
HAL Id: tel-02098246
https://laas.hal.science/tel-02098246v1

Submitted on 12 Apr 2019 (v1), last revised 11 Sep 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SAFETY MONITORING FOR AUTONOMOUS
SYSTEMS: INTERACTIVE ELICITATION OF

SAFETY RULES
Lola Masson

To cite this version:
Lola Masson. SAFETY MONITORING FOR AUTONOMOUS SYSTEMS: INTERACTIVE ELIC-
ITATION OF SAFETY RULES. Cryptography and Security [cs.CR]. Université Toulouse 3 Paul
Sabatier (UT3 Paul Sabatier), 2019. English. �NNT : �. �tel-02098246v1�

https://laas.hal.science/tel-02098246v1
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ FÉDÉRALE
TOULOUSE MIDI-PYRÉNÉES

Délivré par :
l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 21/02/2019 par :
Lola MASSON

SAFETY MONITORING FOR AUTONOMOUS SYSTEMS:
INTERACTIVE ELICITATION OF SAFETY RULES

JURY
Simon COLLART-DUTILLEUL RD, IFSTTAR, France President of the Jury
Elena TROUBITSYNA Ass. Prof., KTH, Sweden Reviewer
Charles PECHEUR Prof., UCL, Belgium Reviewer
Jean-Paul BLANQUART Eng., Airbus D&S, France Member of the Jury
Hélène WAESELYNCK RD, LAAS-CNRS, France Supervisor
Jérémie GUIOCHET MCF HDR, LAAS-CNRS, France Supervisor

École doctorale et spécialité :
EDSYS : Informatique 4200018

Unité de Recherche :
Laboratoire d’analyse et d’architecture des systèmes

Acknowledgments

This work has been done at the Laboratory for Analysis and Architecture of Systems,
of the French National Center for Scientific Research (LAAS-CNRS). I wish to thank
Jean Arlat and Liviu Nicu, the two successive directors of the laboratory, for welcoming
me. During the three years of my PhD, I worked within the Dependable Computing and
Fault Tolerance team (TSF), which is lead by Mohamed Kaâniche. I thank him for the
excellent work environment he has built, allowing everyone to work however it is best
for them. Our work focuses on autonomous systems, and the company Sterela provided
us with a very interesting case study, the robot 4mob. I thank Augustin Desfosses and
Marc Laval, from Sterela, who welcomed me in their offices and worked with us on this
robot. In 2017, I was lucky enough to spend three months at KTH, Sweden, in the
Mechatronics division. I thank Martin Törngren, who welcomed me in the lab, and with
whom I appreciated meeting while walking in the forest around the campus. I also want
to thank Sofia Cassel and Lars Svensson, with whom I had very enjoyable work sessions,
as well as all the other PhD students and post-docs who made my stay a great both work
and personal experience. I thank Elena Troubitsyna, from KTH, Sweden, and Charles
Pecheur, from UCLouvain, Belgium, for reviewing this thesis. I also thank to Simon
Collart-Dutilleul, from IFSTTAR, France, for presiding on my thesis jury.

Of course, I don’t forget Jérémie Guiochet and Hélène Waeselynck, from LAAS-
CNRS, who supervised this work and accompanied me through the good times as well
as the hard ones. Thanks also to Jean-Paul Blanquart from Airbus Defense and Space
and to Kalou Cabrera, post-doc at LAAS at the time, for participating in the meetings
and for their precious help and advice.

The work days of the last three years would have been different if I were not among
the PhD students and post-docs of the TSF team. Thanks to those I shared an office
with, providing much-needed support on the hard days and sharing laughs on the good
ones. Thank to all for the never-ending card games. Special thanks to Jonathan and
Christophe for the memorable nights debating, and for their open-mindness. To all, it
was a pleasure hanging out and sharing ideas and thoughts with you.

Thanks to the one who is by my side every day, for his support in every circumstance.
Thanks to my crew who has always been there, to my family and to all those who make
me laugh and grow.

Contents

Introduction 13

1 Ensuring the Dependability of Autonomous Systems: A Focus on Mon-
itoring 17
1.1 Concepts and Techniques for Safe Autonomous Systems 18

1.1.1 Fault Prevention . 18
1.1.2 Fault Removal . 20
1.1.3 Fault Forecasting . 22
1.1.4 Fault Tolerance . 24

1.2 Monitoring Techniques . 26
1.2.1 Runtime Verification . 27
1.2.2 Reactive Monitors for Autonomous Systems 29

1.3 SMOF: Concepts and Tooling . 32
1.3.1 SMOF Process Overview . 32
1.3.2 SMOF Concepts and Baseline . 33
1.3.3 Safety and Permissiveness Properties 34
1.3.4 SMOF Tooling . 34

1.4 Conclusion . 35

2 Feedback from the Application of SMOF on Case Studies 37
2.1 Sterela Case Study . 38

2.1.1 System Overview . 38
2.1.2 Hazop-UML Analysis . 39
2.1.3 Modeling and Synthesis of Strategies for SI1, SI2 and SI3 44
2.1.4 Modeling and Synthesis of Strategies for SI4 51
2.1.5 Rules Consistency . 59

2.2 Feedback from Kuka Case Study . 61
2.2.1 System Overview . 61
2.2.2 SII: Arm Extension with Moving Platform 61
2.2.3 SIII: Tilted Gripped Box . 64

2.3 Lessons Learned . 65
2.3.1 Encountered Problems . 65
2.3.2 Implemented Solutions . 68

2.4 Conclusion . 69

3 Identified Problems and Overview of the Contributions 71
3.1 Modeling of the Identified Problems . 72

3.1.1 Invariant and Strategy Models . 72
3.1.2 Properties . 73

6 Contents

3.1.3 Identified Problems . 73
3.2 Manual Solutions to the Identified Problems 74

3.2.1 Change the Observations . 75
3.2.2 Change the Interventions . 75
3.2.3 Change the Safety Requirements 76
3.2.4 Change the Permissiveness Requirements 76

3.3 High Level View of the Contributions . 77
3.3.1 Diagnosis . 77
3.3.2 Tuning the Permissiveness . 78
3.3.3 Suggestion of Interventions . 80

3.4 Extension of SMOF Process and Modularity 81
3.4.1 Typical Process . 81
3.4.2 Flexibility . 83

3.5 Conclusion . 83

4 Diagnosing the Permissiveness Deficiencies of a Strategy 85
4.1 Preliminaries - Readability of the Strategies 86

4.1.1 Initial Display of the Strategies . 86
4.1.2 Simplifications with z3 . 87

4.2 Concepts and Definitions . 88
4.2.1 Strategies and Permissiveness Properties 88
4.2.2 Problem: Safe & No perm. 89
4.2.3 Permissiveness Deficiencies of a Strategy 91

4.3 Diagnosis Algorithm and Implementation 93
4.3.1 Algorithm . 94
4.3.2 Simplification of the Diagnosis Results 97
4.3.3 Implementation . 100

4.4 Application to Examples . 101
4.4.1 SII: The Arm Must Not Be Extended When The Platform Moves

At A Speed Higher Than speedmax. 101
4.4.2 SI4: The Robot Must Not Collide With An Obstacle. 102

4.5 Conclusion . 104

5 Tuning the Permissiveness 105
5.1 Defining Custom Permissiveness Properties 106

5.1.1 From Generic to Custom Permissiveness 106
5.1.2 A Formal Model for the Functionalities 107
5.1.3 Binding Together Invariants and Permissiveness 108

5.2 Restricting Functionalities . 110
5.2.1 Diagnosing the Permissiveness Deficiencies with the Custom Prop-

erties . 110
5.2.2 Weakening the Permissiveness Property 111
5.2.3 Automatic Generation and Restriction of Permissiveness Properties112

5.3 Application on Examples . 113

Contents 7

5.3.1 SII: The Arm Must Not Be Extended When The Platform Moves
At A Speed Higher Than speedmax. 113

5.3.2 SIII: A Gripped Box Must Not Be Tilted More Than α0. 116
5.3.3 SI3: The Robot Must Not Enter A Prohibited Zone. 117

5.4 Conclusion . 118

6 Suggestion of Candidate Safety Interventions 121
6.1 Preconditions and Effects of Interventions 121
6.2 Identifying Candidate Interventions . 123

6.2.1 Magical Interventions . 123
6.2.2 Generalize the Interventions Effects 125
6.2.3 Interactive Review of the Interventions 126

6.3 Algorithm . 128
6.4 Application to an Example . 133
6.5 Conclusion . 136

Conclusion 137
Contributions . 137
Limitations . 138
Perspectives . 139

List of Figures

1.1 Concept of supervisory control synthesis 20
1.2 Monitors in a hierarchical architecture . 24
1.3 Typical process of runtime verification (adapted from [Falcone et al., 2013]) 27
1.4 SMOF process . 32
1.5 System state space from the perspective of the monitor 33

2.1 Sterela robot measuring runway lamps . 39
2.2 HAZOP-UML overview . 39
2.3 UML Sequence Diagram for a light measurement mission 41
2.4 Behavior for the invariant SI1. 46
2.5 SI3 the robot must not enter a prohibited zone 49
2.6 Expected strategy for SI3 . 50
2.7 Disposition of the lasers on the robot . 52
2.8 Visual representation of the classes of (x,y) coordinates 53
2.9 Obstacle occupation zones around the robot 56
2.10 Declaration of the zones variables and their dependencies 58
2.11 Merging partitions into a global variable 60
2.12 Manipulator robot from Kuka . 61
2.13 Strategy for the invariant SII with the braking intervention only 62
2.14 Strategy for the invariant SII with the two interventions 63
2.15 Positions of the gripper and corresponding discrete values 64

3.1 Identified problems, proposed solutions . 74
3.2 High level view of the diagnosis module 78
3.3 High level view of the tuning of the permissiveness properties 79
3.4 High level view of the suggestion of interventions 80
3.5 High level view of the SMOF V2 process 82
3.6 View of the contributions . 82

4.1 Definitions of safe and permissive strategy (repeated from Chapter 3) . . 89
4.2 Definition of the Safe & No perm. problem (repeated from Chapter 3) . . 89
4.3 Strategy for the invariant SII with the braking intervention only (repeated

from Figure 2.13) . 90
4.4 Principle of diagnosing the permissiveness deficiencies and impact of a

strategy. 92
4.5 Process for use of the diagnosis and simplification algorithms 94
4.6 Permissiveness deficiencies for SI3 . 96
4.7 PI(w1, full stop) . 97
4.8 PI(w2, full stop) . 97
4.9 Simplification of the departure and arrival predicates 99

10 List of Figures

4.10 Non-existing paths for the invariant SI3 101
4.11 Safe and non-permissive strategy for the invariant SII (repeated from Fig-

ure 2.13) . 102
4.12 Diagnosis for the non-permissive strategy for SII 102
4.13 Obstacle occupation zones around the robot (repeated from Figure 2.9) . 102

5.1 Required reachability for generic permissiveness 106
5.2 Required reachability for custom permissiveness 106
5.3 Invariant and functionalities models . 107
5.4 Binding of the functionalities model and the invariant model 109
5.5 Binding for two velocity variable . 109
5.6 Weakening generic and custom permissiveness 111
5.7 Template for the functionalities model . 113
5.8 Partitioning of the sg variable . 115
5.9 Single strategy synthesized for the invariant SII with generic permissive-

ness properties (repeated from Figure 2.14) 116
5.10 Additional strategy synthesized for the invariant SII with the custom per-

missiveness properties. 116
5.11 Safe strategy synthesized for the invariant SI3 118

6.1 Non-permissive strategy synthesized for SII (repeated from 2.13) 123
6.2 Strategy synthesized for SII with magical interventions 124
6.3 Strategies synthesized fore SII with the candidate interventions 128
6.4 Process for the suggestion of interventions 129

List of Tables

2.1 Hazop table extract for light measurements missions 42
2.2 Statistics for the application of HAZOP-UML to the 4MOB robot 43
2.3 Hazards extracted from the HAZOP analysis 43
2.4 Partitioning and abstraction of the variables for the Cartesian model . . . 53
2.5 Partitioning of zone variables for the full case model 57
2.6 Partitioning of the variables s and a . 62
2.7 Summary of the points of interest highlighted by the two case studies. . . 66

5.1 Partitioning of the variables sinv and ainv (repeated from Table 2.6) 114
5.2 Partitioning of the variables sfct and afct 114

6.1 Identification of candidate interventions from the magical interventions
for SII . 124

6.2 Setting static precondition and generalizing the effects of the interventions
for SII . 125

6.3 Resulting candidate interventions for SII 126
6.4 Algorithms 6 and 7 applied to the gripper invariant 134
6.5 Final list of candidate interventions for SIII 135

Introduction

In 2016, a shopping center in Silicon Valley acquired a surveillance robot from the com-
pany Knightscope. The robot patrolled the vicinity, collecting data through cameras and
various sensors. The robot was meant to detect suspicious activity and to report such
cases to security staff. On July 7 of the same year, the robot drove into a toddler, causing
him to sustain a minor injury. The toddler had previously fallen on the ground and the
robot was not able to detect him [Knightscope, 2016]. In 2017 in Washington D.C., the
same model of this robot was patrolling office buildings when it tumbled down a flight
of stairs and landed in a fountain, unintentionally destroying itself [Knightscope, 2017].
These two examples illustrate the variety of accidents that can be caused by autonomous
systems. As autonomous systems become part of more application domains, from pub-
lic security to agriculture, the care sector, or transportation, the number of accidents
increases. Autonomous systems can cause damage to themselves and their physical en-
vironment, resulting in financial losses, but, more importantly, they can injure humans
(sometimes fatally, as in the accident involving the Tesla autonomous car [NTBS, 2016]).

Ensuring safety of autonomous systems is a complex task, and has been the subject
of much research in the last decades. Fault tolerance is a part of the safety domain,
and is concerned with guaranteeing a safe execution despite the occurrence of faults or
adverse situations. A technique that can be used for this purpose is to attach an active
safety monitor to the system. A safety monitor is a mechanism that is responsible for
keeping the system in a safe state, should hazardous situations occur. It can evaluate the
state of the system through observation, and influence its behavior with interventions.
The monitor follows a set of safety rules.

Defining the safety rules for monitors is arduous, particularly in the context of au-
tonomous systems. As they evolve in dynamic and unstructured environments, the
sources of hazard are various and complex, and a large number of rules is necessary
to tolerate these hazards. At the same time, autonomous systems typically must make
progress towards completing some set of tasks. The monitor needs to preserve the au-
tonomy of the system, while ensuring that no dangerous state is reached.

Before this thesis, the Safety MOnitoring Framework (SMOF) has been developed
at LAAS to solve this problem. It encompasses a synthesis algorithm to automatically
synthesize safety rules, which prevent unsafe behaviors (safety properties) while still
permitting useful ones (permissiveness properties). SMOF has been successfully applied
to several case studies, but has limitations in some cases. Sometimes the synthesis cannot
return a satisfying set of safety rules. When this happens, it is hard to identify why the
synthesis failed, or how to construct a satisfying solution. Often, the problem stems
from the failure to satisfy the permissiveness requirements: safety can be obtained only
at the expense of conservative restrictions on behavior, making the system useless for
its purposes.

In this thesis, we propose an interactive method for the elicitation of safety rules
in case SMOF’s synthesis fails to return a satisfying solution. To assist the user in

14 Introduction

these cases, three new features are introduced and developed. The first one addresses
the diagnosis of why the rules fail to fulfill a permissiveness requirement. The second
one allows the tuning of the permissiveness requirements based on a set of essential
functionalities to maintain. The third one suggests candidate safety interventions to
inject into the synthesis process.

In Chapter 1, we present the context of this work. We give a high level view of the
different means for ensuring the safety of autonomous systems, before focusing on the
definition of safety monitors. We also explain the main concepts of SMOF.

Chapter 2 presents the results of applying SMOF to a new case study—a maintenance
robot from the company Sterela. We also revisit the results of a previous case study
involving a manufacturing robot from the company KUKA. In light of these two case
studies, we discuss the main limitations of SMOF and the manual solutions that were
implemented for them. We deduce tracks for improvements, and identify the needs for
our contributions.

In Chapter 3, we come back to the problem identified in Chapter 2 where no satis-
fying solution can be synthesized and discuss it in detail. From there, we present our
contributions, and how they fit together for solving this issue.

Chapters 4, 5 and 6 present the detail of our contributions. In Chapter 4, we detail
a diagnosis tool that can help the user identify why the synthesis failed to return a
satisfying solution. In Chapter 5, we define a template for better adapting the synthesis
to the system’s expected tasks. Finally, in Chapter 6, we present an interactive method
for defining new interventions.

We conclude with a summary of the contributions and present some perspectives and
thoughts for future work.

List of publications:

• Lars Svensson, Lola Masson, Naveen Mohan, Erik Ward, Anna Pernestal Brenden,
et al.. Safe Stop Trajectory Planning for Highly Automated Vehicles: An Optimal
Control Problem Formulation. 2018 IEEE Intelligent Vehicles Symposium (IV),
Changshu, China, Jun. 2018.

• Mathilde Machin, Jérémie Guiochet, Hélène Waeselynck, Jean-Paul Blanquart,
Matthieu Roy, Lola Masson. SMOF - A Safety MOnitoring Framework for Au-
tonomous Systems. In IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 48, no 5, pp. 702-715, May 2018. IEEE.

• Lola Masson, Jérémie Guiochet, Hélène Waeselynck, Kalou Cabrera, Sofia Cassel,
Martin Törngren. Tuning permissiveness of active safety monitors for autonomous
systems. In Proceedings of the NASA Formal Methods, Newport News, United
States, Apr. 2018.

• Lola Masson, Jérémie Guiochet, Hélène Waeselynck, Augustin Desfosses, Marc
Laval. Synthesis of safety rules for active monitoring: application to an airport

15

light measurement robot. In Proceedings of the IEEE International Conference on
Robotic Computing, Taichung, Taiwan, Apr. 2017.

• Lola Masson, Jérémie Guiochet, Hélène Waeselynck. Case Study Report : Safety
rules synthesis for an autonomous robot. In Proceedings of the Fast abstracts at
International Conference on Computer Safety, Reliability, and Security (SAFE-
COMP), Trondheim, Norway, Sep. 2016.

Chapter 1

Ensuring the Dependability of
Autonomous Systems: A Focus

on Monitoring

Contents
1.1 Concepts and Techniques for Safe Autonomous Systems . . . 18

1.1.1 Fault Prevention . 18
1.1.2 Fault Removal . 20
1.1.3 Fault Forecasting . 22
1.1.4 Fault Tolerance . 24

1.2 Monitoring Techniques . 26
1.2.1 Runtime Verification . 27
1.2.2 Reactive Monitors for Autonomous Systems 29

1.3 SMOF: Concepts and Tooling 32
1.3.1 SMOF Process Overview . 32
1.3.2 SMOF Concepts and Baseline 33
1.3.3 Safety and Permissiveness Properties 34
1.3.4 SMOF Tooling . 34

1.4 Conclusion . 35

Autonomous systems bring new challenges to the field of dependability. They have
complex non-deterministic decision mechanisms, evolve in unstructured environments,
and may be brought to interact with humans or other systems to carry out their tasks.
They are thus subject to new types of faults. The classical dependability techniques need
to be adapted to encompass these new constraints. This chapter starts by presenting a
high-level view of the state of the art on the dependability means, applied to autonomous
systems (Section 1.1). It then gradually focuses the discussion on the safety monitoring
approach—SMOF—that we use and extend in our work.

In Section 1.1, active safety monitors are introduced in relation to one of the depend-
ability means, namely fault tolerance. Such monitors are responsible for ensuring safety
of the system despite its faults: they observe the operation of the system, and are able
to trigger corrective actions to prevent hazardous situations from occurring, according
to some safety rules. Section 1.1 discusses how monitors can be introduced at various

18 Chapter 1. Ensuring the Dependability of Autonomous Systems

architectural levels to serve different purposes. They can also be separated from the
control architecture, to act as the ultimate barrier against catastrophic failures.

Section 1.2 provides more details on active monitoring, with an emphasis on the core
techniques. Two broad classes of techniques are identified, coming from distinct commu-
nities. The property enforcement mechanisms from the runtime verification community
manipulate traces of events to ensure their correct sequencing and timing. In contrast,
the reactive monitors from the safety-critical control system community have a focus
on state invariants: the values of variables are monitored and actions are taken to keep
these values inside a safety envelope.

Section 1.3 provides an overview of SMOF, the safety monitoring framework devel-
oped at LAAS. This framework targets reactive monitors that are independent from the
control architecture. SMOF has been conceived to solve the problem of safety rules spec-
ification in the context of autonomous systems. It provides a synthesis algorithm based
on model-checking, to synthesize safety rules from a model of the available observations
and actions, along with the safety invariants to hold. The invariants are extracted from
a hazard analysis.

Section 1.4 concludes the discussion.

1.1 Concepts and Techniques for Safe Autonomous Sys-
tems

[Avizienis et al., 2004] propose four means to classify techniques for ensuring depend-
ability of systems:

Fault prevention: preventing the occurrence or introduction of faults, through rigor-
ous engineering methods, and the use of dedicated tools (Section 1.1.1);

Fault removal: reducing the number and severity of the faults, using verification
techniques (Section 1.1.2);

Fault forecasting: estimating the number of faults and their consequences, mostly
using risk analysis methods (Section 1.1.3);

Fault tolerance: avoiding service failure despite the presence of faults remaining after
the use of the previous methods, or introduced during the operational life of the system
(Section 1.1.4).

1.1.1 Fault Prevention

Fault prevention aims at preventing the occurrence or introduction of faults in a sys-
tem and is part of general engineering techniques for system development. Autonomous
systems are very complex and the diversity of their tasks forces developers to deal with
heterogeneous components when developing their software. In [Blanquart et al., 2004],
the authors draw recommendations for the design of dependable autonomous systems:

1.1. Concepts and Techniques for Safe Autonomous Systems 19

they must have a structured architecture, some standardized components and inter-
faces, and automatically-generated code (as much as possible). These recommenda-
tions are gathered in what is called model-based development. To comply with the
first requirement, several architectural frameworks for autonomous systems exist. The
most widely used is the hierarchical architecture (see LAAS [Alami et al., 1998], IDEA
[Muscettola et al., 2002], CLARAty [Volpe et al., 2001]). The idea is to split the deci-
sion making into several levels, each one using a different level of abstraction. Classically,
the hierarchical architecture is divided in three layers:
• The decisional layer uses an abstract representation of the system and its en-

vironment to compute plans to achieve some objectives. These objectives can be sent
to the system by another system or a human operator. This layer does not guarantee a
real time execution.
• The executive layer converts plans computed by the decisional layer into se-

quences of tasks that will be performed by the functional layer. This layer is sometimes
merged with one of the other layers.
• The functional layer executes the tasks. This layer is responsible for command-

ing the actuators, retrieving the sensors’ data, computing trajectories, etc. It is often
composed of components that can interact but do not have a global view of the system.

Each layer sends the results of the different tasks’ executions, and some potential
errors that could not be handled, to the higher level. Some hybrid versions of the hierar-
chical architecture exist, making direct communications available between the functional
and decisional layer, or combining layers together.

The recommendations for standardized components, architectures and interfaces
[Blanquart et al., 2004, Bruyninckx et al., 2013] can be addressed by the use of middle-
ware like ROS [Quigley et al., 2009], OROCOS [Bruyninckx, 2001], and by component-
based frameworks like GenoM [Mallet et al., 2010] or Mauve [Lesire et al., 2012]. The
component-based frameworks can also provide code generation facilities, thereby re-
ducing the probability of introducing development faults. In some cases, these frame-
works are also linked to formal methods (mathematically-based techniques used to
specify, develop or verify software systems). GenoM automatically synthesize for-
mal models that can be used for checking temporal properties (with FIACRE/Tina
[Fiacre, 2018, Tina, 2018, Foughali et al., 2018], or with BIP [Basu et al., 2006]). Mauve
provides facilities for analyzing execution traces.

Controller synthesis: Supervisory control synthesis (SCT)
[Ramadge and Wonham, 1987] also contributes to fault prevention. It is a tech-
nique that aims at automatically generating a suitable controller for a software system.
From a model of the system as an automaton, and a set of properties to satisfy, a
synthesis mechanism is used to generate the controller (see Figure 1.1). The controller
restricts the capabilities of the system, by triggering controllable events, according to
the specified properties. In [Shoaei et al., 2010], a controller is synthesized for manufac-
turing robots in a shared environment. The authors propose to generate non-collision
properties from simulation and formal models of the robots operations, and to integrate
these in the synthesis, resulting in collision-free manufacturing units. [Lopes et al., 2016]

20 Chapter 1. Ensuring the Dependability of Autonomous Systems

Figure 1.1: Concept of supervisory control synthesis

successfully apply controller synthesis for swarm robotics — large groups of robots
interacting with each other to collectively perform tasks. In [Ames et al., 2015], the
authors use controller synthesis for a walking robot. The synthesized controller shows
improved performance compared to the manually-implemented controller initially used.
Robotics seems to be a promising application field for controller synthesis.

1.1.2 Fault Removal

Fault removal aims at removing faults from the considered system. It can occur during
the development phase, where faults are found and corrective actions taken before de-
ployment of the system; or during its use, where faults that have occurred are removed
(corrective maintenance) and actions are taken to avoid the occurrence of new faults
(predictive maintenance). In this section, we will focus mainly on the fault removal
techniques that can be used during the development phase. Removing faults from a
system is done in three steps. The verification step checks that the system conforms
to some properties. If the verification reveals a property violation, the diagnosis step
identifies what fault led to the the property violation and the correction step brings
the necessary changes to the system to remove the fault. If the diagnosis and correc-
tion steps are very dependent on the considered system, the verification techniques are
more generic — we will detail the most common ones in the following. The verification
techniques can be classified into two categories: static verification, which does not need
to execute the system, and dynamic verification which does. Autonomous systems are
more challenging to verify than classical control systems [Pecheur, 2000]. A full model
of the system is usually not available or is hard to build, the number of scenarios to be
analyzed is infinite, and the software is non-deterministic (mostly due to concurrency).
However, formal methods are widely used with success for the verification of autonomous
systems, and the user can refer to the extensive survey in [Luckcuck et al., 2018] for more
references.

Static verification aims at mathematically proving that a program complies with
some requirements. It guarantees that all executions are correct according to the con-

1.1. Concepts and Techniques for Safe Autonomous Systems 21

sidered requirements. It includes techniques like theorem proving or model-checking.
These techniques use a model of the system.

Model-checking exhaustively searches the state space of a model to determine if
some property is verified. To define properties, temporal logics like Computation Tree
Logic (CTL) are widely used. In [Dixon et al., 2014], the authors propose to verify the
control rules of a robotic assistant. The rules —expressed in Linear Temporal Logic
(LTL)— defining the allowed behaviors of the robots are manually translated (and later
on automatically translated by their tool CRutoN [Gainer et al., 2017]) into suitable
inputs for a model checker. The model checker then checks for satisfiability of some
properties (priority between rules, interruptibility). Stochastic model-checking is an ex-
tension of model-checking to deal with uncertainties that are inherent to autonomous
systems [Kwiatkowska et al., 2007]. It evaluates the probability that a property is sat-
isfied within a scope. Examples of such approaches for autonomous robots can be found
in [O’Brien et al., 2014] or [Pathak et al., 2013].

Verifying the decision algorithms used in the decisional layer is challenging. In
[Fisher et al., 2013], model-checking is used to verify all the possible decisions made by
the decision mechanism of autonomous systems. The authors can then ensure that the
system will never intentionally make the decision to move towards an unsafe situation.
However, an unsafe situation could still occur, for instance due to an unexpected change
in the environment (it is impossible to have a complete model of the environment).

In [Desai et al., 2017], the authors propose to use model-checking combined with
runtime monitors. For the model-checking of the robot software, one has to make as-
sumptions about the low-level controller and the environment. The addition of an on-line
monitor allows one to check that these assumptions hold at runtime. A similar approach
is explored in [Aniculaesei et al., 2016], where the model checker UPPAAL is used at
design time to verify that no collision can occur. A monitor is used at runtime to verify
whether the conditions used for the model checking still hold.

The exhaustive aspect of model checking makes the approach appealing, but it has
some limitations. Complex systems can have extremely large (infinite) state spaces, mak-
ing them hard to completely explore (state explosion issue). Also, the modeling step is
very error-prone, and it is hard to obtain a model that is both accurate enough to repre-
sent the system and abstract enough to limit the state explosion. A deep understanding
of both the application-to-verify and the model-checker used is needed.

In theorem proving, a formal proof of the correctness of a system is produced, through
logical inferences. In [Täubig et al., 2012], an obstacle avoidance algorithm for static ob-
stacles is proved correct, using the theorem prover Isabelle. This process produced a
robust argumentation that allowed the authors to get a SIL3 of IEC 61505 certification
for the presented method and implementation. In [Huber et al., 2017], the authors for-
malize traffic rules for vehicle overtaking. They use the help of the Isabelle prover to
achieve a high level trustworthiness of the formalization. Though theorem proving is
an efficient verification technique, it has not been extensively investigated in the field of
robotic systems. The tools are generally difficult to master and require a higher expertise
compared to other approaches.

22 Chapter 1. Ensuring the Dependability of Autonomous Systems

Dynamic verification consists in executing the system or a model of the system in
a specific context in order to analyze its behavior. A set of inputs (called a test case) is
given to the system. For symbolic inputs, we talk about symbolic execution. For valued
inputs, we talk about test. The outputs are then analyzed, and a pass/fail verdict is
emitted by a procedure called the test oracle. Defining the test oracle for autonomous
systems is not trivial: they are nondeterministic and their tasks are complex and vari-
ous. To overcome this issue, [Horányi et al., 2013] propose to automatically generate test
cases from UML scenarios: the traces are evaluated against the requirements expressed
by the scenarios. Injecting faults is another way to define test cases, and is explored
in [Powell et al., 2012] for autonomous systems. For testing autonomous systems on a
mission level, field testing is used. This is expensive and potentially dangerous — as
testing robots in a real environment can damage the robot or its environment; and only
provides a limited coverage —as only a limited number of situations can be tested in a
limited time. For these reasons, the development of simulators is a major improvement.
However, the result of tests in simulation are valid only assuming that the simulation
is representative of the real behavior. Several simulation environments exist and the
reader can refer to [Cook et al., 2014] for a comparison. Drone collision-avoidance is
tested in simulation in [Zou et al., 2014]. Evolutionary search is used to generate chal-
lenging test cases, and proves to be efficient in identifying remaining hazards. Gen-
erating the simulated environment is challenging. The environment needs to closely
represent the world in which the robot will evolve once deployed. However, as shown
in [Sotiropoulos et al., 2017], it is possible to identify software bugs in simulation in a
simpler environment than the one into which the robot will be introduced. The same au-
thors study the difficulty of the generated map in [Sotiropoulos et al., 2016], and how to
make it vary by tuning parameters like obstruction and smoothness. Randomness can be
introduced in the generation of the simulated world, as in [Alexander and Arnold, 2013]
where the authors test the control software of a robot on situations as varied as possible.
In [Abdessalem et al., 2018], evolutionary algorithms are used to guide the generation
of scenarios to test for autonomous vehicles.

1.1.3 Fault Forecasting

The idea of fault forecasting is to evaluate what faults may occur and what would
be their consequences. It is mainly done by performing risk analyses that “system-
atic[ally] use [the] available information to identify hazards and to estimate the risk”
[ISO/IEC Guide 51, 2014]. The risk is evaluated using qualitative levels such as “low”
or “high”. Different risk analysis techniques can be applied at different stages of the
development, to different components and abstraction levels.

The risk analysis techniques are classified into two categories: bottom-up, that analyze
the effect of faults for known deviations (e.g., Failure Modes Effects and Criticality
Analysis (FMECA), Hazard Operability (HAZOP)) or top-down, that identify which
faults lead to an undesired event (e.g., Fault Tree Analysis (FTA)). These methods
are commonly used for autonomous systems [Dhillon and Fashandi, 1997], but they are
facing some challenges. Due to the complexity and non-determinism of the decision

1.1. Concepts and Techniques for Safe Autonomous Systems 23

mechanism, it is hard to predict the consequences of faults, or even to trace back causes
of known consequences. Also, it is hard to predict the probability of occurrence of a
specific event in an unstructured environment. In [Crestani et al., 2015], the authors
apply the FMECA method to identify the risks of autonomous systems. They use these
results to implement some fault tolerance mechanisms.

The HAZOP technique associates a guide word like “more” or “late” to each element
of the analyzed system, to help the user identify hazards associated with these devia-
tions. It has been used on a therapeutic robot for children in [Böhm and Gruber, 2010]
where the system is decomposed into components and functions to be thoroughly an-
alyzed. A variant dedicated to software called HAZOP-SHARD (Software Hazard
Analysis and Resolution in Design) is used in association with a specific list of en-
vironmental risks in the context of autonomous systems [Woodman et al., 2012]. In
[Troubitsyna and Vistbakka, 2018], HAZOP is combined with the analyses of data flows
to identify safety and security requirements. These requirements are then formalized
in Event-B to analyze the dependencies between the architectures’ components and the
safety and security mechanisms. In [Guiochet, 2016], the HAZOP technique is adapted
to the analysis of UML diagrams. The user systematically analyzes all the components
of the diagrams with the help of guide words. This method is one of the few focusing
on human-robot interaction.

Also focusing explicitly on human-robot interaction, SAFER-HRC is a semi-
automatic risk analysis for Human Robot Collaboration (HRC) applications
[Askarpour et al., 2016]. A team of experts builds a model of the studied system and
the possible human-robot interactions, and identifies what hazards may occur from the
list presented in [ISO 12100, 2013]. This model is then analyzed to identify— knowing
the dynamics of the systems— what interaction accidents may occur; some corrective
actions can then be taken. [Stringfellow et al., 2010] introduce the STPA (Systems The-
oretic Process Analysis) method that considers a model of the potential faults leading to
accidents. From it, they identify which erroneous control commands could lead to an ac-
cident. This method has been applied to a medical robot in [Alemzadeh et al., 2015]. In
the method ESHA (Environmental Survey Hazard Analysis) [Dogramadzi et al., 2014],
new guide words are used to analyze the interactions with the environment. They specif-
ically take into account unexpected interactions (not planned on in the mission), as they
are the ones causing the most damage, as the authors claim. Several methods can also
be used in combination. In [Alexander et al., 2009], Energy Trace and Barrier Analy-
sis (ETBA) is used as a preliminary analysis. In this method, the release of energy is
analyzed— an accident occurs when an unexpected or excessive amount of energy is
released. The Functional Failure Analysis (FFA) method is also used, as well as HA-
ZOP. The results of these hazard analyses are then used in an FTA to identify their
causes. Though these methods are not exhaustive, they are systematic and cover a large
amount of hazards. Among the identified faults, some cannot be removed: they have to
be tolerated.

24 Chapter 1. Ensuring the Dependability of Autonomous Systems

Figure 1.2: Monitors in a hierarchical architecture

1.1.4 Fault Tolerance

Fault tolerance aims at providing a correct service despite the occurrence of faults. This
is essential, as no complex system can be considered fault-free. This is particularly true
of autonomous systems, which include complex decisional functions and may face adverse
and unspecified situations. To mitigate hazards during the operational life of the system,
some mechanical (a specific shape, a soft cover, etc) or hardware (bumpers, etc) ways
exist but we will not detail them here and only consider software mechanisms. Fault
tolerance is achieved in two steps: fault detection and recovery. This implies that the
mechanism has ways to observe faulty behaviors and ways to trigger corrective actions.
Several approaches for fault tolerance exist. For instance, redundant sensors can detect
inconsistent values, or a backup software component can be used if the primary one
crashes. Another approach is to design a specific component that can be either integrated
into the architecture or independent of it, and this is what we will be interested in. We
will refer to this component as a monitor. A monitor is only responsible for safety: it
checks whether some properties are violated or not, and potentially triggers relevant
corrective actions. Some monitors are designed specifically to tolerate the fault of one
or several layers in a hierarchical architecture (see Section 1.1.1). They interact with a
single layer, as represented in Figure 1.2.

In the functional layer, the monitor is mostly responsible for sensors and actuators
errors. In [Crestani et al., 2015] a monitor is attached to each hardware and software
component of the functional layer. Similarly, in [Zaman et al., 2013], such monitors are
integrated in a ROS architecture. These monitors are able to detect errors such as sensor
defects or timeout issues. They are very similar to classical fault tolerance approaches
such as redundancy or watchdogs.

