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Résumé: Le probleéme généralisé des moments (PGM) est un probléme d’optimisation linéaire
sur des espaces de mesures. Il permet de modéliser simplement un grand nombre d’applications. En
toute généralité il est impossible a résoudre mais si ses données sont des polynémes et des ensembles
semi-algébriques alors on peut définir une hiérarchie de relaxations semidéfinies (SDP) — la hiérarchie
moments-sommes-de-carrés (moments-SOS) — qui permet en principe d’approcher la valeur optimale
avec une précision arbitraire. Le travail contenu dans cette thése adresse deux facettes concernants
le PGM et la hiérarchie moments-SOS:

Une premiere facette concerne 1’évolution des relaxations SDP pour le PGM. Le degré des poids
SOS dans la hiérarchie moments-SOS augmente avec 'ordre de relaxation. Lorsque le nombre de
variables n’est pas modeste, on obtient rapidement des programmes SDP de taille trop grande
pour les logiciels de programmation SDP actuels, sauf si 'on peut utiliser des symétries ou une
parcimonie structurée souvent présente dans beaucoup d’applications de grande taille. On présente
donc un nouveau certificat de positivité sur un compact semi-algébrique qui (i) exploite la parcimonie
présente dans sa description, et (ii) dont les polynémes SOS ont un degré borné a 'avance. Gréace
a ce nouveau certificat on peut définir une nouvelle hiérarchie de relaxations SDP pour le PGM
qui exploite la parcimonie et évite I’explosion de la taille des matrices semidéfinies positives liée au
degré des poids SOS dans la hiérarchie standard.

Une deuxiéme facette concerne (i) la modélisation de nouvelles applications comme une instance
particuliere du PGM, et (ii) 'application de la méthodologie moments-SOS pour leur résolution.

En particulier on propose des approximations déterministes de contraintes probabilistes, un
probléme difficile car le domaine des solutions admissibles associées est souvent non-convexe et
méme parfois non connecté. Dans notre approche moments-SOS le domaine admissible est remplacé
par un ensemble plus petit qui est le sous-niveau d’'un polynéme dont le vecteur des coefficients est
une solution optimale d’un certain SDP. La qualité de 'approximation (interne) croit avec le degré
du polyndéme et la taille du SDP. On illustre cette approche dans le probléme du calcul du flux de
puissance optimal dans les réseaux d’énergie, une application stratégique ou la prise en compte des
contraintes probabilistes devient de plus en plus cruciale (e.g., pour modéliser 'incertitude liée &
Iénergie éolienne et solaire). En outre on propose une extension des cette procedure qui est robuste
a lincertitude sur la distribution sous-jacente. Des garanties de convergence sont fournies.

Une deuxiéme contribution concerne ’application de la méthodologie moments-SOS pour
I'approximation de solutions généralisés en commande optimale. Elle permet de capturer le com-
portement limite d’une suite minimisante de commandes et de la suite de trajectoires associée.
On peut traiter ainsi le cas de phénomenes simultanés de concentrations de la commande et de
discontinuités de la trajectoire.

Une troisieme contribution concerne le calcul de solutions mesures pour les lois de conservation
hyperboliques scalaires dont ’exemple typique est I’équation de Burgers. Cette classe d’EDP non
linéaire peut avoir des solutions discontinues difficiles a approximer numériquement avec précision.
Sous certaines hypothéses, la solution mesurepeut étre identifiée avec la solution classique (faible)
a la loi de conservation. Notre approche moment-SOS fournit alors une méthode alternative pour
approcher des solutions qui contrairement aux méthodes existantes évite une discrétisation du

domaine.

Mots-clés: moments — polyndmes positifs — parcimonie — contraintes probabilistes — solu-
tions mesures — relaxations semidéfinies






Abstract: The generalized moment problem (GMP) is a linear optimization problem over spaces
of measures. It allows to model many challenging mathematical problems. While in general it is
impossible to solve the GMP, in the case where all data are polynomial and semialgebraic sets,
one can define a hierarchy of semidefinite relaxations — the moment-sums-of-squares (moment-SOS)
hierachy — which in principle allows to approximate the optimal value of the GMP to arbitrary
precision. The work presented in this thesis addresses two facets concerning the GMP and the
moment-SOS hierarchy:

One facet is concerned with the scalability of relaxations for the GMP. The degree of the SOS
weights in the moment-SOS hierarchy grows when augmenting the relaxation order. When the
number of variables is not small, this leads quickly to semidefinite programs (SDPs) that are out of
range for state of the art SDP solvers, unless one can use symmetries or some structured sparsity
which is typically present in large scale applications. We provide a new certificate of positivity which
(i) is able to exploit the structured sparsity and (ii) only involves SOS polynomials of fixed degree.
From this, one can define a new hierarchy of SDP relaxations for the GMP which can take into
account sparsity and at the same time prevents from explosion of the size of SDP variables related
to the increasing degree of the SOS weights in the standard hierarchy.

The second facet focusses on (i) modelling challenging problems as a particular instance of the
GMP and (ii) solving these problems by applying the moment-SOS hierarchy.

In particular we propose deterministic approximations of chance constraints a difficult problem
as the associated set of feasible solutions is typically non-convex and sometimes not even connected.
In our approach we replace this set by a (smaller) sub-level-set of a polynomial whose vector
of coefficients is a by-product of the moment-SOS hierarchy when modeling the problem as an
instance of the GMP. The quality of this inner approximation improves when increasing the degree
of the SDP relaxation and asymptotic convergence is guaranteed. The procedure is illustrated by
approximating the feasible set of an instance of the chance-constrained AC Optimal Power Flow
problem (a nonlinear problem in the management of energy networks) which nowadays becomes
more and more important as we rely increasingly on uncertain energy sources such as wind and solar
power. Furthermore, we propose an extension of this framework to the case where the underlying
distribution itself is uncertain and provide guarantees of convergence.

Another application of the moment-SOS methodology discussed in this thesis consider measure
valued solutions to optimal control problems. We show how this procedure can capture the limit
behavior of an optimizing sequence of control and its corresponding sequence of trajectories. In
particular we address the case of concentrations of control and discontinuities of the trajectory may
occur simultaneously.

In a final contribution, we compute measure valued solutions to scalar hyperbolic conservation
laws, such as Burgers equation. It is known that this class of nonlinear partial differential equations
has potentially discontinuous solutions which are difficult to approximate numerically with accuracy.
Under some conditions the measure valued solution can be identified with the classical (weak)
solution to the conservation law. In this case our moment-SOS approach provides an alternative
numerical scheme to compute solutions which in contrast to existing methods, does not rely on

discretization of the domain.

Key words: moments — positive polynomials — sparsity — chance constraints — measure
valued solutions — semidefinite relaxations
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Preface

This thesis is about applying and computing approximate solutions to the generalized
moment problem (GMP). The underlying idea of basically all applications of the GMP
is to embed a difficult (non-linear) problem in a bigger space where it can be described
structurally simpler — i.e. as a linear problem — at the cost of now considering more feasible
solutions in a more complicated space. The latter problem is then approximated by a
hierarchy of programs that can be solved by a computer. This way the solution to the
originally difficult problem can be approximated in a systematic manner.

As we will review in Chapter 1, the moments of a finite Borel measure are in duality
with positive polynomials. This duality exposes a beautiful link between the mathematical
fields of functional analysis and real algebraic geometry and indicates how a single thesis
can be concerned with both the algebraic structure in representations of polynomials on
the one hand (Chapter 2), and also solving (partial) differential equations, whose solutions
are not at all polynomial functions (Chapter 4), on the other hand.

The third aspect of this thesis, or rather the initial one historically, is optimization.
The GMP is an infinite dimensional linear optimization problem where the variables are
(finite Borel) measures. The constraints and the criterion are linear combinations of the
(unknown) moments of these measures. The modelling power of the GMP has already been
described in [Lan87] before methods to solve the GMP have been known. For polynomial
instances of the GMP, Lasserre in [Las10b] describes an efficient algorithm — the moment-
sums-of-squares-hierarchy — to approximate solutions of the GMP as closely as desired via
a hierarchy of semidefinte programming (SDP) relazations of increasing size.

The increasing size of the SDPs in the hierarchy motivates our investigation in Chapter 2.
Unfortunately little is known about the rate of convergence of the hierarchy to the optimal
value of the GMP. Surprisingly often and in many applications, already the first relaxation
provides a very good approximation or even the optimal value. If however relaxations of
higher order are needed, the application of the moment-SOS approach is limited to problems
of relatively small dimension as otherwise the size of the problem is too big for state of
the art SDP solvers. Therefore one is interested in providing alternative hierarchies with a
more favourable computational complexity. The approach we propose takes into account
structured sparsity, which is typically present in large scale problems and has already been
used in [Wak+06]. In addition we allow to prescribe an a priori bound on the size of the
SDP variables, without loosing convergence properties of the moment-SOS hierarchy. We
hence provide a new hierarchy for large scale problems.

While this first part is of algorithmic nature, the second part of this thesis has a different
flavour. In the latter we focus on several applications of the GMP and its approximation
via the moment-SOS hierarchy.

Motivated by the increasing interest in uncertainty quantification for optimization, we
address the approximation of chance constraints in Chapter 3. Indeed many optimization
problems are exposed to uncertainty. For example the power generation via wind and sun
depends strongly on the weather which can be forecast only with a certain probability.
To schedule generators, network operators need to take into account this uncertainty in
the optimization process. In a case study of the optimal power flow (OPF) problem we
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show how an approach based on the GMP can be used to replace the difficult chance
constraints by easier polynomial constraints with strong asymptotic guarantees. In a first
contribution we assume knowledge of the distribution of the uncertainty. However in
many cases only some moments of this distribution are known, and sometimes even this
knowledge is itself uncertain. Therefore, in a second contribution, we extend the approach
and provide distributionally robust inner approximations of the feasible set associated with
chance constraints. We only assume that the distribution can be any mixture of distributions
in some parametrized family, e.g., Gaussian distributions with mean and variance known
to be in some interval, respectively.

Another promising direction is to use the moment-SOS hierarchy to help solve ordinary
and partial differential equations. The concept of occupation measures associated to a
trajectory gives rise to a more general notion of solutions to a weak formulation of the
original problem. This more general notion is called measure-valued solutions. We model
the weak formulation as an instance of the GMP and approximate measure-valued solutions
by the moment-SOS hierarchy. In particular, we investigate this approach in two different
set ups: (i) optimal control with critical limit behaviour and (ii) the approximation of
solutions to scalar hyperbolic conservation laws. In both applications we are interested in
conditions that imply a well defined relation between solutions to the original problem posed
on trajectories and their relaxed measure-valued version. Then, we use the moment-SOS
hierarchy to approximate moments of the measure-valued solution. When the measure-
valued solutions can be identified with the classical solution, this provides a numerical
scheme complementary to existing methods. At this current stage however, we do not claim
that this approach is mature and could replace sophisticated numerical schemes that have
been developed for decades. The primary goal is to show that this method which avoids
discretization has indeed some potential.

Organization

This manuscript is divided in four chapters. Chapter 1 introduces basic concepts relevant
for all subsequent chapters. The remaining chapters can be read independently of each
other.

Chapter 1: We briefly introduce the generalized moment problem (GMP) and how it can
be approximated by hierarchies based on certificates for non-negativity and in particular
by the moment-SOS hierarchy. The duality between moments and polynomial SOS is
described.

Chapter 2: We describe how structured sparsity, typically present in large scale problems,
can be exploited in order to provide certificates of non-negativity that are less computational
demanding than the standard SOS certificates. While the first part of the chapter is based
on [WLT17], the second part is unpublished work with a more practical focus on establishing
sparsity patterns in problems that are only nearly sparse in their original formulation.

Chapter 3 is dedicated to the approximation of sets that are described by chance
constraints. After an introduction on chance constraints we present results from [WRM18]
where we approximate the feasible set of the chance constrained AC optimal power flow
problem. The second contribution in this chapter is based on [LW18] and extends the
framework to the approximation to distributionally robust chance constraints.

In Chapter 4 we consider measure-valued solutions to differential equations and their
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approximation using the moment-SOS hierarchy. The first part of this chapter deals with
critical limit behaviour of optimizing sequences in optimal control such as oscillations,
concentrations, and discontinuities and is based on [HKW18]. In the second part we use the
concept of measure valued solution to reformulate Cauchy problems to scalar hyperbolic
non-linear conservation laws as instances of the GMP and provide approximate solutions
by solving the moment-SOS hierarchy. In contrast to other methods in the literature, our
approach does not rely on any discretization of time-space. This part of the chapter follows
[Mar+18]

Contribution not included

In [Tac+18] we consider the problem of approximating the volume of a basic semialgebraic
set of potentially large dimension, provided that its description has some structured sparsity
similar to the one defined in Chapter 2. Contrary to a claim in [MHL15] the proposed
numerical scheme adapted to sparsity cannot be used in the context of volume computation.
Our contribution is to provide a different numerical scheme which exploits sparsity in a
completely new manner. Remarkably one is able to approximate accurately volumes in
large dimension. In particular an appropriate scaling allows to avoid numerical issues
when approximating very small volumes which is typically the case for volumes in large
dimensions.
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CHAPTER 1

The Generalized Moment Problem
and the Moment-SOS Hierarchy

The central object of this thesis is the Generalized Moment Problem (GMP) as it is discussed
in [Las10b]: If not mentioned otherwise, throughout this work f,g1,...,9m € R[x]| and
(hy)ver € R[x] denote (multivariate) polynomials, where I' denotes a countable index set.
Likewise we consider the basic semialgebraic set K defined by

K:={xeR":¢1(x) >0,...,9m(x) >0}. (1.1)

By M(K) we denote the space of finite signed Borel measures supported on K and with

M (K) the convex cone of finite (positive Borel) measures on K. Let (by)yer € R be
a family of real numbers. The GMP is the the following linear problem with potentially
infinitely many constraints

Sup/ fdé st. / hodp<b,yel, éecM(K). (GMP)
¢ JK K

In general optimization is with respect to finitely many measures ¢1, ..., ¢, supported
on basic semialgebraic sets K1, ..., Ky, respectively. For ease of exposition however, we

restrict the discussion to only one unknown measure. Everything discussed in this chapter
generalizes directly to the case of more than one measure.

The spirit of this thesis is to consider mathematical problems that are typically chal-
lenging because of non-linearities in their original formulation, and reformulate them as
instances of the GMP. In their GMP formulation these problems become linear and hence
conceptually easier. However, we introduce another challenge, i.e., we now need to optimize
over an infinite dimensional space of measures. So in general the GMP formulation is just a
rephrasing of the original problem. However, because all data f, gj, hy are polynomials and
K is a basic semialgebraic set, one may exploit this algebraic feature and provide efficient
schemes to approximate the solution numerically. Before we explain this in more detail
in Section 1.4 we briefly show how global optimization problems can be rephrased as the
simplest instance of the GMP.

In polynomial optimization one is interested in finding the global optimum (POP)"* of
the optimization problem

ir}}ff(x) st. x € K, (POP)

where K is assumed to be non-empty and defined by the polynomials g1,..., ¢y, as in
(1.1). Note that (POP) is a non-linear problem and hence finding a global optimum - in
contrast to local optima — is a difficult problem. In the following we show that (POP) can
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be reformulated as the GMP:
igf/ fdé st / 1dé=1, ¢e M, (K). (M-POP)
K K

For illustration purpose we show equivalence of (POP) and (M-POP), i.e. that (POP)" =
(M-POP)*. Throughout this thesis we will often need to show the equivalence of a problem
and its moment formulation. The general strategy is aligned with the following argumenta-
tion. In a first step, we show that (M-POP) is a relazation of (POP), i.e., we show that for
every point x feasible for (POP), there is a feasible measure ¢ for (M-POP) which yields
the same objective value. Let therefore x be feasible for (POP), i.e., x € K. Then the
Dirac measure Jy is a probability measure supported on K and moreover [ fddx = f(x),
showing that (M-POP) is a relaxation of (POP). The second step now is to show that
(M-POP)* > (POP)". In our case this is almost trivial, as by definition (POP)" < f on K,
and hence [}, fd¢ > [ (POP)*d¢ = f*. Consequently the problems (POP) and (M-POP)
are equivalent.

Note that by passing from (POP) to (M-POP) we have relaxed the set of Dirac measures
0x with x € K to arbitrary probability measures ¢ supported on K. This idea is a very
useful strategy to reformulate optimization problems as GMP and will occur several times
throughout this manuscript.

In the rest of this chapter we describe a numerical scheme (the moment-SOS hierarchy)
providing values that converge to the optimal value of the GMP.

1.1 Measures and Moments

The first important step to approach the GMP numerically is to rephrase the problem on
measures as a problem on moments. The moment sequence z = (Zq)aenn Of a measure
¢ € M, (K) is defined by zq := [ x*d¢. Let N} := {a € N" : |a] < d}, where |af is
the sum over all entries of a. Denote by s(d) = (”}Ld)
vector p € R*(48()) is called the coefficient vector (in the monomial basis) of a polynomial

p € R[x] if
b= Z Pax”.

n
aeNdeg(?)

the number of elements of NJj. A

With this notation integration of a polynomial p with respect to the measure ¢ can be
expressed only using the first moments (up to deg(p)) of ¢:

[pao=[ ¥ paxtdo= ¥ b [ x7dé= 3 peca

aeNZiLeg(p) OéeNZeg(p) aeN:iLeg(P)
We use this observation to define a pseudo-integration with respect to any sequence z € RN".
Note briefly that a vector p € R*(9 can be understood as an infinite sequence indexed by
N™ by setting p, := 0 if |a| > d. The pseudo-integration with respect to a sequence z € RN"
defined by

L,(p) == Z PaZa (1.2)

aeN"
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is called the Riesz functional. With help of this functional it is possible to characterize
moment sequences. Denote by Pos(K) the set of polynomials that are non-negative on K.

Theorem 1.1 (Riesz-Haviland). Let K C R™ be closed. A real sequence z is the moment
sequence of some measure ¢ supported on K if and only if , L,(p) > 0 for all p € Pos(K).

Assuming K closed, we can hence reformulate (GMP) as a linear problem on sequences.
Indeed, by Riesz-Haviland’s theorem the following problem is an equivalent formulation of
(GMP):

sup L,(f) s.t.L,(hy) Sby,y€T, L, >0 on Pos(K). (1.3)

The key idea to approximate GMPs numerically now is to replace the convex cone Pos(K)
of polynomials non-negative on K, by a subcone of test-polynomials Cert(K), which has
the desirable property that testing non-negativity of L, on Cert(K) can be done efficiently
on a computer, and membership in Cert(K) provides a certificate for non-negativity on K.

1.2 Sums of Squares

Assume for a moment that K = R and that the maximal degree of the polynomials
considered in (1.3) is 2d. Notice, that aside from the non-negativity constraint on L,, the
numbers z, with @ > 2d are not constrained. We might therefore restrict the non-negativity
constraint to hold only for polynomials in Pos(R) with degree at most 2d. In the univariate
case however, every such polynomial is a sum of squares of polynomials each of degree at
most d.! We denote the set of sums of squares (SOS) of polynomials by

l
Y[x] = {sz :px € R[x]}.
k=1

Similarly we denote by X[x]; C R[x]aq the SOS of degree at most 2d. Now, checking
whether L, is non-negative on X[x]q (even if n > 1) is a semidefinite program (SDP)
as we will see later. First note, that for polynomials pi,...,p, € R[x], non-negativity
of L,(p? + ...+ p?) by linearity of L, is equivalent to the non-negativity of each L,(p3)
individually. Let v := (x%)|q|<q be the vector of monomials of degree at most d, indexed
by the exponents o € Nj; of the respective monomials. This is the canonical basis of the
linear space R[x]; of polynomials of degree at most d, i.e., every polynomial p € R[x]4 can
be written as p' vg where p € N5 is the vector of coefficients of p. In abuse of notation
we will use the symbol L, also for the entry wise application of L, to a matrix polynomial

1This can be seen easily by applying the fundamental theorem of algebra and remarking the facts that
real roots need to be of even multiplicity and that for complex conjugate numbers z,z € C, = a + ib the
identity (x —z)(x—Z) = (x—a)?>+b? holds and the fact that sums of squares are closed under multiplication.
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P e Rx** ie., L,(P) := (L,(Pij))i;- We have

Vp € Rix]q : LZ(pQ) >0& Vpe R3(@) . ((p \Z (pTVd

) )
& Vp e R L((p"va)(vyp))
sVpeRW.pTL, (vdv )p >0
& My(z) :== L,(vqvy) = 0.

)

>0
>0

This shows that testing L, for non-negativity on the set of SOS is equivalent to testing
positive semidefiniteness of the so-called moment matriz My(z). As the later is a linear
expression of (Za)\a|§2da requesting it to be positive semidefinite is a linear matrix inequality
(LMI). Hence consider the following SDP (with potentially infinitely many constraints
indexed by 7):

sup L, (f) s.t.Ly(hy) S by,y €T,  Ly(vgvy) > 0. (1.4)

As argued above this SDP is an equivalent reformulation of (1.3), in the case that K =R
and the degree of the involved polynomials is less then 2d. The same is actually true for
K =R" if d = 1 and for the particular case K = R? and d = 4 [Hil88; Lau09]. However, in
the general case the set of sums of squares is only a strict subset of the set of non-negative
polynomials.

1.3 Putinar’s Positivstellensatz

In this section we discuss a set of test-polynomials for the general case of a basic semialge-
braic compact set K € R™.

Definition 1.3.1 (Quadratic module). Let g1,...,9m € R[x] and K := {x € R" : g1(x) >
0,...,9m(x) > 0}. Let go := 1 The set

Q(K) = Q(glvvgm) = {Zo-]gj 105 € E[X]a.] = 07""m}'
=0

is called the quadratic module (associated to ¢gi,...,gm). The quadratic module is called
archimedean, if there exists an N € N such that N — ||x||? € Q(K).

Membership in Q(K) provides a certificate of non-negativity on K.

Indeed: Let oy,...,0m, € ¥[x] and x € K. Then

m

Z gj(x) =0.

=0 N——
eR2+ 4R2 >0, xeK

The property of the quadratic module to be archimedean is slightly stronger than K being
compact. Indeed, if Q(K) is archimedean, K is a subset of {x € R" : N — |[x||* > 0}
which is bounded. As by definition K is closed, it follows that K is compact. Conversely,
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if K is known to be compact, it is often possible to compute a number N € N sufficiently
large such that K C {x € R" : N — |x||> > 0}. Then the polynomial N — ||x||? can be
added to the description of K, i.e., gmi1 := N — ||x]|? and Q(K) = Q(91,---,Gm+1) is
archimedean. Ensuring the archimedean property is in particular important because of the
following theorem.

Theorem 1.2 (Putinar’s Positivstellensatz [Put93]). Let K = {x € R" : ¢g1(x) >
0,...,9m(x) > 0} and the quadratic module Q(K) be archimedean. Let p € R[x] be strictly
positive on K. Then p € Q(K).

Remark 1.3.2. Assume that in (1.3) one of the h, is the constant polynomial 1. Then in
Theorem 1.1 it is actually sufficient to test non-negativity of L, only for polynomials strictly
positive on K. To see this assume L,(p) > 0 for all p > 0 on K. Let p > 0 on K. Then
p+e >0 on K and therefore L,(p +¢) > 0, i.e., L,(p) > —eL,(1). As L,(1) is bounded,
—eL,(1) — 0 for € — 0, and hence L,(p) > 0.

Together with Theorem 1.2 this remark qualifies Q(K) as a viable substitute for Pos(K).
In Section 1.2 we have seen that non-negativity of L, on X[x|4 can be shown by checking
whether the moment matrix My(z) is positive semidefinite. A similar result is true for the
quadratic module.

Definition 1.3.3. In analogy with X[x]; we define the truncated quadratic module Q4(K)
for 2d > max{deg(f),deg(g1),...,deg(gm}. Let dy = d and d; = |(2d — deg(g;))/2|, where
|7] := max{s € N:s <r}. Then the truncated quadratic module of degree at most 2d is
defined as

Qu(K) :=Qalg1,---,9m) = {Z 0jgj 105 € X[x]q;, 5 =0,...,m} C R[x]ag.
=0

If it is clear from the context, we suppress the K in the notation and write Q4 instead
of Qq(K). The truncated quadratic module is a convex cone in R[x]|y4. By the same
argumentation as in Section 1.2, L, > 0 on Q4(K) if and only if

My, (gjz) = LZ(VdjV;—jgj) =0,7=0,...,m.

The matrices Mg, (g;z) for j > 1 are called localization matrices. Note that in contrast to
Section 1.2 and despite Theorem 1.2 it is not true that every p € R[x]oq which is strictly
positive on K belongs to Q4(K), because of degree cancellations in the sum Z;n:() Tjg;j.

1.4 The Moment-SOS Hierarchy

Recall that for an optimization problem (OP) we denote its optimal value by (OP)*.
Consider
sup L,(f) s.t.L,(hy)=by,v€I', L,>0on Q(K). (PUT)
V4

Then, under the assumptions that Q(K) is archimedean and one of the h, = 1, (GMP)* =
(PUT)". Lasserre [Las01] proposed to approximate the solution to (PUT) by truncating the
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quadratic module to a certain degree. A truncated version of (PUT) now can be formulated
as the SDP

sup L,(f)

s.t. Ly(hy) £ by, v €T, deg(h,) < 2d, (Pa)
My, (gjz) =0, j=0,...,m.

Clearly (P;) is a relaxation of (PUT) because fewer constraints L,(h) < b, are considered
and non-negativity of L, is only asked for a subset of Q(K). This implies (P;)* < (GMP)*
for all d. In addition, since Q4(K) C Q4+1, (Pa)j is an increasing sequence. Consequently
(Pg); converges as soon as (GMP)" is finite. Actually we have the following result which is
the basis for almost all work presented in this thesis.

Theorem 1.3 (Moment-SOS Hierarchy [LaslOb]). Let K = {x € R" : ¢1(x) >
0,...,gm(x) > 0} with g1 :== N — ||x||? for some N € N and hy, = 1 for some 9 € . De-
note by dmin := max{deg f,deggi,...,deggmn}. Assume that every semidefinite relazation
(Pi)g>q,.. has a feasible point. Then:

(i) Every relazation (Py) with d > dmin has an optimal solution. Moreover, (Py)y —
(GMP)* for d — oo.

(i) Let 2% be an optimal solution of (Py). If (GMP) has a unique optimizer ¢*, then

lim z& = /xa d¢*, VaeN" (1.5)

d—o0

Proof. Without loss of generality, we may assume that N = 1 (possibly after scaling). Let
z 1= (Za)aeng, be a feasible solution of (F). We note that the expressions L,(x?*) are
on the diagonal of the moment matrix and hence constrained to be non-negative. Further

the constraint My, (g1z) = 0 implies that all its diagonal elements L, (z2*(1 — =1 x2)),
k=0,....,d—1,¢ =1,...,n, are non-negative. Fix ¢ and d. By linearity of the Riesz
241y This

1
implies that L,(x2¥) < b, for all i and all k, moreover [Las15, Proposition 2.38] now yields

functional and invoking the first statement, we conclude that L,(x9) < L,(x

70l < by, Vo€ N,

This means that the feasible set of (P;) is bounded, and hence compact as feasible sets
of SDPs are closed. Hence for every d > duyin (P;) has an optimal solution z¢ which we
understand as element of RN by the canonical embedding, i.e., by setting z¢ := 0, for
la] > d.

From now one we consider the sequence of sequences (z%)4>4, ... We have proved that
this sequence is uniformly bounded by b, and hence contained in a ball B of the Banach
space lo, of bounded sequences. By Banach-Alaoglu theorem [Brel0, Theorem 3.16], B
is weakly star compact. Hence there exists z* € B and a subsequence (z%).ey such that
z% X 7% In particular, by considering sequences s® defined by sg:=0for all 5 € N*\ {a}
and s, =1,

lim z% = lim <sa,zd’“> = lim (s%,z") =2z}, VYaeN" (1.6)

k—oo k—o00 k—o00 @
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Now, let d € N be fixed, arbitrary. The convergence (1.6), implies L, (VdV(—il—) > 0 and
L+ (vavy gj) = 0, for every j = 1,...,m. Now this is equivalent to L, > 0 on Q(K),
implying that there is a measure ¢ € M4 (K), such that z}, = [x“d¢. Moreover, (1.6)
implies that [ h,d¢ = L,-(h,) < b, for all ¥ € I which proves that ¢ is a feasible solution
of (GMP). In addition, as (Py) is a relaxation of (GMP), we have

[ £do= tim L, (1) > (@MP) > [ fao, (17)

which shows optimality of ¢. Finally, if (GMP) has a unique minimizer ¢*, then ¢ = ¢*
and (1.6) holds for the whole sequence, which yields (1.5). O

Theorem 1.3 enables us in theory to approximate the value and the solution of (GMP)
as closely as desired. This makes the moment-SOS hierarchy an important tool to solve
problems that can be formulated as GMPs and builds the basis for the research presented
in the subsequent chapters.

A Dual Point of View

The “SOS part” in the name moment-SOS hierarchy makes reference to the dual semidefinite
programs associated to (Py).

We review briefly the concept of duality in conic programming. Let X, V,Y,and W be
real finite-dimensional vector spaces such that there exist dual pairings (-, ")y x : VX = R
and (, )y w: Y XxW = R. Let D C W and E C X be closed convex cones. Define the
dual cone of D by D* :={y € Y : <y,W>Y7W > 0,Yw € D} and E* C 'V correspondingly.
Let A: X — W be a linear mapping. Its adjoint mapping A* : Y — V is defined by the
relation (A*y,x)y x = (v, Ax)yw for all x € X and all y € Y. Finally let b € W and
¢ € V. Then the following conic optimization problems are in duality:

S‘ip <C=X>V,X if;f <Y7b>Y,W
st. b—Ax € D, (1.8) st. Ay —ce E7, (1.9)
x € FE, y € D*.

Problem (1.8) is called the primal and (1.9) its dual problem. A generic property
of a pair of conic dual problems is weak duality, i.e., if both problems are feasible, then
(1.8)" < (1.9)". We say that strong duality holds when (1.8)" = (1.9)*. A sufficient condition
for strong duality is that (1.8) is strictly feasible, i.e., there exists an x € E such that b— Ax
is in the interior of D. If in addition (1.8)" is finite, then (1.9) has an optimal solution.
Another sufficient condition for strong duality is that the feasible set of (1.8) is compact.

We can identify (P;) with (1.8). To simplify notation let I'y := v € I" : deg(h,) < 2d
and assume that the constraints L,(hy) < b, are equalities for all v € I'y. Let N be the
number of elements of I'y. Recall that the semidefinite conditions in (Py) are equivalent to
the constraint L,(p) > 0, for all p € Qq(g1,--.,9m), i-e., z € Q. This means, that z € Q3.
Now we identify (P;) with (1.8) via

e X+ RCDV « R[x]pq, Y < RY and W « RV,

® (D 2)Rix)py re) < Ly(p) and (y, W)pn pr < y W,
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o D {0}V, E <+ Q¢+ f,and b+ (by)ser,,
o A:RsCd) RN, Az + (Ly(hy))rer,-

The dual cone of {0} is RY. As Qg is a closed convex cone in a finite dimensional
linear space, E* = (Q})* = Qq4. By linearity of the Riesz functional we have (y, Az) =
v (Ly(hy))ver, = Ly(y" (hy))yer, = (A*y,z) defining A*. Consequently the dual of (P;)
reads:

inf
n > vaby
Y€l

st > yyhy — f € Qalgrs-- -, gm), (Da)
ISV
y € RV,

If the L,(hy) < b, is an inequality for some v € T'y the corresponding y., will be constrained
to be non-negative. When both problems are feasible we conclude (P;)* < (Dg)* by
weak duality. Actually one can show, that strong duality holds under the conditions of
Theorem 1.3 [LasO1]. Finally we note that (D) indeed is an SDP. Therefore recall v,
denotes the vector of monomials of degree at most d, and any polynomial p € R[x]4 can
be written as p' vy for a coefficient vector p € R*(@ . Consequently for any M € N and
any matrix P € RM*5(d) the polynomial (Pvy)" (Pvg) is an SOS of degree at most 2d.
Now the cone of positive semidefinite matrices of size s(d) is exactly the set of matrices
{PTP:PecRMx s(d), for some M € N}. As trace((Pvy)' (Pvy)) = trace((PT P)vgv,),
the cone of sums of squares is in one to one correspondence to the cone of positive semidefinite
matrices. This argumentation extends to the truncated quadratic module, showing that

(Dg) is an SDP. It is also straightforward to see that a dual problem of (1.3) is

inf Z Y0y
Y yer
s.t. Z yyhy — f € Pos(K) (1.10)
yerl’

yy > 0,7 € I'y, finitely many y, # 0.

Indeed weak duality holds: let y = (y,)er feasible for (1.10) and z = (zn)aenn feasible
for (1.3). Then L,(f) < L,(3 - er Yyhy) = >over Yy La(hy) < 3er yoby, which shows that
weak duality holds. We refer to [Las10b, Theorem 1.3] for conditions such that strong
duality, i.e., (1.3)" = (1.10)%, holds. Finally note that if deg(h.) < 2d for all v € T, (Dy) is
a strengthening of (1.10), because the non-negativity constraint is replaced by a certificate
of non-negativity, i.e., by membership to the truncated quadratic module. As the latter is
based on SOS weights, the semidefinite programs (Dg), are called SOS-strengthenings of
(1.10) — hence the name moment-SOS hierarchy for the sequence of semidefinite problems
(Py), and the respective duals (Dg),.

We conclude the chapter by coming back to the example of polynomial optimization. In
this context the dual to (M-POP) reads like (D-POP) with SOS strengthenings (S-POP,.).
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sup t sup t
t (D-POP) t

st. f—t>0on K, st. f—teQ.(K),

(S-POP,)

where t is the real dual variable corresponding to the single moment constraint in (M-POP).
We refer to the sequence of problems (S-POP,.), as the standard hierarchy for polynomial
optimization. In Chapter 2 we shall discuss alternative hierarchies for polynomial optimiza-
tion, where the truncated quadratic module Q4(K) is replaced by other algebraic certificates
for non-negativity on a basic semialgebraic compact set K.
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CHAPTER 2
Sparse Certificates of
Non-negativity

In this chapter we discuss in more detail the question of non-negativity of a polynomial on a
basic semialgebraic compact set K, which was already mentioned in Chapter 1. Certificates
of non-negativity are used in several fields of research. In the subsequent sections we
discuss a natural use of certificates in global polynomial optimization. Among other field
of applications for certificates of non-negativity are, e.g., control systems, where one is
interested in proving sign conditions of so-called Lyapunov functions. In verification software
certificates are used to automatically generate proofs for inequalities (see e.g.[Mag+15]).
For a more exhaustive list of applications we refer to a nice introductory section in [AM14].

Polynomial Optimization Maybe the most intuitive use of certificates is polynomial
optimization, where certificates for non-negativity are used to provide lower bounds on the
global minimum of an optimization problem

ir;ff(x) st.xe K:={xeR":¢1(x) >0,...,9m(x) >0}, (POP)

where f, g1 ..., 9m € R[x] are multivariate polynomials. In this chapter we will focus on its
dual formulation
supt s.t.f—t>0on K,t €R. (2.1)
t

We have seen in Chapter 1 that (POP)" = (2.1)*. Replacing the non-negativity constraint
on the parametrized polynomial f — ¢ by a certificate for non-negativity on K denoted by
Cert(K) or Cert(gy,...,gm) leads to the problem

supt s.t. f —t € Cert(g1,...,9m), (RES)
t

which is a strengthening of the original problem (POP). In Chapter 1 we have used the
quadratic module associated to g1, ..., gm as a set of certificates for non-negativity on K. In
this chapter we are going to discuss some other certificates and their respective advantages.
The individual sets of certificates are often parametrized by a parameter r € N, and

... CCert, C Certpy; C....

As a consequence of this inclusion, certificates of higher order are less restrictive and hence
passing from Cert,. to Cert,1 in (RES) leads to a higher optimal value (RES)*, providing a
better lower bound on (POP)*. Accordingly the sequence of certificates induces a sequence
of problems (RES), with increasing optimal value. Such sequences are called hierarchies.



16 Chapter 2. Sparse Certificates of Non-negativity

Positivstellensdtze and Hierarchies Most certificates are derived from so-called Pos-
itivstellensdtzen, i.e. theorems of positivity of the following form: Let K satisfy some
property. Then there exists a subset Cert C R[x], such that ¢ € Cert implies ¢ > 0 on K,
and for every p > 0 on K it holds that p € Cert. Hierarchies then are obtained by restricting
to subsets Cert of increasing size, for example at order r one might allow only for certificates
of degree at most 2r. The convergence of (RES)" to (POP)" when r — oo holds whenever
U,en Cert, = Cert, because for any £ > 0 the polynomial f — (POP)* + ¢ is strictly positive
on K and hence, by the Positivstellensatz, has a representation in Cert, for r large enough.

