accessing re-
mote Cloud servers. These node being disseminated in the environment, processing
the collected data in a remote Cloud architecture might also introduce a delay due
to the necessary communication.

2.5.3.2 The Fog computing paradigm

In order to complement the Cloud characteristics with features suitable to IoT con-
straints, the Fog computing paradigm was proposed in 2012 [Bonomi 2012]. The
authors introduce Fog computing as an approach for using processing power and
storage capabilities located at the edge of the network, in between Cloud nodes
and IoT devices. Fog computing is defined by the Open Fog Consortium34 as
a “system-level horizontal architecture that distributes resources and services [...]
anywhere along the continuum from Cloud to Things”. Fog nodes are massively
distributed, heterogeneous, and they provide limited processing power
between IoT devices and Cloud nodes. With this definition, standard IoT
gateways connecting Things to Cloud nodes are part of the Fog architecture. Since
the SWoT technologies and principles have been initially deployed in Cloud archi-
tectures, based on data collected by Things, there necessarily is a layer to connect

34http://openfogconsortium.org/

http://openfogconsortium.org/
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the ad-hoc IoT networks to Cloud nodes. Therefore, Fog nodes intrinsically
part of the SWoT architecture.

Fog computing is a paradigm which characteristics differ fundamentally from
Cloud computing.

• Fog devices are characterized by their proximity with IoT devices, bring-
ing computing capabilities closer to data sources. Therefore, by design, Fog
computing tackles the trombone effect introducing delay when a piece of data
is produced by an IoT device, is processed in a remote Cloud node, and trig-
gers an action that is sent back to the IoT device.

• A distributed approach based on the Fog computing provides resilience by
removing a single point of failure, and by distributing some computing power
in a myriad of devices.

• Fog computing also supports the scalability of Cloud architectures to face the
expansion of IoT networks [Dastjerdi 2016].

• In the same paper, the authors discuss the support for user mobility by the
Fog computing, which is especially adapted to IoT use cases where devices
are disseminated over a wide geographic area, where both users and devices
are mobile.

Offloading computation from the Cloud node to devices at the edge of the net-
work is a very active research domain, with many interconnected concepts, such as
Mobile Edge Computing (MEC), Cloudlets, or Mist computing [Patel 2017]. How-
ever, the Fog computing is not introduced as a paradigm meant to replace Cloud
computing: its limited computing capabilities, as well as the locality of the scale of
its deployments, are not suited to support Cloud computing use cases. Cloud and
Fog computing are two complementary approaches, and their combination is seen
as a solution to provide an architecture supporting the deployment of complex IoT
and SWoT applications [Sahni 2017].

2.5.3.3 Redefining node classes

The node classes defined previously in Section §2.5.2 have properties that can be
related to the Cloud and Fog paradigms.

• The computational power, the large storage capacities and the online avail-
ability of the powerful nodes are similar to Cloud architectures.

• The large communication capabilities and medium processing power associ-
ated to the middle nodes are parallel to the definition we provided for Fog
architectures

• The constrained nodes have capabilites that are typical of IoT deployments,
and are therefore referred to as Devices.



2.5. SWoT deployments architecture 23

Figure 2.1: Typical three-tiers SWoT architectural pattern
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These three classes of nodes are used in the following section §2.5.4 to define a
deployment architecture.

2.5.4 SWoT reference deployment architecture

With the adoption of the Cloud, Fog and devices concepts to refer to the classes of
nodes identified in SWoT deployments, the architectural pattern briefly introduced
in Section §2.4.1 can be refined. The separation between servers, gateways and
devices constitutes a three-tier architectural pattern: Cloud-Fog-Devices,
depicted in Fig. 2.1. In such pattern, clients access services exposed by a Cloud
node over Web protocols, connected to IoT devices by Fog nodes acting as gate-
ways. The Cloud-Fog-Devices pattern is recurring in the literature, even though
the terminology is not always the same. Examples of similar architectures include
[Xu 2016] with the Cloud-Edge-Beneath architecture, [Su 2018], [Ben-Alaya 2015],
[Zanella 2014] or [Liu 2015]. The architecture of the proposed use case is a direct
implementation of this pattern.

Cloud and Fog nodes usually communicate over HTTP, but other protocols,
such as CoAP or MQTT, may also be used depending on the use case and the
deployment. An IoT design pattern capturing the role of the gateway as a facade
for mutliple communication technologies is proposed in [Reinfurt 2016]. The com-
munication among Fog nodes is not necessarily homogeneous, since they may have
very different communication capabilities from one another. At the lowest level, the
communication is constrained by the capability of devices nodes: Fog nodes must
implement the protocol enabled for the IoT devices they have to be connected with.

How SW technologies and principles are precisely deployed withing the Cloud-
Fog-Devices pattern is discussed in a survey presented in Chapter §4.
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2.6 Conclusion

This chapter aimed at giving an overview of the technological landscape in which
the work of this thesis has been executed. Being at the interface between two
technological field, a broad spectrum of concepts is covered.

First, the IoT paradigm has been introduced as the networking of physical
and virtual Things. One of the characteristic features of IoT architectures is
the presence of constrained devices, disseminated into the environment. The per-
vasiveness of IoT devices leads to energy constraints, as well as to the necessity for
energetically sober wireless communication.

Second, the SW principles and technologies have been briefly described. Design
principles for Linked Data are combined with descriptions based on ontologies
in order to create interconnected knowledge bases. These KB, by describing
information with formal vocabularies, enable the inference of new information based
on logical deductions. Such inference process is performed by reasoners based on
vocabularies such as RDFS and OWL, embedding logical axioms. In order to allow
custom reasoning processes, ad-hoc logical axioms can be expressed based on rules.

On top of these two domains, the SWoT has been introduced as the convergence
of the IoT and the SW. Broader access to IoT networks is granted by enabling
Web endpoints over IoT infrastructures, leading to the emergence of the WoT.
Interoperability issues in the IoT require to use machine-understandable knowledge
representations, which are provided by the SW.

A typical SWoT architecture has then been captured into a three-tier architec-
tural pattern. The top two tiers have characteristics related to the Cloud and Fog
paradigms, wich is why the identified architectural pattern is referred to as
Cloud-Fog-Device. This pattern enables a full-stack interoperability by weaving
IoT and Web technologies in a structure fostering SW technologies and principles.

However, achieving interoperability in the IoT domain by deploying such SW
techniques and principles is a challenging task. In the next chapter, the notion of
interoperability is defined in more details. How ontologies contribute to interoper-
ability is discussed, by considering the question: “What is a good IoT ontology
?”
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Interoperability is a core issue in the IoT. It drives the convergence of the SW
and the IoT toward the SWoT. Standards are interoperability enablers in all techno-
logical domains, and two standards are particularly interested in the SWoT, namely
oneM2M1 and the W3C WoT2. Moreover, multiple ontologies have been proposed
to model the IoT domain. This chapter introduces the first scientific and technical
contributions of this thesis:

1http://www.onem2m.org/
2https://www.w3.org/WoT/WG/

http://www.onem2m.org/
https://www.w3.org/WoT/WG/
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• Contribution I.A is the proposition of IoT-O, a modular core do-
main IoT ontology compliant with IoT ontologies design require-
ments we defined. The scientific value of the contribution comes from the
design process of IoT-O, motivated by the need for interoperability. Ontology
design requirements dedicated to ontologies are used to assess ontologies of
the state of the art, before being implemented in our contribution. IoT-O
reuses reference ontologies to cover identified IoT sub-domains, and explicit
alignments to other core domain ontologies are made available to support its
own reusability.

• Usage of IoT-O is then described through three use cases, where different
applications of interoperability are considered. In particular, IoT-O is used for
the autonomic control of a smart home by semIoTics, representing
a technical contribution numbered I.B.

Contributions I.A and I.B have been published in [Seydoux 2016b].
The notion of interoperability is discussed in Section §3.1, with a particular

focus on the role of standards for interoperability in technical domains. Existing
ontologies are also identified, and evaluated against quality criteria defined in Sec-
tion §3.2. Contribution I.A is detailed in this section. Section §3.3 describes three
use cases in which IoT-O is used to provide interoperability. In particular, contri-
bution I.B is discussed. Finally, Section §3.4 pivots the issue from interoperability
in general to interoperability specifically directed towards constrained devices. The
content of this section, which introduces issues discussed in the remainder of this
thesis, has been published in [Seydoux 2016c].

3.1 State of the art

Our first contributions being dedicated to semantic interoperability in the IoT do-
main, it is necessary to define interoperability in the scope of our work. Standards
relevant to this interoperability type are then introduced, before presenting IoT
ontologies.

3.1.1 Refining the notion of interoperability

Interoperability is a notion that can be declined at multiple levels, each one depen-
dent on the previous [Gyrard 2015], represented on Fig. 3.1.

• Technical interoperability requires system to communicate using the same
channel and protocol, e.g., Bluetooth, WiFi or Ethernet. Systems achieving
technical interoperability are able to exchange messages.

• Syntactic interoperability requires system to share a common message
format, e.g., JSON or XML. Systems achieving syntactic interoperability are
able to parse the message they exchange.
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Figure 3.1: Interoperability levels defined by [Gyrard 2015]

Technical

Syntactic

Semantic

• Finally, semantic interoperability requires systems to agree on the mean-
ing of the terms used in the exchanged messages. Systems achieving semantic
interoperability are able to understand the parsed message.

The level of abstraction of the interaction between systems increases with inter-
operability types. Technical interoperability is achieved at the physical level, and in
the lower layers of the OSI model (ISO/IEC 7498-1). Syntactic interoperability is
achieved at the protocol level: it is based on the compliance of exchanged messages
with predefined schema. The schema is not necessarily available to the machine,
and its internal logic is not necessarily explicit and machine-understandable. Fi-
nally, semantic interoperability is achieved at the conceptual level: the agreement
does not target the serialization of the exchanged message, but rather the meaning
it conveys.

3.1.2 Toward semantic standards for the IoT

Interoperability is an issue in many technological domains where several stakehold-
ers have to interact with each other. Agreeing on standards is a response to face
interoperability issues. Standards are typically providers of syntactical interoper-
ability: they define data schema that must be respected by the implementations.
However, such interoperability has some limits, and in the domain of the IoT, some
standards now offer a layer of semantic interoperability as well. oneM2M andW3C’s
WoT are two such standards, described in the remainder of this §.

3.1.2.1 oneM2M

oneM2M is an international consortium of Standard Developing Orgaization (SDO),
and authors an eponymous standard dedicated to the IoT. The consortium is com-
posed of several working groups, each dedicated to an aspect of the standardized
features, e.g., architecture, protocol or security. In particular, a group is dedicated
to Management, Abstraction, Semantics (MAS). The oneM2M standard aims to
offer a unified horizontal RESTful interface to heterogeneous IoT deployments. To
do so, it proposes a resource-oriented approach, where resources are organized in
a hierarchical architecture. Common services, such as authentication, discovery or
notification are defined within the standard, and they are implemented at differ-
ent level in host platforms, called nodes. An Infrastructure Node (IN) is the root
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node of a deployment, while Middle Nodes (MN) are intermediary nodes meant
to be deployed on gateways between IN and devices. The oneM2M standard de-
scribes resources with predefined attributes, along with a protocol instantiating
CRUD operations to interact with said resources. The abstract oneM2M protocol
is bound with different existing protocols, such as HTTP, CoAP or MQTT. Syn-
tactical interoperability is ensured by dedicated components, namely Interworking
Proxy Entities (IPE). An IPE is an adapter for a specific technology, and makes a
translation between messages compliant with the oneM2M protocol and the target
technology. However, these mechanism only guarantee syntactic interoperabil-
ity. Two system implementing the oneM2M standard will be able to successfully
exchange messages down to the Content Instance granularity, which is the small-
est unit of data storage in oneM2M. The data format stored inside the Content
Instance is not standardized, and requires an a priori understanding between the
systems to be understood.

The standard oneM2M architecture can be directly projected on the three-tiered
SWoT architectural pattern introduced in Section §2.5.4 (seen on Fig. 2.1): the IN
is the server, MN are gateways, and devices connect to these MN. Moreover, MN
may implement a Web protocol, being thus part of the WoT, and they bridge with
dedicated IoT technologies implemented by the devices that are not part of the
standard.

In order to support a deeper interoperability, oneM2M integrated semantic
features from its second release in 2017. Dedicated resources, namely Semantic
Descriptors, can be attached to another resource to provide an RDF/XML descrip-
tion of its content. An ontology, the oneM2M Base Ontology (BO)3 is defined in
the standard, in order to provide a reference vocabulary for resource annotations.
These descriptors can be queried using the SPARQL language in order to enable a
more expressive discovery. It is interesting to note that the gateway tier is poten-
tially part of the SWoT deployment: implementing the semantic functionalities of
the standard is not mandatory, but it is possible for both IN and MN. As we will
discuss in Chapter §4, deploying the SW stack in the gateway tier is challenging.

Eclipse OM2M, a oneM2M open implementation Eclipse OM2M4 is a free
implementation of the oneM2M standard, developed primarily at LAAS-CNRS. It
offers a standardized horizontal REST interface over a potentially heterogeneous
devices network. In order to ensure its extensibility and to ease the integration
of new technologies, OM2M is modular: the platform internally uses the standard
oneM2M protocol, which is technology-independent, and dedicated modules bind
this core protocol to specific technologies. OM2M supports the use case introduced
in Section §3.3.4. The public version of OM2M has been extended with the semantic
functionalities of the standard in this thesis.

3http://www.onem2m.org/ontology/Base_Ontology/
4http://eclipse.org/om2m

http://www.onem2m.org/ontology/Base_Ontology/
http://eclipse.org/om2m
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3.1.2.2 W3C WoT

The W3C is an SDO dedicated to standardizing the Web, by promoting standards
such as XML, HTTP or SOAP (for Web services). Moreover, the W3C also pro-
poses Semantic Web standards, such as RDF or SPARQL. The W3C is composed
on working groups, each focused on a Web standard, e.g., CSS, SVG or Web pay-
ments. One of these working groups is dedicated to Web of Things since December
2017. The WoT working group5 proposes the WoT standard, composed of several
components. The WoT is composed of an overall architecture, a Thing Description
vocabulary, a scripting API, and a binding to other existing protocols. The WoT
architecture is composed of building blocks that can be applied at the three levels
of the Cloud-Fog-Device architectural pattern we proposed in Section §2.5.4. At
the time of writing, the proposals of the working group are still a work in progress,
and not yet official recommendations.

The standard seeks to enable both syntactic and semantic interoperabilities.
The WoT standard is built around the notion of Thing, which is the equivalent
of what we called “node” in Section §2.5.1: an entity, either physical or virtual,
identified on the network. A WoT Thing must have a Thing Description attached,
describing the characteristics of the Thing. The Thing Description is composed of
four parts:

• Metadata giving general information about the Thing, such as its identifier,
manufacturer, or location. The vocabularies used to provide this information
are not in the scope of the WoT standard.

• Interaction information, describing the endpoint of the Thing and the inter-
action mechanisms it supports, i.e. request-response or publish-subscribe.
Describing what observations may be read and what actions may
be triggered enables semantic interoperability.

• Communication information, describing the supported protocols. Binding
templates are blueprints of communication information that are can be instan-
tiated in Thing Descriptions, and describe how to communicate with other
standards, such as oneM2M. This description is dedicated to technical
interoperability.

• Security information, enabling the management of access rights and the ne-
gotiation required to secure the communication channel.

The building blocks of the WoT architecture, deployed on a Thing and described
by a Thing Description, constitute a Servient, both a server and a client. In order to
embed some application logic in Things, servient may implement the WoT scripting
API, which enable the development of scripts driving the interaction of the Thing
with its surroundings. In order to enable Thing discovery, both for Web clients and
servients, Thing Descriptions are stored in Thing Directories, aligned with CoRE

5https://www.w3.org/WoT/WG/

https://www.w3.org/WoT/WG/
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Resource Directories6. In addition of the CoRE Resources lookup methods, Thing
Directories may implement SPARQL endpoints.

3.1.2.3 Interoperability beyond the standards

Other IoT standards exist, such as LWM2M7 or OSGi8. To the best of our knowl-
edge, none of these standards consider semantic interoperability, which is why they
are not discussed in this thesis. The emergence of standards considering seman-
tic interoperability is an indicator of the technological and industrial drive behind
it. Members of both the oneM2M MAS group (of which I am part) and the WoT
group came together to write a whitepaper on semantic interoperability for the IoT
[Murdock 2016]. The authors of this work identify semantic interoperability as an
important value-enabler for the IoT, and promote good practices in the design and
usage of ontologies for the IoT. The first step toward semantic interoperability is
the use of ontologies, which are the focus of the remainder of this section.

3.1.3 The ontologies of the SWoT

Ontologies are structured knowledge models providing a machine-understandable
vocabulary to describe a certain domain. The heterogeneity of IoT application
domains leads to a multiplicity of ontologies enabling the SWoT. However, semantic
interoperability is based on the use of either the same reused ontologies, or on
the use of ontologies aligned with each other. That is why some reference
ontologies emerged.

3.1.3.1 Proposing semantic models

Since the inception of the Semantic Web [Berners-Lee 2001], the notion of ontology
has been associated with its principles and technologies. Ontologies for the SW are
expected to be compliant with the LD principles introduced in Section §2.3.1: IRI-
based identification, inter-linking, and usage of W3C standards. In the literature,
many papers propose ontologies that fail to meet these expectations, by represent-
ing ad-hoc models such as [Avancha 2004], [Jurdak 2004], [Russomanno 2005], or in
more recent work such as [Li 2015], [Hussein 2016], and [Wang 2017]. In these con-
tributions, only a graphical representation of the ontologies is provided. In papers
such as [Nachabe 2015], [Kibria 2015], [Pease 2017], the ontology is also graphically
represented, and its actual implementation using Semantic Web technologies (such
as OWL) is discussed, but the implementation is not available online. In both these
cases, the data model is not accessible, which makes it impossible to reuse and
extend as is.

The Linked Open Vocabularies (LOV)9 is a vocabulary portal built to foster
6https://tools.ietf.org/html/draft-ietf-core-resource-directory-11
7http://openmobilealliance.org/release/LightweightM2M/
8https://www.osgi.org/about-us/working-groups/internet-of-things/
9https://lov.linkeddata.es/dataset/lov/

https://tools.ietf.org/html/draft-ietf-core-resource-directory-11
http://openmobilealliance.org/release/LightweightM2M/
https://www.osgi.org/about-us/working-groups/internet-of-things/
https://lov.linkeddata.es/dataset/lov/
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reusability of ontologies by enforcing good practices and by enabling the search of
existing ontologies [Vandenbussche 2017]. Some drastic criteria being prerequisites
to reference vocabularies on the LOV, many ontologies proposed in papers from an
IoT background failed to be shared this way, hampering their reusability. In order to
enable sharing ontologies dedicated to the IoT and related domains, especially when
they are not qualified for the LOV, [Gyrard 2015] proposed the LOV4IoT10. The
LOV4IoT is a portal classifying ontologies into application domains, and providing
a quality evaluation ontology according to the LOV best practices. Papers are
qualified into six quality levels:

1. The ontology is not and will never be available online

2. The ontology is not online yet

3. The ontology is being made available online (ongoing work)

4. The ontology is available online, but does not implement LOV best practices

5. The ontology initially did not comply with LOV requirements, but now does

6. The ontology was initially made available compliant with LOV requirements

The LOV4IoT is built in order to be an incentive for improving the quality of
IoT ontologies, that is why the categories 5 and 6 are separated. At the time of
writing, the LOV4IoT references 450 ontologies, 31 of which are compliant with
LOV best practices. A small subset of these ontologies is actually being reused by
other ontologies and among other projects, these ontologies are described in Section
§3.1.3.2.

3.1.3.2 Reference ontologies

SSN and SOSA: The first version of the Semantic Sensor Network ontology11

(SSN) was proposed by the W3C in 2011 [Lefort 2011] as a synthesis of pre-existing
data models. This ontology emerges as a de-facto standard in the SWoT, used in
around a quarter of the SWoT papers referenced in this work. SSN is an ontology
dedicated to the modeling of sensors and observations. Contextual information,
such as time and location, as well as application-specific knowledge, are purposely
left out of the ontology, as they are meant to be imported from other dedicated
namespaces. [Wang 2015a] proposes a vision of the evolution of the IoT toward the
SWoT. In the timeline drawn by the authors, the predominance of sensor networks in
early stages of the IoT appears clearly. That is why the SSN ontology only focuses on
sensors, instead of devices in general (including actuators or computational devices).
In order to overcome this limitation, as well as unrelated technical issues, SSN was

10https://lov4iot.appspot.com/?p=ontologies
11http://purl.oclc.org/NET/ssnx/ssn

https://lov4iot.appspot.com/?p=ontologies
http://purl.oclc.org/NET/ssnx/ssn
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redesigned in 2017, and split into a core module called SOSA12 (Sensor, Observation,
Sample, and Actuator) and an extension mapping to the former SSN terminology13.

The WoT ontology: The WoT ontology1415 is specified in the Thing Description
proposed by the WoT working group. It defines terms associated with the WoT ar-
chitecture, and focuses purely on interaction with the devices, leaving out elements
present in SSN such as physical characteristics of the sensor or its deployment. The
WoT group having a Web-oriented approach, elements from the Web domain such
as authentication or crawlable links are represented in this ontology.

The oneM2M Base Ontology: As part of the oneM2M standard, the oneM2M
BO16 is documented in Technical Specification TS-001217. It is a core-domain ontol-
ogy: it only provides the minimal set of concepts enabling the alignment of standard
concepts with specific ontologies referenced by standard implementations. The BO
defines high-level concepts such as Device, Service or Variable, which are related to
concepts presented in the specification of the oneM2M standard architecture.

SAREF and its extensions: SAREF18 (Smart Appliances REFerence) is an on-
tology initially dedicated to the management of energy and services in smart homes,
supported by the European Commission and adopted by ETSI as a technical spec-
ification19. Its construction was based on the semantization of pre-existing data
models20, and driven by the interaction with domain experts. Its scope has been
broadened since [Daniele 2016], in order to propose extensions21 to new domains,
namely environment22, smart buildings23 and energy24. A reference alignment be-
tween SAREF and the oneM2M base ontology is also available25

IoT-Lite and M3 taxonomy: IoT-Lite26 is a lightweight core-domain IoT on-
tology [Bermudez-Edo 2017]. It provides an extension of the first version of the
SSN ontology with high-level definition for terms such as Actuating Device or Ser-
vice. The simplicity and the versatility of the IoT-Lite core lead to its adoption

12http://www.w3.org/ns/sosa/
13http://www.w3.org/ns/ssn/
14http://iot.linkeddata.es/def/wot
15http://w3c.github.io/wot/w3c-wot-td-ontology.owl
16https://git.onem2m.org/MAS/BaseOntology/raw/master/base_ontology.owl
17http://www.onem2m.org/technical/published-drafts
18https://w3id.org/saref
19https://docbox.etsi.org/Workshop/2017/201710_IoTWEEK/WORKSHOP/S02_SEMANTIC_

INTEROP/TN0_DANIELE.pdf
20https://sites.google.com/site/smartappliancesproject/ontologies
21http://saref.linkeddata.es/
22https://w3id.org/def/saref4envi
23https://w3id.org/def/saref4bldg
24https://w3id.org/saref4ener
25https://git.onem2m.org/MAS/BaseOntology/blob/b9843e0c0788888af915bcd823ff92d11f078ebb/

Example_usage_of_the_Base_Ontology_-_combinig_SAREF_and_BO/BO_SAREF.owl
26http://iot.ee.surrey.ac.uk/fiware/ontologies/iot-lite
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https://docbox.etsi.org/Workshop/2017/201710_IoTWEEK/WORKSHOP/S02_SEMANTIC_INTEROP/TN0_DANIELE.pdf
https://docbox.etsi.org/Workshop/2017/201710_IoTWEEK/WORKSHOP/S02_SEMANTIC_INTEROP/TN0_DANIELE.pdf
https://sites.google.com/site/smartappliancesproject/ontologies
http://saref.linkeddata.es/
https://w3id.org/def/saref4envi
https://w3id.org/def/saref4bldg
https://w3id.org/saref4ener
https://git.onem2m.org/MAS/BaseOntology/blob/b9843e0c0788888af915bcd823ff92d11f078ebb/Example_usage_of_the_Base_Ontology_-_combinig_SAREF_and_BO/BO_SAREF.owl
https://git.onem2m.org/MAS/BaseOntology/blob/b9843e0c0788888af915bcd823ff92d11f078ebb/Example_usage_of_the_Base_Ontology_-_combinig_SAREF_and_BO/BO_SAREF.owl
http://iot.ee.surrey.ac.uk/fiware/ontologies/iot-lite
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in two European projects, FIWARE27 and FIESTA-IoT28. In order to support a
unified description of heterogeneous devices and domains of interest, the FIESTA-
IoT project promotes an extension of IoT-Lite, the M3-Lite taxonomy29, and uses
IoT-Lite as the core module of the FIESTA-IoT ontology30.

iot.schema.org: schema.org is a a lightweight ontology proposing a wide variety
of concepts relevant to resources commonly published online, such as blogs, online
stores or online multimedia platforms. It has been extended with domain-specific
vocabularies, such as automotive31 or bibliographic32, both based on W3C working
groups. In particular, an IoT extension33 has been proposed, loosely related to the
W3C WoT working group34. A description of the terms of the vocabulary is avail-
able online35, and the machine-understandable representation of the vocabulary is
available on a GitHub repository36.

All the ontologies presented in this section propose a different model for the IoT,
with is own assumptions and design choices. The multiplication of IoT ontologies,
if they are not related to each other, does not support semantic interoperability.
That is why one of the good practices of semantically enabled applications design is
reusing existing ontologies. This leads to the necessity of identifying quality criteria
for assessing ontologies in the IoT domain.

3.2 Contribution I.A: IoT-O, an ontology for the IoT

This section is dedicated to IoT-O37, a modular core-domain IoT ontology that we
proposed based on a previous work presented in [Ben-Alaya 2015]. The motivation
for the proposition of IoT-O came from the evaluation of existing ontologies based
on a set of quality criteria proposed in Section §3.2.1. Details about IoT-O are
provided in Section §3.2.2, and finally applications enabled by the use of IoT-O are
introduced in Section §3.3. This work has been published in [Seydoux 2016b].

3.2.1 Design requirements for IoT ontologies

Ontology engineering is a research domain on its own, with dedicated tools and
methodologies. The design of IoT-O is compliant with the NeOn methodology,
presented in [del Carmen Suarez de Figueroa Baonza 2010]. The purpose of this

27https://www.fiware.org/
28http://fiesta-iot.eu/
29http://purl.org/iot/vocab/m3-lite
30http://purl.org/iot/ontology/fiesta-iot
31https://auto.schema.org/
32https://bib.schema.org/
33https://iot.schema.org/
34https://github.com/schemaorg/schemaorg/issues/1272
35http://iotschema.org/docs/full.html
36https://github.com/iot-schema-collab/iotschema
37https://www.irit.fr/recherches/MELODI/ontologies/IoT-O
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https://bib.schema.org/
https://iot.schema.org/
https://github.com/schemaorg/schemaorg/issues/1272
http://iotschema.org/docs/full.html
https://github.com/iot-schema-collab/iotschema
https://www.irit.fr/recherches/MELODI/ontologies/IoT-O
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section is to identify design requirements for a core-domain IoT ontol-
ogy, which is the first step of the NeOn process. Two types of requirement can
be distinguished: conceptual requirements, regarding the concepts that should
be present in the ontology (detailed in Section §3.2.1.2), and functional require-
ments, regarding the ontology structure and design principles (detailed in Section
§3.2.1.1).

These requirements are used to analyze existing IoT ontologies. In addition to
reference ontologies introduced in Section §3.1.3.2, ontologies with a similar scope
as the one we are designing are included in the comparison. These ontologies are
retrieved from the IoT and WoT sections of the LOV4IoT. Additional ontologies
include:

• Hypercat38, supporting the BT Hypercat Data Hub [Tachmazidis 2017], aimed
at federating data from multiple sources.

• OpenIoT39, integrated to the homonym middleware infrastructure platform40

• MOFI41, dedicated to the description of resources within federated infrastruc-
tures [Al-Hazmi 2015]

• IoT.est42, used for the geospatial indexing of IoT nodes [Wang 2015b]

• iot-ontology43 a generic IoT ontology used for IoT node description to enable
automated deployment[Kotis 2012a]

• IoT-S44, extending SSN with service descriptions

• SA45, developed in the context of work related to service-oriented middleware
for the IoT [Hachem 2014]

• Spitfire46, developed to describe SWoT systems [Pfisterer 2011]

• STN47, describing Socio-technical networks, i.e. network of people and IoT
nodes

• SWOT-O48, used for annotation by [Wu 2017]

• SemIoT49, part of the SemIoT project50 dedicated to IoT interoperability
38https://portal.bt-hypercat.com/ontologies/hypercat
39http://sensormeasurement.appspot.com/ont/sensor/openIoT.owl
40https://github.com/OpenIotOrg/openiot
41https://github.com/alhazmi/mofi-ontology
42http://personal.ee.surrey.ac.uk/Personal/P.Barnaghi/ontology/IoT.est.owl
43http://ai-group.ds.unipi.gr/kotis/ontologies/IoT-ontology
44http://personal.ee.surrey.ac.uk/Personal/P.Barnaghi/ontology/OWL-IoT-S.owl
45http://sensormeasurement.appspot.com/ont/sensor/hachem_onto.owl
46http://sensormeasurement.appspot.com/ont/sensor/spitfire.owl
47https://w3id.org/stn/core
48https://github.com/minelabwot/SWoT/blob/master/swot-o.owl
49http://w3id.org/semiot/ontologies/semiot
50http://semiot.ru
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The design of IoT-O being driven by the identified requirements, it is included
in the evaluation for comparison purpose. Ontologies related to specific domains
impacted by IoT (domotics, agriculture, smart cities...) are out of the scope of this
study. We also did not consider ontologies upon which SSN was built, as they are
focused on observation and measurement, which is a subset of the core domain we
want to address.

3.2.1.1 Enforcing ontology design good practices with functional re-
quirements

Functional requirements description: These requirements capture ontology
design guidelines and general SW good practices in a domain-agnostic fashion.

Reusability: One of the most important aspects of an ontology in such a
broad domain as IoT is reusability. If an ontology is ad-hoc to a project, the work
done in its definition will not benefit further projects. It is a critical issue that can
be solved by different, non-mutually exclusive approaches:

• FR1: the ontology is compliant with the LOV requirements. In order to
implement its cataloging and search features, the LOV imposes requirements
to ontologies features in its registry. Such requirements include metadata on
the ontology, the availability of the ontology online (FR1.1), and the enable-
ment of content negotiation at the ontology IRI. The complete compliance is
achieved when the ontology is registered on the LOD (FR1.2) The intent is to
improve visibility and reusability of ontologies, for both human and machines.

• FR2: The ontology is modular. As stated in [Aquin 2012], designing on-
tologies in separated modules makes them easier to maintain, reuse and ex-
tend. IoT applications being related to many various domains, capturing
every aspect of the knowledge at stake in the same monolithic ontology is
neither easy, nor desirable. The interdisciplinarity of IoT application design
is another argument in favor of modular design: once domain experts pro-
duced an application-agnostic domain-specific ontological module, it can be
reused as is in multiple applications, benefiting future developments. Modu-
lar ontologies can be combined together according to specific needs, which
is a more scalable approach. An overview of a simple modular ontology
is proposed in [Sheth 2008], where a meteorology use case is captured by
different ontology modules: sensor, weather, time, and geospatial concepts
are clustered in separate module composed for the application. Building a
network of ontologies is also part of the NeOn methodology proposed by
[del Carmen Suarez de Figueroa Baonza 2010].

• FR3: The ontology is based on Ontology Design Patterns. Ontology
Design Pattern (ODP)s were introduced in [Gangemi 2005]. ODPs are simi-
lar to design patterns as they are used in software engineering: they capture
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application-agnostic structures, with identified characteristics, providing a so-
lution to a known recurrent issue. Designing ontologies based on ODPs in-
creases reusability and their potential for alignment [Scharffe 2008]. Similarly
to ontology modules, ODPs are reusable by nature. In order to ease sharing of
ODPs, initiatives such as the ODP portal51 propose common repositories of
patterns. ODPs are published accompanied with a textual description and a
reusable skeleton OWL file, to ease their integration into new projects. ODPs
capture modeling efforts: using them is a way to capitalize on previous work,
and to take advantage of the maturity of the SW domain compared to the
IoT domain.

• FR4: The ontology is aligned to upper ontologies. Upper-level ontologies
define abstract concepts in a horizontal manner. Such definitions are too
broad to be included as-is in an application, but their purpose is rather to
be broad enough in order to cover concepts from different vertical domains.
Therefore, two ontologies dedicated to different domains may be aligned to the
same upper-level ontology, easing their common reuse in an application. Top-
level ontologies may also be used to design ODP: there is for instance a close
relationship between the ODP portal and DUL52, a top-level ontology: some
of the proposed ODP are based on DUL. This ontology has been explicitly
used to described design patterns [Gangemi 2005]. Upper ontologies achieving
high levels of formalism, they may appear overzealous for simple use cases,
as it is pointed out by the designers of SOSA53. In this case, modularization
is also a technique enabling to harness complexity: the alignments to upper
ontologies may be contained, so that they are only imported on-demand, and
they are not considered by default.

• FR5: the ontology reuses existing resources. When designing a new ontol-
ogy, reusing existing resources helps avoiding redefinition, and prevents from
having to align a posteriori the redefined concepts to the existing sources in
order to provide interoperability. Identifying existing resources, and reusing
them, is also part of the NeOn process, as well as a guideline identified by
[Bermudez-Edo 2017]. Avoiding redefinition of every aspect of a model from
scratch allows to focus on the novelty of one’s contribution, while ensuring
interoperability by design with other applications based on similar resources.
Popular resources emerge from such a process of collective reuse: since in-
teroperability aims at having heterogeneous systems able to communicate, a
network effect promotes resources that are already shared by a large number
of participants. Such an effect is observed in Section §3.2.1.1. Reusable re-
sources include, in addition to regular ontologies, ontological modules, ODP
and top-level ontologies.

51http://ontologydesignpatterns.org
52http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
53https://www.w3.org/TR/vocab-ssn/#Modularization

http://ontologydesignpatterns.org
https://www.w3.org/TR/vocab-ssn/#Modularization
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Table 3.1: Coverage of the functional requirements

FR1.1
Online

FR1.2
LOV-

compliant

FR2
Modular

FR3
ODP

FR4
Upper

ontologies

FR5
External
resources

SSN (v1) ** ** * ** ** *
SOSA ** ** ** (**) ** (**)
WoT ** *

oneM2M **
SAREF ** ** ** *
IoT-Lite ** ** * **

FIESTA-IoT ** * ** ** **
iot.schema.org * ** *

Hypercat **
Spitfire * ** ** **
OpenIoT * ** **
MOFI * * **
IoT.est ** ** **

iot-ontology * ** **
IoT-S ** * (**) (**) **
SA * * (**) ** **
STN ** * **

SWOT-O ** *
SemIoT ** * ** ** **
IoT-O ** ** ** (**) ** **

Level of formalism: To use the full advantages of the semantic descrip-
tion of devices and data, the ontology used should enable reasoning and infer-
ence. However, for real-world applications, the model should also be decidable,
and within a reasonable time. This requirement de facto excludes OWL-full mod-
els.All surveyed ontologies are expressed in OWL-DL, with the exception of
iot.schema.org.

Functional requirements coverage An assessment of existing IoT ontologies
regarding the presence of key concepts is summarized in Tab. 3.1.

• *: The requirement is partially covered:

– FR1.1: The ontology is online, but not under its own namespace
– FR1.2: Some LOV requirements are met but the ontology is not refer-

enced in the catalog
– FR2: The structure of the ontology is modular, but all modules are in

the same file under the same IRI
– FR3: A peripheral portion of the ontology is structured by an ODP
– FR4: A peripheral portion of the ontology is aligned to an upper ontology
– FR5: The ontology is inspired from existing ontologies, and the align-

ment is straightforward, but not explicit
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• **: The requirement is completely covered

• (*): Conditions for partial requirement coverage are met in imported modules

• (**): Conditions for requirement coverage are met in imported modules

Results displayed in Tab. 3.1 show that SW best practices for reusability are
not always followed: some ontologies are not available online under their own IRI
(they are fostered by initiatives such as the LOV4IoT), and the majority of sur-
veyed ontologies are not available on the LOV. Few ontologies we listed are reused
by others as external resources: only SSN, SOSA, IoT-Lite and Spitfire are reused.
Especially, SSN emerges as a de facto standard, being reused by 11 other ontologies
among the ones we listed. SOSA being the new version of SSN, and being as its
predecessor supported by the W3C, its adoption is likely to grow in the future. The
large adoption of SSN is likely to be the cause of the large adoption of DUL as
an upper ontology: SSN is aligned with DUL, and DUL is reused by 7 surveyed
ontologies. Two ontologies (namely SA and iot-ontology) are aligned to SWEET54,
another top-level ontology. Smart Appliance REFerence (SAREF) has a particular
approach to external resources reuse: it redefines the concepts present in multi-
ple ontologies, and proposes alignments in an external, textual document. Design
patterns have only been used in ontologies importing SSN.

The limited reuse of ontologies shows a lack of federating ontologies, apart from
SSN. SSN being a modular ontology compliant with SW best practices, it is pos-
sible to say that these guidelines favor reuse. Moreover, the support of a standard
organism may gives leverage to an ontology. Initiatives emerged for instance to
align the oneM2M ontology and SAREF, the latter being adopted as a standard by
the ETSI55.

It should also be noted that SSN is not stricto sensu an IoT ontology, but rather
a sensor network ontology, which is a subset of the IoT. Therefore, the discrepancy
of reuse between SSN and “proper” IoT ontologies can also be explained by the
necessity to model the sensor domain for an IoT ontology (as it has been presented
in Section §3.2.1.2), as opposed to the different modeling possible from one IoT
ontology to the other. The ontologies we surveyed reused individual components
modeling part of their competency domain, rather than ontologies proposing an-
other model of the same domain. For instance, OWL-S, a service ontology is reused
by IoT-S and IoT.est. Such reuse practice, of modules modeling a subset of the
concepts required in the ontology that one is building, is also compliant with the
FR2 requirement.

In order to cover both the identified conceptual and functional requirements,
IoT-O is based on modules, each covering a conceptual requirement. Most of these
modules are based on existing ontologies, described in Section §3.2.2.1.

54http://sweet.jpl.nasa.gov
55https://portal.etsi.org/STF/STFs/STFHomePages/STF534
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3.2.1.2 Identifying IoT core concepts with conceptual requirements

Conceptual requirements definition Conceptual requirements come from an
analysis of the IoT domain, driven by smart building use cases introduced in Section
§3.3, but not limited to them. The use cases are not seen as an end per se, but rather
as an instantiation of the general domain of the IoT. Non-semantic sources, such as
the oneM2M standard and interaction with IoT experts, have been used as an input
in the ontology construction process. Pre-existing ontologies, described previously
in Section §3.1.3.2 and at the beginning of the present section have been taken into
consideration. Ontologies that have not been made available online, and that are
therefore not considered in the previous list, have been studied as well, from publica-
tions such as [Compton 2009b], [Nachabe 2015] or [Ben-Alaya 2015]. Finally, usage
and remarks presented in publications such as [Barnaghi 2009], [Hachem 2011] or
[Barnaghi 2012] have also been considered in the requirements construction.