1.1. Concepts and Techniques for Safe Autonomous Systems 25

In the executive layer, the monitor will evaluate the results of executions from the
functional layer components and the commands coming from the decisional layer. It can
manage the tasks execution when resources are missing, trigger reconfiguration if needed
or filter requests. In [Durand et al., 2010], a monitor can adapt the autonomy level of the
robot in order to tolerate faults in the functional layer. In [van Nunen et al., 2016], the
authors propose to design a fault tolerance unit, attached to the controller, that is able
to make decisions in order to avoid collisions for trucks following each other (platooning).
The component selects the safe state to evolve towards, and triggers a safety action to
reach it. In [Py and Ingrand, 2004], the monitor is integrated between the functional
layer and the decisional layer, replacing the traditional executive layer. It can block
erroneous requests from the decisional layer and interrupt the execution of functions. The
same approach with different technologies is explored in [Bensalem et al., 2009], where
a monitor is automatically synthesized, following an idea close to controller synthesis.
[Huang et al., 2014] propose a single component called RVMaster, integrated in ROS,
that supervises the others, verifying some safety properties. Even though this component
is not strictly speaking integrated in a hierarchical architecture, it can be assimilated
into an executive layer as it is supervising the execution of the functional components.

In the decisional layer, the monitor usually checks that the plan satisfies some
safety constraints or that the planner isn’t faulty. In [Ertle et al., 2010], a model of
the environmental hazards learned prior to deployment and updated on-line is used to
evaluate the generated plan with regard to safety principles. In [Gspandl et al., 2012]
the decisional layer is able to tolerate faults from the functional layer by comparing
the current state to a correct state. Considering faults of the planners themselves,
[Lussier et al., 2007] proposes to tolerate them using redundant diversified planners.
Similarly, [Ing-Ray Chen, 1997] proposes to tolerate intrinsic planning faults (failure
of the planning algorithm) using a parallel architecture.

Multi-layer mechanisms: [Gribov and Voos, 2014] propose a multi-layer architec-
ture, that associates to every hazard a software component treating them. This ap-
proach is useful as it can be integrated into any existing ROS architecture, and helps
ensuring safety when off-the-shelf components are used. However, the safety mechanisms
are spread at different levels, which is a disadvantage as it does not allow the treatment
of safety of the system as a whole. In [Vistbakka et al., 2018], a multi-layered approach
is used for the safe navigation of a swarm of drones. A high level decision center is
in charge of the safe navigation of the drones among known hazards. It can change
the swarm configuration or generate new routes for the drones. Additionally, at a low
level, each drone has its own local collision avoidance mechanism, that computes “reflex
movements” to avoid or mitigate collisions with unforeseen obstacles.

Independent monitors: Another approach for monitoring safe behavior of an au-
tonomous system is to design an independent component that is separated from the
control channel. This idea is represented by the large gray box in Figure 1.2. This
component needs to be independent so that potential errors in the main control channel
do not propagate to it. It also needs specific ways to observe the system’s state and

26 Chapter 1. Ensuring the Dependability of Autonomous Systems

to intervenes should a deviation be perceived. This type of component is also referred
to in the literature as a safety bag [Klein, 1991], safety manager [Pace et al., 2000], au-
tonomous safety system [Roderick et al., 2004], guardian agent [Fox and Das, 2000], or
emergency layer [Haddadin et al., 2011]. In [Tomatis et al., 2003], an autonomous tour-
guide was successfully deployed for five months using, among other safety mechanisms,
an independent monitor that is implemented on its own hardware component. It only
has limited means of observation and intervention, but will not be affected by any fault
of the main software part. In [Woodman et al., 2012], a monitor is able to filter com-
mands to actuators or stop the robot in case of a safety rule violation. The monitor also
intervenes if it detects a strong uncertainty in the observations. It is not independent
from the controller in terms of observation means: they both share the same view of
the system state, therefore potentially the same errors. In [Casimiro et al., 2014], the
authors propose to implement a safety kernel on a dedicated hardware board. The safety
kernel detects the violation of a set of safety rules defined in design time. It detects the
operational context (e.g., sensor defect) and can adjust accordingly the level of service
of the appropriate functions. For instance, if the distance sensor is faulty, the safety
kernel can adjust the safety distances margin to ensure that no collision can occur. In
[Machin et al., 2018], a safety monitor implemented independently detects when a warn-
ing threshold is crossed, and can trigger appropriate safety interventions to prevent the
system from evolving towards a hazardous state.

As can be seen, monitors play useful roles at the various layers of the architec-
ture. Generally speaking, the monitoring integrated into the control channel offers more
powerful detection and recovery mechanisms than an independent monitor. The latter
category of monitor has more limited observation and intervention means, but can act
as the ultimate barrier against faults when all other mechanisms fail in their protection
role. It is typically kept simpler and assigned a high integrity level. In the next section,
we discuss the existing monitoring techniques and key options underlying the design of
monitors for autonomous systems.

1.2 Monitoring Techniques

Monitoring involves some verification at runtime to detect a potentially dangerous be-
havior. This verification concern allows for potential cross-fertilization between fault
tolerance and fault removal techniques. Indeed, runtime verification (RV) has emerged
as a fruitful field of research in recent years, with close relationships with model checking
and testing. We first describe the main concepts of RV, the similarities and differences
compared to the other verification techniques, and comment on the type of monitors
considered by the RV community (Section 1.2.1). We then discuss other types of mon-
itors considered for autonomous systems, which accommodate a more reactive view
(Section 1.2.2).

1.2. Monitoring Techniques 27

Figure 1.3: Typical process of runtime verification (adapted from [Falcone et al., 2013])

1.2.1 Runtime Verification

We synthesize here the views of [Leucker and Schallhart, 2009], [Falcone et al., 2012],
[Falcone et al., 2013] and [Delgado et al., 2004] that the reader may refer to for further
information. [Falcone et al., 2013] defines Runtime Verification as “a dynamic analy-
sis method aiming at checking whether a run of the system under scrutiny satisfies a
given correctness property”. The idea is to check a set of properties against a system’s
execution.

Typically, the RV framework is described as in Figure 1.3.
First, a monitor is generated from a property, typically specified with an automata-

based or logic-based formalism. This step is referred to as monitor synthesis. The
monitor is a decision procedure for a property. It observes the execution of the system
through events, and generates a verdict on the satisfaction of the property. The verdict
produced by the monitor could be two-valued (the property is satisfied or not), but
can also have additional values allowing a finer evaluation of the property. The verdict
generated can be accompanied with a feedback, which gives additional information to
the system, for instance in order to trigger corrective actions. Classically, recovery
is referred to as runtime enforcement. The runtime enforcement mechanism detects (in
anticipation) the violation of a property. It can then delay or block some events, to avoid
the violation. The authors of [Ligatti et al., 2009] propose to formalize and analyze the
types of properties that can be enforced by a runtime monitor.

Second, the system is instrumented to be able to generate the appropriate events.
This step is highly dependent on the system itself and the technologies used.

Third, the system is executed and its traces analyzed. The analysis can occur during
the system execution (online monitoring), or after the execution if the events have been
stored (offline monitoring). When the monitor in included in the system’s code itself,

28 Chapter 1. Ensuring the Dependability of Autonomous Systems

it is called inline. This is conceptually very close to the monitors integrated in the
architecture presented in Section 1.1.4. When the monitor is its own entity, it is called
outline. This is similar to the independent monitors presented in Section 1.1.4.

RV receives growing attention in the field of autonomous systems (see
[Luckcuck et al., 2018, Pettersson, 2005]). For instance, in [Lotz et al., 2011], RV is used
for monitoring robotics components, both during the development process for debugging,
as well as at runtime for fault and error detection and handling. An interesting aspect
is that direct code instrumentation is seldom desirable for autonomous systems. The
source code of such systems may not be available, and the modification of the code may
affect timing and correctness properties — which can also invalidate a former certifi-
cation, resulting in non-negligible additional costs. [Kane et al., 2015] propose to build
a passive RV monitor that gets the appropriate events from passive observation of the
communication buses. They successfully apply this approach to an autonomous research
vehicle. Similarly, in [Pike et al., 2012] the authors propose to delegate fault tolerance
to a monitor external to the system itself. The monitor is passive with regard to the
system’s execution.

Runtime verification and model checking: RV has its source in model checking.
They both aim at verifying that executions of a (model of a) system satisfy a prop-
erty. However, model checking considers all possible executions of the system, whereas
runtime verification only analyzes a subset of them. In model checking, the available
resources are less of an issue than for monitoring, especially online monitoring. For
instance, backward search is commonly used in model checking and is not desirable in
monitoring as it would imply storing the whole execution trace. Model checking may
suffer from state explosion, as the systems (and their models) become larger. In runtime
verification, monitors check one run at a time, thereby avoiding this issue. RV can be
applied to a “black box” system, and does not need a model of the system (that can be
hard to build). Model checking requires a model of the system to be built so that all the
possible executions can be checked. However, when a finite model can be built model
checking and RV can be used together, where monitors check that the assumptions used
for the model checker hold at runtime, as in [Desai et al., 2017].

Runtime verification and testing: RV is very similar to what is called passive
testing. Passive testing aims at testing systems for which classical (active) testing is
hard to implement. The system is executed, and the outputs or traces of execution
are analyzed to detect faults, in order to remove them. RV is interested with ensuring
the proper functioning of systems that are already deployed. If RV and passive testing
have different goals, they share similar techniques. In both cases, the system has to be
instrumented to allow for the observation of the interesting sequences of events. The
formalisms used for these two techniques (automata-based, etc) are also similar. For
instance, in [Cavalli et al., 2003], the authors propose to use an extended form of a
Finite State Machine as a specification for passive testing. An extensive analysis of the
relations between RV and testing is beyond the scope of this work, but the reader can
refer to [Falzon and Pace, 2013] for some work on extracting runtime monitors from a

1.2. Monitoring Techniques 29

testing specification, or to [Goldberg et al., 2005], where the authors use RV to build
test oracles for the autonomy software of a planetary rover.

For the RV community, the objects of interest are events. The verified properties
define the correct sequences of event. In the case of a property violation, the enforce-
ment mechanism can insert, delete or delay events in order to obtain a correct trace.
As pointed out in [Bloem et al., 2015], this approach is not necessarily appropriate for
reactive systems, for which reactive monitoring may be privileged. The enforcement
then consists in preventing certain combinations of variable values that characterize a
hazardous state.

1.2.2 Reactive Monitors for Autonomous Systems

Autonomous systems are reactive systems. They continuously observe their environment
through sensors, can make decisions, and command the actuators to trigger changes. In
this context, the rules, i.e., the way the monitor should behave in certain conditions, are
most of the time a list of if-then-else conditions, e.g., if the platform goes too fast, then
brake. We call a strategy the set of rules the monitor follows. It encompasses what risk
is covered by each rule, what recovery action must be taken and what the condition is to
trigger it. Defining these rules needs a well structured method, as they can be complex
and numerous, due to the complexity inherent to autonomous systems. The framework
<observation> then <action> brings us to consider several aspects: what is observed,
what actions are possible, how to associate actions to specific observations (synthesis),
and how to express the properties verified by the strategy.

Observations: They can be directly extracted from the sensor values, or can re-
sult from a more sophisticated calculation within the monitor. The authors of
[Feth et al., 2017] propose a framework to design a safety supervisor. They propose
to use what they call the safety world model to identify the situation in which the sys-
tem is, and evaluate its risk. It relies on an internal representation of the environment,
a prediction of the potential evolution of the situation and an evaluation of the risk
of this situation. In [Machin et al., 2018], however, the authors simply compare sensor
values to predefined thresholds (possibly with a small calculation to extract the relevant
information) to evaluate how close to the hazardous situation the system is.

A sophisticated analysis of the situation makes it possible to better anticipate the
danger, and to trigger complex recovery actions. However, a simpler data analysis is
consistent with the concept of an independent safety monitor that acts as the last barrier
for safety.

Monitor actions: Several ways exist to recover from a failure, i.e., to bring the system
back to a safe state. In the case of autonomous systems, the recovery is ideally such that
the system can keep operating normally, or at least perform a subset of its tasks. The
recovery actions may need to be complex, while remaining reliable. However, in most
cases the main available recovery action is to shut down the robot, which is very con-
servative. Shutting down the robot might also not be the best action for safety. Indeed,

30 Chapter 1. Ensuring the Dependability of Autonomous Systems

in [Malm et al., 2010] the authors show that most accidents resulting from human-robot
interactions come from crushing a person against an object. In this case, shutting down
the root is not desirable as the person will stay stuck, resulting in a worse injury.

In [Arora et al., 2015], the authors present a set of emergency trajectories computed
off-line, that can be used on-line for ensuring the safety of a helicopter. Instead of
computing a trajectory to a safe state during operation, which is likely infeasible, the
safety system can pick one from the library. The problem remains that reaching a safe
state following these trajectories must be guaranteed, i.e., the component responsible for
the execution of a trajectory must be certified. However, this avoids certifying the whole
planner. This approach is also less conservative than using the traditional emergency
stop. Similarly, in [Feth et al., 2017] the supervisor can select from among a library
of strategies one that will lead it to a less critical state. The authors note that if the
supervisor aims at remaining simple, an overly-simple one may not be satisfying with
regard to autonomy. Therefore, they propose some higher layers of supervision that may
be able to trigger more complex behaviors.

An interactive approach is explored in [Durand et al., 2010] where the authors pro-
pose to reduce the autonomy level of the system. A human operator can take over the
tasks that can no longer be automated because of a failure.

In [Machin et al., 2018], the interventions are expressed as preconditions and effects
on the state of the system. They mostly rely on actuators, or on filtering some commands
sent by the control channel.

Safety properties: The safety monitor verifies a main property: the safety, i.e., the
non-occurrence of hazards. The relevant safety properties to monitor can be elicited in
different ways. In [Machin et al., 2018], as well as in [Sorin et al., 2016], the properties
are identified during a risk analysis. From the list of hazards, the authors extract the
list of safety invariants to be used for monitoring.

Some tools exist to automatically infer invariants from execution traces, and this
concept has been used in [Jiang et al., 2017]. In this example, the authors show that
they can automatically determine invariants such as “the drone can only land if the
platform is horizontal”. However, this technique is only applicable in limited scenarios,
as the system has to be extensively tested to generate the execution traces.

In other approaches, the properties are defined ad-hoc, as for instance in
[Tomatis et al., 2003].

Safety rules synthesis: The authors of [Machin et al., 2018] automatically generate
the rules. They model the known hazards to avoid along with the available observa-
tion and action means. A synthesis algorithm is then used to find the best associa-
tion of actions to observed inputs to avoid reaching a hazardous state. This approach
is further detailed in Section 1.3. The same authors explore a different approach in
[Machin et al., 2015] using game theory for synthesizing safety requirements. This ap-
proach has however not been pursued for performances reasons. In [Bloem et al., 2015],
the authors also use game theory to build a monitor finding the winning strategy between
property violation and the deviation from the initial system’s output. The resulting mon-

1.2. Monitoring Techniques 31

itor will enforce some properties while deviating as little as possible from correct system
behavior.

Other aspects of the monitors and their rules have to be considered:

Rules consistency. In an autonomous system, the safety rules can be numerous,
and it is important to verify that no conflict between them exists, as pointed out in
[Alexander et al., 2009]. Indeed, an autonomous car could have two rules stating that
the car needs to brake whenever it is too close to the car in front of it, and to speed up
whenever the car behind it is too close: these two rules are conflicting in some situations.
A conflict between rules could introduce a new hazard or provide new ways to reach a
hazardous state that was supposed to be avoided.

Balancing safety and functionality. Another concern that has rarely been explored
for the definition of safety rules is the balance between safety and functionality (or avail-
ability). Complex systems typically have multiple and diverse tasks. The monitor must
ensure safety while letting the system perform its tasks. An over-conservative monitor
that would prohibit any movement may be safe but is obviously not very interesting
in the context of autonomous systems (or any context). [Wagner et al., 2008] explore
this issue for the Large Hadron Collider. However, the authors are trying to reduce the
number of false alarms, and do not explicitly consider the reduction of availability due
to the safety system’s accurate intervention. Indeed, and it is the case for most elec-
tronic systems, the safety system’s action is limited to shutting down the whole system.
In the case of autonomous systems, such a drastic intervention is not desirable, as it
can operate in a remote environment without a human operator nearby. Therefore, the
monitor needs to ensure safety while limiting as little as possible the action means of the
robot. In [Bloem et al., 2015], the authors model a correctness property — the system
does not violate any rule — along with a minimum interference property — the monitor
only changes the output of the control channel if necessary. The monitor is allowed to
correct the control outputs for k consecutive steps. If another deviation is perceived
within the k steps, the monitor does not try to respect the minimum interference prop-
erty any more, but falls back to a fail-safe mode where only the correctness is ensured:
the functionalities are degraded only in last resort. In [Kane and Koopman, 2013], the
authors propose to allow transient violations of safety rules in order to avoid shutdowns
as much as possible. They detail the use of a soft-stop as a first attempt to reach a safe
state after a property violation. The soft-stop is implemented within the controller and
will thus not be available is the failure comes from the controller itself. The soft-stop is
followed by a reliable hard-stop if the system hasn’t yet reached the expected safe state.

The authors of [Machin et al., 2018] model a permissiveness property, which verifies
that the system can still reach a large set of states, guaranteeing that it can perform its
tasks. This property however does not allow a lot of flexibility in its current version,
and we will extensively discuss ways to adapt it the following chapters.

32 Chapter 1. Ensuring the Dependability of Autonomous Systems

Hazard
Analysis

Invariants

Modeling

Synthesis of
Safety Rules

Consistency
Analysis

Observations

Interventions

Implementation
in the monitor

Figure 1.4: SMOF process

1.3 SMOF: Concepts and Tooling

From the diverse solutions presented before, the safety monitoring approach is a relevant
candidate to keep an autonomous system in a safe state. We choose to adopt a reactive
view: the monitor aims at preventing the reachability of catastrophic states, that are
expressed by combinations of variable values. The monitor is assigned a high level
of criticality and the logics it implements is kept simple. SMOF (Safety MOnitoring
Framework) is a framework developed at LAAS, which we use and extend in our work.
It provides a whole process to automatically synthesize safety strategies (using model
checking) from invariants extracted from a hazard analysis. In this section we will
explain the basic concepts of SMOF. Some examples will be shown in the next chapter
where we will also discuss its limitations. For further information, the reader can refer
to [Machin et al., 2018] and [SMOF, 2018].

1.3.1 SMOF Process Overview

The SMOF process overview is represented in Figure 1.4. The first step is to identify
the potential hazards thanks to the HAZOP-UML analysis. From these hazards a list of
invariants to be handled by the monitor is extracted. The invariants are then modeled:
the observable variables are specified, as well as potential dependencies between them,
the catastrophic state(s) and the available intervention(s). A template is available to ease
the modeling, along with auto-completion modules. The synthesis algorithm provided
by SMOF is launched in order to search for a suitable strategy. These same steps
are followed for every invariant. Once a strategy is synthesized for each invariant, a

1.3. SMOF: Concepts and Tooling 33

Figure 1.5: System state space from the perspective of the monitor

consistency analysis has to be performed, verifying that no conflict exists. The resulting
set of rules can then be implemented in the monitor.

1.3.2 SMOF Concepts and Baseline

As a first step of the process (see Figure 1.4), one identifies a list of hazards that may
occur during the system’s operation, using the model-based hazard analysis HAZOP-
UML [Guiochet, 2016]. From the list of hazards, one extracts those that can be treated
by the monitor, i.e., the monitor has ways to intervene to prevent the hazard from
occurring. These hazards are reformulated as safety invariants such that each hazard
is represented by the violation of an invariant. A safety invariant is a logical formula
over a set of observable variables. Formulating invariants from the list of hazards can
highlight the need to provide the monitor with additional means of actions (mostly
actuators), that we call interventions, or additional ways to evaluate the environment
and/or internal state (mostly sensors), that we call observations.

A combination of observation values defines a system state, as perceived by the
monitor. If one of the safety invariants is violated, the system enters a catastrophic state
that is assumed to be irreversible. Each safety invariant partitions the state space into
catastrophic and non-catastrophic states as represented in Figure 1.5 (non-catastrophic
states being the warning (blue) and safe (green) states). The non-catastrophic states
can in turn be partitioned into safe and warning states, in such a way that any path
from a safe state to a catastrophic one traverses a warning state. The warning states
correspond to safety margins on the values of observations.

The monitor has means to prevent the evolution of the system towards the catas-
trophic states: these means are a set of safety interventions made available to it. Most
interventions are based on actuators, but they could also be software processes, e.g.,
processes filtering commands sent to the actuators. An intervention is modeled by its
effect (constraint that cut some transitions) and preconditions (constraints on the state
in which it can be applied). Interventions are applied in warning states in order to cut

34 Chapter 1. Ensuring the Dependability of Autonomous Systems

all the existing transitions to the catastrophic states, as shown in Figure 1.5 by the
red cross. Two types of interventions are identified in SMOF: safety actions that might
change some state variables to put the system back into a safe state, and interlocks
which forbid state variable changes (the system stays in a warning state).

The association of interventions to warning states constitutes a safety rule, and the
set of all the safety rules constitutes a safety strategy. For example, let us assume that
the invariant involves a predicate v < Vmax (the velocity should always be lower than
Vmax). In order to prevent evolution towards Vmax, the strategy will typically associate
a braking intervention to warning states corresponding to a velocity higher than the
threshold Vmax−margin. The determination of the size of the margin involves a worst-
case analysis, accounting for the dynamics of the physical system, as well as for the
detection and reaction time of the monitor after the threshold crossing.

1.3.3 Safety and Permissiveness Properties

The safety strategy must fulfill two types of properties: safety and permissiveness prop-
erties. Both properties are expressed using CTL (Computation Tree Logic) which is well
suited for reachability properties. Safety is defined as the non-reachability of the catas-
trophic states. Permissiveness properties are intended to ensure that the strategy still
permits functionality of the system, or, in other words, maintains its availability. This
is necessary to avoid safe strategies that would constrain the system’s behavior to the
point where it becomes useless (e.g., always engaging brakes to forbid any movement).
SMOF adopts the view that the monitored system will be able to achieve its tasks if it
can freely reach a wide range of states (e.g., it can reach states with a nonzero veloc-
ity). Accordingly, permissiveness is generically formulated in terms of state reachability
requirements: every non-catastrophic state must remain reachable from every other non-
catastrophic state. This is called universal permissiveness. The safety strategy may cut
some of the paths between pairs of states, but not all of the paths. In CTL, this is
expressed as: AG(EF (nc state)), for each non-catastrophic state. Indeed, EF specifies
that the state of interest is reachable from the initial state, and AG extends this to the
reachability from every state.

The user can also use the simple permissiveness which merely requires the reachabil-
ity from the initial state: EF (nc state). It is much weaker than the universal permis-
siveness as it allows some of the monitor’s interventions to be irreversible: after reaching
a warning state in which the monitor intervenes, the system may be confined to a subset
of states for the rest of the execution. For example, an emergency stop can permanently
affect the ability of the system to reach states with a nonzero velocity.

1.3.4 SMOF Tooling

The SMOF tool support [SMOF, 2018] includes the synthesis algorithm and a modeling
template to ease the formalization of the different elements of the model: the behavior
model with a partition into safe, warning and catastrophic states; the available interven-
tions modeled by their effect on observable state variables; the safety and permissiveness

1.4. Conclusion 35

properties. The template offers predefined modules, as well as auto-completion facili-
ties. For example, the tool automatically identifies the set of warning states (having a
transition to a catastrophic state). Also, the permissiveness properties are automatically
generated based on the identification of non-catastrophic states. Finally, SMOF provides
a synthesis tool based on the model-checker NuSMV [NuSMV, 2018]. For this reason
the NuSMV language is used for the formalization. The SMOF synthesis tool relies on a
branch-and-bound algorithm that associates interventions to warning states and checks
some criteria to evaluate if the branch should be cut or explored. It returns a set of
both safe and permissive strategies for the given invariant to enforce. The formalization
and strategy synthesis is done for each invariant separately. Then a last step is to merge
the models and to check for the consistency of the strategies selected for the different
invariants. The SMOF method and tool have been applied to real examples of robots:
an industrial co-worker in a manufacturing setting [Machin et al., 2018], and more re-
cently a maintenance robot in airfield [Masson et al., 2017], which will be described in
Chapter 2. Examples and tutorials can be found online [SMOF, 2018].

1.4 Conclusion

Autonomous systems are evolving towards more diversity of missions and tasks, and are
expected to share their workspace with humans. Consequently, they are highly critical
systems and require means to ensure their dependability. Because of their complexity
and the unstructured environment they evolve in, some faults remain and need to be
tolerated, and we saw that monitoring is an appropriate way to do so. We are particularly
interested in independent safety monitors, as they constitute the ultimate barrier before
the occurrence of a catastrophic failure.

An important issue when considering monitors for autonomous systems is the spec-
ification of the safety rules they implement. Indeed, they need to be defined using a
dedicated method, that allows the association of the most appropriate reaction to a
detected violation in order to cover an identified hazard. Due to the potentially high
number of hazards to avoid, numerous rules can be synthesized and the consistency
between them needs to be verified, as well as their implementation on the actual system.

Also, the introduction of a safety monitor may have an impact on the system’s
functionalities that needs to be identified and moderated. This is related to the choice
of the recovery actions made available to the monitor: we saw that shutting down
the system is not satisfying in the context of autonomy. This issue is not sufficiently
addressed by the research community.

The framework SMOF, previously developed at LAAS, partially solves this problem
by proposing a synthesis algorithm to automatically generate safety rules. However, it
still suffers from limitations. The identification of such limitations is done in the next
chapter, based on several cases studied.

Take Aways:

36 Chapter 1. Ensuring the Dependability of Autonomous Systems

• Autonomous systems are highly critical systems because of their inherent complex-
ity and the unstructured environment they evolve in;

• Fault-tolerance has to be considered, as the complete removal of faults is not
feasible;

• Independent safety monitors are an appropriate way to ensure the safety of au-
tonomous systems;

• The specification of safety rules for monitors is challenging: they need to ensure
safety while reducing as little as possible the system’s ability to perform its tasks;

• SMOF has been introduced to solve the problem of synthesizing safety rules for
independent active safety monitors. In this work we focus on cases where SMOF
fails to return a satisfying solution.

Chapter 2

Feedback from the Application of
SMOF on Case Studies

Contents
2.1 Sterela Case Study . 38

2.1.1 System Overview . 38
2.1.2 Hazop-UML Analysis . 39
2.1.3 Modeling and Synthesis of Strategies for SI1, SI2 and SI3 . . . 44
2.1.4 Modeling and Synthesis of Strategies for SI4 51
2.1.5 Rules Consistency . 59

2.2 Feedback from Kuka Case Study 61
2.2.1 System Overview . 61
2.2.2 SII: Arm Extension with Moving Platform 61
2.2.3 SIII: Tilted Gripped Box . 64

2.3 Lessons Learned . 65
2.3.1 Encountered Problems . 65
2.3.2 Implemented Solutions . 68

2.4 Conclusion . 69

SMOF (Safety MOnitoring Framework) has been developed to solve the issue of defin-
ing safety rules for active safety monitors. It is a process for automatically synthesizing
safety rules from hazards identified during a hazard analysis.

The first objective of this chapter is to illustrate the SMOF method on a complete
case study from the company Sterela. We will see that for complex examples, several
iterations may be necessary to be able to synthesize a solution when none was found with
the initial requirements. The second objective is to identify the cases where synthesis
fails to return a satisfying set of rules and to analyze which features of SMOF are required
to find solutions.

In Section 2.1, we will present and analyze the results of a case study provided
by the company Sterela [Sterela, 2018], as part of the European project CPSE-Labs
[CPSE-Labs, 2018]. To complete our analysis we will revisit some examples from a
former experiment in Section 2.2, performed as part of the European project SAPHARI
[SAPHARI, 2018], on a robot from the German company Kuka [KUKA, 2018]. The
lessons learned from these two experiments are presented in Section 2.3, where we will
present the identified limitations of SMOF, and explain the solutions that were manually

38 Chapter 2. Feedback from the Application of SMOF

implemented for them. We finally draw conclusions on these case studies and highlight
the needs for tools to assist the user in the task of finding a solution when the synthesis
fails to return a satisfying one (Section 2.4).

2.1 Sterela Case Study

In this section we apply SMOF to a maintenance robot from the company Sterela. We
first identify hazards using a hazard analysis called HAZOP-UML. From these hazards,
we identify a list of invariants to be handled by the monitor. These invariants are then
modeled, along with the available interventions and desired safety and permissiveness
properties. SMOF synthesis is finally run to find satisfying safety strategies. When no
strategies can be found, the user needs to change the defined properties, observations or
interventions. SMOF is applied at an early stage where some design decisions are still
open and can be tuned to accommodate safety concerns. Indeed, this work could be
used by Sterela to revise the design of their robot. Several iterations may be necessary
before being able to synthesize a satisfying solution.

2.1.1 System Overview

The studied use case concerns maintenance and control of the lights along airport run-
ways. The International Civil Aviation Organization (ICAO) recommends monthly mea-
surement of the light intensity of airfield lighting installations, using a certified device.
If the light intensity does not comply with the ICAO requirements, no air traffic can be
allowed on the airfield.

Currently, human operators perform the measurements but this is a burdensome and
displeasing task. It has to be done late at night, typically from 1 a.m. to 4 a.m. The
repeated exposure to intense lights in the surrounding dark may cause eye strain. The
task is thus a perfect fit for a robotic operation.

The French company Sterela is developing a prototype system to serve this purpose:
its mission is to move around the workspace to perform some maintenance tasks, espe-
cially the measurement of the lights’ intensity. The robot consists of a mobile platform
and a commutable payload (Figure 2.1). The platform, called 4MOB, is a four-wheel
drive vehicle. The payload for the light measurement task is a certified photometric
sensor on a support deported on the side of the platform. The deported sensor moves
above the lights (15-20 cm) with a maximum speed of 1.4 m/s. A human operator is
supervising the mission with a digital tablet from the extremity of the runway. As the
robot operates at night and at long distances, the operator has no direct visual contact
with it.

Our goal is to specify a safety monitor for this robot to tolerate faults that may occur
during its operation.

2.1. Sterela Case Study 39

Figure 2.1: Sterela robot measuring runway lamps

Figure 2.2: HAZOP-UML overview

2.1.2 Hazop-UML Analysis

Several important hazards can exist for such an autonomous robot on real airports.
Other operators and service vehicles could be present on the runway on which the robot
evolves, and the robot must not constitute a hazard to them. Moreover, even if the
robot could be allowed on runways, there would be airfield areas strictly forbidden to it:
it must never traverse them. Also, the air traffic controllers should keep the ability to
re-open a runway as quickly as possible in case of a landing emergency.

To properly identify these hazards, we apply the HAZOP-UML technique. It is a
model-based hazard analysis technique developed at LAAS [Guiochet, 2016]. It combines
the well-known modeling language UML (Unified Modeling Language) and a hazard
analysis technique called HAZOP (HAZard OPerability). As presented in Figure 2.2,
based on the UML models and many predefined guide words, a systematic deviation
analysis is performed.

Let us consider for example the nominal scenario of a mission: the robot has to check
the lights of runway number 1 (see UML Sequence Diagram in Figure 2.3). The operator
loads the map in the robot and defines its mission (here checking lights of the runway 1)

40 Chapter 2. Feedback from the Application of SMOF

before starting it. The robot then drives itself to the beginning of the runway, performs
the measurements on both sides, and when it is done drives itself back to the base (the
storage area). The operator can then load the results of the measurement.

An extract of the Hazop table resulting from the analysis is shown in Table 2.1.
For instance, we analyzed the [1: loadMap()] message, associated with the guide word
other than: the operator loads the wrong map. This is highly critical as the robot could
calculate an itinerary according to an erroneous map, therefore not being able to conduct
the mission, or worse, driving itself to prohibited areas.

Being a systematic approach, HAZOP-UML typically induces the analysis of many
potential deviations. Here, a total of 1623 deviations were analyzed (see Table 2.2 for
statistics). A first way to control complexity is by setting the level of detail of the
UML models. This has been done through the number of UML elements (47 messages
and 24 conditions). A second way is to provide tool support that alleviates the ef-
fort. For this, Sterela has extended their requirement editing tool to partially generate
UML diagrams and HAZOP tables. This tool is connected to their application lifecycle
management software based on the open source Tuleap platform [Tuleap, 2018]. In par-
allel, a dedicated open-source tool called Youcan has been developed at LAAS, based on
Eclipse-Papyrus [HAZOP-UML, 2018].

As a first result of the study, a list of recommendations for the use or the design of
the robot is produced. For example, an evacuation procedure was initially considered in
case of an emergency landing. The analysis showed that such a critical aspect cannot be
trustworthy, as it would mean certifying the complete functional chain for the evacuation:
the navigation system, the battery charge, the sensors and actuators, etc. Indeed, the
battery charge for example can not be observed precisely, therefore the robot could run
out of battery level while evacuating the runway. Instead we propose to have a high
integrity on the robot’s position, so that the operator can go get it and proceed to a
manual evacuation of the runway.

A second result is the identification of the hazards to be treated by the safety monitor.
Ten highly critical hazards are extracted from the HAZOP analysis and presented in
Table 2.3. Some of them rely on operating rules: for instance, the control tower has to
validate the runway that will be checked to make sure no other activity will take place on
it (other checks, landings, etc.). Only a subset of hazards is in the scope of the monitor.

For some hazards in the scope of the monitor, it is possible to directly extract some
safety invariants. For instance, the hazard H9 (movement in an unauthorized zone) can
be directly formalized from available observations (distance to the unauthorized zone).
But for other hazards, it is not possible due to a lack of observations or interventions.
In such cases, an in-depth analysis of the hazard is performed in order to identify the
premises leading to the hazard and translate them into safety invariants. It may not be
possible to translate all of the premises of a hazard into a safety invariant. No method has
yet been defined for the analysis of the hazard and its premises, and their reformulation
into safety invariants. It has to be done manually and relies on the expertise of the user.

For the studied robot, the monitor may address 4 hazards (out of 10): H6, H8, H9
and H10. The derived invariants are the following:

2.1. Sterela Case Study 41

:Operator :Robot

1: loadMap()

2: defineMission(checkRunway1)

3: startMission()

4: moveToRunway1()

5: atRunway1
6: followLine()

7: endOfLine
8: uTurn()

9: startOfLine
10: followLine()

11: endOfLine
12: moveToBase()

13: inBase
14: endOfMission()

15: loadReport()

Figure 2.3: UML Sequence Diagram for a light measurement mission

42 Chapter 2. Feedback from the Application of SMOF

E
ntity

A
ttribute

type
G

uide
w

ord
D

eviation
E

ffect
Severity

Safety
recom

m
endation

[1:
loadM

ap()]
M

essage
O

ther
than

T
he

w
rong

m
ap

is
loaded

T
he

robot
calculates

its
trajectory

using
a

erroneous
m

ap:
it

m
ay

drive
through

a
prohibited

zone

H
igh

M
arking

of
the

prohibited
zone

to
enable

their
de-

tection
even

w
ith

erroneous
m

ap
+

m
onitoring

the
dis-

tance
to

the
prohibited

zone

[4:
m

ove-
ToR

unw
ay1()]

M
essage

O
ther

than

T
he

robot
m

oves
to

another
runw

ay

T
he

robot
m

ay
start

checking
the

lights
of

a
runw

ay
that

is
open

for
landing:

risk
of

collision
w

ith
planes

H
igh

T
he

controltow
erhasto

val-
idate

the
m

ission
+

the
op-

erator
needs

to
controlthat

the
robot

is
checking

the
ex-

pected
runw

ay

[10:
follow

-
Line()]

M
essage

N
o

T
he

robot
doesn’t
follow

the
line

T
he

robot
doesn’t

drive
parallel

to
the

line
oflights:

it
m

ay
collide

w
ith

one

H
igh

Em
bed

a
collision

avoidance
m

echanism

Table
2.1:

H
azop

table
extract

for
light

m
easurem

ents
m

issions

2.1. Sterela Case Study 43

4MOB
Use cases 5
Conditions (pre,post,inv) 24
Sequence diagrams 5
Messages 47
Deviations 1623
Interpreted deviations 226
Interpreted deviations with severity > 0 97
Number of hazards 10

Table 2.2: Statistics for the application of HAZOP-UML to the 4MOB robot

Number Hazard Comments
H1. Runway open to planes Operating rule
H2. Battery charge not sufficient Operating rule
H3. Lights not correctly verified Operating rule
H4. Operator unavailable Operating rule
H5. Debris deposit on the runway Mechanical structure
H6. Dangerous velocity Monitor
H7. Fall of the robot during loading/unloading Operating rule
H8. Impossibility to free the runway Monitor
H9. Movement in unauthorized zone Monitor
H10. Collision of the robot with an obstacle Monitor

Table 2.3: Hazards extracted from the HAZOP analysis

44 Chapter 2. Feedback from the Application of SMOF

SI1 Dangerous velocity—the robot must not go too fast in terms of linear or angular
velocity;

SI2 Impossibility to free the runway—the location of the robot must be known at any
time;

SI3 Movement in an unauthorized zone—the robot must not enter a prohibited zone;

SI4 Collision with an obstacle (including lights)—the robot must not collide with an
obstacle.

HAZOP-UML is particularly well adapted to the context of safety monitoring, since
it focuses on operational hazards. The interactions with the environment related to
the mission are analyzed. Other hazards such as electric shocks, sharp edges, etc., are
treated by other means.