We have already seen a first Positivstellensatz in Theorem 1.2 where the quadratic
module associated with the polynomials g1, ..., g is the set of certificates guaranteeing
non-negativity on K. Truncating the SOS weights to a certain degree that depends on the
truncation order v € N, leads to a hierarchy of semidefinite programs (S-POP,.),.. Note that
there is an ambiguity in how the truncation degree d(r) is to be obtained from the order r.
In the literature one finds two divergent choices for d(r), either d(r) = r or d(r) = 2r. To
avoid confusion we will often talk of the truncation degree d(r), referring to the degree of
oo in (S-POP,), rather than about the order r. In addition we will sometimes talk about
the first possible truncation. With this we refer to the first feasible strengthening (RES),..

Discussion of Certificates In order to compare different positivity certificates we are
going to focus on two aspects: (i) the quality of the lower bounds provided by different
certificates, and (ii) the computational effort needed to compute them. Not surprisingly
there is a trade-off between those two aspects, i.e., better quality bounds are usually
computationally more demanding.

From this point of view, the certificate proposed in Putinar’s Positivstellensatz Theo-
rem 1.2 is very powerful, but expensive, i.e. usually already the first or second possible
strengthenings provide values of (RES)* that are quite close to the actual global minimum
(POP)*. However, when the lower truncation orders r = 1,2,... do not lead to a satisfying
lower bound, increasing r results quickly in SDPs that become too large for state-of-the-art
solvers and are not computable any more.

Although there is hope that more powerful SDP solvers will be developed in the future,
overcoming this unsatisfying situation theoretically is an active field of research. From both
practical and theoretical view-points two main research directions emerge. One branch
is concerned with finding alternative certificates (e.g. [LTS17; AM14]), while the other
tries to exploit some additional available information such as symmetry [GP04] or sparsity
[Wak-+06; Las06].

The main result of this chapter Theorem 2.7 links both research directions. It provides a
sparse version to a variety of Positivstellensdtze. The proof of the result has been published
in [WLT17] in a less general context. The notion of sparsity that we use follows [Wak+-06]
and enables to consider problems of much higher dimension and compute more steps of the
respective hierarchies.

Outline First we present the sparsity pattern introduced by Waki et al. and the sparse
version of Putinar’s Positivstellensatz. Then we discuss a list of alternative certificates
of non-negativity and provide a sparse version for each of them. We conclude with two
sections devoted to applications. In the first one we present some numerical experiments



2.1. Sparsity and the Question of Non-negativity 17

from polynomial optimization and compare the sparse versions of the standard hierarchy
and the so-called BSOS hierarchy to their dense versions. Finally we explain how sparsity
can still be established in the case of only nearly sparse optimization problems.

2.1 Sparsity and the Question of Non-negativity

In this section we present what is called correlative sparsity. We show how this sparsity can
be exploited in order to compute certificates of non-negativity more efficiently. The results
in this section trace back to a group of researchers from Japan, namely H. Waki, S. Kim,
M. Kojima, and M. Muramatsu [Wak+06] and J. B. Lasserre [Las06].

2.1.1 Sparsity Pattern

In the previous chapter we were interested in whether a polynomial p € R[x] is non-
negative on the basic semialgebraic compact set K = {x € R" : g1(x) > 0,...,gm(x) > 0}.
In this chapter we slightly adapt the notation in order to be able to formulate results
with sparsity. Let Iy,..., I, be subsets of the set of variables {x1,...,x,}. We denote
by R[] the subring of polynomials only invoking monomials in the variables in I, i.e.
R[I] := R[(§)¢er,]- Note that R[I;] can be seen as a linear subspace of R[x]|, giving rise to
the notation R[I, | + R[Ix,] := {p1 + p2 : p1 € R[Ik,], p2 € R[I,]} and the evaluation g(x)
for a polynomial ¢ € R[I}] and a point x € R™ in addition to the standard evaluation in a
point x € R™, where n; is the number of variables in Ij.

Definition 2.1.1 (Sparsity Pattern). We say that (p, K) — or the polynomials p, g1, ..., gm
— respect a sparsity pattern I, ..., Ip, if

* p € Yo R[] and
e g; € R[I}] for some k € {1,... ¢} forall j=1,...,m.

We shall always assume that a sparsity pattern is a covering of {x1,...,X,}, as otherwise
there is a redundant variable among the x;. Note however that we do not assume that
the intersections I; N I; are empty, i.e., a sparsity pattern is not necessarily a partition of
{x1,...,%n}. For a geometric interpretation of K respecting a sparsity pattern, denote by
7 : R™ — R™ the projection induced by x — (§)¢er,. Then we can write K = {x € R :
me(x) € K®) kE=1,... ¢}, where

K® = {x e R™ : g(x) >0, for all g € {g1,...,9m} NR[L]}, (2.2)

i.e., the set K is completely described by its “shadows” 7, (K') and each of these projections
is a basic semialgebraic set described by a subset of the constraint polynomials g1, ..., gm.
The standard example for such a set K is the Steinmetz solid which is the intersection of
two cylinders which are perpendicular to each other:

K={xecR:1-x—x3>0 1-x3-x2>0}

with sparsity pattern Iy = {x1,x2} and I = {x2,x3}. The shadows K® and K@ are the
unit circles in the x1,X2- and X9, x3-plane, respectively. This easy example illustrates the
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Cr: 112317 Ci: 1 2 3

Co: 2171415 Ch: 2134
Cs: 2134 Cs: 2 415
CsN (CoUCh): 2134 CiN(CLUCY): 2 4

Figure 2.1: Left: RIP is not fulfilled because neither 3 ¢ C3 nor 4 ¢ C;. Right: RIP is
fulfilled because 2,4 € Cj.

principle of sparsity. In practice however, the number ny of variables in each I is assumed
to be significantly smaller than the total number of variables n. Of course p and K always
respect the trivial sparsity pattern I := {x1,...,X,}.

Definition 2.1.1 is coherent with the definition of correlative sparsity of [Wak+06], where
a so-called csp! graph G = (N, E) of p,g1,...,gm is considered. This undirected graph?
with nodes N = {1,...,n} is constructed by putting an edge (i1,i2) € E if and only if

e p has a monomial involving both variables x;, and x;, or
e one of the g; has a monomial involving x;, and a monomial involving x;,.

Let C1,...,Cy be the maximal cliques of G. Then, the sets of variables {x; : i € C}},
k =1,...,¢ define a sparsity pattern respected by (p, K). Therefore we refer to the sets
Ii,...,1; as cliques, even if they are not constructed using the csp graph.

Waki et al. actually use the maximal cliques of a chordal extension of the csp graph
because they can be obtained in time polynomial in the input size and (possibly after
reordering) satisfy the so-called running intersection property:

Definition 2.1.2 (Running Intersection Property). An ordering of sets C1,. .., Cy satisfies
the running intersection property (RIP), if

Vk> 1, 3ko <k:CrN | J Cj C Ch.
i<k

In the sequel, a sparsity pattern respecting the running intersection property will be called
a RIP sparsity pattern.

Note that the RIP is not necessarily a property of cliques, but of their ordering. The
same set of cliques can both satisfy and violate the RIP, when ordered differently.

Example 2.1.3. Consider the following example visualized in Fig. 2.1. Define the cliques
Cy :=11,2,3}, Cy := {2,4,5}, and C3 := {2,3,4}. In this order, the RIP is not satisfied,
as

C3N(CoUC) =C3LCy, k=1,2.
However, when interchanging Cy and Cs, i.e., defining Cf := {1,2,3}, C% := {2,3,4}, and
C4 = {2,4,5}, the RIP is satisfied. Indeed C;5 N Ch = {2,3} C C] and C5N (CLUCY) =
{2,4} € Cs.

!Correlative Sparsity Pattern
2We refer to [VA14, Chapter 1] for a brief introduction to graph theory.
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From a computational point of view the RIP is crucial in order to compute efficiently
Cholesky decompositions during the process of solving SDPs using interior point methods
(see [VA14]). In addition and maybe even more importantly, it turns out that the same prop-
erty is necessary in order to prove the following sparse version of Putinar’s Positivstellensatz
Theorem 1.2.

2.1.2 Sparse Putinar’s Positivstellensatz

Theorem 2.1 (Sparse Putinar’s Positivstellensatz). Let p, g1, ..., gm € R[x] respect a RIP
sparsity pattern I, ..., 1y and let the quadratic modules QW ¢ R[I;] associated to the
polynomials {g1, ..., gm} NR[Ix], respectively, all be archimedean. If p is strictly positive
on K={xeR":¢g1(x) >0,...,9m(x) >0}, then

pE ZQ(k)

Note that similar to the non-sparse case Theorem 1.2 the Archimedean property of the Q%)
implies compactness of the K*) and hence compactness of K. The proof of Theorem 2.1
makes extensive use of the RIP and can be found in [Las10b]. In [KP07; KP09] the result
has been generalized to fibre products and projective limits.

In analogy to (S-POP,), from Theorem 2.1 one constructs a hierarchy of problems which
we call the sparse standard hierarchy in the following:

supt s.t.f—te ZQQ“). (2.3)
t

For fixed r, problem (2.3) is an SDP (compare Section 1.4). We recall that an SOS of degree
2d in n variables can be represented via a positive semidefinite matrix of size ("zl“d). As the
SOS weights involved in the quadratic modules Q*) in Theorem 2.1 are polynomials in the
variables I, only, the size of the involved positive semidefinite matrices is (”’“jd)
as ny is significantly smaller than n, replacing the quadratic module from Theorem 1.2 by

. As soon

the sum of quadratic modules in Theorem 2.1 results in drastic computational savings.

2.2 Exactness for SOS-convex Problems

In the case that f,gi,...,gm are quadratic, the first possible relaxation of the standard
hierarchy (S-POP,) is the dual of the so-called Shor relazation which is known to be exact
in the case that the polynomials f,—gi,...,—gm are convex [Sho98]. In this section we
consider polynomials of maximal degree 2d that have the more restrictive property that
f,—g1,-..,—gm are SOS-convex:

Definition 2.2.1. A polynomial p is SOS-convex if its Hessian® V?p is an SOS-matrix
polynomial, i.e., if there exist s € N and a matrix L € R[x]"*® such that V?p = LL".

8%p
Ox;0%x; °

3The Hessian of a polynomial p is the n x n matrix defined entry-wise by (V2p)ij =
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In the spirit of Shor we consider the following problem which can be seen as a further
truncation of the first possible Putinar strengthening:

sup {t:f—t:ao—i—Z)\jgj}, (SH-D)

t,00,\; j=1
where ¢ is an SOS of degree at most 2d and A; are SOS of degree 0, i.e., non-negative
scalars. In the case of d = 1 (the quadratic case), (SH-D) coincides with the dual of the
Shor relaxation [Las01].

As we will see in a minute, similar to the Shor relaxation, (SH-D) has the interesting
property that, when f and all —g; are SOS-convex of degree at most 2d, it is exact, i.e.,
the polynomial f — (POP)" has a representation oq + D1 Ajgj-

Theorem 2.2. Let K :={x € R": g1(x) > 0,...,9m(x) > 0} be compact with non-empty
interior and f,—gi,...,—gm € R[x] be SOS-convex of degree 2d. Then (SH-D) is exact.

The result is proved in [Sho98| for the case d = 1 where the SOS-convex condition sim-
plifies to convexity. The presented proof builds on [Las08] where Theorem 2.2 is mentioned
as a corollary.

Proof. Let x* be a global minimizer of f on K, i.e., f* := f(x*) < f(x) for all x € K.
By the optimality condition of Karush-Kuhn-Tucker there exist non-negative multipliers
A; € R such that

VI =D AVg(x) =0 (2.4)
j=1
and \jg;(x*)=0,j=1,....,m (2.5)

holds. Define the Lagrangian L := f — f* — 37", A\;g;. Then by the SOS-convexity
assumptions on the initial data, L is also SOS-convex. By (2.4) VL(x*) = 0 and by (2.5)
L(x*) = 0. A lemma from Helton and Nie [HN10] now yields that L is an SOS of degree
2d, which finishes the proof. O

Having in mind the sparse version of Putinar’s theorem it is immediate to define a
sparse version of (SH-D):

¢ m
sup {t: f—t= Z a(()k) + Z Nigits (SSH-D)

tog A k=1 j=1

for (f, K) respecting an RIP sparsity pattern Iy, ..., I;, with SOS weights a(()k) € R[I] of
degree 2| deg(f)| and non-negative scalars Ay, ..., Ay. It would be nice to prove exactness of
(SSH-D) in the case of SOS-convex problems as we did for the non-sparse version. However,
the lemma from Helton and Nie [HN10], which was used in the proof above, does not
guarantee that sparsity in an SOS representation of the Hessian is transferred to an SOS
representation of the initial polynomial. The following statement and its proof are based
on a proof first presented in [WLT17].
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Theorem 2.3. Let Iy,...,I; be a (non-necessarily RIP) sparsity pattern for (f =
Zi:l fEK = {x € R": g1(x) > 0,...,9m(x) > 0}), where f',.... f* —g1,...,—gm €
R[x] are SOS-convexr polynomials of degree 2d. Assume that for some positive integer
N € N the (SOS-concave) polynomials N — doeel, €24 are amongst the gi,. .., gm and that
K is non-empty. Then (SSH-D) is exact.

Note that the assumptions on K in the sparse assertion are quite different from the
ones in the non-sparse case. The assumption on K being compact in the non-sparse version
is replaced by the stronger assumption of the polynomials N — 3 ., €24 being among
the constraints. However, if K is already known to be compact, these polynomials can be
computed and added to the description. The second assumption that K has non-empty
interior in Theorem 2.2 is replaced by the weaker assumption that K itself is non-empty in
Theorem 2.3. In particular, using the trivial sparsity pattern, this provides an alternative
version of Theorem 2.2

Proof. Recall that (SSH-D) can be reformulated as an SDP

4

sup t s.t.f—t— Z <Xk,vlj(vfl)T> - Z Ajg; =0 (SSH-SDP)
t.XkN; k=1 j=1

where t € R, X* € R3(-d)xs(n.d) pogitive semidefinite with s(ny, d) := ("’“jd), and \; non-
negative. The equality constraint is equivalent to equating all coefficients of the polynomial
on the left hand side to zero. For each monomial x® with |a| < 2d let z, be the dual
variable to this equality constraint on the coefficients of x*. Then the dual to (SSH-SDP)

reads
inf L,(f) st Ly(1) =1, L,(vEEYTYy =0, L.(g5) >0 (SSH-P)

where z is a vector in R®("24) | The further outline of the proof is the following. In a first step
we show that (SSH-P) is exact. Then we show that strong duality holds between (SSH-P)
and (SSH-SDP), i.e., (SSH-P)" = (SSH-SDP)* and in conclusion (SSH-SDP)* = (POP)*

Note that as K is non-empty (SSH-P) has a feasible point defined by z, := x* for some
x € K. For this point it holds that L,(f) = f(x). Consequently (SSH-SDP) is a relaxation
of (POP), i.e.,(POP)" > (SSH-P)". Next we show that the converse inequality holds, too.

Note that as the polynomials N — > ¢, €24 are amongst the constraints, L,(1) = 1,
and by linearity of L, it holds that

N = L,(N) > NL,(x}"),

where we have used that L, (Xf’“) = 7,21 > 0 for every vector e; of the standard basis of N"
and every k = 1,...,d. The latter is a consequence of the semidefiniteness of the moment
matrix L,(vE(vE)T). By [Las15, Proposition 2.38] this implies that |z,| < N for all o € N3,
i.e., the feasible set of (SSH-P) is compact. Consequently (SSH-P) attains its maximum
at an optimal solution z*. Define x* := L,«(x). By a Jensen type inequality valid for the
Riesz functional and SOS-convex polynomials [Las15, Theorem 13.21] we have

FE) = M (Lo (x)) < L(f%) and 0 < Ly (g5) < gj(x7).
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While the second statement above shows that x* is feasible for (POP) from the first one we
can conclude that

y4 l l
(SSH-P)* = Z = Z (ff) > Z f(x),

showing that (SSH-P)* = (POP)", i.e., (SSH-P) is exact. It now remains to show that
(SSH-P)* = (SSH-SDP)*. For this note that we have just proved that (SSH-P) has an
optimal solution. In addition, as the feasible set of (SSH-P) is bounded, the set of optimal

solutions of (SSH-P) is bounded, too. Now [Trn05, Corollary 1] yields strong duality, i.e.
(SSH-SDP)* = (SSH-P)* = (POP)". O

As mentioned before we get the following alternative condition for exactness of (SH-D)
by choosing the trivial sparsity pattern I; := {x1,...,Xp}.

Corollary 2.2.2. Let K = {x € R" : ¢g1(x) > 0,...,9m(x) > 0} be non-empty and

fy=91,-..,—gm € R[x] be SOS-convex of degree 2d. For some positive integer N € N let
the polynomzal N -, x2d be amongst the gj. Then (SH-D) is ezact.

With the proofs of exactness for (SH-D), in particular we have shown that the first
steps of the (sparse and non-sparse) standard hierarchy are exact for SOS-convex problems,
respectively.

Corollary 2.2.3. In the situation of Theorem 2.2 or of Corollary 2.2.2 the first possible
strengthening of the standard hierarchy (S-POP,.) is exact.

Corollary 2.2.4. In the situation of Theorem 2.3 the first possible strengthening of the
sparse standard hierarchy (2.3) is ezact.

In the following we are going to discuss other certificates and corresponding sparse
versions that permit to define other hierarchies for polynomial optimization and to prove
their convergence to the optimal value. As it will turn out, the first steps of some of these
hierarchies will be (SH-D) or (SSH-D) and will hence inherit the nice exactness results just
proved in this section.

2.3 Positivstellensitze and their Sparse Versions

A diversity of certificates have been derived from alternative theorems of positivity, e.g.
theorems by Schmiidgen Theorem 2.4 and Krivine Theorem 2.5. More recently the so-called
BSOS certificate Theorem 2.6 has been introduced in order to reduce computational cost
while maintaining a good convergence — meaning that already strengthenings of low order
are able to represent the polynomial f — (POP)”.

2.3.1 Alternative Positivstellensitze

Putinar’s Positivstellensatz Theorem 1.2 depends on the description of K. Even though
we have already argued that it is always possible to add a redundant constraint in order
to make the quadratic module archimedean, one might be interested in a Positivstellensatz
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independent of the description of K. Omne such result is the following theorem due to
Schmiidgen [Sch91].

Theorem 2.4 (Schmiidgen). Let K := {x € R" : gi1(x) > 0,...,gm(x) > 0} be compact
and p strictly positive on K. Then

m
p= >, oa]]g

ae{0,1}™ j=1
with SOS weights 0, € R[x].

Note that this Schmiidgen-certificate is richer than the one from Putinar’s theorem as we
recover Putinar by only choosing exponents o € {0,1}"™ such that |a| < 1. Once the degree
of the SOS is fixed, a Schmiidgen-certificate can be computed by solving an SDP as we
have already seen for Putinar in Section 1.4. The number of semidefinite variables however
now is 2™ compared to m + 1 for Putinar. This and the fact that Putinar usually works
quite well are the reasons why, to the best of our knowledge, the theorem of Schmiidgen
has never really been used for polynomial optimization purposes.

The following Positivstellensatz goes back to Krivine [Kri64], but can also be allocated
to other authors [Ste74; Han88; Vas03]. Similar to (SH-D), it replaces SOS by non-negative
variables and combines this with the idea of building products of the constraint polynomials.*

Theorem 2.5 (Krivine). Let g1,...,gm be dominated by 1 on K, let 1,g1,...,gm generate
R[x] as an algebra, and let K be compact. If p is strictly positive on K then

m
p= Z /\aﬂ H Q?j(l - gj)ﬁj7
j=1

a,fEN™
for finitely many non-negative scalars Aog.

To clarify the statement of the theorem we emphasize that the theorem establishes a
finite number of positive scalars A,g but does not provide an a priori bound on || or |3].
Note further that g; < 1 on K is not restrictive, as K is compact and the assumption
can be satisfied by dividing each g; by an upper bound of g; on K. The assumption that
1,91,...,9m generate R[x] is not restrictive either, as redundant constraints can always
be added until the assumption is satisfied. Finally note, that when restricting to a finite
number of o and 3, computing a Krivine-certificate reduces to solving a linear program.

In view of this it is appropriate to ask why the certificate based on Putinar, which
requires to solve an SDP, has become standard in polynomial optimization, whereas by the
previous theorem there is a certificate which can be computed solving only an LP. The
reason for this is that in general finite convergence cannot take place in a hierarchy based
on Krivine. Assume for example that for some truncation r € N the Krivine certificate is
exact, i.e.,

m
F=f&)= > Aas[[g7(-gp)%,
a,EN™ j=1
||+ B]<r

4 Actually Krivine’s Theorem is older than the ones by Schmiidgen and Putinar and hence one should
rather say that in the latter non-negative variables are replaced by SOS.
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for a global minimizer x* of f on K. Then, unless f is the zero polynomial, at least one
Aap is strictly positive. Now, if x* is in the interior of K, then evaluating the equation at x*
annihilates the left side, while the right side is strictly positive. This shows that in general a
Krivine hierarchy cannot be exact at a finite degree of truncation. Another typical scenario
is when a global minimizer x* annihilates some of the g;’s (i.e., x* is on the boundary of K)
and there is a non-optimal point in K annihilating the same g;’s. Then finite convergence of
a Krivine-hierarchy cannot take place neither. In addition to the lack of finite convergence,
from a numeric perspective one observes, that computing lower bounds on f via Putinar
certificates in general leads to closer bounds.

In the remaining section we discuss certificates that try to find a compromise between
the powerful certificates of Schmiidgen and Putinar on the one side, and the cheap, i.e.,
computationally less demanding, Krivine certificate.

The following certificate has been proposed by Lasserre et al. in [LTS17] and is based
on Krivine, but in order to establish at least finite convergence for the class of SOS-convex
problems under some weak conditions.

Theorem 2.6 (BSOS). Let g1,...,9m be dominated by 1 on K, let 1,g1,...,gm generate
R[x] as an algebra, and let K be compact. If p is strictly positive on K then

m
p=o0q9+ Z )\aﬁ H g;xj(l - gj)ﬂj, (26)
a,BEN™ Jj=1

for finitely many strictly positive scalars A\og € Ry and an SOS o¢ € R[x] of fized degree s.

There is nothing to prove in this statement, as it is a direct consequence of Theorem 2.5.
The name BSOS comes from bounded SOS and makes reference to the way a hierarchy
is constructed from this certificate. The truncation order for BSOS is the same as in the
hierarchy from Krivine (called LP hierarchy in the sequel), i.e., the exponents o and 8 in
(2.6) are restricted to be in the simplex |a| + |3| < r. However, the degree of the SOS og
is fixed by the user in advance and stays the same for all steps of the hierarchy. A typical
choice for the degree of oy is the smallest even integer greater or equal to deg(f), but also
lower degrees for the SOS may improve the quality of lower bounds compared to the LP
hierarchy.

An interesting feature of BSOS and an advantage over the pure Krivine hierarchy is the
following Corollary.

Corollary 2.3.1. Let deg(f) = 2d in (POP) and f,—g1,...,—gm be SOS-convex. Choosing
s = 2d the first truncation of BSOS is exact.

Proof. Note that the first BSOS truncation with the choice of s = 2d coincides with the
dual of the Shor relaxation (SH-D). Hence the proof is complete by Theorem 2.2. O

We have seen that both the standard hierarchy, based on Putinar, and the BSOS
hierarchy are enhancements of the (SH-D). However, going higher in the truncation order
with BSOS is computationally cheaper than increasing the degree of the SOS for the
quadratic module in the standard hierarchy. While the latter may be prohibitively expensive
in view of the performance of state-of-the-art SPD solvers, the former might provide better
bounds or even the optimal value.
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An Alternative Certificate Another approach to providing certificates that are less
computationally demanding then Putinar has been proposed by Ahmadi and Majumdar
[AM14]. Restricting the degree of some SOS to 0, i.e. replacing them by non-negative
scalars, is a quite brutal method to enforce cheaper certificates and may be to restrictive to
obtain good quality certified lower bounds. Ahmadi et al. use the fact that (scaled) diagonal
dominant matrices are positive semidefinite. Conditioning a matrix to be (scaled) diagonal
dominant can be done by linear or second order constraints, respectively. Hence restricting
the matrices in Theorem 1.2 to be diagonal dominant or scaled diagonal dominant is a
way to enforce positive semidefiniteness by only solving a linear program or second order
cone program, respectively. Note that this procedure comes with no proof of convergence.
Ahmadi et al. however establish extensions of these certificates where they can prove
convergence. Replacing the non-negative weights in Theorem 2.5 or Theorem 2.6 by the
weights proposed by Ahamdi and Majumar might be a good strategy to obtain a converging
hierarchy that is less computationaly demanding than the one based on Putinar and at the
same time better performing than the ones based on Krivine.

2.3.2 Sparse Positivstellensitze

The aim of this section is to provide sparse versions to the theorems of positivity just
introduced. These sparse versions relate to the respective theorem as Sparse Putinar’s
Theorem 2.1 relates to its dense version Theorem 1.2. In fact the proof for the sparse
versions, first presented in [WLT17], crucially relies on Theorem 2.1.

Theorem 2.7 (Sparse Positivstellensétze). Let Iy,...,I; be an RIP sparsity pattern for
(Pyg1s---y9m) and K == {x € R" : g1(x) > 0,...,9m(x) > 0} be compact. For k =
L...,0 let K®) .= {x e R™ : g(x) >0, for all g € {g1,...,9m} "R[I]}. Assume that if
p®) e R[I] is strictly positive on K®) then p®) e Cert®) C R[I;] for some certificate of
non-negativity on K®), respectively. Then, if p is strictly positive on K, p has a sparse

representation
pE Z Cert®,

Proof. As p is strictly positive on K there exists € > 0 such that p—e >0 on K. As K is
compact we can add redundant constraints to the description of K (compare Section 1.3)
such that the quadratic modules Q%) associated to each K®) are archimedean. Conse-
quently by Sparse Putinar Theorem 2.1 p —e =3, p®) with p*) € Q). In particular we
have pF) = p(k) 4 7>0on K®)_ By the Positivstellensatz we obtain that p¥) e Cert®)
for each k. This finishes the proof as p = 3 p¥). O

From Theorem 2.7 we obtain immediately the sparse versions for the theorems of
positivity from the previous section. Let Jj, := {j € {1,...,m} : g; € R[I}]} and my, the
number of elements of Jj.

Corollary 2.3.2 (Sparse Schmiidgen). Let Iy,...,Iy be an RIP sparsity pattern for
(Pyg1s---,9m) and K be compact. If p is strictly positive on K, there exist SOS weights
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o e R[Ix], such that

I 5 )

k=1 \aec{0,1}k jeJp

Corollary 2.3.3 (Sparse Krivine). Let Iy,...,I; be an RIP sparsity pattern for
(P, g1,.--,9m), K be compact, all g; be dominated by 1 on K, and let the polynomials
1,(9j)jet, generate R[I;] as algebras, respectively. If p is strictly positive on K, there exist

nitely many non-negative weights )\(k), such that
ap

Corollary 2.3.4 (Sparse BSOS). In the same situation as in Corollary 2.5.3 there exist
508 ok ¢ R[I;] of fized degree s € N and finitely many non-negative weights )\g}), such

that

¢
p=> (a““) + > s [ g0 —gpﬂf) ,
k=1

a,BENTE jeJk

Remark 2.3.5. Though the proof of Theorem 2.7 is quite simple and the three corollaries
are a direct application, their assertions are far from being obvious. While the constraint
polynomials g; only enter linearly in the Putinar certificate, and hence their variables are
separated, in the other certificates one has to consider products of the g; potentially mixing
all variables.

As in the previous section we can define hierarchies of LPs and SDP form Corollary 2.3.2,
Corollary 2.3.3, and Corollary 2.3.4 by restricting the degree of the SOS or the number of
non-negative multipliers to some number depending on the truncation order ». When the
number ny of variables in each clique I is significantly larger than the number of total
variables n, theses programs are much smaller and hence easier to solve. For the Sparse
BSOS hierarchy at truncation order r we propose to restrict to |a| 4+ |5 < r as in the
dense case. With this convention we preserve the interesting feature of the BSOS hierarchy
Corollary 2.3.1.

Corollary 2.3.6. Let deg(f) = 2d in (POP), f,q1,...,9m be SOS-convex and I, ..., 1, be
a sparsity pattern for (f, K). Choosing s = 2d the first step of the Sparse BSOS hierarchy
s exact.

The proof of this Corollary is just remarking that the first step of Sparse BSOS in this
situation coincides with the (SSH-D) and applying Theorem 2.3.
2.4 Numerical Evaluation of the Sparse BSOS Hierarchy

As outlined earlier, theoretic results of convergence of the different hierarchies for polynomial
optimization are important. However, from a practical point of view, the ability to retrieve
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good bounds with a reasonable computational effort is a decisive factor, too. For this reason
we show some numerical experiments how the Sparse BSOS hierarchy competes against its
dense counterpart as well as against the sparse standard hierarchy. The results presented
in this section are based on [WLT17].

2.4.1 Implementation

In order to compare the different hierarchies we developed a code for Sparse BSOS and Sparse
Putinar [Weil7]. For the comparison to BSOS we used a code from [LTS17]. Both codes use
the SDP solver SDPT3 [TTT12]. In this section we explain details of the implementations
and discuss sufficient conditions to determine optimality from the solution.

BSOS

We explain how BSOS is implemented in [LTS17]. The polynomial equality (2.6) is imple-
mented by sampling, i.e., a set of scalar equality constraints is generated by evaluating both
sides of the polynomial equality in sufficiently many points. Let s be the fixed parameter
for the degree of the sums of square o and fix a truncation order r, i.e., |a| +|5| < 7. Then
the maximal degree of polynomials appearing in (2.6) is dmax := max{deg(f), 2s,r deg(g;)}.

("+im‘""‘) point evaluations in order to generate enough

nXs(dmax)

Consequently we need $(dmax) =
scalar equality constraints. Let (x]) € [—1,1] be a sample of generic points. For
ease of notation define hqp 1= [}, g?j (1 —g;)%. Then the BSOS implementation solves

the following SDP

supt st f(x7)— Z Aap hap(x™) — <X, (VS(xT)(VS(xT))T)> =0,
t,X,\ (a,8)eN2m (2.7)

Vr=1,...,5(dmax), X €S\ AR 1R

where S_’ﬁ denotes the convex cone of positive semidefinite matrices of size k x k. As
explained in [LTS17, Section 3], some of the constraints in the SDP stated above might
be nearly redundant, i.e. they might be “almost” linearly dependent on others. Such
constraints are removed before handing the problem over to the SDP solver. A close look to
the code also reveals that the maximum number of point evaluations considered is limited
to approximately 5000. This choice has been made to prevent the solver from running out
of memory. As a consequence, when s(dpax) > 5000 the implemented SDP is a relaxation
of the SDP stated above, as not enough point evaluation are considered to guarantee the
polynomial equality constraint in (2.6).

Rank condition Optimality of BSOS at any step of the hierarchy r can be verified a
posteriori by checking a rank condition on a matrix o from the dual solution to (2.7). When
the rank of this matrix equals one, the value obtained from (2.7) coincides with (POP)*
[LTS17, Lemma 1].

Sparse BSOS

In contrast to BSOS, for our code we decided to implement the polynomial equality con-
straint by comparing coefficients. Both strategies have drawbacks: To equate coeflicients
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one has to take powers of the polynomials g; and (1 — g;) which leads to an ill-conditioning
of the coefficients of the polynomials heg (in the monomial basis) as some of them are
multiplied by binomial coefficients which become large quickly when the truncation order r
increases. On the other hand, when equating values the resulting linear system may become
ill-conditioned because (depending on the points of evaluation and the g;) the constraints
may be nearly linearly dependent. The authors of [LTS17] chose point evaluation for the im-
plementation of BSOS because SDPT3 is able to exploit the structure of the SDP generated
in that way and hence problems with positive semidefinite variables of larger size can be
solved. However, this feature cannot be used for Sparse BSOS. Indeed, equating coefficients
is reasonable in the present context because we expect the number of variables n; in each
clique to be rather small. The drawback of this choice is that the resulting truncations with
high order r can become time consuming (and even ill-conditioned as explained above). A
crucial issue for the implementation of the Sparse BSOS hierarchy is how to equate the
coefficients. We refer to [WLT17; Weil7] for more details on the implementation.

The actual implementation of the SDP for Sparse BSOS differs slightly from the de-
scription in Corollary 2.3.4. It turned out that SDPT3 performs better when adding some
additional variables as follows. Remember the notation Jj := {j € {1,...,m} : g; € R[I}]}
and define N¥ := {(a,8) € N™ x N™ : supp(a) U supp(B) C Jy,|a| + |8] < r} where
supp(a) == {j € {1,...,m} : aj # 0}.

V4 4
sup t st. teR, (Zf““)) =fo—t, (Zf“f)) —f, Vyel
0 gl

t ) k=1 k=1
X (k) p(k)

(f(’“)— > oAl haﬁ—<X<’f>,(vgk>(vg’f>f)>) =0, vyer®

(aB)EN y

X®) ¢ g AW e RV b ®) e RL) WE=1,...0,
(2.8)

and I' = JT'®. By
p)- we refer to the coefficient p. of the polynomial p. With ng) we denote the vector
¥ y

Here T(*) denotes the set of exponents of the monomials of R[I}]

dmax

consisting of the monomial basis of R[I;]. The additional variables, mentioned above, are

the explicit polynomials f(*) € R[I;] which appear as linear variables via their coefficients
£{%).

A similar sufficient rank condition as for BSOS can be checked in order to determine

that the truncation (2.8) has attained (POP)*. To see this consider the dual program to
(2.8).

inf L,(f) st LGPy =0, veE=1,...,¢,

Z,Z<k)
Lz(k)(haﬁ) > 07 \V/(O[,B) € va
zy =28, W¥yeT®W vk=1,..¢

zo=1, zé€ Rm, 2F) € RT®!I.

Proposition 2.4.1. Let (z,2%)) be an optimal solution to (2.9) and w € N such that
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2w > max{deg(f),deg(g;)}. If rank(L,u (vyv,))) = 1 for all k = 1,...,¢, then (2.9)" =
(2.8)" = (POP)" and x* := (24)|y|=1 15 an optimal solution to (POP).

Note that in order to be able to compute the rank condition, the parameter s for the
size of the SOS has to be chosen sufficiently large. The following proof was presented in
[WLT17].

Proof. If rank(L,) (vov.))) = 1, (25 (k ))MQw is the vector of moments up to order 2w of the

Dirac measures d ) in the point xk) .= (z g ))lvlzl [Las10b, Theorem 4]. Let p € R[Ix]a,.
Then
L, (p va 20 (x7) pr = p(x™).

Let 71, be the projections induced by x + (€)¢cz, . Then 7 (x*) = x*) for all k. Furthermore
for all p € R[I}]a,, it holds that p(x*) = p(x*)). In particular as 2w > max{deg(f), deg(g;)}
and for particular choices of a, § and k, we obtain g;(x*) > 0 for all j, i.e., x* is feasible
for (POP). Finally note that f can be written as sum of polynomials f*) € R[I}]s,.
Consequently we have

(POP)* > (2.8)* > (2.9)* =>"Lw(f®) =3 W) = f(x*) > (POP)*,

where the first inequality is because (2.8) is a strengthening of (2.1), the second because of
weak duality, and the last because x* € K. O

Reducing problem size By looking at (2.8) more closely one may reduce the number
of free variables and the number of constraints. It is likely that there are some indices
i €{l,...,n}, that only appear in one of the Iy, say i € Ij,,. Hence, for all v € I" such that
vi # 0 the second equality constraint in (2.8) reduces to flji = f. Consequently, there is a
number of variables that can be fixed from the beginning. We do this in our implementation.
However, in order to be able to certify optimality by Proposition 2.4.1 one needs to trace
back these substitutions to recover the moment sequences z(*) from the solution of the dual
problem. Removing these fixed variables occasionally leads to equality constraints 0 = 0 in
the SDP. We remove those constraints for better conditioning.

Sparse Putinar

Our implementation of the sparse standard certificates (Sparse PUT in the sequel) is quite
similar to the one of Sparse BSOS. For ease of notation let gy := 1 € R[I] for all k, and

define d; := L%eg(gﬂj. We implemented the following SDP

14

J4
sup t st. teER, <Zf(’“)> =fo —t, <Zf(k)> —f, Vyel
0 k=1 ~

£, X", f0

(2.10)

(f(k) -2 <X}k), (vdjvljgj)>> =0, Vyer®
J€Jk -

xWesim W vje g, fWeR[L), VE=1,....0
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where we used the same notation as in (2.8). Similar to Sparse BSOS we can check a rank
condition to state optimality. Before solving the SDP with SDPT3 we apply the same
techniques as discussed for Sparse BSOS in order to get a better conditioned program.

2.4.2 Introductory Remarks on the Numeric Comparison

The aim of the experiments presented in the following is twofold. On the one hand we
compare Sparse BSOS with BSOS on small and medium size problems (as BSOS cannot
handle large scale problems) with different sparsity patterns. In particular we are interested
in the following issues:

e When the size of overlaps between blocks of variables is fixed. How does the clique
sizes ny (depending on the sparsity pattern) influence the performance?

e How do various clique and overlap sizes for a fixed number of variables (n = 90)
influence the performance?

e Does the finite convergence of the dense version occur systematically earlier than for
the sparse version? (As it cannot occur later.)