To be reusable in a wide scope of projects, a core-domain IoT ontology should
contain a set of key concepts. These are representative of IoT systems with no
regard to the application domain. This approach facilitates the merging of data
collected in different domains for horizontal applications, and allows the ontology
to be an extensible core-domain ontology. We distinguish namely:

• CR1: "Device" (CR1.1) and "software agent" (CR1.2) constitute the
two basic components of an IoT system, composed of both physical and virtual
elements. The devices can be of two principle types, not mutually exclusive,
listed below. The notion of software agent enables the description of logical
modules integrated into IoT systems, such as a data processing algorithm or
a remote data repository.

• CR2: "Sensor"(CR2.1) are devices acquiring data, and "observa-
tion"(CR2.2) describe the acquisition context and the data collected by the
system. These concepts capture the perception of the evolutions of its own
environment by the system.

• CR3: "Actuator"(CR3.1) are the devices that enable the system to act on
the physical world, and "action"(CR3.2) represents what they can perform.
These concepts capture the knowledge the system has on its own abilities to
impact its environment, and to make it evolve.

• CR4: "Service": By many aspects, the IoT and the programmable Web are
very close. Connected devices can be seen as service providers and consumers,
and by specifying a notion of service, every aspect of an IoT system can be
represented.

• CR5: "Energy": In the paradigm of pervasive computing, many distributed
Things perform computations. Most of these Things being physical devices,
a complete modeling of the system will include a description of their energy
consumption. Energy management is a crucial topic in IoT systems.
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Table 3.2: Coverage of the conceptual requirements

CR1.1
Device

CR1.2
Software
agent

CR2.1
Sensor

CR2.2
Observation

CR3.1
Actuator

C3.2
Action

CR4
Service

CR5
Energy

CR6
Lifecycle

SSN (v1) ** ** ** * *
SOSA ** ** ** **
WoT * * ** ** ** *

oneM2M ** **
SAREF ** ** * * ** ** *
IoT-Lite (**) (**) * **
FIESTA-

IoT
(**) (**) (*) (**)

iot.schema.org * * ** * **
Hypercat * *
Spitfire (*) * (*) * **
OpenIoT (**) (**) (**) (**) *
MOFI ** * *
IoT.est (*) (*) (*) * (**) * (*)
iot-

ontology (**) ** (*) (*) * * ** (*) (*)

IoT-S (*) (*) (*) (**) (*) (*)
SA (**) (**) (**) * * (**) (**)
STN * *

SWOT-O (**) (**) (**) (**) (**) (**) *
SemIoT (*)
IoT-O (**) * (**) (**) (**) (**) (**) (**) (**)

• CR6: "Lifecycle": Be it data, devices or services, IoT components are all
included in different scales of lifecycles, because the IoT is by nature dynamic.
Devices are switched on and off, services are deployed or updated, pieces
of data become outdated... The evolution through a set of discrete states
representing a lifecycle is an important concept for IoT systems.

Conceptual requirements coverage The assessment of existing IoT ontologies
regarding the presence of key concepts is summarized in Tab. 3.2.

• *: The concept is represented superficially. It is present in the ontology, with
few properties and a coarse-grained specialization.

• **: The concept is described in the ontology in details.

• (*): The concept is imported as-is from a remote ontology.

• (**): The concept is imported from a remote ontology, and its definition is
enriched.

Sufficient coverage for CR1.1, CR2, CR5: The concepts identified in
CR1.1, CR2 and CR5, namely Devices, Sensors/Observations, and Energy are al-
ready well-defined in reference ontologies. According to the reuse requirement FR5,
there is no need to redefine such concepts for IoT-O. In particular, Semantic Sensor
Network (SSN) is a widely used W3C recommended ontology for sensors and obser-
vations. It is covers CR2 about sensors and observations, and it is also compliant
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with FR1, FR3 and FR4, which makes it a fitting module to be reused in IoT-O
as is. The notion of energy consumption dedicated to the IoT is specified
in PowerOnt, an ontology referenced by SAREF.

Ad-hoc definitions for CR4 and CR6: Even if concepts capture in CR4
and CR6, namely Service and Lifecycle, have some coverage in the existing IoT
ontologies, more detailed definitions exist in ontologies that are not specific to the
IoT. To define the notion of service, IoT-O imports Minimal Service Model (MSM),
a lightweight service ontology which is generic enough to represent both REST
and WSDL services, as opposed to OWL-S56, for instance, dedicated to WSDL-
based services. hRest57, proposed in [Kopecký 2008], is an extension of WSMO-
Lite58, upon which MSM is based. hRest is dedicated to the description of REST
Web services, and it is integrated to IoT-O regarding the predominance of the
REST model in the IoT domain. The concepts of lifecycle are described using
Lifecycle59, a lightweight vocabulary defining state machines discovered using the
Watson semantic search engine60. We extended Lifecycle in the IoT-lifecycle61

ontology with some classes and properties specific to the IoT, while taking advantage
of the generic initial definition.

Lack of coverage for CR3: We can observe that some of the IoT ontologies
cover most of the key concepts but none covers them all. Moreover, the different
concepts are not represented with the same level of expressiveness In iot-ontology
or SAREF for instance, key concepts such as Actuator or Action are present, but
their representation is limited. In these vocabularies, an actuator is defined as a
device that modifies a property. This is less expressive than what can be expressed
for a sensor with SSN which proposes a deep modeling of the sensors and the prop-
erty they observe, but also of the relations between the sensors and their observa-
tions, and of the observations themselves. In eDIANA62, an ontology referenced by
SAREF, some specializations of actuator are given, but the mappings from these
specializations to the saref:Actuator concept are not available directly. This anal-
ysis highlights the fact that, before the publication of SOSA in 2017, no ontology
provided satisfactory definitions for Actuators and Actions. In order to satisfy this
requirement for IoT-O, while maintaining a modular design, we propose SAN,
an actuator ontology imported as a module of IoT-O.

Semantic Actuator Network (SAN)63 is intended to describe actuators the way
SSN describes sensors. Actuators are devices that transform an input signal into a
physical output, making them the exact opposite of sensors. SAN is built around

56https://www.w3.org/Submission/OWL-S/
57http://www.wsmo.org/ns/hrests/
58http://www.wsmo.org/ns/wsmo-lite/
59http://vocab.org/lifecycle/schema
60http://watson.kmi.open.ac.uk/WatsonWUI/index.html
61https://www.irit.fr/recherches/MELODI/ontologies/IoT-Lifecycle
62https://sites.google.com/site/smartappliancesproject/ontologies/ediana-ontology
63https://www.irit.fr/recherches/MELODI/ontologies/SAN
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Figure 3.2: SSO and AAE design patterns, structuring respectively SSN and SAN
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Action-Actuator-Effect (AAE)64, a design pattern we propose, inspired from the
Stimulus Sensor Observation (SSO) design pattern described in [Janowicz 2010].
Fig. 3.2 shows a representation of both the AAE and the SSO design patterns. SSN
models the state of the world through stimuli converted by sensors into abstract
observations, making the system able to be aware of the evolution of its environ-
ment. SAN is complementary: it models the transformation of abstract actuations
by actuators into real-world effects, leading to the representation of the evolution
the system brings into its environment. This complementarity enables the repre-
sentation of an IoT system completely integrated into its environment, both able
to be aware of its state and to modify it. Actuators are stateful devices: depending
on their current state, they do not necessarily allow the same set of operations.
For instance, a device might be turned off, offering a unique possible operation, the
activation. In order to capture this statefulness, a dedicated pre-existing ontology
designed pattern is integrated into SAN, Object With States (OWS)65.

SAN was built with the same functional requirements as SSN, and it aims at
covering CR3. It is intended to be used as an ontological module, it is aligned with
an upper ontology (namely, DUL), and it reuses some concepts from SSN (such as
ssn:Device). SAN is also available on the LOV. Further details of the main classes
of SAN are provided in Section §3.3.4.3, in a detailed use case. Since its inception,
SAN has been reused by [Wu 2017], which supports our claim that the functional
requirements we identified support reusability.

64http://ontologydesignpatterns.org/wiki/Submissions:Actuation-Actuator-Effect
65http://ontologydesignpatterns.org/wiki/Submissions:Object_with_states
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Figure 3.3: IoT-O’s dependency graph
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3.2.2 IoT-O, a modular core-domain IoT ontology

IoT-O, the core-ontology we propose is composed of several modules, organized
as shown on Fig. 3.3. The names of the newly created resources are in red and
highlighted, the names of the reengineered resources are underlined, and the arrows
show dependencies. Solid arrows represent imports, and dashed arrows the reuse of
concepts without import.

When we initially built it and put it online, IoT-O was referenced on the
LOV4IoT, and thanks to the advice of Amelie Gyrard, we updated IoT-O and
SAN to make them available on the LOV6667.

3.2.2.1 The modules of IoT-O

An overview of the different modules of IoT-O is given on Fig. 3.3, which provides a
dependency graph among ontological modules. Ontologies which name are in bold
were built during the creation of IoT-O, and arrows in bold represent dependencies
that were added in the same process, either by import or alignment. For instance,
SSN and OWS already imported DUL, so no modifications were necessary to make
them compliant with requirement FR4. In the case of the service module however,
none of the ontologies were aligned to DUL. Such alignment is performed in IoT-O,
but in order to avoid introducing side-effect inconsistencies in third-part ontologies
that might import IoT-O in a context where its modules are already used, the
concepts from modules are not directly aligned to the concepts from DUL. Instead,
a new concept is created in IoT-O as a subclass of the two concepts we want to
align. These new concepts are then used in the remainder of IoT-O instead of
the concepts of the module from which they inherit, as it is shown on Fig. 3.1.
The ioto:Service class is defined as a subclass of both msm:Service, wsmo:Service
and dul:FormalEntity, instead of classifying msm:Service as a subclass of wsmo:-

66https://lov.linkeddata.es/dataset/lov/vocabs/ioto
67https://lov.linkeddata.es/dataset/lov/vocabs/SAN

https://lov.linkeddata.es/dataset/lov/vocabs/ioto
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Listing 3.1: Aligning Service definitions in IoT-O
ioto: Service a owl:Class;

rdfs: subClassOf dul: FormalEntity , wsmo:Service , msm: Service .

ioto: hasService a owl: ObjectProperty ;
rdfs: domain dul: entiry ;
rdfs:range ioto: Service .

Service and wsmo:Service as a subclass of dul:FormalEntity directly. ioto:Service is
subsequently used in the definition of properties such as ioto:hasService.

• The Sensing module describes the input data. Its main classes come from
SSN: ssn:Sensor and ssn:Observation. ssn:Device and its characteristics (ssn:-
OperatingRange, ssn:Deployment...) provide a generic device description.

• The Acting module describes how the system can interact with the physical
world. Its main classes come from SAN: san:Actuator and san:Actuation. It
also reuses SSN classes that are not specific to sensing, such as ssn:Device.

• The Lifecycle module models state machines to specify system life cycles
and device usage. Its main classes are lc:State and lc:Transition, and it is
integrated into IoT-O with the Objects with States (ows)68 ontology design
pattern.

• The Service module represents Web service interfaces. Its main classes come
from MSM: msm:Service and msm:Operation. Services produce and consume
msm:Message, and RESTful services can be described with hRest.

• Energy module: IoT-O’s energy module is defined by PowerOnt. It pro-
vides the poweront:PowerConsumption class, and a set of properties to express
power consumption profiles for appliances.

3.2.2.2 The core of IoT-O

IoT-O69, prefixed ioto:, is both the name of the ontology and of the core module.
It gives a conceptualization of the IoT domain, independent of the application,
providing classes and relationships to link the underlying modules. Since many
concepts are already defined in the modules, IoT-O’s core is limited: it defines 14
classes (out of 1126 including all modules), 18 object properties (out of 249) and 4
data properties (out of 78). IoT-O key class is ioto:IoT_Thing, which can be either
an ssn:Device or an ioto:SoftwareAgent. The power consumption of a ssn:Device
is associated to lifecycle:State and poweront:PowerConsumption. ioto:IoT_Thing

68http://delicias.dia.fi.upm.es/ontologies/ObjectWithStates.owl
69http://www.irit.fr/recherches/MELODI/ontologies/IoT-O
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Figure 3.4: Sample of IoT-O’s core
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is a provider of msm:Service, and an msm:Operation can have an ioto:ImpactOn-
Property on an ssn:Property, linking abstract services to the physical world
through devices.

As a core domain ontology, IoT-O is meant to be extended regarding specific
applicative needs and real-life devices and services. This design, inspired by SSN,
makes IoT-O independent of the application. Changes and corrections to the on-
tologies may be submitted as issues on the ontology public git repository70.

3.2.2.3 Evolution of IoT-O

Context of publication In order to understand the motivation behind the
proposition of IoT-O, it is important to consider the context of the contribution.
The W3C WoT interest group was launched at the beginning of 201571, and the
semantic features of oneM2M were part of a 2017 release Previous work, since
[Sheth 2008] in 2008 up to the proposition of SSN in 2011, has been mostly centered
around the Semantic Sensor Web, and not the SWoT. When IoT-O was initially
incepted in 2015 [Ben-Alaya 2015], and proposed in 2016 [Seydoux 2016b], to the
best of our knowledge no other ontology was covering the requirements we presented
in Section §3.2.1. Ever since, ontologies covering at least partly similar conceptual
requirements, such as WoT, or SOSA, have been developed. The emergence of new
standards and ontologies during my PhD has been both motivating, as it proved the
liveliness of the research domain, and challenging. In order to avoid being a hurdle
for semantic interoperability, IoT-O has been opportunistically aligned with other
ontologies, as it is shown in the use cases in Section §3.3 or in the next paragraph.

70https://framagit.org/IRIT_UT2J/ontologies
71https://www.w3.org/blog/wotig/2015/01/20/launching-the-web-of-things-interest-group/
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Alignment with SOSA: In the process of adopting ontologies as recommen-
dations, the W3C studies the support of said ontology in external resources. In
order to maintain IoT-O, and to support the adoption of SOSA, which represents
an evolution from SSN regarding conceptual requirements, we proposed a version
of IoT-O aligned to SOSA72, which is bound to eventually become the reference
version of IoT-O. This alignment also impacts SAN, since some of the concepts
newly integrated in SOSA, namely its actuation module (e.g., sosa:Actuator or
sosa:Actuation), are related to CR3, a requirement covered by SAN.

For instance, san:Acting is a subclass of sosa:Procedure, and san:Actuation is a
subclass of sosa:Actuation. In IoT-O, the service module is connected to the sensing
and the acting modules by the ioto:isGroundedBy predicate. In the alignment to
SOSA, the domain of ioto:isGroundedBy is a union of sosa:Observation and san:-
Actuation.

3.3 IoT-O in use

As a core-domain ontology, IoT-O is designed to be extended with application-
specific modules. In this section, three use cases are presented, in order to show
how IoT-O can support the development of interoperable IoT applications. The
context of these use cases is presented in Section §3.3.1, and the use cases are
respectively presented in Section §3.3.2, Section §3.3.3 and Section §3.3.4.

3.3.1 Motivating use cases around the ADREAM smart building

IoT technologies can have a direct impact on the everyday life of citizens, since it
connects their physical environment to virtual applications. That is especially rele-
vant in the case of domotics and smart buildings, where the home can be equipped
with multiple low-power devices to provide new services. At LAAS-CNRS, the
ADREAM project73 aims at conducting research on smart buildings thanks to an
instrumented, energy-positive building shown on Fig. 3.5.

Technical characteristics

• Area: 1,700 m2

• Technical facilities: 500 m2

• Office: 700 m2

• Photovoltaic: 100 kWp

• Solar panels area: 720 m2

Chronology

• Start of construction: June 2010

• Delivery of the building, installa-
tion of platforms: December 2011

• Host the 1st project: January 2012

The building is meant to have as little energy footprint as possible and is thus
equipped with large sets of solar panels. Its heating and air conditioning systems

72https://www.irit.fr/recherches/MELODI/ontologies/IoT-O/sosa
73https://www.laas.fr/public/en/adream

https://www.irit.fr/recherches/MELODI/ontologies/IoT-O/sosa
https://www.laas.fr/public/en/adream
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Figure 3.5: Aerial photography of the ADREAM building

are also energy-optimized, with the use of natural ventilation, heat pumps and a
ground-coupled heat exchanger. ADREAM is a living lab providing a horizontal
platform to foster research projects, either focused on one aspect of the building
or cross-domain to promote collaboration among research teams. Two aspects of
ADREAM are relevant to our use cases:

• The smart building itself, equipped with more than 6500 sensing devices,
producing up to 450,000 measures a day. Data is collected in four sub-systems:

– Lightning, monitoring the luminosity in the building and the power
consumption of lamps, as well as controlling the lightning dynamically.

– HVAC, managing temperature and air flows

– Energy, monitoring energy consumption of all the appliances in the
building

– Photovoltaic, measuring the power produced by the solar panels as well
as the environmental conditions, especially weather.

The complete building is featured in an open data use case described in Section
§3.3.2, extended in a data producers federation project described in Section
§3.3.3.

• Inside the building, there is a mock-up apartment equipped with commer-
cial devices from various vendors. Deployed devices include sensors (temper-
ature, luminosity, humidity, pressure), actuators (fan, space heater, multiple
lamps), which communicate using different technologies (phidget, Ethernet,
zigbee) with gateways connected to a server. This apartment is a shared ex-
perimentation space among multiple research teams, and it is featured in an
autonomic control use case described in Section §3.3.4.
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3.3.2 Smart building use case: Making data reusable with OPA

The Open Platform for ADREAM (OPA) is an open data project supporting the
dissemination of the data collected in the ADREAM building. Data is made accessi-
ble via the OPA portal in two forms: raw CSV, and enriched RDF. After motivating
the creation of the platform in Section §3.3.2.1, the details of the creation of the
KB supporting the data enrichment process is detailed in Section §3.3.2.2. The
mechanism enabling the enrichment itself is described in Section §3.3.2.3.

3.3.2.1 Use case motivation

The purpose of this use case is to add value to the data collected by the building
sensors, and to ease its reuse. A legacy system has been initially integrated in the
building at construction time, to collect data and feed it to a Building Automa-
tion System (BAS) enabling visualization and remote control. Data is continuously
stored in a first protected Relational Database (RDB), which is for technical reasons
cloned daily into a second RDB where it can be queried. Observations collected
in ADREAM are used for interdisciplinary research, such as energy management,
green IT or thermics. They include weather observations, indoor temperature and
luminosity, power production and consumption, as well as user inputs such as tem-
perature request on thermostats. In order to enable the exploitation of this data in
research projects, two issues are at stake: accessibility, and reusability.

Data is initially accessed through a Web form, with a limited expressiveness: a
user may access data either from a certain sub-system (e.g., Luminosity or Power
consumption) over a specified time interval, or from a set of sensor manually de-
scribed. Only specifying the sub-system has a very coarse granularity, but indi-
vidually specifying sensors requires an expert knowledge on the building technical
details in order to consume its data. Enhancing accessibility requires to allow a
more flexible querying method, with a finer granularity yet not requiring an expert
knowledge. The reusability issue is caused by the nature of the deployment: the
system has been installed over a large period of time, by different vendors, leading
to a heterogeneity of data models and naming conventions. Understanding the data
without the engineer in charge of the building is very challenging.

In order to solve the accessibility issue, an open data was deployed, with a data
portal providing multiple filters to access data at a finer granularity. Sensors have
been organized in smaller consistent sets, used to cluster data into datasets. Two
granularities have been identified from interaction with final users: the subsystem
(as it was previously used), and inside each subsystem functional unit of devices,
e.g., in the Photovoltaic system two datasets are created, one for each type of
current inverter. Datasets are also created for different time frames: day, month,
year. The new portal allows to perform the same queries as the previous, but with
a more intuitive interface and extra criteria. Data is also cleansed before being
published on the open data. However, increasing accessibility does not improve
reusability, and the data is still hard to understand for a non-expert. That is why
a knowledge base has been built to describe the building, in order to provide a rich
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description of the sensors and their organization. This knowledge base is used to
transform the original CSV data files into RDF, enabling a more expressive querying
and promoting the publication of data according to the principles of LD in order
to increase its reusability [Christian Bizer 2009].

In order to give incentive to users to use enriched data, value must be added
to the RDF files to compensate for the extra effort, compared to opening a CSV
in a regular spreadsheet software. That is why generated observations are linked
to the sensors that produced them, making it easier to locate each data point
geographically in the building. Units have been unified, and explicitly attached
to sensors. The expressiveness of queries enabled by the language, combined to
complementary information provided about the system, are the added value of the
enrichment. The construction of the description of the building and the system it
contains is detailed thereafter.

3.3.2.2 Building the knowledge base

The knowledge base describing the ADREAM building is modular, in order to ease
the separate development of the two use cases previously introduced. The central
module, ADREAM-Core (prefixed adr:74) is an extension of IoT-O defining classes
required for the description of the building. It reuses concepts from taxonomies
such as M3-Lite, generic for the IoT or Dogont75, dedicated to the smart home.
Types for devices deployed both in the building and in the apartment are described
in this module, as well as generic concepts such as the observed properties (e.g.,
adr:Presence or adr:WindDirection, aligned with the M3 taxonomy) or some indoor
location elements (e.g., adr:hasIndoorLocation or adr:Apartment). This module has
been entirely created by hand, that is why it only presents a reduced number of
features of the building. The apartment module, ADREAM-Apartment (prefixed
adra:76), has also been created manually, and it is described in the dedicated Section
§3.3.4. Finally, the last module of the knowledge base, ADREAM-Building (prefixed
adrb:77), and the largest one, is the description of the living lab building itself. Due
to the large number of devices in the building, a manual construction is not possible.
An automated instantiation pipeline has been developed.

The instantiation process starts from the gathering of devices information stored
in the legacy RDB. For each device, the following information is available:

• An identifier, built on a schema that differs from one vendor to the other.
Devices identifiers are built based on a BAS naming rule system similar to
the point name detailed in [Butler 2010]. Points are designed to provide The
points for each subsystem, and within one subsystem, are not consistent with
each other, nor are they described precisely in a documentation. An example
of BAS naming rule is provided in Fig. 3.6: the device identifier provides

74https://w3id.org/laas-iot/adream
75http://elite.polito.it/ontologies/dogont/dogont.html
76https://w3id.org/laas-iot/adream-appartment
77https://w3id.org/laas-iot/adream-building
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https://w3id.org/laas-iot/adream-appartment
https://w3id.org/laas-iot/adream-building
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Figure 3.6: Example of BAS naming rule
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information about the appliance the device is related to, about the kind of
device (MES denotes a sensor), and about the device type (TT_AMB denotes
an ambient temperature sensor).

• The subsystem to which it belongs.

• Optionally, a descriptive sentence in free text, usually used to provide the
sensor location.

• Optionally, the unit for sensor observations, with some inconsistencies: the
same unit may represented with different abbreviations.

A strong collaboration with the engineer in charge of the building has been nec-
essary. She shared her knowledge of the naming systems for instance, in order to
enable the exploitation of the BAS naming rules to instantiate individuals based
on their identifiers. The logic she described has been formalized in a Java program
that applies a series of rules in order to represent explicitly the characteristics of de-
vices embedded into the naming system. Intermediary individuals are generated in
the process, representing elements shared by multiple devices such as floors, rooms
and even the appliances to which devices are connected. For instance, no lamp
is represented as a standalone individual in the RDB, however pairs of devices,
luminosity sensors and power consumption sensors, are associated to the same ap-
pliance. Therefore, the lamp is represented by an individual in the generated KB,
and the attachment of the two sensors onto the appliance is represented with the
dul:AssociatedWith object property. The obtained individuals are linked to classes
from the common module adr:, from IoT-O, and from reused ontologies.

3.3.2.3 Using the knowledge base for enrichment

The cycle of data production by the ADREAM building has already been briefly
introduced: data is collected continuously, and made available by batch once a day.
This raw data is cleansed and stored as CSV files in the open data portal. The
enrichment processed takes these CSV files as input in order to generate the equiv-
alent RDF graphs. The enrichment is performed based on a query using SPARQL-
Generate, a SPARQL extension proposed by [Lefrançois 2017]. SPARQL-Generate
enables CONSTRUCT-like queries with binding from heterogeneous formats, and
not necessarily RDF.
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Figure 3.7: Data enrichment and publication process
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The daily conversion from CSV to RDF, representing approximately 450000
data points, lasts a hundred second on average, with daily variations due to server
load and the number of observations.

The choice to make data available as RDF dumps instead of a SPARQL endpoint
was made for a scalability motivation: a large quantity of data being uploaded each
day, the size of the SPARQL endpoint would have grown permanently, reducing
performances or queries. With RDF dumps, user may collect the data they are
interested spread over several RDF files, and build an adapted SPARQL endpoint
on their end. Moreover, RDF files can be compressed with a great efficiency to
reduce the footprint of the datasets on the disk.

3.3.3 Data federation use case: Integration into FIESTA-IoT

3.3.3.1 Use case motivation

FIESTA-IoT78 is a European project aiming at proposing a data federation among
heterogeneous testbeds. The FIESTA-IoT platform is designed for end-user to run
experiments on data collected in different IoT networks, such as smart cities or
smart building. Testbeds are completely independent from each other, and they
are based on very different IoT technologies according to their own requirements.
In order to hide the underlying heterogeneity of data models, specific to each deploy-
ment, the platform requires testbed providers to annotate their data with a common
vocabulary, the FIESTA-IoT ontology. This ontology is also used by end users in
order to describe their experiments with SPARQL queries over the homogeneous
model. The scalability issue that prevented us from deploying a SPARQL endpoint
to share the ADREAM data is managed on the FIESTA-IoT side. Moreover, inte-
grating the ADREAM data in the FIESTA-IoT federation makes it available to a
larger audience, due to a network effect: by only using the FIESTA-IoT ontology,
users have access to multiple datasets outside ADREAM.

The limit between IoT and WoT, already discussed in Section §2.4.1, can be
seen clearly in the FIESTA architecture. The IoT part of the network is completely

78fiesta-iot.eu

fiesta-iot.eu
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managed on the testbed side, where the technologies and design choices are made
in complete independence. Each testbed implements a WoT interface on top of
its local IoT deployment, and the FIESTA platform collects data from this WoT
interface. The platform implements the SWoT technological stack, and exposes
data to final users as SWoT resources.

3.3.3.2 Alignment with the FIESTA-IoT ontology

In the case of the ADREAM building, the data to be pushed to the FIESTA-IoT
platform is already enriched with our own vocabulary. Starting from scratch by
enriching the raw data would be possible, but it would not take advantage of the
modeling effort that had already been put in the construction of the OPA platform.
We also wanted to propose an approach that would be reusable by other partners
in the project in a similar situation. By design, the FIESTA-IoT platform prevents
a query-rewriting approach. Data must be uploaded to the platform annotated
with the shared vocabulary: user requests cannot be redirected to a testbed specific
endpoint where the query could be rewritten. The transformation must be centered
on data, which leads to redundancy, since data will be available both in our testbed
and in the FIESTA-IoT platform, but ensures compliance with the FIESTA-IoT
platform requirements, since data is validated at each upload. Therefore, we selected
an alignment-based approach to transform the annotated data from ADREAM-
Building to FIESTA-IoT, initially proposed in [Euzenat 2008].

The alignments between the source and the target ontologies are described in
EDOAL7980. ADREAM-Building and FIESTA-IoT are based on the same refer-
ence ontologies such as SSN and DUL, therefore their structure is rather close,
and only simple alignments were necessary, as opposed to complex alignments
[Thiéblin 2018]. To promote the reusability of our approach, a GUI tool has been
developed in order to ease EDOAL alignments writing, for both simple and complex
alignments. The tool is available online81 as free software.

The EDOAL alignments are then used to generate SPARQL CONSTRUCT
queries: the WHERE clause captures elements of the source vocabulary, and the
CONSTRUCT clause generates the equivalent elements described with the target
vocabulary according to the alignments. Alignments are used once at conception
time to generate the queries, and said queries are then used daily for data transfor-
mation. The EDOAL alignments are also an output of this work, and represent a
resource per se, since they are not specific to the generation of request and provide
interoperability between two existing ontologies. It is worth noting that the cre-
ation of th alignment was possible without a priori intervention of the expert, who
validated it once written. Alignments have been built mostly by an intern, who
did not take part in the initial creation of ADREAM-Building KB, which tends to
support our claim that the description with a rich structured vocabulary increases

79http://alignapi.gforge.inria.fr/edoal.html
80https://w3id.org/laas-iot/alignment/fiesta.edoal
81https://framagit.org/IRIT_UT2J/ontology-tools-sandbox
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reusability of data.
Integrating the ADREAM building to the FIESTA-IoT federation increased

visibility of its data, since it has been used by end-users of the FIESTA-IoT platform
that discovered the testbed through the federation. It is also a demonstrator of the
reusability of data enabled by the SW principles and technologies.

3.3.4 Contribution I.B: User-centric smart home use case and au-
tonomic control with semIoTics

3.3.4.1 Use case motivation

In this use case, the mock-up apartment models a smart home equipped for assisted
living for an elderly. Simple scenarios are enabled, such as lightning automation,
as well as advice regarding weather conditions, for instance hydration when hot.
However, small highly distributed devices usually have a limited processing power,
which restrict the range of applications they can support. More complex agents can
interact with these devices to collect their data and perform advanced processing
to provide a higher level service. In our use case, the complex agent is a PR2
robot, shown on Fig. 3.8. It is present in the house, and performs tasks such
as helping the person in case of fall, moving heavy objects, pushing a wheelchair,
fetching objects and bringing medications. Some of these tasks require the robot
to know where the person is in the apartment. To have this information, the
robot can move around the apartment, scan it with its embedded cameras, and
through image processing figure out where the person is. However, it requires the
robot either to follow the person around all the time, or to scan the apartment
completely each time it has to find the person. To make the robot more acceptable
to the person, the house can be equipped with an IoT system, collecting information
useful to the robot, such as information given by presence sensors. Moreover,
the connected devices provide new functionalities to the robot, by either extending
its perceptions or its capabilities. Thanks to connected sensors, the robot can
access ubiquitous observations of different properties of the apartment, and thanks
to connected actuators he can easily interact with light bulbs or fans. Our use
case is composed of two scenarios: the robot must bring pills at fixed hours to
the person using the presence sensors to locate her, and the robot must control
the temperature in the apartment using temperature sensors and connected fans
to improve the comfort of the person. The conditions for one’s comfort should be
based on preferences expressed by oneself, hence the user-centricity of the proposed
scenario.

In this use case, both syntactic and semantic interoperability are required,
among the devices and between the devices and the robot. Syntactic interoper-
ability is ensured using OM2M, on top of which another platform, semIoTics82,
enriches the collected data with semantic descriptions, and makes them available to

82“Semiotics is the study of meaning-making”, from https://en.wikipedia.org/wiki/
Semiotics

https://en.wikipedia.org/wiki/Semiotics
https://en.wikipedia.org/wiki/Semiotics
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Figure 3.8: PR2, the companion robot

the robot through a REST interface. SemIoTics is driven by a KB capturing knowl-
edge about the devices of the system represented according to our core-domain IoT
ontology, and about the environment shared by the robot and the devices (here,
the apartment). It is a Java software I developed to showcase the role of SW tech-
nologies in IoT data management, based on Apache Jena. The robot itself is also
a semantically enabled agent, it uses a "common sense" ontology and a KB to rea-
son about its 3D environment, as described in [Lemaignan 2012]. The knowledge
specific to the robot relies on ontologies out of the scope of this thesis, but any
ontology can be included in its KB. In particular, the robot’s KB has been loaded
with IoT-O and its use case-specific extensions.

That is why the knowledge described needed for this use-case is implemented
in a dedicated KB using IoT-O, ADREAM-Robot83: the ontology is shared by
the robot and semIoTics, and each system has its own KB. The synchronization
between the KB of the different agents is out of the scope of this thesis. For
instance, it could be used to support an air quality monitoring system in a smart
city, by describing the sensors that collect the data and the services the citizens can
subscribe to. The usage of IoT-O and its module in the use case is double: it is
used to model the observations about modifications of the apartment, allowing the
robot to keep an up-to-date representation of its environment, but also to model
the changes the robot wants to make into the apartment through its actions and
through the connected devices.

3.3.4.2 The MAPE-K loop and the knowledge at stake

One of the principles of user centricity, briefly discussed in introduction, is to es-
tablish intuitive connections between the intent of the user and the required actions
[Abras 2004]. The heterogeneity and complexity of IoT systems often require mul-

83https://www.irit.fr/recherches/MELODI/ontologies/Adream-Robot
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tiple low-level actions to achieve a global behavior, which is why a self-management
capability are desirable to support user-centered design in such complex systems.
From this observation, including but not limited to the IoT, [Kephart 2003] pro-
poses a new paradigm, namely autonomic computing, aimed at enabling self-
management to harness complexity. The self-management ability of an autonomous
system are refined in four aspects: self-configuration, self-optimization, self-healing,
and self-protection. The purpose of autonomic computing is to consider the con-
trolling agent and the controlled entity as one system: actions of the agent
have repercussions on the entity, that will be observed by the agent that will act
on the entity in reaction, and so on. The autonomous system behavior is driven
by introspective knowledge, and by high-level policies defined by human operators.
These policies are then broken down by the system, based on its knowledge of its
own components, in order to convert high-level instructions into a set of low-level,
implementable commands. Therefore, autonomic computing requires a shared
understanding of high-level goals among the components of the system, as well
as their semantic interoperability to support introspection.

To enable self-management, the system must have the following characteristics:

• It is able to maintain a self-representation.

• It has the ability to break down high-level policies into components that
can be compared to its introspective representation.

• It is capable of taking actions in order to change its own state, in order
to be compliant with the goals set by high-level policies.

The MAPE-K loop is a classic control structure in autonomic computing (see
Fig. 3.9), separated in four steps implementing the characteristics describe above:
Monitoring, Analysis, Planning and Execution. The K stands for Knowledge, be-
cause the behavior of the autonomic agent at each step of the loop is guided by a
KB, in the general meaning of the term (including but not restricted to the W3C’s
formalisms of knowledge representation).

3.3.4.3 Implementing the MAPE-K loop with semIoTics

We propose semIoTics, contribution I.B of this thesis, as an implementation of the
MAPE-K loop to drive this use case. semIoTics is deployed over two execution
platforms:

• a computer acting as a server, performing the Monitoring and the Execution
steps when connected devices are involved, and

• the robot, performing the Analysis and the Planning

SemIoTics performs the complete cycle of IoT data as described in [Sun 2014]:
observations from the physical-world are collected, they are converted as events in
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Figure 3.9: Representation of the MAPE-K loop instantiation by semIoTics
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the “cyber world”, which are used by a decision system to generate commands that
have effects bask in the physical world.

The process described in Fig. 3.9 structures the use case: data is first gathered
by the sensors, and enriched by semIoTics on the server. Enriched observations are
processed on the robot, where the embedded semIoTics instance decides to perform
actions represented as enriched actuations. These actuations are sent back to the
server, which translates them into raw commands for the actuators to perform.

The robot and the server have distinct KB, one hosted on each machine. How-
ever, the two systems exchange knowledge freely through a REST interface, which
is why a unique KB is on Fig. 3.9. Consistency issues are not considered in this
use case, as only one smart agent acts in the system. Both KB are loaded with
knowledge necessary to describe the complete use case. In particular, ADREAM-
Apartment is a KB extending ADREAM-Core, dedicated to the mock-up apart-
ment. In complement to IoT-O, the Dogont84 ontology is used to describe the
apartment and the location of devices inside it. Dogont is an ontology identified in
the SAREF project, imported by Poweront, that we aligned to IoT-O to integrate
it to the use case. No new concepts are defined in ADREAM-Apartment, only in-
dividuals describing the three rooms and some of the dozen of devices monitoring
their properties. The specificity of the apartment is that, thanks to OM2M, devices
are associated to services enabling direct interaction. Therefore, the description
of devices, in addition to properties defined by SSN or SAN identical to elements
generated for ADREAM-Building, include REST service descriptions. An extract
of ADREAM-Apartment, dedicated to the management of the temperature in the
apartment, is provided on Fig. 3.10.

At the core of control mechanism shown on Fig. 3.10, the feature of interest is
adr:ApartmentLivingRoom, and its property with which the system interacts, here
adr:LivingRoomTemperature. The property is measured by a sensor, and impacted

84http://elite.polito.it/ontologies/dogont/dogont.html
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Figure 3.10: Temperature management in ADREAM-Apartment

by two actuators, one of which is not represented on the figure for space consid-
eration. All the devices can be accessed through a REST service described by the
msm:Service class, constituted of some msm:Operation instances. Said operations
are associated to impacts they have on the property, specified with a vocabulary
dedicated to autonomic computing, Autonomic, prefixed auto:85. This module al-
lows the modeling of the relation between actions and their consequences, in order
to enable planing by the autonomic system. Moreover, it defines concepts enabling
the definition of high-level policies over properties, such as upper or lower bounds
to be enforced by the system. For instance, an operation supposed to decrease the
value of a property is denoted by the concept auto:NegativeImpact. The orches-
trations of the operations is represented as a state machine based on the Lifecycle
module of IoT-O.

Overall, an interesting aspect of the use case is the decoupling it shows between
the IoT devices from one side, and their abstract representation manipulated by
the agent on the other. The technical and syntactic heterogeneity are hidden, and
semantic interoperability is enabled by the combination of the standard platform
and its extension with semantic functionalities. Similarly, the rules expressed by
users as constraints on properties are independent from the underlying devices, and
they are dynamically resolved in order to be adaptive to the dynamism of the IoT
network.

In the remainder of this section, the implementation of each step of the MAPE-K
loop by semIoTics is detailed, with a particular interest in the knowledge manipu-
lated.

Monitoring, where raw sensor data become meaningful observations:
The first step of the MAPE-K loop is the monitoring of the controlled system. In the

85http://www.irit.fr/recherches/MELODI/ontologies/Autonomic
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apartment, sensors produce data reflecting their observations. This data is enriched
to become a reusable piece of knowledge. Enrichment of sensor data is performed
using the SSN ontology, which is in the Sensing module of IoT-O. Each ssn:Sensor
has an ssn:Observation stream composed of ssn:SensorOutput whose value is de-
scribed by ssn:ObservationValue. For provenance purposes, a ssn:SensorOutput can
be linked to its original representation (before enrichment) with the ioto:hasRaw-
Representation data property. The sensor’s characteristics (ssn:MeasurementPro-
perty, the ssn:Property of the ssn:FeatureOfInterest it observes) are used to enrich
the observation as well. IoT-O and SSN are generic ontologies, so they might need
to be extended with application-specific modules to be fully functional. Such ex-
tension is proposed in the ADREAM-Robot module86. The ssn:Observation allows
the representation of a characteristic of the environment at a given point in time.
The temporality of the sensor measures (and of actuators actions) is represented
by a san:hasDateTime relations with a time:Instant, itself characterized by an iot-
o:hasTimestamp data property. All the observations related to the same point in
time are connected to the same individual, allowing the agent to have a timed
representation of its environment and of its evolution.