2.1.3 Modeling and Synthesis of Strategies for SI1, SI2 and SI3

In this section we detail the modeling and the synthesized strategies for the invariants
SI1 (the robot must not go too fast), SI2 (the location of the robot must be known at
any time) and SI3 (the robot must not enter a prohibited zone). These invariants are
simple and the strategies fairly straightforward, but they already raise interesting points
of interest. They also allow us to detail the SMOF method.

Details of SMOF Method and Application to SI1: Dangerous Velocity

The first safety invariant (SI) to be covered by the monitor is SI1 the robot must not
exceed a maximum velocity vmax. In this section, we use this simple invariant as a
running example for detailing the different steps of the SMOF process.

A list of SIs has been extracted from the results of the hazard analysis and the
SIs are expressed in natural language (here, “the robot must not exceed a maximum
velocity vmax”). Each SI is then expressed formally with predicates on variables that
are observable by the monitor. We focus on predicates involving variables compared to
fixed thresholds. For our running example, we consider only one observable variable:
the robot’s velocity v, which is evaluated compared to the safety value vmax. The SI is
formalized as SI = v < vmax. The negation of this invariant defines the catastrophic
states (the ones where v ≥ vmax). Note that this step may induce an early feedback on
the system design, by revealing the lack of key observation mechanisms.

The SMOF modeling template is then used to build state-based models. In order to
keep models simple enough to be validated, each SI is modeled separately.

A SMOF model formalizes the part of the system related to one SI, seen from the
monitor’s point of view. It gathers all information necessary to produce strategies that
ensure the SI:

• The behavior : the automaton of the system safety-related state variables in absence
of the monitor, containing all paths to the catastrophic states;

2.1. Sterela Case Study 45

• The interventions: the abilities of the monitor to constrain the system behavior;

• The safety and permissiveness properties: desired properties of the monitor action.

Behavior: A safety invariant is actually a condition composed of state variables and
constants. The comparison defines a first partition of the variables into classes of values,
e.g., the values that are below or above a safety threshold. The variable v is compared
to the safety threshold vmax, i.e., v < vmax or v ≥ vmax.

The partition is then refined in order to consider margins. In our example, a
margin is taken on the velocity variable, i.e., the velocity is either lower than the
margin (v < vmax − margin), within the margin (vmax − margin ≤ v < vmax)
or above the maximum value (v ≥ vmax). SMOF encompasses a modeling tem-
plate for the definition of the behavior model, that eases the modeling in NuSMV,
which we use for the strategy synthesis. The resulting classes of values are en-
coded by integers, i.e., the velocity variable is encoded by the discrete variable
v ∈ {[0, vmax −margin[,[vmax −margin, vmax[,[vmax,∞[}={0,1,2}.

The user must also enter a definition of the catastrophic state expressed with the
discrete variables encoding the partition (cata: v=2).

The behavior states result from the Cartesian product of the ranges of all discrete
variables. The user does not need to list the states: NuSMV automatically builds the
state space from the declaration of variables.

By default, all the combinations of variable values (i.e., states) are possible and all
transitions between pairs of states are implicitly declared. The user can add constraints
to delete states and transitions that would be physically impossible. The most common
constraint is the “continuity” of a variable, e.g., the velocity cannot “jump” from 0 (i.e.,
the velocity is lower than the margin) to 2 (i.e., the velocity is above the maximum
allowed value). Such a continuity constraint is encoded in SMOF using the dedicated
module Continuity of the modeling template, that encapsulates the constraint next(x)=
x | x+1 | x-1, i.e., the next value of x can stay the same, or increase or decrease by
one. For the velocity variable of our example, this is encoded as follows:

--Continuity(value min, value max, value init)
VAR v : Continuity(0, 2, 0);

The user can also declare dependency constraints. For instance, she can specify that
a position variable cannot evolve if the velocity variable is zero.

The catastrophic states are considered irreversible. The user does not need to ex-
plicitly specify this: the constraint is automatically included in the SMOF modeling
template, where all the catastrophic states are sink states.

The resulting behavior model for the running example is presented in Figure 2.4.
It only has three states: one safe state (v=0), one warning state (v=1) (we call warning
states those that lead to a catastrophic state in one step) and one catastrophic state
(v=2).

46 Chapter 2. Feedback from the Application of SMOF

safe

v=0

w

v=1

cata

v=2

Figure 2.4: Behavior for the invariant SI1.

Interventions: The interventions are the means for the monitor to intervene on the
system to avoid reaching a catastrophic state.

An intervention is modeled by its effect and preconditions. The effect is a constraint
that cuts some transitions from the state in which the intervention is applied, reducing
the set of possible next states.

The effect is guaranteed only if the preconditions are verified. We distinguish two
types of preconditions. The static preconditions are constraints on the state in which the
intervention is applied. For instance, an intervention preventing an arm from extending
can only be effective if the arm is not already extended, thus, the precondition would be
“the arm is folded”.

The effectiveness of an intervention may also depend on the system history. We only
take into account the state preceding the application of the intervention. We consider
sequential preconditions that must hold on this state. They are constraints on the tran-
sitions that trigger the intervention, when moving from a state in which the intervention
is not applied to a state in which it is. For our running example, only one intervention
influencing the variable v is available: triggering the brakes. Its effect is to prevent the
velocity from increasing. It can be encoded as next(v)!=v+1, i.e., v does not increase.
Due to the inertia of the platform, this intervention may not be efficient immediately:
this is modeled with a sequential precondition. For the braking intervention to be effec-
tive, it is necessary that the threshold vmax −margin has just been crossed (v=0 in the
previous state). Indeed, if the threshold has been crossed for more than one step, the
real value of the velocity could be vmax − ε, and it would be too late to brake, the value
vmax would be exceeded and the invariant violated.

The SMOF template provides a predefined Intervention module that can be used as
follows to model the braking intervention (a TRUE value indicates that no precondition
is declared; the precondition is always satisfied):

-- Interv(stat. precond., seq. precond., effect)
VAR brake: Interv(TRUE, v=0, next(v)!=v+1);

Safety and permissiveness properties : They are modeled in computation tree
logic (CTL), a branching time logic fully supported by NuSMV. A CTL operator is
composed of one branching operator (A, all the branches, or E, there exists a branch)
and one time operator (X for the next state, G for the entire path or F for eventually).
It is applied on states, or more generally on statements about the system state.

2.1. Sterela Case Study 47

The safety property is predefined as the unreachability of the catastrophic states
declared by the user, i.e., in CTL, AG(¬cata).

The permissiveness property aims to ensure that the system can still perform its
tasks. In SMOF, it is considered that a versatile autonomous system has to operate in
many different states. Hence, permissiveness is expressed in terms of state reachability
properties: the monitored system should keep its ability to reach non-catastrophic states.
More precisely, permissiveness is modeled by two reachability properties applied to any
non-catastrophic state snc:

• Simple reachability (EF (snc)): the state snc is reachable from the initial state;

• Universal reachability (AG(EF (snc))): the state snc is reachable from any reach-
able state. A state that is universally reachable is also simply reachable.

The SMOF template has a module that automatically generates the simple and
universal permissiveness properties for every non-catastrophic state. The universal and
simple permissiveness are required by default, but the user can change it to require only
the simple permissiveness.

Summary of the modeling: The SMOF template includes predefined modules, parts
to be edited by the user, and generated parts. For the running example, the user has
only to model three lines:

--Declaration of the variables
--Continuity(value min, value max, value init)
VAR v : Continuity(0, 2, 0);
--Declaration of catastrophic states
DEFINE cata := v=2;
--Declaration of the interventions
--Interv(stat. precond., seq. precond., effect)
VAR brake: Interv(TRUE, v=0, next(v)!=v+1);

The permissiveness properties are automatically generated. The tool also generates
the list of warning states, i.e., of states having a transition to a catastrophic state. This
is done in preparation for the synthesis of strategies: the warning states are candidate
states for the application of interventions.

In our running example, there is only one warning state, whose definition is generated
automatically (“flag” denotes the definition of the state):

DEFINE flag st 1:=v=1;

Synthesis of strategies: The synthesis algorithm takes as inputs the behavior model
for an invariant, the available interventions and the properties to ensure (safety and
permissiveness). It outputs a set of alternative strategies, each of them satisfying the
properties.

48 Chapter 2. Feedback from the Application of SMOF

Conceptually, the strategies assign a combination of interventions to each warning
state, cutting the transitions to the catastrophic states. This is encoded by the definition
of flags in the model, i.e., triggering conditions for the interventions.

Instead of enumerating all the possible strategies, which would be very inefficient,
the SMOF synthesis algorithm builds a tree of strategies, making it possible to prune
branches during the search (branch-and-bound algorithm). It uses several pruning cri-
teria to evaluate if a branch is worth exploring or needs to be cut.

Three variants of the algorithm exist, using more or less pruning criteria. The first
one gives an exhaustive list of the satisfying strategies. This variant comes with an
optional post-processing algorithm that sorts the strategies to only return the minimal
strategies. A strategy is minimal if removing one intervention means violating the in-
variant, i.e., all the interventions are absolutely necessary to ensure the safety property.
The second variant gives a superset of the set of minimal strategies: all the minimal
strategies, plus some non-minimal ones.

The two first variants can take a long time to execute, as they explore all the minimal
strategies plus others. However, if they do not return any solution, then it is sure that
no solution exists for the model. A third variant exists, that gives a subset of minimal
strategies. It is not conclusive regarding the absence of solutions, but may return minimal
strategies with a shorter tree traversal than the two other variants. This variant is very
efficient for most cases, but it sometimes is too drastic, especially in the case of the
existence of sequential preconditions. In these cases, all satisfying strategies may be cut
during the exploration. For a detailed presentation of the synthesis algorithm and its
different variants, the user can refer to [Machin et al., 2018].

For our running example, a single strategy exists:

DEFINE flag st 1:=v=1;
-- Strategy #1
DEFINE flag brake := flag st 1;

As anticipated, the strategy found by SMOF triggers the brakes whenever the ve-
locity reaches a value within the margin (v=1). This example is very simple, but useful
to illustrate the approach. The invariants detailed thereafter present more interesting
features.

When the model does not admit a satisfying strategy, the user has several options.
They can reduce the permissiveness, requiring only the simple permissiveness instead of
the universal permissiveness. They also can add new interventions, which will have to
be implemented in the real system.

SI2: Impossibility to Locate the Robot

The invariant SI2 derives from the danger H8: it is impossible to free the runway.
A solution would be to trigger an evacuation procedure: the robot drives itself to a
fallback zone. As mentioned in Section 2.1.2, this would require a high integrity level on
the navigation, the battery charge, all the control chain including sensors and actuators,

2.1. Sterela Case Study 49

Figure 2.5: SI3 the robot must not enter a prohibited zone

which is not realistic. Therefore, we propose another way to avoid this danger: in case
of an emergency landing, the operator has time to go get the robot and take it out of
the runway. In order to do this, the operator needs to know the robot’s location (the
robot is operating at night, and the operator has no direct visual contact with it). The
robot is communicating its location regularly to the operator. The location as well as
the communication are considered to have a high integrity level, i.e., the transmitted
location data are correct. This means that only the broken communication could prevent
the operator from knowing the location of the robot. We can thus reduce the danger to
the following: the robot moves without the communication being operational.

The corresponding invariant is SI2
′ the robot must not move if the communication

is not operational. We model this through two observations: the time since the loss
of the communication, and the velocity of the robot (the robot is stopped or moving).
The available intervention is a full stop intervention that stops the robot completely.
SMOF synthesis returns one strategy, which is to trigger the full stop as soon as the
communication is lost.

SI3: Movement in a Prohibited Zone

The considered invariant here is: SI3 the robot must not enter a prohibited zone. We
chose to use the observation d, the distance to the prohibited zone (see Figure 2.5). The
distance is calculated from the location of the robot and the position of the prohibited
zones (that is both marked and stored in the robot’s memory). This distance variable is
partitioned according to the concept of margin: d ∈ {0, 1, 2}, 0 representing the robot
into the prohibited zone (d < dc), 1 the robot close to the prohibited zone (dc ≤ d < dw)
and 2 the robot far from the prohibited zone (d ≥ dw). According to this partition, the
catastrophic state can be expressed as cata:= d=0.

The only available intervention here is the full stop intervention, which stops the
robot completely. To model this intervention, we use the velocity v, partitioned as
follows: v ∈ {0, 1}, i.e., the robot is either stopped (v=0) or moving (v=1). It is necessary
to model the full stop with a velocity variable: it is not possible to model it with the

50 Chapter 2. Feedback from the Application of SMOF

safe1

d=2

v=0 w1

d=1

cata1

d=0

safe2v=1 w2 cata2

full stop

full stop

Figure 2.6: Expected strategy for SI3

distance variable only. Even if the distance to the zone stays the same, it does not mean
that the robot is stopped: the robot could move parallel to it.

The velocity and distance variables are dependent: the evolution of one depends on
the evolution of the other. Indeed, the distance cannot change if the robot is not moving.
We specify this requirement with a dependency constraint. Is is encoded in SMOF as
TRANS v=0 & next(v)=0 → next(d)=d.

The full stop intervention is only effective under the precondition that the distance
threshold to the prohibited zone has just been crossed (d=2 in the previous state), and
affects the velocity variable v (next(v)=0). It is encoded as follows (remember we write
an intervention with the Interv(stat precond, seq precond, effect) template):

VAR full stop: Interv(TRUE, d=2, next(v)=0);

Considering that only the full stop intervention is available, the expected solution
—displayed in Figure 2.6— would be to trigger it whenever the robot is getting too close
to the prohibited zone. However, when we run the SMOF synthesis on this model the
tool returns no solution with the default universal permissiveness property. Indeed, the
universal permissiveness, expressed in CTL as AG(EF (snc)) for every non-catastrophic
state, requires the reachability of every non-catastrophic state from every other non-
catastrophic state. In our case, the full stop freezes the distance to the prohibited area:
if it is triggered when d=1 the robot will be stopped and blocked at its current location
(in states w1 and w2), i.e., the states where d=2 will no longer be reachable.

We know that a safe strategy exists, the one we just discussed (it can be found by
SMOF when removing all the permissiveness constraints for the synthesis): this means
that the universal permissiveness (the default one for SMOF synthesis) could not be
satisfied. Then, to synthesize the expected strategy, SMOF permissiveness needs to
be switched to simple permissiveness. Simple permissiveness is expressed as EF (snc):
every non-catastrophic state has to be reachable from the initial state. This allows the
monitor’s intervention to be irreversible (the system is stuck in states w1 or w2). Every

2.1. Sterela Case Study 51

non-catastrophic state can be reached from the initial state, but after an intervention is
triggered, some states may no longer remain reachable, as is the case here, the robot being
blocked close to the prohibited zone. Concretely, this implies that a human intervention
is then needed to restart the robot (after moving it to an authorized area).

Switching to simple permissiveness allows in some cases to synthesize a strategy
when none was found with the universal permissiveness. However, this does not give
a good understanding of the restriction that is imposed by the resulting strategy. No
precise indication is given concerning the reachability of the states. The user is not
able to differentiate a strategy where all the states are reachable from every other state
except for one (universal reachability of all the states but one), from a strategy where
all the states would only be reachable from the initial state (simple reachability of all
the states). In such a simple case as the one presented above, this is not a big issue as
the graph can be represented and manually analyzed, but we foresee that it can be an
issue with more complex and larger models.

� There is no solution with the universal permissiveness requirement. We needed
to weaken the permissiveness into simple permissiveness. In the general case, it
is hard to assess the concrete impact of this operation on the robot’s functioning,
i.e., on the reachability of the states.

Note that we use the symbol � to denote the main points of interest identified when
applying SMOF. They will be summarized and discussed in Section 2.3.

2.1.4 Modeling and Synthesis of Strategies for SI4

The absence of collision is an important problem for the studied robot. To get a proper
light measurement, the robot should be allowed to move very close to the lights, so that
its deported sensor passes above them (see Figure 2.1). Still, it must not collide with
them. Also, it must not be allowed to move close to other types of obstacles like humans
or service vehicles.

Due to its complexity, the formalization of the problem was done in two steps. We
first considered a simple case, with a single idealized obstacle modeled by a pair of (x, y)
coordinates called the Cartesian model. It helped us to identify some assumptions on
the obstacles to address, as well as some requirements on how to observe the neighbor-
hood of the robot and which interventions to provide. The second model, called the
“zones model” was more complex, accommodating multiple obstacles and their spatial
extension. It allowed us to confirm the strategy synthesized from the simple case.
Cartesian model: We assume that the robot is not responsible for rear-end collisions
(like in car accidents). It is then sufficient to monitor the neighborhood in front of, and
at the sides of the robot. However, the robot must not be allowed to move backwards,
or to make sharp turns (remember it is with four-wheel steering, it might turn 360˚on
the spot). Such movements would be dangerous for stationary obstacles close behind it.
To avoid this, we add two invariants (not presented here) that restrict the direction and
curvature radius of movement.

52 Chapter 2. Feedback from the Application of SMOF

Figure 2.7: Disposition of the lasers on the robot

Initially, two laser sensors were implemented on the bottom of the robot platform.
These sensors detect everything on a plane more than 180˚around them. Thanks to
them, the robot is able to detect the presence of an obstacle. They are positioned as
shown in Figure 2.7 (laser sensors L1 and L2). However, these sensors are not sufficient
to identify the size of the obstacles: the robot cannot differentiate between low obstacles
(20 cm max), which can pass under the deported sensor, or high obstacles, including
humans which are too tall to pass under it. In this case, the only way to make sure that
no obstacle higher than the deported sensor collides with it is to prevent any obstacle
from getting close to it. This would mean that no obstacle, including lights, would be
allowed close to the sensor, hence it would not be possible to measure the lights.

The robot must be able to differentiate between low and high obstacles, at least for
obstacles that are located on the same side as the deported sensor. The chosen solution
was to equip the robot with an additional 2D Lidar unit on the deported extension (L3
in Figure 2.7). The size of the obstacle (high or low) can then be inferred by observing
the combination of sensor values. The low obstacles, including lights, are assumed
stationary: otherwise, there would be no safe strategy allowing the robot to move close
to them.

� A sensor was added to make it possible for the robot to perform the light mea-
surement.

The monitor can use the following observations:
x : abscissa of the obstacle in the robot’s referential
y : ordinate of the obstacle in the robot’s referential
v : robot’s velocity
type : type of the obstacle (high or low)

2.1. Sterela Case Study 53

Figure 2.8: Visual representation of the classes of (x,y) coordinates

For x For y
x < xwl x=0 y > ywf y=0

xwl ≤ x < xcl x=1 ycf < y ≤ ywf y=1

xcl ≤ x ≤ xcrlow x=2 ycf ≤ y ≤ ycb y=2

xcrlow < x ≤ xcrhigh x=3

xcrhigh < x ≤ xwr x=4

x > xwr x=5

For v For the type (when x>2)
The robot is standstill v=0 The obstacle is low type=0

The robot is moving v=1 The obstacle is high type=1

Table 2.4: Partitioning and abstraction of the variables for the Cartesian model

As for the previous invariants, their values are partitioned and discrete variables are
introduced to represent them. Figure 2.8 gives a visual representation of how the space
around the robot is partitioned, and Table 2.4 recaps the encoding for all variables.

The (x,y) coordinates are declared with continuity constraints. An additional con-
straint models the stationary assumption of low obstacles (having type=0). However,
the type of obstacle is observed only on the right side of the robot (x>2). In other loca-
tion areas, the type is forced to the default value 1 (the obstacle is potentially high and
mobile).

The catastrophic states are collisions with the platform (for any type of obstacle) or
with the deported sensor (for a high obstacle) at a non-zero velocity. Indeed, we consider
that it is not dangerous to have a collision when the robot is at a standstill: the operator
could get close to the robot and touch it. Using the encoding into abstract variables,
cata is defined as v=1 & (x=2 & y=2 | type=1 & x=3 & y=2).

One intervention is needed that is able to stop the robot completely: the full stop.
It is redefined for these variables. It stops the platform under a threshold crossing

54 Chapter 2. Feedback from the Application of SMOF

precondition, i.e., the obstacle was previously far away on the left (x=0), on the right (x=5)
or in front (y=0) of the robot. The threshold distance has to be calculated considering the
real speed and braking distance parameters. An operating rule states that no vehicle can
be on the runway when the robot is in operation. We only have to consider pedestrians,
with a speed of around 5 km/h. The distance threshold then is such that the robot can
stop before reaching an obstacle that is potentially moving at a maximum of 5 km/h.
Sterela has computed the concrete numerical value of the threshold. In the SMOF model,
the variables and interventions are kept abstract. The declaration is written as follows:

-- Interv(stat precond, seq precond, effect)
VAR full stop: Interv(TRUE, x=0 | x=5 | y=0, next(v)=0);

If this intervention is the only one available, a safe strategy exists but it is not per-
missive (the synthesis returns no safe and permissive solution, but a safe solution is
found when the permissiveness requirements are removed). The safe strategy that can
be synthesized is as follows: the robot stops whenever any type of obstacle enters the
warning zone. But to measure the lights the robot needs to move close to a low obstacle
(i.e., v=1 & x=3). The set of states satisfying the predicate v=1 & x=3 are warning states
with regard to the collision invariant: the obstacles are close enough to collide with the
platform in one step. However, these states need to be reached to satisfy the permis-
siveness constraints (the robot can measure lights). This case study is the first time we
face a case where warning states are operational states. Warning states are states that
are “close” to the catastrophic states (the catastrophic states can be reached in one step
from the warning states). In most cases, being close to the catastrophic states is not
desirable for the normal operation of the robot (for instance, approaching an excessive
speed is not necessary for the robot’s movement). The warning states can be exited
as soon as they are reached (the interventions make the robot return to a safe state).
However, here the goal is to stay in the warning states where a lamp is under the arm
while blocking the evolution towards the catastrophic state (i.e., collision).

In order to ensure permissiveness, we manually determined that a second intervention
is needed, which would be able to block the evolution from the warning states where a
lamp is under the arm to the catastrophic states. A satisfying intervention is to restrict
the moves of the robot in its direction to the right. The robot will not be able to get
any closer to the lights (on its right side). It is effective for stationary obstacles only,
that is, for low obstacles only under our modeling assumption.

-- Interv(stat precond, seq precond, effect)
VAR restrict right curve: Interv(type=0, TRUE, next(x)!=x-1);

This intervention was manually defined and several iterations and discussions were
necessary to achieve a satisfying result both respecting the specification (preventing the
collision with lamps under the arm) and being implementable (Sterela engineers needed
to be able to implement the intervention on the robot with a high level of integrity).
This was complicated and some help on the definition of this intervention would have
been useful.

2.1. Sterela Case Study 55

With the two above interventions, the synthesis returns one safe and permissive
solution: trigger the full stop when a high obstacle is close, irrespective of whether the
robot is moving or not, and restrict the curve when a low obstacle is in the deported
sensor zone and the robot is moving.

� No strategy is possible if the full stop is the only intervention available. An addi-
tional intervention had to be designed.

The strategy generated by SMOF is as follows:

--Definition of the warning states
DEFINE flag st 0 := x=3 & y=1 & v=1 & type=0 ;
DEFINE flag st 1 := x=3 & y=2 & v=1 & type=0 ;
DEFINE flag st 2 := x=1 & y=1 & v=0 & type=1 ;
DEFINE flag st 3 := x=2 & y=1 & v=0 & type=1 ;
DEFINE flag st 4 := x=3 & y=1 & v=0 & type=1 ;
DEFINE flag st 5 := x=4 & y=1 & v=0 & type=1 ;
DEFINE flag st 6 := x=1 & y=2 & v=0 & type=1 ;
DEFINE flag st 7 := x=2 & y=2 & v=0 & type=1 ;
DEFINE flag st 8 := x=3 & y=2 & v=0 & type=1 ;
DEFINE flag st 9 := x=4 & y=2 & v=0 & type=1 ;
DEFINE flag st 10 := x=1 & y=1 & v=1 & type=1 ;
DEFINE flag st 11 := x=2 & y=1 & v=1 & type=1 ;
DEFINE flag st 12 := x=3 & y=1 & v=1 & type=1 ;
DEFINE flag st 13 := x=4 & y=1 & v=1 & type=1 ;
DEFINE flag st 14 := x=1 & y=2 & v=1 & type=1 ;
DEFINE flag st 15 := x=4 & y=2 & v=1 & type=1 ;

--Strategy #1
DEFINE flag full stop := flag st 2 | flag st 3 | flag st 4 | flag st 5 |
flag st 6 | flag st 7 | flag st 8 | flag st 9 | flag st 10 | flag st 11 |
flag st 12 | flag st 13 | flag st 14 | flag st 15 ;
DEFINE flag inhib rot := flag st 0 | flag st 1 ;

The strategies generated by SMOF are hard to read whenever the number of warning
states and/or interventions is high.

� The readability of the strategies is of low quality when there are more than a few
warning states.

After a step of manual simplification, the strategy can be presented as follows:

--Strategy #1
DEFINE flag full stop := type=1 &
(x=1 | x=2 | x=3 | x=4) & (y=1 | y=2);
DEFINE flag restrict right curve := type=0 & x=3 & (y=1 | y=2);

56 Chapter 2. Feedback from the Application of SMOF

Figure 2.9: Obstacle occupation zones around the robot

It means that the robot will brake when a high obstacle is close, and restrict the
curve when a small obstacle is in the deported sensor zone.

The monitor will therefore be intervening continuously when the robot is measuring
lights, as they are considered as obstacles with respect to this invariant.

The Cartesian model is useful to understand the problem, but not completely real-
istic. Indeed, the robot can meet more than one obstacle at a time, and each obstacle
has a spatial extension. For example it could be in the zones x=2 and x=3 at the same
time. This is impossible to model with a single coordinate pair (x,y).

To take into consideration multiple obstacles and their potential spatial extension,
we chose to model occupation zones. Several zones can be occupied at the same time,
accounting for either an obstacle spreading on several (x, y) coordinates (e.g., a wall, a
large object) or for several separate obstacles.

� Several iterations can be needed to model a complex invariant and synthesize a
strategy for it.

Zones model: Five zones are defined as in Figure 2.9. Their boundaries are based
on the same thresholds as in the Cartesian model, with possibly some grouping of the
coordinate areas. For example, the warning areas at the left and in front of the robot are
grouped into the same zone: they are observed by the same sensor (L1 in Figure 2.7),
and the previous analysis suggests that they call for similar safety rules.

Table 2.5 shows the partitioning of zone variables into occupation classes. Value 0
encodes an empty zone. The meaning of other values depends on whether or not the type
of obstacles is observable in the corresponding zone. For example, variable z1 is two-
valued with 1 indicating the occupation by obstacles of an unobserved type. Variable z2

is three-valued in order to distinguish occupation by at least one high obstacle (=1), and
occupation by low obstacles only (=2). The partitioning of z3 is specific: while the type
of obstacles is observed in this zone, the variable is two-valued. The case of occupation
by low obstacles only is safe for this zone, so we decided to put it in the same class as
emptiness. In practice, note that the occupation cases are determined by combining the
results of several sensors. Assuming that the implementation is like that of Figure 2.7,
the occupation by low obstacles only would be determined by the fact that the 2D lidar
on the platform’s corner sees something in the zone, while the lidar on the deported
extension (placed at a higher height) sees nothing.

2.1. Sterela Case Study 57

Zone z1: Front and
left side of the
robot

Empty z1=0

Occupied by at least one obstacle (type unknown) z1=1

Zone z2: Front right
side of the platform

Empty z2=0

Occupied by at least one high obstacle z2=1

Occupied by low obstacles only z2=2

Zone z3: Right side
of the robot

Empty or occupied by low obstacles only z3=0

Occupied by at least one high obstacle z3=1

Zone z4: The
platform itself

Empty z4=0

Occupied by an obstacle (physical contact) z4=1

Zone z5: Right side
of the platform

Empty z5=0

Occupied by at least one high obstacle z5=1

Occupied by low obstacles only z5=2

Table 2.5: Partitioning of zone variables for the full case model
This encoding focuses on the occupation of zones, and misses information on their

spatial adjacency. In the (x,y) model, adjacency was easily captured by the continuity
constraints on x and y. The notion of warning state (i.e., the states from which a
catastrophic state is reachable in one step) then naturally emerged, since the obstacle
is always seen with coordinates in a close area before getting too close. In the new
model, we have to introduce constraints to represent this. For example, a constraint
expresses the fact that z4 cannot be occupied if, at the previous step, it was empty and
all its neighboring zones were empty as well. A similar constraint is given for z5. The
stationary assumption for low obstacles is also quite difficult to model. In particular,
we have to capture the fact that, if the robot is stopped, low obstacles cannot appear
and disappear in its neighborhood. It is done by introducing specific auxiliary variables
and constraints. For example, we detect a situation in which the robot stops with low
obstacles only in z5, and constrain this zone to take only non-empty values as long as
the robot remains at a standstill. The variables and their dependencies are declared as
presented in Figure 2.10.

� The modeling of the variables dependencies can be very arduous. Several iterations
may be necessary.

The velocity variable remains the same as in the previous (x,y) model. We thereby
define the catastrophic state as cata := v=1 & (z4=1 | z5=1): the robot is moving and
an obstacle is in the zone z4 or z5 (for high obstacles only).

The two available interventions are the same as before: the full stop and the restric-
tion of moves towards the right side.

58 Chapter 2. Feedback from the Application of SMOF

MODULE Memo(set, reset)
VAR m : boolean;
ASSIGN

init(m):=set;
next(m):=case

next(set)=TRUE : TRUE;
next(reset)=TRUE : FALSE;
TRUE : m;
esac;

MODULE main
...
--Variable dependencies
--The low obstacles are standstill
--The low obstacles do not disappear when the robot is not moving
DEFINE set empty prohibited z2:=(v=0 & z2=2);
DEFINE set empty prohibited z5:=(v=0 & z5=2);
DEFINE reset empty prohibited:=v=1;
VAR empty prohibited z2 : Memo(set empty prohibited z2, reset empty prohibited);
TRANS empty prohibited z2.m=TRUE -> next(z2)!=0;
VAR empty prohibited z5 : Memo(set empty prohibited z5, reset empty prohibited);
TRANS empty prohibited z5.m=TRUE -> next(z5)!=0;
--The low obstacles do not appear when the robot is not moving
DEFINE set low prohibited z2:=(v=0 & z2=0);
DEFINE set low prohibited z5:=(v=0 & z5=0);
DEFINE reset low prohibited:=v=1;
VAR low prohibited z2 : Memo(set low prohibited z2, reset low prohibited);
TRANS low prohibited z2.m=TRUE -> next(z2)!=2;
VAR low prohibited z5 : Memo(set low prohibited z5, reset low prohibited);
TRANS low prohibited z5.m=TRUE -> next(z5)!=2;
-- The obstacles do not come from nowhere
TRANS z1 = 0 & z2 = 0 & z4 = 0 & z5 = 0 -> next(z4) = 0;
TRANS z1 = 0 & z2 = 0 & z3 = 0 & z4 = 0 & z5 = 0 -> next(z5) = 0;
--The low obstacles do not become high
TRANS z1=0 & z2!=1 & z3=0 & z4=0 & z5!=1 -> next(z5)!=1;

Figure 2.10: Declaration of the zones variables and their dependencies

2.1. Sterela Case Study 59

The SMOF tool identifies 94 warning states before invariant violation (vs. 16 previ-
ously). They account for the combinations of all occupation cases of the zones.

The search space of candidate strategies is very large, and the rule synthesis tool
does not succeed in computing the set of solutions in a realistic amount of time when
using the variant returning a superset of the minimal strategies. The tool also has a fast
exploration mode at the expense of potentially skipping solutions (the third variant of the
algorithm, returning a subset of minimal strategies). In the case of this model, the fast
exploration manages to proceed the model in 4 minutes but finds no solution. Indeed,
this variant of the algorithm is too drastic specifically when sequential preconditions are
used, which is the case here for the full stop intervention.

� The state space is too large for the tool to deal with. No solution can be automat-
ically found.

Note that the number of warning states for this safety invariant (94) is way higher than
anything that we had seen in previous case studies. The SMOF tool was not designed to
handle such a large state space, and it performs well for other examples with a smaller
amount of states.

We then manually encoded the strategy suggested by the analysis of the Cartesian
model: full stop when a high obstacle gets too close to the robot, i.e., enters one of the
zones, and restrict curve when a low obstacle is in front, behind or below the sensor
support, i.e., in the zone 2 or 5.

-- Strategy #1
DEFINE flag full stop := z1=1 | z2=1 | z3=1 | z4=1 | z5=1;
DEFINE flag restrict right curve := z2=2 | z5=2;

NuSMV confirms that this strategy is safe and universally permissive. Note that
there are now states for which both interventions are active at the same time, e.g., when
both z1=1 and z2=2. This is indeed necessary because the full stop alone does not prevent
from colliding with a low obstacle in z2, which can be closer than the braking distance.

2.1.5 Rules Consistency

Within SMOF approach, each SI is modeled separately and has a dedicated safety strat-
egy. To check the effect of merging the strategies retained for each invariant, the SMOF
models are turned into NuSMV modules and gathered in one global model. A main
module contains the glue information.

First, the variables from different SMOF models may be dependent. The user has to
add the dependencies, in the same way she entered them in SMOF models. A particular
case of dependency is to use the same observation in two SMOF models. For example,
consider the invariant SI1 (the robot must not go too fast) of velocity limitation, that
uses the variable vSI1∈{0,1,2} and the invariant SI4 (the robot must not collide with
an obstacle) using the information of whether or not the system is at stop (variable
vSI4∈{0,1}). These invariants share a common observation, the velocity, but they have

60 Chapter 2. Feedback from the Application of SMOF

Figure 2.11: Merging partitions into a global variable

a different partition of its values. The two partitions are merged, and the result of the
merging defines a global variable vglobal (see Figure 2.11).

The evolution of these variables are constrained through invariant constraints:

--Declare the global variable
--Continuity(value min, value max, value init)
DEFINE vglobal: Continuity(0,3,0);
--Declare the dependencies
INVAR vglobal=0 <-> vSI1=0 & vSI1=0 ;
INVAR vglobal=1 <-> vSI1=0 & vSI1=1 ;
INVAR vglobal=2 <-> vSI1=1 & vSI1=1 ;
INVAR vglobal=3 <-> vSI1=2 & vSI1=1 ;

Second, the launching of interventions has an impact on the whole system. Each
time an intervention is asked by one local strategy, it may have an effect in all the
SMOF models in which the intervention is modeled. The main module controls this by
means of a global flag, defined as the disjunction of the local flags for this intervention.
When the global flag is true, the effect of the intervention is determined in each SMOF
model, under the local preconditions. Analysis of consistency aims to check whether
two strategies, synthesized from different invariants, apply incompatible interventions
at the same time (e.g., braking and accelerating). The model-checker easily detects
roughly inconsistent cases like both increasing and decreasing a variable. But there
might be less obvious cases not captured in the abstract models. So, we require the
user to specify the forbidden combinations. Given a pair of incompatible interventions
(i, j), their nonconcomitance is formulated as:

AG(¬globalF lagIntervi ∧ globalF lagIntervj)

Permissiveness is also rechecked. An intervention launched by one SMOF model
could impair the reachability of states in other SMOF models.

For the four invariants of the Sterela Case study, the consistency analysis was suc-
cessful: the synthesized strategies are not conflicting with each other.

2.2. Feedback from Kuka Case Study 61

Figure 2.12: Manipulator robot from Kuka

2.2 Feedback from Kuka Case Study

The case study from Sterela gave us highlights of interesting points to develop. In this
Section we revisit the results of a previous case study from Kuka in order to have further
insight on them. We see that we also find the problems encountered during the Sterela
case study. This case study was anterior to this work and detailed in [Machin, 2015].

2.2.1 System Overview

The studied robot is a manufacturing robot, that is meant to evolve in a factory in a
workspace shared with human workers. It is composed of a mobile platform and an
articulated arm (see Figure 2.12).

Its purpose is to pick up objects using its arm and to transport them. To do so,
the arm can rotate and a gripper at its end can open and close to hold objects. Some
areas of the workspace are prohibited to the robot. The hazard analysis has been per-
formed on this robot in a previous project [SAPHARI, 2018] and a list of 13 safety
invariants was identified. Among them, 7 could be handled by the monitor (presented
in [Machin et al., 2018]). We review here two of them:

SII the arm must not be extended when the platform moves at a speed higher than
speedmax;

SIII a gripped box must not be tilted more than α0.

Several formalizations have been explored for this case study, to explore the impact of
considering different sensors and actuators, i.e., different observations and interventions.
We present here one formalization for each invariant.

2.2.2 SII: Arm Extension with Moving Platform

We consider the invariant SII the arm must not be extended when the platform moves
with a speed higher than speedmax. The available observations are s, the speed of the

62 Chapter 2. Feedback from the Application of SMOF

Speed of the platform Real speed interval Discrete
variable

Low s < speedmax −margin s=0

Within the margin speedmax −margin ≤ s < speedmax s=1

Higher than the maximum al-
lowed value s ≥ speedmax s=2

Position of the arm Discrete
variable

Not extended beyond the platform a=0

Extended beyond the platform a=1

Table 2.6: Partitioning of the variables s and a

s1

s=0

a=0 w1

s=1brake
w2

s=2

s2a=1 w3
brake

c

Figure 2.13: Strategy for the invariant SII with the braking intervention only

platform and a, the position of the arm. The observations are partitioned as detailed
in Table 2.6. Considering the discrete representation of the variables, the catastrophic
state can be expressed as cata := s=2 & a=1 (high speed with extended arm).