On the other hand we compare Sparse BSOS with Sparse PUT on high degree small size
and lower degree medium and large scale problems. This comparison requires some care
because the feasible set for Sparse PUT is K = {x : g;(x) > 0} while for Sparse BSOS (and
BSOS) it is K = {x : 0 < g;(x) < 1}. Hence we code the information about the feasible
set in the constraints 0 < g;(x) and scale the constraint polynomials g; to be less than 1
on the feasible set. In general one expects that if Sparse PUT gives a good result, Sparse
BSOS will not do better. However we have identified at least three scenarii where Sparse
BSOS can beat Sparse PUT (and does it at least in some examples). These scenarii are:

e The first possible Sparse PUT strengthening yields the optimal value of the polynomial
optimization problem, and some degrees d; of the SOS weights are potentially greater
than 0. This happens, when the degree of the objective function is larger than
deg(gj) + 2 for some j. Then setting the parameter s = deg(f)/2, the first Sparse
BSOS strengthenings (r = 1,2, ...) are faster than Sparse PUT and may also reach
the optimal value; this is illustrated in Table 2.5 and Table 2.6.

e The first possible Sparse PUT strengthening does not reach the optimal value of the
POP and the second strengthening cannot be solved (because its size is too large
and/or is too costly to implement). If the SOS weights in the first Sparse PUT
strengthening are all of degree 0, then again setting the parameter s = deg(f)/2, the
first Sparse BSOS strengthening gives the same result and it is possible to obtain
better bounds by going higher in the truncation order. In particular, this is the case
for the important class of quadratic/quadratically constrained programs (that is when
max{deg(f),deg(g;)} < 2); this is illustrated in Table 2.10.

e The first possible Sparse PUT strengthening cannot be solved. Then setting the
parameter k < deg(f)/2, the first steps of the Sparse BSOS hierarchy (r =1,2,...)
may be solvable and so provide lower bounds on the optimal value of the polynomial
optimization problem whereas Sparse PUT cannot; this is illustrated in Table 2.11.
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To summarize the above cases, in Sparse BSOS we take full advantage of the facts that
(a) the constraints enter the certificate only with non-negative weights in contrast to SOS
weights in Sparse PUT, (b) the size of the positive semidefinite variables is fixed and does
not increase with the truncation order. In particular, while the minimal size of the largest
positive semidefinite variable in Sparse PUT is determined by the polynomial data and
strictly increases when augmenting in the hierarchy, in Sparse BSOS one can always set
the parameter s to 1 which implies that the maximum size of the semidefinite matrices in
the SDP (2.8) is always at most O(n*) where n* = maxy ng, for all r. This is because by
assumption, the g; generate the algebra R[x] and so a polynomial of arbitrary degree and
positive on K, can be obtained as a positive linear combination of the g;-lj (1—g;)% (with
no SOS involved). So even if max{deg(f),deg(g;)} > 2, the optimal value of (2.8) (with
s = 1) is finite as soon as r is large enough, and so provides a non-trivial lower bound.

The results on numerical experiments described in the next sections are biased by the
(limited) sample of examples that we have considered. Therefore they should be understood
as partial indications rather than definite conclusions. The latter would require much more
computational experiments.

All experiments were performed on an Intel Core i7-5600U CPU @ 2.60GHz x 4 with
16GB RAM. Scripts are executed in Matlab 8.5 (R2015b) 64bit on Ubuntu 14.04 LTS
operating system. The SDP solver used is SDPT3-4.0 [TTT12].

The results are presented in tables below. They provide the following information:

e A pattern or problem code to identify the example.

e The truncation order r and the chosen parameter s for the positive semidefinite
constraints.

e The maximal degree dn.x, appearing in the certificate.

e The numbers of non-negative variables (corresponding to A\,g), unrestricted (free)
variables (corresponding to ¢t and the coefficients of the f*)), and the number (and
size) of the positive semidefinite variables (corresponding to the SOS).

e The number of (equality) constraints in the SDP.
e The (primal) solution of the SDP.

e The time in seconds, including the times to generate and solve the SDP as well as
computing the optimality condition.

e The abbreviation rk stands for the rank of the moment matrices according to Proposi-
tion 2.4.1 and its equivalents for BSOS and Sparse PUT. In the case of Sparse BSOS
and Sparse PUT, rk is the average rank of all moment matrices and can hence be a
decimal number. When reporting an integer the rank is actually integer, i.e. if we
write rk= 1, the rank is actually 1, if however we write 1.0 the rank is strictly bigger
than 1.

e [f the primal solution is written in bold, it was certified by the rank condition and
coincides® with the global optimum of the POP.

®In this context we consider two numbers to be equal if there difference is less than 1075,
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BSOS Sparse BSOS

problem | (r,8) | dmax solution rk  time solution rk  time
P4 2 (1,1) 2 -5.7491e-01 1 0.8s -5.7491e-01 1 1.6s
P4 4 (1,2) 4 -6.5919¢-01 7 0.3s -6.5919e-01 3 0.4s
(2,2) 8 -4.3603e-01 1 0.7s -4.3603e-01 1 0.5s

P4 6 (1,3) 6 -6.2500e-02* 27 1.0s -6.2500e-02 15 0.5s
(2,3) 12 -6.0937e-02 7 0.7s -6.0937e-02* 6 0.6s

(3,3) 18 -6.0693e-02 4  2.6s -6.0693¢-02%* 4 4.7s

P4 8 (1,4) 8 -9.3381e-02* 39 9.2s -9.3355e-02 15 1.7s
(2,4) 16 -8.5813e-02* 9 3.0s -8.5813e-02 4 1.3s

(3,4) 24 -8.5813e-02 4 4.3s -8.5814e-02* 4 4.1s

P6 2 (1,1) 2 -5.7491e-01 1 0.2s -5.7491e-01 1 0.3s
P6 4 (1,2) 4 -5.7716e-01 13 0.7s -5.7716e-01 4 0.4s
(2,2) 8 -5.7696e-01 4 4.4s -5.7696e-01 3 0.7s

(3,2) 12 -5.7696e-01 3  25.0s -5.7765e-01%* 3 16.6s

P6 6 (1,3) 6 -6.5972¢-01* 35 6.6s -6.5972e-01 7 2.7s
(2,3) 12 -6.5972e-01* 32 21.5s -6.5972e-01 4 4.4s

(3,3) 18 -4.1288e-01* 1 44.5s | -4.1288e-01* 1 82.1s

P8 2 (1,1) 2 -5.7491e-01 1 0.2s -5.7491e-01 1 0.3s
P8 4 (1,2) 4 -6.5946e-01 21  1.5s -6.5946e-01 5 0.8s
(2,2) 8 -4.3603e-01* 1 17.7s | -4.3603e-01* 1 2.7s

P10_2 | (1,1) 2 -5.7491e-01 1 0.3s -5.7491e-01 1 0.3s
P10_4 | (1,2) 4 -6.5951e-01 31 5.5s -6.5951e-01 6 2.2s
(2,2) 8 -4.3603e-01* 1 23.4s | -4.3603e-01* 1 8.4s

P20_2 | (1,1) 4 -5.7492e-01* 1 0.8s -5.7491e-01 1 0.4s

Table 2.1: Comparison BSOS vs. Sparse BSOS on non-sparse examples

e Primal solutions were marked with * when the solver stopped because steps were too
short, the mazimum number of iterations was achieved, or lack of progress. In these
cases one has to consider the result carefully.

2.4.3 BSOS vs. Sparse BSOS
Dense small size examples

In Table 2.1 we compare the sparse and the dense version of BSOS on a set of examples
introduced in [LTS17]. In the problem description the first number of the name indicates the
number of variables, the second the degree of the problem. The examples are relatively small
size, i.e. n < 20. The degree of the objective function and the constraints is between 2 and
8. As the test sample is from the dense version, no sparsity pattern is present and we pass
the information I; = {1,...,n} and J; = {1,...,m} to Sparse BSOS. Consequently both
hierarchies compute the same certificate. The only difference comes from the implementation
of the equality constraints and the different handling of the positive semidefinite variable
in SDPTS3.

We see that Sparse BSOS is able to solve the same problems as BSOS. As the problems
are dense, Sparse BSOS uses a trivial sparsity pattern and both certificates are the same.
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Consequently the optimal value coincides unless one of the SDPs stopped because of numeri-
cal issues. In most cases Sparse BSOS is faster than BSOS proving that our implementation
is efficient.

Sparse quadratic examples (medium and large scale)

For the remaining examples we consider sparsity patterns having some banded structure.
The patterns are described by a vector n € N and a natural number o. The vector n
determines the size of the blocks I whereas o defines the number of overlapping variables
between two consecutive blocks. More formally defining ¢; :=nq and ¢ := cx_1 +np, — 0
we construct

I = {ck—nk—i—l,...,ck}.

Note that the total number of variables in pattern I is ¢y. We call those sparsity pattern
banded, because the RIP (Definition 2.1.2) is satisfied by

k

Lmn UL | €I
j=1

Informally for n we use notation like (7 x 5) instead of (5,5,5,5,5,5,5) or (2 x 17,13)
instead of (17,17, 13) without any misunderstanding.
We analyse the impact of different sparsity pattern on instances of the following sparse

quadratic optimization problem. Given a sparsity pattern I = {I;,...,I;} we consider
min{ 2 Az +b'z : 1— mezo, (=1,....,p, ;>0 i=1,....n, 7, (QP)
X
i€ly

where b is a random vector and the symmetric matrix A is randomly generated according to
I6. We verify that A has positive and negative eigenvalues to make sure, that our problem
is non-convex. Depending on the choice of d € {1,2} we call the constraints linear or
quadratic, although in the latter case we still have the linear constraints x; > 0. Note that
the constraints x; > 0 imply that 1 — >,/ r¢ <1 and vice versa.

To compare the respective SDPs arising from BSOS and Sparse BSOS in Table 2.2 we
fix n = (2 x 50) and create different sparsity patterns by varying o. From these patterns
we generate instances of (QP) with d = 2. Choosing parameter s = 1 for the size of the
SOS we compute and solve the first step r = 1 of BSOS and Sparse BSOS. As n is fixed
for all examples the number of variables n grows when the overlap o decreases.

Both BSOS and Sparse BSOS are able to solve all instances of this problem and provide
the same lower bounds. In contrast to the previous example the certificates and the
corresponding SDP handed over to the solver are different: Consider the example with
o = 40 and n = 60 variables. As s = 1 the positive semidefinite variable in BSOS is
of size ("js) = 61 and grows with the number of variables. As the sparsity pattern in
all examples consists of two blocks of 50 variables, Sparse BSOS always has 2 positive

5By this we means that a random value between —1 and 1 is assigned to an entry a;; of A if and only
if both 7 and j are contained in the same I; for some k. Otherwise a;; = 0. The values of b are randomly
generated between —1 and 1, too.
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o/n # n-neg. | # free | # positive semidefinite var. | # cons. | sol. time
var. | var. (size)
40/60 BSOS 125 1 1(61) 1891 | -1.1123e+4-01 13.8s
Sp. BSOS 206 | 1723 2(51) 3513 | -1.1123e+01 14.0s
30/70 BSOS 145 1 1(71) 2556 | -1.2753e+01 24.3s
Sp. BSOS 206 | 993 2(51) 3148 | -1.2753e+01 11.2s
20/80 BSOS 165 1 1(81) 3321 | -1.3376e+01 48.1s
Sp. BSOS 206 | 463 2(51) 2883 | -1.3376e+01 10.5s
10/90 BSOS 185 1 1(91) 4186 | -1.5406e+01 73.6s
Sp. BSOS 206 133 2(51) 2718 | -1.5406e+01 9.3s
5/95 BSOS 195 1 1(96) 4656 | -1.5665e+01 89.5s
Sp. BSOS 206 43 2(51) 2673 | -1.5665e+01 9.2s
1/99 BSOS 203 1 1(100) 5050 | -1.5658e+01 * | 152.2s
Sp. BSOS 206 2(51) 2655 | -1.5658e+01 10.8s

Table 2.2: QPI n = (50, 50), quadratic constraints: d = 2, maximal degree of the certificate
dmax = 2, time to compute the first step r = 1 with s = 1

semidefinite variables of size (
The unrestricted variable in BSOS corresponds to the optimizing variable ¢. Sparse BSOS
also has this optimizing variable. The other unrestricted variables correspond to the
non-fixed coefficients of the polynomials f*).
The maximal degree of the certificate is dmax = 2. Hence, the non-fixed coeflicients
are the coefficients of the monomials 1,750 and x2,. Consequently after removing the

nks—&-s)

This is easy to see in the case of o = 1:

unrestricted variables for the fix coefficients, we have 3 unrestricted variables for f(!) and 3
for f2). Together with the optimizing variable, we end up with 7 unrestricted variables as
presented in the table. The non-negative variables in Table 2.2 correspond to the A,z in the
description of BSOS and Sparse BSOS. Note that the number of constraints for each block
is m; = mg = 51 for Sparse BSOS and m = n + 2 for BSOS (the linear constraints plus the
two quadratic constraints). Consequently there are 206 = (Qm;H) + (QmiJrr) non-negative
variables for Sparse BSOS and (2("t2)+r) non-negative variables for BSOS depending on
the number of variables n. The number of constraints in BSOS corresponds to the number
of point evaluations needed to guarantee the equality constraint in the BSOS formulation,
i.e s(n,dmax) = ("J“i;‘fx), and hence increases with n. For Sparse BSOS three equalities
have to be considered. As they are implemented by comparing coefficients we expect
T+ T+ |0| = 2x (%) + (2 x (°%?) — (°F?)) many constraints. The difference to the
reported numbers in Table 2.2 comes from the fact that with every removed unrestricted
variable, we also remove a constraint.

Summarizing, when the overlap o decreases Sparse BSOS benefits from having less
unrestricted variables and constraints while the size of the positive semidefinite variables
remains the same; the SDP becomes easier. In contrast to this in BSOS the size of the
positive semidefinite variable and the number of non-negative variables and constraints
increases; the SDP becomes harder. The solving time reported in the last column of the
table reflects this nearly perfectly.

We employ Problem (QP) a second time. The aim of this example is to observe the
influence of using different sparsity patterns that all are valid for the same optimization

= 51, independently of the total number of variables.
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# n-neg. | # free | # positive semidefinite var. | # cons. time
n var. var. (size)
BSOS none 20706 1 1(91) 4186 | 882.4s
Sp. BSOS (90) 20706 2 1(91) 4187 | 49.0s
(50,42) 11001 13 1(51)/1(43) 2278 | 10.5s
(50,26, 18) 9072 24 1(51)/1(27)/1(19) 1905 7.8s
(50,2 x 18,10) 8439 35 1(51)/2(19)/1(11) 1788 6.7s
(50,5 x 10) 7821 57 1(51)/5(11) 1682 6.6s
(2 x 34,26) 7776 24 2(35) /1(27) 1649 | 5.3s
(3 x 26,18) 6171 35 27)/1(19 ) 1340 | 3.2s
(34,3 x 18,10) 5862 46 (35)/3(19)/ 1287 3.4s
(2 x 26,2 x 18,10) 5538 46 (27)/2(19)/1(11) 1223 2.8s
(5 x 18,10) 4581 57 5(19)/1(11) 1042 1.7s
(11 x 10) 3036 | 112 11(11) 777 0.8s

Table 2.3: QPII n = 90, overlap 2, linear constraints: d = 1, (r, s) = (2, 1), maximal degree
of the certificate diax = 2, same optimal solution verified by rank one condition in all cases

problem. For Table 2.3 we create the sparsity pattern I with n = (11 x 10) and o = 2
and consider one instance of (QP) with d = 1. Building on this sparsity pattern we can
construct coarser patterns by building unions of smaller cliques to create bigger ones. By a
similar argument as presented in the proof of Theorem 2.3 we can guarantee the existence
of a dual solution of Sparse BSOS by choosing r > 2. Again, we choose parameter s = 1
and compute the second BSOS and Sparse BSOS truncation r = 2.

The dense and the sparse hierarchy are able to solve this sparse problem and certify
optimality by the rank one condition. We do not repeat the discussion on the number
of variables and constraints in this second example. We only remark that the additional
unrestricted variable and constraints in in Sparse BSOS for n = (90) compared to the BSOS
case without sparsity pattern comes from the equality f3 = fo —¢. Because t is variable fJ is
not fixed and hence cannot be removed like all the other coefficients in this case (cf. p 29).

The reason for the big difference of computing times between BSOS and Sparse BSOS is
double. On the one hand side, searching for linearly dependent constraints in BSOS takes
a lot of time. Generating the SDP with BSOS took over 70 seconds whereas the SDP for
Sparse BSOS was generated in less than 5 seconds. The main reason however is hidden in
the constraints. Indeed the constraints in Sparse BSOS are sparse whereas the constraints
in BSOS are dense and therefore the SDP solver is much slower in the dense case.” With
regard to the computing times for Sparse BSOS one can see that the size of the biggest
positive semidefinite variable is a more important factor than the number of non-negative
and free variables or the number of constraints.

We next use the quadratic problem (QP) a third time to investigate the range of Sparse
BSOS on large scale examples in Table 2.4. In this sample we generate sparsity patterns
with 400 to 1000 cliques of size 3 to 9 and small overlap between 1 and 3. As in the previous
example we chose d = 1 and r = 2. The size of those examples is by far too large to run

"Regarding this example the implementation of equalities using sampling might look questionable. Its
positive effect comes into play when considering larger positive semidefinite variables. In [LTS17] the authors
were able to handle problems with positive semidefinite variables of size up to 861 (n = 40, s = 2) due to the
special handling of the constraints associated to the positive semidefinite variable in the case of sampling.
This is by far out of the range of what can be done by comparing coefficients.
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nlo n # n-neg.var. | # unrest.var. | # positive semidefinite var.(size) | # cons. | rnk time
100x4 | 1 | 301 6 600 497 100( 5) 1699 1 1.8s
400x4 | 1 | 1201 26 400 1997 400( 5) 6799 | 1.03 | 11.8s
700x4 | 1 | 2102 46 200 3 497 700( 5) 11899 | 1.02 | 28.2s
1000x4 | 1 | 3001 66 000 4997 1000( 5) 16 999 | 1.03 | 49.1s
100x5 | 2 | 302 9 100 1091 100( 6) 2 596 | 1.06 2.4s
400x5 | 2 | 1202 36 400 4 391 400( 6) 10 396 | 1.04 | 16.2s
700x5 | 2 | 2102 63 700 7 691 700( 6) 18196 | 1.10 | 35.1s
1000x5 | 2 | 3002 91 000 10 991 1000( 6) 25996 | 1.08 | 74.8s
50x8 | 2 | 302 9 500 541 50( 9) 2 496 1 4.3s
200x8 | 2 | 1202 38 000 2191 200( 9) 9996 | 1.08 | 14.9s
350x8 | 2 | 2102 66 500 3 841 350( 9) 17 496 | 1.01 | 35.3s
500x8 | 2 | 3002 95 000 5491 500( 9) 24996 | 1.02 | 68.7s
50x9 | 3 | 303 11 550 933 50(10) 3192 | 1.08 3.2s
200x9 | 3 | 1203 46 200 3783 200(10) 12792 | 1.07 | 18.2s
350x9 | 3 | 2103 80 850 6 633 350(10) 22392 | 1.06 | 44.6s
500x9 | 3 | 3003 115 500 9 483 500(10) 31992 | 1.04 | 133.4s

Table 2.4: QPLS, linear constraints: d = 1, (r,s) = (2, 1), maximal degree of the certificate
dmax =2

BSOS and so we only display the results obtained by Sparse BSOS. They show that Sparse
BSOS is able to compute lower bounds for sparse large scale problems in reasonable time.

Summarizing the computational results of this section, we saw that Sparse BSOS is
competitive with the dense version on dense examples. On sparse examples the Sparse
BSOS outperforms BSOS as it can use the additional information. The advantage becomes
bigger, when the block size nj is small with respect to the total number of variables n. In
addition, the number of variables in the intersection of at least two blocks Iy influences the
performance of Sparse BSOS. Although the certificates depend on the information, known
about the sparsity pattern, we did not encounter that the value computed by BSOS or by
Sparse BSOS with a coarse sparsity pattern, was better than the one computed with the
actual pattern.

2.4.4 Sparse BSOS vs. Sparse PUT

As already mentioned, the sparse version Sparse PUT [Wak+06] of the standard hierarchy
has been proved to be efficient in solving several large scale problems; see for instance
its successful application to some Optimal Power Flow problems [MH15]. However there
are a number of cases where only the first truncation of Sparse PUT can be implemented
because the second one is too costly to implement. Also if ¢ := deg(f) > 2 then the
first SDP truncation is already very expensive (or cannot be implemented) because some

n* +t) > (n*+t

' . ') are constrained to be positive semidefinite (where

moment matrices of size (

n* := maxyny).

Test Problems from the Literature

In this section we present experiments on some test problems considered to be challenging
in non-linear optimization. All test functions are SOS and share the global minimum O.
Hence, it would be possible to compute the minimum in the unconstrained case. However,
if not using constraints both Sparse BSOS and Sparse PUT reduce to searching for SOS.
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Hence, we restrict the problems to the set

K={xeR":1-> ¢>0, k=1,....6 x>0, i=1,...,n},
el

which depends on the sparsity pattern of the specific function. Consequently, the optimal
values of the considered functions are strictly greater than zero, when the minimizer of the
unconstrained problem is not in K. We consider the following test functions of degree 4:

e The Chained Wood Function:

f:= Z <100(Xj+1 — X?)2 + (1 — Xj)2 + 90(Xj+3 — XJ2-+2)2
JjeEH
where H:={2i—1:i=1,...,n/2—1} and n =0 mod 4. The sparsity pattern is
given by n = (¢ x 4) and o = 2.

e The Chained Singular Function:

f= Z ((Xj + 10Xj+1)2 + 5(Xj+2 — Xj+3)2 + (Xj+1 — 2Xj+2)4 + 10(Xj — Xj+3)4>
jeH
where H:={2i—1:4i=1,...,n/2—1} and n =0 mod 4. The sparsity pattern is
given by n = (¢ x 4) and o = 2.

e The Generalized Rosenbrock Function:

f=3 (100(xi —x2 )24+ (1- xi)Q) .
i=2
The sparsity pattern is given by n = (¢ x 2) and o = 1.

Table 2.5 and Table 2.6: We solve the Chained Wood and the Chained Singular
Function for n = 500, ..., 1000 with Sparse BSOS and Sparse PUT. For Sparse BSOS we fix
s = 2 and compute the first and the second truncation. For Sparse PUT we only compute
the first feasible truncation.

Both Sparse BSOS and Sparse PUT are able to find and certify the optimal value (up
to numerical errors) for both functions. For BSOS we go up to r = 2 because the solver
reported irregularities when solving the SDPs for » = 1. In these examples Sparse PUT is
slower than Sparse BSOS because for every constraint Sparse PUT (r = 1) introduces a
positive semidefinite variable of size 5 x 5 corresponding to an SOS of degree 2. Sparse BSOS
(r = 2) only introduces a non-negative variable for all products and squares of constraints.
As the number of non-negative variables is not too big, Sparse BSOS beats Sparse PUT.

At this point we noticed a rather strange phenomenon. For the first Sparse BSOS
truncation » = 1, the SDP solver runs into numerical problems. Yet, from the definition of
the Chained Functions we know that they are SOS of degree 4, which in principle Sparse
BSOS is able to represent with s = 2 for any d. One possible explanation is that the
solver may be influenced by the additional non-negative variables. However, we could
reproduce the same behaviour when omitting the constraints and explicitly only searching
for an SOS. This phenomena is not specific to our implementation or to SDPT3. It also
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Sparse BSOS Sparse PUT
ChainedWood | rel. solution rk  time solution rk  time
n = 500 r=1| 3.8394e+03* 1 16.7s || 3.8394e+03 1 16.7s
r=2| 3.8394e+03 1 10.4s - - -
n = 600 r=11| 4.6104e+03* 1 20.6s | 4.6104e+03 1 21.0s
r=21 4.6104e+03 1 13.2s - - -
n = 700 r=11 5.3813e4+03* 1 24.1s || 5.3813e+03 1 26.0s
r=21| 5.3813e+03 1 15.8s - - -
n = 800 r=1| 6.1523e+03* 1 27.3s | 6.1523e+03 1 31.1s
r=21 6.1523e+03 1 19.4s - - -
n = 900 r=11| 6.9232e4+03* 1 30.8s | 6.9232e+03 1 36.5s
r=21 6.9232e+03 1 22.3s - - -
n = 1000 r=1 7.6942e+03* 3 28.6s || 7.6942e+03 1 42.3s
r=2| 7.6942e+03 1 26.1s - - -

Table 2.5: Comparison Sparse BSOS (s = 2) and Sparse PUT on the Chained Wood
Function

Sparse BSOS Sparse PUT
ChainedSingular | rel. solution rk  time solution rk  time
n = 500 r=11| -1.4485e-02* 1.0 19.6s || -2.0271e-10 1 22.6s
r=21 -9.7833e-10 1 17.8s - - -
n = 600 r=11 -2.7372¢-03* 1.0 40.1s || -1.9613e-10 1 27.8s
r=2 || -1.2640e-09 1 214s - - -
n =700 r=11 -1.7548e-03* 1.0 41.6s | -2.4628e-10 1 34.1s
r=21| -1.7613e-09 1 25.3s - - -
n = 800 r=1] -1.9438e-03* 1.0 589s || -2.3398¢-10 1 41.0s
r=21| 2.1935e-09 1 29.0s - - -
n = 900 r=11 -1.8924e-02* 1.0 43.5s || -3.5871e-10 1 47.3s
r=21| -2.6072e-09 1 33.5s - - -
n = 1000 r=1| -4.4914e-02* 1.0 35.5s || -1.7329e-10 1 54.9s
r=2 | -9.3508e-10 1 39.5s - - -

Table 2.6: Comparison Sparse BSOS (s = 2) and Sparse PUT on the Chained Singular
Function
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Generalized Sparse BSOS Sparse PUT
Rosenbrock | rel. solution rk time solution rk  time
n = 100 r=1 4.8496e+01 2.0 2.8s | 9.6197e+4+01 1 24s

r=2| 9.6145e+01 2.2 1.7s - - -
r=31 9.6184e+01 2.1 4.5s - - -
r=41 9.6195e+01* 1.3 18.2s - - -
n = 200 r=1 9.7496e4+01 2.0 2.7s || 1.9519e+02 1 4.6s
r=2 1.9512e+02 2.1 3.2 - - -
r=23 1.9516e+02 2.1 5.9s - - -
r=4 || 1.9395e+02* 3 565.6s - - -
n = 300 r=1 1.4650e+02 2.0 3.9s || 2.9418e+02 1 6.9s
r=2| 2.9410e+02 2.1 4.8s - - -
r=31 2.9414e+02 2.0 9.3s - - -
r=4 | 2.9176e+02* 3  695.6s - - -
n = 400 r=1 1.9550e+02 2.0 5.2s || 3.9317e+02 1 9.4s
r=2| 3.9308e+02 2.1 6.5s - - -
r=31 3.9312e+02* 2.0 27.6s - - -
r =4 | -8.1403e+05* 3 801.9s - - -
n = 500 r=1 2.4450e4+02 2.0 6.8s || 4.9216e+02 1 12.4s
r=21 4.9206e+02 2.0 8.3s - - -
r=3| 4.9210e+02* 2.0 31.8s - - -
r=4 | 4.9215e+02* 3 1144.6s - - -
n = 600 r=1 2.9350e4+02 2.0 8.1s || 5.9115e+02 1 15.5s
r=21 5.9104e+02 2.0 10.4s - - -
r=3| 5.9108e+02* 2.0 22.3s - - -
r=4 | 5.9114e+02* 1.0 111.6s - - -

Table 2.7: Comparison Sparse BSOS (s = 2) and Sparse PUT on the Generalized Rosenbrock
Function

occurs when searching for an SOS representation of the Chained Wood Function (n = 4)
with Gloptipoly3 [HLL09b] using SeDuMil.3 [Stu99] and with Yalmip [L6f04] using Mosek
[MOS17].

In Table 2.7 we show results from solving the Generalized Rosenbrock Function for
n = 100,...,600 with Sparse BSOS and Sparse PUT. As in the previous examples for
Sparse BSOS we fix s = 2 and compute the first and the second truncation. For Sparse
PUT again we only compute the first feasible truncation.

As in the previous examples we find a unique minimizer with Sparse PUT, certified by
the rank condition. This time Sparse BSOS is not able to find the optimum even when
going up to the truncation r = 4. However, even though Sparse BSOS does not obtain the
optimal value at an early truncation, its optimal value at step r = 2 is already in the right
order of magnitude and can be computed faster than the optimal value provided by Sparse
PUT.

Note that for n = 100 the truncation » = 1 is slower than the truncation » = 2. The
same happens in Table 2.9 for some values of n. This is an issue related to our configuration
and could not be reproduced when using another SDP solver or another operating system,
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Discrete Sparse BSOS Sparse PUT
Boundary rel. solution rk time solution rk time
n=15 r=119.8705e-04 1 1.4s | 9.8705e-04 1 2.0s
n =20 r=114.4893e-04 1 1.8s | 4.4893e-04 1 2.6s
n =25 r=11 2.4060e-04 1 23s | 2.4060e-04 1 3.3s
n =30 r=11] 1.4358e-04 2.1 2.7s| 1.4359e-04 1 3.9s
r=21] 1.435%-04 1.1 3.2s -
r=3| 1.4358e-04 1 4.0 - - -
n =35 r=11 9.2438e-05 4 309s | 9.2441e-05 1 4.5s
r=2| 9.2438e-05* 3.8 4.3s - - -
r=3 | 9.2439e-05 1 4.8s - - -

Table 2.8: Comparison Sparse BSOS (s = 3) and Sparse PUT on the Discrete Boundary
Value Function

respectively.
To close this section we consider the following test functions of degree 6:

e The Discrete Boundary Value Function:

n
1 .
=D (2% — X1 — Xig1 + §h2(xi +ih + 1)),

=1

where h := X0 := 9 =: X,+1. The sparsity pattern is n = (¢ x 3) and o = 2.

_1
n+1°

e The Broyden Banded Function:

2
f=> (Xi(2 +10x7)+1- > (1 +Xj)xj) ,

i=1 jEH;

where H; := {j : j # i,max(1,7 —5) < j < min(n,i+ 1)}. The sparsity pattern is
n=¢x7) and o=6.

Table 2.8: Solving the Discrete Boundary Value Function for n = 15,...,35. For
Sparse BSOS we choose & = 3 and compute the first truncations until we get the certified
optimal value. The first possible truncation for Sparse PUT involves SOS of degree up to 6.

As for the Chained Functions in Table 2.5 and Table 2.6 both Sparse BSOS and Sparse
PUT are able to certify the minimum in all cases. When Sparse BSOS succeeds to do so at
an early step of the truncation it is faster and if not then it takes approximately the same
time. Note that Sparse BSOS and Sparse PUT certify different optimal values in the case
n = 30 and n = 35 and that in contrast to the theory, the series of lower bounds computed
by Sparse BSOS for n = 35 is not monotonously increasing. The difference however is less
than 108 and can be considered to be zero “numerically”.

Table 2.9: Solving the Broyden Banded Function for n = 7,...,15. Again for Sparse
BSOS we let s = 3 and compute the first truncations.

As for the Generalized Rosenbrock Function (Table 2.7) Sparse PUT is able to find
and certify the optimal solution at the first possible truncation step whereas Sparse BSOS
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Sparse BSOS Sparse PUT
BroydenBanded | rel. solution rk time || solution rk time
n="7 r=1]| 21371 2  11.5s || 3.4233 1 15.2s
r=21 2.7522 2 9.2s - - -
r=3]| 3.1161 2  11.0s - - -
n=29 r=1]| 22171 3 T77.0s | 3.3941 1 105.6s
r=21 2.8313 3 T2.7s - - -
r=3| 3.1354 3 87.1s - - -
n=11 r=11 2.2968 3 160.3s || 3.3924 1 215.1s
r=21 3.0108 2 159.7s - - -
r=31 3.2638 4 190.7s - - -
n=13 r=11 2.3353 3 28209s || 3.4120 1 357.7Ts
r=21| 3.0963 2.9 301.6s - - -
r=3]| 3.3268 4.4 367.5s - - -
n=15 r=11 2.3555 3 445.2s || 3.4243 1 545.2s
r=21 3.1514 3.8 466.3s - - -
r=3]| 3.3617 3.8 509.1s - - -

Table 2.9: Comparison Sparse BSOS (s = 3) and Sparse PUT on the Broyden Banded
Function

does not succeed to do so in the first three steps. However up to truncation order r = 3
Sparse BSOS is faster than Sparse PUT and hence provides lower bounds for the objective
function in less time and reasonably close to the optimal value.

Random Medium Scale Quadratic and Quartic Test Problems

So far we have compared Sparse BSOS and Sparse PUT on examples where the first possible
truncation of Sparse PUT is exact. We now present examples where this is not the case or
the first truncation cannot even be computed because it is already too large. To this end
we choose sparsity patterns with 40 to 80 variables in blocks of 10 to 40 and fixed overlap
o = 5. Note that the crucial parameter for the sparse hierarchies is not so much the total
number of variables but rather the maximum clique size of the sparsity pattern.

We change Problem (QP) slightly to generate the following sample of problems. Given
a sparsity pattern I = {I,...,I;} we now consider:

n

min{Zain+xTAx+bTx c1-x72>0, x>0 i:l,...,n,}, (QP”)

X
i=1

where b is a random vector and the symmetric matrix A is randomly generate according to
1. We verify that A has positive and negative eigenvalues to make sure that our problem
is non-convex again. When a = 0 € R"™ we refer to (QP’) as a quadratic problem. When
mentioning the quartic problem (QP’), it means that we chose a randomly in [—1,1]™.
Table 2.10: We consider the quadratic instance of Problem (QP’) and compute, when-
ever possible, the first two truncations of BSOS, Sparse BSOS and Sparse PUT.
We were able to solve the first truncation for all algorithms. However, as BSOS cannot
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(QP) BSOS Sparse BSOS Sparse PUT

Quadratic n rel. solution rk time solution rk time solution rk time
(7 x 10) 40 | r=11 -1.2496e+02 4 3.5s || -1.2496e+02 | 4.0 1.8s || -1.2496e4+02 | 4.0 | 0.8 s
r=2| -4.4436e+01* | 15 | 574.4s || -4.4457e+01 3.9 8.8s || 4.4326e+01 | 1 45.8s

(2x20,10) | 40 | r=1| -1.6197e+02 5 3.4s || -1.6197e+02 5.0 0.7s || -1.6197e+02 | 5.0 | 0.7s
r =21 -5.9412e+01* | 16 | 592.9s || -5.9447e+01 9.3 6.5s - - -

(15 x 10) 80 | r=1| -2.7552e+02* | 8 71.7s || -2.7557e+02 | 4.0 0.8s || -2.7557e+02 | 4.0 | 0.8s
r=2 - - - || -1.0837e+02 2.4 2.7s || 1.0825e+402 | 1 | 143.7s

(5 x 20) 80 | r=1| -3.4782e+02* | 5 86.6s || -3.4782e402 5.0 1.6s || -3.4782e+402 | 5.0 1.6s
r=2 - - - || -1.2536e+02 9.0 26.7s - - -

(2x40,10) | 80 | r=11| -4.8983e+02* | 5 69.3s || -4.8988e+-02 5.0 3.9s || -4.8988e+02 | 5.0 | 4.2s
r=2 - - - || -1.8564e+02 1 66.8s - - -

(23 x10) | 120 | r =1 || -3.8765e+02* | 8 | 849.2s || -3.8765e+02 | 4.0 0.9s || -3.8765e+02 | 4.0 1.0s
r=2 - - - || -1.5884e+02 2.2 4.6s - - -

(7x20,15) | 120 | r =1 || -5.4921e+02* | 5 | 772.0s || -5.4920e+02 | 4.6 3.6s || -5.4920e+02 | 4.6 3.8 s
r=2 - - - || -2.3846e+02* | 6.5 85.2s - - -

(3 x40,15) | 120 | r =1 | -7.1721e+02 * | 6 | 581.0s || -7.1720e+02 6.0 9.8s || -7.1720e+02 | 6.0 | 11.1s
r=2 - - - 1| -2.3079e+02 | 12.2 | 143.8s - - -

Table 2.10: Comparison BSOS(k = 1),

Sparse BSOS(k = 1), and Sparse PUT on Quadratic Problem (QP’), 0 =5
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benefit from the sparsity structure, it runs into numerical problems, in particular for the
examples with n = 120 variables. Note that in [LTS17] problems comparable to this one
have been solved by BSOS. There the authors were able to solve the second truncation
for a quadratic problem with 100 variables. Indeed we were able to compute the second
truncation for some examples with 80 variables. However, this depends strongly on which
constraints BSOS deletes before handing over the system to the solver. We decided not to
search for examples where we can compute the second truncation.