In our use case, presence and temperature sensors produce raw observations
in the form of XML documents standardized according to the oneM2M Content
Instance resource type. The enrichment process requires an approach specific to
the data, either by writing a dedicated enrichment script, or by using semantic
mappings embedded in the data as in [Le-Phuoc 2011], where raw data is stored
in relational databases and the database schema is mapped to an ontology for
enrichment. SemioTics uses a dedicated enrichment script that could in the future
be extended by producing annotated data.

The presence observation indicates the position of the person in the apartment,
and the temperature observation represent the temperature of the air at a given
point in space and time, both in the form of ssn:ObservationValue instances. This
enriched information is accessed by the robot through semIoTics’ REST interface,
and it is used to update the robot’s representation of the world. This view of the
world is stored in the robots KB, and used as a context in the Analysis step.

Analysis, aggregation of observations in abstract symptoms: In the Anal-
ysis step, semIoTics processes the representation of the world built in the monitoring
step to determine high-level symptoms that need to be addressed by actions.

For the medication scenario, the robot compares the present time to the time
when the medication is due to generate the symptom “Medication must be deliv-
ered” if necessary.

For the temperature control scenario, user preferences are represented using
the concepts defined in the Autonomic module. ssn:Property of the environment
controlled by the robot within explicit boundaries expressed in the form of auto:-
PropertyConstraints are classified as auto:ConstrainedProperty. In our use case,

86https://www.irit.fr/recherches/MELODI/ontologies/Adream-Robot
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the adra:LivingRoomTemperature has two constraints, instances of auto:Maximum-
Value (25oC) and auto:MinimumValue (19oC). The last ssn:ObservationValue of
the auto:ConstrainedProperty is out of the bounds defined by the auto:Property-
Constraint (26oC instead of 25), so the temperature is classified by the reasoner as
an auto:OutOfBoundsProperty thanks to custom rules.

Planning, where symptoms are used to create a plan: In the planing phase,
the autonomic agent uses the inferred symptoms and policies defined by the user
or by the administrator beforehand to define a series of actions that have to be
implemented on the system.

In the medication scenario, semIoTics uses its representation of its environment
to locate the person, as it is kept updated in the monitoring phase thanks to the
knowledge produced by the sensors. The robot will plan a trajectory to fetch the
medication and to reach the person. In this case, the representation of the trajectory
itself is ad-hoc to the robot, and isn’t linked to IoT-O or semIoTics: only the high-
level indoor location is represented in the KB. The ontology is used to connect the
robots internal representation of the world with the observations collected by the
sensors and enriched by semIoTics, providing semantic interoperability between the
robot and semIoTics. If the robot expresses its needs using the same ontology as
semIoTics, or if their ontologies are aligned, it can seamlessly use elements measured
by the sensors to plan its trajectory.

In the temperature control scenario, the description of the actions is performed
using SAN, the actuator ontology that also describes the actuators in the system.
The agent, with successive queries to the KB, will look for san:Actuator instances
that san:actsOn the auto:OutOfBoundsProperty, and which auto:ImpactOnProperty
is coherent with the symptom. In the example, since the temperature is too high, the
adra:PHG_FAN_11 (a connected fan) can be used, but also the adra:SpaceHeater-
01, since its adra:turnOff operation has a auto:NegativeImpact on the temperature.
The orchestration of these actions (if need be) are determined using the Lifecycle
module of IoT-O, which represents the devices as state machines. ssn:Device (su-
perclass of both ssn:SensingDevice and san:ActuatingDevice thanks to IoT-O) are
objects that ows:hasState exactly 1 ows:State, because objects should only be in one
state at a time. The ows:State is equivalent to the lifecycle:State (from the Life-
cycle87 vocabulary, extended by the IoT-Lifecycle88 ontology), and lifecycle:State
instances are connected by lifecycle:Transition instances. Thanks to this modeling
based on state machines, stateful transitions, i.e. that are only available in certain
states of the device, can be represented. Only msm:Operation instances that ioto:is-
GroundedBy a san:Actuation that iotlc:triggersTransition a lifecycle:Transition that
is a lifecycle:possibleTransition of the device current lifecycle:State can be called at
a given time. For instance, the fan adra:turn_off_operation operation will only be
available if the space heater is on. In our example it is off, so the agent plans to

87http://vocab.org/lifecycle/schema
88http://www.irit.fr/recherches/MELODI/ontologies/IoT-Lifecycle
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turn on the fan and creates the corresponding san:ActuationValue. The selection
of devices and their operations is driven by necessity (only the devices impacting
the right property are selected), but it can also be driven by policies based on
knowledge about the device intrinsic characteristics expressed with san:Actuating-
Capability, composed of san:ActuatingProperty described in the actuator profile.
It can for instance be used to minimize energy consumption (combined with the
Energy module), or to optimize reaction time.

Execution, where the plan is converted into actions: In the execution step,
the robot implements the planned actions.

For the medication scenario, the robot fetches the medication and brings it
directly to the person, it does not have to search for her in the apartment. The
MAPE-K loop can be repeated while the robot is moving to update the trajectory
if the person moves in the house.

For the temperature control scenario, the robot transmits the san:Actuation-
Value that it wants the system to implement to semIoTics via a REST interface.
semIoTics will handle the transformation of the knowledge into a representation
that can be processed by the target device. This translation can be driven
by the semantic description of msm:Operations, or dedicated annotations as in
[Kopecký 2007], where XML schema are annotated for transformation from RDF to
XML. semIoTics uses the semantic description of operations to perform lowering,
and perspectives for this technique are presented in Section §3.4. This translation
enables the interaction with low-level, constrained devices that are not able to
process complex knowledge representations. At this point of the MAPE-K loop,
actions have been implemented in the environment, and their effect is measured by
the sensors, bringing the execution back to the monitoring step.

With these four steps, the autonomic agent performs a complete MAPE-K loop,
from the collection of sensor observation to the reaction with actuator commands.
The representation of both the physical environment and the device deployment
enables a semantically-enabled agent (here the robot) to extend its capabilities
of action and perception. semIoTics, thanks to OM2M and to IoT-O, addresses
both technical and semantic interoperability in an IoT network. The use case
focuses on home automation, but IoT-O and our approach are generic enough to
be adapted to other domains. However, as it will be discussed in the next section,
generating semantically rich actions representations is not enough to solve semantic
interoperability issues in the IoT.

3.4 Towards semantic interoperability for constrained
devices

Use cases introduced in Section §3.3 promote the semantic interoperability brought
by the SWoT, as well as the potential for advanced applications it enables. In or-
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der to be used in the Analytics step of the use case’s MAPE-K loop, observations
produced by sensor are transformed from their raw representation into a richer,
semantically-enabled one. The same loop leads in the Planning step to the pro-
duction of rich representation of actions. However, knowledge expressed in the
W3C formalisms (RDF, OWL...) are heavier to process and exchange than models
based on simpler technologies such as XML or JSON, or than ad-hoc data formats
composed of small bytes sequences, commonly used in embedded softwares. Manip-
ulating complex knowledge representations is antithetic with the deployment of very
constrained devices that have a low processing power and a restricted bandwidth.
These nodes cannot produce or consume enriched data, so making the system se-
mantically enabled requires performing transformations:

• from raw to enriched data for sensor observations, and

• from enriched to raw data for actuator commands.

In order to face this issue, and to enable the Execution phase of the MAPE-K
loop presented in Section §3.3.4, we propose a lowering method to capture rich
knowledge into simpler data formats so that they can be processed by constrained
devices, that has been published in [Seydoux 2016c]. This method is based on
reusing existing mappings used for the generation of enriched data, instead of
requiring dedicated mappings from enriched to raw data, thereby reducing the cost
of the transformation.

3.4.1 Enrichment and Lowering: IoT content management func-
tionalities

Recurring patterns are observed in IoT content management. Such patterns, that
we call functions, are the topic of interest of Chapter §4, the next chapter of this
dissertation. However, two functions illustrating the transition from the first part
of the dissertation, focused on interoperability, toward the second part, focusing on
adapting the SWoT to IoT constraints, will be introduced in the present section.
Namely, these two functions are 1. enrichment, the transformation from raw data
to semantically enabled information, and 2. lowering, the inverse transformation.

Fig. 3.11 gives an illustration of data management issues in the IoT by a simple
use case: data measured by a temperature sensor is displayed by an application
using a different data format, and it is also used to control a fan.

Several approaches to enrichment exist, and will be detailed in the survey pre-
sented in Chapter §4. By definition, IoT nodes produce and consume structured
data (raw data value on Fig. 3.11). The structure of such data can be represented
by a schema, i.e. a syntactic data model. Therefore, a possible enrichment tech-
nique is to annotate the schema with semantic elements in order to generate rich
representations from data compliant with the schema. Such schema annotations are
referred to as mappings. [Sheth 2008] and [Ferdinand 2004] exploit the implicit
semantics encoded in the syntactic data model by aligning it to ontologies with
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Figure 3.11: Illustration of data enrichment and lowering
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such mappings. To reduce the payload when transferring data, the schema can be
accessed and manipulated only when necessary. Schema are usually annotated by
hand at design time: used ontologies are chosen in order to be able to describe the
schema elements closely, leading to simple equivalence alignments.

Some existing approaches for data lowering (from a semantic representation
to a syntactic one) also rely on dedicated mappings, as in [Kopecký 2007] or
[Bischof 2012]. Transformation from RDF to other data formats is proposed in
[Corby 2015] based on SPARQL queries. To bring interoperability to lower nodes,
[Köpke 2010] proposes an ontology-driven data transformation approach, i.e. the
presentation of a piece of data in a different target format (also illustrated on Fig.
3.11). We propose to use schema mappings to ontologies initially meant for data
enrichment for knowledge lowering.

Our approach is therefore dependent on the existence of mappings from a schema
to ontological elements. It is a reasonable assumption, since many standards, espe-
cially for the IoT, use normalized schema as syntactic interoperability providers:

• oneM2M89 and HGI 90 with the SDT (Smart Device Template)

• OMA 91 and the IPSO alliance92 with LightWeightM2M

• OCF93 with OIC 94 and AllJoyn95

89http://onem2m.org/
90http://www.homegatewayinitiative.org
91http://openmobilealliance.org/
92http://www.ipso-alliance.org/
93http://openconnectivity.org
94http://openconnectivity.org
95https://openconnectivity.org/developer/reference-implementation/alljoyn
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Therefore, using schema mappings for enrichment or lowering is suitable for an
IoT system, as it limits bandwidth consumption when exchanging data, integrates
constrained devices, and brings semantic interoperability. However, manually align-
ing a schema to an ontology is a time consuming process, and it has to be done
for both enrichment and lowering. Our hypothesis is that if a schema only aligned
for upstream enrichment meets a set of requirements, the mappings can be used for
knowledge lowering as well, cutting by half the work required to make constrained
devices semantically enabled.

3.4.2 A pivot-tree based approach to mapping reversal-based
knowledge lowering

Our approach to schema alignment reversing is divided into two steps: transforma-
tion of an RDF graph into an abstract pivot tree, and serialization of this pivot
tree into a concrete syntax. The choice of an abstract step in the transformation
process helps to decorrelate the approach from the source language. The pivot tree
is a language-agnostic representation of the final tree (either XML, JSON or an
IRI for REST interfaces) with no concrete syntax. It associates the knowledge ex-
pressed in the RDF graph (with its explicit semantics) to the tree-like structure of
the targeted schema, so that its semantics is no longer implicit. Algorithm 1 shows
the creation process of the abstract tree from the annotated schema and the target
ontology.

Algorithm 1 Abstract tree creation
1: procedure buildAbstractTree(Schema $s, Graph $g, Resource $individ-

ual) match is a function that finds the schema element corresponding to the
root individual

2: $schemaRoot← match($s, $individual)
3: build constructs an abstract node from an RDF node and a matching schema

node
4: $abstractRoot← build($schemaRoot, $individual)
5: for $property in $graph.triples($individual, $property, $object) do
6: if $schemaRoot.hasAnnotatedDescendant($property) then
7: if $property is ObjectProperty then
8: $abstractNode← buildAbstractTree($schemaRoot, $g, $object)
9: $abstractRoot.buildObjProp($s, $g, $property, $abstractNode)
10: end if
11: if $property is DataProperty then
12: $abstractRoot.buildDataProp($s, $g, $property, $object)
13: end if
14: end if
15: end for
16: end procedure

To be suitable for our approach, the annotated schema must be compliant with
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these requirements:

• Design-time hypotheses

– The data format must have a tree-like structure (like XML, JSON,
RAML...)

– The schema describing the data structure must be explicit

– The schema must be aligned to semantic resources to allow data enrich-
ment

– All potential root elements should be mapped to a concept in the ontol-
ogy

– All meaningful inclusions must be annotated with relationships, as op-
posed to purely syntactic inclusions that do not need annotation. Syn-
tactic inclusions do not carry data semantics, but rather structural in-
formation

– Only inclusions leading to leaf elements should be mapped to RDF data
properties

– No ambiguity: when transforming the RDF graph into the abstract tree,
every relation from a node in the graph should be associated to exactly
one relation from the corresponding node in the schema, and each indi-
vidual should be mappable to exactly one schema root node.

• Run time hypotheses

– The required properties in the schema must be instantiated in the graph

3.4.2.1 Preliminary results

To evaluate our solution, we measured the compliance of existing schema with our
requirements, and conducted a qualitative comparison with existing works presented
in Tab. 3.3. Different sources of data schemes were used to assess the hypothe-
sis for a reversible mapping: schemes provided as part of standards specifications
(AllJoyn), and a sample of schemes from an online API repository96. Overall, these
schema met our requirements, or needed minimum backward-compatible transfor-
mation (such as the semantic annotation for enrichment).

Despite their runtime efficiency, transformation-only methods are not suitable
because raw data is not enriched and cannot be reasoned upon. Our approach
covers less schema than the two-way mapping approach because of the hypothesis
that must be validated by the schema, but it is suitable for the schema at stake in
the IoT as they are standardized, and requires less mapping work than any other
approach.

96http://www.programmableweb.com

http://www.programmableweb.com
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Table 3.3: Qualitative comparison of approaches

Supported
scenario

Code
base

Execution
time

Generation
required

Supports
inference Flexible Schema type

applicability
Mapping
required

Direct schema
transformation Transformation Small Fast No No No Any to any None

Schema
transformation
generation

[Köpke 2010]

Transformation Large Fast Yes No Partially Annotated schema Two-way

Two-way
mapping

[Bischof 2012]

Transformation
and lowering Large Slow No Yes Yes Annotated schema Two-way

Mapping
reversal

(our approach)

Transformation
and lowering Large Slow No Yes Yes Restricted

annotated schema One way

3.5 Conclusion

This chapter was dedicated to the semantic interoperability fostered by the emer-
gence of the SWoT.

After providing a definition for interoperability in order to identify scope of our
work, we examined the standards that consider semantic interoperability. In par-
ticular, I contributed to the white paper [Murdock 2016] published conjointly by
members of the W3C and the oneM2M consortium, in order to call for a deeper
integration of SW technologies in both standards. In this joint white paper, inter-
operability issues are described as a major impediment for the development of the
IoT, and SW principles and technologies are seen as interoperability providers. My
participation to the oneM2M standard in the MAS group also led to my contri-
bution to Eclipse OM2M, a free implementation of the standard. My contribution
consisted in developing the semantic functionalities of the standard to OM2M, en-
abling SPARQL-based discovery of resources.

We identified the crucial roles of ontologies in achieving semantic interoperabil-
ity. Ontologies for the IoT domain, and the failure to follow good practices such
as concept reuse from one ontology to another limits the semantic interoperabil-
ity benefits for the SWoT. Therefore, we proposed a set of requirements to assess
the quality of IoT ontologies, and define guidelines for IoT ontology design. Two
types of requirements have been distinguished: conceptual, i.e. what the ontology
should talk about, and functional, i.e. how the ontology should talk about it. Ma-
jor ontologies for the IoT have been assessed against these requirements, and since
no ontology fulfilled all of them, we proposed our own modular core-domain IoT
ontology, IoT-O, introduced in [Seydoux 2016b]. In order not to redefine concepts
and contribute to the multiplication of IoT ontologies, IoT-O integrates existing
ontologies in its different modules whenever it is possible. IoT-O has also been
aligned with other core-domain ontologies, and in particular SOSA.

IoT-O has then been used to provide semantic interoperability in three use cases:

• IoT-O has been integrated to the OPA platform in order to promote the
reusability of enriched data. Data collected by a smart building is enriched
and made available in an open data, providing daily access to over 283000
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enriched data points.

• The OPA open data has been integrated as a testbed of the FIESTA feder-
ation. This use case supports the semantic interoperability enabled by the
principles and technologies of the SW. After their daily enrichment, observa-
tions made available in the open data are transformed thanks to alignments
with the FIESTA-IoT vocabulary, and are pushed on the federated platform.

• Finally, a smart home automation use case has been discussed to show the
potential for the integration of smart agents in SWoT-enabled environments.
semIoTics, a system we implemented on top of OM2M, instantiates a MAPE-
K loop to support knowledge-driven autonomic scenarios. In this use case,
the autonomic agent manipulates virtual representations of the devices, which
are used to impact their physical counterparts. This use case requires both
syntactic interoperability, provided by the use of a standard platform, and
semantic interoperability, ensured by semIoTics and the ontologies it uses. In
order to facilitate the expression of their preferences to users, the constraints
they impose on properties are independent from the underlying devices. These
preferences are dynamically resolved by discovering available devices, in order
to be adaptive to the dynamism of the IoT network. This use case has been
used in [Seydoux 2016a] and [Aïssaoui 2016].

For this last use case, the communication between the applications and the
devices is bidirectional: sensor observations are enriched with ontological elements
to be consumed by applications, and the high-level representation of commands
produced by applications are translated to be adapted to the target legacy
device. This transformation back and forth between rich and raw representations
is often based on manual schema annotations. The last section of the present
chapter has been dedicated to early work published in [Seydoux 2016c], aiming at
automating part of this transformation by reversing enrichment mapping under
certain conditions.

The contribution introduced in this last section has shed light on an issue with
the emergence of the SWoT: SW technologies require more resources than what is
available in the end devices of IoT networks. In order to enable semantic inter-
operability by the integration of SW technologies into the IoT, the specific con-
straints of the IoT domain must be considered. That is why the next chapter is
dedicated to surveying how the SW technological stack is deployed in IoT net-
works.
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Achieving semantic interoperability is a primary issue in the IoT, that leads to
the emergence of the SWoT. However, the integration of SW technologies into IoT
systems is quite challenging due to some characteristics and constraints of the IoT
domain. While IoT architectures are by design based on resource-constrained
devices, the SW technologies are resource-consuming. In order to tackle this
core divergence, it is obvious that SW technologies cannot be deployed directly
on IoT devices in the majority of cases. Therefore, the SW stack has to be
instantiated along the reference SWoT three-tier architectural pattern
characterized in Section §2.5.4.

The Cloud computing paradigm is well-established, and Cloud architectures
support a majority of Web services used at a world-wide scale. However, as it
has been described in Section §2.5.3, some characteristics that are desirable for
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SWoT deployments are not compatible with the nature of Cloud architectures. In
order to complement said Cloud architectures by instantiating these properties, the
Fog computing paradigm has been proposed. Fog computing focuses on localizing
processing power closer to IoT devices in distributed architecture, and its impact
on the SWoT has been studied for instance in [Patel 2017].

This chapter aims at studying the role of Fog computing in supporting the
deployment of the SWoT by surveying the literature. The term “Fog com-
puting” has been coined rather recently [Bonomi 2012] compared to “Cloud
computing” (19941), “IoT” (1999 according to [Ashton 2009b]) and “Semantic Web”
([Berners-Lee 2001]). However, with the vision of Fog nodes as the equipment con-
necting IoT devices to Cloud servers provided in Section §2.5.3, we characterized
Fog nodes as an intrinsic component of the SWoT architectural pattern discussed
in Section §2.5.4. In this Cloud-Fog-Device pattern, the role of Fog nodes is double:

• On the one hand, Fog nodes provide technical interoperability between Cloud
nodes and devices. In this case, Fog nodes serve as gateways connecting WoT
and IoT tiers, and do not implement any element of the SW stack, which is
deployed on Cloud nodes. We refer to this deployment type as semantic-
agnostic Fog nodes, and the processing based on SW technologies is quali-
fied as semantic Cloud computing.

• On the other hand, the processing power provided by Fog computing may
be used to support some elements of the SW stack. Fog nodes still provide
communication capabilities between the devices and Cloud nodes, but they are
also full-fledged components of the SWoT deployment. We refer to this kind
of approach as based on semantic-enabled Fog nodes, enabling semantic
Fog computing.

This distinction entails a question: how is the use of either semantic-enabled or
semantic-agnostic Fog nodes impacting the SWoT domain ?

The purpose of this survey chapter is to provide a reading grid to: 1. classify the
research contributions transforming the IoT into the SWoT domain, and 2. analyze
the integration of semantic Fog computing in this evolution by comparing it with
semantic Cloud computing.

The ambivalent role of Fog nodes in SWoT architectures is used to define pre-
cisely the research question addressed by the ensuing survey with a description of
the systematic literature review methodology followed. Recurrent patterns in exist-
ing research are identified, and used in conjunction with the reference architecture
to describe the role of Fog computing in the integration of the SW principles into
IoT networks in Section §4.2. In Section §4.3,deductions are extracted from the
survey, then we discuss future directions for the SWoT. Challenges the SW faces
to be compliant with constraints of the IoT domain are pointed out, as well as
recent contributions from the SW research community proposed to adapt to these

1https://www.wired.com/1994/04/general-magic/
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constraints. The complementarity of the Cloud and Fog paradigms in supporting
the SWoT architecture is brought into focus.

4.1 Survey context and key terms

In order to discuss the relationship between Fog computing and the implementation
of the SWoT technological stack, this section describes the context of the conducted
survey. The literature review methodology followed is described in Section §4.1.1,
and the elements of the reading grid used to classify contributions are presented in
Section §4.1.2. Related surveys are presented in Section §4.1.3.

4.1.1 Survey methodology

This survey has been conducted according to the systematic literature search tech-
nique presented in [Kitchenham 2004]. Since we established that Fog nodes are part
of the SWoT architectural pattern in Section §2.5.4, the question is whether:

• SWoT technologies are only deployed in Cloud nodes, with semantic-agnostic
Fog nodes being solely technical and syntactic interoperability providers, or

• if semantic-aware Fog nodes play an active role in the implementation of the
SWoT technical stack to provide semantic interoperability.

We want to determine how semantic Fog computing supports SWoT architectures
in the case where Fog nodes are semantically enabled, and the motivations for
preferring semantic Cloud computing otherwise.

To answer this question, papers were collected from major digital libraries
(namely IEEEXplore, ScienceDirect and ACM Digital Library) with the disjunc-
tion of keywords “SWoT”, “Semantic Web”, and “Internet of Things”. Both journal
and conference papers were considered. Moreover, in order to focus on papers rele-
vant to the research question, only papers in which the deployment architecture is
clearly described were considered. Such a description can be done in a figure, by
providing hardware capabilities of the deployment architecture, or by describing the
capabilities of the deployment nodes. Contributions based on a purely functional
architectures were excluded from the survey if the components were not situated
on identified containers (machines classifiable as Cloud or Fog nodes). Since not
all studies relevant to our survey explicitly referred to the equipment between IoT
devices and remote Cloud servers as “Fog” nodes, but also as “gateways” for in-
stance, the keywords “Fog” and “Cloud” were not used as filters. The relevance
of architectures has been considered based on the characteristics described in the
surveyed studies. No minimal date was considered, and the latest papers included
were prior to July, 2018. Finally, 64 publications were considered for the survey,
sorted by year of publication in Fig. 4.1.

Fig. 4.1 shows an increase of the number of papers relevant to our survey
with time, with a proportional increase of the papers in which Fog nodes play an
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Figure 4.1: Surveyed papers, per year
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active role in SWoT functions. Overall, semantic capabilities are distributed on Fog
nodes in 58 % of the studied papers. It should be noted that this rate is biased
by the inclusion criteria for papers selected in this study: by default, papers where
Fog nodes do not play an active role for semantic processing, and where the SW
technological stack is only deployed in Cloud nodes do not provide details about
their deployment architecture. The choice to exclude such papers from the survey
was made because their analysis would have been entirely based on an assumption
that is directly correlated with the research question we want to discuss. Therefore,
the rate of papers both contributing to the SWoT and considering an active Fog
node over all papers dedicated to the SWoT in general is likely to be much lower than
it is in this survey. The purpose is rather to explore the role of Fog nodes in SWoT
architectures rather than give a precise estimation of how many papers actively use
Fog computing to support SWoT deployments, which is why the introduced bias is
not an issue for our survey.

4.1.2 Identifying SWoT functions

When analyzing how the SW technologies are integrated in the IoT in surveyed
SWoT publications, different recurring functions have been identified, ag-
nostic to the underlying technology stack and to the application domain.
The concept of function in this work is understood as an elementary processing unit
that can be combined with others in order to achieve a feature of higher order.

Functions have been extracted from existing practices in a bottom-up approach.
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Identifying these functions depicted in the surveyed publications enabled the orga-
nization of contributions with respect to one another, easing their comparison. This
organization supports the capture of a structured landscape of the contributions of
the SW to the IoT. Our objective is (i) to characterize these SWoT-enabling func-
tions, (ii) to describe how they are instantiated in research contributions, and (iii) to
analyze the impact of Fog computing on their implementations. SWoT functions
capture both the usage of SW technologies for managing nodes themselves or their
context, and the applicative content they are interested in. We identified three
categories of SWoT functions:

• Content value creation functions are related to domain-specific activities,
and focus on the transformation and processing of content relevant to an
application. Content is used as a neutral term to refer to any element in the
classification provided by [Rowley 2007], organized in the Data, Information,
Knowledge and Wisdom (DIKW) hierarchy. Tab. 4.1 lists papers contributing
to these functions and Section §4.2.1 describes said functions in detail.

• Node interworking functions are not specific to an application domain but
common to the IoT domain. The development of such functions goes against
vertical fracturation by focusing on the description of node characteristics,
capabilities, and preferences. Node interworking functions allow nodes to
be aware of their neighbors on the graph, and to offer a homogeneous self-
representation. Tab. 4.2 references the papers contributing to these functions,
and they are described in Section §4.2.2.

• Node-Content dependency functions, where the focus is not on content
transformation but rather on facilitating access to content by leveraging node
characteristics. Such functions, listed in Tab. 4.3, are described in Section
§4.2.3.

4.1.3 Related work

Previous work has been done to survey the convergence between the IoT and the
SW:

• Early work in the SWoT focused on semantic sensor networks. For instance,
[Compton 2009a] surveys sensor ontologies and observation representations.
The scope of this work is especially on sensor ontologies, and even if it
proposes an overview of technologies enabling semantic sensor networks, it
does not present specific applications relying on these ontologies. Similarly,
[Szilagyi 2016] gives an overview of the SW stack applied to the IoT, and
surveys IoT ontologies. It goes beyond semantic sensor networks, but is still
limited to model analysis. We propose to focus on how the ontologies and
the technologies of the SW are used to develop the SWoT, rather than on
identifying exhaustively the models used.
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• [Atzori 2010] is a survey of the IoT domain, proposing a definition for the
notion of IoT and listing application domains and enabling technologies for
the IoT. The IoT paradigm is described as the convergence of Internet tech-
nologies, electronic devices, and SW technologies. However, the paper itself
does not cover how SW technologies are integrated into the WoT, while we
intend to analyze in detail and compare different contributions to the SWoT.

• [Barnaghi 2012] studies the roles SW technologies can play in the IoT, as
well as the challenges they represent. This paper identifies some functions
similar to what is presented in the present thesis in Section §4.2. However,
the deployments of these functions in a reference architecture is not studied,
and the impact of technological constraints of the IoT on the SWoT are no
described in depth, as they are not in the intended scope.

• [Jara 2014] gives an overview of the evolution from the IoT to the WoT and
toward the SWoT. It is focused on the role of standards in interoperability, and
the integration of SW technologies in standards. It also provides an overview
of technologies involved in the IoT. This paper is oriented toward projects and
industrial consortia, which is complementary to our study. We focus on the
contributions of the SWoT to IoT issues,and only integrate standardization
concerns when they are related to this domain.

• [Perera 2017] is a survey dedicated to Fog computing applied to the devel-
opment of the smart city. Knowledge management capabilities of Fog nodes
are analyzed, and some SW features such as semantic annotations are intro-
duced, but the focus is primarily on the enablement of the smart city by Fog
computing, rather than on the relationship between Fog nodes and SWoT
architectures.

• [Sezer 2018] gives a detailed overview of context-awareness in the IoT, and on
the methodologies used to achieve it. The authors focus more on techniques
than on deployments: the role of Fog nodes is not considered. The survey
gives a detailed analysis of the relationship between the IoT and the SW
domains, but also with Big Data and machine learning, which is out of the
scope of the present survey.

Overall, these surveys focus on the SWoT, and on the implication of the inte-
gration of SW principles and technologies in the IoT. To the best of our knowledge,
the distinction between semantically-enabled and semantically-agnostic Fog nodes,
and the respective roles of semantic Fog computing compared to semantic Cloud
computing in supporting SWoT deployments has not been the topic of any survey.
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4.2 Describing the role of semantic Fog computing in
SWoT functions

In this section, the contributions of surveyed papers are described for each identified
SWoT function, pointing out the value added by the integration of SW principles
and technologies into the IoT. Particular attention is dedicated to the role of se-
mantic Fog computing in the function instantiations. Each category of functions
is separated into subcategories of general recurring patterns among functions, in
order to cluster them into coherent sets.

4.2.1 Content value creation functions

Content value creation functions classification is summarized in Tab. 4.1. Two cat-
egories of content-related functions are distinguished, shown in the table headers:
Data/Information (DI) transformation and Information/Knowledge (IK) transfor-
mation, each described in the remainder of this section.

4.2.1.1 DI transformation

These functions are dedicated to the transformation of content according to the
DIKW hierarchy between the Data and the Information level. The core meaning
of the content is not changed by these functions, but the expressivity of its
representation varies.

Enrichment: The enrichment function is the transformation of content represen-
tation upward in the DIKW hierarchy. The description of data with meta-data to
transform it into information is an enrichment: content is described with ontolog-
ical entities to unambiguously define its meaning, capture its context and increase
its reusability and its overall value to an application.

Based on semantic Cloud computing: In settings where Fog nodes are
semantic-agnostic, content is forwarded to Cloud nodes by gateways that are in
this case not semantically enabled. It is the approach chosen by [Compton 2009a]
or by [Aïssaoui 2016]. In the latter, content collected from sensors is stored in a
standardized structure on the gateway, but it is explicitly described with an ontology
only when stored on Cloud nodes. In an industrial setting, [Wang 2018] chooses to
separate

• "operational" data represented vith the OPC-UA data model2 on Fog nodes,
close to the devices,

• data that is semantically enriched and processed by a Cloud node.

Based on semantic Fog computing: Directly creating semantically enriched
content requires the devices to produce complex, structured content, which cannot

2https://opcfoundation.org/about/opc-technologies/opc-ua/

https://opcfoundation.org/about/opc-technologies/opc-ua/
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Table 4.1: Content value creation functions in the literature

Paper Enrichment Abstraction Aggregation Presentation.
[Su 2015] F

[Barnaghi 2009] C
[Ploennigs 2017] F C C C
[Sarkar 2015] F F
[Gyrard 2016] F F
[Wang 2018] C C C
[Desai 2015] F
[Su 2018] F

[Kelaidonis 2016] F
[Pease 2017] C C C C

[Le-Phuoc 2016] C C C
[Kaed 2018b] F

[Hasemann 2012] F
[Howell 2017] C C C
[D’Elia 2017] C
[Perera 2016] C C C
[Singh 2017] C C
[Ullah 2017] C C C

[Kharlamov 2016] C
[He 2012] C
[Dey 2017] F

[Aïssaoui 2016] C
[Al-Osta 2017] F F
[Maarala 2017] F
[Nagib 2016] C
[Datta 2015] F F

[Compton 2009a] C
[Costea 2016] F F
[Han 2017] F
[Khan 2015] F C

[Mathew 2014] F C
[Fensel 2017] C F C C

[Pfisterer 2011] C
[Gyrard 2017] F C
[Ara 2014] C

[Poslad 2015] C C C
[Kaed 2016] F

[Le-Phuoc 2012] C C
[Seydoux 2018b] F



4.2. SWoT functions and semantic Fog computing 75

be generalized to all resource-constrained devices as it requires producing and ex-
changing heavy documents over communication links that can be very restricted
(LPWAN networks or CoAP for instance). To overcome this issue, [Barnaghi 2009]
proposes to resort to semantic Fog computing to perform the enrichment:
the sensors produce raw data, in any format, which is transported to a Fog node
by a dedicated network, and only then does this Fog node use its own knowledge
on the producing node to enrich the data. [Desai 2015] also proposes a enrich-
ment based on semantic Fog computing, by introducing content annotation on a
gateway with Semantic Gateway as a Service. Raw observations received by the
gateway are described using reference ontologies (such as SSN) based on its local
knowledge. In this approach, the gateway provides both technical and semantic
interoperability, by bridging multiple protocols to the Web and by annotating con-
tent with both reference vocabularies (such as SSN) and domain-specific ontologies.
Annotation is an enrichment technique in which metadata related to an ontology
is added to non-semantic content to describe the information it conveys. Similarly,
in [Mathew 2014], sensor data is enriched at the edge on the network by a Tiny
Web Server which uses an ad-hoc vocabulary to generate RDF representations of
the state of a parking spot. In [Al-Osta 2017], enrichment is also performed by
semantic-enabled Fog nodes, and in order to limit resource consumption, raw data
filtering is implemented prior annotation, and only raw data that qualified as rel-
evant is enriched. Such pre-processing is an enabler for deploying the enrichment
functionality among Fog nodes. [Mathew 2014] motivates the distribution of enrich-
ment on Fog nodes by the scalability of the approach. Technical details necessary
to enrich content are encapsulated in the local context in which they are relevant,
and integrating heterogeneous technologies has no impact on the central Cloud
node from a complexity standpoint: content is provided unified. From a more gen-
eral point of view, some configuration is necessary to connect constrained devices
to a gateway in order to use the right protocol and to decode the received con-
tent. Enriching content can therefore be added at this step of the content lifecycle
with techniques necessitating a limited amount of resources, such as mappings in
[Ferdinand 2004]. That is why semantic-enabled Fog nodes are seen as active com-
ponents for enrichment in 54 % of the surveyed papers implementing this function,
with an increasing trend in recent years.

Enrichment is one of the earliest functions that used SW technologies to
contribute to the IoT with contributions such as [Sheth 2008]. This is explained by
the predominance in early IoT work of sensor networks, a subset of IoT networks
where all the devices are sensors. It is one of the most represented functions,
with 28 of the surveyed publications (i.e. matching our inclusion criteria), 15 of
which are dedicated to enrichment based on semantic Fog computing. [Khan 2015]
compares different annotation strategies, on devices, Fog or Cloud nodes. For a
small deployment, backing annotation with semantic Cloud computing is more
efficient, but the authors defend the idea that when heterogeneity increases,
performing enrichment based on semantic Fog computing might be prefer-
able. Enrichment being a prerequisite to any semantically-enabled processing,
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it is not surprising to find it in many publications. Moreover, contextualizing
data using knowledge is a common practice in the SW domain, even outside the IoT.

Other DI functions, namely Lowering and Transformation, have been identified.

• Lowering is the function inverse to Enrichment, introduced with the mapping
reversal approach in Section §3.4. Lowering consists of the transformation
from a rich representation to a lower-level one (e.g., from RDF to a particular
XML schema), depending on a target node’s ability.

• Transformation is a function where representations from a model are trans-
formed into another of the same complexity. Transformation approaches may
for instance translate a KB from one ontology to another based on alignments.

However, there are too few contributions to these functions for us to make general
observations as part of the survey. Some perspectives are provided in Section §4.3.2
to qualify these functions, and project them on future evolutions of the SWoT.

4.2.1.2 Information/Knowledge transformation

Processing content based on background knowledge is an important part of the
IoT value creation. Content is leveraged in an application, and SW principles and
technologies can be used in order to provide innovative services taking advantage
of the Information and Knowledge levels of the DIKW pyramid.

Abstraction: Abstraction is a function sharing similarities with Complex Event
Processing (CEP) [Robins 2010]: low level symptoms are extracted from content
and correlated together in order to be transformed into a more abstract diagnosis.
It can be based on reasoning, rules, pattern-recognition, etc. [Henson 2012] defines
an abstraction as the “representation of an environment derived from sensor ob-
servation data”. Each contribution will not be presented in detail in this chapter,
but they all have common characteristics: they consume enriched content, and in-
fer new content described with a domain-specific vocabulary based on background
knowledge.

Based on semantic Cloud computing: A representative example of abstrac-
tion supported by semantic Cloud computing is provided in [Khan 2015], where the
impact of the location of a domain ontology and a reasoner is studied. In the
approach centered on Cloud nodes, content collected by sensors is pushed to a
remote server where it is processed according to domain knowledge in order to gen-
erate higher-level information through a deduction mechanism. In [Ploennigs 2017],
abstraction is deployed to support cognitive behaviors, based on semantically en-
riched data, rule-based reasoning, and learning algorithms for pattern recognition
and prediction. Reasoning is used to saturate the knowledge base by making ex-
plicit relations that were implicitly captured in the information in the KB, which
can generate large quantities of triples. That is why reasoning and learning, which
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is in general a resource-intensive computation, are deployed on Cloud nodes in
this paper. [D’Elia 2017] proposes an extension to a work initially proposed in
[Kiljander 2014] by enabling the registration of "persistent update" queries. These
queries allow to capture rules in the form of SPARQL UPDATE queries to infer
new knowledge when triples are added to the knowledge base. Ultimately, this
component is meant to be deployed on Fog nodes, as the development of a mobile
version by the authors suggests. However, the characteristics of the experimental
deployment do not match the criteria we defined for Fog nodes, as they involve
machines with large memories and high computing capacities. In an Industrial IoT
(IIoT) use case, [Pease 2017] proposes an asset-tracking system where an applica-
tion ontology is used to represent, in near-real time, the location of assets in a
smart factory. Observations are combined with background knowledge in order to
explicitly represent the position of an asset, producing high-value information from
lower level observations. Presentation of the inferred position to users is also part
of the requirements driving the use case described in [Pease 2017].

Based on semantic Fog computing: [Gyrard 2016] and [Gyrard 2017] pro-
pose a Cloud architecture to store and share rules, based on the principles of Linked
Data applied to Rules: Sensor Linked Open Rules (S-LOR). These rules are used
by gateways of mobile Fog nodes to make inferences when collecting data. In-
stead of a rule-based reasoning engine, [Costea 2016] proposes an approach based
on streaming queries. The approaches benefit from both the global accessibility of
Cloud nodes when sharing rules, and from the scalability of a distributed approach
when processing content via semantic Fog computing. [Sarkar 2015] proposes the
modeling of policies by ontologies in order to manage the services offered by diverse
nodes, dynamically created according to context. The policies capture directives for
decision making. In [Maarala 2017] and [Su 2018], the authors compare a reasoning
process leading to content abstraction based on semantic Cloud and Fog computing.
In the latter, GPS observations are also processed based on rules in order to infer ab-
stractions about smart transportation. A single observation can be abstracted (e.g.,
a velocity under 25Km/h is described as a low speed), as well as a conjunction of
observations, potentially across time (the succession of two low speed observations,
with opposite directions, indicate a U-turn). In [Seydoux 2018b], [Seydoux 2018a]
and [Seydoux 2018c], we propose a distributed approach for rule-based reasoning,
considering rules compliant with the principles of the S-LOR. Rules are used as
modular applicative components that are dynamically distributed among Fog nodes
in order to support the production of deductions in an abstraction functionality.
Details about these approaches are provided in Chapter §5.