Let us consider that one intervention is available: the brakes can be triggered and
affect the speed. It can be applied at any time, i.e., it has no static precondition. But it
will only be efficient (prevent the reachability of s ≥ speedmax) if it is engaged when the
speed threshold speedmax−margin has just been crossed, i.e., s=0 in the previous state:
its sequential precondition is s=0. Indeed, the size of the margin is chosen precisely to
have time to brake before reaching the undesired value. It is encoded as follows:

--Interv(stat precond, seq precond, effect)
VAR brake: Interv(TRUE, s=0, next(s)!=s+1);

With this interventions, no strategy can be synthesized. In order to prevent the
reachability of the catastrophic state, the brakes should be applied whenever the speed
crosses the margin threshold, as represented in Figure 2.13.

2.2. Feedback from Kuka Case Study 63

s1

s=0

a=0 w1

s=1

w2

s=2

s2a=1 w3 c

block arm

brake

Figure 2.14: Strategy for the invariant SII with the two interventions

However, doing so prevents the reachability of any speed value above speedmax, even
with the arm folded (state w2 in Figure 2.13). The permissiveness property is violated.
Here, the state machine can manually be analyzed to identify that the problem comes
from the non-reachability of w2 if the brakes are triggered. However, when SMOF returns
as a result “no possible strategy”, there is no way to know what went wrong in the
synthesis, especially what reachability property could not be satisfied, therefore violating
the permissiveness. It difficult for the user to find what is missing for a solution to be
found.

� No strategy is found. A manual analysis allows us to identify that the reachability
of a state is discarded if the brakes are triggered.

To overcome this issue, another intervention is added. The choice of this new inter-
vention is not trivial. Here, as we want to allow the speed to reach values higher than
speedmax, we deduce that the new intervention needs to impact the arm extension. We
thus make it possible to block the extension of the arm. The effect of this intervention
is to block the extension of the arm (next(a)!=1) and it can only be applied if the arm
is not already extended (its static precondition is a=0).

-- Interv(stat. precond., seq. precond., effect)
VAR block arm: Interv(a=0, TRUE, next(a)=0);

With the addition of this new intervention, a single strategy is synthesized, repre-
sented in Figure 2.14: the brakes are triggered when the speed is in the margin and the
arm extended, and the arm is blocked if the platform is going faster than the margin
with the arm folded.

� To satisfy the permissiveness property, an additional intervention has been de-
signed.

Adding new interventions for the monitor can be quite expensive: it means adding
new actuators, making the existing ones reliable, or implementing new reliable software

64 Chapter 2. Feedback from the Application of SMOF

Figure 2.15: Positions of the gripper and corresponding discrete values

functions. This is similar to the Sterela collision invariant SI4 where a new intervention
had to be developed and implemented in the actual system, at a high integrity level.

Another solution would have been to make compromises on the reachability of states.
Let us look again at the non-satisfying strategy (with regard to the permissiveness) that
uses the braking intervention only (Figure 2.13). The warning state w2 := s=2 & a=0 is
not reachable. This state represents the robot overspeeding (s > speedmax) with the
arm folded. Reaching this state might not be necessary for the robot to perform its
task (move around the workspace carrying objects), and therefore during synthesis of a
strategy, reachability of this state is not mandatory. It seems overly-stringent to require
the reachability of this state, and more generally to require the universal reachability of
every state. Some strategies discarding useless states could be satisfying.

� The permissiveness requirements can be overly-stringent, i.e., it might be accept-
able that some states are not reachable.

2.2.3 SIII: Tilted Gripped Box

The arm is able to pick boxes containing objects with its gripper. The boxes have an
open top, therefore parts may fall if the box is tilted too much. We consider the invariant
SIII a gripped box must not be tilted more than α0

To formalize this invariant, the required observations are the angle of rotation α of
the gripper and the position of the gripper g. The angle is partitioned in three, according
to the concept of margin: α=0 represents a low rotation angle of the gripper, α=1 an angle
in the margin and α=2 an angle higher than α0. For the gripper, it can either be closed
without a box, open or closed with a box (see Figure 2.15).

For the initial model presented in [Machin et al., 2018], the monitor could only brake
the arm (prevent its rotation) and no control was possible on the gripper. No strategy
was found. Indeed, the monitor would not be able to prevent the system from grabbing
a box with the gripper already tilted more than α0. The invariant was reformulated as
SIII

′ : a gripped box must not be tilted more than α0 if the robot is outside of the storage
area. The industrial partner indicated that objects falling (the box is tilted over α0) in
the storage area are not that dangerous as they would fall from a low height.

� Due to a lack of interventions, the safety requirement had to be weakened.

As an alternative solution to ensure SIII, [Machin, 2015] chose to explore the effect
of an additional intervention: the monitor can lock the gripper (prevent it from closing).

2.3. Lessons Learned 65

In this case, a single strategy is synthesized: prevent the rotation of the arm when a box
is held and lock the gripper when the arm is tilted. No compromise on safety is made.

� An additional intervention has been designed. It allows the synthesis of a strategy
satisfying the initial safety requirements.

2.3 Lessons Learned

In the previous two sections, we analyzed a number of invariants. As a reminder, the
invariants from the STERELA case study are listed below:

SI1 The robot must not exceed a maximum velocity vmax;

SI2 The robot must not move if the communication is not operational;

SI3 The robot must not enter a prohibited zone;

SI4 The robot must not collide with an obstacle.

The invariants reviewed from the Kuka case study are listed below:

SII The arm must not be extended when the platform moves at a speed higher than
speedmax;

SIII A gripped box must not be tilted more than α0.

2.3.1 Encountered Problems

During the analysis of these 6 invariants, we faced several problems. We present below
the problems encountered, and how they have been manually solved. The problems can
be gathered in five main categories. Table 2.7 summarizes these different problems and
their corresponding invariants, along with the solutions that have been chosen.

Understanding the failure of the synthesis: When SMOF fails to return a sat-
isfying strategy with the initial requirements, as we saw for the invariants SI3, SI4, SII
and SIII, is it hard to assess if this is because the safety or permissiveness requirements
are too stringent, or because of a lack of appropriate interventions. To identify if the
safety requirements can be fulfilled, the user can remove completely the permissiveness
requirements, and see if the synthesis returns a solution. If a strategy can be found, it
means that safety is not the issue. Then, they have to think about whether the permis-
siveness requirements are too stringent, requiring the reachability of states that are not
necessary to reach for the robot operation, or if the interventions cut too many transi-
tions, discarding paths to useful states. For all but very small models, this analysis may
be burdensome if not impossible. Some help to diagnose why the synthesis fails would
be useful.

66 Chapter 2. Feedback from the Application of SMOF

P
roblem

C
orresponding

invariants
E

xplored
solution

D
esired

contribution

U
nderstanding

the
failure

of
the

synthesis

SI3 ,
SI4 ,

SII
and

SIII
Synthesize

a
strategy

w
ithout

perm
issiveness

requirem
ents.

H
elp

for
the

diagnosis.

N
o

safe
strategy

found
SIII

W
eakening

ofthe
safety

require-
m

ents;
A

ddition
ofinterventions.

Suggestion
ofinterventions.

N
o

perm
issive

strategy
found

SI3 ,SI4
and

SII
W

eakening
ofthe

perm
issiveness

requirem
ents;

A
ddition

ofinterventions;
A

ddition
ofobservations.

D
efinition

ofcustom
perm

issiveness;
Suggestion

ofinterventions.

State
explosion

SI4
A

nalysis
on

a
sim

ple
m

odel;
Verify

them
anually

im
plem

ented
strategy

O
ptim

ization
ofthe

SM
O

F
toolper-

form
ances;

Im
provem

ent
of

the
pruning

crite-
ria.

R
eadability

ofthe
solutions

SI4
M

anual
analysis

and
sim

plifica-
tion.

A
utom

atic
sim

plification
feature.

Table
2.7:

Sum
m

ary
ofthe

points
ofinterest

highlighted
by

the
tw

o
case

studies.

2.3. Lessons Learned 67

No safe strategy found: In some cases, SMOF was not able to find a safe strategy
with the model proposed by the user, as with the invariant SIII. For this invariant, no
intervention was initially available to prevent the gripper from grabbing a box. The
safety was weakened, only requiring the monitor to prevent tilting a box outside of a
predefined storage area. Another solution was considered, making it possible not to
weaken the safety requirements. A new intervention was defined — locking the gripper
to prevent it from closing. This new intervention was designed after thoroughly analyzing
the case, relying entirely on the user’s expertise. Likewise, the Sterela case study required
the proposal of a new intervention to restrict the moves in the direction of the lamps.
Defining an appropriate intervention is not trivial, and some help from a tool would have
been welcome.

No permissive strategy found: Another problem encountered is when SMOF can-
not synthesize a permissive strategy. This was the case for the invariants SI3, SI4 and
SII. For the collision invariant SI4, an observation had to be added, making it possible
to differentiate between types of obstacles. Thereby, the monitor could allow the lamps
(low obstacles) to get close to the arm, but not other types of obstacles (high obsta-
cles). For the prohibited zone invariant, the chosen solution was simply to require the
simple permissiveness (reachability of all the states from the initial state), instead of the
universal one (reachability of all the states from all the other states). This can easily
be done with SMOF. However, it is hard to evaluate the impact of switching to simple
permissiveness on the system’s ability to perform its tasks. In the case of the collision
invariant SI4 and the arm extension invariant SII, switching to simple permissiveness
was not sufficient to synthesize a strategy. In both these invariants, new interventions
were added to allow a strategy to be synthesized. However, as noted above, designing
new interventions can be arduous, and the help of a tool would have been welcome. For
the arm extension invariant, another solution was considered, though not completely
explored: requiring the reachability of some states only and discarding others. This
solution would have meant that the strategy using only the braking intervention was
satisfying.

Readability of the strategies: The strategies generated by SMOF are in the form
of a list of definition of states (the warning states) and a list of triggering conditions for
the interventions, expressed using the warning state definitions. When a large number of
warning states exist, this can easily become unreadable. The user then has to manually
simplify the triggering conditions of the interventions. A simplification feature would be
very useful if not absolutely necessary.

State explosion: Finally, the last problem is the well-known one of state explosion.
The branch-and-bound algorithm used for SMOF synthesis is not appropriate for large
state spaces. To solve this problem, one would have to use a heuristic algorithm for
instance. This problem was encountered for the invariant SI4, which was the largest one
we had to deal with so far. The temporary solution found is to manually implement the
expected solution, and to verify it with the model checker. This meant going through
several modeling iterations, beginning with a simplified version of the problem that lead

68 Chapter 2. Feedback from the Application of SMOF

to understanding the realistic case. This problem is not solved in our work. We decided
to focus on assisting the user in solving cases within the reach of SMOF, but where the
synthesis fails to return a satisfying solution because there is none possible given the
current model.

2.3.2 Implemented Solutions

We presented above the different kinds of problems that have been encountered while
analyzing the two case studies. Several solutions have been used, and some of the
solutions have been used several times in different contexts.
Diagnosing why the synthesis fails: When SMOF synthesis fails to return a sat-
isfying solution with the initial requirements, it is hard to understand why. For the
invariants presented in this chapter, the number of states was limited (except for the
collision invariant SI4), and we were able to manually analyze why the synthesis failed.
For the prohibited zone invariant SI3, and the arm extension invariant SII, when remov-
ing the permissiveness requirements, a safe strategy could be found. We then deduced
that either the permissiveness was the problem, or the interventions. For SI3, no other
intervention was available, so we decided to change the permissiveness requirements. For
SII, the two solutions were explored. Since this invariant only has six states, we could
display the graph and use it to help us identify the impact of the safe strategy on the
reachability of the states. For the collision invariant SI4, a safe strategy could also be
identified when removing the permissiveness requirements. For this invariant, no com-
promise could be made on the permissiveness (the robot needs to be able to reach states
where it measures the lights). We thus decided to work on a new intervention. For the
gripper invariant SIII, with the first specification, no safe strategy could be synthesized.
We then explored two solutions, accepting a weakening of the safety requirements, or
adding an intervention to avoid weakening the safety requirements. There the model
was also fairly simple, which allowed us to manually analyze it.
Weakening of the safety requirements: The safety requirements can be weakened.
This means, defining new catastrophic states, that are a subset of the initial catastrophic
states. Some of the initial catastrophic states can remain reachable. For instance, for
the invariant SIII, the safety has been weakened, allowing a box to be dropped when the
robot is in the storage area. This is not a desirable solution, as it has a direct impact
on the safety of the system as a whole. That could make the system not reliable enough
for usage.
Addition of new interventions: The interventions cut paths between states: the
paths to the catastrophic states, and others. There are two cases: they do not cut
enough states, and paths remain to the catastrophic states, or they cut too many states,
discarding all the paths to some non-catastrophic states. Changing or adding inter-
ventions can thus be a solution to ensure safety, and/or to restore permissiveness. For
instance, the addition of an intervention locking the gripper made it possible to syn-
thesize a safe and permissive strategy for the invariant SIII. Defining interventions is
challenging. It is arduous to identify which variable the intervention should control,

2.4. Conclusion 69

and how. For the two case studies presented earlier, it has been done by hand. The
invariants were fairly simple and it was possible to identify the needed interventions for
them. For more complex cases, it seems unrealistic to manually search for adequate
interventions. For the collision invariant SI4, designing the new intervention was not
simple, and needed several iterations.

Weakening the permissiveness requirements: The permissiveness requirements,
in their initial definition (universal reachability of all the non-catastrophic states) are
very stringent. They do not necessarily correspond to any task that the system is meant
to do. SMOF only has one way to lower the requirements on the permissiveness: switch
to simple permissiveness. However, this is not necessarily appropriate. A better solution
would be to have a finer tuning of the permissiveness requirement, specifying what
states need to remain reachable. The others states could then be made unreachable by
the synthesized strategy. This would allow the user to require the universal reachability
of the important states (for the tasks of the robot), instead of having to lower the
requirements for the states all together.

Addition of observations: The whole model depends on the observations chosen by
the user. If the observations are not fine enough, or if no margin can be taken on them,
it may be that the monitor has to trigger interventions early to prevent the reachability
of the catastrophic states, and as a side effect prevent the reachability of other states
that may be necessary to reach so that the robot can perform its task. Observations
and the way they can be discretized are highly dependent on the system itself and the
chosen technologies. It is not possible to define them automatically, and it is up to the
user task to choose and define them.

Simplify the strategies: The strategies generated by SMOF can easily become un-
readable. When they get too complex, the user may have to manually simplify them,
which can be very burdensome. An automated simplification feature would be very
helpful.

2.4 Conclusion

In this chapter, we applied SMOF to a new case study provided by the company
STERELA. We also reviewed the results from two invariants extracted from a previ-
ous case study provided by the company KUKA. Doing so, we faced a certain number
of problems. We saw that in some cases, SMOF cannot find any safe strategy, or can
find a safe strategy but it is not permissive. We also saw that we reached the limits of
the tool SMOF, with the largest model that we had to deal with since the tool has been
implemented.

All these problems have been handled with manual procedures, relying on the sim-
plicity of the models and on the user’s expertise. It has been arduous, and will not be
possible for larger and more complex models. A set of desirable contributions has been
identified and is gathered in the last column of the Table 2.7.

70 Chapter 2. Feedback from the Application of SMOF

Our work contributes in providing a set of solutions for the cases where SMOF
indicated that there is no safe and permissive strategy: a diagnosis tool helps to identify
why the synthesis fails to return a strategy, a customization template allows the tuning
of the permissiveness requirements based on a set of essential functionalities to maintain
and an interactive process suggests candidate safety interventions to inject into the
synthesis process. Chapter 3 presents their specifications and explains how they fit
together, in interaction with the user.
Take Aways:

• Evaluation of SMOF on a new case study;

• Need of tool optimization;

• Need of help for diagnosing why the synthesis fails;

• Need of a finer tuning of permissiveness;

• Need of help for the addition of interventions.

Chapter 3

Identified Problems and Overview
of the Contributions

Contents
3.1 Modeling of the Identified Problems 72

3.1.1 Invariant and Strategy Models 72
3.1.2 Properties . 73
3.1.3 Identified Problems . 73

3.2 Manual Solutions to the Identified Problems 74
3.2.1 Change the Observations . 75
3.2.2 Change the Interventions . 75
3.2.3 Change the Safety Requirements 76
3.2.4 Change the Permissiveness Requirements 76

3.3 High Level View of the Contributions 77
3.3.1 Diagnosis . 77
3.3.2 Tuning the Permissiveness . 78
3.3.3 Suggestion of Interventions . 80

3.4 Extension of SMOF Process and Modularity 81
3.4.1 Typical Process . 81
3.4.2 Flexibility . 83

3.5 Conclusion . 83

The SMOF process has been developed to automatically synthesize safety strategies
for independent monitors. In the previous chapter, we applied the SMOF process to a
new case study, a maintenance robot operating on airport runways. We also reviewed
the results from a previous case study, a manufacturing robot working in a shared en-
vironment with humans. We could identify some needs to improve the SMOF process.
Particularly, we are considering two recurring problems for the invariants presented in
Chapter 2. The strategy synthesis does not always return a satisfying solution: in the
first case, no safe strategy can be found, and in the second case, a safe strategy is found,
but it does not satisfy the required permissiveness.

To solve these problems, several manual solutions have been used. The user could add
some observations, add some interventions, weaken the safety requirements, or weaken
the permissiveness requirements. However, all these solutions were burdensome to im-
plement, as analyzing the problem can be arduous, and choosing the appropriate thing

72 Chapter 3. Problems and Contributions

to do is not trivial. It is also not clear how these solutions fit together, or if some of
them could be automated.

In this chapter, we formalize the two identified problems, as well as the manually
implemented solutions: when no safe strategy is found, or when the safe strategies are
not permissive. From there, we identify which ones could be automated. This leads us
to introduce our contributions that will be detailed further in the following chapters.

We detail and formalize the two identified problems in Section 3.1. We then formalize
the solutions, and identify the needed contributions in Section 3.2. We give a high
level view of our contributions in Section 3.3. We finally present our modifications to
the SMOF process, integrating our contributions in Section 3.4, before concluding in
Section 3.5.

3.1 Modeling of the Identified Problems

In this section, we detail how the invariant, the strategy, and the safety and permissive-
ness properties are modeled in the SMOF process. We also formally model the two cases
where no satisfying strategy is found by SMOF: when no safe strategy exists, or when a
safe strategy exists but no safe and permissive strategy can be found.

3.1.1 Invariant and Strategy Models

An invariant is modeled from a set of observable variables that allow the monitor to
identify the state in which the system is. We call V the set of the n variables needed
to formalize an invariant SI. Each variable vi is defined on a definition domain Di.
The variables are partitioned according to the concept of margin (see Chapter 2). For
example, a velocity variable vel is partitioned in three, the values above the catastrophic
value (vel > velmax), the values within the margin (velmax −margin < vel ≤ velmax),
and the low values (vel ≤ velmax−margin). Pi is a partition of the domain of definition
Di. The behavior of the system with respect to SI is then represented by the automaton
A = (Sall, T, s0), with:

- Sall = P1×· · ·×Pn the set of states. We consider the set S of reachable states only
(computed by SMOF), S = Ss ∪ Sw ∪ Sc with Ss the safe states, Sw the warning
states and Sc the catastrophic states;

- T ⊆ S × S the set of transitions. They represent the possible evolutions of the
system;

- s0 the initial state.

A set of interventions I is defined (P(I) being the power set of I). They are the
possibilities for the monitor to control the system’s behavior, impacting the variables in
V .

A strategy R is defined as R : Sw → P(I). It associates to warning states in Sw zero,
one or several interventions in I. The strategy R modifies the behavior of the system.

3.1. Modeling of the Identified Problems 73

The addition of interventions cuts transitions in T . It results in the modified automaton
AR = (S, TR, s0) where TR ⊂ T .

3.1.2 Properties

We consider two types of properties. The safety property Safe represents the violation
of the invariant. A state violating the invariant satisfies the predicate cata. It is written
in CTL as Safe = AG(¬cata). A strategy respecting Safe is called a safe strategy.

Let R : Sw → P(I) be a strategy, let AR be the modified automaton,
R is safe iff (AR, s0) � AG(¬cata)

(Safe)

It means that there is no path 〈s→ · · · → s′〉 in AR where s ∈ S \ Sc and s′ ∈ Sc.
The set of permissiveness properties Perm represent the reachability of the states. It

ensures that the system can perform its tasks. The default permissiveness properties used
are the universal reachability of every state: every non-catastrophic state is reachable
from every other non-catastrophic state. A state is represented by its predicate giving
the value of every state variable. For instance, the predicate of a state s representing
a low velocity with the arm folded is predicate(s) = (vel = low ∧ arm = folded). To
simplify the readability of the formulas, we will slightly abuse notation and write s for
both the state and its predicate.

The universal permissiveness property for a state s ∈ S \ Sc is written in CTL as
AG(EF (s)). A strategy respecting Perm is called a permissive strategy (the empty
strategy is by default permissive).

Let R : Sw → P(I) be a strategy, let AR be the modified automaton,
R is permissive iff for all s ∈ S \ Sc, (AR, s0) � AG(EF (s))

(Perm)

It means that there is a path 〈s → · · · → s′〉 in AR between every pair (s, s′) of non-
catastrophic states.

3.1.3 Identified Problems

As we saw in Chapter 2, a strategy satisfying Safe and Perm cannot always be found.
Two cases exist (see left part of Figure 3.1).

No Safe Solution: The first case is when no strategy can be found that satisfies the
safety property Safe. This means that for all the strategies, there exists at least one
path to a catastrophic state, or equivalently, there is at least one reachable state that
has a transition to a catastrophic state that is not cut by the strategy.

For every strategy R : Sw → P(I),
AR = (S, TR, s0) being the modified automaton,

there exists s ∈ Sw, s
′ ∈ Sc, (s, s′) ∈ TR

(No safe)

74 Chapter 3. Problems and Contributions

No solution

No safe

No perm.

Change safety req.

Change observation(s)

Change intervention(s)

Change perm. req.

User defined

User defined

Intervention
suggestion

Permissiveness
tuning

Diagnosis

PROBLEMS SOLUTIONS

Figure 3.1: Identified problems, proposed solutions

If no safe solution is found, it can be for several reasons, as presented in Figure 3.1.
The observations used for the modeling of the system’s behavior may not be appropri-
ate. Also, the safety requirement specified may be too stringent. Finally, the available
interventions may not be appropriate, and may not cut enough (or the right) transitions,
therefore not being able to discard all the paths to the catastrophic state.

The user can vary these three parameters (see Figure 3.1), and we formalize and
discuss these possible variations in Section 3.2.

A Safe Solution, But Not Permissive: The second case is that a safe strategy can
be found, but it does not satisfy Perm. This means that there is at least a pair of states
between which there is no path:

There exists R : Sw → P(I), (AR, s0) � Safe
and for all R : Sw → P(I),

there exists s ∈ S \ Sc, (AR, s0) 2 AG(EF (s))
(Safe & No perm.)

Similarly as presented in Figure 3.1, for the (No safe) issue, the impossibility to
find a permissive strategy can be due to inappropriate observations, or interventions
(interventions cutting too many transitions, discarding paths to certain non-catastrophic
states). It can also be due to an overly-stringent permissiveness requirement. We explore
in Section 3.2 several approaches to overcome these issues.

3.2 Manual Solutions to the Identified Problems

Several solutions to the identified problems have been manually implemented, as we saw
in Chapter 2. In this section, we discuss and formalize these solutions, presented in the

3.2. Manual Solutions to the Identified Problems 75

right part of Figure 3.1, and identify which are the ones that could be (semi) automated,
leading to our contributions.

3.2.1 Change the Observations

The observations, or observable variables are used to detect the violation of an invari-
ant. The monitor follows their evolution, and when a defined threshold (potentially
multi-observation) is crossed, it triggers the corresponding intervention(s) specified by
the strategy. They are mostly from sensors, but can also be internal observations (status
of a component, request, etc). If not enough observations are available, or the obser-
vations are not precise enough, it may not be possible to synthesize a strategy for the
corresponding invariant. This was the case for the collision invariant SI4, where an
observation of the type of obstacle had to be added.

Changing the observations means having different sensing facilities to detect the
violation of an invariant, and therefore potentially being able to trigger interventions
only when they are strictly necessary (satisfying the permissiveness).

Formally, changing the observations means defining a new set of m variables V ′ (some
of the variables can remain the same, i.e., V ⊂ V ′ or V ∩V ′ 6= ∅). The new variables are
defined on a new definition domain (D′

i for a variable vi), resulting in different partitions
(P ′

i). This impacts the construction of the automaton modeling the system’s behavior
with regard to the considered invariant, A′ = (S′, T ′, s′

0). The new set of states is defined
as S′ = P ′

1 × · · · × P ′
m.

Since the automaton is built from the available variables and their partitions, auto-
matically inferring observations is not possible. An observation change implies a redefi-
nition of the behavior model.

The user will have to specify the new variables and their partitions, and to model
the catastrophic state(s) with these variables. This requires a specific knowledge of the
system and the available technologies, since the observations are tight to the actual ways
of observing the system’s state and its environment.

There is no automatic solution for changing the observations. This task is left entirely
to the user, relying on their expertise.

3.2.2 Change the Interventions

The interventions are ways provided to the monitor to affect the system’s behavior. They
are usually dedicated actuators or specific safety software functions. When the available
interventions are not efficient enough —not cutting enough transitions, therefore not
being able to discard paths to the catastrophic states— or not appropriate —not im-
pacting the right variables— it will not be possible to synthesize a safe strategy. Also, if
the interventions are too restrictive —cutting too many transitions, therefore discarding
paths to non-catastrophic states— it may not be possible to satisfy the permissiveness
properties.

76 Chapter 3. Problems and Contributions

Formally, changing interventions means defining a new set I ′ of interventions (some
of the interventions can remain unchanged, i.e., I ⊂ I ′ or I ∩ I ′ 6= ∅). With this new set
of interventions, new strategies R : Sw → P(I ′) may exist.

The interventions affect the evolutions of the observations: they cut transitions to
some states. It is possible to automatically identify what transitions need to be cut by
the strategy. However, automatically generated interventions may not be implementable.
The implementation of the interventions relies of the available technologies. An interac-
tive approach, combining the automatic generation of guidelines for the design of new
intervention and manual adjustments of the system characteristics by the user seems
appropriate, and will be introduced in Section 3.3.3.

3.2.3 Change the Safety Requirements

The safety property specifies the part of the state space that cannot be reached without
irreparable damages. As the considered systems are highly critical, compromising safety
is usually not desirable. However, in some cases the invariant defined initially can be
acceptably weakened. This was the case in the gripper invariant SIII where dropping a
box was considered acceptable in a defined storage area.

Weakening a safety requirement can formally be defined two ways. First, some
states can be removed from the set of catastrophic states. The initial set of catastrophic
state is partitioned in two, one part that remains catastrophic and one part with non-
catastrophic states: Sc = S′

c ∪ S′
nc. S′

c is the new set of catastrophic states. The states
from Snc are either safe or warning, resulting in new set of safe and warning states S′

s

and S′
w: S = S′

s ∪ S′
w ∪ S′

c. This doesn’t change the definition of the states themselves,
i.e., the automaton. Only the cata predicate is different.

Second, the partition of variables values can be revised, or some variables added,
yielding a new definition of states. For instance, an invariant specifying that the velocity
must not exceed 10km/h could be changed to only prohibit a velocity value of 12km/h
in a restricted area. This comes down to introducing new variables (a restricted area
variable for the previous example) and to drawing a new partition of some of the variables
(the vel variable), i.e., to define a new set of variables V ′, thus a new set of states
S′ = P ′

1 × · · · × P ′
m, where P ′

i is the part defined for the variable v′
i.

Changing a safety invariant has to be done by experts with care, and cannot rely on
an automated process. It impacts the safety of the whole system. Therefore, we leave
this to the appreciation of the user.

3.2.4 Change the Permissiveness Requirements

Weakening the permissiveness requirements is preferred to compromising safety in most
cases. The default permissiveness properties adopted by SMOF require the reachability
of every non-catastrophic state from every other non-catastrophic state. In other words,
every state that is physically possible to reach must remain reachable. This is a very
stringent requirement as a lot of physically reachable states are not necessary for the

3.3. High Level View of the Contributions 77

robot to perform its tasks. Changing the permissiveness requirement thus can be a good
idea, and has a moderate impact on the robot’s ability to function.

Formally, in our case, changing the permissiveness requirements means that we do
not require the universal reachability of some states anymore. We define a new set
of permissiveness properties Perm′ ⊂ Perm. With this new requirement, some new
strategies can be synthesized. In the resulting automaton, it is possible that no path
exists between some pairs of states. Some states may be completely discarded.

In SMOF, there is no way to require the reachability of a subset of states, except by
manually editing the properties generated by default, which is cumbersome. Still, a fine
tuning of the permissiveness requirement would be interesting and allow more flexibility
for the synthesis. If this cannot be fully automated in the choice of the states of interest,
a template can be used for an easier specification of properties. We discuss this topic in
Section 3.3.2.

3.3 High Level View of the Contributions

The experimental solutions described in Section 3.2 helped us identifying the needed
automated features. The main identified needed contributions are the suggestion of
intervention, and the tuning of permissiveness. The suggestion of interventions can be
used whether the problem (No safe) or (Safe & No perm.) is faced. The tuning of
permissiveness only is useful in the case of the (Safe & No perm.) problem.

In the case of (Safe & No perm.), the user will be able to choose between two
automated solutions. However, SMOF does not give any precise detail regarding the
situation, and it may be hard for the user to choose the appropriate solution. We
propose to design a diagnosis module, that will analyze the problem, and give the user
useful pieces of information about the non-satisfied properties, and the impact of the
provided interventions on the reachability of states. This module will be introduced in
Section 3.3.1. We then present the tuning of permissiveness in Section 3.3.2 and the
intervention suggestion module in Section 3.3.3.

3.3.1 Diagnosis

When a safe strategy is found, but no permissive strategy exists, it may be complex to
identify why. The initial model of the invariant, i.e., the possible physical behavior of the
system, satisfies all the permissiveness properties: the system can move freely between
states, all the states are universally reachable. When synthesizing a strategy, the addition
of interventions to warning states will cut some transitions, to the catastrophic states,
but also between non-catastrophic states. The interventions are not ideal, meaning that
they do not only cut the transitions to catastrophic states, but also others, sometimes
cutting too many transitions. Some paths to certain states can be completely discarded.
Therefore, the corresponding permissiveness properties are violated.

Two main aspects are interesting to evaluate when considering a non-permissive
strategy. First, what are the permissiveness properties that it does not satisfy? We

78 Chapter 3. Problems and Contributions

DIAGNOSIS

Invariant model

Perm. properties

Interventions

Non-permissive strategy

Perm. deficiencies

Perm. impacts

Figure 3.2: High level view of the diagnosis module

call the list of non-satisfied properties the permissiveness deficiencies of a strategy. The
default permissiveness properties for SMOF are a list of CTL properties, specifying
the universal reachability of every non-catastrophic state. A check of every property
individually can provide the information of the specific reachability of every state.

Then, once we know which states are made unreachable by the strategy, we want
to identify precisely which intervention, when triggered in a specific warning state, cuts
the paths to the considered state. There can be several. We call this information the
permissiveness impact of a couple (state, intervention(s)).

Providing these pieces of information to the user can help her make decisions on
whether the loss of permissiveness is acceptable (i.e., the permissiveness requirements
can be changed), and if not, what would be the appropriate interventions to replace.
For this, we designed a diagnosis module (see Figure 3.2).

Inputs: The diagnosis module analyzes the impact of a non-permissive strategy on the
system’s behavior. Its inputs are the non-permissive strategy that is considered, and to
evaluate it, the invariant model, that represents the behavior of the system with regard
to the considered invariant; the permissiveness properties, in order to identify which one
are satisfied or not, and the interventions, to check if their use impacts the reachability
of some states.

Outputs: The two outputs are what we called the permissiveness deficiencies of a
strategy, and the permissiveness impacts of the pairs (state, intervention(s)). The first
one is the list of non-satisfied permissiveness properties. The second is the list of com-
binations of warning states and interventions from which there is no path to a specific
state.

3.3.2 Tuning the Permissiveness

The generic permissiveness properties initially used by SMOF are very stringent: they
require the universal reachability of all the non-catastrophic states. Reducing the per-
missiveness requirements to adapt them to the actual functionalities of the system can
be a relevant approach. We propose a template to help the user defining custom per-
missiveness properties, as presented in Figure 3.3.

3.3. High Level View of the Contributions 79

DEFINITION
TEMPLATE

WEAKENING
TEMPLATE

User

Invariant model

(Non-permissive strategy)

(Diagnosis results)

Custom perm. prop.

uses chooses
from

Figure 3.3: High level view of the tuning of the permissiveness properties

Definition Template: We consider that for the system to perform its tasks, it needs
to be able to reach the corresponding states. For instance, for a “movement” task, the
robot needs to reach states where the velocity is positive. The reachability properties are
expressed in CTL for SMOF. However, the user may not be familiar with CTL, therefore
we want to avoid their direct manipulation of formulas. We propose a simple template
that the user can use to express the relevant functionalities. The user only needs to
specify what set of states corresponds to the chosen functionality (e.g., speed > 0 for a
“movement” functionality).

Weakening Template: In some cases, no satisfying strategy can be synthesized with
the specified permissiveness properties, even if the user defined custom ones. They may
have to weaken the permissiveness properties, allowing the monitor to have an impact
on some of the functionalities. We propose ways to weaken the permissiveness, that
represent different restrictions of the corresponding functionality. The user may choose
among them.

Inputs: The user needs to define the permissiveness for one invariant at a time: it
adapts it to the relevant functionalities with regard to a specific invariant, therefore
needs to consider the model of the invariant, with the variables used for its definition.
These variables must guide them for the identification of the relevant functionalities.
For instance, the user does not need to define a “platform movement” functionality for
an invariant only dealing with the position of an arm. Then, it happens that the user
could not synthesize a permissive strategy. In this case, they may want to analyze the
diagnosis results, to identify the blocking points with regard to permissiveness.

Output: Using the definition template, and potentially weakening the properties, re-
sults in a list of custom permissiveness properties. These properties are used as a re-
placement for the generic permissiveness properties for SMOF synthesis.

80 Chapter 3. Problems and Contributions

INTERVENTIONS
SUGGESTION

Invariant model
Interv.

(Non-perm. strat.)
(Diag. results)

User
tentative
interv.

list

List of
new
interv.

Figure 3.4: High level view of the suggestion of interventions

3.3.3 Suggestion of Interventions

Changing the available interventions can be an appropriate choice to make it possible
to synthesize a satisfying safe and permissive strategy. We propose a semi-automated
module that results in a list of suggested interventions. The view of this module is
presented in Figure 3.4. The goal of this module it to create new interventions, that
are appropriate to replace or be used along some of the interventions initially defined
by the user, in a strategy respecting both the safety and permissiveness properties.
Of course, there is no guarantee that the suggested interventions are implementable.
However, it gives the user a precise idea of which kind of new interventions would be
worth considering.

Inputs: The interventions suggestion modules has four inputs, among which two are
optional. The first input is the model of the invariant, i.e., the system’s behavior with
respect to a specific invariant. It gathers the definitions of the variables, and how they
evolve. It also encompasses the definition of the safety property. This will allow the
suggestion module to identify which variables the new interventions should impact, and
how. The second input is the list of interventions defined by the user. This will allow
the suggestion module to take into account already existing interventions. The two
following inputs are optional: an initial non-permissive strategy to improve and the
diagnosis results for it. When a non-permissive strategy has been previously synthesized
and the user wants to improve it by changing some of the triggered interventions, it
is taken as a basis for the suggestion module. The diagnosis results need to be made
available as well, and are used to remove the inappropriate interventions from the non-
satisfying strategy. This step is optional. Using an existing strategy as a starting point
for the suggestion module reduces the necessary exploration. Some interventions are
already attached to some of the warning states: the suggestion module will have less
states to explore, therefore will finish faster.

Output: The suggestion module results in a list of new interventions, that have been
identified as good candidates for the synthesis of a safe and permissive strategy. Even
though these interventions have been filtered so they are realistic, they still may not be
implementable. They need to be reviewed by the user.

Interaction with the User: Defining suitable interventions cannot be done fully
automatically. The interventions need to be implementable: the appropriate actuators
or software functions need to exist or possibly be added. This depends on the technologies

3.4. Extension of SMOF Process and Modularity 81

used in the system, and on the available resources. It therefore requires validation from
the user, to ensure that the suggested interventions are valid. We aim at limiting as much
as possible the user’s tasks, and the interventions will be presented for review only after
a major step of sorting and simplification. The suggestion module presents a tentative
list of interventions to the user. They can remove the interventions that they know won’t
be implementable, or modify the suggested ones (e.g., by adding preconditions). The
modified list of interventions can then be used for the synthesis with SMOF.