When the solver does not run into numerical problems all solutions of the first truncations
coincide. This is because of the degree of the constraints and the objective function, the first
truncations are more or less the same. In fact the SOS weights of the constraints in Sparse
BSOS are all of degree 0, i.e. they are non-negative scalar variables (and are implemented
as such). BSOS and Sparse BSOS use twice as many constraints because they not only
consider the constraints g;(z) > 0 but also the constraints g;(z) < 1. This explains why
Sparse PUT is faster for the first truncation.

In a number of cases the second truncation of BSOS and Sparse PUT could not be
implemented because the positive semidefinite variables become to big for the solver. Sparse
PUT is able to solve the second truncation in two cases where the block size is 10 and we
could actually certify optimality by the rank condition. The examples with same block size
but n = 120 variables could not be solved because the solver runs out of memory. The
same happened for examples with larger block size.

Only Sparse BSOS was able to compute the second truncation in all cases. Of course
this second truncation is weaker than the second truncation of Sparse PUT and Sparse
BSOS could only certify optimality in one case. However, when comparing the results with
the certified values from Sparse PUT, we see that they are actually quite close and much
less time was spent to compute them. In all cases where Sparse PUT could not solve the
second truncation, Sparse BSOS could provide a lower bound that is much better that than
the one provided by the the first truncation of Sparse PUT.

Table 2.11: The quartic version (a # 0) of Problem (QP’). As the degree of the
objective function is now 4, the first feasible truncation of Sparse PUT involves SOS of
degree 4. Choosing s = 1 as fixed parameter, the respective truncations with » = 1 of
BSOS and Sparse BSOS are not feasible, therefore one computes the second and the third
truncation, whenever possible.

Sparse PUT could solve the first feasible truncation only for the patterns (7 x 10) and
(15 x 10) in which case the optimal solution was attained and certified. With s = 1, i.e.,
with SOS weights of degree at most 2 which is less than the degree (= 4) of the objective
function one still may solve higher truncations with the Sparse BSOS hierarchy. Note that
the values of the second truncation of Sparse BSOS for the patterns (7 x 10) and (15 x 10)
are not so far from being optimal, which suggests that for the other test problems they are
not so bad either. In any case Sparse BSOS is able to provide lower bounds for larger block
size, whereas the other hierarchies already overpassed their limit.

2.4.5 Conclusions from the Numerical Experiments

The experiments have shown that the Sparse BSOS hierarchy has its place between BSOS
ans Sparse Putinar. In particular for problems with large clique size Sparse BSOS is able
to provide bounds for small choices of the parameter s, influencing the degree of the SOS,
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(QP) BSOS Sparse BSOS Sparse PUT
Quartic n rel. solution rk | time solution rk | time solution rk | time
(7 x 10) 40 | r=1 inf - |- inf - |- -5.2576e+01 | 1 | 49.6s

r=2| -5.4736e+01* | 16 | 466.3s | -5.4802e+01 | 6.0 | 8.9s - - |-
r=3 - - |- -5.3047e4+01* | 3.1 | 319.0s - - |-
(2x20,10) | 40 | r=1 inf - |- inf - |- out of memory | - | -
r=2| -6.4481e+01* | 17 | 606.3s | -6.4528e+01 | 8.7 | 5.9s - - |-

(15 x 10) 80 | r=1 inf - |- inf - - -1.1897e402 | 1 | 150.1s
r=2 - - |- -1.2037e4+02 | 3.8 | 3.2s - - |-
r=3 - - |- -1.1950e+-02 | 1.7 | 37.9s - - |-

(5 x 20) 80 | r=1 inf - |- inf - |- out of memory | - | -
r=2 - - |- -1.2725e4+02 | 8.4 | 23.5s - - |-

(2x40,10) | 80 |r=1 inf - |- inf - |- out of memory | - | -
r=2 - - |- -1.9476e+4-02 | 12.3 | 78.7s - - |-

(23x10) | 120 | r=1 inf - |- inf - |- out of memory | - | -
r=2 - - |- -1.6791e+02 | 4.0 | 8.7s - - |-
r=3 - - |- -1.6375e4+02 | 1.2 | 103.0s - - |-

(7%x20,15) | 120 | r=1 inf - |- inf - |- out of memory | - | -
r=2 - - |- 2.1229e4-02 9.5 | b4.7s - - |-
(3 x40,15) | 120 | r=1 inf - |- inf - |- out of memory | - | -
r=2 - - |- -2.3994e4-02 | 11.8 | 137.1s - - |-

Table 2.11: Comparison BSOS(k = 1), Sparse BSOS(k = 1), and Sparse PUT on Quartic Problem (QP’), 0o =5
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while Sparse Putinar runs out of memory even in the first possible truncation. A second
advantage of Sparse BSOS over Sparse Putinar is that the steps between two truncations
are somehow closer in terms of computational effort. This can be exploited in multi-ordered
hierarchies such as proposed in [JM18].

2.5 Nearly Sparse Polynomial Optimization

In the previous sections we have shown how sparsity can be exploited in order to attack
problems that are far out of range of the non-sparse versions. In this section we demonstrate
that even in the case when (POP) is not completely sparse one may recover sparsity
by introducing a reasonable number of additional variables. Consider the polynomial
optimization problem

igff(x) s.t.91(x) > 0,...,9m(x) > 0,h(x) >0, (POP-ns)

where f,g1,...,gm, h € R[x]. We say that (POP-ns) is nearly sparse if (f, g1, ..., gm) respect
a sparsity pattern I,..., I, and h € Y R[I;] (compare condition on f in Definition 2.1.1).
Indeed, in some applications a natural structured sparsity is apparent but violated by
a few constraints. For instance, one constraint might state that > ;' ; x; < M for some
M > 0. Although the problem is nearly sparse, the sparsity-adapted hierarchies [Wak+06]
and [WLT17] cannot be applied because the constraint h(x) = M — > " x; > 0 links
all variables. Hence, solving and even relaxing a nearly sparse polynomial optimization
problem is limited to problems with a rather small number of variables as if the problem
was dense.

We propose a systematic procedure to replace the nearly sparse optimization problem
(POP-ns) by an equivalent sparse problem. The price to pay is (i) the introduction of £ — 1
additional variables, and (ii) the introduction of ¢ new constraints in lieu of the sparsity-
violating constraint h(x) > 0. In contrast to the nearly sparse problem, its equivalent can be
attacked by the previously discussed sparsity-adapted hierarchies [Wak+06] and [WLT17]
and hence may be solved much more efficiently. In addition, if there are several constraints
violating the sparsity pattern, this scheme can be repeated and eventually results in an
equivalent sparse problem.

Illustrative Example

As the construction of the equivalent sparsity pattern is quite technical we send ahead an
illustrative example in a more restricted set up. Assume I,...,I; is a sparsity pattern
for fand K = {x € R": 1 —2? > 0,i = 1,...,n} (compare Definition 2.1.1) such that
Uicr It N I, € Ij—1 (compare Definition 2.1.2). When we add the constraint h(x) :=
Y1 x; = 0 the problem inf{f(x) : x € K,h(x) = 0} is nearly sparse but not sparse
any more. The basic idea described in the sequel is to introduce slack variables in the
sum h and separate h(x) = 0 into several constraints. More precisely let yi,...,ys—1 be
additional variables and define a sparsity pattern I; = I U {y1}, I = I U {yr—_1,y&}, and
I; = I, U{ys_1}. Then I,... I, is a sparsity pattern for f and K, where we understand
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R[x] € R[x,y]. In particular I,,...,I; is a sparsity pattern for

inf  f(x) st > £—y1=0

x€K,ycR¢-1 el
Yk—l‘f‘Zf_Yk:Ov k:277€_1
Eely
ye-1+ Z £=0
gely

In this case it is easy that the system of equations above is equivalent to the original
constraint h(x) = 0.

2.5.1 Construction of the Equivalent Sparse Problem

In the following we describe a procedure to construct a sparse polynomial optimization
problem from the nearly sparse problem (POP-ns). In particular, if I,..., I, has the
Running Intersection Property, the resulting sparsity pattern for the sparse problem will
respect the RIP, too.

New Sparsity Pattern Consider the sparsity pattern I3, ..., I, for (f, g1,...,9m). For
k > 2 define the index sets

T = {to: J LN I C I, }. (2.11)

t<k

Since the RIP holds, the sets 7, are non-empty and for all ¢ € Zj, it holds that ¢ < k. For a
fixed choice function ¢ : {2,...,p} = U%_yZi define the set N := N(¢) := {a € N2 : oy =
¢(az)}.

We introduce ¢ — 1 new variables y = (ya)acn and construct a new pattern I by
Ik =1, U{ya : a1 =koray=%k}, k=1,..., ¢
By construction I respects the RIP. To see this, fix k € {2,...,¢}. Then

Uftﬂfk: (UItU{ya:a1<kora2<k}) N(Ig U{ya:0a1=koray=Ek})

t<k t<k

= (UItﬂIk>U{ya:(a1<kora2<k) and (o =k or ag =k)}.

t<k

Now note, that ay < g for all @« € N. Hence, the case (a1 < kor ag < k) and oy = k
does not contribute to the above equation. As further oy = ¢(a2) for all « € N, we can
reduce {yq : (1 <k or ag < k) and (o1 = kl or ag = k)} = {y(4k),x)} and hence,

Uhini= (U I f”k) U{¥ om0 | S Loty YUY tom0} S Togh)-
t<k t<k
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As ¢(k) < k, I respects the RIP (see Definition 2.1.2). Since I is a sparsity pattern for
(fy91,--.,9m) and I, C I} for all k, I is also a sparsity pattern for (f,g1,...,gm)-

New inequalities We are now constructing a system of inequalities, equivalent to h(x) >
0 and respecting the new pattern I.

Remember h = Y %_; hy, with hy € R[I;]. Define the following polynomials over the
extended set of variables R[x,y]| 2 R[x]:

Bk::Zya—i—hk—Zya, k=1,...,¢ (2.12)
aEN aeEN
as=k a1=k

Note that the first sum is empty for k = 1, and equals y(4) ) for k& > 1. Furthermore,
since hy € R[I], the polynomial optimization problem (POP-s) respects the new sparsity
pattern [

inf f(x) st g1(x) 2 0,....9m(x) 20, hi(x,y) 2 0,..., h(x,y) >0, (POP-s)

Equivalence It remains to show that (POP-s) is equivalent to (POP-ns). To that end,
let (x*,y*) be feasible for (POP-s). Then, since by construction Y hy = h, x* is feasible for
(POP-ns). Now, let x* be feasible for (POP-ns). Define recursively

Yot k) = —he(x") + > va
acEN
a1=k
To see that this definition terminates, notice that the sum on the right hand side is empty
for k = ¢ and that for £ < ¢ the sum is either empty, or only involves y} with ap > k, which
hence can already be defined. Now it is easy to see that this choice of (x*,y*) is feasible
for (POP-s), since hi(x*,y*) =

l
hi(x*) — Z vo, = hi(x*) — Z —he(x™) + Z v | = Z hi(x*) = h(x*) >0
aEN eN aeEN k=1
=1 (1,0)eN o=

and hy(x*,y*) = Yot h) + hi(x*) = > aen yih =0 for k =2,...,¢, by definition of y*.

a1=k
When constructing the sparsity pattern I from the original pattern I, the procedure
allows for some freedom when defining the choice function ¢. There are two obvious choices,
(k) := max Ty or ¢(k) := minZ;. However, depending on the sparsity pattern, there might
be better ways to choose. It is not clear that one of the two choices is always the better
one. Consider the following example

Example 2.5.1 (Choice function). The maximal block size of a sparsity pattern plays a
significant role in sparse polynomial optimization. As the choice function determinates the
number of variables added to each block of the sparsity pattern, it is advisable to choose
in a way that minimizes the maximal block size of the new sparsity pattern. Consider for
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example the sparsity pattern

I = {x1,%2},
Ir := {x1,x3}, I3 := {x1,x4},
Iy = {x9,x5}, I5 := {x2,%6}.
The sets Zj, defined in (2.11) are Zo = {1},Z3 = {1,2},Z4 = {1},Z5 = {1,4}. If we use min

as a choice function in the procedure proposed in the proof of Section 2.5.1, we end up with
the pattern

min ,__
M= {x1,%2,¥12, Y13, Y14, Y15},

Iénin = {X17x37y12}’ Iénin = {Xl,X4,yl3})
I = {x2,%5,y14}, I5"" 1= {x2,%6,¥15}-

Note that all additional variables have been added to I;. In contrast to that, the max
function leads to the pattern

I = {x1,X2, 12, Y14},
I = {x1,X3,¥12,y23}, 137 1= {X1,X4, Y23},
I = {x2,X5, Y14, Y45}, 15" 1= {X2,X6, Y45}
Here, the additional variables have been added to different groups. As the maximal clique

size determines the performance of the solver, in the given example the second pattern is
preferable to the first one. However, it is not true that max always leads to better patterns

than min. To see this, one can replace Io, ..., I; by
I = {x1,x3,...,%X6}, I3 := {X1,X7,...,X10},
Iy = {x9,x11,...,x14}, I5 := {X2,X15,...,X18}.

Now min leads to a sparsity pattern with a maximal clique size of 6 (IIM®, [3M0 and [30n)
while max leads to cliques of size 7 (13"** and I}*®¥).

We conclude this section about nearly sparse problems by treating two examples in more
detail. The first example stems from an optimal control problem which has been discritized
in order to obtain a polynomial optimization problem. A constraint on the total energy
consumption however prevents a purely sparse formulation. The second example is from
graph theory. Computing the so-called stability number can be achieved by computing the
solution to a nearly sparse polynomial optimization problem. We reformulate this problem
as a sparse problem and solve truncations to it using the hierarchy described in [WLT17].

2.5.2 Optimal Control with Limited Total Energy Consumption

Let T > 0, X C R" and U C R™ be compact semialgebraic sets, £y,ér € X and L €
R[t,x,u], F € R[t,x,u]". For simplicity we assume n = m = 1. The example generalizes
directly to arbitrary n and m. Let umax > 0. We consider the polynomial optimal control
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with limited total energy consumption

mf/ L(t,z(t),u(t))dt

s.t.@(t) = F(t,z(t),u(t)) for almost all ¢t € [0,T]
(x(t),u(t)) € X xU, forallte]|0,T], (2.13)
z(0) = o, z(T) = ¢,

-
/ u(t)? dt < Umax.
0

We are searching for a continuous function z : [0,7] — X and a function u : [0, 7] — U that
respect the dynamic #(t) = F(t, z(t),u(t)) and minimize the integral over the cost function
L, where the total energy of the control is limited by umax > 0. One way to approach (2.13)
is by discretization. Here we approximate x and u by piecewise linear and piecewise constant
functions respectively, supported on a grid on [O T]. Choosing N + 1 € N discretization
points to := 0 and ¢;11 := t; + At with At := N we replace the unknown functions = and
u by vectors x € XV*! and u € UV and the dynamic by ;11 = x; + f(t;, s, u;) At. For
large N, problem (2.13) then is approximated by the problem

N-1
inf Z l(ti,xi,ui)At
"o
S.t.Xi41 =% + f(ti, Xi, ui)At
xe XNVt ueuh (2.14)

X0 = 507 XN = ‘fT’
N

> ufAt < Upay.
i=1

Of course this discretization by the Euler method is quite simple and has its own drawbacks.
However this example extends easily to more sophisticated discretization schemes.

If one ignores the last constraint on the total energy consumption in (2.14), one imme-
diately identifies the sparsity pattern Iy,...,Iy_1 where

Ik} = {kaxk_;'_l,Uk}, kZO,,N—].

The sparsity pattern satisfies the RIP Definition 2.1.2. As the violating constraint is of the
form >, hy with hy € R[Ix], we can apply the procedure from Section 2.5.1. A close look
on the pattern reveals 7, = {k — 1} for all k = 1,..., N — 1. Hence, there is only one choice
function ¢(k) := k — 1. We introduce new variables y = (yx)i1<k<n and define

= {X07X17u07y1}7

Tie = {Xp, X1, Uk, Vi, Yis1} for k=1,...,N — 2 and

In_1:={XN_1,XN,UN_1,YN_1}

With the help of the newly introduced variables, the last constraint in (2.14) can be replaced
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by

umax_u%At —y1 >0,
yk—u%At—ka >0fork=1,...,N—2and
yN_l—u?VAt > 0.

Hence, we can handle the sparsification of Problem (2.14) with the sparsity pattern I. Note
that we included N — 1 additional variables {y1,...,yn—1} to the problem. However, the
size ny of each block of the sparsity pattern remains small (< 5), which is essential for
solving non-convex sparse polynomial optimization problems.

2.5.3 Stability Number of a Sparse Graph

We consider a graph G := (E, V), where E = {1,...,n} for some natural number n, and V'
is a (finite) set of (distinct) pairs (i, j) € E2. For simplicity, we limit ourselves to undirected
graphs (i.e. (i,7) € V = (j,i) € V) that don’t have any self loops (i.e. (i,7) ¢ V). A subset
S of E is called an independent set (or maximal clique) of G, if V N S? = ). A maximal
clique of largest cardinality is called a maximum clique. The graph’s independence number
(also stability number) a(G) is defined as the cardinality of a maximum clique. It can be
computed by the following quadratic optimization problem [KP02]

1 n
S 3 3
eV = (2.15)

n
st0<x <1, Y x=1
=1

If I* > 0 is a lower bound to (2.15), (I*)~! is an upper bound for a(G). As the stability
number is an integer, the result can be rounded down to the next integer while maintaining
an upper bound. As this procedure is sensitive to numerical errors (especially when the
upper bound is tight), we define the more conservative upper bound

U= (" —107%71)

for I* > 1075 and I’ = n for I* < 107%. From now on we assume that the graph respects
some RIP sparsity pattern (Ii,...,I;). Then problem (2.15) is of the form (POP-ns) and
nearly sparse.

Numeric Computation

In the following we apply our implementation [Weil7] of [WLT17] to problem (2.15) and
its sparsification. When computing the truncations to the original (nearly sparse and hence
dense) problem, we transmit the trivial sparsity pattern I := {1,...,n} to [Weil7]. In
contrast to Section 2.4, we are using the SDP solver SeDuMil.32 [Stu99] instead of SDPT3,
because we encountered that SDPT3 is violating the constraints too aggressively. Note that
the lower bounds computed by truncation are only reliable if the SDP is solved accurately.
In this section we consider the SDP to be solved if the solver doesn’t report any numerical
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nz =670

Figure 2.2: The set V of a randomly generated sparse graph with n = 60, ¢ = [10, 20],
o = 1[5,10], and p = 50%..

problem or stops with precision at least 1076 and duality gap less than 1076, We then
perform the rounding technique discussed above in order to compute the stability number.

Graph Generation To study the problem of computing stability numbers via (2.15), we
randomly generate sparsity patterns respecting the RIP by (Uj <l j) N I, C Iy for every
k =2,...,¢. Once such a sparsity pattern has been generated, we randomly generate a
graph with such a fixed pattern. The sparsity pattern is generated from :

e the total number n of nodes,
e an interval c of integers defining the possible number of nodes in each block®, and

e an interval o defining the possible overlaps of two consecutive blocks of the sparsity
pattern.

The actual block size and the overlap for each block are chosen randomly in the intervals ¢
and o, respectively. A random graph is generated from such a randomly generated sparsity
pattern by connecting two nodes in a block with a a certain probability p. In Fig. 2.2,
we plot a matrix representing the vertices V' of such a graph given parameters n = 60,
¢ = [10,20], o = [5,10], and p = 50%.

Fixed number of variables To compare the nearly sparse version (POP-ns) and its
sparsification (POP-s), we consider an example where the total number of nodes n is small

81n the following we use the term “blocks” when referring to the cliques of the sparsity pattern in order
to distinguish from the cliques of the constructed graph.
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block size 10 15 20 25 30
overlap [min, max| 5,7 [7,9] [8,10] [10,12] [13,15]

Time (nearly sparse) sec. | 38.7 41.7  41.6 40.8 40.1

Time(sparsification) sec. || 2.6 11.6 6.0 6.2 10.6

Table 2.12: 50 instances of Problem (2.15) with n = 60 and increasing clique size and
overlaps.

enough such that second truncation d = 2 with SOS parameter k = 1 of [Weil7] can be
computed. All examples were run 50 times and the average computing time spent by the
SDP solver is reported. The optimal values of both truncations are not reported as (i) they
coincided for both truncations and (ii) we have no mean to verify that they are optimal for
(2.15).2 However the interest of this experiment is to show the speed up when using the
sparsification of the problem instead of the initial nearly sparse formulation, rather than to
demonstrate accuracy (which will is the subject of another series of examples).

In Table 2.12 we report results for graphs of fixed total size n = 60 where the sizes of
cliques and overlaps increases. The nodes in each block are connected with a probability
of 0.5. SeDuMi could solve all examples to the desired precision. The SDP solver took
about 40 seconds to solve the second truncation d = 2 with SOS parameter k& = 1 of the
original problem (2.15) for all examples considered. This is coherent as for the nearly sparse
problems only the total number of variables is decisive for the complexity of the SDP. In
contrast to that, the number of variables in each clique is the important parameter for the
performance of the sparsified problem. This number is approximately the number reported
in the first row of Table 2.12 plus two y- variables. Solving the equivalent sparse problem
with same truncation order, but exploiting sparsity leads to a significant speed up, especially
when the clique size is small. Note that solving the sparse version for ¢ = 15 is the slowest
in this sample. This behaviour could not be reproduced using the SDP solver SDPT3 on
the same problems (perhaps it is due to the choice of default parameters for SeDuMi).

Fixed block size In Table 2.13 we consider graphs with fixed block size ¢ and fixed
overlap o while increasing the total number of variables n. The SDPs become more and
more time consuming to solve as the number of nodes increases. Nonetheless almost all
instances of the sparsification could be solved by SeDuMi. For the dense (nearly sparse)
version the ratio of failures becomes significant at n = 80.!° As in the previous set of
examples the respective bounds of the stability number computed by the sparse and the
nearly sparse version coincide whenever both problems could be solved. The computing
time needed to solve the nearly sparse (dense) problems increases fast with the number of
nodes of the graph. This is in contrast with the time needed to solve the sparsified problem
which increases rather linearly with the number of blocks.

Known stability number In the following series of examples we construct random
graphs in such a way that we know a lower bound on the stability number in order to have

9We could check for optimality using Proposition 2.4.1 if the maximal clique was unique in this examples.
However generically this is not the case here.

108eDuMi is capable to solve instances of this problem for n = 100 nodes to optimality. However this
exceeds a timeout of 1000 seconds and hence was not included when testing 50 problems.
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total number of nodes 20 40 60 80 100 120 140
average number of blocks 5.1 10.0 16.0 21.7 2715 320 385

Solved (nearly sparse) 100% 100%  98%  90% — - -

Solved (sparsification) 100% 100% 100% 100% 98% 100% 100%
Time(nearly sparse) sec. 0.4 3.7 36.7  231.0 — — -
Time(sparsification) sec. 0.4 1.6 2.0 2.3 2.7 2.8 3.7

Table 2.13: 50 instances of Problem (2.15) with ¢ = [6,10] and o = [2, 5] for an increasing
number of variables

a criterion for the tightness of the upper bound computed by the truncations.

As seen in Proposition 2.4.1 there is a criterion to detect global optimality: If a certain
rank condition on the dual SDP (2.9) is satisfied then the optimal value of the truncation
is the global optimum of the original problem. If the original polynomial optimization
problem has a unique optimizer (in particular if there is a unique maximal clique in the
graph) then the rank condition is likely to be satisfied in practice.

As in the previous examples we create a random sparsity pattern. Now two nodes of
the same block are connected with probability p = 99%. Then a subset of nodes is chosen
randomly (uniformly distributed over all blocks of the sparsity pattern) and all edges within
this clique are deleted. The size of this clique is a lower bound for the stability number of
the graph. Indeed it is very likely that the clique constructed this way is a maximum clique.
However, the probability that the maximum clique is unique decreases with the number of
nodes of the graph, as the number of disconnections in the rest of the graph then increases
and hence alternative maximum cliques might pop up.

For fixed block sizes ¢ = [7,13] and overlaps o = [3,6], we solved the problem for
n = 100,...,500 nodes. As in the previous examples we solved the second step of the
sparse BSOS hierarchy with SOS parameter k¥ = 1. For each n we ran 100 examples.
In Table 2.14 we report the average computing time needed. In addition, we report the
percentage of examples where the known lower bound was attained by the truncation (and
hence the stability number could be found). We also show the percentage of examples
where optimality could be certified by the rank condition. All SDPs could be solved to the
desired accuracy. In all cases the upper bound computed by the SDP coincides with lower
bound known in advance. The number of problems where optimality could be certified
by the rank condition is very high for n = 100, 200. For larger values of n the percentage
of certified solutions decreases in accordance with a higher probability of having multiple
maximum cliques. The computing time needed to solve the SDP increases linearly in the
number of blocks of the sparsity pattern as already seen in previous examples.

2.6 Conclusion

In this chapter we have discussed how sparse certificates for non-negativity can be used in
polynomial optimization. In particular we generalized the notion of the dual of the Shor
relaxation from quadratic problems to generic polynomial optimization problems (SH-D)
and provided a generalized sparse version (SSH-D). Whence the former was already known
to be exact in the case of SOS-convex problems, we provided the corresponding results for
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number of nodes 100 200 300 400 500
average number of blocks || 20.6 429 644 86.8 107.5
Solved 100% 100% 100% 100% 100%
Stability number reached || 100% 100% 100% 100% 100%
Optimality certified 100%  99% 87%  56%  12%
Time(sparse) sec. 1.8 3.3 5.1 6.7 7.7

Table 2.14: 100 instances of Problem (2.15) with known lower bound for the stability
number. ¢ = [7,13], o = [3, 6], increasing number of variables

the sparse version (Theorem 2.3, Corollary 2.2.2).

Many certificates for non-negativity are derived from theorems of positivity. We hence
discussed some of these results from real algebraic geometry and how to obtain computable
tractable certificates from them. In Theorem 2.7 we proved that every Positivstellensatz
valid for a compact set K has a sparse version. We used this result to prove convergence of
what we called the Sparse BSOS hierarchy (Corollary 2.3.4). By pointing out its relation
to the Shor relaxation we could show finite convergence of this hierarchy for SOS-convex
problems.

A major contribution of the work presented in this chapter is the implementation of
Sparse BSOS and Sparse Putinar [Weil7]|. We therefore presented a numerical evaluation
of this code in Section 2.4. In particular we illustrated the advantages of Sparse BSOS
over its dense version and compared the new hierarchy to the sparse standard hierarchy
based on Putinar. It turned out that Sparse BSOS is favourable when the clique size of the
sparsity pattern is rather big (n; ~ 20 — 40).

In the final section of this chapter we argued that sparsity can be exploited even if the
original problem slightly violates the sparsity conditions (Definition 2.1.1). We proposed a
systematic procedure to reformulate nearly sparse problems as sparse ones and demonstrated
the method on an example from optimal control. Finally, as a numeric application, we used
the procedure in conjunction with our implementation of Sparse BSOS in order to compute
stability numbers of sparse graphs.

Perspectives

The research presented in this section motivates to investigate further numerically compu-
tational certificates for non-negativity. The BSOS certificate Theorem 2.6 is a crossover of
Putinar Theorem 1.2 and Krivine Theorem 2.5. Similarly one could construct converging
hierarchies by replacing the non-negative coefficients in Theorem 2.5 by SOS of fixed de-
gree. Theorem 2.7 provides convergence of sparse hierarchies constructed in this manner.
Additionally, one could define sparse hierarchies using different certificates for each clique.

While from a theoretical point of view these questions do not seem very interesting,
they might be of importance in practise. Where limited computational time and power is
prohibitive for going far in the hierarchies, crossover certificates might provided the missing
accuracy. First steps in this direction have been presented in [MH15].

In this thesis we only talk about theorems of positivity of real polynomials. It would be
interesting to see how our results can be used with certificates involving complex numbers
such as [JM18].
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These questions are in particular interesting for practical applications. It would be
interesting to provide a software package being able to compute at least all the certificates
discussed above and possibly mix them.
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CHAPTER 3
Representation and Approximation
of Chance Constraints

The ability to describe engineering problems by mathematical models that can be solved
numerically is key to answer questions of decision and control. Recently there has been an
increasing demand for models taking into account that some of the parameters determining
the system are uncertain. A prominent example is the Optimal Power Flow problem (OPF),
which will be presented in Section 3.2. With an increasing amount of power generated by
wind and solar, the power grid is strongly influenced by deviations from the weather forecast.
These fluctuations cannot be omitted in the model. As an answer to this demand, chance
constraints describe mathematically constraints influenced by uncertainty. The idea is that
a constraint on the decision variable x might change depending on the realization of some
uncertain parameter or noise w. More precisely, let g € R[x,w]. Then for each x, a chance
constraint constrains the probability of the set of realizations w satisfying g(x,w) > 0 from
below, i.e.,
P{we Q:g(x,w)>0})>1—e.

In general such constraints are numerically intractable (see Section 3.1.4). In this chapter
we propose methods to approximate a chance constrained feasible set by an explicit basic
semialgebraic set. In particular, we use results from [Las17b] to take into account uncertainty
in physical network flow problems. Then, we extend the results from [Las17b; Las17a] further
to approximate distributionally robust chance constraints, i.e., chance constraints where the
distribution of the noise itself is uncertain but belongs to a certain family of distributions.

All work presented in this chapter can be seen as a follow up to the seminal paper
[HLS09]. The results have been extended to computing probabilities with respect to some
probability measures in [Lasl17a]. In this paper Lasserre also proposes a technique called
Stokes constraints which significantly accelerates the convergence when approximating
volumes via the generalized moment approach. Finally in [Las17b] the framework was used
to provide approximations to chance constraints.

The outline of this chapter is the following. In Section 3.1 we summarize the state of
the art for volume approximation and chance constraints. Then we apply these results to
physical network flow problems and in particular to uncertainty in the OPF problem in Sec-
tion 3.2. Motivated by this application we extend the method of [Las17b] to distributionally
robust probability approximations in Section 3.3.

3.1 Preliminaries

We start by reviewing existing methods which build the basis for our contributions in the
subsequent sections.
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3.1.1 Volume of Semialgebraic Compact Sets

In this section we present how the volume or the probability of a basic semialgebraic
compact set can be approximated as closely as desired via the moment-SOS approach, i.e.,
by reformulating the problem as a GMP and then solving semidefinite programs in order
to approximate this value as explained in Chapter 1. In general this is a hard problem as
mentioned in [BF87; DF88]. To the best of our knowledge, all other existing methods rely
on convexity of the set in question (e.g.,[AS86; DFK91]) and/or are based on randomized
strategies [BF08]. In contrast, the approach proposed in [HLS09] is based on a natural
formulation of the volume as solution to a linear problem on measures which can be written
as a GMP. In addition its dual problem has a very intuitive interpretation in the space of
continuous functions.

Linear Problems on Measures

As usual denote by K = {x € R" : g1(x) > 0, ..., gm(x) > 0} our generic basic semialgebraic
compact set. Assume further that K has non-empty interior and is contained in some set
B C R™ such that we know all moments of a reference (Borel-) measure y € M (B). For
technical reasons we will also assume that B\ K has non-empty interior. We are interested
in the volume (if 4 = Ap is the Lebesgue measure on B normalized to have mass 1) or the
probability (if u is any probability measure) of K with respect to p denoted by vol(K) or
w(K). The following relation between (signed) measures is essential for the reformulation
of the volume as optimal value to a linear problem on measures.

Definition 3.1.1. Let ¢, u € M(B). Then we say that ¢ is dominated by p, if

p—¢ € Mi(B).

Equivalently we can ask that for all Borel sets A € B(B) it holds that ¢(A) < u(A). We
therefore use the intuitive notation ¢ < u to express that ¢ is dominated by pu.

Note that domination is a partial ordering on M(B). With help of this definition it is
quite direct to reformulate vol(K') as the optimal value of two linear problems that are in
duality to each other!:

sgp/K do iI}f/de,u
st. ¢ <up, (3.1) s.t. f>1on K, (32)
¢€M+(K) f€C+(B),

where C'4 (B) denotes the cone of non-negative continuous functions on B. It is easy to see
that the optimal measure in (3.1) is the restriction of u to K, denoted by p|x yielding the

'For a compact set X we understand the duality of M(X) and C(X) with respect to the weak topologies
o(M(X),C(X)) and o(C(X), M(X)) induced by the duality pairing (u, f) := fx f dpu, respectively.
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objective value [ fdp|x = p(K): Indeed this value is optimal as, due to the domination
constraint, the optimal value cannot be larger than [} dp = p(K). In the dual, we see that
any feasible function f € C(B) has to be a point wise over-approximation of the indicator
function 15 on B. An optimizing sequence (f*)sen € Cy(B) of (3.2) converges in L' norm
to 1x. As the latter is discontinuous the infimum in (3.2) is not attained. However, as
shown in [HLS09], if K and B\ K have non-empty interior there is no duality gap, i.e., the
optimal values of (3.1) and (3.2) coincide.

Moment Formulation and Polynomial Approximations

In order to apply the moment-SOS hierarchy to approximate u(K) we need to formulate
the constraint in (3.1) as constraints on moments. Let therefore v € M (B) be such
that © — ¢ = v and assume B to be compact. Then, as consequence of the Theorem of
Stone-Weierstrass, the equality of measures can be expressed by a system of equations on
moments, more precisely by

/X“dqﬁ—i—/ xaduz/xo‘d,u, Vo € N™. (3.3)
K B B

Replacing the domination constraint in (3.1) by (3.3) we end up with GMP (3.4) whose
dual (3.5) now reads like (3.2), where f € C{(B) is replaced by p € R[x], p > 0 on B:

71 1

sup (¢,1) inf (1, p)

s.t. (@, xY) + (v, x%) = (u, x") ,Va € N", (3.4) st.p>1on K, (3.5)
¢ € M (K), p>0on B,
veMi(B) p € R[x].

Now we can apply the hierarchy (P;) of SDP relaxations to (3.4) and SDP strengthenings
to (3.5) in order to compute approximations of p(K). Note that due to the constraints
in (3.4) all moments of ¢ and v are bounded by the moments of p. This implies that for
each d the moment matrices corresponding to ¢ and v are bounded by the moment matrix
of 1+ and hence all moment relaxations have optimal solutions (Z((bd), Z(Vd))
| > 0 in the description of K and B, the sequence of solutions

. In presence of
the constraint N — ||x
(z((bd), z,(,d))deN converges towards the moments of the optimal measures (u|x, | g\ x) When
d — oo as described in Theorem 1.3. If K and B\ K have non-empty interior the d-th
SDP stregthening of (3.5) has an optimal solution p(¥ € R[x]s4. Its coefficients are the

dual variables associated with the constraints in (3.4).

3.1.2 Stokes Constraints for Faster Convergence

When looking at the problems (3.2) or (3.5) we face a classical issue in approximation
theory, the so-called Gibbs phenomenon: When approximating a discontinuous function,
like the indicator function, by a continuous (or even polynomial) one, the L' approximation
will always overshoot the values of the approximated function at the points of discontinuity
[Car25]. This effect is displayed in Fig. 3.1. As a consequence of this effect, the volume
approximations via the relaxations of (3.4) are rather bad on early levels of the hierarchy
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Figure 3.1: Polynomial L' approximation (red) of the indicator function (blue) with Gibbs’
phenomenon at the discontinuities.

although they are guaranteed to converge when the relaxation degree tends to infinity. For
this reason in [Lasl7a] Lasserre introduced so-called Stokes constraints that can be added
to (3.4) without changing the optimal value and at the same time significantly accelerating
the speed of convergence of the hierarchy. In addition to the before mentioned paper the
following exposition is based on discussions in [Las17b; WRM18; LW18; Tac+18].

Let 94,...,9Y, € R[x]| be polynomials such that ¥;n; vanishes on the boundary of K,
where n; is the i-th entry of the outer normal vector n for K. For instance if K = {x € R" :
g(x) > 0} we can choose ¥; = g for alli = 1,...,n. Further assume that du = exp(p(x)) dx
for some polynomial p € R[x]. Generic examples for such measures are the Lebesgue measure
(p = 0), the Ezponential measure (p = — Y"x%;), and the Gaussian measure (p = —1x ' x).
Now Stokes theorem [HB07, Section 6.10] yields for all « € N™ and all ¢ € {1,...,n} that

/ % (x“9; exp(p)) dx :/ x“9; exp(p)n; dS = 0, (3.6)
K7 K

where dS denotes integration with respect to the Hausdorff measure [EG92, Chapter 2] on
the boundary 0K of K. Remember that the optimal measure in (3.1) and (3.4) is ¢* = p|x.
A short calculation shows that (3.6) can be rewritten as

Va € N™: <¢*, aix (x*;) + x“; ai‘p> = 0. (3.7)

Since these equations are true for the optimal measure we can add (3.7) to (3.4) as
redundant constraints on the optimization variable ¢. As they are a consequence of Stokes
theorem, we call (3.7) Stokes constraints. After adding the Stokes constraints (3.7) to (3.4),
its dual now reads

i

in d
P BL Bp H
stp+ ) O (p9) 4 pidi 2 p>1on K, (38)
=1 8XZ’ 8Xi

pGR[X]? pZOOHB? plv"',pneR[X]'



3.1. Preliminaries 61

It is evident from the constraint in (3.8) that in contrast to (3.5) now p is not an approxima-
tion of the (discontinuous) indicator function any more. However, as the Stokes constraints
are redundant, the optimal value of (3.8) is still equal to the optimal value of (3.5).