The production of abstract content is necessarily driven by an applicative-
level need. A noticeable pattern in the surveyed semantic Fog computing of the
abstraction function is the use of targeted, application specific deduction mecha-
nisms, such as rules and streaming queries, rather than more generic reasoners.
These technological choices enable a more modular reasoning, and are adapted to
a resource-constrained environment.
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Aggregation: Aggregation is a function where multiple instances of content are
used in order to produce a new content instance of the same level in the DIKW
hierarchy, as opposed to abstraction where the inferred content is of a different
nature from the pieces of content used for inference. For instance, computing the
average (or the maximum) of several values is aggregation, whereas using the same
values to infer the occurrence of a meteorological event is abstraction. Aggregation
can be used to expose a certain view over content, projected over temporal or spatial
dimensions, as well as based on a more complex mathematical approach.

Based on semantic Cloud computing: [Poslad 2015] proposes an Early
Warning System (EWS) architecture enabled with semantic functionalities. Con-
tent collected by sensors is channeled towards Cloud nodes, before being enriched
and used in order to be abstracted into high-level events. Once the events are iden-
tified, the system takes operational decisions (where to send rescue, what places to
evacuate...), and these operational decisions are implemented by Fog nodes. Aggre-
gation is implemented in the form of filtering in [Poslad 2015]. Value is created with
data fusion techniques, and some filtering is implemented before storage and pro-
cessing: since content and metadata are stored separately in this paper, metadata
is used to decide whether the content should be stored or not. In [Le-Phuoc 2016],
aggregation of content is performed using operators from SPARQL, like COUNT,
MIN, etc, from a customized extension of SPARQL adapted to streaming queries to
perform aggregation over time or space. Content is streamed by Fog nodes to Cloud
nodes, where the aggregation is performed. In this paper, aggregation is a driving
mechanism for sensor mash-up. A similar approach mixing static and streaming
content is proposed in [Kharlamov 2016], with the proposal of extending DL-Lite
logic with aggregation operators. These operators are mapped to STARQL, a query
language, and enable complex aggregation operations to be expressed directly in the
queries over a combination of static and streaming KB. One of the flagship use cases
of IoT-enabled appliances, be it for Smart home or Smart building, is energy saving.
It is the use case motivating [Fensel 2017], where consumption information is col-
lected from a smart plug monitoring a fridge. Measures are gathered and enriched
locally by the users, to be published on a platform where they are compared to
others on a large scale, after being aggregated in order to collect several metrics,
e.g., daily minimum, maximum, and average consumption. Aggregation is joined in
this paper to abstraction: past data and background knowledge are used to make
projections. Users are provided information about their appliance, allowing them
to monitor its quality or to make purchases based on consumption information pro-
vided by others. Aggregation is performed on a large scale in [Ullah 2017]: e-health
data collected about a user are enriched and processed on Cloud nodes using Big
Data techniques and external KB. This system is deployed in order to deploy the
decision-making process of the healthcare provider.

Based on semantic Fog computing: [Singh 2017] proposes a military use-
case, where soldiers carry sensors whose enriched content is aggregated before being
disseminated among Fog nodes. It is used by Cloud nodes to trigger alarms in risk-
prone situations, in which case orders are dispatched to human units. Aggregation
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techniques are not described in detail.
With the role of sink nodes played by gateways, filtering and aggregation is a

function implemented in papers dedicated to Fog computing in general, but that
are not focused on the SWoT, and are therefore not part of our survey, such as
[Sheng 2015]. In the surveyed papers discussing aggregation functions, it is often
implemented on large quantities of content, with potentially computation-intensive
techniques, which explains the dominance of implementations based on semantic
Cloud computing. A semantic Fog computing approach to aggregation would re-
quire focusing on less content, and to aggregate it with respect to the local context
of the Fog node, rather than the large context presented in contributions such as
[Le-Phuoc 2016] or [Fensel 2017].

Presentation: Presentation is the display of content dedicated to human con-
sumption. When produced, SWoT content is typically a numerical value with some
metadata, and presentation proposes a human-oriented interpretation of it instead
of its raw form, for instance on a map or in the form of graphs: it is a user-facing
function.

Based on semantic Cloud computing: [Le-Phuoc 2012] uses geographical
metadata to display the location of content sources on a map, and to give ac-
cess to these sources via a map interface. In [Le-Phuoc 2016] (an extension of
[Le-Phuoc 2012]), content is aggregated prior to the visualization phase, in order
to display refined content, like heat maps or graphs, complementary to the map
information. When [Fensel 2017] provides classic charts to summarize user infor-
mation, [Ploennigs 2017] uses an Augmented Reality (AR) system to provide visual
information about appliances in a smart building. Enriched content is queried and
displayed in order to have a projection of the appliance state for an operator.

In the surveyed papers implementing presentation functionalities, presented con-
tent is processed in order to provide a larger context to the consumer. Creating
graphs summarizing historical content or enabling comparison with the behavior of
other users, or projecting content onto a map, are different forms of global contex-
tualization. Since semantic Fog computing processes data in a local context, it is
not suitable for such a function, which is why it is only based on semantic Cloud
computing in the surveyed papers.

4.2.2 Node interworking functions

In node-related functions, the messages exchanged between nodes do not focus on
the applicative-specific content these nodes collect or process, but on the nodes
themselves. Node-interworking functions classification is summarized in Tab. 4.2.
They are separated in two sub-categories: functions dedicated to awareness of each
other among nodes, and functions dedicated to node heterogeneity management.



80 Chapter 4. Semantic Cloud and Fog computing for the SWoT

Table 4.2: Node interworking functions in the literature

Paper Abstraction Composition Configuration Discovery Selection.
[Ploennigs 2017] F
[Sarkar 2015] F F F
[Mayer 2013]
[Kelaidonis 2016] F F
[Kaed 2018b] F F
[Nikoli 2011] C
[Wang 2017] F F F

[Foteinos 2013] C C
[Perera 2014b] C C
[Seydoux 2018b] F
[Kharlamov 2016] C
[Han 2014] C C C
[Li 2015] C

[Mrissa 2015] C C
[Hussein 2016] C C
[Dey 2017] F F

[Aïssaoui 2016] C C
[He 2012] C
[Lee 2016] F F F

[Compton 2009a] C
[Christophe 2011] C F
[Han 2017] F
[Khan 2015] F

[Vlacheas 2013] C C C
[Mathew 2014] F
[Fensel 2017] C
[Pfisterer 2011] C C
[Kiljander 2014] F F
[Gyrard 2017] F
[Ara 2014] C C C C
[Ruta 2016] F
[Poslad 2015] C
[Kaed 2016] F F
[Bovet 2014] F F

[Nachabe 2016] C
[Ben-Alaya 2015]
[Perera 2016] C C C C
[Kibria 2015] C C F
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4.2.2.1 Functions providing homogeneity among nodes

As stated in the introduction, heterogeneity at both content and node level, and the
interoperability issues it brings, is one of the leading reasons for the introduction
of SW technologies into the IoT. The three functions dedicated to heterogeneity
management are focused on the harnessing of this diversity.

Node abstraction: Abstraction is the representation of a node by a virtual en-
tity, usually described with an ontology in the case of the SWoT. In a context
of heterogeneous nodes, abstraction aims at focusing on the modeling of generic
node representations to describe their characteristics in a unified way. It
allows applications to deal with a set of homogeneous nodes, breaking the vertical
silos between application domains [Nitti 2016].

Based on semantic Cloud computing: Early studies such as
[Compton 2009a] focus on node representation (in this particular paper, sensor
representation) with SW technologies. This work led to the creation of ssn3, an
ontology largely adopted by the community and used in nearly one in three pa-
pers of the survey. Sensor descriptions are stored in a KB by Cloud nodes. In
[Pfisterer 2011], the behavioral patterns of nodes are used in order to automatically
attach a description to unclassified nodes. Similarity is computed between the out-
put of the nodes already described in the Cloud-hosted KB and those of the newly
introduced nodes, and the undescribed nodes are annotated using the description
of the similar nodes. This approach suffers a cold start issue: when only a few
sensors are annotated, the clustering is less efficient, and the system needs to grow
in order to propose a wider variety of sensors and more representative clusters.
[Vlacheas 2013] proposes the notion of Virtual Object (VO) to describe how nodes
can be abstracted, and describes how this approach tackles heterogeneity issues.
The authors then describe how abstracted nodes can be used in other functions,
such as composition or selection. These contributions are described in the cor-
responding paragraphs below. In [Mrissa 2015], physical nodes are associated to
avatars, virtual representations described in OWL. The authors identify require-
ments for a WoT platform, and show how their proposed avatar architecture meets
these requirements, such as interoperability, reactivity, safety... Avatars are also
given introspection capabilities, in order to support collaboration and service com-
position, described more specifically in the paragraphs associated to these functions.
Avatars are managed by Cloud nodes.

Based on semantic Fog computing: [Khan 2015], [Ploennigs 2017],
[Dey 2017] or [Kaed 2018b] all manipulate node abstractions on Fog nodes. In
[Bovet 2014], node abstractions located on Fog nodes are manipulated through the
CoAP protocol, in order to be supported by constrained nodes. The characteristics
of a node are separated into static and dynamic properties. Static properties con-
stitute the actual device description, such as the sensor type or manufacturer, while
dynamic properties relate to the content it collects, e.g., the most recent measure

3http://purl.oclc.org/NET/ssnx/ssn

http://purl.oclc.org/NET/ssnx/ssn
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value. A similar distinction is made in [Mathew 2014] between static (“preset” in
this case) and dynamic characteristics, embedded on a Fog device. Nodes are listed
in a catalogue based on an ontology in the semantic gateway framework proposed
by [Lee 2016] in order to ease device management tasks from the gateway.

With content enrichment, node abstraction is the most represented functions,
with 30 papers of this survey discussing it. The primary drive in the emergence
of the SWoT is interoperability, and this claim is reflected by the predominance of
content enrichment and node abstraction, which are directly dedicated to interoper-
ability and solving heterogeneity issues for both content and nodes. An important
aspect of node abstraction is that it is a preliminary step to other functions using
SW principles to manipulate devices. Initially mainly based on semantic Cloud
computing, its support by semantic Fog computing is increasing.

Composition: Composition is the function associating nodes between themselves
in order to create new nodes, offering services previously unavailable on the network.

Based on semantic Cloud computing: The notion of VO presented in
[Vlacheas 2013] and in [Foteinos 2013] is associated to the notion of Composite Vir-
tual Object (CVO). The authors of these contributions describe a process to build
CVO on top of homogeneous VO, themselves being abstractions for real-world
objects. Based on a specification of applicative needs, CVO are dynamically cre-
ated. In [Han 2014], node composition is performed using the semantic description
of different services. A plan is then computed, and the services selected are called
sequentially according to the plan. The process is dynamic, and the composite
nodes described by the execution plan is not stored in the KB. In [Kibria 2015], the
creation of CVO is guided through the use of templates. Once defined, the CVO
offers a service, and its characteristics are used to retrieve the service at runtime.

Based on semantic Fog computing: Two surveyed papers consider seman-
tic Fog computing to perform composition: [Sarkar 2015], and [Kelaidonis 2016].
None of them covered the technical details of the composition, but focus rather
on its relevance to the proposed frameworks. The authors of [Sarkar 2015] give a
high-level vision of semantically-enabled Fog nodes, capable of both abstracting and
dynamically composing the devices they are connected to. These dynamic compos-
ite virtual objects are used to implement contextual services. In [Kelaidonis 2016],
node composition is presented from a service point of view. It is based on the de-
scription of capabilities of virtualized devices, and enables the creation of complex
virtual devices based on preexisting services.

Composition is a function dependent on node abstraction, because an abstracted
node representation enables the creation of virtual composite nodes. That is why all
9 papers discussing the composition function also discuss abstraction: they first de-
fine how they abstract physical nodes, and then demonstrate how these abstractions
can be manipulated separately from the nodes they initially represent. Only two
of these papers perform such composition on semantically enabled Fog nodes, but
we expect this function to be more widely supported by semantic Fog computing
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in the future as explained in Section §4.3.2.4.

Configuration: Configuration is the function opposite to abstraction: generic
representations are adapted to specific deployments, and physical nodes are con-
figured in order to match their virtual representation. This function can be used
either to change the configuration of a node, or to send a command to an actuator
in order to update its state.

Based on semantic Cloud computing: [He 2012] proposes a Cloud-based
home automation platform in which sensor observations are used with domain
knowledge in order to infer whether or not a plant should be watered, and con-
trol a watering actuator accordingly. The authors chose an approach to content
processing based on semantic Cloud computing in order to centralize all intelli-
gence in Cloud nodes, therefore allowing the user to only deploy simple low-cost
devices in his environment. [Han 2014] proposes a node composition function, and
uses the description of the obtained composite node in order to build the service
calls implementing the composite service. The configuration function, i.e. bind-
ing services to their abstract node representation and execution of said service, is
performed on a Cloud-based platform. In [Aïssaoui 2016], a representation of the
actions to be taken is inferred from the representation of the user requirements and
from the observations of the environment. These actions are associated to service
descriptions that are processed by a remote node to actually make the service calls.

Based on semantic Fog computing: The possibility to avoid the delay of
a round trip from a gateway to Cloud nodes and back to the gateway in order to
implement autonomic control of a device is a motivation to implement control on
Fog nodes. Decisions are in this situation taken closer to devices, without the need
to communicate with a remote server. [Kiljander 2014] proposes an architecture
where smart agents consume semantic messages from a broker, and control actua-
tors by changing their virtual representation. However, the paper does not provide
further details on the implementation, but it is located in the Fog tier of the Cloud-
Fog-Device pattern. The framework proposed by [Lee 2016] contains a rule system
to support control of devices. Rules component are expressed according to the
semantic description of nodes, enabling their control by the gateway. Rule-based
reasoning distributed among semantic-enabled Fog nodes is also the approach pro-
posed by [Kaed 2018b], the continuation of [Kaed 2016] presented in Section §4.2.3.
Their contribution proposes a mix of SW technologies and scripting, where content
is used to trigger Event-Condition-Action (ECA) rules. On match, the rule modifies
the state of a node.

Configuration has become more popular with the evolution of sensor networks
into device networks (containing actionable nodes), and the associated bidirectional
communication with devices. It promotes the evolution of semantic Fog computing,
where decisions based on sensor observations can be taken based on local context
in order to trigger actions. Distributing, within the network, decision-making ca-
pabilities combining sensor observations and contextual knowledge as input, and
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actuators control or device reconfiguration as output, enables the creation of dis-
tributed local autonomic systems. The contribution I.B of this thesis, previously
published in [Seydoux 2016b], described in Chapter §3, discusses the role of SWoT
technologies for autonomic system. The proposed approach is based on semantic
Cloud computing, since semIoTics is deployed on a powerful computer, and the ne-
cessity for rapid reactions in the autonomic control advocates for a shift to semantic
Fog computing.

4.2.2.2 Node awareness functions

In order to communicate, IoT nodes need to be aware of the existence of each
other, and to have respective addresses to exchange messages. Furthermore, nodes
may be only intermittently available, to save battery life for example, or due to
failure, maintenance operations, etc. In this context, a dynamic awareness of a
node’s surroundings is required, and the following functions contribute to it.

Discovery: Discovery is the function in which descriptions of remote pairs are
gathered by a node, potentially with respect to some criteria.

Based on semantic Cloud computing: Similarly to composition, discovery
is dependent on node characteristics described in an abstraction process. Such
description allows discovery by querying on certain characteristics of the node,
as in [Ara 2014]. [Kiljander 2014] proposes a discovery for Fog nodes based on a
semantic description issued to a central repository whose address is known a priori
by the issuer of the discovery request. A resource discovery platform is proposed
by [Perera 2016], in which the user is helped to explicit the nodes it requires, be it
at the sensor or at the service level.

Based on semantic Fog computing: [Ruta 2016] proposes a discovery
method based on google’s Physical Web (PW)4 and extending it to a so-called
Physical Semantic Web (PSW). Discovery of nearby nodes is enabled by the pro-
tocols and technologies of the PW, but the PSW extracts from the identification
messages semantic annotations in order to decide whether the node is relevant or
not to the client, running on a mobile device. [Lee 2016] proposes a query-based
discovery similar to [Ara 2014], but the interrogated KB is hosted on Fog nodes.
Authors of [Wang 2017] rely on the borderline notion of Edge Cloud, which is a
Cloud node with some Fog node characteristics, such as proximity to devices. It
is a notion also present in [Kelaidonis 2016], where no reference characteristics are
provided either, but where the Edge Cloud has the same role of sink and processing
node as a Fog node, and exposes its functionalities directly to applications in the
same way as a Cloud node. Edge Cloud is a notion that is close to Cloudlets as de-
fined in [Verbelen 2012]. The authors of [Wang 2017] adapt the SPARQL discovery
queries by using a spatial index in order to limit computation.

In a typical hierarchical IoT architecture, nodes of a given level are connected
to multiple nodes of an inferior level, and to a few nodes of superior level (often

4http://google.github.io/physical-web/

http://google.github.io/physical-web/
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only one). Therefore, devices may be deployed with the hard-coded address of the
middle node they communicate with , while in Fog or Cloud architectures nodes need
to discover their underlying neighbors as they connect and disconnect. Discovery
supports the deployment of dynamic infrastructures, which is both useful within the
Fog tier and between the Cloud and the Fog tiers of the Cloud-Fg-Device pattern.
Discovery function implementations supported by both semantic Cloud and Fog
computing are therefore represented, with 8 studies based on semantic-enabled Fog
nodes out of 11.

Exposition: Exposition is the function which is complementary to discovery, in
which a node makes its own description available in order to be discoverable. The
discovery target provides the information necessary for the discovery.

Based on semantic Cloud computing: The authors of [Ben-Alaya 2015]
propose to enhance the registration mechanisms offered by the oneM2M standard
to support a semantic description exposition. A device can register itself onto a Fog
node if it knows its address, and the registration query contains a standard self-
description of the device. The authors propose to include a semantic description, or
a dereferencable URI, in the registration request. Since then, the oneM2M standard
included a "semantic descriptor" resource, carrying an RDF/XML description of
its parent node. It allows a node to expose its capabilities to its target when
registering onto it. Another aspect of exposition is proxying: after discovering a
set of devices, a Fog node can act as a proxy and perform exposition of said devices
in their stead, as [Nikoli 2011] proposes. In the former, the authors propose an
architecture where the exposition/discovery functions can be specific to a type of
network or technology. This way, the function is both adapted to the constraints of
the devices and understood by the Fog nodes, which performs an enrichment phase
on the node metadata in order to redistribute them in a more generic format. In
the proposed deployment, proxying is performed by a Cloud node, but it could be
adapted for a Fog node as well.

Based on semantic Fog computing: [Christophe 2011] and [Mayer 2013]
envision the embedding of self descriptions directly in devices. These descriptions
can be queried through a REST interface. With such approach, discovery is only
partly automated, since accessing the REST interface in the first place is not cov-
ered and supposes a minimal pre-existing discovery mechanism (such as a lookup
directory). However, nodes provide their own semantic description, enabling an
exposition towards other nodes of the same Fog architecture. In [Ruta 2016], expo-
sition is supported by the PSW, already described for discovery.

Discovery and exposition are two interdependent functions, enabling the de-
ployment and management of dynamic IoT networks. The rate of papers where
semantic Fog computing supports the exposition function is similar to discovery (7
out of 10). The Fog infrastructure being by nature mobile and dynamic, it is sup-
ported by such functions which are necessary to the emergence of the “intelligent
edge” proposed by [Patel 2017].
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Selection: Selection is a function where a node decides which other node should
perform a task. It is especially relevant when multiples nodes offer similar services
yet have different capabilities, characteristics, costs, etc.

Based on semantic Cloud computing: [Vlacheas 2013] refers to the node se-
lection function as the assessment of relevance metrics. The authors use abstracted
nodes, or VO, and the semantic description of their characteristics (not precisely
described in the paper), in order to perform a selection. The proximity criteria
are defined dynamically depending on applicative requirements, whose expression
is stored by Cloud nodes. This work focuses on the ability to perform a selection
despite the heterogeneity of underlying objects thanks to the abstract representa-
tion of nodes. In [Perera 2014b], the authors identify two types of criteria for node
selection: non-negotiable criteria, representing the ability of the node to provide
a service, and negotiable requirements, over which selected nodes will be ranked.
The filtering phase is performed using SPARQL queries representing user require-
ments, and the ranking phase is based on a multi-dimensional criteria aggregation.
[Han 2014] describes a service selection function to create a composite service out
of existing services. The actual node selection is performed at binding time, where
service descriptions stored in a service cache by the middle nodes is used to associate
the composite service with actual nodes. In [Fredj 2013], node selection is driven by
a service search initiated by the user. This search starts from a top gateway which
is the entry point of the user to a building network. Node selection is performed
recursively in a gateway hierarchy, based on the semantic description of service
clusters. At the lowest level of the hierarchy, the final gateway, actually connected
to the lower nodes, returns the actual characteristics of the nodes matching the
service request. Ranking criteria can also be based on user criteria, as in [Ara 2014]
[Hussein 2016]. This approach is particularly suited for smart user spaces, such as
shopping malls [Ara 2014] or airports [Hussein 2016], where multiple devices and
services will be similar and user-facing.

Based on semantic Fog computing: [Christophe 2011] identify the node
selection issue, especially for densely equipped environments, and envisions a so-
lution based on semantic Fog computing, but their position is not refined with a
precise contribution. In [Dey 2017], Fog nodes communicate with robots, and they
use an ontology-based task representation in order to assign tasks. The capabilities
of robots and nodes are used in order to select nodes able to perform the required
tasks.

Node selection is driven by high-level policies (e.g., energy saving or time effi-
ciency), based on criteria to compare nodes, enabling the computation of a score
and ranking. The use of SW technologies and principles are used to define these cri-
teria. Selection is different from sheer discovery, because in the latter the function
is driven by yes-or-no criteria, and the notion of comparison between nodes in this
case is not considered. Depending on the complexity of the metrics chosen for com-
parison, on the expected volume of nodes to compare, and on the location of the SW
stack deployment, selection is implemented by semantic Cloud or Fog computing.
In the majority of the surveyed cases, substantial resources are required for
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Table 4.3: Node-content dependency functions in the literature

Paper Querying Dissemination
[Su 2015] F

[Boldt 2015] F
[Charpenay 2018] F
[Kelaidonis 2016] F
[Kaed 2018b] F
[Pease 2017] C

[Le-Phuoc 2016] C C
[Hasemann 2012] F
[Wang 2017] F
[Loseto 2016] F
[Howell 2017] C
[Ullah 2017] C

[Kharlamov 2016] C
[Dey 2017] F
[Siow 2016] F
[Nagib 2016] C
[Ashraf 2010] F
[Costea 2016] F
[Fredj 2013] F

[Christophe 2011] F
[Khan 2015] C

[Puustjärvi 2015] C
[Poslad 2015] C
[Kaed 2016] F
[Bovet 2014] F

[Le-Phuoc 2012] C C
[Perera 2016] C

the computation, and a global comparison is preferred to a comparison of nodes
in a context local to a Fog architecture. Semantic Cloud computing is therefore
predominantly adopted for the selection function, with 7 studies out of 10.

4.2.3 Node-content dependency functions

In Node-content dependency functions, content itself is not transformed, but its
management is still the primary focus, as opposed to node interworking functions.
These contributions focus on how content is distributed across an IoT network (e.g.,
routing), or accessed (e.g., consumption). Content itself is not necessarily expressed
using the SW technologies, but its management on the network is based on these
technologies.
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Querying: Querying is the function where an application explicitly accesses con-
tent on a remote node, in a request/response manner.

Based on semantic Cloud computing: In an IoT network, content might
not necessarily be enriched and stored in a knowledge base, preventing it from being
queried directly using SW technologies. However, mappings are possible from rela-
tional database (DB) schema to ontologies, enabling Ontology-Based Data Access
(OBDA). [Kharlamov 2016] promotes such an approach, extended with aggregation
functions, and deployed among Cloud nodes. In [Nagib 2016], content is also col-
lected and stored in a Cloud DB, where it is accessed by clients via SPARQL using
D2RQ mappings. [Poslad 2015] proposes a mixed approach, where part of the data
is stored in a traditional SQL DB, but its associated metadata is stored as RDF for
more expressive SPARQL queries. In other papers, where querying is not the core
contribution, direct querying in SPARQL is also used after storing RDF content in
a knowledge base, as it is proposed in [Pfisterer 2011] for instance.

Based on semantic Fog computing: [Siow 2016] proposes an OBDA ap-
proach, with transformation from SPARQL to SQL via RML, with and without
SPARQL streaming extensions. This contribution is meant to be deployed on a
Fog node: it takes advantage of the storage efficiency of relational DB compared to
RDF, while still providing the expressiveness of SPARQL for querying. Efficiency is
also a core motivation for the contribution in [Kaed 2016], where the authors pro-
pose a dedicated query engine, with an ad-hoc language and functionalities such as
minimal inference. The engine is deployed on gateways, to give access to both the
devices connected to it and the observations they collect. [Loseto 2016] proposes
a different approach to content access, based on W3C’s recommendation Linked
Data Platform (LDP). However, LDP is mapped to HTTP, which is unadapted to
very constrained nodes. That is why the authors propose an HTTP-CoAP mapping
preserving functionalities of LDP, while enabling its deployment among Fog nodes.
[Hasemann 2012] also relies on the CoAP protocol to give access to content by di-
rectly embedding an RDF store onto devices. The authors implement a specific
access mechanism as part of the Wiselib they propose. [Boldt 2015] extends the
Wiselib, by enabling SPARQL federated querying for network of devices, where a
Fog base station exposes an endpoint and queries both devices and external knowl-
edge bases. In [Charpenay 2018], access to content is also allowed down to the
device level with the use of a binary serialization of JSON-LD and some develop-
ing features of JSON-LD, namely framing, that provides a querying method over
JSON-LD data.

Querying is the third most represented function, because like enrichment and
node abstraction, it is directly dedicated to interoperability: using the SW tech-
nologies and principles to access content hides schema heterogeneity and provides
a meaningful querying vocabulary. Out of 21, 11 rely on semantic Fog computing.
Content consumption can be offered as a service based on semantic Cloud com-
puting for external applications, in which case the delay added by Cloud nodes is
a small inconvenience compared to the unified interface it exposes. The content
access paradigm has long been perceived as the channeling of all content into a
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central point (DB or KB), which is well suited for semantic Cloud computing. The
development of decentralized solutions and of query federation shows an alternative
supported by semantic Fog computing, where smaller datasets can be accessed at
a large horizontal scale.

Dissemination: Dissemination is the forwarding of a piece of content to remote
nodes in a push manner. It can be driven by the interest of the receiver, or
on applicative logic of the emitter. Routing is also a form of dissemination, where
content packets are transmitted across the network from node to node based on a
policy.

Based on semantic Cloud computing: In [Le-Phuoc 2012] and
[Le-Phuoc 2016], streaming queries are used as expressions of interest in order to
be notified when content is created. In this case, dissemination is performed toward
applications. [Poslad 2015] uses dissemination as a mechanism to propagate emer-
gency information as well as to make content available for data fusion. Content is
initially gathered, stored and processed in Cloud nodes before being disseminated.

Based on semantic Fog computing: Routing and dissemination are also im-
portant features in moving, horizontal Fog architectures. [Ashraf 2010] proposes a
distributed approach to routing, where each node computes the optimal route from
itself to a destination broker. Each node knows the distance of its neighbors to the
destination broker, and, to break ties, the semantic distance between the node pro-
file and the profile of its neighbors is used. A node profile instantiates a dedicated
ontology, and it is serialized into a binary string. Each node profile is unique, and
used as an identifier. The evaluation function computes the energetic cost of the
produced routing tree, and shows a clear reduction of energy consumption. In
this approach, the SW principles are used to reduce energy consumption at run-
time. However, the algorithm used to serialize the semantic description of the node
output is not clearly described. The generated serializations of node descriptions
are suitable for constrained nodes, but it is unclear whether they capture the full
expressivity of the ontology language or not. In a different, hierarchical approach,
[Fredj 2013] describes the construction of routing tables for service provisioning
based on node clustering. Servicing nodes are described with an ontology, and the
are clustered by the gateway they are connected to based on a semantic similarity
measure. The obtained clusters are provided to the upper-level gateway, which uses
the clusters from the nodes to build a routing table, and reproduces the process
recursively. Semantic Fog computing plays an active role in the function, since even
if the root of the hierarchy is a Cloud node, the intermediary nodes are distributed
Fog nodes.

Routing policies are at the core of the internet, and not only of the IoT, but
integration of SW technologies enables the definition of specific SWoT routing poli-
cies. In these approaches, the routes to forward content from one node to another
can not only be computed based on a semantic description of nodes, but can also
consider knowledge about the content itself in the routing process. Out of 8, 5 pro-
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pose dissemination of content approaches based on semantic Fog computing. Two
different cases emerge:

• Among Cloud nodes, dissemination is directed toward high-level applications,
or disseminated content has been previously processed

• Among Fog nodes, dissemination is a function more directly dedicated to
content transport based on contextual information about other nodes, and
to knowledge sharing about content of a lower level in order to maintain a
consistent context among Fog nodes

4.3 Identifying trends in SWoT processes

The landscape of the relationship between semantic Fog computing and SWoT
architectures depicted in the previous section in Section §4.3.1 some insights on
the trends observed in the surveyed publications. In the process of the survey,
we identified some functions which seemed relevant to the evolution of the SWoT
domain towards semantic Fog computing, but which were under-represented in the
surveyed publications. It did not allow us to make generic statements as part of the
previous survey, but these functions are presented in Section §4.3.2 as perspectives
for future developments of the SWoT. The survey is focused on the integration of
SW technologies in IoT architectures and Fog nodes, but there are also interesting
evolutions of the SW in order to adapt to SWoT requirements. The purpose of
Section §4.3.3 is to give an overview of these evolutions. Finally, a perspective on
the complementarity of semantic Cloud and Fog computing in supporting SWoT
deployment is provided in Section §4.3.4.

4.3.1 Analysis of the surveyed contributions

An overview of Tab. 4.2, and the analysis conducted in Section §4.2, leads to
an initial answer to the research question: Fog nodes indeed actively support the
deployment of SWoT functions. However, the simplicity of this answer does not
cover the complexity of the relation between the Fog computing and SWoT domains.

Situating SWoT contributions in a reference 3-layered architecture shows how
nodes constrain the functions they support: contributions dedicated to the
same function but at different levels do not expect similar outcomes. This observa-
tion is an explanation for the predominance of solutions based on semantic Cloud
computing in resource-intensive functions such as aggregation. On the other hand,
functions that can be implemented with simple mechanisms requiring few resources,
such as discovery or exposition, are easier to distribute on constrained nodes.

The notion of context scale is also a determining factor. Functions such as en-
richment can be performed at a local scale, in a limited context, which is easy to
achieve in Fog architectures, by definition more context-specific than Cloud archi-
tectures. Since Fog computing is based on highly distributed nodes, it is adapted to
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Figure 4.2: Summary of identified functions, distributed per percentage of studies
based on semantic Fog computing
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parallelizable tasks, in which a local context is sufficient. On the other hand, func-
tions such as presentation or composition are based in the surveyed contribution
on a global context, centralized on a Cloud node. Aside from the resource point of
view, distributing such global context among Fog nodes could introduce delays and
consistency issues.

The identified functions have been defined as atomic units that can be com-
bined together into functions of higher order. That is why papers introducing full
platforms, such as [Kibria 2015], [Poslad 2015], [Perera 2016] or [Le-Phuoc 2016]
are related to numerous functions: complex functionalities are achieved by build-
ing sequences of simpler functions. 9 papers share a common high-level function,
namely analytics, a function where content is used to support decision-making and
prediction. Decision support has two aspects: on the one hand, the supported
decision-making process can be performed by human beings, and on the other hand
it applies to autonomic systems. The former case is not specific to the IoT, but can
be instantiated with a sensor network, and the system only provides guidance to
a human decision maker. Analytics is implemented in [Fensel 2017], [Pease 2017],
[Howell 2017], [Wang 2018] as a mix of content abstraction and aggregation, com-
pleted with presentation. Past content is aggregated with various mathematical
approaches, and background knowledge is used in combination with aggregated
content in order to achieve prediction, which is a form of abstraction. Both aggre-
gated content and predictions are presented to the user in the form of graphs, maps,
alerts, or dashboards, helping a human operator to capture a global understanding
of the context. Some smart city scenarios use sensor networks and IoT deployments
for decision support, e.g., Dublin’s Smart Energy Demand Analysis5. In this survey,
all 9 papers implementing analytics does so on Cloud nodes. It is consistent with
the considerable computing resources required to perform such a function, as well as
with the globality of the contextualization of content preferred in decision-making
that is better adapted to semantic Cloud computing. [Ullah 2017] provides a good
illustration of the motivation for deploying analytics functionalities on Cloud nodes:
the context necessary for a successful analysis is very large, and does not match the
locality of decision-making enabled by Fog computing. [Ploennigs 2017] also con-
siders analytics on Cloud nodes, but implements other functions (e.g., enrichment)
with semantic Fog computing, thus combining the characteristics of Fog and Cloud
computing for complementary functions.

When composing functions to implement complex applications, a notion of life-
cycle can be defined, where functions are chained in an order depending on the
proposed application, and depend on each other. In this lifecycle, functions are
executed either on Fog nodes or on Cloud nodes. The location of an individual
function can also be explained by its dependency to other functions. For instance,
if the enrichment of content is based on node abstractions that are only available on
Cloud nodes, it is more likely that the enrichment function will also be implemented
by semantic Cloud computing, even if the resources it requires would be adapted to

5http://smartdublin.ie/smartstories/spatial-energy-demand-analysis/
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a deployment among Fog nodes. These dependencies can be found in approaches
promoting composition such as [Vlacheas 2013] or [Foteinos 2013]: the composition
function is based on node abstractions built in the Cloud. These dependencies also
explain the predominance of enrichment and node abstraction functions. Most of
the identified functions depend on semantically described nodes and content, and
enrichment or abstraction are prerequisite to advanced SWoT deployments. The
increase of contributions based on semantic-aware Fog nodes for these preliminary
functions in recent years enabled the upward trend of semantic Fog computing for
functions such as content abstraction or node discovery. Of course, lifecycles can
also be directed from the Cloud tier to the Fog tier of the Cloud-Fog-Device pat-
tern as well, and complex deductions produced by Cloud nodes can be disseminated
among Fog nodes.

4.3.2 Envisioning future functions

When proposing functions to describe contributions brought in the surveyed papers,
we also identified functional units that provided functionalities relevant to SWoT
deployments, but to the best of our knowledge they were not instantiated in the
papers selected in the survey. The development of these functions is a next step
in the evolution of the SWoT domain, as captured in [Wang 2015a]. The authors
describe the initial notion of sensor devices, which evolved gradually into

• Sensor networks with the development of communications,

• Sensor Web with the concern of interactivity, accessibility and formats,

• WoT with the integration of smart Things

• finally Semantic sensor networks, fusion of the Semantic Web with Sensor
Web.

The SWoT we depict is to the WoT what the Semantic sensor network is to the
Sensor Web. The integration of actuators, and the possibility of communicating
back and forth with constrained devices (instead of only consuming the data they
collect), leads to the necessity for lowering, described in Section §4.3.2.1. The
growing development of the SWoT also leads to the emergence of datasets, devices
networks and applications using different ontologies, potentially to describe simi-
lar domains. Translating content from one ontology to the other is therefore an
important interoperability-enabling function, that is only implemented in 1 con-
tribution. We emphasize its potential in Section §4.3.2.2. Transforming content
from one ontology to the other also raises consistency issues. Even more generally,
consistency of the world representation in a dynamic SWoT system is an important
issue, discussed in Section §4.3.2.3 Finally, the increase of publications basing basic
functions on semantic Fog computing allows to expect the shift to semantic-enabled
Fog nodes for some other functions, especially composition, as explained in Section
§4.3.2.4.
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4.3.2.1 Lowering

Lowering is the function exactly opposed to enrichment: it is the transformation
of content from a semantically rich format to a less expressive, more constrained
representation. It is a content value creation function of the DI transformation
category. The need for such transformation arose from the integration not only
of sensors, but also of actuators in the IoT. These devices are content consumers,
but their constrained nature prevents them from being able to consume some types
of content. Actions represented in rich formats in Cloud or Fog nodes need to be
adapted to the target device so that despite their constraints, they can interpret
these actions correctly and behave as intended. This transformation deprives the
content of part of its expressivity and context, but the transformed, simpler con-
tent is interpreted in a known context, leading to a trade-off for consistency.
Lowering requires the source node to have a representation of the capabilities and
expectations of the remote target node. The source node in this function is by
design more powerful than the destination node, and that is why the former should
be aware of the restrictions of the latter. Lowering should not be confused with
work such as [Maarala 2017], [Su 2018] or [Charpenay 2018], in which new formats
are proposed to be supported in constrained environments. Even though these
contributions are very valuable to the development of the SWoT, they de facto
exclude legacy devices, that have no semantic capabilities whatsoever. The pur-
pose of lowering is to produce low-level data, by taking advantage of the contextual
interpretation performed by the legacy device.

Lowering is opposed in the literature to "lifting", a synonym for enrichment.
[Kopecký 2007] describes SAWDSL, a language aiming at making it possible to lift
XML to RDF and to lower RDF to XML thanks to XML schema annotations.
The mapping reversal approach [Seydoux 2016c], introduced in Section §3.4, is an
example of automatic lowering intended to support autonomic reasoning.

Overall, the transformation of content from a high-level representation to a form
that can be processed by a constrained node is still a challenge for the SWoT. The
lack of interest in this function partly comes from its contradiction with the usual
practices in the SW community. Content is generally moved upward in the DIKW
pyramid, because it gains value this way. However, the presence of constrained
content consumers (actuator nodes) on the IoT, combined to the need for high-
level content in more powerful nodes, makes lowering a function as necessary as
enrichment for a complete SWoT deployment.

4.3.2.2 Translation

Translation is a function in which content enriched using an ontology is described
with another one. It is a content value creation function of the DI transformation
category. Translation enables interoperability between deployments based on dif-
ferent vocabularies. There are too few contributions to the translation function for
us to make general observations as part of the survey.
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[Howell 2017] is the only paper fitting the inclusion criteria in which translation
is discussed. The authors refer to it as schema conversion, and implement such
function in order to promote interoperability from their own domain ontology to
SAREF, a reference smart building ontology. Mappings are expressed explicitly
in the source vocabulary, and they are used in SPARQL CONSTRUCT queries to
build an equivalent graph in the target vocabulary. This approach is deployed in a
Cloud-based platform.