3.4 Extension of SMOF Process and Modularity

In the previous sections, we presented the possible solutions when SMOF does not return
a satisfying result. We introduced our three main contributions, that assist the user in
solving this problem.

In this section, we detail the typical process that the user can follow when synthesiz-
ing safety strategies. We extend the SMOF process to integrate our contributions, and
show how they can be used together. We also discuss the modularity of our approach.
Our contributions can be viewed as a toolbox for the definition of monitors, and can be
used interactively in different orders.

3.4.1 Typical Process

A global view of the process SMOF extended with the solutions detailed earlier is pre-
sented in Figures 3.5 and 3.6.

The first step is for the user to follow the SMOF process that has been presented in
Chapter 1, and applied in Chapter 2 (see Figure 1.4): after extracting safety invariants
from a hazard analysis, the user models them, specifying the available observations,
interventions, and the desired safety properties. The permissiveness properties are the
universal ones automatically added by SMOF. The SMOF synthesis is then launched.
At the end of this step, two cases are possible. A safe and permissive strategy is found:
this is the end of the process. The other case is the one we are interested in: no safe
and permissive strategy is found.

From there, the first possibility is that no safe strategy is found (the problem (No
safe), see Section 3.1). The user then has three choices: changing the observations, the
interventions, or the safety requirements. This choice is left to their appreciation. If the
user chooses to change the interventions, they can use the dedicated suggestion module
that has been introduced in Section 3.3.3. After the change is made, the resulting new
model of the observations, safety requirements, or interventions is used as an input for
the SMOF process: the synthesis is launched again, resulting or not in a satisfying
strategy.

The second possibility is that a safe strategy is found, but there exists no permissive
strategy (the problem (Safe & No perm.), see Section 3.1). In this case, the user can
use the diagnosis module presented in Section 3.3.1 to help them analyze the problem
and choose the preferred solution. According to the results of the diagnosis, the user

82 Chapter 3. Problems and Contributions

SMOF
safe and
perm? CONTRIBUTIONS

model M

yes

no

M ′
M ′

Figure 3.5: High level view of the SMOF V2 process

exists
safety?DIAGNOSIS

change
perm?

CUSTOM
PERM.

change
safety?

change
interv?

SUGG.
INTERV.

M ′

no

yes

M

yes no

yes

no

no

yes

update(M,Perm)

update(M,Safe)

update(M, 0bs)

update(M, Interv)

Figure 3.6: View of the contributions

3.5. Conclusion 83

can decide to change the observations, change the interventions (using the suggestion of
intervention module), or change the permissiveness requirements (using the permissive-
ness tuning module). The new model of the observations, interventions or permissiveness
requirements is then used for a new SMOF synthesis.

3.4.2 Flexibility

A typical process is presented above, but the user can deviate from it. Whatever the
initial problem is, the mentioned solutions can be used together, in parallel. Several
changes to the initial model may be needed. For instance, in the collision invariant
SI4, a new observation was first added. Then, an intervention was added, and only the
combination of these two changes could allow a satisfying strategy to be found.

3.5 Conclusion

We saw in the previous chapter, when analyzing case studies, that when synthesizing
a safety strategy with SMOF, it happens that no solution exists. We formalized the
two cases that arise: when no safe strategy can be found, or when a safe strategy
is found but no permissive strategy exists. These too problems have been manually
solved in previous studies, by changing the observations or interventions, or reviewing
the safety or permissiveness requirements. We discussed and formalized these solutions.
We identified which solution need to be automated, to assist the user, and this lead us
to specify three contributions. The first one is a diagnosis module, that helps the user
analyzing the case and making a decision about the changes to make to the system model
or the requirements. The second one is a template for the tuning of the permissiveness
requirement. It allows the user to define custom permissiveness properties, adapted
to the system required functionalities. The third one is a suggestion module for the
definition of new interventions. It is an interactive module, where the interventions are
inferred from the system model and reviewed by the user. These three contributions will
be developed further in the next chapters, where we will also apply them to example
and show the improvement compared to manually solving the identified problems. For
the two first ones, we will present the tools that have been implemented to support the
contributions. The third one is more prospective and has not yet been implemented: we
will present the concepts definitions and the core algorithms.

Take Aways:

• Two problems are identified: no safe solution found, or a safe solution is found but
no permissive solution exists;

• Four parameters can be modified to solve these problems: change the observations,
the interventions, the safety requirements or the permissiveness requirements;

• We identified three needed contributions: a diagnosis module, a suggestion inter-
vention module, and a permissiveness tuning module;

84 Chapter 3. Problems and Contributions

• They can be viewed as a toolbox to support the interactive search for a solution.

Chapter 4

Diagnosing the Permissiveness
Deficiencies of a Strategy

Contents
4.1 Preliminaries - Readability of the Strategies 86

4.1.1 Initial Display of the Strategies 86
4.1.2 Simplifications with z3 . 87

4.2 Concepts and Definitions . 88
4.2.1 Strategies and Permissiveness Properties 88
4.2.2 Problem: Safe & No perm. 89
4.2.3 Permissiveness Deficiencies of a Strategy 91

4.3 Diagnosis Algorithm and Implementation 93
4.3.1 Algorithm . 94
4.3.2 Simplification of the Diagnosis Results 97
4.3.3 Implementation . 100

4.4 Application to Examples . 101
4.4.1 SII: The Arm Must Not Be Extended When The Platform

Moves At A Speed Higher Than speedmax. 101
4.4.2 SI4: The Robot Must Not Collide With An Obstacle. 102

4.5 Conclusion . 104

The synthesis of strategies with SMOF may report that there is no safe and permissive
solution. Two cases exist, as presented in Chapter 3: no safe strategy can be found, or a
safe strategy is found but no safe and permissive strategy exists (i.e., the tool only finds
non-permissive strategies). In this chapter we are interested in the latter case. In this
case, the user can choose to change the permissiveness requirements, the interventions,
or the observations. In order to be able to choose between these solutions, the user needs
to know why the synthesis failed to return a permissive strategy.

The objective of this chapter is to provide a way to help the user identify the im-
pact of a strategy on the permissiveness requirements (which we call the permissiveness
deficiencies). This can help the user analyzing the failure of the synthesis to return a
permissive strategy. We start with presenting a simplification feature using the solver z3
(Section 4.1) that we will use to increase the readability of our results. In Section 4.2,
we develop and formalize the concepts of the permissiveness deficiencies of a strategy
(the permissiveness properties that it does not satisfy), and of the permissiveness impact

86 Chapter 4. Diagnosing the Permissiveness Deficiencies

of a couple (state, intervention(s)) (the states that are not reachable from it). We then
present an algorithm to evaluate these two parameters, that includes a simplification
step making the results readable (Section 4.3). We finally apply this on two examples,
extracted from the presented case studies (Section 4.4), before concluding in Section 4.5.

4.1 Preliminaries - Readability of the Strategies

The readability is primordial for the user to be able to use the strategies, and for them
to use any result provided by our toolset. In this section we propose a gateway with the
z3 solver to take advantage of its simplification procedures. We show here how we use
these simplifications for increasing the readability of the strategies. In the next section
we will use the simplifications on the results of the diagnosis tool we will present.

4.1.1 Initial Display of the Strategies

When SMOF outputs a strategy, or a set of strategies, it is written as follows:

List of warning states;
...
List of strategies;
...

Let us consider for instance the invariant SI4 (the robot must not collide with an
obstacle), that is the most complex one we had to study in term of number of states.
The list of warning states is as follows:

--Number of variables:6
--Number of warning states:94
--Number of interventions:1
DEFINE flag st 0 := z1=1&z2=0&z3=0&z4=0&z5=0&v=0 ;
DEFINE flag st 1 := z1=0&z2=1&z3=0&z4=0&z5=0&v=0 ;
DEFINE flag st 2 := z1=1&z2=1&z3=0&z4=0&z5=0&v=0 ;
DEFINE flag st 3 := z1=0&z2=2&z3=0&z4=0&z5=0&v=0 ;
...
DEFINE flag st 91 := z1=1&z2=1&z3=1&z4=0&z5=2&v=1 ;
DEFINE flag st 92 := z1=0&z2=2&z3=1&z4=0&z5=2&v=1 ;
DEFINE flag st 93 := z1=1&z2=2&z3=1&z4=0&z5=2&v=1 ;

It is very hard and error-prone to read through the 94 warning states.
Below is the strategy synthesized for this invariant, with only the braking intervention

(note that this strategy is not permissive):

4.1. Preliminaries - Readability of the Strategies 87

DEFINE flag brake := flag st 0 | flag st 1 | flag st 2 | flag st 3 | flag st 4
| flag st 5 | flag st 6 | flag st 7 | flag st 8 | flag st 9 | flag st 10 |
flag st 11 | flag st 12 | flag st 13 | flag st 14 | flag st 15 | flag st 16 |
flag st 17 | flag st 18 | flag st 19 | flag st 20 | flag st 21 | flag st 22 |
flag st 23 | flag st 24 | flag st 25 | flag st 26 | flag st 27 | flag st 28 |
flag st 29 | flag st 30 | flag st 31 | flag st 32 | flag st 33 | flag st 34 |
flag st 35 | flag st 36 | flag st 37 | flag st 38 | flag st 39 | flag st 40 |
flag st 41 | flag st 42 | flag st 43 | flag st 44 | flag st 45 | flag st 46 |
flag st 71 | flag st 47 | flag st 48 | flag st 49 | flag st 50 | flag st 51 |
flag st 52 | flag st 53 | flag st 54 | flag st 55 | flag st 56 | flag st 57 |
flag st 58 | flag st 59 | flag st 60 | flag st 61 | flag st 62 | flag st 63 |
flag st 64 | flag st 65 | flag st 66 | flag st 67 | flag st 68 | flag st 69 |
flag st 70 | flag st 72 | flag st 73 | flag st 74 | flag st 75 | flag st 76 |
flag st 77 | flag st 78 | flag st 79 | flag st 80 | flag st 81 ;

No need to say this is hardly usable.
We then propose to use the solver z3’s simplification procedures to increase the

readability of the strategies.

4.1.2 Simplifications with z3

The solver z3 offers several algorithms, that are called tactics, for the simplification of
logical formulas. We chose to use ctx-solver-simplify. This tactic can be quite expensive
as it uses a solver to check every parts of the formula to simplify. If a sub-formula is
found not satisfiable, is can be replaced by false in the global formula, therefore making
the simplification more efficient.

The solver z3 uses the SMT-LIB language [SMT-LIB, 2018], therefore we need to re-
write our formulas in this language. We implemented a parser-rewriter that will translate
smv models (used by SMOF) into smt models for z3 and reverse. The z3 models are as
follows:

;for every variable:
(declare-datatypes () ((varTYPE varval0 ... varvaln)))
(declare-fun var () varTYPE)
;for every intervention: interv0: inactive, interv1: active
(declare-datatypes () ((intervTYPE interv0 interv1)))
(declare-fun interv () intervTYPE)
;formula to simplify:
(assert (formula))
(apply ctx-solver-simplify)

The simplification tactics may need to be run several times in order to get to the
simplest possible formula.

88 Chapter 4. Diagnosing the Permissiveness Deficiencies

The simplification algorithm that we designed, using z3, takes as input the model,
the strategy file, containing the warning states definition and the interventions triggering
condition definitions (the flags) and returns the simplified flag of the intervention.

For SI4, the simplified strategy is:

DEFINE flag brake:= (z4 = 1 & v = 0) | (z5 = 1 & v = 0) | (z5 = 2 & v = 0) |
(z1 = 1 & z4 = 0 & z5 = 0) | (z2 = 1 & z4 = 0 & z5 = 0) | (z2 = 2 & z4 = 0 &
z5 = 0) | (z3 = 1 & z4 = 0 & z5 = 0) ;

This is easier to read, as the formula has less clauses and one doesn’t have to back
and forth between the warning states definition and the intervention’s flag definition.
This can also be directly implementable: the triggering condition is directly written in
a form using the variables values.

4.2 Concepts and Definitions

In this section, we review the definitions of a strategy, and of the permissiveness prop-
erties in SMOF. We analyze the problem identified in Chapter 3 when a safe strategy
is found but no permissive strategy exists. We then present and formalize the concepts
of the permissiveness deficiencies of a strategy, and of the permissiveness impact of a
couple (state, intervention(s)). We explain how these concepts provide some visibility to
the user on the impact of a non-permissive strategy on the system’s ability to function.

4.2.1 Strategies and Permissiveness Properties

Let us consider an invariant SI. The behavior of the system with respect to SI is
represented by the automaton A = (Sall, T, s0), with:

- S = Ss ∪ Sw ∪ Sc the set of reachable states (computed by SMOF, S ⊆ Sall), with
Ss the safe states, Sw the warning states and Sc the catastrophic states;

- T ⊆ S × S the set of transitions. They represent the possible evolution of the
system;

- s0 the initial state.

The monitor has ways to control the system through a set of interventions I.
A strategy R for an invariant SI is a function that associates intervention(s) in P(I)

(the power set of I) to warning states in Sw: R : Sw → P(I). The association of interven-
tions to warning states cuts transitions between states, thereby reducing the system’s
ability to freely evolve within the state space. It results in the modified automaton
AR = (S, TR, s0) where TR ⊂ T .

Two types of properties are considered in SMOF. The safety property specifies the
non-reachability of the catastrophic state(s). It is written in CTL as AG(EF (¬cata)),
i.e., all the reachable states are non-catastrophic states. The permissiveness properties

4.2. Concepts and Definitions 89

Let R : Sw → P(I) be a strategy, let AR be the modified automaton,
R is safe iff (AR, s0) � AG(¬cata),
R is permissive iff for all s ∈ S \ Sc, (AR, s0) � AG(EF (s)).

Figure 4.1: Definitions of safe and permissive strategy (repeated from Chapter 3)

There exists R : Sw → P(I), (AR, s0) � AG(EF (¬cata))
and for all R : Sw → P(I), there exists s ∈ S \ Sc, (AR, s0) 2 AG(EF (s))

Figure 4.2: Definition of the Safe & No perm. problem (repeated from Chapter 3)

specify the reachability of the non-catastrophic states. They are intended to ensure that
the system keeps its abilities.

In SMOF, the tasks are not specified in the invariant model, therefore we consider
that to allow the system to perform its tasks, all the non-catastrophic states need to
remain reachable, from every other non-catastrophic state. This type of permissiveness
is called universal permissiveness. For a state s ∈ S \ Sc, it is written in CTL as
AG(EF (s)). Note that we again slightly abuse notation, writing s both for the state
and its characteristic predicate.

A strategy respecting the safety property is called a safe strategy, and a strategy
respecting the universal permissiveness properties is called a permissive strategy (see
Figure 4.1 for definitions). The goal of SMOF synthesis is to find a safe and univer-
sally permissive strategy. In most cases, finding a safe strategy is easy —shutting down
the system is safe in most cases. Finding a permissive strategy is more complicated.
Guaranteeing the permissiveness of a strategy is important as it ensures the good func-
tioning of the system. However, the universal permissiveness properties may not always
be satisfiable.

4.2.2 Problem: Safe & No perm.

When the SMOF synthesis is not able to return a safe and permissive strategy, we face
the problem “Safe & No perm.” that we formalized in Chapter 3 (see Figure 4.2 for
a reminder): SMOF is not able to find a strategy that satisfies all the universal per-
missiveness requirements. For instance, a safe strategy that would satisfy the universal
reachability of all the states but one would be discarded.

In SMOF, two options are available to weaken the permissiveness requirements to
allow more flexibility for the synthesis. First, another type of permissiveness can be
used to replace the universal permissiveness. We call it the simple permissiveness. The
simple permissiveness specifies the reachability of every non-catastrophic state from the
initial state only. It is written in CTL as EF (s) for a state s ∈ S \ Sc. The simple
permissiveness allows the monitor’s intervention to be irreversible, i.e., some states can

90 Chapter 4. Diagnosing the Permissiveness Deficiencies

s1

s=0

a=0 w1

s=1brake
w2

s=2

s2a=1 w3
brake

c

Figure 4.3: Strategy for the invariant SII with the braking intervention only (repeated
from Figure 2.13)

be made unreachable after an intervention is triggered. This was the case for the invariant
SI3 (the robot must not enter a prohibited zone): after the full stop is triggered, the
robot is blocked close to the prohibited zone and cannot move again. An intervention of
the operator is necessary.

The second option, when the simple permissiveness is not sufficient for finding a safe
and permissive strategy, is to use the safety only. The permissiveness requirements are
removed, and the synthesis searches only for a safe strategy.

When one of these options is successfully used for the synthesis, SMOF returns a so-
lution that satisfies at least the set of weakened properties (potentially empty). However,
the exact set of properties that are satisfied by the strategy is unknown. There is no in-
formation given on the reachability of the states individually. Some states could remain
universally reachable, when other would only be simply reachable, or not reachable at
all. For instance, let us consider the strategy synthesized for the invariant SII (the arm
must not be extended when the platform moves with a speed higher than speedmax) (see
Figure 4.3 for a reminder). This strategy is not permissive: not all the permissiveness
properties are satisfied. The state w2 is not reachable. However, the states w1 and w3 are
universally reachable: they can be reached from any other reachable non-catastrophic
state.

SMOF does not provide an understanding of the reachability of the states individu-
ally. This would be a useful piece of information, since some states may not be necessary
to reach to perform the system’s tasks. In the example above (Figure 4.3), the state w2,
representing the robot overspeeding with the arm folded is not crucial for the functioning
of the robot. The represented strategy, that prevents the reachability of this state, can
therefore be acceptable, even though it is not fully permissive.

In the next section we propose two ways to analyze a non-permissive strategy, that
allows for a better understanding of the reachability of the states individually.

4.2. Concepts and Definitions 91

4.2.3 Permissiveness Deficiencies of a Strategy

In the case of “Safe & No perm.”, i.e., SMOF returns a list of safe but non-permissive
strategies, the user only has the information that not all the permissiveness properties
are satisfied by the strategies. They cannot identify precisely what are the permissiveness
properties that are satisfied or not, i.e, the states that remain reachable or not. There-
fore, the impact of the strategy on the system’s ability to function (i.e., the reachability
of states) is hard to evaluate.

To provide the user with some visibility on the impact of a strategy on the initial
permissiveness requirements (the universal permissiveness), we propose to answer two
questions. First, what are the permissiveness properties that are not satisfied by the
strategy? Indeed, the only information provided by SMOF is if all the permissiveness
properties are satisfied or not. Second, which intervention(s) triggered in which state
prevents the reachability of the non-reachable states (the ones corresponding to the non-
satisfied permissiveness properties)? The addition of interventions is the cause of the loss
of permissiveness (the empty strategy is fully permissive). We want to identify which
interventions have an impact on the permissiveness when they are triggered.

Let us take the abstract example in Figure 4.4. A strategy R is synthesized, sat-
isfying the safety property but an unknown set of permissiveness properties. The first
step is to identify what states are not reachable at all. These states can be identified
by checking the CTL property EF (s). This corresponds to the simple permissiveness,
and the list of non-satisfied simple permissiveness properties is called the simple per-
missiveness deficiencies of a strategy. In the example, only the state sn is not simply
reachable. Analyzing which simple permissiveness property is not satisfied provides the
information of the states that are not reachable, even from the initial state.

The second step is to identify, among the remaining reachable states, the ones that are
not universally reachable (not reachable from every other non-catastrophic states). This
is what we call the universal permissiveness deficiencies of the strategy R. It allows us
to identify which states are reachable from the initial state but do not remain reachable
after the intervention of the monitor. In the example, the properties AG(EF (s1)) and
AG(EF (sn)) are not satisfied, i.e., the states s1 and sn are not universally reachable.
Note that all the states that are not simply reachable are not universally reachable either,
but we do not analyze them further for the universal reachability.

From there, for every non-satisfied universal permissiveness property, we want to
identify the combination of (state, intervention(s)) from which the corresponding state
is not reachable. For instance, consider the state s1 in Figure 4.4, that has been diagnosed
as not universally reachable. A second diagnosis step allows us to identify that there
is no path from the combination (sj , i1) to s1. This is what we call the permissiveness
impact of (sj , i1). We denote with (sj , i1) the fact that the intervention ij active in sj ,
i.e., all the preconditions of ij are satisfied, ij is effective.

Permissiveness deficiencies of a strategy: Consider a set of permissiveness prop-
erties Perm. We call permissiveness deficiencies (PD) of R the list of permissiveness

92 Chapter 4. Diagnosing the Permissiveness Deficiencies

Figure 4.4: Principle of diagnosing the permissiveness deficiencies and impact of a strat-
egy.

4.3. Diagnosis Algorithm and Implementation 93

properties from Perm that are not satisfied by R. PD makes explicit the permissiveness
loss due to a strategy.
PD is split in two, PDuniv, the list of non-satisfied universal permissiveness prop-

erties, and PDsimple, the list of non-satisfied simple permissiveness properties. PDuniv

allows the identification of the states that may not remain reachable after the interven-
tion of the monitors. PDsimple denotes the states that are not reachable at all due to
the strategy. If a state is not simply reachable, it is not universally reachable either: for
every s ∈ S \ Sc such as EF (s) ∈ PDsimple, AG(EF (s)) ∈ PDuniv.
Permissiveness impact of a couple (state, intervention(s)): We call
permissiveness impact (PI) of a couple (state, intervention(s)) the function
PI : (Sw, P(R(Sw))) → S \ Sc that associates to a couple (state, intervention(s)) the
list of states that cannot be reached from it (not considering the catastrophic states).
Sw is the set of warning states. R(Sw) is the set of interventions that are applied in
the considered warning state (P(R(Sw)) its power set, including zero intervention, and
all the combinations of interventions), R(Sw) ⊆ I. S \ Sc is the set of non-catastrophic
states. It includes the safe and warning states.

To determine if a state s can be reached from the couple (sw, iw), we verify that
if the state sw with the intervention iw active is reachable from the initial state, then
from this combination (sw, iw), the state s is reachable. It corresponds to the following
expression in CTL:

EF (sw ∧ iw) =⇒ EF (sw ∧ iw ∧ EX(EF (s))) (4.1)

In the first part of this equation, EF (sw∧iw), we state that the couple (sw, iw) can be
reached from the initial state, i.e., sw is reachable by a path such that the preconditions
of iw are satisfied. If that is the case, the second part of the equation is verified. The
part EX(EF (s)) of the equation specifies that, after the next step, s will eventually be
reached. Considering the next step is in particular necessary to check whether a state
remains reachable from itself, even if the intervention enforces a change of state. In
SI3 (the robot must not enter a prohibited zone), the state w1: d=1 & v=1 (the robot
is moving close to the prohibited zone) is not reachable from itself, as the full stop
intervention changes the value of v to zero and blocks it there.

We defined two concepts, the permissiveness deficiencies (PD) of a strategy, and the
permissiveness impact (PI) of a couple (state, intervention(s)). In the following section,
we detail the algorithm we follow to compute the PD and PI for a given non-permissive
strategy.

4.3 Diagnosis Algorithm and Implementation

In this section, we detail the algorithms for the identification of the permissiveness
deficiencies of a strategy, and of the permissiveness impact of a couple (state, interven-
tion(s)). We then present some simplification features that help for the readability of

94 Chapter 4. Diagnosing the Permissiveness Deficiencies

DIAG.
PD

(Algo. 1)

Inv. model
Perm. prop.

Interv.
Non-perm.

strat.

DIAG.
PI

(Algo. 2)

PD SIMPLIFY
(Algo. 3
and 4)

PI Simplified
non-existing
paths

Figure 4.5: Process for use of the diagnosis and simplification algorithms

the results. The algorithms are used together as displayed in Figure 4.5. Finally we say
a few words about the implementation of the diagnosis tool.

4.3.1 Algorithm

Identifying the permissiveness deficiencies of a strategy is the first step, and is relatively
easy to do: the model modified by the addition of the strategy R (i.e., the automaton
AR = (S, TR, s0)) is simply checked by a the model-checker NuSMV (for integration
purposes with SMOF) for every permissiveness property perm individually, Perm being
the set of permissiveness properties (Perm = Permsimple + Permuniv, with Permsimple

the set of simple permissiveness properties and Permuniv the set of universal permis-
siveness properties). The properties in Permsimple are expressed as EF (s), for every
s ∈ S\Sc (we use s for both the state and its characteristic predicate), and the properties
in Permuniv as AG(EF (s)).

If the property is not satisfied, it joins the set PD(R) (the permissiveness deficiencies
of R, i.e., the list of permissiveness properties that are not satisfied by R, PD(R)simple

for the simple permissiveness and PD(R)univ for the universal permissiveness). Note
that if a state is not simply reachable, it is also not universally reachable. We only check
the universal reachability of the states that are simply reachable. The user can clearly
evaluate if the loss of permissiveness for the strategy considered is acceptable in order
to maintain safety. The corresponding algorithm is detailed in Algorithm 1.

The second step is to determine PI for every couple (sw, iw) ∈ (Sw, R(Sw)). We need
to verify the CTL formula 4.1 for all of them. With the help of the model-checker, if a
path exists to (sw, iw) (a path exists to sw that triggers the intervention iw in sw), every
path from (sw, iw) is explored until the state s is reached or the paths have exhaustively
been checked. The corresponding algorithm is detailed in Algorithm 2. SMOF generates
a variable that denotes the intervention activation: if the execution path satisfies the
preconditions and the intervention is applied in the current state, the activation variable
is true. In the algorithms, we abuse notation and write iw for both the intervention name
and its activation condition. The variable iw is true if the intervention is active. Note
that we check the impact of every intervention independently, and of the combinations of
interventions. When a combination is checked, the activation conditions are conjoined.

For instance, let us consider the simple invariant SI3 (the robot must not
enter a prohibited zone). We have V = {d, v} the set of variables, where
d ∈ {too close, close, far}={0,1,2} and v ∈ {stopped, moving}={0,1}. Only one in-

4.3. Diagnosis Algorithm and Implementation 95

Algorithm 1: Identification of PD for a strategy R
Input: Perm, AR = (Sall, TR, s0)

1 for permsimple ∈ Permsimple do
2 result=Check(permsimple)
3 if result==false then
4 PD(R)simple+ = permsimple

5 end
6 end
7 for permuniv = AG(EF (s)) ∈ Permuniv with s ∈ S \ Sc such as EF (s) /∈ PD(R)simple

do
8 result=Check(permuniv)
9 if result==false then

10 PD(R)univ+ = permuniv

11 end
12 end
13 PD(R) = PD(R)simple + PD(R)univ

Output: PD(R)

Algorithm 2: Identification of the PI of the couples (state, intervention(s))
for a strategy R

Input: R, AR = (S, TR, s0), PD(R)
1 for permuniv = AG(EF (s)) ∈ PD(R) do
2 for sw ∈ Sw do
3 for iw ∈ P(R(sw)) do
4 result=Check(EF (sw ∧ iw) =⇒ (EF (sw ∧ iw ∧ EX(EF (s))))
5 if result==false then
6 PI(sw, iw)+ = s
7 end
8 end
9 end

10 end
Output: PI(sw, iw)∀sw ∈ Sw, iw ∈ R(sw)

96 Chapter 4. Diagnosing the Permissiveness Deficiencies

s1

d=2

v=0 w1

d=1

c1

d=0

s2v=1 w2 c2

PD

Figure 4.6: Permissiveness deficiencies for SI3

tervention is available: I={full stop}, that stops the robot completely. The catastrophic
state is defined as cata: d=0, i.e., safe: d!=0 is the safety property.

Two warning states exist: w1: (d=1 & v=0), the robot is stopped close to the pro-
hibited zone, and w2: (d=1 & v=1), the robot is moving close to the prohibited zone.

For this invariant, SMOF was only able to synthesize a non-permissive strategy (the
simple permissiveness was used). It triggers the full stop in the two warning states:

R(d=1 & v=0)={full stop}
R(d=1 & v=1)={full stop}

The remaining possibilities of evolution for the system are represented in Figure 4.6.
The transitions cut by the full stop intervention have been removed from the graph.

The algorithm 1 for identifying PD(R) results in the following:

PD(R) = {AG(EF(d=2 & v=0)),

AG(EF(d=2 & v=1)),

AG(EF(d=1 & v=1))}

This tells us that the strategy R does not satisfy the universal permissiveness for the
states s1: d=2 & v=0, s2: d=2 & v=1 and w2: d=1 & v=1, i.e., when the robot is far
from the prohibited zone (stopped or moving), and when the robot is moving close to
the prohibited zone. These states can be reached from the initial state but not after the
full stop is triggered. They are the states represented in the circle in Figure 4.6.

Then, we identify the permissiveness impact of each couple (state, intervention(s))
using the algorithm, Algorithm 2 (when fullstop is true it means that the full stop

4.3. Diagnosis Algorithm and Implementation 97

s1 w1 c1

s2 w2 c2

(w1, full stop)

PI(w1, full stop)

Figure 4.7: PI(w1, full stop)

s1 w1 c1

s2 w2 c2

(w2, full stop)

PI(w2, full stop)

Figure 4.8: PI(w2, full stop)

intervention is active):

PI(d=1 & v=0 & full stop) = {d=2 & v=0,

d=2 & v=1,

d=1 & v=1}
PI(d=1 & v=1 & full stop) = {d=2 & v=0,

d=2 & v=1,

d=1 & v=1}

This means that from the warning state w1: d=1 & v=0 with the full stop active,
the states s1: d=2 & v=0, s2: d=2 & v=1 and w2: d=1 & v=1 are not reachable (see
Figure 4.7). The same result is found for the state w2: d=1 & v=1 (see Figure 4.8). This
gives more information than PD(R) as it helps identifying that the full stop intervention
in these two states contributes to the loss of permissiveness.

4.3.2 Simplification of the Diagnosis Results

The identified permissiveness deficiencies of a strategy, as well as the permissiveness im-
pacts can easily become unreadable. If the result is too complex and hard to apprehend,
it will very likely not be used. The whole point of the diagnosis we propose is to present a
more readable list of permissiveness issues for a considered strategy, in order to help the
user identify what changes are pertinent to apply to the permissiveness requirements,
or to the observations or interventions they initially specified. We therefore propose a
set of simplifications to improve readability. We reuse the gateway with z3 introduced
in Section 4.1.

Several simplifications can be applied to help the user read the results of the diagnosis.

For the permissiveness deficiencies: The permissiveness deficiencies of the strategy
can be gathered. All the states that are not universally reachable are gathered in a
set of non-reachable states. Their characteristic predicates are simplified, resulting in
a simplified characteristic predicate of the non-universally reachable set of state. Let
PD(R) be the permissiveness deficiencies of the strategy R. Let SPD be the set of states
that are not universally reachable, i.e., for every s ∈ SPD, AG(EF (s)) ∈ PD(R). The

98 Chapter 4. Diagnosing the Permissiveness Deficiencies

characteristic predicate of the set of states SPD can be calculated by simplifying the
expression s0 ∨ s1 ∨ · · · ∨ si, for s0, · · · , si ∈ SPD, with i = Card(SPD). This means that
every state s in SPD satisfies the simplified predicate predicate(SPD) = s0∨ s1∨ · · ·∨ si.

For SI3 (the robot must not enter a prohibited zone), when analyzing the non-
permissive strategy presented above (Section 4.3.1) the following permissiveness defi-
ciencies were identified:

PD(R) = {AG(EF(d=2 & v=0)),

AG(EF(d=2 & v=1)),

AG(EF(d=1 & v=1))}
We simplify the characteristic predicates for the set of non-reachable states:

predicate(SPD) = (d=2 & v=0) | (d=2 & v=1) | (d=1 & v=1)

= d=2 | (d=1 & v=1)

All the states that are not universally reachable (s1, s2, w2), i.e., for which the
universal permissiveness is not satisfied, satisfy the predicate d=2 | (d=1 & v=1). This
corresponds to the set of states in the dotted red circle in Figure 4.6.
For the permissiveness impact: The permissiveness impact of the couples (state,
intervention(s)) shows from which state, triggering which intervention(s), a certain state
is not reachable. If several PI are equal, it means some states are not reachable from
several couples (state, intervention(s)). The characteristic predicates of these departure
couples (state, intervention(s)) can be gathered (see Algorithm 3). Let us consider the
abstract example in Figure 4.9. There is no path from the state s0 with the intervention
i0 to the state s2, and there is not path either from (s1, i1) to s2. The characteristic
predicates of (s0, i0) and (s1, i1) can be gathered. We compare all the permissiveness
impacts (all the states that are not universally reachable) of all the couples (state, inter-
vention(s)) (Algo. 3, line 2). If two permissiveness impacts are the same (Algo. 3, line 6),
we gather the couples (state, intervention(s)) to compute the predicate representing the
set of states that have the same permissiveness impact (Algo. 3, line 7).

We call departure predicate the simplified characteristic predicate of all the couples
(state, intervention(s)) that have the same PI, i.e., the departure predicate characterizes
all the couples (state, intervention(s)) from which one state s is not reachable.

For the invariant SI3, the couples (w1, full stop) and (w2, full stop) have the
same permissiveness impact, PI(w1, full stop)=PI(w2, full stop)={s1, s2, w2}
(see Figures 4.7 and 4.8). Therefore, their characteristic predi-
cates can be gathered: the corresponding departure predicate is
(w1 & full stop) | (w2 & full stop) ⇔ d=1 & full stop. This means that from
any state satisfying d=1 & full stop, none of the states in s1, s2 or w2 can be reached.

We have now gathered the predicates of the couples (state, intervention(s)) that have
the same permissiveness impact. We can now gather the predicates of the states that
are not reachable from the same departure predicate (see Algorithm 4). We call it the
arrival predicate.

From Algorithm 3, we know the departure predicate of all the states that are not
universally reachable (i.e., s is such as there exists (sj , ij),PI(sj , ij) = s). We then

4.3. Diagnosis Algorithm and Implementation 99

Figure 4.9: Simplification of the departure and arrival predicates

Algorithm 3: Simplifying the departure predicates for same PI
Input: PI, R, AR = (S, TR, s0)

1 j=0, departure pred list=[], arrival pred list=[], couple checked=[]
2 for (sk, isk

) ∈ (Sw,P(R(Sw))) and (sk, isk
) /∈ couple checked do

3 arrival pred list[j]=PI(sk, isk
)

4 departure pred list[j] = sk ∧ isk

5 for (sl, isl
) ∈ (Sw, R(Sw)) ∧ (sl, isl

) /∈ couple checked do
6 if PI(sl, isl

) = PI(sk, isk
) then

7 departure pred list[j] = departure pred list[j] ∨sl ∧ isl

8 couple checked+=(sl, isl
)

9 end
10 end
11 couple checked+=(sk, isk

)
12 j++
13 end
14 departure pred list=Simplify(departure pred list)

Output: departure pred list, arrival pred list

100 Chapter 4. Diagnosing the Permissiveness Deficiencies

compare the departure predicates (Algo. 4, line 7). If two departure predicates are
identical, the we can gather their permissiveness impact, i.e, the characteristic predicates
of the states that are not reachable from them (Algo. 4, line 8)

In Figure 4.9, the states s2 and s3 are both non-reachable from the set of states with
the departure predicate represented in red. We gather the characteristic predicated of
s2 and s3 to compute the arrival predicate. This way we will obtain the information of
the non-existing paths between sets of states, one set satisfying the departure predicate,
and the other the arrival predicate.

Algorithm 4: Simplifying the arrival predicates for the same departure predi-
cate

Input: PI, R, AR = (S, TR, s0), departure pred list, arrival pred list
1 j=0, departure pred list simple=[], arrival pred list simple=[], index checked=[]
2 for k=0..length[departure pred list]-1, k /∈ index checked do
3 departure pred list simplif[j]=departure pred list[k]
4 arrival pred list simplif[j] = arrival pred list[k]
5 index checked+=k
6 for l=k..length[departure pred list]-1 do
7 if departure pred list[k]==departure pred list[l] then
8 arrival pred list simplif[j] = arrival pred list simplif[j] ∨ arrival pred list[l]
9 index checked+=l

10 end
11 end
12 j++
13 end
14 arrival pred list simplif=Simplify(arrival pred list simple)

Result: arrival pred list simplif, departure pred list simplif

For the example of SI3, after simplification, we obtain the following result: there
is no path from states satisfying the departure predicate d=1 & full stop to the states
satisfying the arrival predicate d=2 | d=1 & v=1. This is represented in Figure 4.10. We
can see that there is no path from the state w2 to itself. The intervention full stop in w2

forces the velocity to zero.
The simplification tool returns, for the invariant SI3:

-- Non-existing paths:
-- No path from d = 1 & full stop ;
-- To d = 2 | d = 1 & v = 1;

4.3.3 Implementation

The diagnosis algorithms presented in Section 4.3.1, as well as the simplification algo-
rithms presented in Section 4.3.2 have been implemented in Python3.6 (with a gateway
to z3 version 4.6.2). It is available online at [SMOF, 2018]. For the diagnosis, the tools
takes as input the model of the invariant along with the strategy to analyze. It returns

4.4. Application to Examples 101

s1 w1 c1

s2 w2 c2

departure states

arrival states

Figure 4.10: Non-existing paths for the invariant SI3

three files. One contains the list of the simple permissiveness that are violated. One
contains the list of the universal permissiveness that are violated and from what simpli-
fied departure set. The third one contains the list on the non-existing paths from the
departure sets (simplified) to the arrival sets (simplified).