Adding redundant constraints to an optimization problem before solving relaxations to
the problem is a common strategy to improve the quality of the relaxation. As we will
see in several examples in the subsequent sections, adding Stokes constraints significantly
accelerates the convergence towards the volume of K.

3.1.3 Gaussian and Exponential Measures on Unbounded Sets

Up to now we have described methods that apply to basic semialgebraic sets K that
are compact. In [Las17a] the method was extended to compute Gaussian or exponential
measures of unbounded sets. More generally, the extension can take into account any
reference measure whose moments can be computed efficiently and do not grow too fast for
|a] = oo, more precisely, whose moments satisfy Carleman’s condition:

Definition 3.1.2 (Carleman’s Condition). A sequence z C R satisfies the (multivariate)
1
Carleman condition, if for all 7 € {1,...,n} the sum > 72, (Lz(x?k)) 2k Jiverges.

The crucial difficulty here is that because K is not compact the quadratic module
Definition 1.3.1 cannot be archimedean. In consequence we cannot rely on Putinar’s
Theorem in order to prove that the hierarchy converges towards a moment sequence of
a measure supported on K as we did in Section 1.4. Here this defect is compensated by
Carleman’s condition [Las13, Thm. 2.2].

3.1.4 Chance Constraints Approximation

The probability approximation via the moment approach described in the precedent sections
has a neat application in the approximation of chance constraints, which are (in-)equalities
parametrised by some parameters w € Q C R Let u® be a probability measure on €2, and
Bx C R"™ be a compact set such that the moments of the normalized Lebesgue measure
AB, on By can be computed efficiently. Further for this section let K C By x {2 be a basic
semialgebraic (compact) set? described by polynomials g1, ..., gm € R[x,w], i.e.,

K ={(x,w) eER" X Q:g1(x,w) >0,...,9m(x,w) > 0}. (3.9)

A chance constraint asks that the probability with respect to u“ of the event Ky := {w € Q :
(x,w) € K} is sufficiently large. More precisely, let € > 0 and denote by P(A4) := [14du
the probability of a measurable event A C () with respect to u*. Then a chance constraint
is a constraint of the form:

P(Kx) >1—e. (3.10)

Note that the feasible set for (3.10) X¢ := {x € R" : P(Kx) > 1 — ¢} is usually non-
convex or not even connected. Moreover and in contrast to K and Ky, X¢ is not a basic
semialgebraic set. In [Las17b] Lasserre proposed to approximate X¢ by a nested sequence
of basic semialgebraic sets X; which are outer approzimations of X¢ such that X7 2 X7, .

%In the case that Q is non-compact p* needs to satisfy Carleman’s condition.
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Lasserre also establishes the strong asymptotic guarantee that the Lebesgue volume of
X5\ X¢ converges to zero when d — co. In addition, as the complement of K in By x
can be described as uion of basic semialgebraic set whose intersections have measure zero,
this procedure also provides a sequence of inner approrimations, a typically desired feature
in applications that need to deal with randomness in the data.

The approach nicely exploits the dual (3.5) of (3.4), where now K is defined as in (3.9),
the reference measures p is replaced by p:= Ap, ® u¥ € M4 (B), and B := By x ). Again
it can be shown that the unique optimal measure for (3.4) is the restriction of u to K, that
there is no duality gap between (3.4) and (3.5) as long as K and B\ K have non-empty
interior, and that the moment relaxations (P;) have optimal solutions (P;)* converging to
the moment sequences of u|x and p|p\x -

Let p¥ € R[x,w] be part of an optimal solution to the d-th SOS-strengthening (Dg)
of (3.5) (see Chapter 1). Then p(@ is a polynomial over-approximation of the indicator
function of K on B as explained above. Now observe that integrating p{®) partially, only
over {2, yields a polynomial hy € R[x| with the interesting property

ha(x) ::/Qp(d)(x,w)du“’ 2/91Kduw:P(KX).

Consequently Xj := {o € By : hg > 1 — ¢} is an outer approximation of (3.10) as desired.
The convergence of vol(X3\ X¢) to zero is a consequence of the convergence of the optimal
values (Dg)* = [ hgdAp, towards p(K).

Stokes for Chance Constraints

As it has been pointed out in Section 3.1.2, the convergence (Dg)* — p(K) and hence
vol(X3\ X¢) — 0 is expected to be slow due to the Gibbs phenomenon and one might want
to use Stokes constraints in order to accelerate the convergence. However, as already seen,
Stokes constraints destroy the meaning of the dual variable as an over-approximation of the
indicator of K — the key fact used to define the polynomial h4 and the approximations Xj.
Though, when only enforcing Stokes constraints coming from derivatives in the directions
of w in (3.6) or (3.7), the polynomial p(¥) can still be used. The reasoning behind this was
tacitly assumed to be evident in [Las17b] and first mentioned explicitly in [WRM18]: Let
= exp(p(w))Aq, Y, ...V, € R[x,w]| be polynomials such that 9, n,; vanishes where
now n is the outer normal vector of K written in the standard basis of R” x Rf 5 By x Q.
Then (3.8) with the new notation reads

nf 4 }
PP Bp(x,w) (A, @ 1)

¢
0 0
tpt+ > =2 (e Do, ——p>1on K,
S p+k:1awk (PkVw,) + Dk k@wkp on

p € Rx,wl,p>0o0on B, pi,...,pn € R[x,w].
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Consequently the polynomials pd) pgd), cee pgd) obtained from the d-th strengthening satisfy

0

=0

where P(Kx) denotes the function x — P(Ky) and the integrals in the sum are zero exactly
by construction of the Stokes constraints (see (3.6) and use linearity of the integral). This
shows that Stokes constraints can be used in the context of chance constraint approximations,
if they are added in the directions of w, only.

3.2 Chance-Constrained Optimization for Non-Linear Net-
work Flow Problems

In this section we apply the concept of chance constraint approximation via the moment
approach discussed in Section 3.1.4 to Chance-Constrained Optimal Physical Network Flow
problems.

Many engineered systems, such as energy and transportation infrastructures, are net-
works governed by non-linear physical laws. A primary challenge for operators of these
networks is to achieve optimal utilization while maintaining safety and feasibility, especially
in the face of uncertainty regarding the system model. To address this problem, we formulate
a Chance Constrained Optimal Physical Network Flow (CC-OPNF) problem that attempts
to optimize the system while satisfying safety limits with a high probability. However, the
non-linear equality constraints representing the network physics introduce modelling and
optimization challenges which make the chance constraints numerically intractable in their
original form. The main difficulty tackled in this contribution is to reformulate the initial
problem in a way such that we can apply the methods discussed in Section 3.1.4 in order to
approximate chance constraints by polynomial constraints. In addition, we develop a two-
step procedure to improve computational speed and to enable the use of Stokes constraints.
While the method is applicable to general physical network flow problems with polynomial
constraints, we use the AC optimal power flow problem for electric grids as an example to
demonstrate the method numerically. This section is based on [WRM18].

Motivation Networked systems are ubiquitous and include critical infrastructure net-
works such as the power grid, gas transmission pipelines, water networks and district
heating systems. In such systems, optimization is often leveraged to maximize technical
performance or economic efficiency, giving rise to what we will call Optimal Physical Net-
work Flow (OPNF) problems. Optimization of system operation requires a mathematical
model of the system. However, in practical systems, imperfect information and forecast
errors introduce uncertainty in system operation and planning. If the uncertainty is not
accounted for properly during the design and optimization process, the optimized system
solution might be vulnerable to uncertainty, with potentially detrimental impacts on system
risk.

A prominent example is the Optimal Power Flow (OPF) problem in electric power
grids, which minimizes operational cost subject to technical constraints, and is used to clear
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electricity markets, perform security assessment and guide system expansion planning. The
most significant source of uncertainty in the OPF problem is due to imperfect forecasts
in renewable generation and loading conditions. System security must be maintained by
ensuring that all variables are kept within acceptable values for a range of uncertainty
realizations. Problems with similar structure also arise in other infrastructure networks
such as natural gas and water networks.

A typical approach to account for uncertainty is to formulate the OPNF as a robust
or stochastic program. However, for many of the above mentioned systems, the physics
governing the network flows are given by a set of non-linear equations, such as branch flow
equations and nodal conservation laws. This gives rise to non-linear equality constraints,
which are inherently non-convex and thus challenging for both deterministic and stochas-
tic optimization algorithms. In addition, the non-linearity significantly complicates the
characterization of the uncertainty propagation throughout the system.

Most existing robust and stochastic programming methods rely on assumptions of con-
vexity. For practical problems such as the OPF problem, solution methods for robust or
stochastic problem formulations typically use linear approximations [RA17; DBS17] or con-
vex relaxations [Vra+13; LS17; Nas+16] to circumvent the problem of non-convexity. This
enables the application of well-known methods for robust [BGN09] or chance-constrained
[CCO06; CE06] programming, at the expense of a reduction in model fidelity and less com-
prehensive feasibility guarantees for the underlying problem.

Here, we take a different approach. Instead of approximating or relaxing the non-linear
network flow equations, we aim at treating the non-convex problem directly using the
technique discussed in Section 3.1.4. The method is applicable for problems where the
equality and inequality constraints can be represented as polynomials in both the decision
variables and uncertain parameters.

We first formulate the uncertainty-aware problem as a Chance-Constrained OPNF (CC-
OPNF) to guarantee that the constraints are satisfied with a high probability. In the
formulation, we explicitly distinguish between violations of the network flow (equality)
constraints, which indicate global instability of the system, and violations of engineering
(inequality) constraints, which have a more local impact.

Due to the chance-constraints, the CC-OPNF is intractable in its original form. Our
main contribution is to develop conservative, tractable approximations of the chance con-
straints in the form of polynomial constraints. Apart from the methods already discussed,
we also build on [MHL15] to deal with projections of semialgebraic sets. We provide two
crucial extensions:

1. While [Las17b] allow for outer approximations of the chance constraints using a hier-
archy of SDPs, in practice it is not straight-forward to obtain an inner approzimation,
which is typically of interest in our setting. Therefore, we use a series of set manipu-
lations to extend the existing methods towards practical inner approximations.

2. To improve computational performance, we develop a two-step approximation proce-
dure, which allows for better approximations at lower computational overhead.

Replacing the chance constraints by their respective polynomial approximations yields
an Approximate CC-OPNF (ACC-OPNF) problem that is still non-convex, but readily
solvable to local optimality by state-of-the-art non-linear programming solvers. Note that
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the polynomial chance-constraint approximations, which can be computationally heavy to
compute, are determined a-priori in a pre-processing step to the ACC-OPNF.

Based on a small case study for the AC OPF problem, we demonstrate the practical
performance of the method. In particular, we demonstrate the value of the extensions to
inner approximations and the benefit of the two-step procedure.

3.2.1 Problem Formulation

We now present the problem formulation in abstract form for a generic physical network
flow problem, as the method can be applied to any problem that has the structure described
below. For a concrete example, we refer the reader to Section 3.2.5, where the method is
applied to the AC OPF problem.

Deterministic Optimal Physical Network Flow

In this section we consider problem variables x = (x1,...,%,) and y = (y1,.-.,¥Ym)-
For multivariate polynomials f7,..., 2, ¢¥,...,9% € R[x,y] we consider the following
Deterministic Optimal Physical Network Flow (D-OPNF) problem:

min ¢(x,y) s.t.
Xy

Axy)=0i=1,...,m, (3.11a)
g?(x7y) 2 0’ ] = 17"'?]{:' (3-11b)

Here, the cost function is given by a polynomial ¢ € R[x,y]. The polynomial equality
constraints f(x,y) = 0 represent the network flow physics. The polynomial inequality
constraints g]Q (x,y) > 0 represent engineering limits.

To explicitly describe the degree of freedom in the system, we have separated the
variables into x and y. Since the equality constraints f{(x,y) = 0 eliminate m degrees of
freedom, the variables y are intuitively implicit functions of the independent variables x.
Note that due to the non-linearity of the f, in general y might not be determined uniquely
by a choice of x. In this paper we make a practical assumption stated below.

Assumption 1. The engineering constraints g?(x,y) > 0 are such that the solution y to
the system of equalities fP(x,y) = 0, whenever it exists is unique. As a result, we therefore
can write y as a function of x, i.e. y = yx := y(x).

The above assumption reflects a feature often encountered in engineered networks. Even
though, mathematically the network physics described by the non-linear system f? = 0 can
have multiple solutions, there is only one solution that is physically meaningful within the
region in which the system is operated. As soon as the variables x are set, the state of the
system is fully determined. Assumption 1 allows us to formalize this notion.

Chance-Constrained Optimal Physical Network Flow

As we are aiming to account for uncertainty in the D-OPNF (3.11), we formulate the prob-
lem as a chance-constrained optimization problem. Chance constraints limit the probability
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of constraint violations, and can be enforced either as joint chance constraints (several equa-
tions hold jointly with a given probability) or separate chance constraints (each constraint
is assigned its own probability). Due to the underlying physics of the problem, the network
flow constraints f? must be satisfied jointly: If one of them is violated, the solution is
not physically valid and the remaining constraints are meaningless. The probability of not
jointly satisfying the network flow constraints can be understood as the probability that
the uncertainty realization will lead to a situation where the flow problem is unstable and
there exist no steady-state operating point (e.g., voltage instability in electric power grids).
The engineering limits g? can be satisfied either jointly or separately, depending on the
preferred method for risk management. In the following, we provide a method for enforcing
the engineering limits as separate chance constraints.

As in the previous section let (€2, u) be a probability space. The random variables
w = (w1, ...,wy) have zero mean 0 € R, Finally, let fi,..., fm, 91,--., 9k € R[x,y,w] be
multivariate polynomials. The notation is motivated by the idea that f2(x,y) = fi(x,y,0)
and g;-)(x,y) = g;(x,y,0). Define f = 37, f2. Then enforcing the system of equations
filx,y,w) =0,i=1,...,m, is equivalent to imposing f(x,y,w) = 0. We will use the later
for better readability, although our implementation is based on the system of equalities
rather than the single constraint f(x,y,w) = 0. We state the CC-OPNF problem:

min _c(x,yx) s.t.

XY,y (w)
fy) =0, i=1,...,m, (3.12a)
9%, yx) =0, j=1,. k, (3.12b)
P (f(x y(w), ):0)21*81, (3.12¢)
P(gj(x,y(w),w) >0) > 1—e2, j=1,....k (3.12d)

Here 0 < €1,e2 < 1 are the accepted violation probabilities of the respective constraints. In
addition to the chance-constraints to account for uncertainty, we also keep the constraints
(3.12a), (3.12b) from problem (3.11). These constraints give a precise meaning to the cost
function ¢(x,yx), which is expressed as the operation cost for the expected realization
w=0.

We note that the problem as presented in (3.12) is a variational optimization problem.
The controllable variables x however do not depend on the realization w of w, which means
that once they are chosen, they cannot be modified in response to uncertainty. Note that
n (3.11) we are optimizing over functions y : @ — R™. However, similar to the DNF
(3.11), the equality constraints eliminate the degrees of freedom for y(w), and by a direct
generalization of Assumption 1, one can think of y in (3.13) as a function of (x,w), within
the region defined by the g;. As a result, the constraints in (3.12d) are simply constraints
on x, a property that we exploit in our approach to convert the variational problem in
(3.13) into a standard optimization problem in x.

Unlike as in (3.11), where the inequalities (3.11b) along with Assumption 1 guarantee
uniqueness and physical interpretability, eliminating y(w) in (3.12) is not trivial, as (3.12c)
and (3.12d) are coupled through y. Eliminating y would allow for different choices of y for
the same realization of w in the constraints (3.12c¢) and (3.12d), respectively. To circumvent
this issue, we introduce a set Y and make the following assumption:
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Assumption 2. Restricting the range of y to a set Y C R™ the solution y(w) to the system
of equalities f(x,y(w),w) =0 in (3.12¢) is unique whenever it exists.

The set Y can be interpreted as domain specific knowledge about the system introduced
in order to reduce the feasible space to a region where our physical model is valid and
exclude physically meaningless solutions to f(x,y(w),w) = 0. We propose the abstract
formulation of the CC-OPNF problem below:

min ¢(x,yx) s.t.

X, ¥x

x,y)=0,i=1,...,m, (3.13a)
9)(x,yx) >0, j=1,... .k, (3.13b)
P(3yeY, f(x,y,w) =0) > 1 —¢y, (3.13¢)
Py eV, f(x,y,w) =0Agj(x,y,w) >0) >1—e9, j=1,...,k. (3.13d)

By Assumption 2 the constraints f(x,y(w),w) = 0 in (3.13d) implicitly specify y as a
function of w given x.

Our contribution is to provide tractable approximations to the chance constraints (3.13c),
(3.13d). more precisely these constraints will be replaced by polynomial constraints. The
details of how we obtain the polynomial approximations will be explained over the next
sections.

3.2.2 Polynomial Approximations of Chance Constraints

In this section, we first review another result from the literature which further extends
the methods discussed in Section 3.1. Building on this we then develop inner and outer
approximations of the chance constraint formulation in (3.13).

Volume of Projections of Semialgebraic Sets

Comparing the generic representation of chance constraints in (3.10) to the one presented
in (3.13), we see that in many applications such as the OPNF, the presence of equality
constraints introduce additional dependent variables y that are needed to describe the
system. It is straightforward to extend the framework described in Section 3.1 by appending
the additional variables y to form the set K in (x,y,w)-space and apply the same procedure
outlined above. However, since y is fully specified by a choice (x,w) the volume of the set
K is zero. Consequently we cannot establish strong duality between the problems (3.1)
and (3.2). This problem can be addressed by approximating the projection of K onto the
(x,w)-space where the volume is non-zero, instead of the original set K, using the method
in Magron et al. [MHL15]. To approximate the indicator function of the projection

m(K) = {(x,w): Jy e R", (x,y,w) € K}
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of K onto (x,w)-space, consider the variant of (3.5):
min / p(x,w)du
pER[x,w] J B
st. p—1>0on K,
p>0on B,

(3.14)

where now B := By x By x (2 for some sets By and By, for which it is easy to compute the
moments of the Lebesgue measure, and p := Ap, ® Ap, ® u*. Note that the optimizing
(polynomial) variable p is restricted to be invariant in y-direction. The constraints guarantee
that p is an overestimator of the indicator function of 7*¥(K) on 7*“(B) = By x §). Similar
to the results reviewed in Section 3.1, Magron et al. prove convergence results for the
corresponding SDP hierarchy, i.e., p(¥) converges to the indicator function of 7*¢(K) and
the optimal value of the stregthenings of (3.14) converges to the volume of 7*“(K) with
respect to the marginal p*“ of u on Bx x (2.

Approximations of the CC-OPNF

We are now able to describe how to use the methods outlined in Section 3.1 and Section 3.2.2
to provide outer and inner approximations of the CC-OPNF (3.13). To that end we specify
the feasible set of the chance constraints that we want to approximate by

L* = {x € By :
P3y eV, f(x,y,w) =0) > 1—¢q, (3.15a)
P(3y€Y7f(X7Y7w):O/\gj(X7Y7w)20)21_527 jzla--'vk}v (315b)

where we assume that £* C By. As mentioned in Section 3.2.1, our goal is to approximate
the set £* by replacing the intractable chance constraints by polynomial constraints.

Outer Approximation of the Feasible Set We define the sets for which the constraints
remain satisfied as

Ko :={(x,y,w) € B: f(x,y,w) = 0},

. (3.16)
K; ={(x,y,w) € B: f(x,y,w) =0Agj(x,y,w) >0}, j=1,... k.

An outer approximation of the set £* can be obtained by applying the method outlined
in Section 3.1.4 to each of the sets K for j = 0,...,k. For each K}, we get a polynomial
h; € R[x] which approximates the function x — P(7*“(Kj)) from above, leading to an
overestimation of the satisfaction probability and an outer approximation of the chance
constraints. Consequently the set

{XEBx:hEk)(X) 21—517h;f(x) >1—eg,j=1,...,k}

is an outer approximation of £*, and the corresponding ACC-OPNF provides a lower bound
to the optimal cost of the OPNF.
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Inner Approximation of the Feasible Set In applications where system security is
of primary concern, obtaining feasible solutions to (3.13) is more important than obtaining
lower bounds to the cost, hence motivating an investigation of inner approximations to
the chance constraints. However, as opposed to the outer approximation, obtaining an
inner approximation of £* is more involved. In principle one would like to obtain inner
approximations by considering the complements of K; defined in (3.16). Note however that
in (3.15) we are considering projections of theses sets. Hence we would actually need to
use the compliments of the projections. However we do not have a basic semialgebraic
description of the latter.

In the following, we propose a modification of £*, which we can use to approximate
this set (almost) from the interior. For £; < €5 define

* .= {x € By
PEy €Y, f(x,y,w) =0) > 1 —e1, (3.17a)
P(HyEY,(f(X,y,w):O/\gj(x,y,w)§O))§52—51, ]Zlvvk} (317b)

The essential difference between £* and K* is that the probabilities (3.17b) in K*
are bounded from above whereas the probabilities (3.15b) in £* are bounded from below.
Since the methods discussed in the beginning of Section 3.1.4 lead to overestimators of
the probability, the reversal of the inequality in the formulation in * now enables us to
approximate the sets described by the chance constraints in (3.17b) from the interior. The
following proposition relates the approximation * to £*.

Proposition 3.2.1. The set K* is an inner approrimation of L*.

Proof. For the proof it will be handy to introduce some formulas. Define

A:=dyeY, f(x,y,w) =0,

B:=3y €Y, (f(x,y,w) = 0A gj(x,y,w) <0,
B =Yy €Y, (f(x,y,w) # 0V g;(x,y,w) > 0),
B":=Vy e Y, (f(x,y,w) #0V g;j(x,y,w) > 0),
C:=3y €Y, (f(x,y,w) =0Agj(x,y,w) > 0)

Note that =B = B’ and B’ = B”. Therefore x € K* is a stronger condition than
x€ K*:={x€By:P(A)>1—e1,P(B")>1—¢eg+e1, j=1,...,k},

ie., KX C K*. To see that K* C £*, note that B” < (AANB")V (-AAB"), (ANB") = C,
and (mAA B") < —A. Hence, if x € KX, 1 —e9+¢1 <P(B) <P(-A) +P(C) < &1 +P(C).
Consequently, P(C) > 1 — &9, i.e., x € L*. O

Instead of directly dealing with £*, we attempt to approximate the set K* from the inte-
rior. Using the same procedure as before we compute polynomials h, ..., hy, approximating
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the functions x — P(7*“(K)) where K; now is defined by

Ky :={(x,y,w) € B: f(x,y,w) = 0},

(3.18)
K; ={(x,y,w) € B: f(x,y,w) =0A gj(x,y,w) < 0}.

Note that though we are aiming for an inner approximation of X*, the polynomials h; are
over-approximations of the probability. The set I* is then approximated by the set

Kx:={x e By :hj(x)>1—¢ (3.19a)
h;‘(x) §€2—61,j= 1,...,k}. (319b)

Since the polynomials 2} (x) over approximate the probabilities in (3.17b), the set defined
by the inequalities in (3.19b) are inner approximations of the corresponding sets defined
by (3.17b). Unfortunately the same relation is not true for the sets defined by (3.19a)
and (3.17a) that correspond to the probability of joint violation of the equality constraints
fi(x,y,w) = 0. Therefore, K* is an approzimate inner approximation to £X.

3.2.3 Improved Approximations through Stokes Constraints
Partial Stokes Constraints for Projection of Sets

Stokes constraints cannot directly be applied to the setting where the feasible set is described
by the projection of a semialgebraic set. This is because in order to be able to add Stokes
constraints to the problem in (3.14), we must first find a polynomial ¥ € R[x,w] that
vanishes on the boundary of the projection 7*“(K) of K. Note that in Section 3.1.4, where
there is no projection involved, the polynomial ¥ € R[x,w] can be readily obtained as the
product of the polynomials that define the semialgebraic set K. For the projection 7*“(K)
of a semialgebraic set K in (x,y,w)-space, this trick is not applicable.

Our solution to this issue is a two-step-procedure: In a first step we approximate the
projection 7% (K) by the super-level-set S of some polynomial p e R[x,w]. In a second
step, we use this set S to compute a second polynomial p?) e R[x,w]| approximating the
indicator function of S. From this we obtain the polynomial h approximating the chance
constraint (see Section 3.1.4). We explain the procedure in more detail:

Step 1: Approximating the Projection of K We first apply the method in Sec-
tion 3.1.4 and solve the problem in (3.14) to obtain a polynomial p() that is an overes-
timator of the indicator function of 7% (K), i.e. pt) > 1 on 7 (K). In particular the
super-level-set given by

S = {(x,w) € Bx x Q: pV(x,w) — 1 >0} (3.20)

is an outer approximation of 7% (K). Figure 3.2 illustrates this step. Numerical experiments
have shown that the 1-super-level-set of the optimizing polynomial is quite accurate already
for low relaxation degrees.
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Figure 3.2: Step 1: Projection step. The projection of K is approximated as S, which is
defined by the 1-super-level set of p(1).

Step 2: Probability Approximation After the first step we replace the actual pro-
jection 7*¢(K) by its approximation S defined in (3.20). In doing so we lose information
about 7*“(K’) but we gain two important advantages. First, moving from K to S we get a
significant reduction in the number of variables, as we eliminate the whole y-space. This
allows us to afford computational capacity for higher levels in the SDP relaxation hierarchy
and get better volume approximations. Second, we now have a polynomial, specifically
p) —1, that vanishes on the boundary of S. This crucial difference enables us to use Stokes
constraints to improve the volume approximation. Applying the method in Section 3.1.4,
we obtain a polynomial p2 R[x,w] that still preserves the desired over-approximation
property:

P9 = [ P00 du 2 B(S) 2 B (),

where (a) follows from Section 3.1.4 and (b) follows because 7*“(K) C S. This step is
summarized in Fig. 3.3.

3.2.4 The Overall Approach

To summarize the overall approach, we first recall the problem formulation (3.13). Our aim
is to eliminate the chance constraints (3.13c) and (3.13d) and replace them by tractable
polynomial constraints. The challenge is to (i) ensure existence of solution to the equality
constraints, (ii) compute inner approximations to the chance constraints, and (iii) enable
the use of Stokes constraints to speed up convergence. We address the challenges in the
following steps:

1. We reformulate the feasible set £* of the chance constraints by the set * that allows
us to obtain inner approximations.

2. We eliminate the dependent y variables by approximating the projection of each K;

defining K* as the super-level set S of a polynomial pgl).
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By

Figure 3.3: Step 2: Probability approximation. The probability is approximated by inte-
grating p® in Q direction for every x € By.

3. We use the reduced set S to compute the inner approximations to the chance con-
straints by polynomials h{(x),...,hj(x). To speed up convergence, we add Stokes
constraints which is made possible by the availability of the polynomial p(*).

Now, the chance constraints in original problem (3.13c), (3.13d) can be replaced by
their approximation to obtain the ACC-OPNF formulation:

min ¢(x,yx) S.t.
X, ¥x

Ry =0,i=1,...,m, (3.21a)
B(xyx) >0, j=1,....k (3.21b)
ho(x) > 1 — e, (3.21c)
hj(x)<ex—e1, j=1,... .k (3.21d)

Although obtaining the polynomials h§(x), ..., hj(x) might be computationally heavy,
this procedure is independent of the actual solution process for the resulting ACC-OPNF.
Therefore it can be considered as a pre-processing step to be executed offline. The resulting
approximate CC-OPNF, despite remaining non-convex, can be solved to local optimality
using a local non-linear solver. Furthermore, methods for global optimization of polynomial
problems can be applied as discussed in Chapter 2.

3.2.5 Application to Chance-Constrained AC Optimal Power Flow

In this section, we present the mapping of a chance-constrained AC optimal power flow
(CC-AC-OPF) problem onto the general CC-OPNF problem (3.13). Motivated by the
recent increase in generation uncertainty from renewable energy sources, our CC-AC-OPF
formulation attempts to minimize generation cost, subject to engineering constraints while
accounting for the uncertainty in renewable power generation.
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Deterministic Optimal Power Flow

We first formulate the deterministic OPF problem where we assume perfect knowledge of
the system. This problem corresponds to the deterministic OPNF (3.11).

Notation We consider an electric network where A/ and £ denote the sets of nodes and
edges. Without loss of generality, we assume that there is one generator, one demand and
one uncertainty source per bus. Complex power is given by s = p + j - ¢, where p and ¢
are the active and reactive power. Subscripts g, ¢ and p are for renewable energy sources,
conventional generators and loads, respectively. The complex bus voltages are denoted by
U = Vpeal + Vimag, and the corresponding voltage magnitudes by |v| = (vZ,, + vizmag)l/ 2,

Problem formulation Given the above considerations, the OPF problem is given by

min Z Cz,iPZGo,i + ¢1,iPGo,i + Co (3.22a)

qGo,vo 1€G

s.t. sGo,i +SRi — 5D = Z 50,ij 5 Vie N, (3.22Dh)

(3,5)€€

$0,ij = Y3500,i00,; — Y ;00,400 j V(i,j) €E, (3.22¢)
PET < poo < AT, Vie N, (3.22d)
2 < qeo < BT, Vie N, (3.22¢)
v < g 4] < o™, VieN, (3.22f)
|s0,i5] < |saj ™, V(i,j)€E. (3.22g)

The objective (3.22a) of the problem is to choose the generation dispatch point, given by the

active and reactive power generation pgg, ggo and the complex voltages vg, such that the
the cost of active power generation given by the quadratic function in (3.22a) is minimized.
The AC power flow equations (3.22b), (3.22c) are a set of equality constraints describing
the physical laws, with the nodal power balance given by (3.22b), and transmission line
flows given by Ohm’s law (3.22c¢), where Y is the so-called admittance matriz. Note that
we use the rectangular form of the power flow equations to obtain polynomial constraints.
Further, we enforce a set of engineering limits (3.22d)-(3.22g). The constraints (3.22d),
(3.22e) represent bounds on generation capacity, (3.22f) limits the voltage magnitudes to
safe ranges and (3.22g) enforces limits on the apparent power flow. Among these constraints,
(3.22b) and (3.22c) correspond to the equality constraints f0 = 0 in the deterministic OPNF
(3.11), and the remaining constraints correspond to the inequality constraints g? > 0.

Chance-Constrained Optimal Power Flow

We now extend the deterministic problem to the setting with uncertainty in the power
injections.

Modelling uncertain injections We model the uncertain active power injections from
renewable generators as the sum of the expected value pr and a fluctuation w. The expected
reactive power injection is denoted by gr. The reactive power injections are assumed to
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adjust in a way that the power factor, given by v = qr/pg, remains constant:

sp(w) = (Pr+w) +j - (qr + W) (3.23)

We assume that the probability distribution of w is known. The active and reactive power
consumption of the loads, denoted by pr, qr, are assumed to be constant, but could also
be modelled similar to (3.23).

Power flow equations under uncertainty For non-zero uncertainty realization w, the
power flow equations (3.22b) are adapted to account for w, i.e.

sqi(w) +spi+w—sp;i= Z si5(w), Vie N, (3.24a)
(i,9)€€
sij(w) =Y vi(w)v; (w) =Y vi(w)vi (w), V(i,j)€E. (3.24b)

Response to Uncertainty When the power injections fluctuate, the controllable gen-
erators must adjust their generation output sg;(w) to ensure that the power balance
constraints (3.22b) are satisfied. We adopt balancing practices typical in power systems
operation, which require the definition of so-called pv, pg and v (reference) buses.

On each node of the network there are four state variables, namely the active power
injection p, the reactive power injection ¢, and two voltage variables corresponding to the
voltage magnitude and angle |v|, 6 (polar coordinates) or the real and imaginary voltage
Ureal; Vimag (rectangular coordinates). The buses are classified according to the quantities
that are controllable or specified: (i) pg buses (such as loads) with specified real and
reactive power, (ii) pv buses (such as generators) with controllable active power and voltage
magnitude, and (iii) vf or reference bus with the voltage angle set to zero. The sets of
nodes that correspond to the three categories are denoted by subscripts Npq, Npy and Nyg.

Given the above definitions, we assume that the active power injections from generators
at pq, pv buses remain constant throughout the fluctuations, and all fluctuations w are
balanced by the generator connected at the slack bus. Similarly, reactive power is balanced
by adjusting the reactive power output of pv and vf buses to maintain constant voltage
magnitudes, while the reactive power injections at pq buses are kept constant.

Definition of x and y variables

We choose the rectangular coordinate representation in order to be able to employ the semi-
algebraic methods described in this work. This gives us 4 variables per bus p, ¢, Vimag, Vreal-
However, as described above, the standard model for pv and v0 buses are based on polar
coordinates, where we keep the voltage magnitude constant. We handle these requirements
in rectangular coordinates by adding the constraints vimag = 0 and vreali(wW) = Vreal,; for
1 € Nyg, and the constraint vreal’i(w)Q + vimagJ(w)Q = |v|? for i € Npy.

This results in two independent variables per bus, which we choose to also correspond
to the quantities that can be controlled by the system operator. In particular, we define
the independent x variables as

PGO,i» 4G0,is Vi € Npg,



3.2. Chance-Constrained Optimization for Non-Linear Network Flow
Problems 75

PGoi(w), [v|o, Vi € Npw,

Ureal0,is Vimag0,i» Vi € Nyg.

The variables that change as a function of w are the elements y € Y in the CC-OPNF
formulation (3.13):

Vreal,i (W), Vimag,i (W), Vi € Npg,
4G, (W), Vreal i (W), Vimag,i (W), Vi € Npo,
PG.i(w), 4,i (W), Vi € Nyo,
sij(w), Vij € .

Note that in the process of solving (3.13), we are not explicitly assigning a value to these
dependent quantities y = y(w). However, the variables yx, which correspond to y at the
expected operating point (w = 0), are explicitly defined.

Definition of constraints f =0 and ¢ >0

As is evident from (3.24), both the generation outputs pg;(w) and ¢ ;(w), the power flows
sij(w) and the voltage variables v;(w) will change depending on the realization of w. The
constraints which incorporate those quantities are therefore enforced as chance constraints.

The stochastic power flow equations (3.24) correspond to the equality constraints
f(x,y,w) = 0. When there is no solution to this set of equations, the system is unsta-
ble and might collapse at any point leading to complete blackout of the electric grid. We
hence want the probability of violating any of the equality constraints to be very low, and
enforce those constraints jointly as in (3.13c) with a small acceptable violation probability
1. The inequality constraints g;(x,y,w) > 0 correspond to the engineering limits

pEY < pai(w) < pEY, Vi € Nyg (3.25)
gt < qa.i(w) < a8, Vi € Nypwy Nog (3.25b)
Jog ™ < gl (w) < Joi[™, Vi € Npg (3.25¢)
Vreali (W) + Vimag,i (w)” = [v]7, Vi € Ny (3.25d)
|sijl(w) < Isi|™, V(i,j) € E. (3.25¢)

In contrast to a violation of the power flow equations (3.24), a violation of one of the
engineering constraints (3.25) would typically have a more local impact (e.g. overloading
of a component), and can often be tolerated for a certain amount of time (e.g. violations of
thermal capacity limits of transmission lines). We hence enforce (3.25) as separate chance
constraints, and allow for a larger violation probability o > £1.

Choosing Y

The last parameter we must determine before the mapping from the CC-AC-OPF to the
generic CC-OPNF problem (3.13) is complete, is the set Y from Assumption 2. We would
like to choose Y such that solutions to (3.24) are unique and have a well-defined physical
meaning, which for the OPF problem implies ensuring that low voltage solutions to the



76 Chapter 3. Representation and Approximation of Chance Constraints

power flow equations are excluded. Therefore we define the sets Y by the inequalities
[|™07 < o (w), Vi € Ny (3.26)

Here, |v|™"~ is lower than the standard voltage bound |v|™ but sufficiently large to
exclude low voltage solutions.

3.2.6 Case Study

We first describe the implementation and test system, before presenting the numerical
results for the chance constraint approximation and the resulting approximate CC-OPNF.

Implementation

In this section, we describe our implementation to obtain the ACC-OPNF in Section 3.2.4
and evaluate its performance. To obtain the polynomials kg, ..., hj, in (3.21) we solve SDP
relaxations to the infinite dimensional linear problems described in Section 3.2.3. We use
the GloptiPoly3 Matlab toolbox [HLL09a| to model the relaxations and Mosek [MOS17] to
solve the SDPs. The resulting ACC-OPNF is implemented in Julia [Bez+14] with JuMP
[LD15] and PowerModels.jl [Cof+17] and then solved using the local non-linear solver Ipopt
[WBO06]. We also perform Monte-Carlo simulations for benchmarking which requires solving
the standard power flow and the AC-OPF which are implemented using Matpower [ZMT11]
and PowerModels.jl respectively.