The ontologies of the SWoT are diverse, and only a few are reused by other
[Seydoux 2016b]: the vertical fracturing between domains is not bridged, since
domain-specific concepts are redefined disconnected from each other. Among the
surveyed papers, SSN is the only widely reused ontology. In order to bring these
ontologies together, alignments can be added, and the use of high-level ontologies
(such as DUL6) or reference ontologies eases the integration of different ontologies
in the same knowledge system. Due to the dynamicity of IoT, static manual align-
ments are not sufficient for a full semantic interoperability. A first contribution
to translation in the SWoT was proposed by [Kotis 2012c] and [Kotis 2012b], that
are not included in the survey because the nature of the proposed deployment is
unclear. The authors however underline the importance of automating entity map-
ping to allow the dynamic deployment of heterogeneous devices. [Shvaiko 2013]
lists ontology alignment tools, and identifies challenges, some of which are relevant
to support the translation function by semantic-aware Fog nodes, such as matching
efficiency or collaborative approaches. An example of such collaborative approach
is provided by [Santos 2016], where correspondences are discovered through local
exchange between nodes. This kind of automatic alignment technique is suited to
a deployment among Fog nodes, even if not initially directed at the SWoT.

4.3.2.3 Consistency enforcement

Consistency enforcement is a content validity check function. It is a content value
creation function of the IK transformation category. The notion of validity covers
both the absence of contradictions among the facts expressed in the content, and
the absence of wrong assertions (e.g., sensor measures different from the reality of
the physical world).

The only surveyed paper implementing this function is [Kibria 2015], where the
consistency of inferred knowledge is validated using a reasoner. Both the inference
and consistency enforcement are based on semantic Cloud computing. Other papers,
such as [Charpenay 2015], discuss consistency enforcement techniques on SWoT
content, but no details about the deployment are provided by the authors.

Consistency is not instantiated in detail in the contributions we surveyed, even
if [Corcho 2010] identifies consistency as a challenge for the SWoT. Contradictions
between several nodes can be dealt with in an aggregation function where data
fusion techniques are applied, but consistency enforcement also includes the detec-
tion of logical issues in models and their instantiations. More generally, consistency

6http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
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enforcement is not a topic limited to the SWoT, and generic consistency mecha-
nisms could be applied to IoT datasets. The integration of translation should
be linked to a generalization of consistency enforcement: when manipulating dif-
ferent models, some local mappings might induce global inconsistencies that the
system should be able to detect and prevent.

4.3.2.4 Composition

Increasing the availability of node abstractions and computing resources within
Fog architectures gives potential to dynamically compose nodes in order to provide
different services. The techniques that were initially developed for semantic Cloud
computing that are presented in Section §4.2.2.1 could be adapted to semantic Fog
computing, and techniques for service composition natively suitable to semantic-
enabled Fog nodes such as [Martini 2015] could be adapted to the SWoT. Composing
nodes in the Fog tier enriches local context, and exposes richer service to a Cloud
node without requiring it to compute compositions, providing more scalability to
large deployments.

4.3.3 Adapting Semantic Web technologies to constraints of the
IoT domain

The issues tackled by emergence of the SWoT are issues affecting the development
of the IoT and the deployment of functions within IoT architectures. These issues
(e.g., heterogeneity, lack of interoperability, content transformation) are recurrent
concerns for the SW community, not necessarily related to the IoT or the WoT.
However, the IoT also has intrinsic characteristics due to the constraints on its con-
stituting nodes, the distributed nature of its deployments, and the dynamism of its
topology. These constraints apply to any solution deployed in an IoT architecture.
That is why contributions between the SW and the IoT domains are not
unidirectional. The SW does contribute to the emergence of the SWoT domain
by providing interoperability solutions to the IoT domain, but SW technologies and
principles must also be adapted to meet IoT constraints in order to develop SWoT
architectures.

One of the most important constraints in the IoT is the presence of physical
nodes with limited capabilities, for both low-level devices and Fog nodes. The
constraints on these nodes were presented in Section §2.5.2. Among the resources
that can be limited for a node, we distinguished energy, processing power, com-
munication channels, and memory. These resources are not independent, e.g., the
limitation of processing power or of time exchanging messages over the communi-
cation channel saves energy. In order to be suitable for an IoT network, a solution
should dynamically adapt to the node running it, and the integration of SW prin-
ciples and technologies must be thought differently on each level of the deployment
architecture: a device does not have the capability to run the full SW stack. The
sheer emergence of the functions identified in the literature is a first adaptation
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to node constraints. Functions are spread across the IoT depending of the nodes
able to support it. That is why resource-intensive functions such as analytics are
performed by Cloud nodes, and simpler functions such as enrichment are deployed
among Fog nodes.

Energy is a primary concern in the IoT domain for two reasons. On the one
hand, the dissemination of nodes in the environment makes it hard to connect
them to a power grid (especially in non-urban areas, such as fields or forests).
Therefore, some nodes run on batteries, and their lifetime is directly related to their
consumption of energy. On the other hand, the multiplication of nodes implies a
multiplication of power consumers, and managing energy consumption on the scale
of the node leads to energy saving on a more global scale. Using SW technologies to
reduce the cost of content transport was already discussed in the description of the
associated functions presented by [Ashraf 2010]. However, in this particular paper,
SW technologies are not modified in order to comply with the constraints of an IoT
network.

To show how SW technologies can be adapted to IoT network requirements,
[Su 2015] compares the different serialization formats available for semantically rich
data with respect to the size of the messages encoded in each format, as well as the
number of CPU cycles required to produce these messages. The energy consumption
associated to the creation, the transmission, the reception and the decoding of these
messages is then compared for each format. In this paper, two aspects of energy
consumption are pointed out: the processing required to handle the content,
and the communication channels required to exchange it.

Reducing the cost of the communication can be achieved by using protocols
adapted to the needs and constraints of the IoT, and by adapting existing platforms
to these protocols. For instance, [Loseto 2016] proposes an extension of the LDP7

specification, a recommendation of the W3C. The W3C natively maps primitives
of LDP to HTTP, and the authors of this paper propose a new mapping of LDP to
CoAP, in order to make it suitable for constrained applications. CoAP is a protocol
especially designed for constrained applications, with reduced headers and limited
packet body, which has already been introduced in Chapter §2. Such an initiative
allows IoT nodes to be connected to the Linked Open Data (LOD), and therefore
to extend the WoT, while respecting the constraints of IoT nodes.

Distributing content via adapted protocol also requires said content to be
stored on the device distributing it. Contributions such as [Bazoobandi 2015] or
[Charpenay 2018] aim at allowing devices with limited memory to store semanti-
cally rich data. In the former, the authors propose a method to store compressed
RDF data in memory while ensuring a certain level of efficiency regarding en-
coding and decoding of data. This paper is not specifically targeted to the IoT
domain, but its contribution matches the requirements of this domain. Similarly,
[Van Woensel 2018] proposes an algorithm for reasoning in memory-constrained
environments which is not solely dedicated to the SWoT domain, but supports its

7https://www.w3.org/TR/ldp/
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development. The ability to be able to access and modify the stored data efficiently
is important in the case of streaming data, the authors point out. In the case of
IoT deployments, and especially of sensor networks, the ability of storing and dis-
tributing up-to-date data is an important feature, and there must be a trade-off
between memory optimization, and cost of encoding/decoding. [Hasemann 2012]
also proposes a tuple store suitable for embedded systems, as well as a protocol-
independent RDF broker, that can be mapped to CoAP for instance. The authors
propose the adoption of a protocol stack adapted to constrained nodes in order to
include them into the SWoT without the need for smart gateways acting as proxies.

4.3.4 Making semantic Fog computing transparent

With its IaaS, Paas, and SaaS services [Colombo-Mendoza 2012], the Cloud comput-
ing approach is based on easing access to resources by making the underlying com-
plexity transparent. Cloud-based applications are widely popular nowadays, and
Cloud providers such as AWS8, Google Cloud9 or Microsoft Azure10 offer transpar-
ent, instantaneous access to Cloud resources through APIs. Academic work has been
pursued on Cloud architectures, to enable service orchestration [Bousselmi 2014] or
application bursting [Charrada 2016] for instance, taking advantage of the simplic-
ity of available resources.

IoT applications also benefited from the availability of large resources transpar-
ently accessible. IoT solutions targeted to end-users such as Apple Homekit11 or
Orange Homelive12 are examples of IoT platforms transparently relying on Cloud
nodes. Data collected from the local context of the user is stored and processed on
third-party Cloud servers, providing a Web interface accessible from anywhere to
the user. Privacy issues are not considered here, but rather user experience.

In its Cloud-based form supported by semantic-agnostic Fog nodes, the SWoT
can be deployed in such Cloud architectures. However, we saw that deploying SWoT
functionalities among semantic-enabled Fog nodes fostered scalability and reduction
of application response time by bringing computation closer to data producers and
consumers. If observation data is computed in an autonomic process to take action
on local devices, performing the computation on a remote server induces a round
trip from the local Fog node to Cloud nodes and back, leading to what is called a
“trombone effect”13, or “tromboning”.

Considering that the transparency of the infrastructure underlying the
Cloud architecture is a key element of its adoption, a next step in the integra-
tion of semantic-enabled Fog nodes in the SWoT architectural pattern is to make
semantic Fog computing transparent as well. [Patel 2017] identifies gaps in

8https://aws.amazon.com
9https://cloud.google.com/

10https://azure.microsoft.com
11https://www.apple.com/ios/home/
12http://homelive.particule.orange.fr/
13https://www.networkworld.com/article/2224213/cisco-subnet/

why-the--trombone--effect-is-problematic-for-enterprise-internet-access.html
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the current technologies constituting hurdles to the deployment of SWoT systems
among Fog nodes. The heterogeneity of the Fog architecture is one of them, which
provides motivation to try reusing the experience and competencies gathered in the
Cloud computing community to hide the underlying Fog architecture complexity.
Similarly to Cloud infrastructure, building affordable orchestration mechanisms for
Fog infrastructure would support its active role in the deployment of the SWoT.

The transparency of semantic Fog computing is also a convergence point for a
Cloud-Fog collaboration: rather than being seen as opposed, the Cloud and Fog
paradigms should be seen as complementary approaches, each having specific char-
acteristics and constraints. Cloud computing already provides an abstraction layer
to cluster physical machines, therefore it is possible to envision the Cloud architec-
ture as a wrapper for Fog nodes. In such a collaborative deployment, applications
could communicate with Cloud nodes, where resource-intensive computations are
located, along with large data storage. Part of the computation could also be dis-
tributed and processed by Fog computing, in order to be brought closer to IoT
devices, in a dynamic architecture that is hidden from the end user. Such an ap-
proach would enable the deployment the SWoT technological stack while taking
advantage of both Cloud and Fog paradigm characteristics.

4.4 Conclusion

In this chapter, a survey of the role of Fog nodes in supporting semantic processing
in the deployment of the SWoT has been proposed. The Fog tier has previously
been defined as an intrinsic component of the SWoT architecture in Section §2.5.3
with the Cloud-Fog-Device pattern. With Fog nodes providing a necessary interop-
erability layer connecting IoT devices to Cloud nodes, we surveyed in this chapter
the type of interoperability supported in the Fog tier. Semantic interoperability
may be enforced by semantic Cloud computing, in which case Fog nodes only pro-
vide technical and syntactical interoperability. However, part of the SW technical
stack may be based on semantic Fog computing, in which case Fog nodes become
semantic interoperability providers. In order to be able to assess the role of Fog
nodes in the SWoT, we surveyed practices of the SWoT domain situated in the ref-
erence Cloud-Fog-Devices architectural pattern. Elementary functions have been
identified through the projection of SWoT contributions on this architecture, in an
extension of work initially published in [Seydoux 2017]. Contributions of the SW
to the IoT domain have been classified with respect to these functions, with a par-
ticular focus on the support role played by the semantic Cloud and Fog computing.
The complementarity of the Cloud and Fog paradigms has been confirmed by the
trends observed among the surveyed papers.

• Cloud nodes provide considerable computing resources, as well as a global
context due to their overview of IoT deployments.

• Fog nodes provide limited computing resources, that are disseminated in the
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network and therefore closer to devices producing data. Since the Fog infras-
tructure is pervasive to the deployment, each Fog node only provides a local
context for decision-making.

To complement this study, insights into the future of the SWoT has been pre-
sented, exposing future functions and evolutions of the SW developed to match con-
straints of the IoT. This twofold approach to a SWoT technical landscape showed
the reciprocity of the convergence of the SW and the IoT domains:

• not only does the SW provide solutions to the interoperability and complexity
issues of the IoT, but

• IoT constraints also challenge the SW principles and technologies to evolve.

The emergence of semantic Fog computing actively supports this convergence, pro-
viding promising solutions to the research challenges motivating the survey pre-
sented in this chapter.

The Fog paradigm promotes distributed approaches, by providing decentralized
computing resources. We discussed the role of SW technologies and principles in
support of interoperability in IoT architectures in the previous chapter §3. In order
to overcome IoT constraints, we also identified the complementarity of the Cloud
and Fog paradigms. Therefore, in the next chapter §5, the second set of contri-
butions of this thesis is introduced, centered on the Cloud-Fog collaboration
for semantic processing. Fog computing capabilities for scalability and Quality of
Service (QoS) are leveraged with Cloud node capabilities for computation power
and stability, as opposed to the volatility of a Fog infrastructure. These contribu-
tions intend to take full advantage of semantic Fog computing in order to support
the deployment of more scalable SWoT architectures, adaptive to the dynamism of
underlying IoT networks.
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In the previous chapter, the support for SW technologies deployment in Fog
nodes has been discussed. As explained, Fog nodes can be either passive tech-
nical interoperability providers between IoT devices and Cloud nodes, or active
components where part of the SW stack is deployed. In the former case, all the
computational load is dependent on Cloud computing, which by definition is remote
from IoT devices, while in the latter it is possible to bring processing closer to data
sources. Both Cloud and Fog computing have distinct desirable characteristics, that
can be leveraged if used in complementarity to support IoT applications.
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In the present chapter, two contributions fostering Cloud-Fog cooperative
semantic computing are proposed:

• Contribution II.A is Emergent Distributed Reasoning, a generic approach
for dynamically distributed rule-based reasoning. EDR is based
on modular rules allowing the definition of deployment strategies fulfilling
application-level quality-related requirements.

• An example of deployment strategy is implemented in EDRT , an approach
refining EDR to support the adaptative deployment of reasoning rules
close to IoT devices. EDRT , constituting contribution II.B, is dedicated
to the reduction of the delivery delay for reasoning results.

The core characteristics of the contributions proposed in this chapter are de-
scribed in Section §5.1. Existing distributed and rule-based reasoning approaches
are studied in Section §5.2, with a particular attention to the characteristics previ-
ously introduced. Their shortcomings are detailed, so that we identify the limits we
want to push with EDR. The detailed presentation of EDR is explained through a
use case introduced in Section §5.3. The description of the EDR approach’s core is
provided in Section §5.4, and EDRT is presented in Section §5.5.

5.1 Desirable characteristics for the proposed solution

As it has been discussed in Chapter §4, Cloud and Fog architectures play different
role in the support of SWoT applications. To enable knowledge-driven applications,
the efficiency of supporting reasoning by Fog computing must be considered. We
define here the desirable characteristics constitutive of the solution we propose to
support reasoning for SWoT applications.

5.1.1 Reasoning decentralization requirement

In order to ensure scalability, reasoning should be decentralized [Maarala 2017]:
collecting all the data in a centralized place before processing it is a hurdle to
scalability. IoT applications are deeply reliant on environmental observations, which
values may vary unpredictably over time. In the case of centralized processing, all
of the data captured by IoT nodes has to be forwarded towards the centralized,
remote reasoning node. Such collect of data by a single node potentially generates
an important stream of raw data in the network. Decentralizing reasoning allows
data to be processed closer to where it has been initially collected, and thus to limit
the resource consumption generated by its transit across the network.

Fog computing is a way of supporting the decentralized reasoning we want to
achieve with EDR. The purpose of Fog-enabled architectures is to trade compu-
tational power for proximity with data sources, which is interesting for situations
where increasing the proximity with data sources decreases the complexity of reason-
ing. When decentralizing processing, the individual computational load is reduced
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for each node compared to a centralized approach, which can yield better perfor-
mances [Su 2018]. However, the difference of computing power between Cloud and
Fog nodes should not be neglected: Cloud architectures’ intrinsic capabilities enable
a resource upscale which is not possible for Fog architectures. Moreover, as it has
been discussed in Section §4.3.4, Cloud infrastructures provide a stability that is
complementary to the dynamic nature of Fog architectures. Therefore, we propose
to leverage both the distributed nature of of Fog computing and the permanent,
powerful nature of Cloud computing by adopting a mixed approach. Applications
should only be required to communicate with the Cloud node to express their ap-
plicative logic, and such logic should be distributed among Fog nodes to process
data closer to IoT devices.

5.1.2 Applicative logic modularization requirement

We determined that the reasoning supporting applications should be distributed.
Inspired from the application bursting approach introduced in [Charrada 2016], we
propose to consider modular applications to enable the distribution of some of their
modules. Reasoning is oriented by knowledge representations, which are necessar-
ily built subjectively for a specific purpose. Therefore, information is processed
according to some application-level logic. In order to enable decentralization, this
logic must be explicitly represented and shared among nodes. Rules are a
common way to capture applicative logic: a rule is a self-contained representation
of a logical process. Therefore, EDR is a decentralized rule-based reasoning
approach.

Since our aim is to distribute rule among several nodes, strategies must be
developed in order to deploy computation on nodes. Each node has intrinsic
characteristics allowing them to process or not given rules successfully. We thus
propose to base the strategies on node ad-hoc criteria depending on application
requirements. Such characteristics will drive the placement of rules among nodes.

It is important to emphasize that deployment strategies are application-specific,
since they are driven by application-level requirements. Therefore, focusing on a
single deployment strategy only supports the deployment of applications sharing
the same requirements. The purpose of our contribution is to foster multiple appli-
cation types, and therefore to support different deployment strategies. A require-
ment for EDR is thus to be agnostic to the deployment strategy. Similarly
to an abstract class in an object-oriented paradigm, EDR should define generic
functionalities to support distributed reasoning, and must be instantiated with a
deployment strategy to build a concrete approach.

5.1.3 Dynamism requirements

Since rules are elements necessarily dependent on applicative logic, we propose to
embed the application-dependent deployment strategy within the rules. Each node
handling a rule will thus be able to propagate it towards other Fog nodes according
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to this embedded deployment strategy. The strategy considering characteristics of
nodes in the deployment process, such characteristics should also be propagated
among the nodes, in order for a given node to decide if the rule needs to be de-
ployed. To this end, some node functionalities are designed to support information
propagation among nodes, enforcing the decentralized nature of the EDR approach.
Another requirement for EDR is that each node should only depend on in-
formation that is available locally when executing the deployment strategy.
If a central controller was involved when a rule is propagated, then the burden of
central computation would be shifted to a burden of centralized topology aware-
ness, where a unique node would have a global perception of the topology. Such an
oracle would be able to efficiently place rules according to the deployment strategy,
but such an approach is not scalable. The dynamism of the topology would require
a constant communication directed to a single point, and the oracle would need
to have a complete representation of the topology, which could represent a large
number of nodes.

The locality of decision-making requires nodes to exchange information continu-
ally to maintain a representation of their environment consistent with the evolving
reality. EDR is meant to support deployment in Fog environment, in which
resources are partially constrained. To limit resource consumption, EDR should
adopt an event-driven behavior, in which messages are pushed from one
node to another when an event occurs. Such behavior is opposed to poll-based or
time-driven behaviors, where messages are exchanged constantly with no guarantee
that a relevant information is conveyed. The event-driven nature of EDR enables
the continuous adaptation of the rule deployment to the state of the topology.

The core of the EDR approach, implementing the characteristics identified in
this section, is detailed in Section §5.4. Related work are studied in the next section
§5.2, in order to compare the characteristics we want for EDR to the state of the
art.

5.2 Related work for rules deployment in SWoT archi-
tectures

As the concern of the proposed approach is to deploy reasoning rules among Fog
nodes to enable deducing application-dedicated information from IoT data, state-
of-the-art work dealing with logical rules for the IoT, distributed reasoning and
processing on constrained nodes is presented.

5.2.1 Rules for the SWoT

Rules are logical twofold elements, composed of preconditions and postconditions.
Preconditions represent a state of the world such that the rule should be applied in
order to generate its post conditions, which represent a new state of the world. In
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our literature search, we identified two main types of rules associated to the SWoT
[Boley 2007]:

• Production rules, or deduction rules, in which preconditions are expressed
as a logical expression, and postconditions are new knowledge which are the
logical consequence of preconditions. Schematically, production rules can be
represented by IF-THEN structures.

• ECA rules, in which preconditions are the association of a logical expression
and an event triggering its evaluation, and the postconditions are actions to
be executed if the preconditions are matched. Such actions are not limited
to knowledge inference: they can be instantiated by running a piece of code.
Schematically, ECA rules can be represented by WHEN-IF-DO structures.
For instance, IFTTT (If-This-Then-That)1 is a Web service deployed on a
Cloud node enabling the construction of ECA rules through a visual Web
interface. The APIs of several IoT devices vendors2, among other services
such as social networks or popular websites, are available as triggers, inputs
and outputs for IFTTT rules.

Production rules being explicit deduction representations, they have been con-
sidered in IoT networks to express and share the correlation between sensor ob-
servations and high-level symptoms since early work on the SWoT [Sheth 2008],
implementing content abstraction functions as defined in Chapter §4. [Sezer 2018]
lists numerous works using rules for context-awareness in the IoT.

With the goal of facilitating rule reuse, Linked Rules principles have been
proposed [Khandelwal 2011]. They apply to rules the basic principles of Linked
Open Data and Linked Open Vocabularies: rules are designated by dereferenca-
ble IRIs, expressed in W3C-compliant standards, and they can be linked to each
other. Inspired from the Linked Rules, the Sensor-based Linked Open Rules (S-
LOR)[Gyrard 2017] is dedicated to rules re-usability for deductions based on sensor
observations. Production rules are a mechanism similar to CEP approaches (c.f.
Section §4.2.1.2), used for instance in [Li 2010], but the rule representation shifts
from an ad-hoc rule format in CEP to a unified format in the SWoT.

[Sun 2014] proposes a classification of production rules for the IoT, in order
to identify recurring patterns. The authors distinguish rules enabling deductions
from relations between nodes, and from relation between events (i.e. changes of
the environment). In our contribution, we want to go further than this distinction
by manipulating hybrid rules: their preconditions may both rely on conditions
expressed on the nodes of the network, or on their environment.

5.2.2 Centralizing rule processing on Cloud nodes

In most existing approaches, i.e. [Li 2010], [Gyrard 2017] or [Xu 2017], produc-
tion rules are handled by Cloud nodes. An example of IIoT use case enabled by

1www.ifttt.com
2Such as Neato, iRobot, Samsung, WeMo, LG...

www.ifttt.com
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Cloud-based semantic rules processing is presented in [Wang 2018]. This paper
proposes a self-configuring smart factory in which conveyors and machines produce
data which is processed on a Cloud node where user rules are used to make recon-
figuration decisions. Rules are expressed in SWRL. The same formalism is used
in [Rodriguez 2010], where production rules are computed in a central Cloud node
in order to dynamically reconfigure the communication network topology between
devices and the Cloud node. The inferred deductions are converted into network
reconfiguration actions by ad-hoc agents. A similar hybrid approach is used in
[Evchina 2015]: rules are expressed as production rules, but their postconditions
may include ad-hoc properties dedicated to the triggering of actions.

In [Kasnesis 2015], a multi-agent blackboard approach is chosen to dynamically
manage rules in a smart home. Observations are published to a central node, the
Domotic Status Board (DSB), where they are checked against rules in order to trig-
ger inferences and reactions: the rules considered combine properties of production
rules and ECA rules. Rules are expressed in the Jena formalism3, and an interface
also allows users to control the system based on controlled grammar sentences. In
this system, rules may be injected or deactivate at runtime. ECA rules are also
used in a smart home use case in [Lillo 2015]: the authors propose an autonomic-
like approach, where collected data is used to trigger actions of the system based
on rules. The authors make a distinction between two types of actions stored in the
KB. High-level actions, which are policies chosen by the user, and low-level actions,
which are the actual implementations of the former, built by domain experts to
hide the complexity of the system to the end-user. User preferences are expressed
through a GUI, and converted from the GUI to KB individuals. During this conver-
sion, appropriate low-level actions are selected to implement user-generated policies.
The authors also introduce an ad-hoc approach to lowering (c.f. Section §4.3.2.1),
with dedicated adapters transforming rich actuations representations into raw com-
mands to be sent to actuators. The actual deployment topology is not presented,
but the absence of any element indicating a distribution of the underlying platform
leads to the conclusion that it is executed on a central node.

Production rules are used for context-awareness in a smart user space in
[Hussein 2016]. Location information are combined to business knowledge, and to
observations of the state of the user’s environment, in order to make assumptions on
the context. For instance, the following is a rule introduced by the authors: “IF the
user is in an airport lounge with a low luminosity and the drapes closed THEN the
user is sleeping”. Such deduction is then used by context-aware services to adapt
their behavior, materialized by ECA rules. Data required for the deductions are
gathered into a central hub before being processed, and deductions are then sent to
remote nodes.

An observation that was made in the previous chapter §4 regarding context
scale is confirmed in the work that are described here. Rules are deported on Cloud
nodes rather than executed in Fog nodes when used to achieve context-awareness,

3https://jena.apache.org/documentation/inference/#rules

https://jena.apache.org/documentation/inference/#rules
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such as in [Evchina 2015] or [Hussein 2016], in order to obtain a global execution
context. However, in [Rodriguez 2010] for instance, some reconfigurations decisions
could be taken only considering a local context. In this case, rules could be executed
directly on Fog nodes.

5.2.3 Distributing rule processing on Fog nodes

The centralized architecture of the previously described papers raises multiple is-
sues, such as the cost of semantic reasoning that increases rapidly with the size of
the KB [Maarala 2017]. Fog computing offers a low-latency, resilient alternative
for rule processing, even though the constrained nature of Fog nodes (compared to
Cloud nodes) must be taken into account: processing power or bandwidth are crit-
ical resources. Centralization also requires all the content collected by IoT devices
to be processed in the same place, while Fog computing makes computing power
available closer to IoT devices. Therefore, Fog computing enables to process con-
tent with rules where it is produced, rather than requiring it to be transported
to a remote node to be processed by Cloud computing. That is why rule placement
in Fog architectures is a topic of interest for the SWoT

Most approaches for processing on constrained nodes focus on optimizations
enabling such processing for a single node without considering the other. When
considering a distributed execution composed of several Fog nodes, processing place-
ment is not dynamic: all nodes execute the same rules, or each a predefined rule set
statically assigned. For instance, even though it is not directly targeted at SWoT
applications, the RETE algorithm proposed in [Van Woensel 2018] is dedicated to
constrained nodes. RETE aims at reducing the memory requirements for produc-
tion rules processing. This is a very interesting optimization, but it is dedicated to
a single Fog node and does not consider distributed processing. [Desai 2015] shows
how gateways are Fog nodes capable of enriching data: observations are initially
produced by legacy devices in ad-hoc formats. It is the gateway, communicating
with devices using protocols adapted to constrained environments, such as CoAP,
that enriches the data before forwarding it towards a Cloud node. Therefore, ob-
servations are enriched on the edge of the network, and only the Fog nodes in
direct contact with legacy devices have to perform data enrichment. [Lee 2016] or
[Kaed 2018a] propose to execute ECA in Fog architectures, used to automate the
response of the system to a stimulus. However, both authors only consider one gate-
way executing the rules, and the ad-hoc rule format is not suited for rule exchange.
The contribution introduced in [Chatzigiannakis 2012] uses the same ECA model
as IFTTT , but extends the rules expressiveness by using SW formalisms, namely
SWRL and SPARQL. The authors use the Wiselib RDF provider [Hasemann 2012],
as well as CoAP and 6LowPan communication, in order to enable semantic pro-
cessing directly on constrained nodes. How rules are distributed in the network is
not discussed by the authors.

Regarding processing distribution in existing work, the dynamic nature of IoT
networks should be considered. The topology of a network evolves as devices con-
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nect, disconnect, or move geographically. Therefore, a viable distribution of rules
at a given moment is not guaranteed to remain optimal in the future, and the
distribution strategy should be adapted to the evolution of the network
topology. [Maarala 2017] does not detail the mobility strategy used for its mo-
bile nodes, and each node applies all the rules regardless of their relevance to the
content it aggregates. In [Su 2018], rule placement is static, in either Cloud or
Fog nodes. [Taneja 2017] focuses on resource placement in a Fog-enabled IoT. The
authors compute optimal deployment of application modules based on the repre-
sentation of available resources in the Fog architecture compared to requirements
expressed by applications. Module positions are static, and computed at the time
of deployment. Rules are deployed on gateways in an IIoT context in [Kaed 2018b].
The rules themselves are not expressed using SW formalisms, but they are com-
bined to a semantic engine proposed in [Kaed 2016] in order to consume enriched
data. The placement of rule in the Fog architecture is not dynamic, however ad-hoc
mechanisms enable rule update at runtime.

EDR differs from previous proposals by different aspects captured in the re-
quirements described in Section §5.1:

• The genericity of the approach, enabling its adaptation to various application-
level strategies.

• The locality of the knowledge involved in the rule deployment: each node only
considers its own knowledge representation when propagating a rule.

• The dynamism of rule deployment in the SWoT system at runtime, constantly
adapting to the state of the topology in an event-driven behavior.

5.3 Extending the smart building use case

The approach proposed in this chapter is applied on an extension of the smart
building use cases introduced in Section §3.3.1. The ADREAM smart building
is considered with a simplified architecture depicted by Fig. 5.1. Sensors in the
building are represented with pictograms as follows:

• Anemometer:

• Energy production:

• Pyranometer:

• Thermometer:

• Presence sensor:

• Luminosity sensor:

• Thermostat:

• Server load:

The use-case building is instrumented with multiple sensors which observations
are transported through gateways and M2M communication systems, constituting
a Fog tier, to a Cloud node where the data is stored. Sensor observations are col-
lected from the Cloud node to a control center on a dedicated computer or private
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Figure 5.1: Reference architecture
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Table 5.1: Building monitoring rules

Rule ID Rule core

RComfort

Location(?l) ∧ Temperature(?l, ?o1) ∧ 19oC <?o1 < 26oC
∧Luminosity(?l, ?o2)∧?o2 > 400L
→ Comfortable(?l)

RSolarProduction

OutsideLocation(?l) ∧ Temperature(?l, ?o1)∧?o1 < 30oC
∧Pyranometry(?l, ?o2)∧?o2 > 430W/m2

∧EnergyProduction(?p) < 15000W
→ AbnormalUnderProduction(?p)

RTemperatureGap

Location(?l) ∧ Temperature(?l, ?o1)
∧TeperatureRequest(?l, ?o2) ∧ |?o1−?o2| > 5oC
→ TemperatureGap(?l)

local Cloud servers where the BAS application is installed. This software displays
collected observations to building administrators who monitor the activity of the
different building systems. In order to make the notifications human understand-
able, they are processed based on logical rules deducing a higher-level information
from a set of sensor observations. A set of illustrative rules is provided in Tab. 5.1.

Time is considered discrete, and cadenced by events such as sensor observations.
Therefore, at any moment, a node holds the “most recent” representation of the
state of features of interest it observes, from an event-driven point of view. For each
property of said features of interest, only the last received observation is considered
Therefore, temporal considerations are out of the scope of the rules we manage.

The rules used by the administrators have different purposes, such as comfort
or energy management. The diagnosis produced by the rules is also used to trigger
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automatic actions taken by the BAS, which controls actuators such as lamps or
cooling and heating systems. The fact that the building behavior is automated
based on rules motivates their processing as early as possible.

5.4 Contribution II.A: EDR, a generic approach to dy-
namically distributed rule-based reasoning

In this section, EDR, a generic approach to dynamically distributed rule-based
reasoning supported by semantic Fog computing, is introduced. It is the core con-
tribution of this chapter, but since it is a generic approach, it is instantiated by a
second contribution detailed in Section §5.5. EDR is based on architectural assump-
tions that are presented in Section §5.4.1. EDR’s functional overview is depicted in
Section §5.4.2, before presenting the vocabulary used to describe EDR core func-
tionalities in Section §5.4.3. Modular rules are at the core of EDR, the formalisms
used to represent them and the roles of their modules is described in Section §5.4.4.
Once the main components of the EDR mechanisms are described, the relationship
between EDR’s characteristics and semantic Fog computing are discussed in Section
§5.1.

5.4.1 Assumptions on the underlying architecture

EDR is based on the hypothesis of a hierarchical network topology: nodes are
organized in a tree-like structure, and only communicate with neighboring nodes.
This assumption is made because such topologies are frequent in IoT networks,
represented in studies such as [Rodriguez 2010], [Zanella 2014], [Ben-Alaya 2015]
(based on the oneM2M standard), [Szilagyi 2016], or [Su 2018]. Such hierarchical
topology is related to the Cloud-Fog-Device architectural pattern: the tree root is
a Cloud node, leaves are devices, and nodes in between are Fog nodes.

Applications are not deployed on a Cloud node belonging to the IoT topology:
they are executed remotely on personal devices such as smartphones or laptops.
Rules represent applicative needs: when deductions from sensor observations
are required by an application, it injects the rule in the network in order to be
provided directly with the deductions, instead of being forwarded raw data by the
network and applying the rules itself.

It is assumed therefore that Fog nodes can communicate with applications di-
rectly. Rules are initially submitted by applications to the Cloud node, so it is the
only node they know a priori. The Cloud infrastructure provides a unique perma-
nent interface to the network, the dynamic Fog topology underneath is therefore
transparent for applications.

5.4.2 Overview of the EDR approach

In order to ensure decentralization, the algorithm of the EDR approach is executed
in parallel on each node able to perform reasoning in the topology, i.e. Cloud node
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Figure 5.2: EDR node functional overview

and semantic-computing-enabled Fog nodes. EDR considers a step-by-step rule and
data propagation: each node only communicates with its direct neighbors within
the IoT network, i.e. its parent and children in the hierarchical topology. This
design choice allows to reduce the nodes’ knowledge of the topology to a limited
subset of the complete deployment. Thus, consistency of the knowledge only has to
be maintained with immediate neighbors, which limits required knowledge-related
exchanges between nodes, and improves scalability. Due to the potential mobility
and variable availability of Fog nodes, EDR is meant to foster decision making
in a local context for each node, leading at a large scale to the emergence
of a desirable behavior.

A parent node propagates a rule to its child if the parent considers that the
child is empowered to apply the rule. This decision is made by the parent based on
a deployment strategy embedded in the rule, as well as on the knowledge it has
of its child. The deployment strategy captures the criteria required for a node
to process a rule, and therefore characterizes if a child node is suitable to be
forwarded said rule. In order to enable rule deployment, nodes exchange messages
describing their capabilities, e.g., their location, the type of data they observe, or
the type of data they are interested in. When a node makes a new deduction based
on a rule, it sends the result to all the nodes interested, including the application
that submitted the rule.

The EDR approach itself is agnostic to the deployment strategy, which
is defined by the rule implementer: that is why we qualify EDR as generic. The
present section §5.4 is dedicated to the EDR approach, which defines the character-
istics of a deployment strategy without implementing them. Such implementation
is described with a refinement of EDR, EDRT , introduced in Section §5.5.

A functional representation of an EDR node is provided in Fig. 5.2: each node
has a local KB, where knowledge necessary to the execution of EDR is stored. This
knowledge is used to drive the basic functionalities of the node, and rules are used
by the inference engine to update the KB.

Featured knowledge includes:

• the knowledge the node has of its own characteristics and capabilities,

• the knowledge it has about its neighbors,
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• the knowledge it has about the static organization of the environment such as
the geographic or indoor location, or the relationship between the surrounding
elements,

• the value of the last observations depicting the current state of the dynamic
features of the environment,

• the rules that it has received from either applications or other nodes.

This knowledge is used to control the behavior of the node, composed of simple
functionalities. A node is able to:

• Send of a piece of data, typically a sensor observation, to a remote node,

• Propagate a rule to a remote node,

• Apply a rule on its knowledge base,

• Announce a description of its own capabilities to a remote node,

• Deliver a deduction obtained by processing a rule to a remote node,

How these node functionalities are related to the KB in the core EDR mech-
anism to enable the propagation of observations and rules is described in Section
§5.4.3. The modular rule representation embedding the deployment strategy, and
the updates of the KB they trigger, are detailed in Section §5.4.4.

5.4.3 A deployment mechanism based on a dedicated vocabulary

Nodes behavior is made on purpose quite simple, in order to decorrelate the rule-
specific deployment strategy from the core algorithm on which EDR is based. Rule
deployment strategies are dedicated to a particular purpose, e.g., response time
reduction or privacy enforcement, while EDR is generic.In order support the gener-
icity of EDR with a knowledge-driven method, nodes functionalities are based on a
dedicated vocabulary, used to describe knowledge in the node’s KB.

For instance, this vocabulary captures the hierarchical nature of the topol-
ogy. The relation between a node np and its child nc is expressed with the
triplet <np,lmu:hasDownstreamNode,nc>

45, based on a nomenclature presented in
[Seydoux 2017]. The inverse relation exists, to express the connection between a
node nc and its parent np: <nc,lmu:hasUpstreamNode,np>.

A description of all the functionalities of the nodes, and of the vocabulary that
drives them, is provided in Section §5.4.3.1. Further details about the announce-
ment functionality are provided in Section §5.4.3.2, especially with regard to the
consumption of data. Finally, the scope of the announces is studied in Section
§5.4.3.3.

4Namespaces are listed in Appendix §A.1
5Individuals such as np and nc are identified with an IRI in the triplets
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5.4.3.1 Basic node functionalities

Each functionality relies on dedicated triplets, and a node implements its behavior
based on the description held in its KB. How this triplets are inferred from the
deployment strategy is described in the next section §5.4.4. Before detailing how
the strategy triggers nodes functionalities, let us examine the vocabulary describing
said node functionalities.

Announce self-description: When a node connects, disconnects or changes ca-
pabilities, it notifies its neighbors of it self-representation. The neighbors of a node
n are represented in its KB with the triples <n,lmu:hasUpperNode,nparent> for the
parent of n, and <n,lmu:hasLowerNode,nchild> for each child nchild of n. Since a
notification is sent at each update of the state of the node, the perception of a node
by its neighbors remains consistent with its evolution over time. Two mechanisms
support this announce:

• a partial update, in which a node adds statements to its description already
held by the target

• a complete update, in which the representation of the node is completely
erased by the target before being updated.

These mechanisms allow to add information about a node by exchanging light mes-
sages containing partial representations, while enabling to remove outdated state-
ments with the complete update. A particular node characteristic that is declared
in the announce functionality is the type of data in which a node is interested,
captured with the predicate edr:isInterestedIn, which is used in the data sending
functionality. The announce functionality is extended by the mechanisms described
in Section §5.4.3.2 to control which characteristics of the node are propagated, and
the scope of this propagation in Section §5.4.3.3.

Apply rules: When a node n receives a new observation, either from its own
sensors or lower nodes, n executes the rules r stored in its KB if the description of
r contains <r,edr:isRuleActive,true>.