The gateway to z3 contains a parser-rewriter that reads the diagnosis results, write
the in SMT language and, after the simplification is done, rewrite them in SMV language.

4.4 Application to Examples

In this section we illustrate the diagnosis of the permissiveness deficiencies of a strategy
on two examples extracted from the case study presented in Chapter 2

4.4.1 SII: The Arm Must Not Be Extended When The Platform Moves
At A Speed Higher Than speedmax.

Two observations are used for this invariant:

• the speed of the platform, s ∈{[0, smax −margin[, [smax −margin, smax[,
[smax,∞[}={0,1,2};

• the position of the arm, a ∈ {folded, unfolded}={0,1};

Only one intervention is available, triggering the platform brakes. This intervention
prevents the speed from increasing.

For this invariant, a single strategy R satisfying the safety property only can be
synthesized. This strategy is represented in Figure 4.11.

The diagnosis is performed on this strategy, and the result is represented in
Figure 4.12. The state w2: s = 2 & a = 0 (circled in blue in Figure 4.12) is
not reachable: PDsimple(R) = PDuniv(R) =w2. The permissiveness impacts are:
PI(w1, brakes)=PI(w3, brakes) (circled in dotted blue in Figure 4.12). After the sim-
plification, the tool returns:

102 Chapter 4. Diagnosing the Permissiveness Deficiencies

s1 w1

brake
w2

s2 w3

brake
c

Figure 4.11: Safe and non-permissive
strategy for the invariant SII (repeated
from Figure 2.13)

s1 w1 w2

s2 w3 c

arrival state

departure states

Figure 4.12: Diagnosis for the non-
permissive strategy for SII

Figure 4.13: Obstacle occupation zones around the robot (repeated from Figure 2.9)

-- Non-existing paths:
-- No path from s = 1 & brake;
-- To s = 2 & a = 0;

The simplification of the results gives the conclusion that there is no path from the set
of states satisfying s=1 & brake (i.e., w1 and w3) to the state satisfying s=2 & a=0 (i.e., w2).
Indeed, when the brakes are triggered when s=1 (speedmax −margin ≤ s < speedmax),
the speed cannot increase. The state w2: s=2 & a=0, in which s ≥ speedmax with the
arm folded therefore cannot be reached. However, this state is useless for the system to
perform its tasks, the strategy could be acceptable. We will see in Chapter 5 how to
tune the permissiveness requirements to only require the reachability of states that are
necessary for the system’s functionalities.

4.4.2 SI4: The Robot Must Not Collide With An Obstacle.

For this invariant, a satisfying strategy was presented in Chapter 2. However, we explore
here the results that would be found if only the braking intervention was available. Only
the braking intervention will not be sufficient to ensure the permissiveness as no lamp
would be allowed to pass under the arm (i.e., get closer than the braking distance). Let
us see if the diagnosis confirms this intuition. As a reminder, the partition in zones of
the environment of the robot is represented in Figure 4.13.

The non-permissive strategy (brake whenever an obstacle is nearby) that we propose
to analyze is the following:

4.4. Application to Examples 103

DEFINE flag brake:= z1=1 | z2!=0 | z3=1 | z4=1 | z5!=0;

The result of the diagnosis for the simple permissiveness gives the following results:

-- Simple permissiveness deficiencies:
DEFINE simple perm def := z4 = 0 & z5 = 2 & v = 1;

The states satisfying z4 = 0 & z5 = 2 & v = 1 correspond to states where the zone
4 (the robot itself) is empty, a low obstacle (a lamp) is in the zone 5 (under the arm),
and the robot is moving. If this state cannot be reached, the robot will never be able to
measure the lights: it needs to move along lamps (in zone 5) to be able to measure the
line of lamps. This permissiveness deficiency is not acceptable.

The results found for the universal permissiveness tell us that 89 states are not
universally reachable. After simplification, the non-existing paths are given as follows:

--Non-existing paths:
--No path from z2 = 2 & v = 0 & brake | z5 = 2 & v = 0 & brake;
--To z2 = 0 & z5 = 0 & v = 0 | z4 = 0 & z5 = 0 & v = 1;
--
--No path from z5 = 2 & v = 0 & brake;
--To z2 = 1 & z5 = 0 & v = 0 | z2 = 2 & z5 = 0 & v = 0;
--
--No path from z2 = 2 & v = 0 & brake;
--To z2 = 0 & z5 = 1 & v = 0 | z2 = 0 & z5 = 2 & v = 0;
--
--No path from z2 = 0 & z5 = 2 & v = 0 & brake;
--To z2 = 2 & z5 = 1 & v = 0;
--
--No path from z2 = 2 & z5 = 0 & v = 0 & brake;
--To z2 = 1 & z5 = 2 & v = 0;
--
--No path from z2 = 2 & z5 = 0 & v = 0 & brake | z2 = 0 & z5 = 2 & v = 0 &
brake;
--To z2 = 2 & z5 = 2 & v = 0;

Let us consider for example the first result:
There is no path from:
z2=2 & v=0 & brake | z5=2 & v=0 & brake
to
z2=0 & z5=0 & v=0 | z4=0 & z5=0 & v=1.
The departure predicate means that the robot is stopped, the brakes triggered, and there
is a low obstacle in the zone 2 or 5, i.e., on the side of the arm. From these states, there
is no path to the states where the zones 2 and 5 are empty and the robot is stopped, or
to the states where the zone 4 (the robot) and 5 are empty while the robot is moving.

104 Chapter 4. Diagnosing the Permissiveness Deficiencies

What we understand is that as soon as a low obstacle (a lamp) is in the zone 2 or 5, it
is not possible to empty these zones: the brakes are triggered, stopping the robot and
as the lamps are not moving, the brakes will stay triggered and the robot stopped.

The others results confirm this. For every one, we see that when a lamp is under the
robot’s arm, the brakes are triggered, it is not possible to empty or fill the zones 2 and 5
(i.e., to move along the lamps). To perform the measuring task, the robot needs to move
along the lamps so that the sensor passes above them. The permissiveness deficiencies
are not acceptable in this case.

This suggests that defining new interventions could be interesting in this case. This
is indeed what we did when manually analyzing this invariant in Chapter 2. However,
we needed several modeling iterations to solve the case where the diagnosis tool would
have avoided that and helped us design the appropriate interventions more easily. In
the Chapter 6, we explore a way of automatically suggest appropriate interventions for
the synthesis.

4.5 Conclusion

In this chapter, we presented and formalized the two concepts of permissiveness defi-
ciencies of a strategy and permissiveness impact of a couple (state, intervention(s)). We
detailed the algorithm that we use to evaluate these two parameters. We also detailed
a set of simplifications that we apply to the results with the help of the solver z3, that
very much increase their readability. We saw that this allows us to identify why the
synthesis fails to return a safe and permissive strategy. This diagnosis algorithm has
been implemented and successfully applied on examples (two of them presented in this
chapter).

The diagnosis can help the user to choose how to solve this issue. In the first ex-
ample example, we saw that the permissiveness deficiencies of the analyzed strategy are
acceptable. The solution can be to tune the permissiveness requirements to adapt them
to the functionalities. This will be explored in Chapter 5. In the second example, the
permissiveness deficiencies are not acceptable. Then, a solution is to change the available
interventions. In Chapter 6, we propose a method to define new interventions for the
synthesis.
Take Aways:

• The permissiveness deficiencies qualify the permissiveness loss imposed by a strat-
egy;

• The permissiveness impact of a couple (state, intervention) can help the user iden-
tify which intervention, when it is triggered, is responsible for a permissiveness
loss;

• The gateway to the simplification facility of z3 increases the readability.

Chapter 5

Tuning the Permissiveness

Contents
5.1 Defining Custom Permissiveness Properties 106

5.1.1 From Generic to Custom Permissiveness 106
5.1.2 A Formal Model for the Functionalities 107
5.1.3 Binding Together Invariants and Permissiveness 108

5.2 Restricting Functionalities . 110

5.2.1 Diagnosing the Permissiveness Deficiencies with the Custom
Properties . 110

5.2.2 Weakening the Permissiveness Property 111
5.2.3 Automatic Generation and Restriction of Permissiveness Prop-

erties . 112
5.3 Application on Examples . 113

5.3.1 SII: The Arm Must Not Be Extended When The Platform
Moves At A Speed Higher Than speedmax. 113

5.3.2 SIII: A Gripped Box Must Not Be Tilted More Than α0. . . . 116
5.3.3 SI3: The Robot Must Not Enter A Prohibited Zone. 117

5.4 Conclusion . 118

When SMOF fails to find a permissive strategy, one solution is to change the permis-
siveness requirements. The first objective of this chapter is to propose a way to adapt
the permissiveness to the system’s expected functionalities. The new permissiveness
properties can then be used for the synthesis: the reachability of a subset of states is
required, thereby giving more flexibility to the synthesis. However, even with these new
permissiveness properties, it happens that no strategy can be synthesized. The second
objective of this chapter is to propose a way to weaken the permissiveness requirements
with a traceable impact on the system’s ability to performs its tasks.

In this chapter, we present a template for the definition of custom permissiveness,
that allows the user to adapt the permissiveness to the system’s functionalities, without
having to use CTL (Section 5.1). We also present three ways to weaken the permis-
siveness and explain what the weakening implies for the system’s ability to function
(Section 5.2). We apply the definition and weakening of custom permissiveness on three
examples, and analyze the results (Section 5.3). We conclude in Section 5.4.

106 Chapter 5. Tuning the Permissiveness

s1 w1 w3

s2 w2 c

Figure 5.1: Required reachability for
generic permissiveness

s1 w1 w3

s2 w2 c

fct1 fct2

Figure 5.2: Required reachability for cus-
tom permissiveness

5.1 Defining Custom Permissiveness Properties

The generic definition of the permissiveness properties provided by SMOF requires the
reachability of all the non-catastrophic states. In this section, we explain how to change
this definition to only require the reachability of a subset of states, adapted to the
system’s functionalities, therefore giving more flexibility to the synthesis.

5.1.1 From Generic to Custom Permissiveness

By default, SMOF requires the universal permissiveness, i.e., all the non-catastrophic
states must remain reachable from all the other non-catastrophic states. This is repre-
sented with the red circles on the abstract example in the Figure 5.1. As a result, the
synthesis algorithm prunes any strategy that would cut all paths to a non-catastrophic
state.

However, all the non-catastrophic states may not be necessary to reach for the ac-
complishment of the functions of the system. To give an example, let us consider the
invariant SI1, stating that the system velocity should never reach a maximal absolute
value vmax. The synthesis would reject any strategy where the paths are cut to warn-
ing states with values close to vmax (i.e., within the margin vmax −margin). But the
cruise velocity of the system, used to accomplish its mobility functions, is typically much
lower than vmax and vmax−margin. Requiring the universal reachability of the warning
states is useless in this case, since getting close to vmax is not a nominal behavior. The
system operation could well accommodate a safety strategy that forbids evolution to
close-to-catastrophic velocity values.

From what precedes, it may seem that we could simply modify the generic definition
of permissiveness to require universal reachability of safe states only, excluding warning
states. However, this would not work for all systems, as demonstrated by the collision
invariant SI4 presented in Chapter 2. For this invariant, some warning states do corre-
spond to a nominal behavior and are essential to the accomplishment of the maintenance
mission. More precisely, the robot is intended to control the intensity of lights along the
airport runways. The light measurement task is done by moving very close to the lights,
which, from the perspective of the anti-collision invariant, corresponds to a warning

5.1. Defining Custom Permissiveness Properties 107

Invariant
Model

- Safety property
- Generic permissiveness
properties

generated

Invariant
Model

Safety property

generated

Functionalities
Model:
fct1
fct2

. . .

Custom permissiveness
properties

generated

SMOF with
generic permissiveness

SMOF with
custom permissiveness

Figure 5.3: Invariant and functionalities models

state. Any safety strategy removing reachability of a close-to-catastrophic distance to
the lights would defeat the very purpose of the robot.

Actually, there is no generic definition of permissiveness that would provide the best
trade-off with respect to the system functions. We would need to incorporate some
application-specific information to tune the permissiveness requirements to the needs of
the system, i.e., create some custom permissiveness properties. In the abstract example
of Figure 5.2, the custom permissiveness requires the reachability of the sets of states in
red, corresponding to two functionalities fct1 and fct2. The reachability of the states
w2 and w3 is not required any more. A strategy discarding all paths to these states is
satisfying with regard to the custom permissiveness.

We propose a way to introduce such custom permissiveness properties into SMOF,
allowing more strategies to be found and facilitating the elicitation of trade-offs in cases
where some functionalities must be restricted due to safety concerns. The custom per-
missiveness properties are associated to the functionalities the system is supposed to per-
form. These functionalities need to be formalized. From this formalization, we propose
to extract CTL properties —to be used in the synthesis— following a simple template.

5.1.2 A Formal Model for the Functionalities

In SMOF, each invariant is modeled independently. The generic permissiveness proper-
ties (as well as the safety property) are automatically generated from the model of the
invariant (see Figure 5.3).

108 Chapter 5. Tuning the Permissiveness

Now, we want the custom permissiveness properties to correspond to the system’s
expected functionalities. While generic permissiveness properties apply to all non-
catastrophic states, we choose to express the custom ones as the reachability of a subset
of states, the ones that are essential to the system’s functionalities. We introduce a
state model dedicated to the functionalities, giving a view of the essential/non-essential
states. This model is different from the invariant model (see Figure 5.3), that gives a
view of the safe/warning/catastrophic states.

The state model for the functionalities is defined as a set of variables Vf partitioned
in classes of values of interest. For instance, let us consider the functionality f , which
requires a continuous observable variable v (e.g., velocity, or position of a tool) to reach
a given value vreq (e.g., cruise velocity, vertical position) with some tolerance δ. The
domain of the variable v would be partitioned into three classes: 0 corresponding to
values lower than Vreq − δ, 1 to values in [Vreq − δ, Vreq + δ], 2 to values greater than
Vreq + δ. We can create vfct∈ {0,1,2}, the abstract continuous variable encoding the
partition from the point of view of the functionality. It will be encoded using the
predefined continuity module offered by SMOF (see Chapter 2). Generally speaking,
the modeling can reuse the syntactic facilities offered for the safety model, also defined
in terms of observable variables, classes of values of interest and evolution constraints.

Note that the partition drawn for the variable v used in the functionalities model
may be different from the one defined for the variable v in an invariant. Typically for
the velocity variable, we would have, for a movement functionality at a required cruise
speed vcruise, vfct∈{[0, vcruise − δ[,[vcruise − δ, vcruise + δ[,[vcruise + δ,∞[}={0,1,2}, and for
the overspeed invariant vinv∈{[0, vmax−margin[,[vmax−margin, vmax[,[vmax,∞[}={0,1,2}.

The purpose of the functionality model is to allow the user to conveniently specify
sets of states that are essential to a given functionality. A set of states is introduced
by a predicate req over a variable or a set of variables in Vf . In the velocity example
above, the user would specify that the functionality requires vfct=1. Each functionality
may introduce several requirements, i.e., several essential sets of states. For instance, a
“move” functionality could have two separate requirements, one for cruise motion and
one for slow motion.

The list of required predicates can then be extracted to produce permissiveness
properties of the form: AG(EF (req)). We choose to reuse the same template as the
one for the universal permissiveness. However, we now require the reachability of
sets of states, rather than the reachability of every individual state. For example, we
have no reachability requirement on states satisfying vfct = 2, and may accommodate
strategies discarding some of the states vfct = 1 provided that at least one of them
remains reachable. This list of properties replaces the generic ones for the synthesis:
Perm = {AG(EF (req1)), AG(EF (req2)), . . . }.

5.1.3 Binding Together Invariants and Permissiveness

The permissiveness and the safety properties are defined using two different state models.
Some of the abstract variables used in those state models represent the same physical
observation, or dependent ones (for example the velocity for a movement functional-

5.1. Defining Custom Permissiveness Properties 109

Invariant
model

Functionalities
model

Binding SMOF
synthesis

Safety

Custom perm.

Figure 5.4: Binding of the functionalities model and the invariant model

Figure 5.5: Binding for two velocity variable

ity and an overspeed invariant). To connect the invariants and functionalities models,
thereby ensuring a consistent evolution of the variables, we have to bind their variables.
The invariant model, the functionalities model and the binding are then injected into
SMOF’s synthesis (see Figure 5.4).

Two types of bindings can be used: physical dependencies (e.g., speed and accelera-
tion), or the use of the same observation with two different partitions.

In the first case, we specify the constraints on transitions (using the NuSMV keyword
TRANS) or on states (INVAR). For example, for observations of speed and acceleration, we
would write TRANS next(acc)=0 → next(speed)=speed, i.e., if the acceleration is null,
the speed cannot change.

In the second case, we need to introduce a “glue” variable to bind the different
partitions. This variable will be partitioned in as many intervals as needed. The different
intervals will be bound with a specification on the states. For example, let us assume we
have an invariant and a functionality using a velocity variable, and the partition used for
the invariant is vinv={0,1,2} where 0: stationary or slow, 1: medium and 2: high (above
a maximum velocity value vmax), and the one used for the functionality is vfct={0,1}
where 0: stopped and 1: moving. We introduce a continuous “glue” variable partitioned
as vglue={0,1,2,3} (see Figure 5.5). The binding through the glue variable is specified
as follows:

110 Chapter 5. Tuning the Permissiveness

--Continuity (value min, value max, value init)
DEFINE vglue: Continuity(0,3,0);
INVAR vglue=0 ↔ vinv=0 & vfct=0;
INVAR vglue=1 ↔ vinv=0 & vfct=1;
INVAR vglue=2 ↔ vinv=1 & vfct=1;
INVAR vglue=3 ↔ vinv=2 & vfct=1;

Note that those two binding approaches, by adding constraints or glue variables,
are also used in the standard SMOF process when merging models of different safety
invariants (the consistency analysis step, presented in Chapter 2).

5.2 Restricting Functionalities

When no strategy can be synthesized despite the use of the custom permissiveness prop-
erties, the user may have to accept restrictions of functionalities. A first step is to use the
diagnosis tool, in order to identify which functionality was blocking the synthesis, i.e.,
which functionality to restrict. Then, we propose three ways of weakening the custom
permissiveness properties resulting in different levels of restrictions of the functionalities.

5.2.1 Diagnosing the Permissiveness Deficiencies with the Custom
Properties

When no safe and permissive strategy exists with custom permissiveness properties, the
diagnosis tool can be used similarly as presented for the generic permissiveness.

We re-use the Algorithms 1 and 2 presented in Chapter 4, but we adapt them to
calculate the permissiveness deficiencies and impact for the functionalities: instead of
checking the reachability of all the states, we only check for each functionality the reach-
ability of at least one state satisfying the corresponding required predicate.

The permissiveness deficiencies of a strategy, with the custom permissiveness, is
the list of the functionalities predicates that are not reachable, i.e., no state satisfying
the predicate is reachable. It also encompasses the simple and universal reachability.
PDsimple is the list of functionalities predicates that cannot be satisfied from the initial
state. PDuniv is the list of functionalities predicates that cannot be satisfied from some
non-catastrophic state(s).

The permissiveness impact here points at the couple (state, intervention) from which
a functionality predicate is not reachable. For a non-satisfied functionality f (req its
characteristic predicate), s ∈ Sw (the set of warning states), i ∈ P(R(s)) (R the set
of interventions applied in the state s), PI(s, i) = req if there is no path from the
state s with the intervention i active to a state satisfying the predicate req. A step of
simplification if performed as well, resulting in a list of non-existing paths between some
sets of states to the states satisfying the functionalities predicates.

5.2. Restricting Functionalities 111

Generic
perm.

Simple reachability
(for all the non-cata. states)

Remove the perm. req.

Custom
perm.

Change the functionalities req.

Simple reachability
(for one (some of the) functionality(ies))

Remove the perm. req.

Type of
permissiveness Ways of weakening

Figure 5.6: Weakening generic and custom permissiveness

5.2.2 Weakening the Permissiveness Property

Custom permissiveness is weaker than SMOF’s generic permissiveness, since we get rid
of non-essential reachability requirements. As a result, the strategy synthesis tool may
return relevant strategies that would have been discarded with the generic version.

Still, it is possible that the custom requirements do not suffice, and that no strategy
is found by the tool. We want to make it possible that the user restricts (some of)
the functionalities, i.e., further weakens permissiveness. This may change the system’s
objectives, or increase the time or effort it takes to achieve the objectives. Functionalities
can be restricted in several ways. We consider three of them here. The first one is to
redefine the required functionalities. The second and third ones are inspired from the
possibilities provided by SMOF for the generic permissiveness (see Figure 5.6).

Change the functionalities requirement: One of the req predicates can be weak-
ened to correspond to a larger set of system states. The permissiveness property becomes
req′, with req =⇒ req′. For example, the “move” functionality can be restricted to
“move slowly”, where req′ means that v only needs to reach a velocity vreq′ lower than
the initially specified cruise one. The partition drawn for the modeling of req may not
remain valid. The functionality model, as well as the binding with the safety model have
to be changed.

Applying this restriction requires a complete remodeling of the affected functionality.
A knowledge of the physical values used for the partition is needed, to identify the

112 Chapter 5. Tuning the Permissiveness

ordering between the classes of values of the safety and the functionality model while
doing the binding.

Use the simple reachability: It is possible to replace the universal permissiveness
property by the simple one, EF (req). This weak form of permissiveness is already offered
by the generic version of SMOF, but it applies to all individual states. Weakening the
custom permissiveness properties associated to a functionality —from universal to the
simple permissiveness— means that the monitor’s intervention may be irreversible with
regard to this functionality. With the custom list of req predicates, the user can decide
for which of these predicates simple permissiveness would be acceptable. For example,
the “move” functionality could become impossible after an emergency stop has been
triggered, but other functionalities like manipulating objects would have to be preserved.

Removing a functionality from the requirements: The user can also simply
remove the functionality from the requirements. For example a “manipulation while
moving” functionality is no longer required. Here, the corresponding specified require-
ment is simply deleted, and the synthesis run again without it. This ultimate restriction
step can show the user that the intended functionality is not compatible with the re-
quired level of safety. This information can be propagated back to the hazard analysis
step and used to revise the design of the system or its operation rules. Again, not all of
the requirements may need a restriction. The functionalities that are not restricted are
guaranteed to remain fully available despite the monitor’s intervention.

5.2.3 Automatic Generation and Restriction of Permissiveness Prop-
erties

Integrating the management of custom permissiveness into SMOF was possible without
any major change of the core toolset. Only the front-end had to be updated.

The user does not have to write CTL properties but just the predicate characterizing
the essential states to reach. Concretely, the functionalities requirements are specified
following the template in Figure 5.7.

For the tool to generate the CTL properties following the right template (universal
permissiveness, simple permissiveness or removed), a restriction level is attributed to
all the functionalities: 0 when the functionality is not restricted, 1 when the simple
permissiveness is used and 2 when the functionality is removed. A configuration file for
the SMOF synthesis is added, containing the following information:

- type of permissiveness used (generic: 0 or custom: 1)
- if custom permissiveness, number of functionalities defined
- list of the functionalities & level of restriction

For instance, for a functionality model with a “move” functionality (with a restriction
level of 1) and a “stop” functionality (with a restriction level of 0, i.e., non-restricted),
the configuration file is as follows:

5.3. Application on Examples 113

--Definition of variables (using the same facilities as in the invariant model)
VAR name var : type var;
--Definition of the dependency constraints between variables (same as invariant
model)
TRANS ...;
INVAR ...;
--Definition of the functionalities requirements
DEFINE name fct := predicate fct;

--Define the glue variables
VAR ...;
--Define the gluing constraints
TRANS ...;
INVAR ...;

Figure 5.7: Template for the functionalities model

1
2
move 1
stop 0

Auto-completion facilities (implemented in C++, for integration purposes with
SMOF) allow the generation of the CTL properties from the functionalities model and
the configuration file. The user can vary the level of restriction of the functionalities by
changing the associated number in the configuration file. Once written, the functionality
model does not have to be modified to take into account restrictions.

The core modeling approach and strategy synthesis algorithm remain unchanged.

5.3 Application on Examples

In this section we apply the definition of custom permissiveness properties for two ex-
amples that we studied in Chapter 2. The models for the mentioned examples can be
found online [SMOF, 2018].

5.3.1 SII: The Arm Must Not Be Extended When The Platform Moves
At A Speed Higher Than speedmax.

Modeling: We consider the invariant SII: the arm must not be extended when the
speed is higher than smax. The available observations are sinv, the speed of the platform;
and ainv, the position of the arm. Note that the variables names are extended with the
index inv to specify that they are the variables used for the safety invariant model. As
a reminder, the detail of the partition for these variables is shown in Table 5.1, and the
catastrophic state can be expressed as cata: sinv=2 & ainv=1 (high speed with extended
arm).

114 Chapter 5. Tuning the Permissiveness

Speed of the platform Real speed interval Discrete
variable

Low sinv < smax −m sinv = 0
Within the margin smax −m ≤ sinv < smax sinv = 1
Higher than the maximum allowed value sinv ≥ smax sinv = 2

Position of the arm Discrete
variable

Not extended beyond the platform ainv=0
Extended beyond the platform ainv=1

Table 5.1: Partitioning of the variables sinv and ainv (repeated from Table 2.6)

Speed of the platform Real speed interval Discrete
variable

Null or lower than the minimum cruise
speed sfct < scruise min sfct = 0

At the minimum cruise speed or higher sfct ≥ scruise min sfct = 1

Position of the arm Discrete
variable

Folded afct=0
Extended beyond the platform afct=1

Table 5.2: Partitioning of the variables sfct and afct

To express the relevant permissiveness properties, we identify in the specifications
what functionalities are related to the invariant. Let us consider the variables involved
in SII. The sinv variable is an observation of the speed of the mobile platform, in
absolute value. The system is supposed to move around the workplace to carry objects,
i.e., the speed must be allowed to reach a minimal cruise speed value scruise min, from
any state. To model this functionality we introduce the sfct variable, which will be
partitioned as showed in Table 5.2. Note that the variables names are extended with
the index fct to specify that they are the variables used for the functionalities model.
This functionality can be expressed as cruise motion: sfct=1, AG(EF(sfct=1)) being the
associated permissiveness property automatically generated by SMOF. The system must
also be able to stop or move slowly, thus another functionality, slow motion, is expressed:
sfct=0, corresponding to AG(EF(sfct=0)). Also, the ainv variable models whether the
manipulator arm is extended beyond the platform or not. To handle objects, the arm
must be allowed from any state to reach a state where the arm is extended beyond the
platform, and a state where the arm is folded. We introduce the variable afct which is
partitioned as showed in Table 5.2. The two functionalities related to the arm are the
arm extension: afct=1 and the arm folding: afct=0. The SMOF model for these two
functionalities is as follows:

5.3. Application on Examples 115

Figure 5.8: Partitioning of the sg variable

--Declaration of the variables
VAR sfct: Continuity(0,1,0);
VAR afct: Continuity(0,1,0);
--Definition of the functionalities
DEFINE slow motion := sfct=0;
DEFINE cruise motion := sfct=1;
DEFINE arm folding := afct=0;
DEFINE arm extension := afct=1;

The speed value and arm position are observed in both the invariant model (sinv

and ainv) and the functionalities model (sfct and afct). We need to make their evolution
consistent. To do so, we introduce glue variables, sg and ag.

For the speed, we have two different partitions as shown in Figure 5.8, one for sinv

(with discrete values {0,1,2}) and one for sfct (with discrete values {0,1}). The resulting
glue variable sg will then have four values. We thus have the formal definition:

--Continuity(value min, value max, value init)
VAR sg: Continuity(0,3,0);
INVAR sg=0 ↔ sinv =0 & sfct=0;
INVAR sg=1 ↔ sinv =0 & sfct=1;
INVAR sg=2 ↔ sinv =1 & sfct=1;
INVAR sg=3 ↔ sinv =2 & sfct=1;

For the arm variable, it is much simpler:

VAR ag: Continuity(0,1,0);
INVAR ag=0 ↔ ainv=0 & afct=0;
INVAR ag=1 ↔ ainv=1 & afct=1;

The two available interventions are to brake, which affects the speed, and to block
the extension of the arm. These interventions have been detailed in Chapter 2, but as a
reminder, their definitions are as follows:

116 Chapter 5. Tuning the Permissiveness

s1

s=0

a=0 w1

s=1

w2

s=2

s2a=1 w3 c

block arm

brake

Figure 5.9: Single strategy synthesized
for the invariant SII with generic per-
missiveness properties (repeated from Fig-
ure 2.14)

s1

s=0

a=0 w1

s=1

w2

s=2

s2a=1 w3 c

brake

Figure 5.10: Additional strategy synthe-
sized for the invariant SII with the custom
permissiveness properties.

--Interv(stat precond, seq precond, effect)
VAR brake: Interv(TRUE, s=0, next(s)!=s+1);
VAR block arm: Interv(a=0, TRUE, next(a)=0);

Results: Let us compare the results obtained without and with the approach
through the definition of custom permissiveness. In the first case, we use the
generic permissiveness, i.e., the reachability of every non-catastrophic state (the states
{s1, s2, w1, w2, w3} in Figure 5.9), from every other non-catastrophic state. Only the
strategy presented in Chapter 2 is both safe and permissive (see Figure 5.9).

In the second case, we replace the generic permissiveness with the use of the custom
permissiveness properties cruise motion, slow motion, arm folding and arm extension
specified before. They amount to only require the reachability of the states {s1, s2}.
After running the synthesis, in addition to the previous strategy we have a strategy only
using the braking intervention (see Fig. 5.10). This can be preferable in some cases, as
the use of the arm is then never impacted and even if the monitor triggers the brakes the
system can keep manipulating objects. This strategy couldn’t be found with the generic
permissiveness as it removes the reachability of w2, a useless state from the perspective
of the intended functionalities.

5.3.2 SIII: A Gripped Box Must Not Be Tilted More Than α0.

We explore here a different formalization than the one presented in Chapter 2 (the
complete formalization can be found in [SMOF, 2018]). Three observations are used:
the angle of rotation of the arm (α ∈ {[0, α0 −m1[, [α0 −m1, α0[, [α0,∞[}={0,1,2}),
the presence of a box (box ∈ {0,1}) and the distance between the gripper’s fingers
(dgripp∈{[0, dmax −m2[,[dmax −m2, dmax[, [dmax,∞[}={0,1,2}). The distance between the

5.3. Application on Examples 117

gripper’s fingers was not used in the model presented in Chapter 2. The catastrophic
state is that a box is held with the arm tilted, i.e., cata: α=2 & box=1.

Two interventions are available. The first one brakes the arm, i.e., prevents the angle
of rotation of the arm from increasing. The second one locks the gripper, i.e., prevent it
from closing.

The automated synthesis with the generic permissiveness finds a safe strategy but
fails to return a safe and permissive strategy. We now revisit this model by specifying
custom permissiveness properties for a manipulation functionality (carrying a box at a
low rotation angle). Using the custom permissiveness, the tool successfully synthesizes
a strategy. It combines the braking of the arm and the lock of the gripper to maintain
the invariant while permitting functionality.

5.3.3 SI3: The Robot Must Not Enter A Prohibited Zone.

Modeling: We consider here the invariant SI3: the robot must not enter a prohibited
zone, that has been detailed in Chapter 2. The observations used are d, the distance
to the prohibited zone, d: {0, 1, 2} and the velocity vinv: {0, 1}. The catastrophic
state is expressed as cata: d=0. The only available intervention here is the full stop
intervention, which stops the robot completely.

In this case, for the functionalities we just need to specify that the robot needs to
reach a state where it is moving, and a state where it is stopped. We model the custom
permissiveness with move:vfct=1 and stop: vfct=0 where vfct represents the robot mov-
ing or stopped. This variable is directly bound to the vinv variable with a glue variable
vg as:

INVAR vg=0 ↔ vinv=0 & vfct=0;
INVAR vg=1 ↔ vinv=1 & vfct=1;

Results: The synthesis of strategies with the full stop intervention and the move and
stop functionalities does not give any result. The only strategy guaranteeing safety,
regardless to the permissiveness is a strategy applying the full stop whenever the robot
gets too close to the prohibited zone, represented in Figure 5.11. If we analyze this
strategy with our diagnosis tool (see Chapter 4), we obtain the following result (for the
universal reachability of the functionalities predicates):

--Universal permissiveness deficiencies for functionality move:
--No path from d = 1 & full stop
--To move

This means that the functionality move is not reachable from the states satisfying (d
= 1 & full stop). Indeed, the system is stopped close to the prohibited zone and cannot
ever move again, i.e., the monitor’s intervention is irreversible. In term of automaton,
we reached a deadlock state (state w1 in Figure 5.11).

If we want to improve this strategy while guaranteeing safety, we need to either
change the interventions or accept a restriction of the functionality as described in Sec-

118 Chapter 5. Tuning the Permissiveness

safe1

d=2

v=0 w1

d=1

cata1

d=0

safe2v=1 w2 cata2

full stop

full stop

Figure 5.11: Safe strategy synthesized for the invariant SI3

tion 5.2. Here we consider that we do not have any other intervention, we thus do not
have other choice than restricting the functionality.

We choose to weaken the property to the simple permissiveness: we accept the
intervention of the monitor to be irreversible, but we still want the functionality to be
fully available before the intervention of the monitor (i.e., we change the restriction level
to 1 in the configuration file). The property for stop remains unchanged. This restriction
can seem drastic, but if the controller brings the robot too close to the prohibited zone,
we can suspect a malfunction in the control channel. It thus makes sense to stop the
robot.

With the restricted permissiveness property, the synthesis that was initially gen-
erated is appropriate: it satisfies the safety property and the custom permissiveness
properties associated with the functionalities move (restricted to simple reachability)
and stop. Specifying the restriction of functionalities highlights the impact of the mon-
itor intervention on the system ability to function, which was not possible with the use
of generic simple permissiveness.

5.4 Conclusion

In this chapter, we overcome an overly stringent definition of the monitor’s permis-
siveness, in proposing a custom definition of permissiveness according to the system’s
functionalities (the behaviors necessary to fulfill its purposes). The custom permissive-
ness properties are expressed following a simple template. We require the reachability
of a reduced set of states, therefore, more strategies can be synthesized. In the exam-
ple of the arm extension invariant, the proposed solution provided a new strategy only
requiring the use of one intervention instead of two. Also, for the gripper invariant, we
could find a solution to a problem which had no solutions with a generic definition of
permissiveness properties.

5.4. Conclusion 119

Whenever it is not possible to synthesize a satisfying strategy with regard to per-
missiveness, we propose an iterative design strategy: we give three ways to adapt func-
tionalities by weakening the permissiveness properties following a template. In these
situations, some strategies can often still be found with slight and traceable changes of
the functionalities. The impact of the monitor on the robot’s operation can thus be
qualified and reasoned about.

Integrating the definition and use of custom permissiveness properties with the ex-
isting SMOF tooling only required a small change on the front-end. The synthesis
algorithm remains unchanged.

The functionalities that would require another type of template are not considered
yet, but so far the expressiveness of this template has been sufficient to model the
considered functionalities. In further work, it is quite conceivable to integrate other
templates for the modeling of more complex functionalities, or of different types of
restrictions. Any type of CTL property can be taken into account for the synthesis with
minor changes to the tool itself.
Take Aways:

• Definition of custom permissiveness according to system functionalities;

• Restriction of functionality guided by the diagnosis;

• Three possibles ways to restrict functionalities;

• Automatic generation and weakening of properties by the tool;

• It helps for the identification of the trade-off between safety and functionalities
due to the monitor.

Chapter 6

Suggestion of Candidate Safety
Interventions

Contents
6.1 Preconditions and Effects of Interventions 121
6.2 Identifying Candidate Interventions 123

6.2.1 Magical Interventions . 123
6.2.2 Generalize the Interventions Effects 125
6.2.3 Interactive Review of the Interventions 126

6.3 Algorithm . 128
6.4 Application to an Example . 133
6.5 Conclusion . 136

When SMOF indicated that there is no safe and permissive strategy, one solution
is to change the available interventions. Defining new interventions can be arduous,
as the user needs to know which variable it should impact and how. The objective of
this chapter is to define an interactive method for identifying a list of candidate safety
interventions to be injected in the synthesis. The interventions are tightly linked to
the implementation of the system. Automatically generated interventions may not be
implementable, and it may not be possible to use them in a monitor. We want to set the
suggestion so that the candidate interventions are as realistic as possible. Also, the user
needs to review the suggested interventions and adapt them to the systems possibilities.
The suggestion of interventions is a more prospective contribution than the others and
is not supported by a tool yet. However the principles are formalized and the core
algorithms are defined.