Test System

We run our numerical experiments on a modified version of a 4-bus system in [GS94] (casedgs
in the Matpower library) which is illustrated in Fig. 3.4. The system has two conventional
generators at Bus 1 and Bus4, with active and reactive power limits pfi» = 0,p2* = 500
and qai“ = —250, g&* = 500. Bus1 is the reference bus, while all other buses are PQ buses.
We assume that the load at Bus2 is uncertain, with active power fluctuations w uniformly
distributed on [—50,50]. The reactive power fluctuations on Bus2 are proportional to
the active power fluctuations, with v ~ 0.62. We assume quadratic cost for Bus1 with
(e21,¢11,¢01) = (0.01,30,200) and a linear cost for Bus4 with (¢4, ¢1,4,c04) = (0,25, 400).

Numerical Results

We verify the approximation quality of the chance constraint approximation, and then
assess the performance of the full CC-AC-OPF problem.

Approximation of Chance Constraints In the following we employ the two-step ap-
proach described in Section 3.2.3 to obtain the chance constraint approximations through
the polynomials hg, ..., Ry given in Eq. (3.21). We investigate the accuracy of this approxi-
mation and how the accuracy improves by increasing the relaxation order d and the addition
of Stokes constraints. Results for both the outer approximation and the (approximate) inner
approximation described in Section 3.2.2 are shown.
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Figure 3.4: Overview of the 4-bus system. Generators marked in blue, uncertainty source
in green and loads in black.

To obtain outer and inner approximations we need to compute the probability of the
projections of the sets K defined in (3.16) and (3.18) respectively, by using the two-step
method in Section 3.2.3. For the corresponding SDP relaxations, we choose the relaxation
order of the first step to be d = 2 or 3 and for the second step to be d +5 = 7 or 8. For
the first step, a lower degree polynomial is sufficient to approximate the level sets of Kj,
whereas the second step needs higher orders for better approximation and benefiting from
Stokes constraints.

To assess how close we are to the true feasible set of the chance constraints, we created
a large number of grid point to represent By using 100 grid points for both active and
reactive power for a total of 10’000 grid points. For each grid point, we sampled 1’000
realizations of w. For each (x,w), we solved a standard power flow using Matpower. We
then calculated the probability that a constraint holds for fixed x by dividing the number
of samples for which the power flow satisfies the constraints by the total number of samples
for w.

Figure 3.5 shows the feasible region for £y = 0.01 and €5 = 0.1. We show both the inner
(green) and outer (red) approximation of the feasible region for relaxation orders d = 2, 3,
and both with and without Stokes constraints. As a benchmark, we also show the feasible
region computed through the Monte Carlo simulation (blue). The closer the approximated
regions (green and red) are to the benchmark (blue), the better the approximation. We
remark that both increasing the relaxation order and introducing Stokes constraints increase
the quality of the solution. The improvement obtained by introducing Stokes constraints is
very significant, while increasing the relaxation order only slightly increases the quality of
the approximation.

To further assess the quality of approximation, we report the ratios between the volume
of the approximated feasibility regions and the volume computed through the Monte Carlo
simulation in Table 3.1 for £1 = 0.01 and different values of ¢5. The addition of Stokes
constraints clearly offers significant improvement. Interestingly, the quality of the outer
approximation does not seem to depend on the choice of 5, while the accuracy of the inner
approximation decreases with es.

We observe that the outer approximation to the chance constraints is not very tight, and
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Figure 3.5: Comparison of the outer (red) and inner (green) approximation with the Monte
Carlo simulation (blue) for €; = 0.01 and g3 = 0.1.

might lead to violation probabilities significantly above the acceptable levels. The extension
proposed in this paper to allow for an (approximate) inner approximation provides a
significant practical advantage over the previously existing methods in terms of returning
safe approximations. It is also accurate enough to provide non-empty feasible sets, even at
low relaxation orders.

Solving an instance of a CC-AC-OPF We assess the performance of the ACC-OPNF
formulation in (3.21) by evaluating the cost of the optimal generation dispatch, the empirical
constraint violation probability and by relating it to the deterministic AC-OPF. For this
experiment, we use the best inner approximation with relaxation order d = 3 as well as the
Stokes constraints to approximate the CC-AC-OPF (3.13). We solve both the deterministic
AC-OPF and the approximation of the CC-AC-OPF for different values of e5. We then

outer inner
d=2 d=3 d=2 d=3
€9 — Stokes - Stokes - Stokes - Stokes
0.20 | 175% 165% | 141% 124% | 53%  79% | 56%  79%
0.15 | 179% 168% | 143% 126% | 49% 75% | 53%  76%
0.10 | 182% 171% | 144% 126% | 43% 69% | 47% 70%
0.05 | 185% 173% | 144% 125% | 30%  56% | 36%  58%

Table 3.1: Ratio approximated vs. real volume for different values of es.
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Det. g0 =20% | €9 =15% | €9 =10% | e3 = 5%
PGo1 8.9 30.1 36.3 44.7 58.8
4Go,1 158.4 168.0 168.2 168.6 169.1
PGo4 500.0 477.6 471.2 462.4 447.9
4Go,4 149.5 135.4 134.0 132.1 129.1
cost 13357 13452 13481 13523 13596
€5 39.8% 18.2% 12.1% 3.7% 0.0%

Table 3.2: Optimal values and solutions to (3.11) and (3.21) for e; = 0.01 and different
values of &9

compare the power injections, the cost and the maximal empirical violation probability
of the individual chance constraints €5, which is computed through another Monte Carlo
simulation at the obtained solution point using 1’000 samples of w.

Table 3.2 summarizes the results. In column Det. we show the results for the determinis-
tic AC-OPF. The other columns are labeled by their acceptable violation probability for the
individual constraint violation €9. The violation probability €1 = 0.01 for all experiments.
The variables pgo 4 and ggo,4 are the independent variables x in our problem formulation,
corresponding to the active and the reactive power of the generator at Bus 4 in the test case.
The power injections at the slack bus generator pgo1 and ggo,1 are among the dependent
yx variables. Since these generators will adjust their values based on the realization of w,
we report their expected values in the table. Further, we list the cost of the operating point
and the maximum empirical violation probabilities €5 among all individual constraints. We
do not show results for the empirical violation probability of the joint chance constraint
€7, as it was constantly 0% for all optimal operating points. This is expected, since the
engineering limits are typically more limiting than the power flow solvability conditions.

We observe that when the violation probability 5 decreases, more and more of the
system load must be covered by the more expensive slack generator, resulting in a higher
value for pgo,1 and a higher expected cost. Considering the violation probabilities of the
individual chance constraints we see that the optimal solution to the deterministic AC-
OPF violates at least one of these constraints with a probability of almost 40%. For the
approximations of the CC-AC-OPF the empirical violation probability 5 of the individual
chance constraints is always below the requested probability €9, reflecting the fact that we
indeed obtain a true inner approximation. While the empirical violation probability is quite
close to the acceptable level for eo = 20% and eo = 15%, respectively, the approximation
is significantly more conservative for lower values of 5. For g2 = 5% no violations are
observed.

3.2.7 Conclusion and Directions

In this section, we developed a new approach to handle chance constrained optimization
problems in non-linear physical networks. The method is based on Semidefinite Program-
ming (SDP) techniques to compute the volume of semialgebraic sets, from which polynomial
approximations of the chance constraints are obtained. To make existing results applicable
in our practical setting, we (i) proposed a set reformulation in order to enable inner approx-
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imations, and (ii) developed a two-step procedure to improve approximation quality at a
lower computational overhead.

The method is applicable to any problem with polynomial equality and inequality
constraints, when the probability distribution of the noise (or more precisely its moment
sequence) is known. We next provide a framework for approximations of chance constraints
when the moment information is imperfect in Section 3.3.

We have tested our approach numerically on the chance constrained AC Optimal Power
Flow. In our experiments, the polynomial approximations were shown to provide sufficiently
accurate representations of the feasible domain, and the resulting CC-AC-OPF was able to
provide safe operating points with limited violation probability.

The method is a powerful and novel technique to handle chance constrained optimization
for non-linear systems. Although, in its current form the method is applicable to systems
of small dimensions only, it has the potential for several extensions and improvements.
One promising future direction is to exploit the sparsity structure of networks to scale the
method to instances of larger dimension.

3.3 Distributionally Robust Chance Constraints

In this section we extend the framework of chance constraint approximation presented so
far. We consider the more realistic case where only some information about the probability
distribution p* on €2 is known. In addition we will assume that K¢ := (Bx xQ)\ K is a basic
semialgebraic set. Here, as already in the previous sections, Bx is a basic semialgebraic
compact subset of R™ such that we can compute the moments of the normalized Lebesgue
measure Ap,. For simplicity of exposition we will only consider the case 2 = R and
also restrict the discussion to the case that the noise is normal distributed with respect to
unknown parameters y = (m, o) representing the mean m and the standard deviation o.
More precisely let

(w—m)?

fy,w) = = exp(—535). (3.27)

Then we consider the family of probability measures whose density is a mixture of densities
f(y,w) with y in some basic semialgebraic compact set ¥ C R x R \ {0}, i.e, in

M= € PO dn(w) = | [ 1dp(y)| de, o € P(Y)} (3.28)

— {uw eP(Q): du®(w) = UY \/QI—M exp(—(“’;;‘)Q)dw(m, o’)] dw, ¢ € P(Y)},

In [LW18], which this section is based on, the scenario is presented in a broader set up.
There, parametrised multivariate distributions are allowed as long as they satisfy some
conditions naturally fulfilled by the measures described above. In addition the restriction
that K° has to be basic semialgebraic is relaxed to K° being only a semialgebraic set. The
following property of Gaussian measures is the key condition to compute approximations
without knowledge of the reference measure.
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Remark 3.3.1. Let f be as defined in (3.27). Then there exists a family of polynomials
(pk)ken € R[y] such that

y /Q Wy, w) dw = pi(y).

Remember that by Ky we denote the set {w € : (x,w) € K}. The aim of this section
is to provide inner approximations to the distributionally robust chance constraint

Pu(Kyx)>1—¢, VYu*eM. (3.29)

The crucial difference between (3.29) and the chance constraint (3.10) is that in (3.29)
the probabilistic constraint is with respect to a whole set of distributions, rather than the
probability with respect to a single known distribution as in (3.10). This means that (3.29)
is robust with respect to the family M of distributions - hence the name distributionally
robust.

Positioning in the literature Knowledge of first and second order moments is a typical
assumption when approximating distributionally robust chance constraints [DY10; EI06].
For instance Calafiore and El Ghaoui [CE06] have shown that when ¢ is bilinear and K =
{(x,w) : g(x,w) > 0} then a tractable characterization via second order cone constraints is
possible. Recently Yang and Xu [YX16] have considered non-linear optimization problems
where the constraint functions are concave in the decision variables and quasi-convex in
the uncertain parameters. They show that such problems are tractable if the uncertainty
is characterized by its mean and variance only; in the same spirit see also Chao Duan
et al. [Dua+18], Xie and Ahmed [XA18] and Zhang et al. [ZSM17] for other tractable
formulations of distributionally robust chance-constrained for optimal power flow problems.

In contrast to these approaches, in our set up we do not assume perfect knowledge of the
first order moments, and can deal with only some approximate knowledge. Notice that in
this framework mo mean, variance or higher order moments have to be estimated. However
we assume knowledge of bounds on the parameters defining the family of measures M.
Accordingly, our approach can be viewed as an alternative and/or a complement to those
considered in e.g. [CE06; DY10; EI06; YX16] when a good estimation of such moments
is not possible. Indeed in many cases, providing a box (where the mean vector can lie in)
and a possible range 6I < 3 < § I for the covariance matrix ¥, can be more realistic than
providing a single mean vector and a single covariance matrix.

Outline The strategy in order to provide approximations of distributionally chance con-
straints is very similar to what we described in Section 3.1.4. Note however that in (3.4) we
needed perfect knowledge of all moments of the reference measure p. In the set up of this
section we do not even have precise information about the first moments. In Section 3.3.1
we state a linear problem on measures that characterizes the “worst case probability”. We
will explain how the polynomials p from Remark 3.3.1 can be used to compensate this lack
of knowledge in Section 3.3.2. Then in Section 3.3.3 we explain how we can add Stokes
constraint in order to accelerate convergence as we did before in Section 3.1.4. Finally we
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illustrate the theoretic results with some numeric examples. In contrast to the previously
cited contributions, the focus however is not on scalability but much more on the generality
of the approach. In particular we show that the moment approach can approximate feasible
sets X¢ that are non-convex. Even though it follows the same scheme as Section 3.1.4, the
approach provided in this section is not a direct generalization but rather a non-trivial
extension of what has been presented so far.

3.3.1 Approximations via a Moment Approach

As outlined in the introduction and motivated by applications like in Section 3.2, we are
mainly interested in inner approximations of the chance constrained set X¢ := {x € By :
Puw(Ky) >1—¢,Vu® € M}. As the measure approach (3.1) leads to over approximations
of the probability we will therefore work with the complement of K. Let L := K¢ :=
(Bx x Q) \ K be a basic semialgebraic set and Ly := {w € Q: (x,w) € L}. Then we have
that

X = {x € By : Pyu(Ly) < &,V € M}. (3.30)

We want to compute overestimators of the probabilities Py« (Lx) for every u* € M in
order to approximate X¢ from the interior. Define the function

p(x) == sup Pue(Lx) (3.31)
ureM

which can be thought of as the worst case probability, i.e., given x € Bx, p(x) is the proba-
bility of Ly with respect to the measure p* € M that maximizes P,«(Lyx) or equivalently
minimizes P« (Kx).> In consequence, comparing to (3.30), X¢ = {x € Bx : p(x) <¢e}. In
the sequel we compute polynomial over-approximations hgq € R[x] of p and establish L' con-
vergence of hg — p for d — co. From these polynomials we can define basic semialgebraic
sets

X5 :={x€ Bx: hg(x) <e} C X%,

approximating X¢ from the interior. In addition we prove vol(X*® \ Xj) — 0 when d — oc.

Note that by defining p as in (3.31) we commit to computing inner approximations.
Unlike as in Section 3.1.4, we cannot yield outer approximations of X¢ by interchanging
the roles of K and L. In order to achieve outer approximations, we would need to allow
the measures pu* € M to violate the probability individually and could not gather the
information of all measures in one function as we do in (3.31).

Identification and Characterization of Reference Measure

As explained above, in order to define a reference measure it is sufficient to focus on the
worst case probability. However, in contrast to Section 3.1.4 where the reference measure
u was defined as the product measure A\, ® p® for a single known p“ € P(£2), now the

3For a given x € Bx, the measure maximizing P, (Lx) minimizes P, (Kx) and hence is the critical
measure or the “worst case” for the original chance constraint (3.29).
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probability part of u will depend on x, i.e. u = Ap, tix, where the unknown py denotes the
conditional or the stochastic kernel of 1 given x and px € M for each x € Bx. Consequently
we need to identify the measure py € M such that P, (Ly) = p(x) for each x € By,
respectively. Note that the choice of py is not unique if Ly = ().

Lemma 3.3.2. The function p is measurable. In particular there exists a measurable
selector y : Bx — Y such that p(x) = Py, (Lx) where pi ) == f(w,y(x))Aa € M for
every X € DBx.

Proof. Remark upfront that the existence of a measurable selector y : Bx — Y and the
equality p(x) = [} f(w,y(x)) dw imply that p is measurable. Let x € By be fixed. We show
that p(x) := supweps Puw (Lx) = maxyey [; f(w,y)dw. To see that the maximum on the
right hand side is attained, it suffices to note that y — [} f(w,y)dw is continuous (see
(3.27) for the definition of f). It is clear that sup,wep Puw(Lx) > maxyey [; f(w,y)dw
as {0y :y € Y} C P(Y). For the converse inequality consider

o Pue(l) = s [ [ iy doly) de
preM peP(Y) / Lx
= sup// (w,y)dw de(y)
peEP(Y
—Fy)
< sup maxF(y) / do(y)
peP(Y) YEY

= max w,y)dw
ma fo( y)

Now, the assertion follows by [Las10a, Proposition 4.4]. O

Measure Formulation of the Worst Case Probability

Lemma 3.3.2 only states the existence of a function y such that p, () provides the worst
case probability p(x) for every x € Bx. In order to use those measures to dominate the
optimization variable ¢ in (3.1), we somehow need an access to this function y. Consider
the linear operator T': B(Bx x ) — B(Bx X Y') by

Ty(x.y) = [ gx.w)f (w,y) dw

For any real space X the bilinear form (.,.) : M(X) x B(X) = R, (u,9) = [, gp is a
dual pairing for M(X') and B(X) (compare [HL99]). Hence T induces an adjoint operator
T : M(Bx X Y) - M(Bx x Q) by

(I'*v,g) = (v,Tg), Yve M(BxxY),VgeB(BxxQ).

To see that T™ is well defined, let v € M(Bx x Y), and write v = vx* where vx denotes
the conditional of ¥ on Y knowing x and v* is the marginal of ¥ on x. Then for all
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g € B(Bx x ) it holds that

.19 = [ x | [ ox.0)f(w. ) dw dvs(y) dv(x)

:/X/ g(x,w)/ flw,y)drk(y) dw dr*(x)

=0(x.w)
:/x/gxw (x,w) dw dv*(x)
= (T"v,g).

In particular we see that 7™ provides a more direct access to y. Denote v := d, ) AB, -
Then, T*v = f(w,y(x)) dw Ap, = piy(x)AB,- The final idea to define the reference measure
1 now is very similar to the idea of polynomial optimization presented in Chapter 1: we
relax d,(y) to an arbitrary probability measure supported on Y for each x € Bx and show
that “we do not relax too much”: Consider

sup / do

st. ¢ <T'v, v*=\p,
$p e My(L),v € P(Bx xY),

(3.32)

where we recall that ™ denotes the marginal of v with respect to x and Ap, is the Lebesgue
measure on By scaled to be a probability measure.

Lemma 3.3.3. The optimal value of (3.32) is [; pdx and is attained by ¢* := My(x)/\Bx’L
and V* 1= §y(x)AB, -

Proof. Tt is clear from the discussion above that ¢* and v* are feasible for (3.32). Further

by Lemma 3.3.2
[ 46" = [ dlnyrs) = [ pax
L L L

To see that ¢* and v* are optimal, let ¢, v be feasible. Then

/quS /LdT*V:/Bx/Q1L(x,w)/yf(x,y)dyx(y)dwdx

/Bx/glL(X’w)f(X’y(x))dde:/Ld('uy(x))\Bx):/Lde'

IN

IN

O]

Before going on in the discussion let us sumarize what we have achieved in this section.
First, to approximate the distributionally robust chance constraint (3.29) it suffices to ap-
proximate the worst case probability p defined in (3.31), which turns out to be a measurable
function, due to the existence of a measurable selector y : Bx — Y. Using this selector it is
possible to characterize [ pdx as the optimal value of the linear problem (3.32). Following
the strategy from Section 3.1 we next need to show that this problem has an equivalent
formulation as a GMP so that we can approximate its value by the moment-SOS hierarchy.
For this the polynomials p; in Remark 3.3.1 play an important role. We expect that from
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the dual formulation we can compute the polynomial i defining an inner approximation of
Xe.

3.3.2 Moment Formulation

Reformulating (3.32) as a generalized moment problem is not trivial because of i) € is
unbounded and ii) in consequence the operator T is a priori not defined for polynomials.
The goal of this section is to show that we can cope with these two issues.

Lemma 3.3.4. The operator T' extends to polynomials and T(R[x,w]) C R[x,y].

Proof. By linearity it is enough to show that T'(x*w") is well defined for all @ € N and
k € N and T(x“w"*) € R[x,y]. Let a, k be fixed and let pj be as in Remark 3.3.1. Then

{T(xo‘wk)} (x,y) = /on‘wkf(w,y) dw = x%pi(y) € Rx,y].

O

Note that as By is assumed to be compact, the equality v* = Ap, in (3.32) can be
imposed by equating all moments, i.e., [x*dv* = [x*dAp,, for all & € N". For the
domination constraint ¢ < T*v we introduce a slack variable ¢ € M (B) and write
® + ¢ = T*v. Then we use the following result.

Lemma 3.3.5. Let p € M4 (Bx X Q) and v € M (Bx X Y) such that v* = Ap,. Then
[x%%Fdp = [x*ppdv for all o € N™ and k € N implies that yu = T*v.

Proof. First remark that taking k& = 0 by compactness of Bx we have p* = v* = Ap,.
Disintegrate 1 and v to uxAp, and vxAp,, respectively and let o and k be fixed. Then by

assumption
/ xa/ W d g (w) dX:/ Xa/ pr dvk(y) dx.
Bx Q Bx Y

Then for each k fixed [, w” dux(w) = [y pr dvx(y) for almost all x € Byx. This in turn
implies by countably additivity of Ap, that the equality holds for all k for almost all
x € Bx. Recall that the moments of any Gaussian measure satisfy Carleman’s Condition
Definition 3.1.2 and in consequence the measures in M are moment determined. Hence

/kadux(w) :/kadl/x(y):/gwk/yf(w,y) dy(y)dw a.-s.
eM

implies that dux(w) = [y f(w,y)dvk(y) dw for almost all x € By. Putting all things
together, we finally have for all h € C.(Bx x Q):

<:u7 h) = <Nx)\Bxa h>
= / h(x,w) / flw,y)drx(y) dwdx
BxxQ Y

= /xxy/gh(x,w)f(w,y) dw duvk(y)dx

=dv(x,y)

=Th(x,y)



86 Chapter 3. Representation and Approximation of Chance Constraints

= (Th,v)=(T"v,h).

O
Thanks to Lemma 3.3.5 we can reformulate (3.32) as the following GMP:
sup / do
XA
s.t. <d>,x°‘wk> + <q§, xawk> = (v, x%y), VaeN' keN (3.33a)
(v, x%) = (\g,,x%), VaeN" (3.33b)

peM(L), de M (ByxQ), veP(ByxY)

We will see in the following that very similar as in Section 3.1.4 we can use the dual
problem of (3.33) in order to define polynomial approximations hg of p.

The Dual Problem

Consider the dual problem of (3.33), which reads as follows.

inf hdx

g,h Bx

s.t. h—Tg>0on By xY (3.34a)
g>0on By xQ (3.34b)
g>1lonlL (3.34c)

heR[x], ge€R[x,w.
Proposition 3.3.6. Problem (3.34) is feasible. In addition for any feasible point (h,g) and
any x € Bx it holds that h(x) > p(x).

Proof. Note that by Lemma 3.3.4 T1 = 1 and hence (1,1) is feasible for (3.34). Let (h,g)
be an arbitrary feasible point and x € By fixed. Recall the definition of the function
y: Bx = Y from Lemma 3.3.2. Now, as (x,y(x)) € Bx x Y, constraint (3.34a) yields:

W) = Tolx,y(x) = [ glxw)f(w,yx) dw

= [ gtew) Fwyt)dw+ [ glxw) fw,y() d
Ky N>>—~— —

X

>0 (3.34b) >1 (3.34c)

[ Fe,yx) doo = o).
Lx

v

O]

Proposition 3.3.6 enables us to define inner approximations of the chance constrained set
X¢ = {x € Bx : p(x) < ¢} by replacing p with any h which is feasible for (3.34). In order to
compute such feasible polynomials we apply the moment-SOS hierarchy Section 1.4. More
precisely, we compute a relaxation of (3.33) involving only moments up to order 2d. An
optimal solution of the d-th SOS-stregthening of (3.34) provides us with a polynomial hy
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which is feasible for (3.34). Hence, by Proposition 3.3.6, the set Xj = {x € By : hq(x) <€}
is an inner approximation of X¢.

Convergence of the Hierarchy

In this section we show that under Assumption 3 the moment relaxations to (3.33) are
feasible and that strong duality holds on each step of the relaxation. Moreover we establish
L'-convergence of hy to p, making hg a reasonable choice for the approximation. In
particular this implies that vol(X®\ Xj) — 0 when d — oo.

Assumption 3. Let N € N be large enough such that Bx C {x € R" : N — ||x||> > 0} and
similarly Y C {y € R? : N — ||y||> > 0}. We assume that these redundant constraints are
part of the semialgebraic description of Bx and Y, respectively.

Denote by (P;) the moment relaxation of (3.33) with moments up to order 2d, and
by (Dg) its dual program, the SOS-strengthening of (3.34) (see Section 1.4). Let dy be
the maximal degree of the polynomials involved in the semialgebraic description of L and
By xY.

Lemma 3.3.7. Let Assumption 3 hold. Then for each d > dy the optimal value (Pg)* of the
semidefinite relavation (Py) is attained. Moreover, (Pg)* — (3.33)" = [5_pdx as d — occ.

Proof. The proof follows the lines of the proof of Theorem 1.3. However there are two
important differences. First, €2 is unbounded and we cannot use the strategy of the proof of
Theorem 1.3 to show that the feasible set of each SDP relaxation (P;) is compact. Second,
we cannot use Putinar’s Theorem to argue that the limit sequence is a moment sequence.
We address both points in the following.

Denote by z#¢, 24, and z"? the sequences corresponding respectively to the measures
o, <£, and v at relaxation (Py).

1.) As v is supported on a compact set and because of Assumption 3, z%¢ is bounded
for each |a| < d by the same argument as in the proof of Theorem 1.3. Now, z&% and zé’d
are bounded by a linear combination of zg’d, B € N"*1 due to (3.33a). This shows that
the feasible set of each (Py) is compact and for each d > dy the optimal value (Py)* of the
semidefinite relaxation (P;) is attained.

2.) Let now z%, 294 and 2% denote the optimal sequences for each relaxation (Py).
Knowing a priory bounds for z£<, zﬁ’d, and 7% for each o and each d we can construct
related sequences contained in the unit ball of /.., for all d. By Banach-Alaoglu theorem
[Brel0, Theorem 3.16] these sequences have weakly star converging subsequences. After
re-normalization, we obtain sequences 2%, z‘?”*, and z”* for which it holds in particular that
ngd — zg’*, ngd — Zﬁ’*, and Zg’d — zy* for the corresponding subsequences. By linearity of
the Riesz functional, these limit sequences satisfy Carleman’s Condition (Definition 3.1.2)
as z»9, zé’d, and z¢ satisfy Carleman’s Condition. (]

Theorem 3.1. Let Assumption 3 hold and d > dy.

1. If K, L, and Y have non-empty interior, then (Dg) has an optimal solution and
(Da)* = (Pa)*

2. Let hg be part of an optimal solution to (Dg). Then [p |hg — p|dx — 0 for d — oo.
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Proof. The first statement uses standard arguments from duality in conic optimization. In
fact we only need to show that the feasible set of the SDP-relaxations (P;) have a strictly
feasible point. This is called Slater’s condition and implies the assertion. The second
statement is a direct consequence of the first one. Just recall that by Proposition 3.3.6
hg > p on By and

hqgdx = (Dg)* = (Py)* — / pdx, d— oco.
By Bx

To see that (Py) for d > dy has a strictly feasible point consider the measures gb,q@ and
v given by

N

vi=Ay @A, ¢:=1p(x,w)T"v and ¢ :=1g(x,w)T"v.

By construction, all truncated moment sequences of these measures respect the moment
constraints in the relaxation (Py) of (3.33). As Y is assumed to have non empty interior,
and v is the uniform measure on Y x By, the moment and localization matrices for the
moments of v are (strictly) positive definite for all d > dy. To see that the moment and
localization matrices for the moment sequences of ¢ and qg are also positive definite, recall
that dT™v(x,w) = [y f(y,w)Ay A, and f is a strictly positive density. Consequently, the

sequences of moments of ¢, ¢ and v up to order d are a strictly feasible point for (P;) for
each d > dy. O

3.3.3 Distributionally Robust Stokes Constraints

Having a look at (3.34) we face a similar problem as in Section 3.1. The polynomial g
is trying to approximate the indicator function of L on Bx x 2. We hence expect the
convergence of the hierarchy to be slow due to a Gibbs’ phenomenon for g. Therefore we
want to apply Stokes constraints similar to Section 3.1.2 in order to accelerate convergence.
As we explain next it will be necessary to extend the measures ¢ in (3.33) from M (L) to
M (L xY). We will explain this in the following.

As outlined in Section 3.1.4 we are only able to use Stokes constraints in the direction w,
as in the other directions the meaning of h; would be destroyed. Let therefore ¥ € R[x, w)]
be a polynomial such that Jn,,; vanishes where n is the outer normal vector of L written in
the standard basis of R"*! O By x Q. Recall that y = (m, o) and define g, := 02%(wk’19) -
wFY(w —m) € R[x,y,w]. Then as a consequence of [, 8% (wkﬂ(x, w) f(y, w)) dw =0, we
obtain
/ QG (X, y,w)dp® oy =0, Vx € By,Vy €Y. (3.35)

X

The fact that g, € R[x,y,w] explains, why we need to extend the support of the optimization
measure ¢ if we want to use the additional property (3.35). Indeed, in order to integrate
the polynomials ¢ with respect to ¢ we need this measure to be defined over Bx x {1 X Y.
Equation (3.35) yields a family of Stokes constraints similar as explained in Section 3.1.2.
The following GMP is an extended version of (3.33).

sup / do
X7 Lxy
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s.t. <<Z>, xo‘wk> + <<Z), xo‘wk> = (1,x), VY(a, k) e N (3.36a)
(v, x*) = (Ap,,x"), VaeN" (3.36h)
(6,xyPq) =0, ¥(a,B,k) € N"H3, (3.36¢)

peM(LXY), g€ My(ByxQ), veP(ByxY).

Indeed the constraints (3.36a) and (3.36b) correspond exactly to (3.33a) and (3.33b), re-
spectively. We show that the measures ¢* = 0, x)iyx)ABx|Lxy; V* = Oyx)AB,, and
¢* 1= Oy(x) y(x) ABx | K xy are optimal for (3.36) and that (3.33)" = (3.36)": Note first that
optimality of (¢*, ¢*,v*) and feasibility in (3.36a) and (3.36b) can be proved in a very
similar way as discussed in the proof of Lemma 3.3.3. To see that ¢* satisfies (3.36¢), note
that

<¢*,Xayﬁ%> :/B / /Yxo‘yﬁtﬂc(x’y,w) déyx) (¥) Aty (x) (w) dx

= [, xv60” [ axloey(00). ) dpy () dx = 0.

=0 (3.35)

Finally (3.33)* = (3.36)" is a direct consequence of optimality of (¢*, ¢*, v*).
We next show that from the dual of (3.36) we obtain a polynomial h similar to the one

in the case without Stokes constraints. Define the linear operator S : R[x,y,r] — R[x,y, w]
via Sx%yPrk = x*yfq;, with g, defined as in (3.35). Then the dual of (3.36) reads:

g(l)i,I;(fQ),h Bx hodx
st. h—TgW>00nByxY (3.37a)
g >00n By xQ (3.37h)
gM +5¢? >10nLxY (3.37¢)

heR[x], gV e R[x,w], ¢* € Rlx,y,1].
Proposition 3.3.8. Let h be feasible for (3.37). Then h(x) > p(x) for every x € Bx.

Proof. The proof is very similar to the one of Proposition 3.3.6. Let x € Bx. Then (3.37a)
implies
he) = TgDxylx) = [ 9000 w) (e, y(0) dw
= / g (x, w) flw, y(x dw+/ flw,y(x)) dw

>0 (3. 37b) (3. 37 c)
> 1890 (x,y(x) )

> /L e, y() deo /L 59 y(x), ) 0, y(x) des = p(x).

=0(3.35)
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It is now possible to prove similar results for the moment hierarchy associated to (3.36)
and (3.37) as in Lemma 3.3.7 and Theorem 3.1.

3.3.4 Numerical Experiments

We conclude this section with some illustrative numerical experiments. To implement the
semidefinite relaxations of (3.33) and (3.36) we have used the GloptiPoly software [HLLO09a].
The resulting SDPs are solved using version 8.1 of Mosek [MOS17].

We discuss three examples chosen to a) illustrate the effect (and efficiency) of Stokes
constraints, b) compare the approximations with the real feasible set X< in (3.30) (approx-
imated with intensive simulations), and c) show the behavior of the approximations for
different violation probabilities.

Approximations With and Without Stokes

In order to illustrate the difference in quality of the approximation of X® when using or
not using Stokes constraints, consider the example where Bx = [—1,1], K = {x € Bx X :
w—x >0}, Y =[-0.1,0.1] x [0.8,1], i.e., we consider univariate Gaussian measures with
mean approximately 0 and deviation slightly less than 1. For every fixed x, due to the
simple definition of K we can express P, (Lx) as an analytic expression in y. It is hence
relatively easy to obtain a good estimation of p(x) by sampling over y. In Fig. 3.6 is
displayed x +— p(x) in black and two different approximations hy computed for relaxation
orders d = 4 in blue and d = 6 in red. The dashed lines are the polynomials corresponding
to problem formulations including Stokes constraints.

02 ¢

0.1

-1 -0.5 0 0.5 1

Figure 3.6: Approximation of the worst case probability p (black) by polynomials hy (blue)
and hg (red), dashed/solid lines correspond to with/without Stokes constraints

As a first remark observe that, in accordance with the theoretic results, all approxi-
mations are overestimators of p. However, the approximations computed with Stokes con-
straints are much closer to p than the ones computed without. The former approximations
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are particularly close to p for big values of the worst case probability. For lower probabil-
ities they degrade (but are still quite good). This can be due to the non-differentiability

of p at x = —0.1. To visualize the sets X¢ and X, e.g., for a value of ¢ = 1/3 one
looks at the 1/3-sub-level set of the respective functions. This yields approximately that
X3 = [—1,—0.62] is the true feasible set. With Stokes, the approximations hs and hg

yield the respective intervals [—1, —0.96] and [—1, —0.83] while the approximations without
Stokes provide empty intervals.

Inner Approximations from Different Relaxations

As seen in the previous example, Stokes constraints are essential for the performance of our
approach. In this section we therefore only report results using these additional constraints.
In the second illustrative example, By = [~1,1]?, K = {x € Bx x Q: 2wx3 —2wx? —1 > 0}
and Y = [—0.1,0.1] x [0.8, 1]. In Fig. 3.7 we plot the feasible set X¢ and its approximations
X§ for a violation level of 10% (e = 0.1).

The feasible set is approximated as follows. We discretize By into 200 and Y into 100
steps in each direction respectively. For each point x and each combination of parameters
y we draw 1000 realizations of w from the normal distribution described by y. The point
x is considered to be feasible whenever for each y, when for at least 900 out of the 1000
realizations w of w the points (x,w) are in K. This simulation took about 8600 seconds
(without the authors claiming to be experts for Monte Carlo simulations) whereas the
approximations for d = 4,5, 6 take 5, 43, and 482 seconds respectively.

Figure 3.7: Monte Carlo simulation (light grey) of X© and inner approximations Xj for
d = 8,10,12, in decreasing intensity

Inspection of Fig. 3.7 reveals that the feasible set X¢ is non-convex. Already the lowest
approximation Xj (black) is able to capture this behavior. The next approximation Xg
(dark grey) is already a bit larger and X§ (medium grey) captures a significant part of X¢
(= 74%). Its computation time is 18 times faster than the one required for the Monte Carlo
simulation of X¢. In addition, and in contrast to the approximation via Monte Carlo, X
is guaranteed to be inside the true feasible set.
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(d,time)\e | 50%  25% 125%  6.25% 3.125%
4 (30s) 96.94% 83.07% 69.70% 22.72% 0%
5(107s) | 99.91% 86.70% 73.21% 73.79%  2.48%
6 (633s) | 100.0% 90.13% 79.94% 61.31% 27.98%

Table 3.3: Polynomial approximations vs Monte Carlo simulation.

Inner Approximations on Different Violation Levels

In the third example, Bx = [-1,1]3, Q =R, K = {x € Bx xQ: —2wx}+2wx3 —2wx3—1>
0}. We compute the inner approximations X for d = 4,5,6. To compute the Monte Carlo
approximation of X¢ in a reasonable time, we fix the mean of the distribution to 0 and the
standard deviation o is taken in the interval [0.4,0.6]. For Monte Carlo we discretize Bx and
[0.4,0.6] in 100 steps in each direction and draw again 1000 realizations of w for each point
and each ¢. This simulation takes about 2277 seconds. In the first example we have already
seen that the polynomial approximations hy are quite good for large violation probabilities.
In Table 3.3 we compare the “volume” of our approximations against the Monte Carlo
simulation, i.e. the ratio of the number of points admissible for our approximations over
the number of points admissible in Monte Carlo. As the polynomial approximations are
inner approximations, we expect the ratii to be less than one (assuming that Monte Carlo
is accurate).

Again the polynomial approximations hy are computed significantly faster than the
Monte Carlo approximation p. As in the first example, for large ¢ the approximations are
pretty exact. However, for all relaxation orders d the quality of approximation decreases
with ¢, and eventually X$-93125 = (). However we should not forget that good approximations
with small € are difficult to achieve in any case. Therefore it is quite interesting that we
can retrieve almost 30% of X 903125 with X2:93125 and using moments up to order 12 only.