Deliver deduction: If the processing of an observation with rule r by node n
leads to a deduction δ, δ is sent to each node belonging to

⋃
nconsumer where

<nconsumer,edr:consumesResult,r> is in the KB of n. Especially, the application
that submitted the rule r to the network is known as the rule originator o, and is
represented by the triplet <r,edr:ruleOriginatedFrom,o>. The originator of a rule
is considered as a consumer of rule results, in order to enable deduction delivery
to applications. The deduction delivery functionality is separated from the interest
notification part of the announce functionality for flexibility. In Chapter §6, the
deduction delivery mechanism is used to manipulate the communication flow, which
would not be possible if it was not a functionality independent from the interest
announce.
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Send data: If the parent of node n (denoted np) has declared its interest for the
type of the new observation αt, the observation is forwarded toward np. Observa-
tions are exchanged lazily: if a node n receives an observation of type αt, and knows
no other node interest in such type, the observation is not forwarded. Such interest
is represented in node n KB with the triplet <np,edr:isInterestedIn,αt>. The noti-
fication of the interest is considered as a characteristic of the node, managed in the
announce functionality.

Propagate rule: A node sends a rule to one of its neighbor if it considers that
this neighbor is capable of applying the rule, such consideration being part of the
rule deployment strategy. It the case where rule r should be propagated towards
node ntarget by n, the triplet <r,edr:transferableTo,ntarget> is present in n’s KB.

5.4.3.2 Controlling the propagation of nodes characteristics

The EDR algorithm depends on the exchanges between neighboring nodes of their
mutual descriptions. The announcement functionality is dedicated to the exchange
of such descriptions. However, presupposing of the nodes characteristics relevant to
any deployment strategy that will be implemented to refine EDR is not possible. In
order to remain agnostic to the deployment strategy, EDR relies on a dedicated vo-
cabulary used to describe which of each node’s characteristics should be announced
to its neighbors. A node has two types of neighbors: its parents, and its children,
and since the parent is unique (according to our assumptions) while the children
are potentially many, two approaches are devised.

Announcing characteristics to a node’s parent: Let us consider a node n,
with a characteristic represented by the property hasCharacteristic and captured
in its knowledge base such that <n,hasCharacteristic,ν>, with ν either a literal
or an individual denoting the value of the characteristic for n. When announcing
its characteristics to its parent, n searches its KB for all the triples where it is the
subject, and the predicate is a predicate types as edr:ParentAnnouncedProperty.
If the property hasCharacteristic is such that <hasCharacteristic,rdf:type,edr:-
ParentAnnouncedProperty>, then the triple <n,hasCharacteristic,ν> is part of
the self description sent by the node n to its parent because hasCharacteristic is
considered a relevant characteristic of n.

Announcing characteristic to a node’s children: The announce mechanism
from parent to children is quite similar to the one from children to parent, with the
exception that children may be many, whereas by assumption, a node only has one
parent. Therefore, the class edr:ChildrenAnnouncedProperty has two subclasses to
distinguish two possible cases:

• edr:AllChildrenAnnouncedProperty denotes a characteristic that is systemat-
ically announced to all the node’s children.
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• edr:SomeChildrenAnnouncedProperty denotes a characteristic that should
only be announced to a subset of the node’s children.

This distinction is made to give flexibility to the deployment strategy designers.
In the case of a characteristic captured by a predicate of type edr:SomeChildren-

AnnouncedProperty, each child eligible to be proxied the new characteristic must
be represented explicitly with the predicate edr:announceTo, which requires the
reification of the announced characteristic. In order to be announced towards child
node nchild, the triple <nparent,hasCharacteristic,ν> is transformed into the fol-
lowing reified statement: statement rdf :subject nchild; rdf :predicate c; rdf :object
ν; edr:announceTo nchild. The choice of the children to which the characteristic
should be announced is application-specific, and is therefore part of the deployment
strategy. As the rest of the deployment strategy, it is embedded in rules as it is
described in Section §5.4.4.

The interest of a node for a type of data, denoted by the predicate edr:is-
InterestedIn, is managed as a node characteristic. Therefore, depending on the
deployment strategy, the interest of nodes is classified as one of the subclasses of
edr:ChildrenAnnouncedProperty. More details about this particular predicate is
provided in Section §5.5, with the instantiation of a concrete deployment strategy.

5.4.3.3 Propagating knowledge beyond direct neighbors

The basic functionalities only enable the communication of a node with its direct
neighbors in the hierarchy, either parents or children (with the exception of deduc-
tion delivery). This enforces the neighbor-to-neighbor nature of the propagation
enabled by EDR. However, such design may hamper the propagation of rules, by
preventing the diffusion of knowledge required by the deployment strategy to make
decisions so as to where the rules should be placed. If the characteristics of a the
child nchild of a node n makes it adequate to apply a rule which is held by the
parent of n nparent, but n cannot apply the rule, nparent will not propagate the rule
to n, preventing its eventual propagation to nchild. A complementary functionality
is thus described by the EDR vocabulary to enable such diffusion of knowledge
describing nodes capabilities: proxying.

The proxying mechanism implemented in EDR is inspired from [Nikoli 2011],
where reasoning nodes act as proxy for the capabilities of legacy nodes unable to
process enriched data. In EDR, each reasoning-enabled node has a similar role,
and proxies capabilities of its neighbors. Such proxying is bidirectional: the ca-
pabilities of a nodes parent are proxied towards its children, and the other way
around. Specifically, node n proxying its parents capabilities towards its children
means that n announces these capabilities as its own to its children. An example of
proxied node characteristics, detailed in Section §5.5.2.2, is the interest of a node
for a data type, briefly introduced here for the sake of illustration. If a node n
wants to be notified whenever a temperature observation is available, it notifies its
children nchild ∈ Lower(n)of such interest. If any child nchild collects temperature
observations, it will forward such observation towards n. Moreover, each nchild will
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in turn notify that it is itself interested in temperature observations to any node
n′

child ∈ Lower(nchild). Any node n′
child collecting a temperature observation will

therefore send it to nchild, which will itself send such observation to n. The char-
acteristic of the initial node n (here, the interest in temperature) has indeed been
proxied to n′

child by nchild: n′
child only has knowledge of nchild, and communication

is kept strictly between direct neighbors. To support this mechanism, two classes
of properties are defined in the EDR vocabulary: edr:ParentProxiedProperty, and
edr:ChildrenProxiedProperty.

Characteristics proxied from children to parent: Let us assume that node
n has a child nchild, and that such child has a characteristic expressed by the
triplet <nchild,hasCaracteristic,ν>, that should be proxied towards the parents
of n. Such information about the predicate c is materialized by the triplet
<hasCaracteristic,rdf:type,edr:ParentProxiedProperty>. When receiving descrip-
tion of nchild, n checks for the presence of properties classified as edr:ParentProxied-
Property. Since hasCaracteristic is such a property, the node n updates its own
representation towards its parents by sending the triple <n,hasCaracteristic,ν>,
therefore proxying the capacity of nchild.

Characteristics proxied from parent to children: The proxying mechanism
from parent to children is similar to the one from children to parent. Contrarily
to the case of the announcement functionality, the multiplicity of children is not
considered: all the children are proxied any received parent characteristic. Such
policy is made necessary by the locality of decision-making enforced by EDR. On
the one hand, a node n receiving a characteristic to proxy from its parent nparent

does not have the contextual knowledge that lead nparent to announce this par-
ticular characteristic to n. On the other hand, the node nparent does not have a
detailed knowledge of the topology below its child n, and therefore cannot make any
assumptions about to which children in particular n should proxy the characteristic
of nparent.

It is possible that the proxying mechanism and the announcement mechanism
lead to conflicting behaviors. In particular, a node may have chosen not to an-
nounce a characteristic of its own to some of its children, but be required to proxy
the same characteristic in the stead of one of its parent. In this case, the proxying
mechanism supersedes the announcement mechanism, and any proxied characteris-
tic is processed as a edr:AllChildrenAnnouncedProperty. For instance, if a node n
did not announce its interest for a data type ρt to its child nchild, n will nonetheless
announce such interest to nchild if the parent of n, nparent, notifies n of its own
interest for ρt, and requires n to proxy such interest.
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Figure 5.3: Rule modules
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5.4.4 Rule representation and deployment

5.4.4.1 Rule modular structure

EDR rules are composed of several modules, as it is represented on Fig. 5.3. Each
of these modules enables some node functionalities:

• The Activation module triggers the rule application, the data consumption
and the result delivery functionalities.

• The Deduction delivery module triggers the result delivery functionality

• The Rule transfer module triggers the rule forwarding functionality

Therefore, the intelligence regarding rule deployment is located in the rules,
and not in the nodes. The behavior of the algorithm at a global scale can thus be
parameterized at a fine granularity, for each rule. Rules are represented in SHACL,
and the modules are based on SHACL advances functionality named “SHACL rules”.
Each module is composed of two parts: a SHACL rule, that inserts deductions into
the KB, and a SHACL shape that determines whether the rule is applied or not.
An example rule is provided in Appendix §A.2, and the raw source is also available
online for convenience6. In the remainder of this section, a generic description
of these rule modules and their roles is given. An implementation is proposed
in Section §5.5, where specific behaviors dedicated to a particular strategy are
described.

6https://w3id.org/laas-iot/edr/iiot/r1.ttl

https://w3id.org/laas-iot/edr/iiot/r1.ttl
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Listing 5.1: rtransfer
comfort rule

CONSTRUCT {
ex: officeLightComfortRule edr: transferableTo $this.
ex: officeLightComfortRule edr: transferredFrom ?host.

} WHERE {
$this lmu: hasUpstreamNode ?host.
?host a lmu: HostNode .

}

In order to associate all the modules to a rule represented as a single individ-
ual in a node’s KB, we introduce the notion of rule envelope as a reification
mechanism. The envelope of an EDR rule is an individual subject of triples which
predicates are edr:hasTransferShape, edr:hasApplyShape, edr:hasDeliveryShape and
edr:hasDeductionShape. The rule envelope is especially useful in the rule deploy-
ment process, when all the modules of a given rule must be collected for the rule
to be propagated to a remote node. The envelope of rule r is denoted renvelope.

5.4.4.2 Rule modules

Core module The operational part of the rule, containing the application-
dedicated inference, is referred to as the rule core module. The core module
is based on a predicate logic rule used to deduce high-level information, similar to
the rules introduced in the use case in Section §5.3. Let rcore be such a rule core
module, noted as rcore : Γ1∧ ...∧Γn → ∆1∧ ...∧∆m, where Γ1∧ ...∧Γn, designated
as the body of rcore, is a conjunction of conditions and ∆1 ∧ ... ∧∆m, designated
as the head of rcore, is a conjunction of deductions. The rule core module only
encompasses applicative deduction logic: it is unrelated to the deployment of the
rule. This module is only evaluated when the rule has been declared active on a
node in the deployment process, i.e. if the triple <r,edr:isRuleActive,true> is in
the node’s KB.

Rule transfer module The rule transfer module determines on which remote
nodes the rule may be deployed, according to a rule-specific deployment strategy.
This condition is expressed as a SPARQL query embedded in the SHACL rule being
the conditional part of the rule transfer module. The deduction part of the module
infers the triple <r,edr:transferableTo,n′>, enabling the rule forwarding mechanism
of the node (c.f. Section §5.4.3.1). An extract of the SHACL rule of the transfer
module for rule rcomfort, denoted rtransfer

comfort , is provided in Lst. 5.1.

Rule activation module The activation module detects if the current node
is suitable to apply the rule itself. If the conditional part of rule r activation
module determines that the current node is suitable to apply r, the activation of
rule r is made explicit by the triplet <r,edr:isRuleActive,true>. In the case where
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Figure 5.4: Relation between node functions and rules modules
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some node characteristics are conditionally proxied towards children (edr:Some-
ChildrenProxiedProperty), the rule activation module may infer reified statements
as described in Section §5.4.3.3. This case is illustrated in more details in Section
§5.5.3. The activation module of a rule r is denoted ractivation.

Result delivery module The result transfer module enables the forwarding
of deductions to other nodes that are not the originator of the rule, such as the
parent n′ of a node n if n′ applies a rule r′ that consumes the deductions made
by a rule r applied by n. By default, the originator o of a rule r is assumed to be
interested in the results of r, denoted with <o,edr:consumesResult,r>. If a remote
node n′ is interested in the deductions made by rule r, the result transfer module
infers that <n′,edr:consumesResult,r>. The result delivery module of a rule r is
denoted rdelivery.

The relationship between node functionalities (represented in Fig. 5.2), the
EDR vocabulary and the rule modules is shown in Fig. 5.4.

5.4.4.3 Dynamically managing modules activation

The rule core must be computed each time a new observation is received by the
node, in order to check if new deductions may be inferred. However, it is worth
noting that the other rule modules only need to be evaluated when the rule is
received, or when the topology evolves, e.g., with new productions by children, new
consumptions by parents, or nodes connecting/disconnecting.

The SHACL standard is so that by default, when reasoning on a KB con-
taining SHACL shapes and rules, all of them are considered. In order to reduce
the computation load, and to only process rule modules when needed, a SHACL
functionality is used: the reasoner does not consider shapes or rules r such that
<r,sh:deactivated,true>. The modules of a rule r are therefore only activated for a
reasoning step when r is received, or when the topology evolves.
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The appropriate modules, i.e. all except the core module, are classified as
edr:NodeSensitiveComponent (as opposed to what would be a “Content sensitive
component”). Therefore, a simple query is sufficient to activate or deactivate rule
modules related to deployment, and to do so for all the rules stored in a node’s KB.

Deployment modules management is represented on Fig. 5.5, in an overview of
the algorithm. When a rule is initially received, all of its modules are active. That
is why no activation is required when receiving a new rule, (1) on Fig. 5.5. The rule
deployment update, (3) on Fig. 5.5, is performed by the reasoner. Since no other
rule deployment modules has been activated since the new rule has been received,
and by default these modules are deactivated, only the deployment of the newly
received rule is computed.

In the case where the node receives an information about a topology update,
such as the connection or disconnection of a node or the change of capability of a
known node, it is possible that the rule deployment should be updated accordingly.
That is why, for all the rules stored in the node’s KB, the deployment modules are
activated upon the reception of a topology update, as seen in (2) on Fig. 5.5. The
received change is then integrated in the KB, and if necessary the new topology
is propagated to parent nodes, before performing a reasoning step computing the
deployment rule modules. If the placement rule needs to be updated due to the
topology change, the new deployment is enforced by activating or propagating rules
in compliance with the deductions and the EDR vocabulary, before deactivating
the rules deployment modules (4) on Fig. 5.5.

If the received message is an observation, no rule deployment update is required.
The only active rule modules are the core modules for rule that the node should
process, and they are used by the reasoner to test if new inferences are possible.
The marking and propagation of deductions is discussed in Section §5.4.4.4.

5.4.4.4 Leveraging the unique identification of rules

EDR rules are compliant with the Linked Rules principles [Khandelwal 2011], and
in particular they are uniquely identified by an IRI. The identification of rules
being shared among all nodes, provenance can be traced for a given deduction.
Two purposes have been identified for this traceability: the avoidance of redundant
computation, and the update of rules at runtime.

Preventing redundant computation With the rules being uniquely identified
among all nodes, it is possible to mark observations when they have been processed
with a rule, successfully leading to a deduction or not. After an observation o has
been involved in a reasoning step with rule r, a new triple is added to the observation
description: <o,edr:usedForDeductionBy,r>. This marking prevents an observation
to be processed multiple times with the same rule when it is propagated from one
node to another. Considering this marking or not is up to the rule implementors:
for instance, the strategy presented in Section §5.5 takes it into account, so that
each observation is at most processed once by each rule for performance issues.
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Figure 5.5: EDR algorithmic overview

Message reception

Is the message
an observation ?

Is the message
a rule ?

All rules
modules

activation (2)

Update
topology

representation

Propagate
new topology

Update rule
deployment (3)

All rules
modules

deactivation (4)

Reasoning

Mark data (5)

Data and
deduction
propagation

No

No (the message is a
topology update)

Yes (1)

Yes

Depending on the propagation strategy, it may be necessary to process the same
piece of data with the same rule in multiple contexts, in which case the marking
may be ignored. The marking of observations with the edr:usedForDeductionBy
property is shown on Fig. 5.5, (5).

If a rule is submitted by multiple applications to the topology, the uniqueness
of the identifier also enables to avoid redundant processing. In a node’s KB, each
rule can be associated to several originators, indicating that the deduction should
be sent to several applications. Expressed in an application-specific namespace, two
identical rules would be applied twice, leading to a waste of resources.

Updating rules at runtime The use of a unique dereferencable identifier also
allows to incrementally modify rules at runtime, so that the operation of the mon-
itored system is not interrupted. Modifying rules allow applications to fine-tune
their behavior according to a feedback loop that considers either previous responses
to inputs, or external factors (e.g., seasonal change, or regulation evolution). When
a rule r is received by a node n, if r’s IRI is already known by n, all the triples
describing the rule are compared to the triples stored in the node’s KB.

If the newly received version of the rule is different from the version held by the
node, then the rule representation is updated in the KB, and the rule is processed
as if it were a new rule. However, it is possible that the new representation of the
rule is no longer applicable by children of the current node, to which the former
version of the rule had been previously propagated. In the regular EDR algorithm,
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the rule would not be forwarded to such children, but in this case this is an issue:
two different mutually exclusive versions of the rule are executed in the topology.

To tackle this issue, an object property is used: when a node transfers a rule r to
its child nchild, it adds the triple <r,edr:transferredTo,nchild> to the rule description
stored in its KB. When a node updates a rule representation, it transfers the new
rule version towards the children which received the former version by searching
for this property. If said children are not able to apply the new version of the
rule (as determined by the application module of the rule), updating their rule
representation enforces the consistency of the rule across the network. The same
process is carried on recursively from parent to child node in order to ensure that
all the nodes of the topology eventually have an up-to-date representation of the
rule.

This approach however leaves a consistency issue unsolved: during the propaga-
tion of the new rule version, the two mutually exclusive versions of the same rule are
both active. There is no guarantee that the latest version of the rule has been prop-
agated successfully at any point in time after its injection in the network. A way to
solve this issue is to attach a version number to the rule with the owl:versioninfo
annotation property. This version information is then attached to deductions made
with the rule, so that applications are aware of the version of the rule that lead to
any deduction.

5.5 Contribution II.B: Refining EDR with EDRT
As it has been said in the previous section §5.4, EDR is a generic approach to rule
deployment among semantic-enabled Fog nodes, agnostic to the criteria according
to which rules are propagated in the topology. In order to demonstrate the applica-
bility of EDR, the present section is dedicated to EDRT , an approach refining
EDR by implementing a deployment strategy. For the sake of clarity, an
overview of keywords is introduced in Fig. 5.6.

After introducing the EDRT core principle in Section §5.5.1, the knowledge
required by nodes executing EDRT is described in Section §5.5.2. How EDRT is
implemented in rule modules is discussed in Section §5.5.3. The behavior of nodes
executing EDRT is detailed in Section §5.5.4, in order to capture the complete
deployment process.

5.5.1 Implementing a deployment strategy based on property
types with EDRT

The purpose of EDRT is to bring rules as deep as possible in the topology, in
order for them to be processed as soon as possible, while limiting unnecessary
message exchanges. Therefore, EDRT is meant to reduce the delay between the
moment observations able to trigger a deduction by a rule are produced by devices,
and the moment said deduction is received by the rule originator. Due to the as-
sumed hierarchical nature of the network, the deeper a node is in the topology,
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Figure 5.6: Key terms overview
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the fewer descendants it has. A node processing a rule deeper in the hierarchy
will thus apply said rule less often, on a smaller KB, since it should receive less
updates from its descendants. Since reasoning on a smaller KB yields better per-
formances [Maarala 2017], propagating rules as deep as possible among reasoning
nodes reduces computing complexity. Therefore, in EDRT , a node receiving a rule
propagates said rule to any of its children able to process it.

EDRT implements a deployment strategy driven by the types of properties
produced by nodes. These properties can be either environmental properties
captured by sensor observations (e.g., luminosity) or higher level properties deduced
by other rules (e.g., comfort). Nodes characteristics capturing these productions
are exchanged between neighbors in order to identify the lowest possible node able
to process the rule. These characteristics are captured in the rule modules to enable
the deployment process. The conditional shape of rule modules is based on both
property types consumed by the rule and property types produced by
neighboring nodes to infer the node behavior.

To manipulate these property types in the following, the body and head notations
introduced in Section §5.4.4.2 are extended. We introduce bodyt(rx) = {γ1, ..., γn′}
and head_t(rx) = {δ1, ..., δm′} where γi designates the property type of Γi, and δj

the property type of the deduction ∆j . It should be noted that not all Γi or ∆j used
in the rule are relevant to the EDRT approach. Let us consider RComfort, an illus-
trative rule provided in Section §5.3 which body is reproduced here: Location(l) ∧
Temperature(l, o1) ∧ 19oC < o1 < 26oC ∧ Luminosity(l, o2) ∧ o2 > 400L →
Comfortable(l). For this rule, bodyt(RComfort) = {Luminosity, Temperature},
and head_t(Rcomfort) = {Comfortable}. Location is a property type that is not
considered by the deployment strategy implemented by EDRT .

The deployment of RComfort and RT emperatureGap by EDRT in an extract of
the simulation topology is shown on Fig. 5.7. Both rules are submitted by the
application to the Cloud node, and are deployed among Fog nodes. Nodes applying
the rules (e.g., R111 and R112 for RComfort) directly provide the control center
with deductions, which is not represented on the figure for the sake of legibility.
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Figure 5.7: Example of EDRT deployments
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5.5.2 Node characteristics at stake in EDRT

5.5.2.1 Node’s knowledge on itself

A node n has in its KB information about the property types of the data it produces,
denoted own_productions(n). Data produced by node n is either collected by
sensors to which n is directly connected, or obtained as deductions when n applies
a rule. When a reasoning-enabled node is connected to a sensor, it enriches the
raw observation, and propagates the enriched observation on the network, which
ensures that the observation is only enriched once. In the topology displayed on
Fig. 5.7, the Fog node R111 is connected to a luminosity sensor and enriches its
production therefore own_productions(R111) = {Temperature, Luminosity}. An
example of enriched observation is available online7. Observations and devices are
described in each node’s KB using the IoT-O ontology for our experiments (c.f.
Chapter §6), but the proposed approach does not depend on the ontology used to
describe data, as long as the same ontology is used to express the rules and their
metadata. The production of observations by node n for a property type ρt is
denoted <n,edr:producesDataOn,ρt>.

5.5.2.2 Node’s knowledge on the topology

A node n knows its parent in the network tree-like hierarchy, noted Upper(n), and
its children, referred to as Lower(n). On Fig. 5.7, Lower(G110) = {R111, R112},
and Upper(G110) = {F100}. The node communicates its characteristics to these

7https://w3id.org/laas-iot/rules/observations/enriched_data.ttl

https://w3id.org/laas-iot/rules/observations/enriched_data.ttl
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neighbors to support the deployment strategy implemented by EDRT . Such char-
acteristics include the types of the data produced by the node, as well as the types
of data consumed.

Announcing productions: The transmission of rules among nodes organized
by EDRT is driven by the knowledge each node has on the network around itself.
Productions are propagated from children to parents, denoted by the triple <edr:-
producesDataOn,rdf:type,edr:ParentAnnouncedProperty>. Therefore, when a child
node connects to its parent, it includes the triplets denoting its productions in its
self-description.

In order to enable the propagation of rules towards nodes that are not di-
rect neighbors, the proxying mechanism introduced in Section §5.4.3.3 is im-
plemented for property types productions: <edr:producesDataOn,rdf:type,edr:-
ParentProxiedProperty>. This mechanism makes a node aware of the types
of properties produced by any node below its lower nodes while communi-
cating only with its lower nodes, therefore ensuring the locality of its deci-
sions. To illustrate the proxying in more derails, let us define productions(n) =
own_productions(n)∪productions(Lower(n)). Node n announces itself to its par-
ent nparent as a producer of ρi

t, ∀ρi
t ∈ productions(n), ρi

t being the type of data
produced by one of the sensors or lower nodes connected to n. For instance, on
Fig. 5.7, productions(G110) = {Temperature, Luminosity, Thermostat}, with
own_productions(G110) = {Thermostat}. If the parent node nparent was not a
producer of the property type ρt, it includes a new triplet in its KB <nparent,edr:-
producesDataOn,ρt>, and forwards this triplet to its own parent. If node nparent was
already a producer for rhot, its capabilities remain unchanged, and the information
propagation stops.

Announcing consumptions: As it has been discussed in Section §5.4.3.1, in
order to limit unnecessary exchanges, data is exchanged lazily based on the node
consumption announcement functionality. A node n has to explicitly advertise
its interest for a property type ρt to each node belonging to Lower(n) in order
to be notified when new observations are received or new deductions are made.
In particular, a node is interested in a property type ρt when it is in charge of
applying a rule whose body includes ρt. Identifying if ρt ∈ bodyt(r) is based on IRI
comparisons. The interest of a node n for a property type ρt is represented in the
KB by the triplet <np,edr:isInterestedIn,ρt>, and <edr:isInterestedIn,rdf:type,edr:-
SomeChildrenAnnouncedProperty>. Indeed, when a node applies a rule r and is
thus interested in the properties ρt ∈ headt(r), it does not necessarily notify this
interest to all of its children.

The interest of n for ρt is only announced to children of n that are producers of ρt.
Moreover, if some nodes ni

child ∈ Lower(n) are able to apply the rule r themselves,
node n will forward r to ni

child, rather than notifying ni
child of its interest. The

details of the rule deployment strategy are provided in Section §5.5.3. In Fig. 5.7,
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R111 announced to G110 that it produced temperature, and G110 notified R111
of its interest for temperature in order to receive observations.

Furthermore, nodes interests are proxied towards children: <edr:isInterested-
In,rdf:type,edr:ChildrenProxiedProperty>. When a node n receives a message from
its parent nparent containing a triple <nparent,edr:isInterestedIn,ρt>, n announces
to its children nchild ∈ Lower(n) that <n,edr:isInterestedIn,ρt>. Therefore, when
one of the children produces a data of type ρt, n is notified, and itself propagates
the received data to nparent. The knowledge of nodes about their environment is
thus limited to their neighborhood, enabling purely local decisions.

5.5.2.3 Exploiting the contextual locality of IoT data

The rule deployment strategy supported by EDRT is based on the assumption
that the correlation between pieces of data is embedded in the network
topology. IoT data is strongly bound to a spacio-temporal context [Perera 2014a],
and the distribution of Fog nodes reflects the distribution of features observed by
sensors. From this hypothesis, it can be inferred that the context of a node is a
subset of the context of its parent. To illustrate this claim with RComfort previously
introduced, it means that if it is possible to apply RComfort with luminosity and
temperature observations collected by the same gateway, it is not necessary to
compare the same luminosity observations with temperature observations collected
elsewhere. IoT data being highly contextual, applications do not necessarily need
to reason over a complete KB to get relevant results. EDR is therefore suitable for
rules exploiting this context by correlating data sharing an identical context, e.g.,
the correlation of temperature and luminosity in the context of a single room for
RComfort.

The relation between the spatio-temporal context and the topology is repre-
sented in Fig. 5.8, where each gray area represents the context of a Fog node.
The assumption we make entails that, since both R111 and R112 contexts contain
enough information to process rule RComfort, the luminosity from R111 context and
the temperature from R112 context will never be processed together by RComfort.

In the case of the G120 context, since neither R121 nor R122 produce the in-
formation necessary to process RT emperatureGap, both nodes send their observations
to G120. The fact that G120 is the parent of both R121 and R122 is considered a
hint that the context of R122 is closer to the context of R121 than, for instance, to
the context of R112. The proximity of context is associated to the distance of the
closest common ancestor: R121 and R122 share a parent, while the closest common
ancestor to R121 and R112 is F100, at a distance of 2 hops from both nodes. Since
R121 and R122 are closer to each other than R122 and R112, there is a higher
chance for the thermostat observation from R122 to lead to a deduction based on
RT emperatureGap when processed with temperature from R121 rather than R112.

In a similar manner as context proximity, context inclusion is impacted by the
hierarchy. A context A is considered included in a context B if the elements of
context A are also available in context B. On Fig. 5.8, the G110 context partially
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Figure 5.8: Illustration of observations spatio-temporal context
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includes the R111 and R112 contexts, since only temperature values are propagated
to G110, and not presence values. Since G110 applies RT emperatureGap, R111 and
R112 provide it with temperature observations, which it processes with its own
thermostat value observations.

If, as in our case, the scope of rules is not broader than the context in which they
are applied, applying rules deeper in the hierarchy does not impact the completeness
of the result. However, if the rules are not adapted to the topology in which
they are deployed with EDRT , some deductions will be inferred in a centralized
approach that would be missed when data is processed in a decentralized manner.
For instance, let us consider two sensors producing respectively observations of
types α1 and α2, connected to the same node n, and a rule r consuming α1 and
α2. EDRT will eventually deploy r on n, and none of the observations of type α1
and α2 produced by n will be processed by r outside of the context of n. This
is the intended behavior of EDRT , but it limits its applications so some types of
rules, such as rules performing the aggregation of several values of the same type.
For instance, a rule that sums electrical consumptions and compares the total to
a fixed value cannot be executed successfully by EDRT , because its scope will be
larger than the contexts in which it will be distributed, that is any node producing
electrical consumption observations.

This behavior is adapted to rules supporting deductions for time-sensitive ap-
plications, which is the focus of the present contribution, and cannot be applied
to aggregation rules, where time series or multiple instances of the same property
types are considered. This choice is motivated by the assumption that aggregation
rules are more likely to be used in applications supporting long-term reporting and
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Listing 5.2: rtransfer
comfort shape

SELECT $this
WHERE {
FILTER NOT EXISTS {

$this a lmu:Node ;
edr: producesDataOn adr: Temperature , adr: Luminosity ;
lmu: hasUpstreamNode [a lmu: HostNode ;].
FILTER NOT EXISTS {

{ex: officeLightComfortRule edr: transferredTo $this .}
UNION
{ex: officeLightComfortRule edr: transferableTo $this .}

}
}

}

decision support, where the time constraint is not strong, and thus outside the
scope of this contribution. Moreover, such aggregation rules might need to consider
data in a global context, which is a purpose achieved by the deployment on Cloud
nodes as discussed in Section §4.3. The EDR approach and its refinements (such
as EDRT ) do not aim at replacing semantic Cloud computing, but seek to comple-
ment its capabilities with semantic Fog computing. That is a second reason not to
support aggregation rules.

To ensure decidability, only DL-safe rules are considered, and EDR is only
suitable for stratified rule sets. Cyclic dependencies between rules are not resolved.
When a node applies rule r, it is considered as producer of the head_t(r), and this
production information is used for the deployment of any rule r′ such as bodyt(r′)∩
head_t(r) 6= ∅. However, a non stratified rule set where rules r and r′ coexist
such that bodyt(r′) ⊆ head_t(r) and bodyt(r) ⊆ head_t(r′) cannot be processed
successfully by EDR, and neither r nor r′ will be propagated or applied.

5.5.3 Implementation of EDRT in rule modules

The behavior of a node implementing EDRT is embedded in the modules of EDRT -
compliant rule. For now, these rules are built manually: the property types feature
in the rule body and head of the rule are identified when the rule is written, and
the modules are built accordingly. The knowledge required for the processing of
each module is local to the node performing the reasoning process.

5.5.3.1 Rule Transfer module

The purpose of EDRT is to transfer each rule to the lowest possible node
in the architecture, to be applied as early as possible. The propagation of a rule
rx from node n to node n′ is considered relevant if n′ ∈ Lower(n) ∧ bodyt(rx) ⊂
productions(n′), which brings it closer to sensors. This condition is expressed in
Lst. 5.2, an extract of the SHACL shape constituting rtransfer

comfort .
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Since it is assumed that rules are initially submitted to the Cloud node, the
neighbor-to-neighbor propagation is only considered downwards in the topology.
Each node that handles the rule in the deployment process keeps its representation
in its KB. Therefore, it is not necessary to re-propagate a rule upwards: if a node
ceases to be able to apply a rule, the change should be considered by the activation
module of the rule held by its ancestors, as it is detailed in Section §5.5.4.

Incrementally, the rule r will converge toward nodes such that, for any node n
of them:

• n can no longer propagate r, i.e. ∀n′ ∈ Lower(n), bodyt(rx) 6⊂
productions(n′),

• n is able to apply r, i.e. bodyt(rx) ⊂ productions(n).

These are the nodes able to apply the rule that are the closest to the original data
producing: propagating the rule lower in the hierarchy is not necessary. Such a
node is represented on Fig. 5.7 with gray dashes connected to RComfort.

5.5.3.2 Activation module

In order to apply a rule r, a node n must be the lowest common ancestor to the
producers of property types in the rule body. Such node has a set P of chil-
dren (either sensors or other Fog nodes) partially producing the rule head. In-
dividually, none of the children produce all the elements of the rule head, but
combined, their productions enable the processing of the rule. It is characterized
as such: ∃P, such as ∀nc ∈ P, <n,lmu:hasDownstreamNode,nc> and ∃{ρt, ρ

′
t} ⊆

body(r), <nc,edr:producesDataOn,ρt> and ¬∃ <nc,edr:producesDataOn,ρ′
t>, and

∀ρt ∈ body(r), ∃nc ∈ P,<nc,edr:producesDataOn,ρt>. Lst. 5.3 gives a SPARQL
implementation of these conditions applied to ractivation

comfort .
If the conditional part of rule r activation module determines that the current

node is suitable to apply r, some deductions are inferred. The activity of rule r
is made explicit by the triplet <r,edr:isRuleActive,true>, and the nodes n′ ∈ P
are identified as providers of the data type which r now consumes. The interest
of n for the consumption of the nodes n′ ∈ P is announced, as it is captured
by the <?interest,edr:announceTo,?partialDataProvider> triple. The object of the
interest, represented as a reified statement, will be bound to any partial production
of the rule head by a child of n. The interest of the rule originator o is also
denoted with <o,edr:consumesResult,r>. These inferences enable both the rule
application and the rule result forwarding mechanisms as described in Section
§5.4.3. The SPARQL CONSTRUCT embedded in the SHACL rule for the ractivation

comfort

module is provided in Lst. 5.4. The focus of the SHACL shape, materialized by
the $this variable, captures the IRI of the node applying the rule in its own KB.
It is defined in the SHACL documentation as the only element shared natively
between the SHACL conditional shape and the SHACL rule said shape conditions:
the $this captures the node violating the shape defined in the condition. That is
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Listing 5.3: ractivation
comfort shape

SELECT $this
WHERE {

FILTER NOT EXISTS {
$this a lmu: HostNode .
$this lmu: hasDownstreamNode ? temperatureProvider ,

? luminosityProvider .
? temperatureProvider edr: producesDataOn adr: Temperature .
? luminosityProvider edr: producesDataOn adr: Luminosity .
FILTER EXISTS {

$this lmu: hasDownstreamNode ? lowerNode .
FILTER (

? lowerNode = ? luminosityProvider
|| ? lowerNode = ? temperatureProvider

)
FILTER NOT EXISTS {

? lowerNode edr: producesDataOn adr: Temperature , adr: Luminosity .
}

}
}

}

why some elements characterizing the child nodes of the current node need to be
recaptured in the WHERE clause of the ractivation

comfort rule, while the $this is already
bound to the current node.

5.5.3.3 Result delivery module

In EDRT , the condition of the result delivery module checks if a node expressed in-
terest for the type of deductions yielded by the rule. If there exists a triple <n′,edr:-
interestedIn,ρt>, with n′ a remote node and ρt an element of the rule r’s head
head(r), then the result transfer module infers that <n′,edr:consumesResult,r>.

5.5.4 Unraveling the main steps of EDRT

Nodes executing the EDR algorithm maintain a coherent view of their neighbor-
hood, and deploy rules with respect to this perception of their environment accord-
ing to the strategy implemented by EDRT . The neighborhood of a node is modified
when a new node connects or a known node disconnects, and when the productions
or consumptions of a node are modified. The main events impacting the exchanges
of a node with its neighbors are therefore: when its capabilities are changed (which
includes startup and disconnection), when receiving a new rule, and when receiving
a new piece of data. In the following, the behavior of EDRT for each of these events
is described to refine the high-level description given on Fig. 5.5.

When changing capability Sensors are the primary source of data for the net-
work. The data they produce is collected by their reasoning-enabled parent. When
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Listing 5.4: ractivation
comfort rule

CONSTRUCT {
$this edr: isInterestedIn adr:Luminosity , adr: Temperature .
$this edr: producesDataOn ex: Symptom1 .
? interest a rdf: Statement ;

rdf: subject $this;
rdf: predicate edr: isInterestedIn ;
rdf: object ? partialProduction ;
edr: announceTo ? partialDataProvider .

ex:R1 edr: isRuleActive "true"^^ xsd: boolean .
? originator edr: consumesResult ex:R1.

} WHERE {
$this a lmu: HostNode .
{

$this lmu: hasDownstreamNode ? partialDataProvider .
? partialDataProvider edr: producesDataOn ? partialProduction .
FILTER NOT EXISTS {

? partialDataProvider edr: producesDataOn
adr:Luminosity ,
adr: Temperature .

}
} UNION {

ex:R1 edr: isRuleActivable "true"^^ xsd: boolean .
}
ex:R1 edr: ruleOriginatedFrom ? originator .
OPTIONAL {ex:R1 edr: isRuleActive "false"^^ xsd: boolean .}
BIND( STRAFTER (str (? partialProduction ), "#") AS ? productionName )
BIND(URI( CONCAT (str($this), ? productionName , " Interest "))

AS ? interest )
}
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semantic computing-enabled nodes start, they try to connect to their sensors chil-
dren of which they have a priori knowledge. How nodes discover and gather infor-
mation about sensors can be a process tightly related to the underlying technology,
or hard-coded in the node KB.

Nodes connected to sensors announce the property types they produce to
their parent node, according to the announcement functionality captured in the
triple <edr:producesDataOn,rdf:type,edr:ParentAnnouncedProperty>. As explained
in Section §5.5.2.2, nodes propagate production information by proxying their chil-
dren productions. Similarly, when a sensor or a lower node providing data of type
ρi to node n disconnects, n announces its updated capabilities if they have been
transformed, i.e. if the disconnected node was the sole producer of ρi.

In the case when the node already held some rules, their placement might need
to be updated according to the new topology denoted by the received message. In
order to adjust the rule deployment accordingly, rule modules dedicated to such
deployment, namely application, transfer and delivery modules, are activated, pro-
cessed in a reasoning step, before being deactivated again as detailed in Fig. 5.5.
The deductions yielded by this reasoning step, based on the edr vocabulary, are
used to control the node behavior as described previously. The use of these mod-
ules is similar when a new rule is received, as it is described in the next section.
The propagation of rT emperatureGap in the illustrative deployment provided in Fig.
5.7 is represented as a sequence diagram on Fig. 5.9.

When receiving a rule When node n receives a new rule r, n evaluates whether
it can apply r directly, and/or if it should propagate r to some of its children
by performing a reasoning step with all modules of r activated. Based on the
deductions produced by this reasoning step, some node functionalities are activated
if necessary:

• If the rule r is applicable by the current node, the productions of n are updated
by ractivation

comfort . n notifies its parent of its new productions, i.e. the head of r.
Being able to produce the deductions of a rule is processed like a capability
change, described in the previous section. If the applicability of rule r is
enabled by the productions of some children of node n, the interest of n for
their productions has been added in the KB, as well as the necessity for their
notification of such interest. Node n thus notifies these children of its interest
for these properties.