We first discuss how the interventions are defined through their preconditions and
effect (Section 6.1). We then present the automatic identification of candidate interven-
tions based on the invariant model, and how the user can review them to adapt them to
the system’s abilities (Section 6.2). We present the algorithm for the interactive sugges-
tion of interventions in Section 6.3, and apply it manually to an example in Section 6.4.
We conclude in Section 6.5.

6.1 Preconditions and Effects of Interventions

In this section we propose to review how the interventions are defined, and to discuss
their characteristics.

122 Chapter 6. Suggestion of Candidate Safety Interventions

The interventions are defined through two main parameters: their effect and their
preconditions. The preconditions define in what case an intervention can be applied:
the history of the system at one step is considered (the sequential precondition), as
well as the current state in which the intervention is triggered (the static precondition).
They model the physical characteristics that will guarantee that the intervention will
have the expected effect. For instance, the intervention “blocking the arm extension”,
used for the invariant SII (the arm must not be extended when the speed is higher than
speedmax) will indeed block the extension only if the arm is not already extended (its
static precondition is that the arm is not already extended).

The effect of an intervention models how it modifies the behavior of
the system. It impacts the discrete variables, and must respect their dy-
namics. For instance, the speed variable used for SII is defined as
speed ∈ {[0, speedmax −m[, [speedmax −m, speedmax[, [speedmax,∞[}={0,1,2}. It is a
continuous variable: the value of the discrete variable representing it can only increase
by one, decrease by one, or stay the same. It is not possible for an intervention to make
the speed value jump from 0 to 2 in one step.

From our experience, most interventions affect only very few (if not only one) vari-
ables. Specific changes of the affected variables will be prevented or forced, potentially
resulting in the removal of several transitions. For instance, consider the braking inter-
vention specified for the invariant SII. The intervention model with SMOF is:

-- Interv(static precondition, sequential precondition, effect);
VAR brake: Interv(TRUE, s=0, next(s)!=s+1);

The intervention has no static precondition (TRUE). It has one sequential precondition:
the margin threshold has just been crossed (s=0 in the previous state). This models the
fact that the braking of the robot is not immediate. The effect of the intervention is to
prevent the speed from increasing (next(s)!=s+1).

We saw in Section 2.2 (in Chapter 2) that only a non-permissive strategy can be
synthesized for SII with the braking intervention only (see Figure 6.1 for reminder). We
see that the intervention blocking the arm not only cuts the transitions from w1 to cata
and from w3 to cata, but also from w1 to w2 and from w3 to w2: the state w2 is not reachable.

An ideal intervention would only cut the transition to the catastrophic state(s).
This would mean controlling exactly the evolution of all the variables on the transition
(change, or freeze the variables values). However, the considered variables can be com-
pletely independent, therefore controlling them exactly simultaneously seems unrealistic.
For example, the transition from w1 (s=1 & a=0, i.e., the arm is folded while the speed
is within the margin) to cata (s=2 & a=1, i.e., the arm is extended while the speed is
higher than the maximum allowed value) can be cut if we prevent the arm extension and
the increase in speed up to a value higher than speedmax. But also, one has to allow the
speed to increase while the arm remains folded (a=0), or the arm to extend while the
speed remains within the margin (the speed could fluctuate within the margin, but not
cross the threshold). This seems to be more of a complex control function, than of an

6.2. Identifying Candidate Interventions 123

s1

s=0

a=0 w1

s=1brake
w2

s=2

s2a=1 w3
brake

c

Figure 6.1: Non-permissive strategy synthesized for SII (repeated from 2.13)

intervention we can rely on. Generally, multi-variable interventions are hard to imple-
ment and thus not realistically trustworthy. Acknowledging this, we will only consider
mono-variable interventions for the candidate interventions suggested for the synthesis.
Note that several interventions can be applied in one state.

6.2 Identifying Candidate Interventions

The model limited to the safety invariant without a strategy, i.e., without the addition
of intervention in warning states, is fully permissive. The addition of interventions in
warning states cuts transitions not only to the catastrophic states but to warning and safe
states. The interventions are real actions that the system can perform (e.g., triggering
the brakes, prohibiting the movement of a part, etc), they can have a large impact. For
instance, after an emergency stop, the system may not be able to move again without an
intervention of the operator (there is no transition from this state to other safe states,
the system is stuck). This results in a limitation of the system’s possibilities of action,
i.e., of the permissiveness.

In Chapter 4, we could identify which interventions (or combination of interventions)
cut paths to some non-catastrophic states. We propose in this chapter to replace some
of these interventions by more appropriate interventions (that would cut less or other
transitions), in order to restore the permissiveness.

We propose an interactive approach, in which some new appropriate interventions
can be suggested to the user, and reviewed by her. A new synthesis is then launched
with the new interventions, potentially resulting in a fully permissive strategy.

6.2.1 Magical Interventions

The fact that the interventions cut more transitions than expected results in weakening
permissiveness. Therefore the idea is to design interventions that, while being realistic
(mono-variables, respecting the dynamics of the variable) will be as little restrictive as
possible (cut as few transitions as possible). We will therefore privilege the intervention
preventing a specific evolution of a variable than forcing one.

124 Chapter 6. Suggestion of Candidate Safety Interventions

Warn. state w1: s=1 & a=0 w2: s=2 & a=0 w3: s=1 & a=1
Cata. state c c c
Magical interv.
(effect)

i(w1-c):
next(s)!=2 |
next(a)!=1

i(w2-c):
next(s)!=2 |
next(a)!=1

i(w3-c):
next(s)!=2 |
next(a)!=1

Candidate
interv. (effect)

i1,w1: next(s)!=2
i2,w1: next(a)!=1

i1,w2: next(s)!=2
i2,w2: next(a)!=1

i1,w3: next(s)!=2
i2,w3: next(a)!=1

Table 6.1: Identification of candidate interventions from the magical interventions for
SII

s1

s=0

a=0 w1

s=1

w2

s=2

s2a=1 w3 c

i(w1-c)

i(w2-c)

i(w3-c)

Figure 6.2: Strategy synthesized for SII with magical interventions

Theoretically, the only interventions needed in a warning state are interventions
preventing the reachability of the neighboring catastrophic states and only these. We
call these interventions magical as they may not realistically implementable. However,
they guide us for the definition of new interventions.

Let us consider the invariant SII (the arm must not be extended when the speed is
higher than speedmax). The warning states w1, w2 and w3 would each need one magical
intervention, cutting the transition to the catastrophic state c. Let us create three mag-
ical interventions i(w1-c) that cuts w1 → c, i(w2-c) that cuts w2 → c and i(w3-c) that
cuts w3 → c. The effect of these interventions is described in Table 6.1 (the last line of
the table is discussed later). As there is only one catastrophic state, all the interventions
now have the same effect: preventing the variable from reaching the catastrophic values
(i.e., their effect is !(next(s)=2 & next(a)=1)=next(s)!=1 | next(a)!=1). A strategy
synthesized with these magical interventions would be as presented in Figure 6.2.

However, as mentioned above, we only want to consider mono-variable interventions.
The effect of the magical intervention is written as a disjunctive normal form, i.e., a
list of OR of clauses, a clause being here next(var)!=var value. We can then split this
multi-variable magical intervention into mono-variable interventions, each one having

6.2. Identifying Candidate Interventions 125

Intervention
name

Static precon-
dition Initial effect Generalized effect

i1,w1 w1 next(s)!=2 next(s)!=s+1
i2,w1 w1 next(a)!=1 next(a)!=a+1
i1,w2 w2 next(s)!=2 next(s)!=s
i2,w2 w2 next(a)!=1 next(a)!=a+1
i1,w3 w3 next(s)!=2 next(s)!=s+1
i2,w3 w3 next(a)!=1 next(a)!=a

Table 6.2: Setting static precondition and generalizing the effects of the interventions
for SII

for effect one of the clauses. The effect of corresponding mono-variables interventions
for SII are shown in Table 6.1. We call these interventions candidates for the synthesis.
The mono-variable interventions cut more transitions than the magical intervention, as
they cut all the transitions along which a variable evolves in a certain way. For instance,
an intervention preventing s from increasing, applied in w1 cuts the transition from w1

to the catastrophic state, but also the transition from w1 to w2 (see Figure 6.1).
The candidate interventions will be used for the tentative synthesis of a new strategy.

However they may still cut too many transitions. It is still possible that no satisfying
strategy is found with these new interventions.

6.2.2 Generalize the Interventions Effects

During the synthesis with SMOF, interventions are applied in warning state in order to
synthesize a safe and permissive strategy. Every intervention is tried in every warning
state and its validity evaluated with regards to the preconditions. It means that the more
interventions are defined, the longer the synthesis will take to complete. We propose
to reduce the number of candidate interventions: we add static preconditions to the
interventions, re-write their effects and gather the ones that have the same effect.

Set static preconditions: In the previous section, we presented a way to identify
a list of candidate interventions in analyzing the transition from each warning state to
their neighboring catastrophic states. We therefore want the candidate interventions to
only be applied in the warning states they have been designed for. For instance, the
intervention i1,w1 is designed for the warning state w1, it must not be used in the warning
state w2 during the synthesis. To specify that, we add the warning state’s characteristic
predicate as a static precondition for the candidate intervention. The static precondition
of the intervention i1,w1 is w1 (see Table 6.2).

Generalize the interventions effects: For variables defined as continuous, we can
distinguish the effects precisely with regard to how the variable can evolve. Note that
we use the term “continuous” as defined in SMOF: a discrete variable is said continuous
if it can only increase by one, decrease by one or stay the same. For instance, the

126 Chapter 6. Suggestion of Candidate Safety Interventions

Name Static precondition Effect Sequential pre-
condition

I1 w1 | w3 = s=1 next(s)!=s+1 s=0
I2 w1 | w2 = (s=1 | s=2) & a=0 next(a)!=a+1 TRUE
I3 w2 = s=2 & a=0 next(s)!=s s=1
I4 w3 = s=1 & a=1 next(a)!=a TRUE

Table 6.3: Resulting candidate interventions for SII

interventions i2,w1 , i2,w2 and i2,w3 (see Table 6.1) have for effect next(a)!=1. However,
the physical effect of these interventions is not the same depending on the state in
which it is applied (the static precondition). The intervention i2,w1 , applied in w1: s=1
& a=0, has for effect to prevent the arm from extending, i.e., next(a)!=a+1. Similarly,
i2,w2 in w2 prevents the extension of the arm. For i2,w3 that is applied in w3: s=1 &
a=1, it specifies that the arm does not stay extended, i.e., the arm folds, expressed as
next(a)!=a. Physically, this is a very different effect. It makes sense to differentiate it
from the two others interventions.

We propose, for the interventions impacting continuous variables, to use the following
pattern:

• next(var)!= var-1;

• next(var)!= var;

• next(var)!= var+1.

The generalization of the candidate interventions for SII is presented in Table 6.2.

Merge the interventions: Finally, the interventions that have the same effect can
be gathered in a single definition. That is the case for the interventions i1,w1 and i1,w3

for instance. Their effect (next(s)!=s+1) can be merged, resulting in one intervention
only. The static preconditions are also gathered: the intervention I1 resulting from
the merging has for static precondition the static preconditions of i1,w1 and i1,w3 . The
results of the merging step for SII are presented in Table 6.3 (the last column of the
table concerning sequential preconditions will be explained in the next section).

6.2.3 Interactive Review of the Interventions

In order to make the interventions as realistic as possible, i.e., respecting the system’s
abilities, the user can review them before launching the synthesis.

Set sequential preconditions: The main parameter than cannot be anticipated au-
tomatically is the presence of sequential preconditions. These represent the latency of
some interventions. For instance, the braking intervention is not immediately effective as
the robot has some inertia. Therefore, the sequential precondition for this intervention

6.2. Identifying Candidate Interventions 127

is that the speed variable has just crossed the margin threshold: only in this case the
brakes would be effective before the robot has the time to reach the catastrophic value.

The user can therefore review the candidate interventions to add, if possible, the se-
quential preconditions that would represent the actual characteristics of the system. For
the invariant SII, the two interventions concerning the speed have a sequential precondi-
tion, due to the inertia of the platform. Controlling the arm however is here considered
immediate, for illustration purposes. These sequential preconditions are presented in
Table 6.3.

Remove non-implementable interventions: As a more drastic review of the list of
interventions, the user can also remove any intervention which cannot be implemented,
for instance because the concerned variables are not controllable.

Remove duplicates: Also, some candidate interventions could be duplicates of the
ones initially defined. They can be removed from the list. For instance, I1 is actually the
braking intervention that was initially defined, it can therefore be removed from the list
of additional candidates interventions. The original braking intervention remains and
will be available for the synthesis.

The resulting list of candidate interventions, along with the braking intervention
initially defined, is encoded as follows:

-- Interv(static precondition, sequential precondition, effect);
VAR I2: Interv((s=1 | s=2) & a=0 , TRUE, next(a)!=a+1);
VAR I3: Interv(s=2 & a=0, s=1, next(s)!=s);
VAR I4: Interv(s=1 & a=1, TRUE, next(a)!=a);
VAR brake: Interv(TRUE, s=0, next(s)!=s+1);

With these interventions one strategy respecting both the safety and permissiveness
is synthesized for the invariant SII (represented in Figure 6.3). Let us recall that the
flag of an intervention is the triggering condition.

-- STRATEGY #1
DEFINE flag brake := s=1 & a=1 ;
DEFINE flag I2 := s=1 & a=0 | s=2 & a=0 ;
DEFINE flag I3 := FALSE ;
DEFINE flag I4 := FALSE ;

We recognize here the strategy that was synthesized in the Chapter 2. Indeed,
the intervention I2 actually models exactly the intervention blocking the arm that we
previously used. We were able to suggest an appropriate intervention.

Note that the reviewing by the user of the list of interventions is optional. If the user
does not review the definition of the interventions, the synthesis may run for a longer
amount of time, and return more strategies, that will have to be manually sorted out
afterwards.

128 Chapter 6. Suggestion of Candidate Safety Interventions

s1

s=0

a=0 w1

s=1

w2

s=2

s2a=1 w3 c

I2

brake

Figure 6.3: Strategies synthesized fore SII with the candidate interventions

6.3 Algorithm

In this section, we detail the algorithms used for the different steps of the suggestion of a
list of candidate interventions for the synthesis with SMOF. How the different algorithms
fit together is presented in Figure 6.4.

Creation of a partial strategy: In Chapter 4, we showed how to identify the inter-
ventions which have an impact on the permissiveness of a strategy (the permissiveness
impact PI of the couples (state, intervention(s))). When a non-permissive strategy has
been found, it can be used as an input for the suggestion of interventions. The interven-
tions impacting the permissiveness (i.e., i ∈ P(I), there exists s ∈ S \ Sc, PI(s, i) 6= ∅)
are removed, resulting in a partial strategy. Some warning states are left with transi-
tions to a catastrophic state, and the safety property is not satisfied. The suggestion
of interventions therefore has to identify candidates interventions for the warning states
with a transition to a catastrophic state only. The other warning states keep the inter-
ventions that they were associated with in the initial non-permissive strategy. This step
is optional: if no initial strategy is chosen, the suggestion of interventions will design
interventions for every warning state.

Let us consider the automaton Ainit representing the system’s behavior with the
initial non-permissive strategy Rinit. Ainit = (S, Tinit, s0):

• S is the set of states, S = Ss ∪ Sw ∪ Sc:

– Ss the set of safe states,
– Sw the set of warning states (i.e., the states with a transition to a catastrophic

state before synthesis of the strategy),
– Sc the set of catastrophic states.

• Tinit the transition function,

6.3. Algorithm 129

(Create
partial strategy)

(Algo 5)

Id. candidates
interv.

(Algo 6)

Set stat. pre.
(Algo 6)

Generalize effects
(Algo 6)

Merge interv.
(Algo 7)

Set seq. pre.
(Proc 8)

Remove
non-implem.

interv.
(Proc 8)

Remove
duplicates
(Proc 8)

(Non-perm.
strat.) (PI)

Invt.
model Interv.

List of candidate
interventions

Figure 6.4: Process for the suggestion of interventions

130 Chapter 6. Suggestion of Candidate Safety Interventions

• s0 the initial state.

We call V the set of the n observable variables used to model the safety invariant. Each
variable vj ∈ V is defined on its domain Dj . A state s ∈ S is a combination of variables
and their valuations, i.e., s ∈ D1 × ...×Dn. We write vj(s) the value of the variable vj

in the state s. We call Vc the set of continuous variables, Vc ⊂ V. The term continuous
is used as defined in SMOF: the variable evolution is restricted to “the value increases
of one”, “the value decreases of one” and “the value stays the same”. Such variable are
defined using the continuity template in SMOF.

I is the set of interventions defined by the user. I can be empty if no initial strategy is
chosen. In this case, every warning state is empty and has a transition to a catastrophic
state, and the suggestion tool will design candidate interventions for all of them.

The initial non-satisfying strategy is a function Rinit : Sw → P(I) that associates to
warning states zero, one or several interventions in I. Rinit can be null: no intervention
is associated to any warning state.

From Rinit, we remove the interventions iw from the states sw in which
PI(sw, iw) 6= ∅ (i.e., the intervention iw triggered in the state sw contributes to cutting
the paths to some non-catastrophic state(s)), following Algorithm 5.

Algorithm 5: Creating the partial strategy Rintermediary

Input: Rinit, Ainit, PI
1 Rintermediary = ∅
2 for sw ∈ Sw do
3 for iw ∈ Rinit(sw) do
4 if PI(sw, iw) = ∅ then
5 Rintermediary(sw)+ = iw
6 end
7 end
8 end

Output: Rintermediary

We now have Rintermediary : Sw → P(I) (some states can be without interventions).
This defines the automaton Aintermediary = (S, Tintermediary, s0). This automaton
represents the behavior with a partial strategy.
Design the list of candidate interventions: Let us consider the automaton A′ =
(S, T ′, s0), being Aintermediary modified by a strategy R′. We want to find R′ : Sw →
P(I ′), such that R′ satisfies Safe and Perm, the safety and permissiveness properties.
SMOF automatically searches for R′, given the set of interventions I ′. We therefore
want to find the set I ′ of candidate interventions for the synthesis of R′.

An intervention i ∈ I ′ is defined through its static precondition, sequential pre-
condition and effect. For simplified readability we will refer to the expressions of its
components with i(stat. pre.), i(seq. pre.) and i(effect).

The proposed algorithm is done in three steps. The first step is the identification
of the appropriate candidate interventions for each warning state. It encompasses the

6.3. Algorithm 131

identification of their desired effects and static preconditions, and the generalization of
the effects definitions for the continuous variables. It is detailed in Algorithm 6.

Algorithm 6: Identification of candidate interventions, setting of static pre-
conditions and generalization.

Input: Aintermediary = (S, Tintermediary, s0)
1 itab=[] for sw ∈ Sw, ∃sc ∈ Sc, (sw, sc) ∈ Tintermediary do
2 for sc ∈ Sc, (sw, sc) ∈ Tintermediary do

/* Identify the candidate interventions */
3 for j=0..Card(V) do

/* Effect */
4 ij,sw (effect) = next(vj) 6= vj(sc))

/* Static precondition */
5 ij,sw

(stat.pre.) = sw

/* Generalize the definition for continuous variables */
6 if vj ∈ Vc then
7 if vj(sw) < vj(sc) then
8 ij,sw (effect) = next(vj) 6= vj + 1
9 end

10 if vj(sw) = vj(sc) then
11 ij,sw

(effect) = next(vj) 6= vj

12 end
13 if vj(sw) > vj(sc) then
14 ij,sw (effect) = next(vj) 6= vj − 1
15 end
16 end
17 itab+ = ij,sw

18 end
19 end
20 end

Output: itab

The second step merges all the intervention previously identified by their effect. This
part is detailed in Algorithm 7.

The final step is the optional review of the interventions list by the user. It results
in the final list of candidate interventions. It is presented in User Procedure 8.

The result of these algorithms is a list of interventions, defined through their static
preconditions, sequential preconditions and effect. These interventions are then added
to the invariant model, and the SMOF synthesis can be launched. We do not provide
a guarantee that these interventions will be sufficient to find a safe and permissive
strategy. Indeed, the candidate interventions are mono-variable and will therefore cut
more transitions than just the one to the catastrophic state. However, these are the best
realistic candidates.

132 Chapter 6. Suggestion of Candidate Safety Interventions

Algorithm 7: Merging of the interventions
Input: itab

1 I=[], interv checked=[], k=0
2 for i ∈ itab, i /∈ interv checked do

/* Copy the intervention i in the list I */
3 I[k]=i
4 interv checked+=i
5 for j ∈ itab do

/* Add the precondition to the interv. in I with the same effect
*/

6 if j(effect) == i(effect) then
7 I[k](stat.pre.) = I[k](stat.pre.)|j(stat.pre.)
8 interv checked+=j
9 end

10 end
11 k++
12 end
13 I(stat.pre.)=Simplify(I(stat.pre.))

Output: I, the tentative list of candidate interventions

User Procedure 8: Interactive review of the list of interventions
Input: I, the tentative list of candidate interventions

1 Ifinal = []
/* The user removes the interventions that are not implementable

*/
2 I = userRemoveCauseImplem(I)

/* The user removes the interventions that are duplicate */
3 I = userRemoveCauseDupl(I)
4 for i ∈ I, do

/* For the remaining interventions, the user sets sequential
preconditions (if needed) */

5 i(seq. pre.) = userSetSeqPre(i)
6 Ifinal+ = i

7 end
Output: Ifinal, the final list of candidate interventions

6.4. Application to an Example 133

6.4 Application to an Example

We consider the example of the invariant SIII (a gripped box must not be tilted over
an angle a0). For this safety invariant, two observations are used: the angle of rotation
of the arm a is a continuous variable on which a margin is taken (a={low, within the
margin, high}={0,1,2}), and the position of the gripper, that is either closed empty, open
or closed with a box (g={closed empty, open, closed with box}={0,1,2}). Accordingly,
the catastrophic state is expressed as cata: a=2 & g=2. Three warning states exist:

w0: a = 1 & g = 1
w1: a = 2 & g = 1
w2: a = 1 & g = 2

As presented in Chapter 2, one strategy was found for this invariant using two inter-
ventions, one braking the arm (prevent its rotation) and one locking the gripper (prevent
it from closing). Let us assume now that no intervention was initially known. We want
to see if we can suggest all the interventions necessary for a satisfying strategy. Note
that we skip here the step of identifying a partial strategy from an initial non-permissive
strategy, since we consider that no intervention has been defined.

Applying the algorithms 6 and 7 allows the identification of four candidate interven-
tions, I[0], I[1], I[2], I[3]. It is detailed in Table 6.4. We can see the details of the
loop iterations of Algorithm 7 (where the interventions with the same effect are merged)
applied to the example.

These four interventions are added to the model, and the SMOF synthesis is run.
Eight strategies are synthesized, that are both safe and permissive. This is already a
decent number of strategies to go through to identify if one is implementable. The user,
in this case, didn’t review the list of interventions before launching the synthesis.

Interactive review of the interventions: Now let us see the strategies that would
be found if the user reviews the list of candidate interventions. The intervention I[0]
affects the angle of rotation of the arm: I[0](effect)=next(a)!=a+1, i.e., it prevents
the rotation of the arm. There is some inertia on the arm’s movement, therefore this
intervention would only be efficient if applied when the threshold has just been crossed:
I[0](seq. pre.)= a=0. This sequential precondition is added to the definition of I[0].
Similarly, I[2], which can be applied in w1, i.e., when the arm is fully rotated and the
gripper open, has for effect to make the angle of rotation a change, in this case to make
it decrease (as it is already at its maximum value). This also requires a sequential
precondition due to the inertia: I[2](seq. pre.)= a=1. Concerning the interventions
I[1] and I[3], they have an effect on the gripper, that is considered to be immediate, no
sequential precondition is needed. The reviewed interventions are detailed in Table 6.5.

Using this reviewed list of candidate interventions, the SMOF synthesis returns the
two following strategies:

134 Chapter 6. Suggestion of Candidate Safety Interventions

For all the warning states sw ∈ Sw that have transitions to catastrophic states
w0: a=1 & g=1 w1: a=2 & g=1 w2: a=1 & g=2
For all the neighboring catastrophic states of sw

cata cata cata
Identify the candidate interventions (Algo. 6)
i0,w0(stat. pre.)=w0

i0,w0(eff.)= next(a)!=2
i1,w0(stat. pre.)=w0

i1,w0(eff.)=next(g)!=2

i0,w1(stat. pre.)=w1

i0,w1(eff.)=next(a)!=2
i1,w1(stat. pre.)=w1

i1,w1(eff.)=next(g)!=2

i0,w2(stat. pre)=w2

i0,w2(eff.)=next(a)!=2
i1,w2(stat. pre.)=w2

i1,w2(eff.)=next(g)!=2
Generalize the effects definition for continuous variables (Algo. 6)
i0,w0(eff.)=next(a)!=a+1
i1,w0(eff.)=next(g)!=g+1

i0,w1(eff.)=next(a)!=a
i1,w1(eff.)=next(g)!=g+1

i0,w2(eff.)=next(a)!=a+1
i1,w2(eff.)=next(g)!=g

Merge the interventions with the same effect (Algo. 7)
I is empty
First loop iteration: for i0,w0

I[0](stat. pre.)=w0; I[0](eff.)=next(a)!=a+1;
Second loop iteration: for i1,w0

i1,w0(eff.)!=I[0](eff.)
I[1](stat. pre.)=w0; I[1](eff.)=next(g)!=g+1;
Third loop iteration: for i1,w1

i1,w0(eff.)=I[1](eff.)
I[1](stat. pre.)=w0 | w1 ;
Fourth loop iteration: for i0,w1

i0,w1(eff.)!=I[0](eff.), i0,w1(eff.)!=I[1](eff.)
I[2](stat. pre.)=w1; I[2](eff.)=next(a)!=a;
Fifth loop iteration: for i0,w2

i0,w2(eff.)=I[0](eff.)
I[0](stat. pre.)=w0 | w2;
Sixth loop iteration: for i1,w2

i1,w2(eff.)!=I[0](eff.), i1,w2(eff.)!=I[1](eff.), i1,w2(eff.)!=I[2](eff.)
I[3](stat. pre.)=w2; I[3](eff.)=next(g)!=g;
Tentative list of candidate interventions:
I[0](stat. pre.)=w0 | w2 I[0](eff.)=next(a)!=a+1
I[1](stat. pre.)=w0 | w1 I[1](eff.)=next(g)!=g+1
I[2](stat. pre.)=w1 I[2](eff.)=next(a)!=a
I[3](stat. pre.)=w2 I[3](eff.)=next(g)!=g

Table 6.4: Algorithms 6 and 7 applied to the gripper invariant

6.4. Application to an Example 135

Name Static precondition Sequential precondition Effect
I[0] w0 | w2 a=0 next(a)!=a+1
I[1] w0 | w1 TRUE next(g)!=g+1
I[2] w1 a=1 next(a)!=a
I[3] w2 TRUE next(g)!=g

Table 6.5: Final list of candidate interventions for SIII

-- STRATEGY #1
DEFINE flag I0 := FALSE ;
DEFINE flag I1 := a = 1 & g = 1 | a = 2 & g = 1 ;
DEFINE flag I2 := FALSE ;
DEFINE flag I3 := a = 1 & g = 2 ;

-- STRATEGY #2
DEFINE flag I0 := a = 1 & g = 2 ;
DEFINE flag I1 := a = 1 & g = 1 | a = 2 & g = 1 ;
DEFINE flag I2 := FALSE ;
DEFINE flag I3 := FALSE ;

The first strategy is quite counterintuitive. It uses the intervention I[1] in the states
w0 and w1, i.e., decreases the angle of rotation whenever the gripper is open and the angle
of rotation above the margin. It uses the intervention I[3] in the state w2, i.e., it opens
the gripper if the gripper is closed with a box and the arm rotated more than the margin.
This strategy is indeed satisfying with regard to this invariant: the box is never tilted
over the maximum angle, since it is no longer in the grip. However, this strategy implies
to drop the box (I[3] in w2), which is not satisfying with regard to another invariant (do
not drop a box). If the user chose to keep this strategy, the consistency analysis would
reveal a conflict with the invariant stating that a box must not be dropped.

The second strategy uses I[0] in w2, i.e., prevents the rotation of the arm when a
box is held, and uses I[1] in w0 and w1, i.e., prevents the gripper from closing (gripping
a box) when the arm is tilted over the margin value. This strategy is the strategy that
had been synthesized in the Chapter 2. We therefore validate that we were able to find
the expected strategy without initially specifying any intervention.

The user had to review carefully the four interventions that were initially proposed
by the tool, however this doesn’t seem to be too burdensome. The number of interven-
tion was limited. Also, if the user didn’t want to review the interventions, they could
review the 8 strategies synthesized with the initial candidate interventions: the satisfying
strategy was also part of the set of strategy initially synthesized.

136 Chapter 6. Suggestion of Candidate Safety Interventions

6.5 Conclusion

In this chapter, we propose to replace interventions that have an impact on the per-
missiveness by new ones. We propose an interactive approach for the design of these
new interventions. A first definition of the candidate interventions can be automatically
inferred from the invariant model, with or without a partial strategy. They are identi-
fied from a magical intervention that would cut only the transition to the catastrophic
states. The candidate interventions are realistic as they respect the dynamics of the
continuous variables, and are mono-variable, therefore avoiding a very fine joint control
of independent variables.

Then, the user can review the interventions to adapt them to the physical character-
istics of the system. This step is optional, but helps for the synthesis of more suitable
strategies. The algorithms we designed rely on an exhaustive exploration of the transi-
tions to the catastrophic states. They might not be appropriate for large models. An
approach through heuristic search could be explored.

We saw that for our examples we were able to synthesize satisfying strategies using
new interventions. However, further validation on larger case study would be necessary.
Particularly, we have not been able to analyze cases where the variable are not all
continuous or have a more complex definition of the continuity (as for the zones models of
the collision invariant SI4), therefore calling for different types of candidate interventions.
It would be interesting to evaluate the approach on such a case.
Take Aways:

• We can improve non-permissive strategies by replacing some of their interventions
(the ones with a nonzero permissiveness impact);

• The interventions can be designed automatically;

• The user can review the candidate interventions to make the synthesis more effi-
cient;

• It is possible to synthesize appropriate strategies without prior knowledge on any
of the available interventions.

Conclusion
Autonomous systems typically fulfill various missions and tasks, while evolving in un-
structured and dynamic environments. They thus may have to face hazardous situations.
To ensure their safety, monitoring is an appropriate technique: a safety monitor observes
the system and reacts, should a danger be detected, keeping the system in a safe state.
A safety monitor obeys to a set of safety rules, specifying the appropriate reaction to
a detected violation. These rules must ensure that the monitor keeps the system safe
(safety property), but also that it allows the system to perform its tasks (permissiveness
properties). SMOF has been designed to synthesize safety rules for such monitors. It
takes as input a model of the system’s behavior, the available interventions and the de-
sired safety and permissiveness properties. Then, its synthesis algorithm searches for a
satisfying strategy, and, if successful, outputs a set of safe and permissive strategies. In
this work we were interested in cases where SMOF fails to return a satisfying solution.

Contributions

We applied SMOF to a new case study —a maintenance robot that performs a light
measurement task on airports runways— and revisited the results from a previous case
study —a manufacturing robot. While doing so, we faced cases where SMOF cannot
find a strategy. When that was the case, we had to manually search for the appropriate
solution to implement to overcome this issue. This was a burdensome task and several
iterations were needed. Three questions emerged when manually searching for a solution
to SMOF synthesis’ failure: how to understand why the synthesis fails? How to tune the
permissiveness requirements to take into account the system’s expected functionalities?
And how to identify new candidate interventions for the synthesis? Our contributions
answer these questions.

First, we developed a diagnosis tool, that helps the user identify why a strategy
fails to fulfill some permissiveness requirements. We introduced two key concepts. The
permissiveness deficiencies of a strategy qualify the permissiveness loss imposed by a
strategy. The permissiveness impact of a couple (state, intervention(s)) points to the
interventions that contribute to discard the paths to some operational states. These two
parameters help the user to identify the blocking points for the synthesis, and making a
decision on the changes to apply on the system or the requirements. This diagnosis tool
has been successfully implemented in a Python version, and applied to several examples.

Second, we created a template for the user to adapt the permissiveness requirements
to the system’s expected functionalities. When the permissiveness properties are too
drastic for the synthesis algorithm to find a solution, we also propose ways to weaken
them with traceable impact on the functionalities. We can better qualify the tradeoff
between safety and functionality due to the monitor. This second tool has also been
implemented (in C++, for integration purposes with SMOF), and we were able to use
it in conjunction with SMOF to find solutions when SMOF was returning no solution.

138 Conclusion

Third, we designed an interactive method to identify a list of interventions to be
injected in the synthesis. The interventions are designed to be realistic and imple-
mentable, and the user can review them to adapt them to the system’s actual abilities.
These interventions can be used as a replacement to interventions having an impact on
the permissiveness, or when no intervention is initially defined. Even if this approach
has been formally described and successfully applied to examples, we did not implement
the corresponding tool. This work was more prospective than for the two previous tools.
However, no further step is needed for a successful implementation.

Our three contributions are an extension of the SMOF process, and have been suc-
cessfully applied to examples extracted from two industrial case studies. We could now
solve problems that could not previously be solved or needed some strong expertise.

This work can also be seen as a toolbox for solving cases when SMOF fails to return
a satisfying solution. Each brick can be used alone or in combinations with the others,
in different orders, depending on the case. Their addition to the SMOF process makes
it more flexible and adaptable to a larger set of problems. For instance, we could handle
cases where no intervention is initially declared. We can also imagine using these new
bricks for the analysis and improvement of an existing monitor.

This research could be of interest to engineers in the robotics and autonomous sys-
tems industry who wish to improve their process of designing fault tolerance mechanisms.
As much as possible, the use of formal methods and complex algorithms is hidden in
our contributions, which makes them accessible for a user with little experience in these
fields.

Limitations

Our work presents some limitations. We identify some of them here and mention ideas
for improvement.

First, if most of the models are fairly simple with state spaces of a moderate size, the
scalability of our contributions for larger models is an issue. Several of the algorithm
designed in our work rely on an exhaustive check of a list of properties (for the diagnosis)
or on the exhaustive exploration of the transitions to the catastrophic states (for the
suggestion of interventions). These algorithms will not scale well for very large models.
The computation time and needed resources may be excessive. To palliate this issue, the
implementation of heuristic methods could be a valid approach. For instance, instead
of exploring all the possible candidate interventions, we could identify interventions
patterns from previous examples. These could be used in priority by the tool.

Second, the diagnosis tool that has been designed during this research takes as input
a non-permissive strategy. It’s goal is to analyze why this strategy is non-permissive
(i.e., why the synthesis failed to synthesize a satisfying strategy) in order to identify
how to improve it. However, the SMOF synthesis algorithm may return a large number
of such non-permissive strategies. Choosing the initial strategy to be analyzed is a key
point and can become complicated for the user when too many choices are available. It
would be interesting to work on defining the best candidate strategy for the improve-

139

ments we propose (the replacement of some interventions, or the definition of custom
permissiveness properties).

Perspectives

A short term perspective is the full implementation of the tools presented in this
manuscript, including the suggestion of interventions facility. An important effort is
needed to increase the usability of this toolbox in order to be used by engineers, which
may raise issues about the combination of the different tools. For instance, for a given
non-permissive strategy it would be possible to tune the permissiveness with the custom
permissiveness tool and to identify new interventions with the suggestion of interven-
tions tool. An interface needs to be built between these two tools to ease their use
in combination. Also, the user interface needs to be improved, allowing for a better
interactivity.

In our approach, we do not consider the cost of the interventions regarding the impact
on autonomy for instance (other definitions of cost may be used). On real systems, some
interventions may be more “expensive” (i.e., with a high cost) than others. For instance,
an emergency brake, requiring an intervention of the operator will degrade autonomy
more than a soft brake, after which the robot can start moving again. A slight deviation
of trajectory to avoid an obstacle may be preferred to a full stop. To take this into
account, a cost value could be associated to the interventions. The synthesis would then
search for the cheapest safe and permissive strategy.