3.4 Conclusion and Directions

In this chapter we have presented two contributions both building on the idea of approxi-
mating probabilities by solving semidefinite relaxations to a GMP. While Section 3.2 was an
application of existing methods to a practical problem, Section 3.3 extended these methods
to a wider theoretical framework.

A direct follow up of the presented contributions would be to apply the theory from
Section 3.3 to generalize the framework in Section 3.2. A research direction that is surely
necessary to apply Section 3.2 to real size OPF problems is to develop sparse versions of the
volume and probability approximations, where sparsity is understood in a similar fashion
as in Chapter 2. We provide first results in this direction in [Tac+18].



CHAPTER 4
Measure Valued Solutions to
Differential Equations

In this chapter we consider solutions to non-linear (ordinary and partial) differential equa-
tions as instances of the GMP. The basic idea is quite similar to the idea of polynomial
optimization, where we relaxed a point x — or the Dirac measure d, — to a general probability
measure p on space. In this chapter we relax trajectories y(x) — or the measure dy(x)A — to
a more general measure u = puxA, where ux denotes the stochastic kernel or conditional
of u, knowing x, which is a probability measure for each x, and A denotes the Lebesgue
measure. The work in this chapter builds on works of Young [You69] and DiPerna [DiP85;
DM87] who, among other things, considered generalized solutions to differential equations
in the contexts of optimal control and conservation laws. Though these topics are quite
different we will see, that in both we can use the same tools, so-called Young measures and
their generalizations, in order to reformulate the problems as an instance of the GMP.

We briefly introduce the concept of Young measures (also called parametrized measures)
before we discuss some generalizations in Section 4.2, where we use these measures to
capture limit effects in optimal control of ordinary differential equations, when regular
solutions do not converge. Then in Section 4.3 we turn to partial differential equations,
more precisely to the class of scalar hyperbolic conservation laws. In both parts we employ
the moment-SOS hierarchy in order to compute approximate solutions to the respective
problems. Section 4.2 is based on [HKW18] and Section 4.3 is based on [Mar-+18].

4.1 Young Measures

Let (ug)gen C L°(X,R™) be a weakly star converging sequence, i.e., for all f € L}(X,R™)
it holds that

lim Xf(x)uk(x)dX:/Xf(x)u(x)dx

k—o0

for some function uw € L*°. In particular, this implies that the local averages [x uj(x)dx
converge to the local average [x u(x)dx, for every compact X C X. Young wanted to
extract more information from this convergence and was interested in describing the limit
behaviour for [ g(ux(x))dx for arbitrary continuous functions g € C(X). To that end, he
introduced the following families of measures

Definition 4.1.1 (Young measures). A Young measure on a Euclidean space X' is a map
X = P(R™), x = py, such that for every g € C(R™) the function x — [pm g(u) dpx(u)
is measurable.

We already used a Young measure in Section 3.3 when considering the worst case
probability for distributionally robust chance constraints. However we did not exploit any
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properties of Young measures which is why we did not introduce the concept before. Here
we use Young measures to describe the limit behaviour for continuous functions of w:

Theorem 4.1. Let (u)reny € L°(X,R™) be a weakly star converging sequence. Then there
is a (non-relabelled) subsequence and a Young measure ju such that g(ug(x)) = [ g(u) dux(u)
in L™, i.e., for all f € L'(X,R™)

lim [ e0g(untx)dx= [ [ f(x)g(u) dux(u) dx (4.1)
k—oo Jx m

The result of Young has been generalized to sequences (uy)gen C LP(X) for arbitrary
p. Denote C,(R™) := {g € C(R™) : g(u) = 0(||qu) for HuH — o0} the set of continuous
functions of less than p-th growth. Then g(ux(x)) — [g(u)dux(u) in L' in the weak
topology for all g € Cp(X). In case of a compact set X the convergence of LP-Young measures
is weaker then the convergence mentioned above, as it only holds for continuous functions
g with growth at infinity less than p and is only tested on functions f € L>®(X) C L'(X)
[KR96].

Theorem 4.1 give the theoretical justification for what we explained in the introduction:
in order to consider the limit behaviour of trajectories ug we relax the limit at every point x
to a measurement of the image space of ug. In the following sections we use this concept to
describe limits occurring in optimizing sequences of optimal control problems, and limits of
solutions to partial differential equations. For a comprehensive reference on Young measures
and their use in the control of ordinary and partial differential equations, see [Fat99, Part
I11].

4.2 Optimal Control Problems with Oscillations, Concentra-
tions and Discontinuities

Optimal control problems with oscillations (chattering controls) and concentrations (impul-
sive controls) can have integral performance criteria such that concentration of the control
signal occurs at a discontinuity of the state signal. In this section we apply a generalization
to Young measures (anisotropic parametrized measures) to give a precise meaning of the
integral cost and to allow for the sound application of numerical methods. We show how
this can be combined with the moment-SOS hierarchy.

4.2.1 Introduction

As a consequence of optimality, various limit behaviours can be observed in optimal control:
minimizing control law sequences may feature increasingly fast variations, called oscillations
(chattering controls [You69]), or increasingly large values, called concentrations (impulsive
controls [Lue69]). The simultaneous presence of oscillations and concentrations in optimal
control needs careful analysis and specific mathematical tools, so that the numerical methods
behave correctly. Previous work of two of the authors [CHK17] combined tools from
partial differential equation analysis (DiPerna-Majda measures [DM87]) and semidefinite
programming relaxations (the moment-sums-of-squares or Lasserre hierarchy [Las+08b]) to
describe a sound numerical approach to optimal control in the simultaneous presence of
oscillations and concentrations. To overcome difficulties in the analysis, a certain number
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of technical assumptions were made, see [CHK17, Assumption 1, Section 2.2], so as to avoid
the simultaneous presence of concentrations (in the control signals) and discontinuities (in
the system trajectories).

In the present contribution we would like to remove these technical assumptions and ac-
commodate the simultaneous presence of concentrations and discontinuities, while allowing
oscillations as well. For this, we exploit a recent extension of the notion of DiPerna-
Majda measures called anisotropic parametrized measures [KKK17], so that it makes sense
mathematically while allowing for an efficient numerical implementation with semidefinite
programming relaxations.

To motivate further our work, let us use an elementary example to illustrate the diffi-
culties that may be faced in the presence of discontinuities and concentrations. Consider
the optimal control problem

st g(t) = u(?), a.e. on [0, 1], (4.2)
1>y(t) >0, u(t) >0, a.e. on]0,1],

where the infimum is with respect to measurable controls of time. The trajectory y should
move the state from zero at initial time to one at final time, yet for the non-negative
integrand to be as small as possible, the control v should be zero all the time, except maybe at
time zero. We can design a sequence of increasingly large controls u that drive y from zero to
one increasingly fast. We observe that this sequence has no limit in the space of measurable
functions but it tends (in a suitable weak sense) to the Dirac measure at time zero. We speak
of control signal concentration or impulsive control. The integrand contains the product
yu of a function whose limit becomes discontinuous at a point where the other function
has no limit, hence requiring careful analysis. Here however, this product can be written
Yy = %y— and hence the integral term is well defined smce fo yydt = M = 1.
Consequently the cost in (4.2) is equal to fo tu(t)dt + 1 and independent of the actual

trajectory.

This reasoning is valid because y = w in problem (4.2), but this integration trick
cannot be carried out for more general differential equations. For example we cannot solve
analytically the following modified optimal control problem

in /0 "6+ y(6)ult) dt
s.t. gyt

(t) =+/e2 +u?(t), a.e. on [0,1], (4.3)

1>y(t) >0, ( ) > a.e. on [0, 1],

where € is a given real number. Providing a mathematically sound framework for the analysis
of this kind of phenomenon combining concentration and discontinuity, and possibly also
oscillation (not illustrated by the simple example above), is precisely the purpose of our
section.
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4.2.2 Relaxing Optimal Control

Let L:[0,1] x R" x R™ — R and F': [0,1] x R™ x R™ — R™ be continuous functions. For
initial and final conditions yg,y1 € R™ and some integer 1 < p < oo, the formulation of the
classical optimal control problem is

inf /0 'L, (6, u(t)) dt
s.t

y(t) = F(tv y(t)v u(t))v a.c. on [07 1]7 (OCP)
y(0) = yo, y(1) =y1,
y € WH(0,1;R™), u € LP(0,1;R™),

where W1P(0,1; X) is the space of functions from (0,1) to X whose weak derivative
belongs to LP(0, 1; X'), the space of functions from (0,1) to X whose p-th power is Lebesgue
integrable. We suppress X in the notation if X = R.

Consider a minimizing sequence of controls (ux)xen € LP(0,1; R™) for problem (OCP)
and the corresponding sequence of trajectories (yx)reny € W11(0,1;R™), the space of
absolutely continuous functions. Then the infimum in (OCP) might not be attained because
(ug) ke might not converge in LP(0, 1; R™) and (yx)ren might not converge in WH1(0, 1; R™).
To overcome this issue, it has been proposed to relax the regularity assumptions on u. In
the following we discuss some of the approaches in detail.

Oscillations

The limit of a minimizing sequence for (OCP) might fall out of the feasible space because
of oscillation effects of (ug)ren. Consider for example the optimal control problem

1
inf/ (u(t)? = 1)% + y(t)* dt
v Jo
st.  y(t) =wu(t), a.e. on]|0,1], (4.4)
y(0) =0, y(1) =0,
y e Wh0,1), we L*0,1).

As the integrand in the cost is a sum of squares, the value is at least zero. To see that
actually it is equal to zero, consider the sequence of controls (uy)reny € L*(0,1) defined by

u(t) == (4.5)

{ 1, ifte [%,;;ﬂ, 0<I<k-1
—1, otherwise

for £ > 1 and u; := 0. For the corresponding sequence of trajectories (yx)ren defined by
y(t) == fot u(s) ds it holds that g, € W14(0,1) and yx(1) = 0 as desired. Hence, (uz)ren
is a sequence of feasible controls. A short calculation shows that using this sequence the
cost in (4.4) converges to zero. While the limit Yoo := 0 of (yx)ren stays in W14(0,1), the
sequence of controls (uy,)reny however does not converge in L*(0, 1).
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In contrast to that, the sequence of measures defined by pg = 0y, (t)Aj,1] converges
weakly to pu = £(6_1 + 61)Ajo,1) in the sense that for all f € C([0,1]) and g € Cp(R):

s [ [ swaam = [ [ sew s (4.6)

where C,(R) := {g € C(R) : g(u) = o(||u||?) for |[u|| = oo} is the set of continuous functions
of less than p-th growth. Integration then yields

1):/OI/Rud,u:/Ol/Rud%(é_l%—él)(u)dt:0.

A similar reasoning shows that the cost with respect to p is zero.

More generally, this observation motivates to relax the regularity assumptions on the
control u in (OCP) and also allow for limits 1 = wgAg 1) of control sequences (ug)ren C
LP(0,1;R™). In general the measure w depends on time, i.e., we have a family of probability
measures (wt)ief,1] © P(R™), where P(X') denotes the set of probability measures on X, i.e.
non-negative Borel regular measures with unit mass. Such parametrized measures obtained
as limits of a sequence of functions (ux)ren € LP(0,1;R™) have been called LP-Young
measures (compare 4.1).

The relaxed version of (OCP) that now takes into account oscillating control sequences

mf/ / L(t u) dwi(u) dt
s.t. / / ;u)dwi(u)dt = y1 —yo (4.7)
yecwh 1(0, LR"™), w, € PR™)Vt € [0, 1]

can be written as

where the constraint is a reformulation of the differential equation

y(t) = - F(t,y(t),u) dw(u), a.e. on [0,1]

with the boundary conditions y(0) = y¢ and y(1) = y;.

Concentrations

Oscillation of the control sequence is not the only reason that prevents the infimum in
(OCP) from being attained. As a second example consider the following problem of optimal
control:
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Note that the control enters into the problem linearly. The value is zero as the integrand is
positive and using the sequence of controls

if k=1 k+1
urlt) ::{ lg e S (4.9)

the cost converges to zero. As in the previous subsection neither (uy)gen nor any subse-
quence converges in L'(0,1). In contrast to the previous example this time (yz)reny does
not converge in WH1(0,1) neither. We hence use the extension BV (0,1), the space of
functions with bounded variation, as a relaxed space for the trajectory. Following the same
approach as before we consider the control as a measure py := d,, ()A\o,1]- AS u appears
linearly in (4.8) we can directly integrate over u and define a sequence of probability mea-
sures (7;)keny € P([0,1]) by dri(t) ;= [pudpuk(t,u). A short calculation shows that this
sequence has the weak limit 7 := d1, i.e. for all f € C(]0,1]):
2

1 1
lim / fdmn, = / fdr.
k—oo Jo 0

Note that by integrating before passing to the limit we transfer the unboundedness of the
control into the measurement of time and only keep the direction (i.e. +1 in this example)
of the control. Whereas we observed a superposition of two different controls in the previous
example, here we see a concentration of the control in time. For optimal control problems
with linear growth in the control:

1
i%f/ L(t, y(t))u(t) dt
0
st y(t) = F(t,y(t))u(t), a.e. on [0,1]

y(0) =yo, (1) =y1,
y € WH(0,1;R™), uw € L(0,1;R™)

we can therefore build the following relaxation that can take into account concentration
effects of the control:

irTlf /OIL(t, y(t))dr

st /1 F(t,y(t) dr = y1 — yo, (4.10)
0

y € BV(0,1;R"), 7€ P([0,1]).

See [Cla+14] for an application of the moment-SOS hierarchy for solving numerically non-
linear control problems in the presence of concentration.

Oscillation and Concentration

The relaxations proposed so far allow to consider controls that are either oscillating in
value or concentrating in time. However it is possible that both effects appear in the same
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problem. Consider for example

) 1 u(t)z
inf  TT ) + (y(t) —t)* dt
sit. g(t) =wu(t) >0, a.e. on0,1], (4.11)

The infimum value zero of (4.11) can be approached arbitrarily close by a sequence of
controls (uy)ken defined by

L1 L, 1
w(ty o= { B e b b g] 1<k (4.12)
0, else
for kK > 1 and u; := 1. The idea to capture the limit behaviour of this sequence is to

combine a Young measure on the control and replacing the uniform measure on time by a
more general measure on time. Note that due to linearity it was possible in Section 4.2.2
to transfer the limit behaviour of the control into the measurement of time. In the present
example the control enters non-linearly in the cost, which is why we will need to allow
the control to take values at infinity. We consider a metrizable compactification 5y/R of
the control space corresponding to a complete and separable sub ring U of the space of
continuous bounded functions from R™ to R (see Section 4.2.3 for more details). Elements
of U we mark with an index b to emphasize that they are bounded functions. The sequence
of measures ji := &, (t)Ajo,1] converges to p := wr with w := $(60 + 0o0) and 7 := 2\(0,1]
understood in the following weak sense: for all f € C([0,1]) and g, € U:

1 1
dm [ fO@@ 0+ ) dudtw = [ fOa@dpta). (413)
—oc0Jo JR 0 JauRr

Measures p € P([0,1] x 5yR™) obtained as limits of sequences (ux)ken € LP(0,1;R™) in
the sense of (4.13) have been called DiPerna-Majda measures. They will be discussed in
more detail in Section 4.2.3. Let L € C([0, 1] x R™ x R™) such that L(t,y,u) € C,(R™) for
all (t,y) € [0,1] x R® and F' € C([0,1] x R™ x R™;R"™) such that L(t,y,u) € C,(R™;R")
for all (t,y) € [0,1] x R™. A relaxed version of (OCP) taking into account both oscillation
and concentration effects can hence be stated as

inf /Lb(t,y(t),u) du(t, u)

st. [ Filt,y(0).w) dytw) = y1 - yo. (4.14)
i e P(0,1] x BuR™)

where
L(t,y,u)

B F(t,y,u)
I

Lb(t7y7 LI) : 1+ Hqu .

Fy(t,y,u) = (4.15)
In [CHK17], the moment-SOS hierarchy is adapted to compute numerically DiPerna-Majda

measures and solve optimal control problem featuring oscillations and concentrations. How-
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ever, the approach is valid under a certain number of technical assumptions on the data L
and F, see [CHK17, Assumption 1, Section 2.2]. These assumptions are enforced to prevent
the simultaneous presence of concentration and discontinuity.

Oscillations, Concentrations and Discontinuities

As mentioned in the introduction, the integrals in (OCP) might not be well defined, as
concentration effects of the control are likely to cause discontinuities in the trajectory
occurring at the same time. In view of the previous examples we propose to generalize
the DiPerna-Majda measures, which themselves are a generalization of Young measures,
even further and now also relax the trajectory to a measure valued function depending on
time and control. In the sequel we describe accordingly the set of anisotropic parametrized
measures. Then we provide a linear formulation of optimal control problem (OCP) that
can cope with oscillations, concentrations and discontinuities in a unified fashion.

4.2.3 Anisotropic Parametrized Measures

In the following we describe a generalization of DiPerna-Majda measures. For this it will
be instructive to review first the classical DiPerna-Majda measures.

DiPerna-Majda measures

Let U be a complete! and separable subring of continuous bounded functions from R™ to R.
It is known [Eng89, Sect. 3.12.22] that there is a one-to-one correspondence between such
rings and metrizable compactifications of R™. By a compactification we mean a compact
set, denoted by FyR™, into which R™ is embedded homeomorphically and densely. For
simplicity, we will not distinguish between R™ and its image in 5/R". Similarly, we will
not distinguish between elements of U/ and their unique continuous extensions defined on
ByR™.

DiPerna and Majda [DM87], see also [Rou97], have shown that every bounded sequence
(ug)ken in LP(0,1;R™) with 1 < p < oo has a subsequence (denoted by the same indices)
such that there exists a probability measure 7 € P([0,1]) and an LP-Young measure
w:=uwg : [0,1] = P(ByR™) satisfying for all f € C(0,1) and g, € U:

1 1
lm [ fOg(u @)+ [u@®) ) dt= [ [ ftgwde(w)dr®) (@216
k—o0 Jo 0 JByR™
compare with (4.13). The limit measure u := wyT of such a sequence, or sometimes the pair
(1,w), is called a DiPerna-Majda measure.

Note that, letting g, =1 € U in (4.16), the measure on time 7 can be computed as the
weak star limit of the sequence (1 + |[ug||”)ken, i.e. for all f e C(0,1):

1
jim | (14 g7y b = / 1 /ﬂ o T du()dr(t) = [ rwdrey @)

'A ring of functions is complete if it contains all constant functions, it separates points from closed
subsets and it is closed with respect to the supremum norm.
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where the last equality follows from the fact that a Young measure is a probability measure
ie. [5,rmwi(du)=1for each t € [0, 1].

As a second remark, consider any f € C(0,1) C L*°(0,1) and g, € U N Cy(R™). Then,
as gp(u)(1 + ||ul”) € C,(R™), the limit in (4.16) is already given by (4.6). This means
that the restriction of a DiPerna-Majda measure (7,w) to [0,1] x R™ is (A1), ®), where
@ 1 [0,1] — P(R™) is the LP-Young measure generated by (ug)ren. Hence the right side of
(4.16) can — now again in full generality — be written as

1 1
[ [ f®ama+ i dswde+ [ [ fe)g ) dea) drt). (419)
0o Jrm 0 JByRM\R™

This illustrates clearly that Young measures can only capture oscillations of the sequence
but not concentrations.

Generalization

The drawback of DiPerna-Majda measures is that f in (4.16) must be a continuous function.
This does not fit to our aim to study interactions of discontinuities and concentrations, as
we cannot consider f as a function f(y(t)) in the case that y is discontinuous. We therefore
need a notion of convergence which generalizes the measures of DiPerna and Majda.

To cope with the simultaneous presence of oscillations, concentrations and discontinuities,
a new tool was recently introduced in [KKK17], namely anisotropic parametrized measures
generated by pairs (yg, ur)ken where uy is the control and yj the corresponding state
trajectory.

Proposition 4.2.1. Any admissible trajectory of optimal control problem (OCP) is such
that y € L>(0,1;Y) for some compact set Y CR"™, e.g. a ball of sufficiently large radius.

Proof. The function t — y(t) is the integral of a Lebesgue integrable function and hence it
is bounded on a bounded time interval. ]

Now, the following result is a special case of [KKK17, Theorem 4]:

Theorem 4.2. Let 1 < p < 4o00. Let (ug)ren be a bounded sequence in LP(0,1;R™) and
(Yr)ren @ bounded sequence in WH1(0,1;Y) for some compact set Y C R™. Then there is a
(non-relabelled) subsequence (uk, yx)ren, a measure T € P([0,1]), a measure wy € P(LyR™)
parametrized int € [0,1] and a measure vy € P(Y') parametrized int € [0,1] and u € fyyR™
such that for every f € C([0,1]), g» €U, h € C(Y), it holds

i [ F(©)au(e0) 1+ e (07 (05(0)
—0o0 Jo

1 (4.19)
=[] F @0 k) duuly) decu) dr(t)
0 JayR™ JY
Moreover, (w,T) is the DiPerna-Majda measure generated by (ug)ren. The measure
W= Vg uwiT, or sometimes the triplet (T,w,v), is called an anisotropic parametrized mea-
sure or generalized DiPerna-Majda measure and the subsequence (ug, yr)ken its generating
sequence.
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We revisit and slightly modify an example from [KKK17] to give an intuition about
these newly introduced measures.

Example 4.2.2. Consider the following sequence of trajectories and its weak derivatives
uy, = Y, illustrated in Fig. 4.1.

0 fo<t<i-—1, 0 fo<t<s-—4,
Bt-3+p)  ifg-g<t<y, koooifz—gst<y
Yk(t) == 11 o1 L1 ()= el 1,1
~1 if+43<t<1, 0 if 3+ <t<l
Yk
Up
ko —
1/2+1/k : :
0 ‘ ‘ I ! 1/2+1/k
BB Lt - |

1/2-1/k 1/2 1 | ‘ ‘ | ¢
1/2-1/k 2 1

—2k_| [

Figure 4.1: Sequences (yk, ur)ren from Example 4.2.2.

Let f € C(]0,1]), and h € Cp(R) with primitive denoted by H. Further let & correspond
to the two-point compactification of R, which is Gy/R™ = R U {—o0, +o0}, and let g(u) =
(14 |[ul])gs(u) where g, € U, i.e. gp(E£o0) := limy_,+o0 gp(u), respectively. Then it holds

k—o0

1
tim [ f(E)g(ue(t) h(n(t)) dt
0
1 1

= tim [* " s00OnO)des fim [ 5004+ )
bt 1
+ Jim F(®)g(~2k)h(~2k(t — } = J)) dt + lim %Jr%f(t)g(o)h(—l)dt
1
= [ F©0mo e+ [rwsonnaes im 2 rOaHEE ]+ )
1.1
+ lim T F(t)gu(—2k) H (~2k(6— L — £)) L2E dt
"™ 1
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:/1/ /f(t)gb(u)h(y) dut u(y) dw(u) dr(t)
0 JBuR™ JY

where Y = [~1,1], 7 = Ajg 1] +3d1, Ax denotes the Lebesgue measure on X’ scaled to be a
’ 2
probability measure and

5o if t € [0, %),
%(5.:,_00 + %5_00 ift= %, )\[0’1] ift= %, u = +OO,
Wy = . Ut = . 1
do otherwise, Ay it =3, u=—o0,

6.1 ift e (1,1].

4.2.4 Relaxed Optimal Control with Oscillations, Concentrations and
Discontinuities

In the following we propose a relaxation of (OCP) based on the generalized DiPerna-Majda
measures introduced in the previous section. Therefore we first discuss an equivalent
formulation on the space of measures which we relax to a linear problem on measures in
a second step. To prove equivalence of the first problem and (OCP) we need to make the
following assumption on the regularity of the data.

Assumption 4 (Regularity of the data). Assume that L € C([0, 1] x R™ x R™) is such that
Ly(t,y,u) :== L(t,y,u)(1+]|[u][P)~ € Cp([0, 1] xR*xR™; R) and F € C([0, 1] xR" xR™; R")
is such that Fy(t,y,u) := F(t,y,u)(1 + |[u[?)~! € Cy([0,1] x R™ x R™;R"™). Moreover,
assume that there is a constant cy, > 0 such that

L(t,u,y) = cgul” (4.20)
for all t, u, y and there is a constant cp > 0 such that
[E(t,u,y1) = F(t,w,y2) || < ep(1+ [[ul”)llyr — vzl (4.21)

for all t, u, y1, y2.

The coercivity condition (4.20) is to guarantee that optimizing sequences (uy)gen for
(OCP) are bounded in LP. The second condition (4.21) is a Lipschitz condition on F' with
respect to the variable y, which typically is used to establish uniqueness of solutions.

In the subsequent we show that the classical optimal control problem (OCP) is equivalent
to the following problem on the generalized DiPerna-Majda measures.

inf / Lydu
M
s.t. /Fb dp = y1 — Yo,
3(yr, wr)ken € WHH0,1;Y) x L'(0,1,R™) solving (GOCP)

Y (t) = F(t,ug(t), yx(t)) a.e. on [0,1],
yr(0) = yo, yx(1) = y1, and generating
p € P([0,1] x fuyR™ x Y).
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It is immediate to see that (OCP)* = (GOCP)". However we cannot optimize over measures
that possess generating sequences. Therefore, to the reformulation (GOCP) of classical
optimal control problem (OCP) we associate the relaxed optimal control problem

i%f /Lb du
5.6, / N T —— (ROCP)

p € P([0,1] x ByR™ x Y).

Note that (ROCP) is linear in the unknown measure p. In contrast, the classical
problem (OCP) is non-linear in the unknown trajectory y and control w.

Since optimal control problem (ROCP) is a relaxation of (GOCP), it may happen that
the infimum in (ROCP) is strictly less than the infimum in (GOCP), i.e. (ROCP)* <
(GOCP)* = (OCP)*. Formulating necessary and sufficient conditions on the problem data
F and L such that (GOCP)* = (ROCP)", i.e., that there is no relaxation gap, is an open
problem. However, if we can verify a posteriori that the minimizing measure in (ROCP) is
generated by limits of functions, there is no relaxation gap.

4.2.5 Relaxed Optimal Control with Occupation Measures

In the previous subsection, we proposed a linear relaxation of the non-linear optimal control,

based on anisotropic parametrized measures. In the current subsection, we describe another

linear reformulation proposed in [Las+08b] and relying on the notion of occupation measure.

The relation between this linear reformulation and the classical DiPerna-Majda measures

was investigated in [CHK17], with the help of a graph completion argument. In the sequel

we show that the generalized DiPerna-Majda measures also fit naturally this framework.
Let ¢ € C1(]0,1] x Y). Then for any continuous function y, it holds that

[ sttty = o1, — 0,50 = [ (G200 + 52010 -5(0)) .

Consequently optimal control problem (OCP) can be rewritten as

1
inf /0 L(t, u(t), y(t)) dt
st [ (524 52 F) (b u0).0(6) dt = o(1.31) — (0.30), Vi € C1([0.1] x B
y € WHH0,1;R™), we LP(0,1;R™).
(4.22)

Definition 4.2.3 (Occupation measure). For given control u and trajectory y solving the
differential equation in (OCP), we define the occupation measure of y,, , € P([0, 1] xR" xR™)
by

Fay 1= Oy(6)du() Ajo,1]-
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Geometrically g, 4(A x B x C) is the time spent by the trajectory (t,u(t),y(t)) in any
Borel subset A x B x C of [0,1] x Y x R™. Analytically, integration with respect to fi,y is
the same as integration along (u(t),y(t)) with respect to time. In particular

/OlL(t,u(t)ay(t))dt:/Ol/m/yL(t,u,y)dluu’y

and for all test functions ¢ € C1([0,1] x Y), it holds that

/01 (% +9-F) (t,u(t),y(t))dt:/olfmfy(%f+§;”-F) (6, 0,y) dptuy

Using the same arguments as in [CHK17, Proposition 4], we can reformulate optimal control
problem (4.22) as a linear problem on measures, leading to the following relaxed formulation:

i%f/Lbd,u
0 4, 0
s.t. / (_90(1 + [Jul?) ! + 9 'Fb> du = (1, y1) — ¢(0,70), (MOCP)
ot dy
Vo e CH[0,1] x Y), peP([0,1] x fyR™ x Y).

Note that p in the above problem is not necessarily an occupation measure in the sense
of Definition 4.2.3, but a general probability measure measure in P([0, 1] x fyzR™ x Y). For
this reason, the infimum in relaxed problem (MOCP) can be strictly less than the infimum
in classical problem (OCP), i.e. (MOCP)* < (OCP)".

Proposition 4.2.4 (No relaxation gap). It holds (ROCP)" < (MOCP)* < (OCP)* and
hence if there is no relaxzation gap in relaxed problem (ROCP) then there is no relazation
gap in relaxzed problem (MOCP).

Proof. Just observe that problem (ROCP) corresponds to the particular choice of test
functions ¢(t,y) := yg, k = 1,...,n in problem (MOCP). Hence the infimum in (ROCP) is
smaller than the infimum in (MOCP), which is in turn smaller than the infimum in (OCP),
i.e. (ROCP)" < (MOCP)*. Now if (ROCP)" = (OCP)" then obviously (MOCP)" =
(OCP)*. O

4.2.6 Numerical Example

Once we get to the problem (MOCP), we follow the same strategy as in [CHK17, Section
4], to compute the measures numerically. The procedure is summarized as follows:

1. apply a change of variables to u such that SR™ is mapped into the unit ball;
2. introduce lifting variables to express all data as polynomials;

3. construct an equivalent moment problem where the unknown are moments of the
occupation measure supported on a compact semialgebraic set;
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4. use the moment-SOS hierarchy to obtain a sequence of approximate moments at the
price of solving numerically semidefinite programming problems;

5. from the approximate moments, construct an approximate solution to the optimal
control problem.

We illustrate this strategy on our introductory example (4.3). The trajectory y should
move the state from zero at initial time to one at final time, yet for the non-negative
integrand to be as small as possible, the control u should be zero all the time, except maybe
at time zero. If ¢ = 1 this problem has a trivial optimal solution u(t) = 0. For e = 0 as
explained already we can solve the problem by integration by parts because y = u. The
integration trick cannot be carried out in the case of € € (0, 1).

We use the relaxation (MOCP) to formulate problem (4.3) as a linear problem on

measures:
mf/ (t+y) 7du
1
s.t. O 880 4 dp = ¢(1,1) — ¢(0,0), for all p € C*([0,1]?) (4.23)

Ot 1+u @1+u
w € P([0,1] x fyR4 x [0,1]).

Note that we can omit the absolute value in the denominator, as u is constrained to be
non-negative. We expect the control to concentrate. Therefore let u(t) := 11(:(),5) with
r(t) € [0,1] for all t € [0,1]. Then the dynamics of y reads

y(t) = \/(1r(7«t()t))2 +e2= Vr(t) j—eQT(l)— r(t)?

Introduce the auxiliary variable w(t) such that w(t)? = r(t)? +2(1 —r(t))?. By knowledge
of bounds for € and r(t) we can conclude that 0 < w(t) <1 for all t € [0,1]. The linear
problem on moments than reads

igf/(t +y)rdy

otlyJ Otly?
5t (1-r)+

v € P([0,1]3).

s.t.

w(t) dy = p(1,1) — ¢(0,0), for all , (i,j) € N? (4.24)

Here we used the notation w(t) for ease of readability. The actual implementation of
the moment-SOS relaxation using GloptiPoly optimizes over measures depending on four
variables t,y,r, w and supported on [0, 1]* N {(t,y,1, w)|[[w? = r2 +£2(1 —1)?} (see Fig. 4.2).
With this implementation we could solve the problem numerically for different values of
the parameter € and could guess the analytic optimal solution.

The measure p = Twvy,u With

— 1 _
T = )\[0’1] + (1 — 8)50, wy = { 5007 t=20 g = { 175)\[071_6], t 0

dg, t>0 Ol—etet, t>0
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%% Parameters

d = 6; % relaxation order (moments of size up to 2*d)
e =0.2; % epsilon
hth GMP

% occupation measure
mpol t y rw
gamma = meas([t y r w]);

% test function
v = mmon ([t y],2*d);

% initial condition

% assignment of r and w is not taken into when evaluating v(t,y)
assign([t y r w],[0 O 0 0]);

v0 = double(v);

% final condition
assign([t y r w],[1 1 0 01);
vT = double(v);

% moment problem

objective = min((t+y)x*r);

support = [t-t72>=0, y-y~2>=0, r-r"2>=0, w-w 2>=0, w 2==r"2+e"2*(1-r)"2];
vT-v0 == mom(diff (v,t)*(1-r) + diff(v,y)*w);

dynamic
P = msdp(objective, support, dynamic);

% solve
[stat,obj] = msol(P);

% display moments of solution

if stat>=0

fprintf (’computed optimum: %6.4f\n’, obj)

fprintf (’int t7k int y"k int r~k int w k\n’)

fprintf (°%6.4f\t %6.4f\t %6.4f\t %6.4f\n’, [double (mom(mmon(t,2%d))),...
double (mom (mmon (y,2+*d)) ) ,double (mom (mmon (r,2+*d))) ,double (mom (mmon (w,2*d))) 1)
end

Figure 4.2: GloptiPoly code to solve the 6th relaxation with ¢ = 0.2.
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Figure 4.3: Sequence (yx)k=124s from Eq. (4.3).

is optimal for (4.3) and yields the value (1_25)2. It is attained by the following sequences

(see Fig. 4.3):

e

— 1
wiy={ M 1910

The numerical moments for the 6th relaxation (i.e. moments of degree up to 12) obtained
with GloptiPoly and the SeDuMi semidefinite solver are reported in Table 4.1. They match
to 4 significant digits with the analytic moments reported in Table 4.2.

4.2.7 Conclusion

In this section we considered critical limit behaviour of controls and trajectories in problems
of optimal control. In particular we proposed an approach giving meaning to the integral
cost when the trajectory is discontinuous at a point where the control concentrates, using
anisotropic measures generated by pairs of sequences. This work is a consequent continuation
of [CHK17] where the authors already were able to consider discontinuities of the trajectory
and concentration of the control, but under the severe condition that they do not occur at
the same time.

We further proposed to approximate solutions by the moment-SOS hierarchy. There-
fore we formulated a relaxation based on occupation measures, which is stronger than
the relaxation based on generalized DiPerna-Majda measures, but still weaker than the
original problem. We propose to compute solutions to the relaxation with the moment-SOS
hierarchy.
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Bl Sthdp JyFdp Jrbdp Jwhdp
0| 1.8000 1.8000 1.8000  1.8000
1] 05000 1.2200 0.8000  1.0000
2| 0.3333 09840  0.8000  0.8400
3102500 0.8404 0.8000  0.8080
4102000 07379 08000  0.8016
501667 0.6586 0.8000  0.8003
6| 0.1420 05944  0.8000  0.8001
7101250 05411  0.8000  0.8000
8| 01111 04959  0.8000  0.8000
9| 0.1000 0.4571  0.8000  0.8000
10 | 0.0909 0.4233  0.8000  0.8000
11| 0.0833  0.3938  0.8000  0.8000
12 | 0.0769  0.3677  0.8000  0.8000

Table 4.1: Approximate moments for € = 0.2, computed with Gloptipoly and SeDuMi.

[thdp | 25 + (1 —e)0F
JyFdu | Y
frkdp | 0F +(1—¢)
fwhkdp | e*+ (1 —¢)

Table 4.2: Analytic expressions of the moments.

4.3 A Moment Approach for Entropy Solutions to Non-
linear Hyperbolic PDEs

This section is concerned with the numerical study of scalar non-linear hyperbolic conserva-
tion laws, which model numerous physical phenomena such as fluid mechanics, traffic flow
or non-linear acoustics [Daf00], [Whill]. The existence and uniqueness of solutions to the
associated Cauchy problem crucially depends on the flux and the initial condition [Kru70].
Even if the solution is unique, its numerical computation is a challenge — in particular in
the case when the solution has a shock, i.e., a discontinuity, locating the position of the
shock at a given time is a challenge. Existing numerical schemes based on discretization
such as [God59] suffer from numerical dissipation: the shock is smoothened in the numerical
solution and it cannot be represented accurately. In fact, sometimes the exact location of
the shock is of crucial interest for applications that need to deal with conservation laws.
Note however that some existing numerical schemes are able to capture shock in the case
where the conservation laws under consideration are linear, see e.g. [DLO1].

In contrast to existing methods, a distinguishing feature of the numerical scheme we
present in this section is to not rely on discretization; it computes the solution in a given
time-space-window globally. From such a solution, the location of the shock at a given time
can potentially be computed up to the limits of machine precision.
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Measure-Valued Solutions While partial differential equations are usually understood
in a weak sense, DiPerna proposed an even weaker notion, so-called measure-valued solutions
(mv solutions) [DiP85], which are based on Young measures, see Section 4.1. DiPerna
introduces mv solutions to conservation laws as measures on the state space, depending on
time and space.

Naturally, every weak solution gives rise to a mv solution when identifying a solution
y(t,x) with the Young measure d, x). In such a situation, we say that the mv solution
is concentrated on (the graph of) the solutions. In the following, we focus on a set up
where both weak and mv solutions are unique. In this case, both solutions coincide via the
identification just mentioned. Note however that our approach also applies without any
change to situations where the mv solution is not concentrated, e.g., because of an initial
condition that is not concentrated either.