• The rule r is propagated to child nodes marked suitable by the rule transfer
module. Local metadata is added to rule r in order to keep track of the
lower nodes to which it has been transmitted with the predicate edr:rule-
TransmittedTo. Such metadata is not added by the rule transfer module, but
by the node after the completion of the propagation to the target.

When receiving new data The propagation of a new piece of data is represented
as a sequence diagram on Fig. 5.10. Different kinds of data can be received by node
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Figure 5.9: Propagation of rT emperatureGap
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Figure 5.10: Propagation of a temperature observation
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n:

• raw observations directly produced by a sensor connected to n, as for the
observation sent by the sensor to R111 on Fig. 5.10

• enriched observation or deduction sent to n by node nc ∈ Lower(n), as for
the observation sent by R111 to G110 on Fig. 5.10

If the received observation is raw, node n enriches it by annotating it with an
ontology before its processing as a new enriched observation. If the piece of data
is either an enriched observation or a deduction, it is directly integrated to its KB
and processed.

The data, of property type ρi, is in the first place sent to Upper(n) if it is a
consumer of ρi. Then, node n checks if new deductions can be obtained by applying
the rules it has marked up as active. When receiving new data, a node does not need
to activate the rule modules for activation, transfer or delivery: only the core of the
rule is relevant. If the rule body matches the KB of node n, and postconditions of
type δj are deduced, these deductions are propagated to Upper(n) if it is consumer
of δj . Since rules are applied on the local KB of node n, there is no impact of data
distribution on reasoning complexity. A new reasoning loop is simply applied each
time new data is received. The deductions yielded by rule r are also directly sent
to r’s originator(s). Therefore, applications are notified continuously by the nodes
as those nodes apply the rules, instead of being notified by a restricted set of central
nodes.
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5.6 Conclusion

In this chapter, we proposed EDR, a generic approach for dynamically distributed
rule-based reasoning, which exploits the properties of Fog architectures to achieve
decentralization.

Many existing approaches to rule-based reasoning for the SWoT perform com-
putation on Cloud nodes only, potentially leading to a centralized bottleneck, and
by design creating network communication overhead. In order to tackle these issues,
decentralized approaches have been proposed in the literature, taking advantage of
the Fog computing paradigm. In such cases, computation is disseminated among
Fog nodes in order to be brought closer to the IoT devices producing the data. How-
ever, these distributed reasoning approaches do not discuss rule placement. Some
studies propose interesting optimizations, but they focus on one node, and do not
consider the myriad of nodes constituting a Fog infrastructure. In other studies,
the rule placement is static: it is either computed at design time, or all the nodes
execute the same set of rules.

With the contributions described in this chapter, we aimed to address these
shortcomings to enable cooperative semantic computing associating remote pow-
erful nodes providing stability, and local limited and opportunistically available
resources associated to semantic Cloud and Fog computing respectively. The elab-
orated solutions leverages the Cloud and Fog paradigms complementarity to imple-
ment an efficient deployment and propagation approach for data, rules and deduc-
tions respectively.

As contribution II.A we introduced EDR, a generic approach to dynami-
cally distributed rule-based reasoning, based on modular SHACL rules. The
execution by Fog nodes of core EDR functionalities is controlled via a ded-
icated vocabulary describing knowledge in each node’s KB. This vocabulary is
used by rule modules to implement deployment strategies enabling the prop-
agation of rules neighbor-to-neighbor across the Fog tier of the Cloud-Fog-Device
pattern. Rule deployment strategies aim at optimizing rule placement for
customizable criteria, such as response time or energy consumption, based on
the knowledge stored in each node’s KB. Such knowledge include a description of
its neighbors, the current state of the environment based on sensor observations,
and background knowledge. Overall, EDR enables, in a purely decentralized and
emergent manner, the deployment of rule, the propagation of data and the
delivery of deductions inferred when applying the rules once they have been
deployed. EDR has been accepted for publication in [Seydoux 2018c].

In order to enforce its genericity, EDR itself is made agnostic to individual de-
ployment strategies. Therefore, it has to be refined by injecting rules embedding
their own deployment strategy, selected according to application-level require-
ments. To this end, we proposed EDRT (contribution II.B), an EDR refinement
implementing a deployment strategy dedicated to reducing delays for transmit-
ting deductions to applications. EDRT aims at deploying rules on Fog nodes as
close as possible to sensors, while avoiding unnecessary computation. Rules are thus
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propagated toward sensors producing the type of data they consume, as deep
as possible in the topology. The propagation stops when the rule is deployed
on the Fog node being the closest common ancestor to these sensors in the topol-
ogy. To enforce the locality of decisions, node capabilities are announced through
the network thanks to a proxying mechanism, where data productions and con-
sumptions are propagated. An early implementation of EDRT has been proposed
in [Seydoux 2018b], and a deeper description has been accepted for publication in
[Seydoux 2018a].

The next chapter is dedicated to performances measurement in order to support
our claims regarding the scalability of EDRT .



Chapter 6

Experimentations

Contents
6.1 Deductions delivery mechanisms . . . . . . . . . . . . . . . . 138
6.2 Experimental setup and implementation . . . . . . . . . . . 141

6.2.1 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2.2 Software setup . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2.3 Measured results . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.3 Initial implementation . . . . . . . . . . . . . . . . . . . . . . 143
6.3.1 Smart building use case details . . . . . . . . . . . . . . . . . 143
6.3.2 Impact of distribution on responsiveness . . . . . . . . . . . . 144
6.3.3 Scalability of the proposed approach . . . . . . . . . . . . . . 147

6.4 EDRT implementation in a smart factory use case . . . . . 148
6.4.1 Use case details . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.4.2 Impact of distribution on responsiveness . . . . . . . . . . . . 151
6.4.3 Scalability of the proposed approach . . . . . . . . . . . . . . 154

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

EDR being a generic approach, it cannot be subjected to a quantitative evalu-
ation by itself: it must be refined by a concrete approach implementing a deploy-
ment strategy. Therefore, the evaluations presented in this section are dedicated to
EDRT , refining EDR with a a deployment strategy aiming at reducing the deduc-
tion delivery delay.

In order to compare the proposed contribution to baselines qualified by diverse
properties, different delivery mechanisms are introduced in Section §6.1. By default,
EDRT delivers deductions directly to applications. The proposed alternative deliv-
ery mechanisms implement variations of this approach, by propagating deliveries
differently across the network. A centralized deduction baseline is also introduced.

The setup in which the evaluations were performed is described in Section §6.2,
along with the references to the code used for running the experiments. Two sets
of experimentations are then introduced, assessing two different implementations
of EDRT , respectively in Section §6.3 and Section §6.4. These two groups of ex-
perimentations have been initially published in [Seydoux 2018b], and accepted for
publication in [Seydoux 2018a] and [Seydoux 2018c].
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6.1 Deductions delivery mechanisms

The purpose of the evaluations presented in this chapter is to compare the per-
formances of centralized Cloud-based and decentralized Fog-based approaches to
reasoning. The contribution we propose, EDRT , has been described in the previous
chapter §5. It aims at distributing reasoning among Fog nodes in order to per-
form computation as close as possible to the sensors producing observations. The
baseline to which EDRT should be compared is a centralized approach, where raw
data is sent up to a Cloud node to be processed by rules. Since the propagation
of rules for semantic Fog computing is performed neighbor-to-neighbor, it seems
logical that raw data is propagated in the same way back to the Cloud node. How-
ever, such comparison would be biased by the necessity for each piece of data to
transit through multiple hops from Fog to Cloud nodes. In order to limit the im-
pact of transfer time, and focus on processing time, new hypotheses are considered:
in some configurations, Fog nodes will deliver deductions to Cloud nodes, instead
of communicating directly with applications. Similarly, for centralized processing,
Fog nodes should be able to deliver raw data to Cloud nodes, instead of an indirect
propagation. These different configurations are referred to as “Deductions delivery
mechanisms”.

Unlike rule deployment strategies, deductions delivery mechanisms are decorre-
lated from the rules: they are variations of the “Deduction delivery” functionality
described in Section §5.4.3.1. Therefore, the propagation of rules, the deductions
they yielded and data is described as intended according to ad-hoc strategies (here,
EDRT ) through the EDR vocabulary, but for experimental purpose this propagation
can be altered at the node level, preventing rule deployment or rerouting deduction
delivery. Five deduction delivery mechanisms are compared in our experiments:

• Cloud-Indirect-Raw (CIR) is the baseline approach: the rules are only
kept in the top Cloud node, and raw observations are forwarded neighbor-
to-neighbor from the nodes that collect them toward the central node. The
Cloud then delivers deductions to applications. Applications are notified by
the Cloud node, and not by Fog nodes, in all delivery mechanisms except the
last one.

• Cloud-Direct-Raw (CDR) is also an approach where rules are not de-
ployed, and only processed in the central Cloud node. In this configuration,
the observation producers directly send raw observations to the Cloud node,
where they are used for rule-based deductions. Such delivery mechanism en-
ables to measure the impact of transfer time on deduction delay when central-
izing raw data for processing. To implement this configuration, the interest
proxying mechanism presented in Section §5.5.2.2 is altered. Nodes that are
not the upper node in the hierarchy propagate the interests they receive with-
out proxying them.

• Cloud-Indirect-Processed (CIP) is a hybrid delivery mechanism: rules
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are deployed among Fog nodes according to EDRT , and deductions are prop-
agated neighbor-to-neighbor towards the Cloud node before being delivered to
applications. CIP mirrors the delivery mechanism of CIR, with a decentral-
ized reasoning. The purpose of CIP is to measure the performance gain when
distributing reasoning even when communication is only possible neighbor-to-
neighbor in the Fog infrastructure. To modify the result delivery behavior,
whenever a node propagates a rule, it declares itself as the originator of said
rule instead of the previously registered originator. Processing rules based on
semantic Fog computing means that the propagation of observations is lim-
ited to the Fog nodes applying rules consuming such observations, instead of
going all the way up the Cloud node.

• Cloud-Direct-Processed (CDP) is a another hybrid mechanism where
rules are processed by Fog nodes, but deductions are delivered directly to the
Cloud node instead of applications. It is the Cloud node that performs the
delivery to applications. In this case, the purpose is to measure the impact of
centralized delivery in a decentralized reasoning context. To implement CDP,
when forwarding a rule it has received, the Cloud node declares itself as the
originator instead of the application. Deductions can also be propagated
among Fog nodes if a node explicitly expressed its interest.

• Application-Direct-Processed (ADP) is the purely decentralized strat-
egy that we propose for EDRT , where rules are processed based on semantic
Fog computing and deductions are delivered directly to applications that sub-
mitted the rules. In this case only, a deduction that has been inferred in the
network will not be hosted by the Cloud node before being delivered.

The characteristics of the different delivery mechanisms are summarized in Tab.
6.1, where their important features are highlighted:

• whether rules are propagated among Fog nodes or not,

• whether deductions are propagated neighbor-to-neighbor or directly delivered,

• whether Fog nodes communicate with the Cloud node or directly with appli-
cations.

All these characteristics are illustrated in an example on Fig. 6.1, where the
propagation of raw data and deductions according to the different delivery mech-
anisms is represented. In the case of deductions delivery, it is assumed for the
sake of clarity that deductions are made in the lowest Fog nodes. The considered
topology comes from the smart building use case described in Section §5.3, with a
hierarchical deployment of nodes in a floor, galleries and rooms, respectively desig-
nated as FXXX, GXXX and RXXX on the figure. The manipulation of the EDR
behavior by implementing different delivery mechanisms enables the comparison of
centralized (CIR and CDR) and distributed approaches (CIP, CDP, ADP), and the
comparison of approaches based on direct (CDP, CDR) and indirect (CIR, CIP)
communication with the Cloud node.
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Table 6.1: Delivery mechanisms summary

Approach Rules
propagation

Neighbor-to-Neighbor
content delivery

Fog-App
communication

CIR 7 For data 3 7

CDR 7 For data 7 7

CIP 3 For deductions 3 7

CDP 3 For deductions 7 7

ADP 3 For deductions 7 3

Figure 6.1: Delivery mechanisms
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Table 6.2: Experimental setup

RAM Cores CPU
Server 32GB 32 3.0GHz
Laptop 16GB 8 2.6GHz
RPi 3 1GB 4 1.4GHz
RPi 2 1GB 4 900MHz

6.2 Experimental setup and implementation

6.2.1 Hardware setup

In order to assess the distributed nature of the approach, and its suitability for
constrained Fog nodes, the experimental setup includes a Raspberry Pi 2 and a
Raspberry Pi 3, a laptop and a server, described in Tab. 6.2.

In order to measure the tradeoff between decentralization and the loss of com-
puting power when reasoning on Fog nodes, experiments are run twice, in two
different environments:

• In the first case, the complete topology is emulated on the same server, each
node being run as an individual process. This environment is referred to as
“single-host execution”. Such execution environment eases tests.

• In the second case, the topology is distributed across different machines listed
on Tab. 6.2. This environment is referred to as “multi-host execution”.
Such execution environment is more realistic than single-host execution, since
it includes constrained nodes. However, the feasibility of large scale exper-
imentations on such decentralized environments is limited, since it requires
multiple machines. The necessity to run the experiments on multiple machines
at the same time also creates technical issues making the testing process more
complex.

6.2.2 Software setup

The topologies introduced in the use cases are simulated for the experimentations.
Simulated nodes are organized in a tree-like hierarchy, with a Cloud node at the
root, sensors at the leaves, and Fog nodes in between. Each sensor pushes a random
observation to its parent every two seconds. Each physical machine running the
simulation hosts multiple virtual nodes, composed of an HTTP server, a KB, a
SPARQL engine, and a code base1.

Experiments are run by simulating a building setup with sensors generating raw
data. To enable the deployment on multiple machines, each node is implemented
as a standalone Java process, and inter-process communication is performed over
HTTP. To enable scalable experiments, sensors are implemented as multiple threads

1The code is available at https://framagit.org/nseydoux/edr

https://framagit.org/nseydoux/edr
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of one process, otherwise the RAM overhead for having an HTTP stack deployed
for each sensor prevents from deploying large topologies. Therefore, to enable re-
playing exactly the same sequence of observations, it would have been necessary
to synchronize more than 400 threads since the order in which observations are
received impacts the obtained result. We were not able to ensure such synchro-
nization without reducing the rate at which observations are produced by sensors.
That is why all the results were collected on simulated topologies.

6.2.3 Measured results

Two aspects of EDR have been evaluated:

• the validity of our hypothesis, namely that the distribution of rules increases
responsiveness,

• the scalability of the proposed approach

To measure the responsiveness of applications enabled by EDR, the delay be-
tween the moment observations are captured by sensors and the delivery
of the deduction these observation triggered is measured. Precisely, the delay
for the processing of a rule is characterized as the time difference between the mo-
ment when the most recent data used in the body of the rule is produced, and
the moment when the rule head is deduced. A dedicated timestamp is associated
to each observation once it has been enriched, in order to avoid any impact of
the enrichment process on the measure. For instance, if a luminosity observation
observed at t1 and a temperature observation observed at t2 match rcomfort and
trigger a deduction that is delivered to the application at t3, the delivery delay for
this particular deduction will be t3−max(t1, t2). The clock of all the machines used
for the experiment are synchronized to a local server using Network Time Protocol
(NTP)2, in order to ensure a minimal time difference between the different nodes.

Experimental measures showed that, for each simulation, the number of deduc-
tions is consistent between centralized and distributed approaches: there is no
knowledge loss when applying EDRT under our assumptions of bound
between the Fog topology and the correlation between data.

In order to analyze closely the cause for the increased delay, the journey of a
message has been broken down in discrete timestamped events. The first event
related to a message is its construction, either by enrichment of an observation or
by achieving a deduction. In order to be propagated in the network, a message
might be sent from a node n to another node n′, which is identified as two events:
the sending from node n, and the reception by node n′.

Multiple hops are registered, from the first node responsible for the message
creation toward any node that is interested in the message content for deduction.
When a message is received by a node n, n starts a reasoning step where it tries to
make new deductions based on the rules in its knowledge base. Events are logged

2http://www.ntp.org/

http://www.ntp.org/
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at the beginning and at the end of reasoning. In order to detail the delay for each
deduction, the journey of the most recent observation leading to the deduction is re-
constructed. This journey is built by identifying all consecutive events related to the
piece of data leading to the deduction, from its initial enrichment to its processing
leading to the deduction, and the delivery of said deduction to the application.

Three components of delay have been identified:

• Transfer delays, measured between the emission and the reception of a
message. This delay is both impacted by the quality of the network link
between two nodes, but also by the processing speed of the recipient: the
transfer is considered completed when the recipient declares the reception at
the software level, and it is not measured at the network layer. When the
message is transferred through multiple hops, the delays are summed.

• Reasoning delays, measured between the beginning and the end of a rea-
soning step. Reasoning delays are summed if the same message is processed
with different rules across the topology.

• Idle delays, measured between the reception of a message and its processing,
or between the reasoning step and the propagation of deductions.

6.3 Initial implementation

The results presented in this section have been collected on an initial imple-
mentation of EDRT , initially introduced in [Seydoux 2018b] and detailed in
[Seydoux 2018a]. This first implementation focuses on demonstrating the perfor-
mance gain with EDRT compared to a centralized baseline, and not on the genericity
of EDR. Therefore, the propagation strategy was directly baked into the generic
algorithm, and no distinction is made between EDR part and EDRT . The vocabu-
lary used to manage the rules is directly attached to them in the form of metadata,
instead of being embedded in SHACL modules. This non-genericity allows to con-
sider simpler, non-modular rules. Moreover, since this initial implementation is a
proof-of-concept for EDRT , only the extreme mechanisms, CIR and ADP, are com-
pared. Due to the non-modularity of this initial work, implementing intermediate
mechanisms would require more development. The results obtained with this first
iteration were motivating for the second, more generic, implementation discussed
in Section §6.4.

6.3.1 Smart building use case details

This use case is the implementation of the illustrative use case already introduced
in Section §5.3. The reference architecture used for the simulation is depicted on
Fig. 6.2. The root node at depth 0 is the Cloud server while other nodes are Fog
nodes. Sensors, not represented on the figure, may be connected under any node.
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Figure 6.2: Reference simulation architecture
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In this architecture, some rules characterizing the behavior of the smart building
are deployed, listed in Tab. 6.3. Rules R1 to R4 are inspired from actual rules
implemented by the BAS depoyed in ADREAM, and rules R5 to R14 are abstract
rules, meant to introduce variability in the use case but not yielding deductions
connected to an actual use case.

6.3.2 Impact of distribution on responsiveness

6.3.2.1 Experimental topologies

To measure how distribution impacts responsiveness, four topologies were distin-
guished, labeled d1 to d4 and further on simply denoted d*. Each of these topologies
is constituted of 47 identical nodes, and processes data according to four rules, r1
to r4. The difference between the four d* topologies is the location of sensors,
as depicted in Fig. 6.3. Sensors producing data of the type γ1 are directly at-
tached to the top node in d1, while they are attached to its children in d2. Since
body_t(r1) = {γ1, γ4}, r1 is applied at a maximum depth of 1 in d1, but is propa-
gated to nodes of depth 2 in d2, hence a “more decentralized” execution is performed
in d2 than in d1. Rule execution depths are given in Tab. 6.4: in d4, all sensors
are connected to leaf nodes, and the distribution is maximal.

A factor to be considered is that this experiment is entierly run on the server
which characteristics are given in Tab. 6.2: no constrained nodes are included in
this evaluation. It would be wrong to assume that the decentralization towards
nodes of lesser computing power has no impact on the results, that is why this
question is addressed in Section §6.4.2.

6.3.2.2 Results

Fig. 6.4a and 6.4b summarize the aggregated delivery delay measures for the four
rules applied in d* topologies. The data shows that the delay remains stable for
the four topologies with a centralized approach (Fig. 6.4a), which is our baseline.
Since all computations are performed in the upper node in the centralized case, it is
coherent that the distribution of sensor nodes in the network has little impact the
delay. In any d* distribution, when processing rules at depth 0 with a centralized
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Table 6.3: Building management rules

Rule ID Rule core

R1: Too hot
Location(?l) ∧ Temperature(?l, ?o1)∧?o1 > 25.0
→ HighTemperature(?l)

R2: Com-
fortable room

Location(?l) ∧ Temperature(?l, ?o1)∧?o1 > 20.0
∧Luminosity(?l, ?o2)∧?o2 > 150L→ ComfortableP lace(?l)

R3: Uncom-
fortable room

Location(?l) ∧ Temperature(?l, ?o1)∧?o1 < 16.0
∧Luminosity(?l, ?o2)∧?o2 < 120L ∧Humidity(?l, ?o3)
∧?o3 > 50.0→ uncomfortableP lace(?l)

R4: Costly
tempera-
ture gap

Location(?l) ∧ Temperature(?l, ?o1)
∧TemperatureRequest(?l, ?o2) ∧ PowerConsumption(?o3)
∧(?o2−?o1) > 5∧?o3 > 300.0→ CostlyTemperatureGap(?l)

R5
Location(?l) ∧ Temperature(?l, ?o1)∧?o1 <= 25
∧Luminosity(?l, ?o2) ∧ o2 < 800→ Symptom5(?l)

R6
Location(?l) ∧ Temperature(?l, ?o1)∧?o1 <= 25
∧Luminosity(?l, ?o2)∧?o2 > 50 ∧Noise(?l, ?o3)∧?o3 > 30
→ Symptom6(?l)

R7
Location(?l) ∧ Temperature(?l, ?o1)∧?o1 > 20
∧Luminosity(?l, ?o2)∧?o2 > 150 ∧Humidity(?l, ?o3)
∧?o3 > 35→ Symptom7(?l)

R8
Location(?l) ∧ Temperature(?l, ?o1)∧?o1 <= 18
∧Luminosity(?l, ?o2)∧?o2 < 200 ∧Noise(?l, ?o3)∧?o3 > 30
∧Presence(?l, ?o4)∧?o4 = True→ Symptom8(?l)

R9
Location(?l) ∧ Temperature(?l, ?o1)
∧TemperatureRequest(?l, ?o2)∧?o1 <=?o2 → Symptom9(?l)

R10
Location(?l) ∧ Temperature(?l, ?o1)
∧TemperatureRequest(?l, ?o2)∧?o1 >=?o2
∧Humidity(?l, ?o3)∧?o3 > 35→ Symptom10(?l)

R11

Location(?l) ∧ Temperature(?l, ?o1)
∧TemperatureRequest(?l, ?o2)∧?o1 <?o2
∧PowerProduction(?l, ?o3)
∧PowerRedistribution(?l, ?o4)∧?o4 >?o3 → Symptom11(?l)

R12
Location(?l) ∧ Presence(?l, ?o1)∧?o1 = True
∧PowerProduction(?l, ?o2)∧?o2 > 300→ Symptom12(?l)

Table 6.4: Depth of rule processing for d* topologies

R1 R2 R3 R4
d1 1 2 3 4
d2 2 2 3 4
d3 3 3 3 4
d4 4 4 4 4
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Figure 6.3: d* topologies
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Figure 6.4: Impact of distribution on delays
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Table 6.5: s* topologies

Topology s1 s2 s3 s4
Nodes 27 41 65 78

approach, at least one sensor is situated at depth 4. In d4, all sensors are situated
at depth 4, but even in d1 for rule R1, a sensor is located at depth 4, maintaining
a limiting factor for transfer time.

With the decentralized approach (Fig. 6.4b) based on EDR, as expected, the
augmentation of the depth at which rules are applied is correlated with the reduction
of the delivery delay. Due to the tree-like nature of the network, the deeper a
rule can be processed, the more distributed its processing is. Our hypothesis that
bringing rules closer to data-producing sensors reduces deduction delivery delay
is therefore supported by experimental evidence. The decentralized approach also
outperforms the centralized one.

It is clear that not all rules can be processed at the very edge of the network, and
that the case depicted in d4 is both purely theoretical and ideal for EDRT . This
experiment is designed to show that the gain in quality of service is correlated with
the possibility to distribute rules, even at a medium scale where the performance
of a centralized approach are still viable compared to a decentralized one. As it
is discussed in Section §6.3.3, centralized design leads to huge delay increases with
scaling topologies.

6.3.3 Scalability of the proposed approach

6.3.3.1 Experimental topologies

The scalability of the proposed approach is assessed by measuring deduction deliv-
ery delay in four topologies, s1 to s4 (denoted s*), with an increasing number of
nodes stated in Tab. 6.5. Nine rules are deployed on s* topologies. Compared to
previous d* topologies, the depth at which rules can be applied in s* is constant,
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Figure 6.5: Scalability measures
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as sensors’ depth is fixed. The number of nodes is increased by cloning branches in
the topologies. This experiment has been run on a mixed setup: some Fog nodes
are emulated by the server, and some other are actually deployed on Raspberry Pis.

6.3.3.2 Results

Fig. 6.5a shows how the delivery delay time increases with the number of nodes
in the baseline approach. The median delivery delay increases progressively with
the growth of the topology, up to values that are unacceptable for an application
requiring responsiveness. The centralized approach is not scalable.

On Fig. 6.5b, the delivery delays measured when EDR is applied remains stable
between s1 and s2, before increasing for d3 and d4. However, the observed increase
is much less important than in the centralized delivery mechanism. The proposed
decentralized mechanism, even if it creates a loss of QoS with the increase of the
number of nodes, is much more scalable than its centralized counterpart.

These initial experimentations provide promising preliminary results while as-
sessing the properties of EDRT regarding scalability and rule distribution. However,
as it has been stated at the beginning of the section, this first implementation was
an initial design where EDR and EDRT are not differentiated, and where rules are
not expressed using the full expressivity of SHACL. This initial design was easier
to design, and provided an interesting proof of concept, but does not support the
genericity initially part of the EDR approach. In Section §6.4, the results of the
proof of concept are confirmed with a complete EDR implementation.

6.4 EDRT implementation in a smart factory use case

The results considered in this section have been obtained by executing the EDRT
approach as described in Chapter §5: it is based on modular SHACL rules, and
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Figure 6.6: Fog-enabled smart factory

the propagation strategy is separate from the core algorithm. In order to show the
versatility of the approach, a different use case is considered, as detailed in Section
§6.4.1. Distribution and scalability are then discussed, respectively in Section §6.4.2
and §6.4.3.

6.4.1 Use case details

Let us consider a production plant divided into two floors, processing different kind
of products. These floors are modular: the structure described thereafter is sub-
ject to change in order to adapt to new productions. Each floor is equipped with
conveyor belts carrying products from machine to machine for transformation. De-
vices are organized hierarchically: machines are connected to conveyors that are
connected to the floor gateway, that collects and delivers data to the factory data-
center. The factory is equipped with sensors in order to ensure the safety of workers:
each floor is equipped with presence, luminosity particle and temperature sensors,
and the workers are equipped with wearables that automatically communicate in
BLE3 with nearby conveyors. Observations from the different sensors are used in
order to identify potentially harmful situations, and then notify the control center,
where actions can be taken remotely. Unsafe situations are described with deduction
rules, based on the semantic description of observations and of the environment.
Examples of rules include “the activation of a machine creating sparks in an at-

3https://en.wikipedia.org/wiki/Bluetooth_Low_Energy

https://en.wikipedia.org/wiki/Bluetooth_Low_Energy
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Rule ID Rule core

R1:
Low Machine
Visibility

Location(?l) ∧ Presence(?l, ?o1)∧?o1 = True
∧Luminosity(?l, ?o2)∧?o2 < 300L ∧Machine(?m)
∧Activity(?m, ?o3)∧?o3 = True ∧ locatedIn(?m, ?l)
→ LowMachineV isibility(?m)

R2:
Low Conveyor

Visibility

Location(?l) ∧ Presence(?l, ?o1)∧?o1 = True
∧Luminosity(?l, ?o2)∧?o2 < 300L ∧ Conveyor(?c)
∧Activity(?c, ?o3)∧?o3 = True ∧ locatedIn(?c, ?l)
→ LowConveyorV isibility(?c)

R3:
No

supervision

Location(?l) ∧ Presence(?l, ?o1)∧?o1 = False
∧Conveyor(?c) ∧Activity(?c, ?o3)∧?o3 = True
∧locatedIn(?c, ?l) ∧ SupervisorPost(?s)
∧supervises(?s, ?c)→ NoSupervision(?c)

R4:
Fire

hazard

Location(?l) ∧ ParticleLevel(?l, ?o1)∧?o1 > 25%
∧SparkMachine(?m) ∧Activity(?m, ?o3)∧?o3 = True
∧locatedIn(?m, ?l)→ Firehazard(?m)

R5:
Cold chain
broken

Location(?l) ∧ Temperature(?l, ?o1)∧?o1 > 6oC
∧TemperatureSensitiveMachine(?m) ∧Activity(?m, ?o3)
∧?o3 = True ∧ locatedIn(?l, ?m)→ ColdChainBroken(?m)

R6:
Conveyor
too fast

Conveyor(?c) ∧Machine(?m) ∧ onConveyor(?m, ?c)
∧MachineSpeed(?m, ?sm) ∧ ConveyorSpeed(?c, ?sc)
∧?sc >?sm → ConveyorTooFast(?c)

R7:
Low quality
product

Machine(?m) ∧ ProductQuality(?m, ?o1)∧?o1 < 98.5
→ LowQualityProduct(?m)

Table 6.6: Safety and quality rules

mosphere loaded with particles creates a detonation hazard”, or “The presence of
a worker near an operating machine in a low luminosity environment is a personal
security hazard”. Some rules are also dedicated to quality insurance: sensors avail-
able in the factory, such as temperature sensors, or sensors integrated to machines
and to the conveyor, enable the continuous control of production quality. Some op-
erations are temperature-sensitive, and a quality insurance rule is “The detection of
a temperature above a certain threshold is a break in the cold chain”. Adapting the
speed of conveyors to the speed of machines is also part of quality enforcement. All
the rules are summarized in Tab. 5.1, and their SHACL representation is available
online4.

Safety and quality insurance are time-sensitive applications, which is why the
processing of the rules should be as fast as possible. Moreover, the mobility of some
sensors (e.g., workers wearable), combined to the modularity of the factory floors,
are suitable for a dynamic solution adaptative to their evolution over time.

4https://w3id.org/laas-iot/edr/iiot/iiot.tar.gz

https://w3id.org/laas-iot/edr/iiot/iiot.tar.gz
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Figure 6.7: Reference topology for d*
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Table 6.7: Machines hosts for distribution experiments

Simulated node Datacenter Floor Conveyor Machine
Physical host Server Laptop Raspberry Pi Server

6.4.2 Impact of distribution on responsiveness

6.4.2.1 Simulation topology

The evaluation of the impact of distribution has been performed using the same
approach as in Section §6.3.2: the same sensors are deployed from topology d’0 to
d’4, but they are not situated at the same level, enabling the control of the level
at which rules are processed. Sensors are situated in d’* topologies so that the
rules are processed at the depths depicted in Tab. 6.8. The simulation topology is
composed of 42 nodes in total (including sensors), hosted on the physical machines
as detailed on Fig. 6.7. Fig. 6.8 shows results for centralized approaches, and Fig.
6.9 for distributed reasoning, both showing single-host and multi-host execution.

6.4.2.2 Results

The trend observed in the initial implementation regarding the impact of distribu-
tion tend to be confirmed with the new experiments, but there are some differences.

With the centralized reasoning delivery mechanisms, there is little impact of
the distribution on performances as seen on Fig. 6.8. The best performances
are measured in the most centralized topology, d’0, when the sensors are directly
connected to the reasoning node, thus minimizing the transit time, as it is shown
on Fig. 6.8a and Fig. 6.8b. Moreover, for this completely centralized topology,

Table 6.8: Depth of rule processing for d’*

R1 R2 R3 R4 R5 R6 R7
d’0 0 0 0 0 0 0 0
d’1 0 1 0 1 1 0 0
d’2 1 1 0 1 1 0 0
d’3 1 1 0 3 3 1 3
d’4 3 2 2 3 3 2 3
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Figure 6.8: Distribution experiments, centralized reasoning
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the delays measured with the decentralized delivery mechanisms (CDP, CIP, ADP)
are comparable to the centralized ones (CIR, CDR), which is an expected result:
since all the sensors are connected to a single node, there is no difference between
rule deployments. It should also be noted that there are no significant differences
between the centralized and decentralized executions. Since all reasoning, which is
the most computing-intense process of the simulation, is located in both cases on
the most powerful node, it is also an observation consistent with our expectations.

For the decentralized delivery mechanisms, where rules are propagated into the
network according to the EDRT technique, the distribution has indeed an impact on
deduction delivery delay, seen on Fig. 6.9. In the single-host execution environment
(Fig. 6.9a), where all the nodes have comparable capabilities, there is a correlation
between the depth at which rules can be executed (denoting a more important
distribution of processing), and the delivery delay decreases. In this case, each node
takes a increasing share of the reasoning in charge, leading to a relative decrease of
the idle time compared to the reasoning time as seen on Fig. 6.10.

However, Fig. 6.9 shows a discrepancy between the simulation in a single-host
and a multi-host-host environment, the latter actually including constrained nodes.
For ADP and CIP on Fig. 6.9b, at the d’3 topology, the third and fourth quartiles
show an increase in the delays. The median delay is compliant with the expected
decreasing trend for ADP, but it begins increasing for CIP. For the d’4 topology
on Fig. 6.9b, where the distribution is maximal, there is an important increase
of delays for all decentralized delivery mechanisms, exceeding the delays measured
even for d’0.

An explanation for this phenomenon is the saturation of the Fog node passed
a certain work load, the tipping point being crossed around d’3. The progressive
relative increase of the idle time when increasing distribution, seen when comparing
d’3 an d’4 on Fig. 6.10 and Fig. 6.11, supports this hypothesis. To this regard,
the EDRT technique has a naive approach, where the capabilities of the Fog nodes
are not considered in the deployment process. Moreover, the nature of SHACL
rules requires the node to evaluate every active rules when a new observation is
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Figure 6.9: Distribution experiments, distributed reasoning
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received, event if the new information is not relevant for the new rule. This pre-
vents optimizations that were possible in the initial implementation, where rules
were individually processed: the generality of the EDR approach is traded for the
efficiency of the implementation.

The technological choices made for the implementation of EDRT are also factors
to be considered in the observed results. Overall, EDRT is still a proof of concept,
and some choices in the implementation should be rethinked for performance:

• The HTTP framework used (Jersey5) has been chosen for convenience for
the flexibility of development it allows, but it adds a certain overhead in the
memory print and execution time which is not negligible in a constrained
environment.

• The SHACL engine used in our experimentations is described by its creators
as "not really optimized for performance, just for correctness"6. It is possible
that in the future, better performances will be reached by sheer improvement
of the SHACL engine. This engine was chosen because, to the best of our
knowledge, it was the only Jena-compatible SHACL implementation at the
time of implementation.

5https://jersey.github.io/
6https://github.com/TopQuadrant/shacl

https://jersey.github.io/
https://github.com/TopQuadrant/shacl
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Figure 6.10: Distribution experiments delays breakout (single-host execution)
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Figure 6.11: Distribution experiments delays breakout (multi-host execution)
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• Knowledge is exchanged between nodes serialized in RDF Turtle. Other more
compact RDF serializations exist [Su 2015], and switching to such a format
would reduce the communication overhead when messages are exchanged.

6.4.3 Scalability of the proposed approach

6.4.3.1 Simulation topologies

In order to assess the scalability of the proposed strategy for EDR, performances
have been measured on three topologies, denoted s’1, s’2 and s’37, and collectively
as s’*, as represented on Fig. 6.12. All s’* topologies mimic the use case architecture
presented in Fig. 6.6, with variations in the number of floors. A floor is constituted

7Topology representations are available at https://w3id.org/laas-iot/edr/iiot/scala_
syndream/clone_f_<0,1,2>.ttl respectively

https://w3id.org/laas-iot/edr/iiot/scala_syndream/clone_f_<0,1,2>.ttl
https://w3id.org/laas-iot/edr/iiot/scala_syndream/clone_f_<0,1,2>.ttl
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Table 6.9: s* topologies

Topology s’1 s’2 s’3
Nodes 31 61 91

Figure 6.12: Simulation topology s’*
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of two conveyors, each of which supports two machines, with sensors distributed
as shown on a JSON blueprint provided online8, leading to a total of 30 nodes
(including both reasoning nodes and sensors). The rules described in Section §6.4.1
are used. The number of nodes is increased by duplicating floors: s’0 has one, s’1
two, and s’2 three floors, for a total number of respectively 31, 61 and 91 nodes
(as summarized on Tab. 6.9). Fig. 6.13 shows results for centralized approaches,
and Fig. 6.14 for distributed reasoning, both showing single-host and multi-host
execution.

6.4.3.2 Results

Due to scaling issues, results are separated in several figures:

• Results for centralized deduction delivery mechanisms (i.e. CIR and CDR)
are shown on Fig. 6.13a for single-host execution, and on Fig. 6.13b for
multi-host execution.

• Results for distributed deduction delivery mechanisms (i.e. CIP, CDP and
ADP), are shown on Fig. 6.14a for single-host execution, and on Fig. 6.14b
for multi-host execution.

The gain in scalability provided by the decentralized approaches appears in the
results. In topology s’1, the discrepancy between delivery delay for distributed and

8https://w3id.org/laas-iot/edr/iiot/clone_f_0_blueprint.json

Table 6.10: Machines hosts for scalability experiments

Simulated node Datacenter Floor Conveyor Machine
Physical host Server Raspberry Pi Server Laptop

https://w3id.org/laas-iot/edr/iiot/clone_f_0_blueprint.json
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Figure 6.13: Scalability measures, centralized reasoning
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Figure 6.14: Scalability measures, decentralized reasoning
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centralized reasoning approaches is reduced, especially in the single-host execution
setting, with a median around 0.65s for CIR and CDR, and 0.065s for CDP, CIP
and ADP.

However, in topologies s’2 and s’3, the gap between centralized and distributed
approaches increases dramatically. The deduction time is multiplied by more than
20 from s’0 to s’2, while the relative share of reasoning time contributing to the
delay decreases, as shown on Figs. 6.16 and 6.16. The transit times are the ones
to increase relatively the most, which denotes a network overflow over a computing
saturation on the centralized reasoning node.

An delay increase is also observed for distributed delivery strategies in the single-
host execution environment, but it is much smaller, as seen on Fig. 6.14a. In the
multi-host execution environment, there is a performance difference between direct
and indirect delivery mechanisms. Even though overall the increase in the number
of node has little impact on the measured delays, the delays measured in the CIP
configurations are much longer than in CDP or ADP.

An explanation for this observation is the fact that, due to their location, the
Raspberry Pis are a bottleneck for communication only in this configuration. In
CIP, they must both forward observations and deductions towards a Cloud node,
as well as performing reasoning, while they only have to process rules with the
CDP and ADP strategies. This conclusion is also strengthen by the fact that, if the
Raspberry Pis 3 are replaced by Raspberry Pis 2, which have a lower computing
power, that same profile is observed, with longer delays, as seen on Fig. 6.14c for
CIP for instance. On Fig. 6.16, among the three decentralized delivery mechanisms,
CIP has the least important relative transfer time dedicated to reasoning. This is
coherent with the fact that more deductions are forwarded by the constrained nodes
rather than deduced directly by it, since it is at depth 1 in the topology, and it is
only connected to few sensors compared to conveyor or machine nodes.