While taking into account the cost of an intervention, the synthesis could also con-
sider its probability of success. Some interventions may have a probability of success
lower than one. For instance, a trajectory calculation function can be use to avoid an
obstacle, or to bring the system away from a dangerous zone. However, such a function
is typically implemented on the main control board, where most resources are avail-
able. It cannot be fully trusted, which is often justified by a calculation of an integrity
level of a safety function (as in ISO61508 standard [IEC 61508-1, 2010]). For instance,
some faults on the control board —that cannot be fully verified due to its complexity—
could propagate to this safety function, making it fail. The intervention will have a
probability of success lower than one. Such interventions could then be associated to
interventions with a guaranteed effect. We would then construct multi-level strategies:
an intervention with a probability of success lower than one is triggered; if it fails, a
guaranteed intervention is triggered. Considering interventions with a low probability
of success is interesting because interventions with a probability of success lower than
one typically have a low cost (e.g., replan and execute a new safe trajectory cannot be
guaranteed but preserves system autonomy), when the contrary is true for guaranteed
interventions (e.g., emergency stop is often implemented with high integrity but auton-
omy is then fully degraded). The search for a strategy then needs to satisfy an objective
function such as the cost is minimal while guaranteeing that no catastrophic state can
be reached. This would imply in our approach to include a quantification that could be
discrete or even probabilistic. In this latter case, we would have then to switch to prob-

140 Conclusion

abilistic model-checkers. We have started to explore the idea of using non-guaranteed
interventions in collaboration with the research team MECS at KTH, Stockholm, for
an autonomous vehicle [Svensson et al., 2018]. We designed a new intervention, called a
safe stop trajectory planner (SSTP), that brings the vehicle to a safe stop area (typically
outside of the active traffic lane) by selecting among a set of pre-computed trajectories.
This intervention is not guaranteed. It can fail if the context does not allow to find
a suitable trajectory among the pre-computed set. It has then been associated to two
others interventions, an intervention that makes the system slow down (i.e., increasing
the probability for the SSTP to find a suitable trajectory) and an emergency stop, that
guaranteed that the system stops in case no safe trajectory can be executed.

Following an idea similar to the cost of the interventions, the functionalities specified
with the custom permissiveness template may not all have the same weight or priority.
For instance, a robot movement functionality may be preferred over a manipulation func-
tionality. If the synthesis fails to satisfy all the permissiveness properties associated with
the functionalities, it may have to give up on some of them. It would then be interesting
to associate a priority level to the functionalities. The synthesis could then search for
the strategy satisfying the permissiveness associated with the functionalities with the
highest priority. Integrating this feature in the existing toolset would be easily feasible.
The custom permissiveness tool can automatically restrict functionalities. The notion of
priority would just have to be added to guide the tool in the choice of the restriction to
apply. However, this raises the question of how to identify the appropriate functionalities
to model, and how to associate the right priority level to them. One possible direction
would be to use model-based system descriptions of tasks and functionalities as we have
done using HAZOP-UML for analysis hazards.

Bibliography

[Abdessalem et al., 2018] Abdessalem, R. B., Nejati, S., Briand, L. C., and Stifter, T.
(2018). Testing vision-based control systems using learnable evolutionary algorithms.
In Proceedings of the 40th International Conference on Software Engineering - ICSE
’18, pages 1016–1026, Gothenburg, Sweden. ACM Press.

[Alami et al., 1998] Alami, R., Chatila, R., Fleury, S., Ghallab, M., and Ingrand, F.
(1998). An Architecture for Autonomy. The International Journal of Robotics Re-
search, 17(4):315–337.

[Alemzadeh et al., 2015] Alemzadeh, H., Chen, D., Lewis, A., Kalbarczyk, Z., Raman,
J., Leveson, N., and Iyer, R. (2015). Systems-Theoretic Safety Assessment of Robotic
Telesurgical Systems. In Koornneef, F. and van Gulijk, C., editors, Computer Safety,
Reliability, and Security, volume 9337, pages 213–227. Springer International Publish-
ing, Cham.

[Alexander and Arnold, 2013] Alexander, R. and Arnold, J. (2013). Testing Au-
tonomous Robot Control Software Using Procedural Content Generation. In Hutchi-
son, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mattern, F., Mitchell, J. C., Naor,
M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar,
D., Vardi, M. Y., Weikum, G., Bitsch, F., Guiochet, J., and Kaâniche, M., editors,
Computer Safety, Reliability, and Security, volume 8153, pages 33–44, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

[Alexander et al., 2009] Alexander, R., Kelly, T., and Herbert, N. (2009). Deriving
Safety Requirements for Autonomous Systems. 4th SEAS DTC Technical Conference.

[Ames et al., 2015] Ames, A. D., Tabuada, P., Schürmann, B., Ma, W.-L., Kolathaya, S.,
Rungger, M., and Grizzle, J. W. (2015). First steps toward formal controller synthesis
for bipedal robots. In Proceedings of the 18th International Conference on Hybrid
Systems Computation and Control - HSCC ’15, pages 209–218, Seattle, Washington.
ACM Press.

[Aniculaesei et al., 2016] Aniculaesei, A., Arnsberger, D., Howar, F., and Rausch, A.
(2016). Towards the Verification of Safety-critical Autonomous Systems in Dynamic
Environments. Electronic Proceedings in Theoretical Computer Science, 232:79–90.

[Arora et al., 2015] Arora, S., Choudhury, S., Althoff, D., and Scherer, S. (2015). Emer-
gency maneuver library - ensuring safe navigation in partially known environments.
In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages
6431–6438, Seattle, WA, USA. IEEE.

[Askarpour et al., 2016] Askarpour, M., Mandrioli, D., Rossi, M., and Vicentini, F.
(2016). SAFER-HRC: Safety Analysis Through Formal vERification in Human-Robot

142 Bibliography

Collaboration. In Skavhaug, A., Guiochet, J., and Bitsch, F., editors, Computer
Safety, Reliability, and Security, volume 9922, pages 283–295. Springer International
Publishing, Cham.

[Avizienis et al., 2004] Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C.
(2004). Basic concepts and taxonomy of dependable and secure computing. IEEE
Transactions on Dependable and Secure Computing, 1(1):11–33.

[Basu et al., 2006] Basu, A., Bozga, M., and Sifakis, J. (2006). Modeling Heterogeneous
Real-time Components in BIP. In Fourth IEEE International Conference on Software
Engineering and Formal Methods (SEFM’06), pages 3–12, Pune, India. IEEE.

[Bensalem et al., 2009] Bensalem, S., Gallien, M., Ingrand, F., Kahloul, I., and Thanh-
Hung, N. (2009). Designing autonomous robots. IEEE Robotics & Automation Mag-
azine, 16(1):67–77.

[Blanquart et al., 2004] Blanquart, J.-P., Fleury, S., Hernek, M., Honvault, C., Ingrand,
F., Poncet, T., Powell, D., Strady-Lécubin, N., and Thévenod, P. (2004). Software
Safety Supervision On-board Autonomous Spacecraft. In Proceedings of the 2nd Eu-
ropean Congress Embedded Real Time Software (ERTS’04), page 9.

[Bloem et al., 2015] Bloem, R., Könighofer, B., Könighofer, R., and Wang, C. (2015).
Shield Synthesis: Runtime Enforcement for Reactive Systems. In Baier, C. and Tinelli,
C., editors, Tools and Algorithms for the Construction and Analysis of Systems, Lec-
ture Notes in Computer Science, pages 533–548. Springer Berlin Heidelberg.

[Bruyninckx, 2001] Bruyninckx, H. (2001). Open robot control software: the OROCOS
project. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and
Automation (Cat. No.01CH37164), volume 3, pages 2523–2528 vol.3.

[Bruyninckx et al., 2013] Bruyninckx, H., Klotzbücher, M., Hochgeschwender, N.,
Kraetzschmar, G., Gherardi, L., and Brugali, D. (2013). The BRICS component
model: a model-based development paradigm for complex robotics software systems.
In Proceedings of the 28th Annual ACM Symposium on Applied Computing - SAC ’13,
page 1758, Coimbra, Portugal. ACM Press.

[Böhm and Gruber, 2010] Böhm, P. and Gruber, T. (2010). A Novel HAZOP Study
Approach in the RAMS Analysis of a Therapeutic Robot for Disabled Children. In
Schoitsch, E., editor, Computer Safety, Reliability, and Security, Lecture Notes in
Computer Science, pages 15–27. Springer Berlin Heidelberg.

[Casimiro et al., 2014] Casimiro, A., Rufino, J., Pinto, R. C., Vial, E., Schiller, E. M.,
Morales-Ponce, O., and Petig, T. (2014). A kernel-based architecture for safe coop-
erative vehicular functions. In Proceedings of the 9th IEEE International Symposium
on Industrial Embedded Systems (SIES 2014), pages 228–237, Pisa. IEEE.

Bibliography 143

[Cavalli et al., 2003] Cavalli, A., Gervy, C., and Prokopenko, S. (2003). New approaches
for passive testing using an Extended Finite State Machine specification. Information
and Software Technology, 45(12):837–852.

[Cook et al., 2014] Cook, D., Vardy, A., and Lewis, R. (2014). A survey of AUV and
robot simulators for multi-vehicle operations. In 2014 IEEE/OES Autonomous Un-
derwater Vehicles (AUV), pages 1–8.

[CPSE-Labs, 2018] CPSE-Labs (2018). CPSE Labs - Cyber-Physical Systems Engineer-
ing Labs. http://www.cpse-labs.eu/index.php. Accessed on 2018-07-20.

[Crestani et al., 2015] Crestani, D., Godary-Dejean, K., and Lapierre, L. (2015). En-
hancing fault tolerance of autonomous mobile robots. Robotics and Autonomous Sys-
tems, 68:140–155.

[Delgado et al., 2004] Delgado, N., Gates, A., and Roach, S. (2004). A taxonomy and
catalog of runtime software-fault monitoring tools. IEEE Transactions on Software
Engineering, 30(12):859–872.

[Desai et al., 2017] Desai, A., Dreossi, T., and Seshia, S. A. (2017). Combining Model
Checking and Runtime Verification for Safe Robotics. In Lahiri, S. and Reger, G.,
editors, Runtime Verification, Lecture Notes in Computer Science, pages 172–189.
Springer International Publishing.

[Dhillon and Fashandi, 1997] Dhillon, B. and Fashandi, A. (1997). Safety and reliability
assessment techniques in robotics. Robotica, 15(6):701–708.

[Dixon et al., 2014] Dixon, C., Saunders, J., Webster, M., Fisher, M., and Dautenhahn,
K. (2014). “The Fridge Door is Open”–Temporal Verification of a Robotic Assistant’s
Behaviours. In Leonardis, A., Mistry, M., Witkowski, M., and Melhuish, C., editors,
Advances in Autonomous Robotics Systems, volume 8717, pages 97–108. Springer In-
ternational Publishing, Cham.

[Dogramadzi et al., 2014] Dogramadzi, S., Giannaccini, M. E., Harper, C., Sobhani, M.,
Woodman, R., and Choung, J. (2014). Environmental Hazard Analysis - a Variant of
Preliminary Hazard Analysis for Autonomous Mobile Robots. Journal of Intelligent
& Robotic Systems, 76(1):73–117.

[Durand et al., 2010] Durand, B., Godary-Dejean, K., Lapierre, L., Passama, R., and
Crestani, D. (2010). Fault tolerance enhancement using autonomy adaptation for
autonomous mobile robots. In 2010 Conference on Control and Fault-Tolerant Systems
(SysTol), pages 24–29, Nice, France. IEEE.

[Ertle et al., 2010] Ertle, P., Gamrad, D., Voos, H., and Soffker, D. (2010). Action
planning for autonomous systems with respect to safety aspects. In 2010 IEEE In-
ternational Conference on Systems, Man and Cybernetics, pages 2465–2472, Istanbul,
Turkey. IEEE.

144 Bibliography

[Falcone et al., 2012] Falcone, Y., Fernandez, J.-C., and Mounier, L. (2012). What can
you verify and enforce at runtime? International Journal on Software Tools for
Technology Transfer, 14(3):349–382.

[Falcone et al., 2013] Falcone, Y., Havelund, K., and Reger, G. (2013). A Tutorial on
Runtime Verification. Engineering dependable software systems, page 35.

[Falzon and Pace, 2013] Falzon, K. and Pace, G. J. (2013). Combining Testing and Run-
time Verification Techniques. In Hutchison, D., Kanade, T., Kittler, J., Kleinberg,
J. M., Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Stef-
fen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., Machado,
R. J., Maciel, R. S. P., Rubin, J., and Botterweck, G., editors, Model-Based Method-
ologies for Pervasive and Embedded Software, volume 7706, pages 38–57. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[Feth et al., 2017] Feth, P., Schneider, D., and Adler, R. (2017). A Conceptual Safety Su-
pervisor Definition and Evaluation Framework for Autonomous Systems. In Tonetta,
S., Schoitsch, E., and Bitsch, F., editors, Computer Safety, Reliability, and Security,
volume 10488, pages 135–148. Springer International Publishing, Cham.

[Fiacre, 2018] Fiacre (2018). The Fiacre language and Frac compiler Home Page by
LAAS/CNRS. http://projects.laas.fr/fiacre/. Accessed on 2018-11-13.

[Fisher et al., 2013] Fisher, M., Dennis, L., and Webster, M. (2013). Verifying au-
tonomous systems. Communications of the ACM, 56(9):84.

[Foughali et al., 2018] Foughali, M., Berthomieu, B., Dal Zilio, S., Hladik, P.-E., In-
grand, F., and Mallet, A. (2018). Formal Verification of Complex Robotic Systems
on Resource-Constrained Platforms. In FormaliSE: 6th International Conference on
Formal Methods in Software Engineering, Gothenburg, Sweden.

[Fox and Das, 2000] Fox, J. and Das, S. (2000). Safe and sound - Artificial Intelligence
in Hazardous Applications. AAAI Press - The MIT Press.

[Gainer et al., 2017] Gainer, P., Dixon, C., Dautenhahn, K., Fisher, M., Hustadt, U.,
Saunders, J., and Webster, M. (2017). CRutoN: Automatic Verification of a Robotic
Assistant’s Behaviours. In Petrucci, L., Seceleanu, C., and Cavalcanti, A., editors,
Critical Systems: Formal Methods and Automated Verification, Lecture Notes in Com-
puter Science, pages 119–133. Springer International Publishing.

[Goldberg et al., 2005] Goldberg, A., Havelund, K., and McGann, C. (2005). Runtime
verification for autonomous spacecraft software. In 2005 IEEE Aerospace Conference,
pages 507–516, Big Sky, MT, USA. IEEE.

[Gribov and Voos, 2014] Gribov, V. and Voos, H. (2014). A multilayer software ar-
chitecture for safe autonomous robots. In Proceedings of the 2014 IEEE Emerging
Technology and Factory Automation (ETFA), pages 1–8, Barcelona, Spain. IEEE.

Bibliography 145

[Gspandl et al., 2012] Gspandl, S., Podesser, S., Reip, M., Steinbauer, G., and Wolfram,
M. (2012). A dependable perception-decision-execution cycle for autonomous robots.
In 2012 IEEE International Conference on Robotics and Automation, pages 2992–
2998, St Paul, MN, USA. IEEE.

[Guiochet, 2016] Guiochet, J. (2016). Hazard analysis of human–robot interactions with
HAZOP–UML. Safety Science, 84:225–237.

[Haddadin et al., 2011] Haddadin, S., Suppa, M., Fuchs, S., Bodenmüller, T., Albu-
Schäffer, A., and Hirzinger, G. (2011). Towards the Robotic Co-Worker. In Pradalier,
C., Siegwart, R., and Hirzinger, G., editors, Robotics Research, Springer Tracts in
Advanced Robotics, pages 261–282. Springer Berlin Heidelberg.

[HAZOP-UML, 2018] HAZOP-UML (2018). Hazard Identification with HAZOP and
UML. https://www.laas.fr/projects/HAZOPUML/. Accessed on 2018-08-02.

[Horányi et al., 2013] Horányi, G., Micskei, Z., and Majzik, I. (2013). Scenario-based
automated evaluation of test traces of autonomous systems. In SAFECOMP 2013-
Workshop DECS (ERCIM/EWICS Workshop on Dependable Embedded and Cyber-
physical Systems) of the 32nd International Conference on Computer Safety, Reliabil-
ity and Security, page NA.

[Huang et al., 2014] Huang, J., Erdogan, C., Zhang, Y., Moore, B., Luo, Q., Sundaresan,
A., and Rosu, G. (2014). ROSRV: Runtime Verification for Robots. In Bonakdarpour,
B. and Smolka, S. A., editors, Runtime Verification, volume 8734, pages 247–254.
Springer International Publishing, Cham.

[Huber et al., 2017] Huber, M., Rizaldi, A., Keinholz, J., Feldle, J., Immler, F., Althoff,
M., Hilgendorf, E., and Nipkow, T. (2017). Formalising and Monitoring Traffic Rules
for Autonomous Vehicles in Isabelle/HOL. In Polikarpova, N. and Schneider, S.,
editors, Integrated Formal Methods, volume 10510, pages 50–66. Springer International
Publishing, Cham.

[IEC 61508-1, 2010] IEC 61508-1 (2010). IEC 61508-1:2010 functional safety, smart city.

[Ing-Ray Chen, 1997] Ing-Ray Chen (1997). Effect of parallel planning on system relia-
bility of real-time expert systems. IEEE Transactions on Reliability, 46(1):81–87.

[ISO 12100, 2013] ISO 12100 (2013). Safety of machinery — General principles for de-
sign — Risk assessment and risk reduction.

[ISO/IEC Guide 51, 2014] ISO/IEC Guide 51 (2014). Safety aspects – Guidelines for
their inclusion in standards.

[Jiang et al., 2017] Jiang, H., Elbaum, S., and Detweiler, C. (2017). Inferring and mon-
itoring invariants in robotic systems. Autonomous Robots, 41(4):1027–1046.

146 Bibliography

[Kane et al., 2015] Kane, A., Chowdhury, O., Datta, A., and Koopman, P. (2015). A
Case Study on Runtime Monitoring of an Autonomous Research Vehicle (ARV) Sys-
tem. In Bartocci, E. and Majumdar, R., editors, Runtime Verification, Lecture Notes
in Computer Science, pages 102–117. Springer International Publishing.

[Kane and Koopman, 2013] Kane, A. and Koopman, P. (2013). Ride-through for Au-
tonomous Vehicles. In SAFECOMP 2013-Workshop CARS (2nd Workshop on Critical
Automotive applications: Robustness & Safety) of the 32nd International Conference
on Computer Safety, Reliability and Security.

[Klein, 1991] Klein, P. (1991). The Safety-Bag Expert System in the Electronic Railway
Interlocking System ELEKTRA. In Zarri, G. P., editor, Operational Expert System
Applications in Europe, pages 1–15. Pergamon.

[Knightscope, 2016] Knightscope (2016). Knightscope Issues Field Incident Re-
port. https://www.businesswire.com/news/home/20160713006532/en/Knightscope-
Issues-Field-Incident-Report. Accessed on 2018-11-27.

[Knightscope, 2017] Knightscope (2017). Knightscope Issues MIN42 Field Incident Re-
port. https://www.businesswire.com/news/home/20170728005099/en/Knightscope-
Issues-MIN42-Field-Incident-Report. Accessed on 2018-11-27.

[KUKA, 2018] KUKA (2018). industrial intelligence 4.0 beyond automation.
https://www.kuka.com/en-de. Accessed on 2018-07-20.

[Kwiatkowska et al., 2007] Kwiatkowska, M., Norman, G., and Parker, D. (2007).
Stochastic Model Checking. In Bernardo, M. and Hillston, J., editors, Formal Meth-
ods for Performance Evaluation: 7th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems, SFM 2007, Bertinoro,
Italy, May 28-June 2, 2007, Advanced Lectures, Lecture Notes in Computer Science,
pages 220–270. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Lesire et al., 2012] Lesire, C., Doose, D., and Cassé, H. (2012). Mauve: a Component-
based Modeling Framework for Real-time Analysis of Robotic Applications. In 7th
full day Workshop on Software Development and Integration in Robotics (ICRA2012
- SDIR VII).

[Leucker and Schallhart, 2009] Leucker, M. and Schallhart, C. (2009). A brief account of
runtime verification. The Journal of Logic and Algebraic Programming, 78(5):293–303.

[Ligatti et al., 2009] Ligatti, J., Bauer, L., and Walker, D. (2009). Run-Time Enforce-
ment of Nonsafety Policies. ACM Transactions on Information and System Security,
12(3):1–41.

[Lopes et al., 2016] Lopes, Y. K., Trenkwalder, S. M., Leal, A. B., Dodd, T. J., and
Groß, R. (2016). Supervisory control theory applied to swarm robotics. Swarm Intel-
ligence, 10(1):65–97.

Bibliography 147

[Lotz et al., 2011] Lotz, A., Steck, A., and Schlegel, C. (2011). Runtime monitoring of
robotics software components: Increasing robustness of service robotic systems. In
2011 15th International Conference on Advanced Robotics (ICAR), pages 285–290,
Tallinn, Estonia. IEEE.

[Luckcuck et al., 2018] Luckcuck, M., Farrell, M., Dennis, L., Dixon, C., and Fisher, M.
(2018). Formal Specification and Verification of Autonomous Robotic Systems: A
Survey. arXiv:1807.00048 [cs]. arXiv: 1807.00048.

[Lussier et al., 2007] Lussier, B., Gallien, M., Guiochet, J., Ingrand, F., Killijian, M.-
O., and Powell, D. (2007). Fault Tolerant Planning for Critical Robots. In 37th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’07), pages 144–153, Edinburgh, UK. IEEE.

[Machin, 2015] Machin, M. (2015). Synthèse de règles de sécurité pour des systèmes
autonomes critiques. phdthesis.

[Machin et al., 2015] Machin, M., Dufosse, F., Guiochet, J., Powell, D., Roy, M., and
Waeselynck, H. (2015). Model-Checking and Game theory for Synthesis of Safety
Rules. In 2015 IEEE 16th International Symposium on High Assurance Systems En-
gineering, pages 36–43, Daytona Beach Shores, FL. IEEE.

[Machin et al., 2018] Machin, M., Guiochet, J., Waeselynck, H., Blanquart, J.-P., Roy,
M., and Masson, L. (2018). SMOF: A Safety Monitoring Framework for Autonomous
Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(5):702–
715.

[Mallet et al., 2010] Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., and Ingrand,
F. (2010). GenoM3: Building middleware-independent robotic components. In 2010
IEEE International Conference on Robotics and Automation, pages 4627–4632, An-
chorage, AK. IEEE.

[Malm et al., 2010] Malm, T., Viitaniemi, J., Latokartano, J., Lind, S., Venho-Ahonen,
O., and Schabel, J. (2010). Safety of Interactive Robotics—Learning from Accidents.
International Journal of Social Robotics, 2(3):221–227.

[Masson et al., 2017] Masson, L., Guiochet, J., Waeselynck, H., Desfosses, A., and Laval,
M. (2017). Synthesis of Safety Rules for Active Monitoring: Application to an Airport
Light Measurement Robot. In 2017 First IEEE International Conference on Robotic
Computing (IRC), pages 263–270, Taichung, Taiwan. IEEE.

[Muscettola et al., 2002] Muscettola, N., Dorais, G. A., Fry, C., Levinson, R., Plaunt,
C., and Clancy, D. (2002). IDEA: Planning at the Core of Autonomous Reactive
Agents. In AIPS Workshop on On-line Planning and Scheduling.

[NTBS, 2016] NTBS (2016). Collision Between a Car Operating With Automated Ve-
hicle Control Systems and a Tractor-Semitrailer Truck Near Williston, Florida, May
7, 2016. Technical report.

148 Bibliography

[NuSMV, 2018] NuSMV (2018). NuSMV home page. http://nusmv.fbk.eu/. Accessed
on 2016-07-19.

[O’Brien et al., 2014] O’Brien, M., Arkin, R. C., Harrington, D., Lyons, D., and Jiang,
S. (2014). Automatic Verification of Autonomous Robot Missions. In Brugali, D.,
Broenink, J. F., Kroeger, T., and MacDonald, B. A., editors, Simulation, Modeling,
and Programming for Autonomous Robots, Lecture Notes in Computer Science, pages
462–473. Springer International Publishing.

[Pace et al., 2000] Pace, C., Seward, D., and Sommerville, I. (2000). A Safety Inte-
grated Architecture for an Autonomous Excavator. In International Symposium on
Automation and Robotics in Construction.

[Pathak et al., 2013] Pathak, S., Pulina, L., Metta, G., and Tacchella, A. (2013). En-
suring safety of policies learned by reinforcement: Reaching objects in the presence of
obstacles with the iCub. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 170–175, Tokyo. IEEE.

[Pecheur, 2000] Pecheur, C. (2000). Verification and Validation of Autonomy Software
at NASA.

[Pettersson, 2005] Pettersson, O. (2005). Execution monitoring in robotics: A survey.
Robotics and Autonomous Systems, 53(2):73–88.

[Pike et al., 2012] Pike, L., Niller, S., and Wegmann, N. (2012). Runtime Verification
for Ultra-Critical Systems. In Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M.,
Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B.,
Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., Khurshid, S., and
Sen, K., editors, Runtime Verification, volume 7186, pages 310–324. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[Powell et al., 2012] Powell, D., Arlat, J., Chu, H. N., Ingrand, F., and Killijian, M.
(2012). Testing the Input Timing Robustness of Real-Time Control Software for
Autonomous Systems. In 2012 Ninth European Dependable Computing Conference,
pages 73–83, Sibiu. IEEE.

[Py and Ingrand, 2004] Py, F. and Ingrand, F. (2004). Dependable execution control
for autonomous robots. In 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 2, pages 1136–1141,
Sendai, Japan. IEEE.

[Quigley et al., 2009] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J.,
Berger, E., Wheeler, R., and Ng, A. (2009). ROS : an open-source Robot Operating
System. In International Conference on Robotics and Automation (ICRA), Workshop
on open source software.

Bibliography 149

[Ramadge and Wonham, 1987] Ramadge, P. J. and Wonham, W. M. (1987). Super-
visory control of a class of discrete event processes. SIAM journal on control and
optimization, 25(1):206–230.

[Roderick et al., 2004] Roderick, S., Roberts, B., Atkins, E., and Akin, D. (2004). The
Ranger robotic satellite servicer and its autonomous software-based safety system.
IEEE Intelligent Systems, 19(5):12–19.

[SAPHARI, 2018] SAPHARI (2018). SAPHARI - Safe and Autonomous Physical
Human-Aware Robot Interaction - Home. http://www.saphari.eu/. Accessed on 2018-
07-20.

[Shoaei et al., 2010] Shoaei, M. R., Lennartson, B., and Miremadi, S. (2010). Automatic
generation of controllers for collision-free flexible manufacturing systems. In 2010
IEEE International Conference on Automation Science and Engineering, pages 368–
373, Toronto, ON. IEEE.

[SMOF, 2018] SMOF (2018). SMOF : Safety MOnitoring Framework.
https://www.laas.fr/projects/smof/. Accessed on 2018-08-10.

[SMT-LIB, 2018] SMT-LIB (2018). SMT-LIB The Satisfiability Modulo Theories Li-
brary. http://smtlib.cs.uiowa.edu/. Accessed on 2018-08-15.

[Sorin et al., 2016] Sorin, A., Morten, L., Kjeld, J., and Schultz, U. P. (2016). Rule-
based Dynamic Safety Monitoring for Mobile Robots. 7(1):120–141.

[Sotiropoulos et al., 2016] Sotiropoulos, T., Guiochet, J., Ingrand, F., and Waeselynck,
H. (2016). Virtual Worlds for Testing Robot Navigation: A Study on the Difficulty
Level. In 2016 12th European Dependable Computing Conference (EDCC), pages
153–160, Gothenburg. IEEE.

[Sotiropoulos et al., 2017] Sotiropoulos, T., Waeselynck, H., Guiochet, J., and Ingrand,
F. (2017). Can Robot Navigation Bugs Be Found in Simulation? An Exploratory
Study. In 2017 IEEE International Conference on Software Quality, Reliability and
Security (QRS), pages 150–159, Prague, Czech Republic. IEEE.

[Sterela, 2018] Sterela (2018). Sterela : Advanced Solution Maker.
http://www.sterela.fr/en/. Accessed on 2018-07-20.

[Stringfellow et al., 2010] Stringfellow, M., Leveson, N., and Owens, B. (2010). Safety-
Driven Design for Software-Intensive Aerospace and Automotive Systems. Proceedings
of the IEEE, 98(4):515–525.

[Svensson et al., 2018] Svensson, L., Masson, L., Mohan, N., Ward, E., Brenden, A. P.,
Feng, L., and Törngren, M. (2018). Safe Stop Trajectory Planning for Highly Auto-
mated Vehicles: An Optimal Control Problem Formulation. In 2018 IEEE Intelligent
Vehicles Symposium (IV), pages 517–522.

150 Bibliography

[Tina, 2018] Tina (2018). The TINA toolbox Home Page - TIme petri Net Analyzer -
by LAAS/CNRS. http://projects.laas.fr/tina//. Accessed on 2018-11-13.

[Tomatis et al., 2003] Tomatis, N., Terrien, G., Piguet, R., Burnier, D., Bouabdallah, S.,
Arras, K., and Siegwart, R. (2003). Designing a secure and robust mobile interacting
robot for the long term. In 2003 IEEE International Conference on Robotics and
Automation (Cat. No.03CH37422), volume 3, pages 4246–4251, Taipei, Taiwan. IEEE.

[Troubitsyna and Vistbakka, 2018] Troubitsyna, E. and Vistbakka, I. (2018). Deriving
and Formalising Safety and Security Requirements for Control Systems. In Hoshi,
M. and Seki, S., editors, Developments in Language Theory, volume 11088, pages
107–122. Springer International Publishing, Cham.

[Tuleap, 2018] Tuleap (2018). Tuleap • Open Source Agile Project Management and
Software Development tools. https://www.tuleap.org/. Accessed on 2018-08-27.

[Täubig et al., 2012] Täubig, H., Frese, U., Hertzberg, C., Lüth, C., Mohr, S., Vorobev,
E., and Walter, D. (2012). Guaranteeing functional safety: design for provability and
computer-aided verification. Autonomous Robots, 32(3):303–331.

[van Nunen et al., 2016] van Nunen, E., Tzempetzis, D., Koudijs, G., Nijmeijer, H., and
van den Brand, M. (2016). Towards a safety mechanism for platooning. In 2016 IEEE
Intelligent Vehicles Symposium (IV), pages 502–507, Gotenburg, Sweden. IEEE.

[Vistbakka et al., 2018] Vistbakka, I., Majd, A., and Troubitsyna, E. (2018). Multi-
layered Approach to Safe Navigation of Swarms of Drones. In Gallina, B., Skavhaug,
A., Schoitsch, E., and Bitsch, F., editors, Computer Safety, Reliability, and Secu-
rity, volume 11088 of Lecture Notes in Computer Science, pages 112–125. Springer
International Publishing.

[Volpe et al., 2001] Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., and Das, H.
(2001). The CLARAty architecture for robotic autonomy. In 2001 IEEE Aerospace
Conference Proceedings (Cat. No.01TH8542), volume 1, pages 1/121–1/132 vol.1.

[Wagner et al., 2008] Wagner, S., Eusgeld, I., Kroger, W., and Guaglio, G. (2008). Bal-
ancing safety and availability for an electronic protection system. In European Safety
and Reliability Conference.

[Woodman et al., 2012] Woodman, R., Winfield, A. F., Harper, C., and Fraser, M.
(2012). Building safer robots: Safety driven control. The International Journal of
Robotics Research, 31(13):1603–1626.

[Zaman et al., 2013] Zaman, S., Steinbauer, G., Maurer, J., Lepej, P., and Uran, S.
(2013). An integrated model-based diagnosis and repair architecture for ROS-based
robot systems. In 2013 IEEE International Conference on Robotics and Automation,
pages 482–489, Karlsruhe, Germany. IEEE.

Bibliography 151

[Zou et al., 2014] Zou, X., Alexander, R., and McDermid, J. (2014). Safety Validation of
Sense and Avoid Algorithms Using Simulation and Evolutionary Search. In Bondavalli,
A. and Di Giandomenico, F., editors, Computer Safety, Reliability, and Security,
Lecture Notes in Computer Science, pages 33–48. Springer International Publishing.

Résumé : Un moniteur de sécurité actif est un mécanisme indépendant qui est respons-
able de maintenir le système dans un état sûr, en cas de situation dangereuse. Il dispose
d’observations (capteurs) et d’interventions (actionneurs). Des règles de sécurité sont
synthétisées, à partir des résultats d’une analyse de risques, grâce à l’outil SMOF (Safety
MOnitoring Framework), afin d’identifier quelles interventions appliquer quand une ob-
servation atteint une valeur dangereuse. Les règles de sécurité respectent une propriété
de sécurité (le système reste das un état sûr) ainsi que des propriétés de permissivité,
qui assurent que le système peut toujours effectuer ses tâches.

Ce travail se concentre sur la résolution de cas où la synthèse échoue à retourner un
ensemble de règles sûres et permissives. Pour assister l’utilisateur dans ces cas, trois nou-
velles fonctionnalités sont introduites et développées. La première adresse le diagnostique
des raisons pour lesquelles une règle échoue à respecter les exigences de permissivité. La
deuxième suggère des interventions de sécurité candidates à injecter dans le processus de
synthèse. La troisième permet l’adaptation des exigences de permissivités à un ensemble
de tâches essentielles à préserver. L’utilisation des ces trois fonctionnalités est discutée
et illustrée sur deux cas d’étude industriels, un robot industriel de KUKA et un robot
de maintenance de Sterela.
Mots clés : Moniteur de sécurité, Systèmes autonomes, Méthodes formelles

Abstract: An active safety monitor is an independent mechanism that is responsible for
keeping the system in a safe state, should a hazardous situation occur. Is has observations
(sensors) and interventions (actuators). Safety rules are synthesized from the results of
the hazard analysis, using the tool SMOF (Safety MOnitoring Framework), in order to
identify which interventions to apply for dangerous observations values. The safety rules
enforce a safety property (the system remains in a safe state) and some permissiveness
properties (the system can still perform its tasks).

This work focuses on solving cases where the synthesis fails to return a set of safe
and permissive rules. To assist the user in these cases, three new features are introduced
and developed. The first one addresses the diagnosis of why the rules fail to fulfill a
permissiveness requirement. The second one suggests candidate safety interventions to
inject into the synthesis process. The third one allows the tuning of the permissiveness
requirements based on a set of essential functionalities to maintain. The use of these
features is discussed and illustrated on two industrial case studies, a manufacturing robot
from KUKA and a maintenance robot from Sterela.
Key-words: Safety monitoring, Autonomous systems, Formal methods

	Introduction
	Ensuring the Dependability of Autonomous Systems: A Focus on Monitoring
	Concepts and Techniques for Safe Autonomous Systems
	Fault Prevention
	Fault Removal
	Fault Forecasting
	Fault Tolerance

	Monitoring Techniques
	Runtime Verification
	Reactive Monitors for Autonomous Systems

	SMOF: Concepts and Tooling
	SMOF Process Overview
	SMOF Concepts and Baseline
	Safety and Permissiveness Properties
	SMOF Tooling

	Conclusion

	Feedback from the Application of SMOF on Case Studies
	Sterela Case Study
	System Overview
	Hazop-UML Analysis
	Modeling and Synthesis of Strategies for SI1, SI2 and SI3
	Modeling and Synthesis of Strategies for SI4
	Rules Consistency

	Feedback from Kuka Case Study
	System Overview
	SII: Arm Extension with Moving Platform
	SIII: Tilted Gripped Box

	Lessons Learned
	Encountered Problems
	Implemented Solutions

	Conclusion

	Identified Problems and Overview of the Contributions
	Modeling of the Identified Problems
	Invariant and Strategy Models
	Properties
	Identified Problems

	Manual Solutions to the Identified Problems
	Change the Observations
	Change the Interventions
	Change the Safety Requirements
	Change the Permissiveness Requirements

	High Level View of the Contributions
	Diagnosis
	Tuning the Permissiveness
	Suggestion of Interventions

	Extension of SMOF Process and Modularity
	Typical Process
	Flexibility

	Conclusion

	Diagnosing the Permissiveness Deficiencies of a Strategy
	Preliminaries - Readability of the Strategies
	Initial Display of the Strategies
	Simplifications with z3

	Concepts and Definitions
	Strategies and Permissiveness Properties
	Problem: Safe & No perm.
	Permissiveness Deficiencies of a Strategy

	Diagnosis Algorithm and Implementation
	Algorithm
	Simplification of the Diagnosis Results
	Implementation

	Application to Examples
	SII: The Arm Must Not Be Extended When The Platform Moves At A Speed Higher Than speedmax.
	SI4: The Robot Must Not Collide With An Obstacle.

	Conclusion

	Tuning the Permissiveness
	Defining Custom Permissiveness Properties
	From Generic to Custom Permissiveness
	A Formal Model for the Functionalities
	Binding Together Invariants and Permissiveness

	Restricting Functionalities
	Diagnosing the Permissiveness Deficiencies with the Custom Properties
	Weakening the Permissiveness Property
	Automatic Generation and Restriction of Permissiveness Properties

	Application on Examples
	SII: The Arm Must Not Be Extended When The Platform Moves At A Speed Higher Than speedmax.
	SIII: A Gripped Box Must Not Be Tilted More Than 0.
	SI3: The Robot Must Not Enter A Prohibited Zone.

	Conclusion

	Suggestion of Candidate Safety Interventions
	Preconditions and Effects of Interventions
	Identifying Candidate Interventions
	Magical Interventions
	Generalize the Interventions Effects
	Interactive Review of the Interventions

	Algorithm
	Application to an Example
	Conclusion

	Conclusion
	Contributions
	Limitations
	Perspectives