Recently there has been an increasing interest in numerical schemes to compute mv
solutions for hyperbolic conversation laws with non-concentrated initial condition [Fjo-+17;
FLM18]. These schemes apply standard discretization methods to compute sufficiently
many trajectories according to the distribution of the initial condition and recover the
moments of the mv solution by considering limits of the trajectories. In contrast to this
our approach directly computes the moments of the mv solution. Therefore in some sense
the work presented in this section is in the opposite direction. We compute moments to
recover trajectories in the case where the solution is concentrated.

To ensure uniqueness of the solution and concentration of the mv solution, we rely on
the notion of entropy solutions which has been extended to entropy mv solutions. Entropy is
a concept from thermodynamics and makes reference to the fact that differences in physical
systems, e.g., the densities of particles in a room, tend to adjust to each other. It is well
known that the entropy solution of a scalar non-linear hyperbolic conservation law is unique.
For the generalized situation things are more involved. However under suitable assumptions
on the initial condition, uniqueness of entropy mv solutions can be proved.

Generalized Moment Problem The key idea underlying the approach is to consider
mv solutions as solutions to a particular instance of the Generalized Moment Problem.
This is in line with Section 4.2 and many other applications proposed, e.g, in [Las10b],
i.e., (i) mv solutions are viewed (or formulated) as solutions of a particular instance of
the GMP, and (ii) the moments of mv solutions are approximated as closely as desired by
solving an appropriate hierarchy of semidefinite programs of increasing size (seeChapter 1).
Any optimal solution of each moment-SOS relaxation at step d in the hierarchy provides
information about the mv solution in the form of a sequence of its (approximated) moments
up to degree 2d; the higher is d the better is the approximation of its moments. As we
restrict to measures with compact support, they are fully characterized from knowledge of
the complete sequence of their moments. It is worth noting that in [Fjo+17] it was already
pointed out that the statistical moments of mv solutions are precisely the quantities of
interest.

Outline This section is based on [Mar+18] and organized as follows. Section 4.3.1 in-
troduces different notions of solutions for scalar conservation laws and provides some links
between these notions. In Section 4.3.2 we show that the mv solution framework can be
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written as an instance of the GMP. Finally in Section 4.3.3 we provide a numerical study
of our approach on the Burgers equation for the Riemann problem.

4.3.1 Notions of solutions

We start with a brief overview of different notions of solutions to scalar polynomial partial
differential equations. For details, we refer to [Daf00] for weak solutions and [Mal+96] for
mv solutions. The aim of this section is to give a clear link between these two concepts of
solutions.

Weak and entropy solutions

In order to study mv solutions, it is instructive to revise the classical concept of weak
solutions first. Consider therefore the Cauchy problem of finding a function y € L (R xR)
such that

Sy, %) + 2 fy(t,x) =0, (4.252)
y(0,x) = yo(x), a.e. on R, (4.25b)

where (4.25a) is a scalar hyperbolic conservation law with f € C1(R) and (4.25b) provides
an initial condition yo € L*(R)N L% (R). We will restrict the discussion to f € R[y] in order
to be able to apply the moment-SOS approach later on. Our standard example for such a
conservation law is Burgers equation, which corresponds to (4.25a) by setting f(y) = %yQ.
Even if the initial condition yg is smooth, solutions to (4.25) might be discontinuous [Eva98,
p. 143]. Solutions to this problem are hence usually understood in the following weak sense:

Definition 4.3.1 (Weak solution). A function y € L>(R; x R) is a weak solution to (4.25)
if for all test functions ¢ € C}(R; x R)

/R+ /R{%@(’G»XM(M)+%w(t,x)f(y(t,x))} dxdt + /]R 0(0,x)yo(x)dx = 0. (4.26)

In general, weak solutions to (4.25) are not unique. However it can be shown (see e.g.
[Kru70]) that among all possible weak solutions, only one has a physical meaning. This
solution is called the entropy solution and can be characterized as follows.

Definition 4.3.2 (Entropy pair/entropy solution). (i) A pair of functions 1, q € C1(R) is
called an entropy pair for (4.25a) if 7 is strictly convex and ¢’ = f'n'.

(ii) A weak solution y € L*°(R; x R) of (4.25) is said to be an entropy solution if for
all entropy pairs and all non-negative test functions ¢ € C}(Ry x R),

| e ontutx0) + &t a(e. )} dedt+ [ o0,x)n(0(x)) dx > 0.
e - (4.27)

Measure-valued solutions

In general, regularity results for conservation laws are obtained from regularized conservation
laws

2y (t,x) + 2 f(y(t,x)) — e Lry(t,x) = 0,
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where ¢ > 0 [Daf00, Section 6.3]. Then one studies the limit of solutions y(©) as e goes
to 0 and tries to preserve some regularity properties of the regularized equation for the
original conservation law. Due to the lack of reflexivity of L, regularized solution y(&) do
not necessarily converge to a weak solution y of (4.25). However, as seen in Section 4.1
such sequences posses subsequences that converge in the sense of Young to a measure
valued measurable function. When allowing for measure valued functions as solutions to
differential equations we can consider problems more general than (4.25), where the initial
condition (4.25b) is replaced by a Young measure parametrized in space (see e.g. [Fjo+17]
and the references therein). The generalized problem now is to find a Young measure
w: Ry x R — P(R), which satisfies the following Cauchy problem:

O (11t Y )+ Ox (B0, [ () = O, (4.282)
Hox) = 00, a.e. onR, (4.28b)

where (u, f) denotes as usual integration of a function f with respect to a measure pu, and
the measure oy is a given Young measure on R. The conservation law (4.28a) has to be
understood in the sense of distributions, i.e.:

Definition 4.3.3 (Measure-valued solution). A Young measure p is said to be a measure-
valued solution to (4.28) if, for all test functions ¢ € C}(Ry x R), it satisfies,

/R+ /R {Zrot.%) (B y) + 20t %) (e, F(v)) } dxdt +/Rs0(07><) (00,y) dx =0,
(4.29)

Note that the weak solution y has been replaced by a time-space parametrized probability
measure p supported on the range of y. Whereas a weak solution y is requested to satisfy
(4.26), only averages of the mv solution (i.e. moments up to order deg(f)) are constrained
in (4.29). In this sense the concept of mv solutions is much weaker than the classical weak
sense (compare to Section 4.2).

It is easy to see that every weak solution induces an mv solution via the canonical
embedding y(t,x) ~ Jyx). As in the case of weak solutions, an entropy condition is
needed in order to select solutions with a physical meaning. Quite in analogy to entropy
solutions, entropy mv solutions are defined as follows.

Definition 4.3.4 (Entropy measure-valued solution). A measure-valued solution p is said
to be an entropy mv solution to (4.28) if it satisfies, for all entropy pairs (n,q) and all
non-negative test functions 1 € C1(R; x R),

/R+ /R {%I/J(t,X) <M<t,x>,77(>’)> + Zap(t,x) <u(t,x), q(y)>} dx dt

(4.30)
+ [ (0,9 (o0,n(y) dx = 0.

Again it is straightforward to see that entropy solutions are entropy mv solutions via
the canonical embedding y(t,x) — dy(t,x)- However, as demonstrated on an example in
[Fjo+17, p. 775], in contrast to entropy solutions, entropy mv solutions are not necessarily
unique.
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We have seen that the concept of mv solutions is weaker than the classical concept
of weak solutions. Hence mv solutions are a relaxation of weak solutions. However the
following result states that considering mv solutions is not relaxing too much.

Theorem 4.3 (Concentration of the entropy mv solution). Let y be an entropy solution
to (4.25) and p be an entropy measure-valued solution to (4.28). If o9 = 0 then

yo(x)7
B(tx) = Oy(t,x)-

This states that when the initial measure in (4.28b) is concentrated on the support of
the initial condition in (4.25b), the entropy mv solution to (4.28) is unique and concentrated
on the graph of the (unique) entropy solution to (4.25). A proof of the theorem can be
found in [DiP85; Fjo+17]. It is based on the doubling variable strategy and considers the
following family of entropy pairs:

nw(y) =1y —vl, a(y)=senly —v)(f(y) - f(v)), WeR (4.31)

In [Lax71], it has been proved that a linear combination of this special entropy pairs,
together with the convex hull of linear functions, generate all entropy pairs. In [Mar+18]
we adapt the proof of DiPerna to a compact set up.

An emphasis on compact sets

In practice, one computes solution on compact subsets of R x R. Therefore let (L, R,T) €
R? x R, be fixed and define
X:=[L,R], T:=10,T].

After scaling, we assume without loss of generality that T = R — L = 1. Note that the
entropy condition (4.27) induces a stability property:

(8, 3)[[ oo (x) < Yo () [ Lo (m), V& =0 (4.32)

see e.g. [Daf00, Theorem 6.2.4]. Since yp is bounded in L, it follows from the maximum
principle [Daf00, Theorem 6.3.2] that y(t,x) is bounded in L* for all t > 0. Hence, we can
consider that y takes values in a compact set

Y =y, ¥, (4.33)

where the bounds y := ess infycg yo(x) and ¥ := ess sup,cg %o(x) depend on the initial
condition.

On T x X, an entropy solution to (4.25) is defined as follows:

Definition 4.3.5 (Entropy solution on compact sets). A function y € L*°(T x X)) is said to
be an entropy solution to (4.25) on T x X if y satisfies, for all test functions ¢ € C(T x X),
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| Aot xute.x) + &t x0f (ot %)} dxde
+ [ {e(030m0(x) = o(T:x)y(T,%)} dx (4.34)

+ | Lot DF(6.1)) ~ (b R)f (& R)} dt =0

and for all convex pairs (1, ¢) and all non-negative test function ¢ € C*(R, x R),

// { Gt x)n(y(t,%) + e (t, X)a(y(t,x)) } dxdt

T JX
+ [ 4p(0,29m(0(x) = (T x)n(u(T,%)} dx (4.35)
+A {o(t, L)q(y(t, L)) — o(t, R)q(y(t, R))} dt > 0.

As we work on compact sets, the test functions do not need to vanish at infinity. However
new terms y(t, R), y(t, L), and y(T,x) now appear. Similar to this notion of solutions on
compact sets, we can consider mv entropy solution on compact sets.

Definition 4.3.6 (Measure-valued entropy solution on compact sets). A Young measure
T x X — P(Y) is said to be an entropy measure-valued solution to (4.28) on T x X if
it satisfies for all test function ¢ € C*(T x X),

A /X {gtgp(t,x) <u(t7x),y> + aaxw(t,X) <M(t,x)> f(Y)>} dxdt
+ /X {0(0,) {00, y) — @(T.x) (or,y)} dx (4.36)

+ | et L) 02, S 9) = (6. B) (o, S ()} b = 0

and for all convex pairs (7, ¢) and all non-negative test functions 1 € C*(T x X),

A/X {gtw(t,x) (Bex) () + iw(t,X) <:u’(t,x)7Q(Y)>} dx dt
+ [ {003 (0,0(¥) = (T (or.n(y))} dx (4.37)
+ | (D) (00,0() — 0(6. ) (or.a(v)} dt 20

where o1, or and o7 are Young measures supported on T and X, respectively.

Remark 4.3.7 (Imposing constraints on the boundary). To ensure concentration of H(t,x)
on the graph of the solution to (4.34)-(4.35), in addition to the condition oy = d,,, one
may impose conditions on the boundary measures oy, and/or or. In practice, one knows
the initial condition in an interval larger than X and so one is able to impose o7 and/or
or. The width of this interval depends on the Lipschitz constant of the flux, T', L and R.
As an illustrative example, consider the case where the initial condition is positive and the
flux is strictly convex. By the classical method of characteristics, if the initial condition
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Yo is positive then so is the solution y for all t > 0. In particular if f is strictly convex
we only need to impose knowledge at the left of the box X to guarantee unique feasibility.
Therefore o7, has to be known for all t € T, and o is unconstrained. We refer to [LeV92]
for a more precise discussion on the choice of the boundary constraint.

4.3.2 Myv Solutions as Solutions of the GMP

In the previous section, we introduced measure-valued solution for scalar hyperbolic equa-
tions. The aim of this section is to express formulations (4.36)-(4.37) as constraints on the
moments in order to apply the moment-SOS hierarchy to approach the solutions. We also
discuss how one can interpret the sequence of moments to recover information about the
graph of the solution.

Moment constraints for the entropy mv solution

Let ¢ € M(T x X X Y)4. In the following, we derive moment constraints that will imply
that ¢ can be disintegrated as follows

¢ = )\TXXM(t7x)’ (438)

where p is an entropy measure-valued solution satisfying in particular (4.36) and (4.37) and
Ax denotes the Lebesgue measure on X scaled to be a probability measure. Similar to ¢
we introduce the “boundary” measures ¢, oo, o1, ¢, € M4 (T x X xY) that respect

= (0r ® Ax)or

= (%0 ® Ax)y, (4.39)
¢L =(AMr®dL)or
o = (AT ®OR)oR

where o7 is an unknown Young measure depending on space and oy, and or are Young mea-
sures depending on time and are known or unknown, depending on the problem formulation
(compare Remark 4.3.7).

Remark 4.3.8. We highlight that the framework presented here could be easily modified
to consider the inverse problem (e.g., [GZ17]), where one is interested in finding initial
conditions that yield some terminal criterion at t = T". One only needs to replace the given
initial measure ¢ by an unknown measure or(dt—9 ® Ax) and prescribe the measure ¢
instead. How this framework can be made sound for the inverse problem is part of ongoing
research.

Similar as mentioned in the Chapter 3 and by compactness of T, X, and Y, we can
impose the marginal properties in (4.38) and (4.39) as moment constraints. Here, we focus
on reformulating the properties (4.36) and (4.37) as moment constraints. We split the
exposition into two steps: the first one deals with (4.36), while the second one deals with
(4.37).

Enforcing (4.36) by moment constraints is rather easy. It suffices to show that
restricting the test functions ¢ to monomials is sufficient to enforce (4.36).
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Lemma 4.3.9. Let ¢, o1, ¢o, ¢, dr be as in (4.38) and (4.39). Then (4.36) is equivalent
to

(0 e (t7xy) & elemx 1)) =

(4.40)

<¢T — o0, %(tQIXQQY)> + <¢R - ¢r, %(tmxwf()’)» , Vo €N
Proof. We note first that (4.36) implies (4.40) as (t,x) — t*1x®2 € C}(T x X) for all a € N2,
For the converse implication note that it is sufficient to restrict the set of test functions
in (4.36) to ¢ € R[t,x] since T x X is compact. Therefore let, ¢ 1= Y cn2 Cot®'x*? with
finitely many non-zero coefficients ¢, € R. Then, (4.40) implies by linearity of integration
and the differentiation rules for polynomials that

0= Z Car (<¢, %(talxazy) + %(talxagf(.')’))>

a€eN?
- <¢T — o, %(talxoay» - <¢R - ¢r, a%(talxmf(}’))»
= (6, &(ey) + Z(pf () — (b1 — b0, &(0y)) — (6r — 61, Z(Pf ().

which shows that (4.36) holds for all ¢ € R[t, x| and hence concludes the proof. O

Enforcing (4.37) by moment constraints is more involved and relies on the entropies
of Kruzkhov. As already mentioned it suffices to state the entropy inequality (4.37) for all
Kruzkhov entropies given in (4.31) [Lax71]. However, in order to express (4.37) as moment
constraints, we are faced with three issues: first, the entropies of Kruzkhov induce an
uncountable family of constraints parametrized by v € Y, second, the absolute value cannot
be expressed as linear combination of monomials, and third, in contrast to Lemma 4.3.9,
here we need to consider non-negative test functions.

To deal with the first two issues, we introduce a new variable v to the problem and double
the number of measures. More precisely, Let A :==Y, W~ := {(y,v) € Y X A : y < v},
and W :={(y,v) € Y X A :y > v}. We define Borel measures ¢~ € M, (T x X x W7)
and ¢7 € M (T x X x W) by

¢~ + T =@ Aa. (4.41)

Note, that Arxxxvxv (supp(¢~) Nsupp(¢')) = 0 and the marginals of both measures with
respect to time-space (qﬁ‘)tx and (¢+)tx are Atxx, respectively. Moreover, and importantly,
for the conditionals ¢ on T x X x Y given v € A we have

(60, (V=3 + (5, (v = v)) = (8, ly = V). (4.42)

Similarly, we double the “boundary” measures ¢g, ¢, ¢r, ¢r and extend their doubled
versions to T x X x W~ and T x X x W, respectively. With this notation at hand, we
can formulate the following lemma.

Lemma 4.3.10 (Kruzkhov entropies). Let ¢~, ¢, ¢, ¢, ¢y, &8, 07, 1, ¢p, and ¢F;
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be as described above. Then, (4.37) is equivalent to

[x) (%w, X)(y — V) + (6 2)(f(y) - £(v))) do* (4.43)
+ %) (Fot R —3) + Zot (W) - f))) o™

+ [ a0y —v)d@r - o) + [ et ) - y) d(6; - o7)

+ [ XWX ) = 7)AW@ =0k + [ xWlex) V) = F3) Aoy — d7) 2 0
for all x € C(A)+.

Proof. Note that for all x € C(A)4, by (4.41) and (4.42), (4.43) can be rewritten as

Jox) | [ {Goely i+ oo sty - V() - 1(v) } do
+ [t ly = vI} dlgo = ér) + [ {(6.xsenly ~ V() ~ F()} d(ér— 61)| dv >0

Note that the term in brackets is a measurable function, say 6(v). With this notation we
have [ x(v)8(v)dv > 0 for all x € C(A);. This implies that # is non-negative almost
everywhere on A. Using the identities (4.38) and (4.39), 6 is exactly (4.37) for all Kruzkhov
entropies. ]

The expression (4.43) does still involve non-monomial functions and is hence not a
generalized moment constraint, yet. We next show how the non-negative test functions 1
and y can be replaced by monomial constraints. Of course we can argue, that the set of
polynomials is dense in the set of test functions on T x X and A respectively. However, as
we have an inequality constraint in (4.43) we cannot argue as in the proof of Lemma 4.3.9
to conclude from monomials to polynomials, because multiplying the monomial constraints
by a coefficient ¢, € R, i.e., a coefficient which is potentially negative, might inverse the
inequality sign. Indeed we can only allow for non-negative coefficients in order to conserve
the inequality.

Lemma 4.3.11. For a € N® define hy := t* (T —t)*2(x — L)*3(R—x)* (v —y)* (y—v)“¢
Then, (4.37) is equivalent to

(6%, Fhaly =v) + ha(f(y) = F(V)))
(v

(67 fthalv = 3) + halF¥) = £3) "
+<¢o ¢F s ha > <¢a — ¢7, (v—y)>
+ (91 = OhahalF ) = FO)) + (67 = G halF(¥) = F(3)) 2 0

for all o € NS,

Proof. As T x X and A are compact, by Stone-Weierstrass Theorem, we can restrict to
P € R[t,x] and x € R[v] in (4.43). Let ¢ € R[t,x] and x € R[v| be non-negative on T x X
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and A respectively and € > 0. Then, Krivine’s Positivstellensatz Theorem 2.5 implies that

60XV o= Y (4.45)
a€eNS

for finitely many non-zero coefficients ¢, € R;. Note that by (4.45) we have X%zp =
> aeNd cé%ha and the respective equation for a—ax. Now, after some calculation, (4.43) can
be written as

> ca ({67 Ghaly = v) + &half(y) = F(V)))

a€eN©S
+ (67, Seha(v =¥) + fha(f(V) = F(¥)))
+ {65 — 65 haly = v)) + (85 — 67 ha(v —y)) (4.46)

+(0F = O ha(F(v) = F(V))) + (61 — b, halF(V) = F))))
—e({6f — o — &5 + o7,y — V) + (6f — 0f — o1 + 0p. F¥) = F(v)))  (447)

<C

where C' € R is a fixed constant by definition of the involved measures. Furthermore, (4.44)
and the fact that ¢, > 0 imply that part (4.46) of the expression above is non-negative.
This yields (4.43) > —eC, for all ¢ > 0, and implies (4.43) > 0. Finally Lemma 4.3.10
concludes the proof. O

Enforcing Marginal Properties: As mentioned earlier due to compactness of T x
X x Y we can enforce the marginal properties by moment constraints. More precisely, to
ensure that the marginals with respect to t and x and v are the Lebesgue measure on T,
X and A, it suffices to impose for all o € N3,

<¢_ + ¢>+,talxa2VO‘3> = (ATxyxa, t¥ x*?v) (4.48)
<¢E + ¢JTF,’GO‘1X“2VO‘3> = (01 xx A, t*1x2V) (4.49)
<¢Z/R + ¢Z/R7talxazva3> = <)\T5L/R/\A7talxa2va3> (4.50)

Generalized Moment Problem and its Moment Relaxation

Entropy mv solution as a GMP. We are finally in the position to state an entropy
mv solution to (4.28) as solution to a generalized moment problem. Note that the previous
sections have shown, that imposing (4.38), (4.39) (marginal and boundary conditions),
(4.40) (dynamic), (4.41) (auxiliary measures), and (4.44) (Kruzkhov entropies), in our set
up reduces the set of feasible measures to a single point. Hence, optimizing a functional over
the set of feasible measures, as suggested in (1), reduces to its evaluation. When passing to
the moment-SOS relaxation, and hence cutting the number of constraints, the feasible set of
the relaxation is likely to have more than one single point. A suitable objective functional
might therefore help to converge to a useful solution more quickly. We discuss the choice of
an objective functional for the Riemann problem of the Burgers equation in Section 4.3.3.
Let £ be any expression obtained by integrating polynomials against measures ¢, d)%, ¢jL: /R
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and consider

inf L (4.51a)
$*.07.9% /5
(4.40) (conservation law) (4.51b)
(4.44) (entropy condition) (4.51c)
(4.48) — (4.50) (marginal constraints) (4.51d)
¢, b7, 675 € M4 (T x X X Y x A), (4.51e)

where the constraints (4.48)-(4.50) are quantified over all a € N3, (4.51b) is quantified
over a € N? and (4.51c) over a € N°. The constraints (4.48)-(4.50) encode the marginal
informations given in (4.38), (4.39), and (4.41). Note that the measures ¢7 and at least one
of the measures quLE and ¢§ must be given in order to guarantee a unique solution to (4.51).
Then via (4.38) the optimal measure for (4.51) satisfies ¢ = p g x)ATxx for the entropy
mv solution iy x) to (4.28). As the supports of the unknown measures in (4.51) are basic
semialgebraic compact sets, we can apply the moment-SOS hierarchy to approximate jit x)-

Convergence of the relaxations of (4.51) Observe that the mass of all measures
appearing in (4.51) is bounded, because their marginals with respect to time and/or space
are Lebesgue. Adding redundant constraint to the semialgebraic descriptions of the supports
of the unknown measures to ensure that the associated quadratic modules are archimedean,
we can establish optimal feasibility of the moment relaxations (P;) to (4.51) for each d > dy,
where dj is the maximal degree appearing in the polynomial data of (4.51). Finally, the
sequences (zi_ + Zg+)deN converge to the moment sequence of Arxxfi(tx), When d — oo,
see Chapter 1.

Interpretation of the moment solutions

An optimal solution z¢ at step d of the hierarchy of SDP-relaxations (P;) to (4.51), consists
of finite sequences of moments, one for each unknown measure in (4.51). If one is interested
in statistical properties of the mv solution such as its mean or its variance, the moments
provide the perfect information, at least for for sufficiently large d. However, if one is
rather interested in properties of the graph of the entropy solution, a post processing step
is required.

An inverse problem Recovering the graph of a function {(t,x,y(t,x)):t € T,x € X}
from the moments of the measure ¢ = )\Txx5y(t,x) is an inverse problem which we cannot
study in detail here. The maximum entropy approach is to approximate y by a function
from a parametrized family of functions, the approximation ¢ is chosen in a way, that
[tx%2g(t,x) dt dx = [t¥1x*?y d¢ for a finite number of @ € N?, and § maximizes some
criterion (see [Lasl0b, Section 12.3] and the references therein). A second approach is an
approximation via a polynomial minimizing the difference to the y in L? norm [HLM14].
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This approximation can be obtained in closed form, when choosing the polynomial bases
of Legendre or Chebychev. While this method works quite well in the case when the
solution y is smooth, due to the Gibbs phenomenon it behaves rather bad as soon as y has
a discontinuity (compare Section 3.1.2).

In the following, we briefly outline a heuristic strategy to recover the graph from the
sequence of moments of a measure ATxx0y(t,x)- [t turns out that it works surprising well
in both our examples.

Let d be a fixed degree and let z, = [p, x, v t*'x*?y*d¢ for || < d. For any
polynomial, p € R[t, x,y]s we have

p Mq(2)p =/ P’ dg.
TxXxXY
where p denotes the vector of coefficients of p and My(z) is the moment matrix associated
to z (see Chapter 1). Suppose for the moment, that ker(My(z)) # 0. Then if p is in the

kernel of My(z), we have that
/ p?de = 0.
TxXxY

In other words, the support of ¢ is contained in the zero level set of every polynomial whose
vector of coefficients is in the kernel of L,(vgv, ). In practice we do not compute the kernel
exactly but consider all eigenvectors pi,...,p¢ such that the sum of the corresponding
eigenvalues is less than some threshold €. For (¢g,z¢) € T x X fixed, we then consider the
optimization problem

inf > pi(to, zo, y)? (4.52)

If we consider only polynomials corresponding to eigenvalues 0 the optimal value in (4.52)
is 0 and attained at y(to,xo) € Y. However y(to,xo) might not be the unique minimizer.
Indeed the support of ¢, i.e., the graph of y is contained in the variety of the polynomials
corresponding to the eigenvectors of the kernel of the moment matrix, but the converse
inclusion does not hold in general, as the graph of a function is not necessarily the variety of
some set of polynomials. However, we do not only consider the polynomials “in the kernel”
but allow for a certain threshold € when choosing the eigenvectors defining p1,...,ps. The
optimal value in (4.52) is hence slightly positive. In general, for each (to,xg) there exist
finitely many minimizers yq of (4.52). However we might be lucky and find that (4.52) has
a unique solution for each (tg,xp) € T x X. In this case we can conclude that yo = y(to, x0)
and recover the graph of the entropy solution from the sequence of moments of the entropy
mv solution.

Note that if one is interested in properties of the graph for only one instant in time ¢;
or only an interval of space [x,X], one can solve (4.52) only for (to,zo) € {t1} % [x,X]. In
particular, since the problem is already solved globally, there is no need to discretize time
instances before or after ¢; or the space outside [x,X] as it would be necessary in other
numerical schemes.

To be fair, we need to say, that the moment matrix M;(z) computed by the SDP solver
is only exact up to precision of the SDP solver. A second source of numerical errors is the
method to solve the optimization problem (4.52). We are doing all this by simple Matlab
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functions for illustration purpose only. To obtain reliable results from this extraction
procedure one definitely needs to consider all numeric parameters in detail.

4.3.3 The Riemann Problem for the Burgers Equation

For a numerical demonstration of our result, we consider the classical Riemann problem
(see e.g., [Eva98]) for a scaled version of the Burgers equation. In particular, we choose the

flux )
fly) = 1

The Riemann problem to this conservation law is a Cauchy problem with the following

y>.

initial condition, piecewise constant with one point of discontinuity:

(x) = [ ifx <0,
=N 0 it x>0,

where [,r € R. The solution to the Riemann problem depends strongly on the values of [
and 7. In particular:

1. If I > r, the solution is unique. The shock of the initial condition spreads along the
characteristics.

2. If [ < r, the solution is not necessarily unique. The entropy condition allows to select
the meaningful solution, which is known as a rarefaction wave. For the specific case of
Burgers equation, it is shown in [DOWO04] and [Pan94] that the single entropy 7 = y?
is sufficient to guarantee uniqueness of the solution. To the best of our knowledge,
there is no similar result for the uniqueness of entropy mv solutions for Burgers
equation with concentrated initial data, except for classical solutions [DST12].

Both cases are interesting form a numerical point of view for their own reasons. In general,
the first case is difficult to address because of the discontinuity. Numerical schemes based
on discretization tend to smooth out the shock. Indeed, recovering numerically the exact
point of discontinuitiy is a challenge for these schemes.

We present numerical results for both cases of the Riemann problem. We are going to
consider [, € {0,1}. Following the discussion in Remark 4.3.7, we can assume that the
solution takes values only in Y = [0, 1]. Note that, from the initial condition, we can derive
that y(t,L) =1, V¥t € T. Moreover, due to positivity of y, the solution on T x X does
not depend on the initial condition for z > % Hence the value of y on the right boundary
has no influence on the solution. Finally, the time-space-window on which we consider the
solution is T = [0,1] and X = [—%, %] Note that we have chosen the data in such a way,
that all variables are less than 1 in absolute value and all involved measures are probability
measures. This is important for numerical stability.

Remark on the significance of the numeric results upfront We need to emphasize
that these experiments are by no means conclusive. Our implementation is based on the
Matlab interface Gloptipoly3 [HLL09a] and the SDP solver Mosek [MOS17]. The purpose
of the numerical examples is to show that our framework actually works in practice and
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with a proper implementation might actually provide an alternative to schemes based on
discretization to compute entropy solutions to scalar hyperbolic conservation laws.

Rarefaction wave

We consider the Riemann problem with [ = 0 and r» = 1. As has been noticed before, with
such an initial condition, entropy conditions are crucial to select the right solution, i.e., the
solution with a good physical meaning. The analytical entropy solution corresponding to
this example is

0 =<0,
y(t,x) =4 2 0<z <L, (4.53)
1 z> %

Numerically implementing all entropy pairs of Kruzkhov is possible (as seen in Section 4.3.2),
but heavy. As already mentioned for the entropy solution the single entropy n(y) = y?
provides all necessary information to select a unique solution [DOWO04]. For the entropy
mv solution we are not aware of such a result. Still, instead of using the Kruzkhov pairs,
we impose the following family of entropies in this example:

m(y) =y",  VkeEN (4.54)

and the corresponding polynomial functions gx. Note that 7 is strictly convex on Y = [0, 1].
Not implementing Kruzkhov makes the implementation more robust. In particular, we do
not have to divide the measures in (4.37) into two measures, since there is no absolute
value appearing in (4.54). It is neither necessary to introduce another variable v as it
is discussed in Section 4.3.2. Finally, we define the sum over all entropy constraints as
objective functional and maximize this quantity. In doing so at relaxation d = 6, we obtain
the following moments for the marginal on y

(20.0.k)k=0.1.... = [1.0000,0.3750,0.3333,0.3125, 0.3000, 0.2917, 0.2857, 0.2812, . .

which coincide with the moments of the actual analytic entropy solution up to precision
10~°. Applying the technique from Section 4.3.2, leads to the graph presented in Fig. 4.4
which is a quite accurate presentation.

Shock wave

In the second example we inverse the roles of [ and r. As it has been noticed before, with
such an initial condition the solution is discontinuous for all t > 0. The unique analytical
solution corresponding to this initial condition is

1 X>£,

4.55
0 x< %. ( )

f&ﬂZ{

As objective function, we choose the standard objective function provided by Gloptipoly,
which minimizes the trace of the moment matrix. Since the trace is the convex hull of the
rank on the unit ball of matrices, this is likely to cause early convergence of the semidefinite
convergence because low rank solutions correspond to measures supported on points only.
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Figure 4.4: Approximation of the solution to the Riemann problem with [ =0 and r = 1.

As in this case the marginal of ¢ with respect to y is supported on {0,1} we expect this
criterion to be appropriate to accelerate convergence. Indeed, for d = 6 we end up with the
following moments for y

(20.0.1)k=0.1.... = [1.0000, 0.6250, 0.6250, 0.6250, 0.6250, . . .

which correspond up to numeric precision exactly with the moments of the analytic solution
dy=(t,x)ATxX. Applying the procedure form Section 4.3.2 leads to Fig. 4.5, where we display
the difference between the analytic solution and our approximation of the graph, based on
the computed moments.

Localizing the shock As already mentioned the computed moments can be used in
order to approximate the location of the shock at some given time tg. Here we will take
to = 0.75. Consequently the shock is located at exactly x = 0.1875.

We used a standard Godunov scheme (we refer to [LeV92] for more details) to compute
the solution up to this time. For space discretization, we took Ax = 0.0005 and an
according discretization in time such that the scheme stays stable. In Table 4.3, we display
the obtained values from this approach on an interval around the shock. We can see the
typical behaviour that the shock is smoothed out.

We use the approach from Section 4.3.2 to approximate the solution on {0.75} X
[0.1850,0.1885]. We expect the numerical data to be defective at this point. We therefore
consider all eigen vectors of the moment matrix such that the sum of the corresponding eigen-
values is less than 1078 in absolute value as belonging to its kernel. Let py,...,p, € R[t, x,y]
be the polynomials in the kernel of the moment matrix. Then for each z; from the X dis-
cretized in Ax = 0.0005 we solve the problem y; := argmin{Z?ZI p;(0.75,%;,y) : y € Y}
where Y is discretized in Ay = 0.0001. All optimal values of these problems have been less
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Figure 4.5: Approximation of the solution to the Riemann problem with [ =1 and r = 0.

X ‘ 0.1850 0.1855 0.1860 0.1865 0.1870 0.1875 0.1880 0.1885
Godunov | 0.9999 0.9991 0.9936 0.9580 0.7647 0.2724 0.0123 0.0000
GMP 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

Table 4.3: Location of the shock at tg = 0.75 approximated in Ax = 0.0005 with Godunov
and GMP approach.

than 10~°. Hence, we consider to have found for any x; a corresponding y; in the support
of the mv solution.

As can be seen in Table 4.3 the values obtained in this way exactly represent the position
of the shock. Actually we even obtained closer bounds on the location of the shock by
reducing the size of Ax when processing the already computed moments. To obtain better
results with Godunov one would need to restart the simulation from the beginning.

4.3.4 Conclusion

In this section, we have discussed a new method to solve scalar polynomial hyperbolic
equations based on the moment-SOS hierarchy. More precisely, we have proved that the
truncated moments associated to the measure-valued solution formulation converge to the
Dirac measure concentrated on entropy solution to the scalar polynomial solution. This
foundational work opens many direction for future research:

e The formulation of mv solutions as solutions to an GMP leaves space for control of
PDEs. A typical control in this set up would be to prescribe the measures on the
boundaries x = L, R. Our framework opens the way for research in this direction.

e The Burgers equation is irreversible. Roughly speaking, given a terminal condition
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yr(x) with T' > 0, there exists a continuum of initial conditions that leads to y(t,x)
(see e.g., [GZ17]). Such a continuum cannot be described by functions but it can be
described with measures. Hence, our linear formulation might be useful to solve such
inverse problems.

e [t might also be interesting to focus on another type of equations, such as parabolic
ones. One of the interest of these equations is that they regularize the solution,
whatever is the initial condition. Therefore, as it is done for ODE in [Las+08a], it
might be possible to define test functions depending on the solution to the parabolic
equation and then define an occupation measure associated to the latter. This together
with the relaxed control theory surveyed in [Fat99] might be instrumental to solve
optimal control problem for non-linear parabolic equations.
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Conclusion and Perspectives

In this thesis we have treated a wide spectrum of topics related to the GMP. On one side
we considered alternative strategies to approximate solutions to the GMP by programs that
require less computational power, in particular in the case when some sparsity structure
is apparent in the original problem. The performance of such programs depends strongly
on implementation details. One direction of further research would be the development of
appropriate modelling software to efficiently compute and compare existing and upcoming
new certificates. In particular so far there is no software package dedicated to sparse or
symmetric GMPs. Another software package could be dedicated to use sparsity in order to
optimize non-linear (polynomial) mixed integer problems.

On the other side we contributed to the application of the GMP in new fields, such
as chance constraint approximation and measure valued solutions to scalar conservation
laws. Both topics are pioneering for many further applications. The approximation of
chance constraints in its version presented in this thesis is limited to small or medium size
problems. A direct extensions of this work would be, e.g., the use of structured sparsity to
consider real world large scale problems. Another continuation would be to approximate
distributionally robust chance constraints in physical network flow problems.

Using the framework of moment-SOS relaxations to compute measure valued solutions
to partial differential equations is a novelty and this thesis is amongst the first documents
explaining this method for scalar non-linear hyperbolic conservation laws. Naturally, the
method could be extended to non-scalar conservation laws or be used to compute controls
for such problems as well as treating the inverse problem of finding initial conditions that
yield a given solution at terminal time.

Solutions obtained from the moment-SOS hierarchy are sequences of moments in general.
This information is often not in a format people can understand easily. In this thesis we
proposed interpretations of such solutions, e.g., the extraction of a minimizer in the case
of polynomial optimization for the sparse BSOS hierarchy, and the polynomials defining
approximations of chance constraints. In the course of the discussion of measure valued
solutions we also proposed a new approach to extract knowledge information about the
support of a measure from its moments. These interpretations of solutions are of crucial
interest for the development of GMP approaches as they permit to illustrate its power and
utility to the engineering other mathematics community.
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