A trend that can be observed in the breakout is the increase of the share of
transfer time in centralized strategies compared to decentralized ones. An expla-
nation for this phenomenon is the saturation of the network link, combined to an
overhead on the central node induced by the necessity to perform all the reasoning.
The central node has less CPU time available to declare reception of messages, and
therefore the time between the emission event and the reception event is increased.
Overall, the limited increase of delays and the balance of the delays breakdown in
the distributed settings support our claim that EDRT is a scalable approach to
rule-base reasoning based on semantic Fog computing.

6.5 Conclusion

The evaluations performed in this chapter, on two separate use cases, supported
our claim that decentralizing computation is a scalable approach, and that EDRT
reduces delivery delay under some conditions. The first use case extended the
smart building use case introduced in Chapter §3, and the second has been dedi-
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Figure 6.15: Breakout of delays (normalized, single-host execution)
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Figure 6.16: Breakout of delays (normalized, multi-host execution)
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cated to a smart factory. Two implementations have been evaluated, one natively
implementing EDRT , published in [Seydoux 2018b] and accepted for publication
in [Seydoux 2018a], and the other deploying EDRT as a refinement of EDR, ac-
cepted for publication in [Seydoux 2018c]. Considering these two implementations
and comparing their specificities has given us some perspective on the tradeoffs in
optimization and Fog computing.

On the one hand, the initial native approach has been easier to develop, and
supported shorter rules, since they do not embed the deployment strategy. For
instance, rule R1 in the building management use case is 54 lines long with the
initial implementation, and 280 lines long with the EDR-based implementation. On
the other hand, the second implementation, even though it requires more work from
rules implementers, enables a finer control over rules propagation, with a strategy
that can be selected at the scale of the rule. Rules are also more interoperable in
the second case, since their processing is compliant with the SHACL standard.

In both use cases, decentralized delivery mechanisms have outperformed cen-
tralized ones: the degradation of QoS when the number of nodes increase is much
slower when reasoning is performed in a distributed manner. Similarly, the enable-
ment of a more widespread distribution of rules by a modification of the sensors
deployment have not improved QoS with a centralized delivery mechanism. With a
decentralized approach, such an increase of distribution has improved performances
up to certain point, but when executed on constrained nodes, has eventually led to
a QoS degradation.

This degradation is a drawback of EDRT that have been revealed by the con-
ducted experimentations. Not considering the capabilities of Fog nodes in the de-
ployment process is a naive approach that reaches its limitations when overloading
constrained nodes. Moreover, due to technical constraints, the experiments we
conducted could not be performed at a large scale on constrained nodes. This
introduces a bias in the measured results, since the simulated nodes are ran on ma-
chines much more powerful than the Fog nodes should be. We are aware of this bias,
and the experiments are designed in such way that it has an impact as reduced as
possible. For future experiments, we intend to set up a network of virtual machines,
emulating the actual capabilities of physical nodes, rather than mere processes.

Initially, it was planned to reuse ADREAM data in the experiments, in order to
test the approach on real-life data, and to ensure reproducibility and completeness
of each approach. Using the same sample of observations would allow to compare
the deductions, ensuring that they remain consistent from an approach to the other.
However, we failed to reuse ADREAM data because of synchronization issues among
the multiple simulated sensors. Reconsidering the simulation architecture to enable
the reuse of actual data is also an improvement considered for future experiments.

The complementarity of Fog and Cloud paradigms is also supported by the
results of our approach: there is an improvement of performances even in cases
where deductions are forwarded to a Cloud node, and not directly to applications,
compared to a centralized reasoning approach. Therefore, unloading the Cloud
infrastructure by performing semantic Fog computing, while considering the Cloud
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node both as a computation resource and as an stable Web endpoint for applications
enables scalable deployments for the SWoT.
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Conclusion and future work
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7.1 Conclusion

IoT devices are deployed pervasively in the environment to provide services to
human users. To enforce compliance with principles of user-centric design, we de-
termined the necessity for interoperability among IoT devices, and for the
capacity of self-management of IoT systems. From this observation, the emergence
of the SWoT domain is the logical culmination of the co-evolution of the IoT and
SW domains. SW technologies and principles were defined in the first place to rep-
resent machine-understandable knowledge, used to provide M2M interoperability.
Achieving such interoperability is a necessity for the expansion of IoT networks,
since they are composed of deeply heterogeneous devices required to communicate
with each other. However, the dynamism of IoT networks, and the inherent con-
straints of IoT devices represent challenges for the deployment of SW technologies
in the IoT context. The work we propose in the present thesis addresses this twofold
issue, in order to achieve interoperability for IoT devices while adapting
SWoT technologies to IoT constraints.

First, we described how interoperability, and especially semantic interoperabil-
ity, is achieved in the SWoT. Some industrial standards are moving towards se-
mantic interoperability, but the main tools to achieve it are ontologies. In order to
discuss the role of IoT ontologies as interoperability providers, two contributions
have been described:

• We proposed ontology design requirements to characterize quality features
for IoT ontologies, in order to support the adoption of good practices in the
SWoT community. Existing IoT ontologies have been identified, described,
and assessed based on these requirements. Since existing ontologies did not
fulfill the proposed design requirements, we instantiated them by defining
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IoT-O, a modular core-domain IoT ontology. Contribution I.A of this
thesis is the association of the IoT ontology design requirements
and their instantiation by IoT-O. To ensure a maximum interoperability,
some IoT-O modules are based on existing ontologies, and IoT-O has been
aligned to reference ontologies of the domain created after its publication.
The description of IoT-O has been published in [Seydoux 2016b].

• IoT-O has been used as a semantic interoperability enabler in three use cases.
The OPA platforms proposes an open data which is updated daily with ob-
servations collected in a smart building. These observations are enriched with
knowledge described using extensions of IoT-O. The enriched observations are
then transformed to be published in the FIESTA-IoT platform, a federated
data hub deployed in a European project. The transformation making OPA
observations compliant with the FIESTA-IoT platform are based on align-
ments between IoT-O and the FIESTA-IoT vocabulary. Finally, the role of
IoT-O and its extensions in driving the behavior of semIoTics, con-
stituting contribution I.B of this thesis, has been discussed. SemIoTics
is an autonomic computing software used in a home automation use case,
where syntactic and semantic interoperability are leveraged. SemIoTics was
initially described in [Seydoux 2016a] and [Aïssaoui 2016].

Autonomic computing is a way to achieve self-managing IoT systems, but it re-
quires constrained devices, in particular actuators, to adapt their behavior based
on high-level decisions. We proposed initial work for supporting semantic interoper-
ability towards constrained devices with the mapping-reversal approach, published
in [Seydoux 2016c]. Such approach underlines the necessity to locate demanding
computation on nodes with sufficient computing capabilities.

Indeed, SW technologies tend to be resource-consuming, which is not suitable
for an IoT deployment built upon constrained devices. Therefore, the SW stack
supporting SWoT applications has often been deployed on Cloud nodes, leading
to a centralization of the computation. Such an approach impacts the scalability
negatively, and degrades the QoS. That is why we considered the Fog computing
paradigm to enable the distribution of processing, and allow scalable deployments.
The technologically heterogeneous, and spatially spread nature of IoT systems re-
quires the existence of a middle layer between IoT devices that collect data, and
Cloud servers that process it. This layer can be used for Fog computing, and this
thesis surveys the role of semantic Fog computing in SWoT architectures.

Surveying how semantic-enabled Fog nodes support the deployment of SWoT
systems led to the consideration of the complementarity of Cloud and Fog comput-
ing. We proposed two contributions to leverage these paradigms:

• EDR, a generic approach for dynamically distributed rule-based
reasoning in SWoT architectures has been introduced as Contribution
II.A. EDR defines a propagation technique for rules and data, driven by a
deployment strategy. Applicative-level requirements for rule propagation are
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captured by the deployment strategy which is embedded into the rules. The
core rule and data deployment technique is independent of the applicative-
level requirements, making EDR generic. A description of EDR has been
published in [Seydoux 2018c].

• A refinement of EDR, called EDRT , has then been described as contri-
bution II.B. EDRT implements a deployment strategy designed to reduce
deduction delivery delay by bringing rule computation as close as possible
to devices producing data. Two implementations of EDRT have been eval-
uated in two use cases, a smart building and a smart factory. The results
of these experimentations supported our claim that decentralization improves
scalability, and therefore supports the deployment of the SWoT. EDRT was
initially incepted in [Seydoux 2018b], and its detailed description was pro-
vided in [Seydoux 2018a].

The purpose of the work presented in this thesis has been to support the devel-
opment of semantic interoperability solutions in the domain of the IoT by promoting
the emergence of SWoT technologies adapted to IoT constraints. By studying how
SW principles and technologies provide interoperability, and by considering a rea-
soning approach both scalable and dynamically distributed on semantic-aware Fog
nodes, our contributions addressed these issues and supported further developments
of the SWoT domain. However, many challenges remain open in the convergence
of SW technologies and IoT devices, and they motivate our propositions of future
work to overcome limitations identified in our own contributions.

7.2 Future work

7.2.1 Short-term work: Extending the EDR ecosystem

EDR is a generic approach, supported by a vocabulary and refined by implementa-
tions of deployment strategies. The core characteristics of EDR have been studied
in this thesis, but further extensions can be considered. These extensions aim at
capturing different applicative requirements with new deployment strategies, but
also to support the work of rule implementors.

7.2.1.1 Potential deployment strategies

EDRT is one possible refinement of EDR, focusing on improving response time
by considering observation types. In the remainder of this section, we list other
parameters that may be considered to implement new deployment strategies.

Considering node capabilities: The limitations of EDRT were discussed in
Chapter §6, in particular its failure to consider the capabilities of Fog nodes in the
rule deployment process. Due to the heterogeneity of Fog nodes, it is naive for a
given node to consider all its neighbors equally. We intend to extend EDRT in
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order to make nodes aware of each other’s capabilities when propagating rules to
neighbors. A challenge for this approach is that it should not be limited to the
static characteristics of the nodes, such as memory or computing power. It should
also be adaptative to a node’s dynamic state, for instance considering the battery
state, or the rules that have already been forwarded to this node.

The heterogeneity of Fog nodes regarding communication capabilities is also a
factor to consider. Depending on the deployed technologies, direct communication
between Fog and Cloud nodes or applications might not be possible due to technical
interoperability concerns. In such a topology, the Application-Direct-Processed and
Cloud-Direct-Processed delivery mechanisms cannot be applied, having this direct
communication as a prerequisite. In deployments where nodes communicate over
ad-hoc networks, we discussed the role of border gateways as relays between the IoT
and the Web. Proposing a new approach derived from our Cloud-Indirect-Processed
mechanism by identifying the critical gateways that ensure technical interoperabil-
ity, will allow the relaxation of our hypothesis requiring direct communication be-
tween Fog nodes and application.

Domain identification: In the second version of the S-LOR, platform introduced
in [Gyrard 2017], rules are classified into domains. It is possible to represent such
classification as a taxonomy, in order to capture the domains into a KB. Once
represented in a KB, it is possible to use these domains to drive the propagation
of rules among Fog nodes, by associating nodes and rules to domains. We draw
a prospective outline of such a deployment strategy, whose implementation by an
EDR refinement could be referred to as EDRD.

Let us briefly consider EDRD though a smart campus example. The campus
is composed of a library, a food court, student housing, and classroom buildings.
Each of these buildings belongs to a different domain, and therefore rules consider-
ing the same type of input (e.g., a temperature threshold, for simplicity) will not be
executed equally in these different domains. One could expect the desirable tem-
perature to be warmer in an apartment than in a classroom for instance. Instead of
propagating all the rules measuring a temperature threshold to a node where tem-
perature observations are available, only the rules associated to the node’s domain
should be considered. Moreover, one node may belong to several domains, and for
instance, all places where fire hazards should be monitored can be classified in a
“Fire” domain.

The core mechanism of EDR would be unchanged by such a deployment strat-
egy: instead of proxying production types, nodes would proxy the domain. This
approach would implement a specialization logic, where depending on their context
(here the domain), similar observation types are not processed with the same rules.
Moreover, it would make it possible to dynamically adapt the context in the case of
mobile nodes. For instance, let us consider a situation where a student with reduced
mobility having a Fog node embedded in his/her wheelchair. Such a node may be
associated with the “Reduced mobility” domain, triggering dedicated rules in the
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different contexts it will appear. The mobility of the node means that accessibility
measures (automated doors, support from staff) are only set up when the student
is present in the building, and supporting proper assistance whenever needed.

Privacy awareness: Privacy is a critical concern for the IoT R&D community1,
as well as for IoT devices’ end users. The recent multiplication of security breaches
found in IoT systems2 demonstrates the legitimacy of this concern. Shifting the
paradigm from the concentration of data in remote, centralized, third-party nodes
to the propagation of processing close to data producers and consumers enforces
the locality of data processing. Enforcing privacy in IoT systems remains an open
issue [Miorandi 2012], despite some initial work for knowledge access control in the
SWoT [Alam 2010].

A refinement of EDR implementing a privacy-aware deployment strategy
would therefore be an interesting prospective approach, that we refer to as EDRP
Such an approach would measure how the overhead of traffic, compared to the
solution proposed in the present thesis, impacts performances, and find a trade-
off between privacy and performances. EDRP would rely on a partially ordered
credentials definition: each data producer (typically a sensor) would be given a
credential level, attached to each observation it produces, and each node would also
be attributed with a credential level, inspired by [Singh 2017] or Unix user groups.
The credential level of a node is typically a characteristic that would be declared
by a node to its neighbors, based on the EDR announcement mechanism. A node
may be forwarded a piece of data if and only if this node has a credential level that
is both comparable and superior or equal to the credential of the piece of data. The
credential level of a child is considered superior to that of its ancestors: the notion
of context imbrication on which EDRT is based can also be adapted to privacy. For
sibling nodes, and a fortiori in the general case, credentials are not comparable,
unless explicitly stated so.

A specificity of EDRP compared to EDRT is that it is possible that an observa-
tion is not only propagated upward. Indeed, the notion of lowest common ancestor
as it is used in EDRT assumes that any node may access any information, which is
no longer the case in EDRP . Therefore, the rule propagation module of an EDRP
rule should not only check if a child node is a potential candidate for rule appli-
cation, but also declare the child node consumer of observations collected by its
parent, which is contrary to the EDRT logic.

The notion of policy as defined in [Singh 2017] should also be considered when
attributing a confidentiality level to a deduction. Since the different elements con-
sidered by the rule might be of varying confidentiality, determining the confidential-
ity of the rule result is a non-trivial issue, necessitating an explicit policy expressed
as part of the rule. Simple examples of policy include “most restrictive” or “least
restrictive”, where the confidentiality of the result is directly inherited from the

1https://www.slideshare.net/kartben/iot-developer-survey-2018
2https://internethealthreport.org/2018/spotlight-securing-the-internet-of-things/

https://www.slideshare.net/kartben/iot-developer-survey-2018
https://internethealthreport.org/2018/spotlight-securing-the-internet-of-things/
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confidentiality of one of the rule’s input, but more complex aggregation policies
may be implemented as well.

7.2.1.2 Supporting rule management

Rule hosting platform: After considering improvements in the rule deployment
process itself, we intend to improve the management of rules as well. The modularity
of EDR rules does not facilitate their development, and requires some expertise for
rule implementors. In order to improve the accessibility of rules, a sharing platform
inspired by [Gyrard 2017] is also considered as a future work. Since EDR rules
are compliant with Linked Open Rules principles, the platform may offer access to
rules presented as Web resources, improving their reusability. Moreover, having a
central repository for rules enables the approach to consider a reference version of
the rule, as the dereferenced resource hosted by said repository. Since rules are
identified by IRI, it is possible to incrementally modify them at runtime, so that
the operation of the controlled system is not interrupted. Modifying rules allow
applications to fine-tune their behavior according to a feedback loop that considers
either previous responses to inputs, or external factors (e.g., seasonal change, or
regulation evolution).

Rule development support: Developing rules embedding deployment strategies
may be a challenging task. In order to support rule implementors in their devel-
opment process, the hosting platform presented in the previous paragraph could
include rule-building tools. These tools will enable the construction of rules em-
bedding existing deployment strategies such as EDRT , as well as the visualization
of existing rules on the platform.

Multiple concurrent deployment strategies: So far, the deployment strate-
gies implemented by refinements of EDR have been considered individually, with
only one strategy driving rule deployment in a particular SWoT network. Since EDR
is a generic approach agnostic to the deployment strategy, it is technically possible
to deploy rules embedding multiple concurrent deployment strategies. However, in-
consistent behaviors may be induced by the execution of contradictory deployment
strategies. For instance, the decisions based on privacy considerations in EDRP
might be undermined by decisions driven by efficiency in EDRT . The identification
of inconsistent strategies, and the mechanisms to prevent detrimental behaviors are
challenges that should be addressed in future work.

7.2.2 Medium-term work: Bringing semIoTics and EDR together

In its current state, EDR feeds remote applications deductions, that these applica-
tions can use in a decision-making process. Such decisions may be taken by human
operators, in which case the application provides the operator with a represen-
tation of the deductions received from the network, implementing a presentation
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functionality as described in Section §4.2.1.2. However, it is also possible that the
application reacts to the deductions by taking action without a direct human in-
tervention. In this case, the model of autonomic computing, already introduced in
Section §3.3.4.2 when discussing a home automation use case, may be applied.

Let us consider the application featured in the use case described in Section §5.3
as an autonomic agent implementing a MAPE-K loop. When applying EDR, the
implementation of the MAPE-K loop is incomplete: the Monitoring and Analysis
steps are indeed performed, by collecting observations and processing them with
rules, but the Planning and Execution steps are not discussed.

The EDR approach aims at bursting the MAPE-K loop implemented by the
application: instead of receiving all the raw observations (Monitoring) and making
the deductions itself (Analysis), the application spreads its Analysis rules in the
network so that both Monitoring and Analysis are distributed. In order to achieve
a full distribution of the MAPE-K loop, it would be necessary to decompose the
Planning modules into rules as well, in order to make decisions locally based on the
deductions inferred from observations, as well as enabling the local implementation
of the Execution step. In order to enable the transformation of high-level action
representations, issued from the Planning step, into messages understandable by
legacy devices, the mapping reversal approach introduced in Section §3.4 should be
integrated into the Execution step.

A complex system may be composed of several autonomic elements, each of them
implementing its own MAPE-K loop. Therefore, the decentralization of the applica-
tion would be complete, with MAPE-K loop instances deployed opportunistically in
the network in order to control devices at a local scale. This approach would lead to
a multiscale system-of-systems IoT automation and self-configuration, by enabling
the creation of interworked autonomous systems depending on each other. Multi-
scale modelling is discussed in [Gassara 2017], and the concept of system-of-systems
is defined in [Boardman 2006]. Generalizing autonomic computing at different lev-
els of IoT deployments would enable a full-stack semantic interoperability, from a
high-level policy expressed to drive an IoT to atomic device behavior implementing
such strategy. IoT networks are then treated as holons [Koestler 1967], that is to
say that they are both a whole and a part, depending on the granularity of the
policy considered. As a whole, they have a purpose and they can be considered
an atomic system, and, as a part, they contribute to the purpose of the system
at a larger scale [Oliveira 2013]. This approach leads to the emergence of local
behaviors enforcing global policies, which is a more scalable pattern bridging
high-level, global user requirements to low-level, local actions.

7.2.3 Long-term work: Supporting natural-language interaction

User-centric design is a global approach that motivates the contributions of my
work. How user requirements are collected in the first place is an actively discussed
topic in this approach. The fundamental way of human communication is natu-
ral language, and usually user-centered design is driven by the interaction between
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designers and users. Moreover, in this work we considered systems in which user re-
quirements are not only considered at design time, but are also driving the behavior
of the system. For SWoT systems, user preferences are usually expressed through
a Graphical User Interface (GUI), as in [Kaed 2018b] or [Kasnesis 2015]. However,
such expressiveness is limited to the use cases designed by the implementor of the
GUI, restricting the customization for the user. The expression of requirements in
natural language is a way to enable a more user-friendly interaction.

An issue with natural language interaction in the IoT is the mostly numerical
nature of the exchanged data. However, the emergence of the SWoT introduces
natural language resources in data annotation. Such resources enable systems
to interact with the user not only via graphical interfaces, but also through
conversational interfaces. We presented preliminary work for query-answering
dedicated to IoT systems in [Lannes 2017]. The current popularity of vocal
assistants, the ever growing capabilities of speech recognition for smart phones,
and open projects fostering the production of large corpora of voice recordings3,
combined to the development of chatbots, denotes the importance of conversational
interfaces facing end users. Not only are direct commands and interactions enabled
by such interfaces (“Switch on the bedroom reading light”), but high-level policies
driving autonomic behavior can also be specified by the user. A natural language
interface would therefore be a user-centered endpoint deployed on top of a joined
semIoTics/EDR system.

Mark Weiser, a major figure of the pervasive computing paradigm, stated that:
“The most profound technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable from it” [Weiser 2002].
Enabling through the SWoT conversational interactions with complex systems in-
tegrated into our environments while ensuring privacy and dynamic adaptability, is
achieving a vision of the IoT where the technology does indeed disappear, to leave
humans in a “smarter” environment.

3https://voice.mozilla.org/

https://voice.mozilla.org/
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Appendix

A.1 Namespaces and prefixes

All along the manuscript, the following prefixes have been used to represent names-
paces:

Prefix Namespace
dul http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
edr https://w3id.org/laas-iot/edr
ex http://example.org/ns
ioto http://www.irit.fr/recherches/MELODI/ontologies/IoT-O
lc http://vocab.org/lifecycle/schema
lmu https://w3id.org/laas-iot/lmu
msm http://iserve.kmi.open.ac.uk/ns/msm
ows https://delicias.dia.fi.upm.es/ontologies/ObjectWithStates.owl
sh http://www.w3.org/ns/shacl
sosa http://www.w3.org/ns/sosa/
ssn http://purl.oclc.org/NET/ssnx/ssn
time http://w3c.org/2006/time
wsmo http://www.wsmo.org/ns/wsmo-lite

http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
https://w3id.org/laas-iot/edr
http://example.org/ns
http://www.irit.fr/recherches/MELODI/ontologies/IoT-O
http://vocab.org/lifecycle/schema
https://w3id.org/laas-iot/lmu
http://iserve.kmi.open.ac.uk/ns/msm
https://delicias.dia.fi.upm.es/ontologies/ObjectWithStates.owl
http://www.w3.org/ns/shacl
http://www.w3.org/ns/sosa/
http://purl.oclc.org/NET/ssnx/ssn
http://w3c.org/2006/time
http://www.wsmo.org/ns/wsmo-lite
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A.2 Example EDR rule

prefix san: <http :// www.irit.fr/ recherches / MELODI / ontologies /SAN#>
prefix xsd: <http :// www.w3.org /2001/ XMLSchema #>
prefix fn: <http :// w3id.org/sparql - generate /fn/>
prefix iter: <http :// w3id.org/sparql - generate /iter/>
prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
prefix adr: <https :// w3id.org/laas -iot/ adream #>
prefix iotl: <http :// iot.ee. surrey .ac.uk/ fiware / ontologies /iot -lite#>
prefix ssn: <http :// purl.oclc.org/NET/ssnx/ssn#>
prefix ioto: <http :// www.irit.fr/ recherches / MELODI / ontologies /IoT -O#>
prefix edr: <http :// w3id.org/laas -iot/edr#>
prefix ex: <http :// example .com/ns#>
prefix sh: <http :// www.w3.org/ns/shacl#>
prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
prefix lmu: <http :// w3id.org/laas -iot/lmu#>
prefix dul: <http :// www. ontologydesignpatterns .org/ont/dul/DUL.owl#>
prefix time: <http :// www.w3.org /2006/ time#>

ex: R1Spot
edr: hasTransferShape ex: R1TransferShape ;
edr: hasApplyShape ex: R1ApplicableShape ;
edr: hasDeliveryShape ex: R1ResultDeliveryShape ;
edr: hasDeductionShape ex: R1ActiveShape .

ex: R1TransferShape
a sh: NodeShape ;
a edr: TransferShape ;
a edr: NodeSensitiveComponent ;
sh: targetClass lmu:Node ;
sh: sparql [

sh: select """
PREFIX edr: <http :// w3id.org/laas -iot/edr#>
PREFIX lmu: <http :// w3id.org/laas -iot/lmu#>
PREFIX ssn: <http :// purl.oclc.org/NET/ssnx/ssn#>
prefix adr: <https :// w3id.org/laas -iot/ adream #>
prefix ex: <http :// example .com/ns#>

SELECT $this {
FILTER NOT EXISTS {

$this a lmu:Node ;
edr: producesDataOn adr: Temperature , adr: Luminosity ;
lmu: hasUpstreamNode [

a lmu: HostNode ;
].
FILTER NOT EXISTS {

{ex:R1 edr: transferredTo $this .}
UNION
{ex:R1 edr: transferableTo $this .}

}
}

}
""" ;
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].

ex: R1Transfer
a sh: NodeShape ;
sh: targetClass lmu:Node ;
sh:rule [

a sh: SPARQLRule ;
sh: condition ex: R1TransferShape ;
sh: construct """

PREFIX ssn:<http :// purl.oclc.org/NET/ssnx/ssn#>
PREFIX ex:<http :// example .com/ns#>
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX rdfs:<http :// www.w3.org /2000/01/ rdf - schema #>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
PREFIX dul: <http :// www. ontologydesignpatterns .org/ont/dul/DUL.owl#>
PREFIX edr: <http :// w3id.org/laas -iot/edr#>
PREFIX lmu: <http :// w3id.org/laas -iot/lmu#>
CONSTRUCT {

ex:R1 edr: transferableTo $this.
ex:R1 edr: transferredFrom ?host.

} WHERE {
$this lmu: hasUpstreamNode ?host.
?host a lmu: HostNode .

}
""";

].

ex: R1ApplicableShape
a sh: NodeShape ;
a edr: ApplicableShape ;
sh: targetClass lmu: HostNode ;
a edr: NodeSensitiveComponent ;
sh: sparql [

sh: select """
PREFIX edr: <http :// w3id.org/laas -iot/edr#>
PREFIX lmu: <http :// w3id.org/laas -iot/lmu#>
PREFIX ssn: <http :// purl.oclc.org/NET/ssnx/ssn#>
prefix adr: <https :// w3id.org/laas -iot/ adream #>
prefix ex: <http :// example .com/ns#>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
SELECT $this {

FILTER NOT EXISTS {
ex:R1 edr: isRuleActivable "true"^^ xsd: boolean .

}
FILTER NOT EXISTS {

$this a lmu: HostNode .
$this lmu: hasDownstreamNode

? temperatureProvider ,
? luminosityProvider .

? temperatureProvider edr: producesDataOn adr: Temperature .
? luminosityProvider edr: producesDataOn adr: Luminosity .
FILTER NOT EXISTS {

ex:R1 edr: isRuleActive "true"^^ xsd: boolean .
}
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FILTER EXISTS {
$this lmu: hasDownstreamNode ? lowerNode .
FILTER (

? lowerNode = ? luminosityProvider ||
? lowerNode = ? temperatureProvider

)
FILTER NOT EXISTS {

? lowerNode edr: producesDataOn
adr: Temperature ,
adr: Luminosity .

}
}

}
}
""" ;

].

ex: R1ApplicantRule
a sh: NodeShape ;
sh: targetClass lmu: HostNode ;
sh:rule [

a sh: SPARQLRule ;
sh: condition ex: R1ApplicableShape ;
sh: construct """

prefix adr: <https :// w3id.org/laas -iot/ adream #>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
PREFIX edr: <http :// w3id.org/laas -iot/edr#>
prefix ex: <http :// example .com/ns#>
prefix lmu: <http :// w3id.org/laas -iot/lmu#>
prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
CONSTRUCT {

$this edr: isInterestedIn adr:Luminosity , adr: Temperature .
$this edr: producesDataOn ex: Symptom1 .
? interest a rdf: Statement ;

rdf: subject $this;
rdf: predicate edr: isInterestedIn ;
rdf: object ? partialProduction ;
edr: announceTo ? partialDataProvider .

ex:R1 edr: isRuleActive "true"^^ xsd: boolean .
? originator edr: consumesResult ex:R1.

} WHERE {
$this a lmu: HostNode .
{

$this lmu: hasDownstreamNode ? partialDataProvider .
? partialDataProvider edr: producesDataOn ? partialProduction .
FILTER NOT EXISTS {

? partialDataProvider edr: producesDataOn
adr:Luminosity ,
adr: Temperature .

}
} UNION {

ex:R1 edr: isRuleActivable "true"^^ xsd: boolean .
}
ex:R1 edr: ruleOriginatedFrom ? originator .



A.2. Example EDR rule 173

OPTIONAL {ex:R1 edr: isRuleActive "false"^^ xsd: boolean .}
BIND( STRAFTER (str (? partialProduction ), "#") AS ? productionName )
BIND(URI( CONCAT (str($this), ? productionName , " Interest "))

AS ? interest )
}

""";
].

ex: R1ActiveShape
a sh: NodeShape ;
a edr: ActiveShape ;
sh: targetClass lmu: HostNode ;
a edr: ContentSensitiveComponent ;
sh: sparql [

sh: select """
PREFIX edr: <http :// w3id.org/laas -iot/edr#>
PREFIX lmu: <http :// w3id.org/laas -iot/lmu#>
PREFIX ssn: <http :// purl.oclc.org/NET/ssnx/ssn#>
prefix adr: <https :// w3id.org/laas -iot/ adream #>
prefix ex: <http :// example .com/ns#>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
SELECT $this
WHERE {

FILTER NOT EXISTS {
$this a lmu: HostNode .
ex:R1 edr: isRuleActive "true"^^ xsd: boolean .

}
}
""" ;

].

ex: R1ResultDeliveryShape
a sh: NodeShape ;
a edr: ResultTransferShape ;
a edr: NodeSensitiveComponent ;
sh: targetClass lmu:Node ;
sh: sparql [

sh: select """
PREFIX edr: <http :// w3id.org/laas -iot/edr#>
PREFIX lmu: <http :// w3id.org/laas -iot/lmu#>
prefix ex: <http :// example .com/ns#>

SELECT $this {
FILTER NOT EXISTS {

$this a lmu:Node ;
edr: isInterestedIn ex: Symptom1 ;
lmu: hasDownstreamNode [

a lmu: HostNode ;
].
FILTER NOT EXISTS {

{$this edr: consumesResult ex:R1.}
}

}
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}
""" ;

].

ex: R1ResultTransfer
a sh: NodeShape ;
sh: targetClass lmu:Node ;
sh:rule [

a sh: SPARQLRule ;
sh: condition ex: R1ResultTransferShape ;
sh: construct """

PREFIX ex:<http :// example .com/ns#>
PREFIX edr: <http :// w3id.org/laas -iot/edr#>
PREFIX lmu: <http :// w3id.org/laas -iot/lmu#>
CONSTRUCT {

$this edr: consumesResult ex:R1.
} WHERE {

$this a lmu:Node ;
}

""";
].

ex: R1Shape
a sh: NodeShape ;
sh: targetClass lmu: HostNode ;
sh:rule ex:R1 .

ex: myAbstractApp a lmu: Application ;
iotl: exposes [

iotl: endpoint "http :// localhost :8005";
].

ex:R1 a sh: SPARQLRule ;
rdfs: comment "T, L -> C1";
sh: condition ex: R1ActiveShape ;
edr: ruleOriginatedFrom ex: myAbstractApp ;
edr: originatingEndpoint "http :// localhost :8005" ;
sh: construct """

PREFIX ssn:<http :// purl.oclc.org/NET/ssnx/ssn#>
PREFIX ex:<http :// example .com/ns#>
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX rdfs:<http :// www.w3.org /2000/01/ rdf - schema #>
PREFIX opa:<https :// w3id.org/laas -iot/ adream #>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
PREFIX dul: <http :// www. ontologydesignpatterns .org/ont/dul/DUL.owl#>
PREFIX edr: <http :// w3id.org/laas -iot/edr#>
PREFIX lmu: <http :// w3id.org/laas -iot/lmu#>
PREFIX adr: <https :// w3id.org/laas -iot/ adream #>
CONSTRUCT {

? deduction a rdf: Statement ;
rdf: subject ? feature ;
rdf: predicate rdf:type;
rdf: object ex: Symptom1 ;
edr: deducedAt ?now;
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edr: deducedBy $this;
edr: deducedWith ex:R1;
edr: deducedFrom ?t_obs , ?l_obs.

} WHERE {
?t rdf:type/rdfs: subClassOf * adr: Temperature ;

ssn: isPropertyOf ? feature .
?t_obs ssn: observationResult /ssn: hasValue /dul: hasDataValue

? temperatureValue ;
ssn: observedProperty ?t;
ssn: observedBy ? temperature_sensor .

FILTER (? temperatureValue <= ’25.0 ’^^ xsd:float)

?l rdf:type/rdfs: subClassOf * adr: Luminosity ;
ssn: isPropertyOf ? feature .

?l_obs ssn: observationResult /ssn: hasValue /dul: hasDataValue
? luminosityValue ;
ssn: observedProperty ?l;
ssn: observedBy ? luminosity_sensor .

FILTER (? luminosityValue < ’800.0 ’^^ xsd:float)

$this a lmu: HostNode .

FILTER NOT EXISTS {
?t_obs edr: usedForDeductionBy ex:R1.
?l_obs edr: usedForDeductionBy ex:R1.

}
FILTER NOT EXISTS {

? otherDeduction edr: deducedWith ex:R1;
edr: deducedFrom ?t_obs , ?l_obs.

}

BIND(URI( CONCAT (’http :// example .com/ns# R1_deduction ’, STRUUID ()))
AS ? deduction )

BIND(NOW () AS ?now)
}

""".
ex: Symptom1 rdfs: subClassOf <http :// purl.oclc.org/NET/ssnx/ssn#Property >.
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A.3 Acronyms

AAE Action-Actuator-Effect.

ADP Application-Direct-Processed.

AI Artificial Intelligence.

AR Augmented Reality.

BAS Building Automation System.

BLE Bluetooth Low Energy.

BO Base Ontology.

CDP Cloud-Direct-Processed.

CDR Cloud-Direct-Raw.

CEP Complex Event Processing.

CIP Cloud-Indirect-Processed.

CIR Cloud-Indirect-Raw.

CoAP Constrained Application Proto-
col.

CVO Composite Virtual Object.

DB database.

DI Data/Information.

DIKW Data, Information, Knowledge
and Wisdom.

ECA Event-Condition-Action.

EDR Emergent Distributed Reasoning.

EWS Early Warning System.

GUI Graphical User Interface.

IIoT Industrial IoT.

IK Information/Knowledge.

IoE Internet of Everything.

IoT Internet of Things.

IRI International Resource Identifier.

KB Knowledge base.

LD Linked Data.

LDP Linked Data Platform.

LOD Linked Open Data.

LOV Linked Open Vocabularies.

M2M Machine-to-Machine.

MAS Management, Abstraction, Se-
mantics.

MEC Mobile Edge Computing.

MQTT Message Queue Telemetry
Transport.

MSM Minimal Service Model.

NTP Network Time Protocol.

OBDA Ontology-Based Data Access.

ODP Ontology Design Pattern.

OPA Open Platform for ADREAM.

OWL Web Ontology Language.

OWS Object With States.

PSW Physical Semantic Web.

PW Physical Web.

QoS Quality of Service.

RDB Relational Database.
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RDF Ressource Description Frame-
work.

RFID Radio Frequency Identification.

SAN Semantic Actuator Network.

SAREF Smart Appliance REFerence.

SDO Standard Developing Orgaization.

SSN Semantic Sensor Network.

SSO Stimulus Sensor Observation.

SW Semantic Web.

SWoT Semantic Web Of Things.

VO Virtual Object.

W3C World Wide Web Consortium.

WoT Web Of Things.
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A.4 Image credits

• : Fan by Douglas Santos from the Noun Project

• : Display by Ralf Schmitzer from the Noun Project

• : Server loading by Chunk Icons from the Noun Project

• : Human Sensor by Antoine Dieulesaint from the Noun Project

• Miscellaneous icons from FontAwesome

A.5 Miscellaneous remarks

• All the URL featured in the present thesis have been last visited on the 14th
of August, 2018.
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Abstract: This thesis is situated in the Semantic Web of things (SWoT) do-
main, at the interface between the Internet of Things (IoT) and the Semantic Web
(SW). The integration of SW approaches into the IoT aims to tackle the important
heterogeneity of resources, technologies and applications in the IoT, which creates
interoperability issues hindering the deployment of IoT systems. A first scientific
challenge is risen by the resource consumption of the SW technologies, innapro-
priate for the limited computation and communication capabilities of IoT devices.
Moreover, IoT networks are deployed at a large scale, while SW technologies have
scalability issues. This thesis addresses this double challenge and proposes two re-
lated contributions. The first contribution is the identification of quality criteria
for IoT ontologies, leading to the elaboration of IoT-O, a modular IoT ontology.
IoT-O is deployed to enrich data from a smart building, and drive semIoTics, our
autonomic computing application. The second contribution is EDR (Emergent
Distributed Reasoning), a generic approach to dynamically distributed rule-based
reasoning. Rules are propagated from peer to peer, guided by the descriptions ex-
changed among nodes. EDR is evaluated in two use-cases, using both a server and
a number of constrained nodes to simulate the deployment.

Keywords: Semantic Web of Things, Semantic Fog computing, Dis-
tributed rule-based reasoning, IoT interoperability

Résumé : Cette thèse porte sur le Web Sémantique des Objets (WSdO),
un domaine de recherche à l’interface de l’Internet des Objets (IdO) et du
Web Sémantique (WS). L’intégration des approche du WS à l’IdO permet-
tent de traiter l’importante hétérogénéité des ressources, des technologies et
des applications de l’IdO. Ceci est une source de problèmes d’interopérabilité
freinant le déploiement de plateformes d’IdO. Un premier verrou scientifique
est lié à la consommation en ressource des technologies du WS, là où l’IdO
s’appuie sur des objets aux capacités de calcul et de communication lim-
itées. De plus, les réseaux IdO sont déployés à grande échelle, quand la mon-
tée en charge est difficile pour les technologies du WS. Cette thèse a pour
objectif de traiter ce double défi, et comporte deux contributions. La pre-
mière porte sur l’identification de critères de qualité pour les ontologies de
l’IdO, et l’élaboration de IoT-O, une ontologie modulaire pour l’IdO. IoT-O
a été implantée pour enrichir les données d’un bâtiment instrumenté, et pour
être moteur de semIoTics, notre application de gestion autonomique. La sec-
onde contribution est EDR (Emergent Distributed Reasoning), une approche
générique pour distribuer dynamiquement le raisonnement à base de règles.
Les règles sont propagées de proche en proche en s’appuyant sur les descrip-
tions échangées entre noeuds. EDR est évaluée dans deux scénarii, s’appuyant
sur un serveur et des noeuds contraints pour simuler le déploiement.

Mots clés : Web Sémantique des Objets, Fog computing sémantique,
Raisonnement distribué à base de règle, Interoperabilité
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